]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - Documentation/virtual/kvm/api.txt
KVM: add vcpu-specific functions to read/write/translate GFNs
[mirror_ubuntu-zesty-kernel.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
202This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
203in the range [0, max_vcpus).
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
371fefd6
PM
215On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
216threads in one or more virtual CPU cores. (This is because the
217hardware requires all the hardware threads in a CPU core to be in the
218same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
219of vcpus per virtual core (vcore). The vcore id is obtained by
220dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
221given vcore will always be in the same physical core as each other
222(though that might be a different physical core from time to time).
223Userspace can control the threading (SMT) mode of the guest by its
224allocation of vcpu ids. For example, if userspace wants
225single-threaded guest vcpus, it should make all vcpu ids be a multiple
226of the number of vcpus per vcore.
227
5b1c1493
CO
228For virtual cpus that have been created with S390 user controlled virtual
229machines, the resulting vcpu fd can be memory mapped at page offset
230KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
231cpu's hardware control block.
232
414fa985 233
68ba6974 2344.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
235
236Capability: basic
237Architectures: x86
238Type: vm ioctl
239Parameters: struct kvm_dirty_log (in/out)
240Returns: 0 on success, -1 on error
241
242/* for KVM_GET_DIRTY_LOG */
243struct kvm_dirty_log {
244 __u32 slot;
245 __u32 padding;
246 union {
247 void __user *dirty_bitmap; /* one bit per page */
248 __u64 padding;
249 };
250};
251
252Given a memory slot, return a bitmap containing any pages dirtied
253since the last call to this ioctl. Bit 0 is the first page in the
254memory slot. Ensure the entire structure is cleared to avoid padding
255issues.
256
414fa985 257
68ba6974 2584.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
259
260Capability: basic
261Architectures: x86
262Type: vm ioctl
263Parameters: struct kvm_memory_alias (in)
264Returns: 0 (success), -1 (error)
265
a1f4d395 266This ioctl is obsolete and has been removed.
9c1b96e3 267
414fa985 268
68ba6974 2694.10 KVM_RUN
9c1b96e3
AK
270
271Capability: basic
272Architectures: all
273Type: vcpu ioctl
274Parameters: none
275Returns: 0 on success, -1 on error
276Errors:
277 EINTR: an unmasked signal is pending
278
279This ioctl is used to run a guest virtual cpu. While there are no
280explicit parameters, there is an implicit parameter block that can be
281obtained by mmap()ing the vcpu fd at offset 0, with the size given by
282KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
283kvm_run' (see below).
284
414fa985 285
68ba6974 2864.11 KVM_GET_REGS
9c1b96e3
AK
287
288Capability: basic
379e04c7 289Architectures: all except ARM, arm64
9c1b96e3
AK
290Type: vcpu ioctl
291Parameters: struct kvm_regs (out)
292Returns: 0 on success, -1 on error
293
294Reads the general purpose registers from the vcpu.
295
296/* x86 */
297struct kvm_regs {
298 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
299 __u64 rax, rbx, rcx, rdx;
300 __u64 rsi, rdi, rsp, rbp;
301 __u64 r8, r9, r10, r11;
302 __u64 r12, r13, r14, r15;
303 __u64 rip, rflags;
304};
305
c2d2c21b
JH
306/* mips */
307struct kvm_regs {
308 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
309 __u64 gpr[32];
310 __u64 hi;
311 __u64 lo;
312 __u64 pc;
313};
314
414fa985 315
68ba6974 3164.12 KVM_SET_REGS
9c1b96e3
AK
317
318Capability: basic
379e04c7 319Architectures: all except ARM, arm64
9c1b96e3
AK
320Type: vcpu ioctl
321Parameters: struct kvm_regs (in)
322Returns: 0 on success, -1 on error
323
324Writes the general purpose registers into the vcpu.
325
326See KVM_GET_REGS for the data structure.
327
414fa985 328
68ba6974 3294.13 KVM_GET_SREGS
9c1b96e3
AK
330
331Capability: basic
5ce941ee 332Architectures: x86, ppc
9c1b96e3
AK
333Type: vcpu ioctl
334Parameters: struct kvm_sregs (out)
335Returns: 0 on success, -1 on error
336
337Reads special registers from the vcpu.
338
339/* x86 */
340struct kvm_sregs {
341 struct kvm_segment cs, ds, es, fs, gs, ss;
342 struct kvm_segment tr, ldt;
343 struct kvm_dtable gdt, idt;
344 __u64 cr0, cr2, cr3, cr4, cr8;
345 __u64 efer;
346 __u64 apic_base;
347 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
348};
349
68e2ffed 350/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 351
9c1b96e3
AK
352interrupt_bitmap is a bitmap of pending external interrupts. At most
353one bit may be set. This interrupt has been acknowledged by the APIC
354but not yet injected into the cpu core.
355
414fa985 356
68ba6974 3574.14 KVM_SET_SREGS
9c1b96e3
AK
358
359Capability: basic
5ce941ee 360Architectures: x86, ppc
9c1b96e3
AK
361Type: vcpu ioctl
362Parameters: struct kvm_sregs (in)
363Returns: 0 on success, -1 on error
364
365Writes special registers into the vcpu. See KVM_GET_SREGS for the
366data structures.
367
414fa985 368
68ba6974 3694.15 KVM_TRANSLATE
9c1b96e3
AK
370
371Capability: basic
372Architectures: x86
373Type: vcpu ioctl
374Parameters: struct kvm_translation (in/out)
375Returns: 0 on success, -1 on error
376
377Translates a virtual address according to the vcpu's current address
378translation mode.
379
380struct kvm_translation {
381 /* in */
382 __u64 linear_address;
383
384 /* out */
385 __u64 physical_address;
386 __u8 valid;
387 __u8 writeable;
388 __u8 usermode;
389 __u8 pad[5];
390};
391
414fa985 392
68ba6974 3934.16 KVM_INTERRUPT
9c1b96e3
AK
394
395Capability: basic
c2d2c21b 396Architectures: x86, ppc, mips
9c1b96e3
AK
397Type: vcpu ioctl
398Parameters: struct kvm_interrupt (in)
399Returns: 0 on success, -1 on error
400
401Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 402useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
403
404/* for KVM_INTERRUPT */
405struct kvm_interrupt {
406 /* in */
407 __u32 irq;
408};
409
6f7a2bd4
AG
410X86:
411
9c1b96e3
AK
412Note 'irq' is an interrupt vector, not an interrupt pin or line.
413
6f7a2bd4
AG
414PPC:
415
416Queues an external interrupt to be injected. This ioctl is overleaded
417with 3 different irq values:
418
419a) KVM_INTERRUPT_SET
420
421 This injects an edge type external interrupt into the guest once it's ready
422 to receive interrupts. When injected, the interrupt is done.
423
424b) KVM_INTERRUPT_UNSET
425
426 This unsets any pending interrupt.
427
428 Only available with KVM_CAP_PPC_UNSET_IRQ.
429
430c) KVM_INTERRUPT_SET_LEVEL
431
432 This injects a level type external interrupt into the guest context. The
433 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
434 is triggered.
435
436 Only available with KVM_CAP_PPC_IRQ_LEVEL.
437
438Note that any value for 'irq' other than the ones stated above is invalid
439and incurs unexpected behavior.
440
c2d2c21b
JH
441MIPS:
442
443Queues an external interrupt to be injected into the virtual CPU. A negative
444interrupt number dequeues the interrupt.
445
414fa985 446
68ba6974 4474.17 KVM_DEBUG_GUEST
9c1b96e3
AK
448
449Capability: basic
450Architectures: none
451Type: vcpu ioctl
452Parameters: none)
453Returns: -1 on error
454
455Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
456
414fa985 457
68ba6974 4584.18 KVM_GET_MSRS
9c1b96e3
AK
459
460Capability: basic
461Architectures: x86
462Type: vcpu ioctl
463Parameters: struct kvm_msrs (in/out)
464Returns: 0 on success, -1 on error
465
466Reads model-specific registers from the vcpu. Supported msr indices can
467be obtained using KVM_GET_MSR_INDEX_LIST.
468
469struct kvm_msrs {
470 __u32 nmsrs; /* number of msrs in entries */
471 __u32 pad;
472
473 struct kvm_msr_entry entries[0];
474};
475
476struct kvm_msr_entry {
477 __u32 index;
478 __u32 reserved;
479 __u64 data;
480};
481
482Application code should set the 'nmsrs' member (which indicates the
483size of the entries array) and the 'index' member of each array entry.
484kvm will fill in the 'data' member.
485
414fa985 486
68ba6974 4874.19 KVM_SET_MSRS
9c1b96e3
AK
488
489Capability: basic
490Architectures: x86
491Type: vcpu ioctl
492Parameters: struct kvm_msrs (in)
493Returns: 0 on success, -1 on error
494
495Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
496data structures.
497
498Application code should set the 'nmsrs' member (which indicates the
499size of the entries array), and the 'index' and 'data' members of each
500array entry.
501
414fa985 502
68ba6974 5034.20 KVM_SET_CPUID
9c1b96e3
AK
504
505Capability: basic
506Architectures: x86
507Type: vcpu ioctl
508Parameters: struct kvm_cpuid (in)
509Returns: 0 on success, -1 on error
510
511Defines the vcpu responses to the cpuid instruction. Applications
512should use the KVM_SET_CPUID2 ioctl if available.
513
514
515struct kvm_cpuid_entry {
516 __u32 function;
517 __u32 eax;
518 __u32 ebx;
519 __u32 ecx;
520 __u32 edx;
521 __u32 padding;
522};
523
524/* for KVM_SET_CPUID */
525struct kvm_cpuid {
526 __u32 nent;
527 __u32 padding;
528 struct kvm_cpuid_entry entries[0];
529};
530
414fa985 531
68ba6974 5324.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
533
534Capability: basic
572e0929 535Architectures: all
9c1b96e3
AK
536Type: vcpu ioctl
537Parameters: struct kvm_signal_mask (in)
538Returns: 0 on success, -1 on error
539
540Defines which signals are blocked during execution of KVM_RUN. This
541signal mask temporarily overrides the threads signal mask. Any
542unblocked signal received (except SIGKILL and SIGSTOP, which retain
543their traditional behaviour) will cause KVM_RUN to return with -EINTR.
544
545Note the signal will only be delivered if not blocked by the original
546signal mask.
547
548/* for KVM_SET_SIGNAL_MASK */
549struct kvm_signal_mask {
550 __u32 len;
551 __u8 sigset[0];
552};
553
414fa985 554
68ba6974 5554.22 KVM_GET_FPU
9c1b96e3
AK
556
557Capability: basic
558Architectures: x86
559Type: vcpu ioctl
560Parameters: struct kvm_fpu (out)
561Returns: 0 on success, -1 on error
562
563Reads the floating point state from the vcpu.
564
565/* for KVM_GET_FPU and KVM_SET_FPU */
566struct kvm_fpu {
567 __u8 fpr[8][16];
568 __u16 fcw;
569 __u16 fsw;
570 __u8 ftwx; /* in fxsave format */
571 __u8 pad1;
572 __u16 last_opcode;
573 __u64 last_ip;
574 __u64 last_dp;
575 __u8 xmm[16][16];
576 __u32 mxcsr;
577 __u32 pad2;
578};
579
414fa985 580
68ba6974 5814.23 KVM_SET_FPU
9c1b96e3
AK
582
583Capability: basic
584Architectures: x86
585Type: vcpu ioctl
586Parameters: struct kvm_fpu (in)
587Returns: 0 on success, -1 on error
588
589Writes the floating point state to the vcpu.
590
591/* for KVM_GET_FPU and KVM_SET_FPU */
592struct kvm_fpu {
593 __u8 fpr[8][16];
594 __u16 fcw;
595 __u16 fsw;
596 __u8 ftwx; /* in fxsave format */
597 __u8 pad1;
598 __u16 last_opcode;
599 __u64 last_ip;
600 __u64 last_dp;
601 __u8 xmm[16][16];
602 __u32 mxcsr;
603 __u32 pad2;
604};
605
414fa985 606
68ba6974 6074.24 KVM_CREATE_IRQCHIP
5dadbfd6 608
84223598 609Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
c32a4272 610Architectures: x86, ARM, arm64, s390
5dadbfd6
AK
611Type: vm ioctl
612Parameters: none
613Returns: 0 on success, -1 on error
614
ac3d3735
AP
615Creates an interrupt controller model in the kernel.
616On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
617future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
618PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
619On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
620KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
621KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
622On s390, a dummy irq routing table is created.
84223598
CH
623
624Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
625before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 626
414fa985 627
68ba6974 6284.25 KVM_IRQ_LINE
5dadbfd6
AK
629
630Capability: KVM_CAP_IRQCHIP
c32a4272 631Architectures: x86, arm, arm64
5dadbfd6
AK
632Type: vm ioctl
633Parameters: struct kvm_irq_level
634Returns: 0 on success, -1 on error
635
636Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
637On some architectures it is required that an interrupt controller model has
638been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
639interrupts require the level to be set to 1 and then back to 0.
640
100943c5
GS
641On real hardware, interrupt pins can be active-low or active-high. This
642does not matter for the level field of struct kvm_irq_level: 1 always
643means active (asserted), 0 means inactive (deasserted).
644
645x86 allows the operating system to program the interrupt polarity
646(active-low/active-high) for level-triggered interrupts, and KVM used
647to consider the polarity. However, due to bitrot in the handling of
648active-low interrupts, the above convention is now valid on x86 too.
649This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
650should not present interrupts to the guest as active-low unless this
651capability is present (or unless it is not using the in-kernel irqchip,
652of course).
653
654
379e04c7
MZ
655ARM/arm64 can signal an interrupt either at the CPU level, or at the
656in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
657use PPIs designated for specific cpus. The irq field is interpreted
658like this:
86ce8535
CD
659
660  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
661 field: | irq_type | vcpu_index | irq_id |
662
663The irq_type field has the following values:
664- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
665- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
666 (the vcpu_index field is ignored)
667- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
668
669(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
670
100943c5 671In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
672
673struct kvm_irq_level {
674 union {
675 __u32 irq; /* GSI */
676 __s32 status; /* not used for KVM_IRQ_LEVEL */
677 };
678 __u32 level; /* 0 or 1 */
679};
680
414fa985 681
68ba6974 6824.26 KVM_GET_IRQCHIP
5dadbfd6
AK
683
684Capability: KVM_CAP_IRQCHIP
c32a4272 685Architectures: x86
5dadbfd6
AK
686Type: vm ioctl
687Parameters: struct kvm_irqchip (in/out)
688Returns: 0 on success, -1 on error
689
690Reads the state of a kernel interrupt controller created with
691KVM_CREATE_IRQCHIP into a buffer provided by the caller.
692
693struct kvm_irqchip {
694 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
695 __u32 pad;
696 union {
697 char dummy[512]; /* reserving space */
698 struct kvm_pic_state pic;
699 struct kvm_ioapic_state ioapic;
700 } chip;
701};
702
414fa985 703
68ba6974 7044.27 KVM_SET_IRQCHIP
5dadbfd6
AK
705
706Capability: KVM_CAP_IRQCHIP
c32a4272 707Architectures: x86
5dadbfd6
AK
708Type: vm ioctl
709Parameters: struct kvm_irqchip (in)
710Returns: 0 on success, -1 on error
711
712Sets the state of a kernel interrupt controller created with
713KVM_CREATE_IRQCHIP from a buffer provided by the caller.
714
715struct kvm_irqchip {
716 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
717 __u32 pad;
718 union {
719 char dummy[512]; /* reserving space */
720 struct kvm_pic_state pic;
721 struct kvm_ioapic_state ioapic;
722 } chip;
723};
724
414fa985 725
68ba6974 7264.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
727
728Capability: KVM_CAP_XEN_HVM
729Architectures: x86
730Type: vm ioctl
731Parameters: struct kvm_xen_hvm_config (in)
732Returns: 0 on success, -1 on error
733
734Sets the MSR that the Xen HVM guest uses to initialize its hypercall
735page, and provides the starting address and size of the hypercall
736blobs in userspace. When the guest writes the MSR, kvm copies one
737page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
738memory.
739
740struct kvm_xen_hvm_config {
741 __u32 flags;
742 __u32 msr;
743 __u64 blob_addr_32;
744 __u64 blob_addr_64;
745 __u8 blob_size_32;
746 __u8 blob_size_64;
747 __u8 pad2[30];
748};
749
414fa985 750
68ba6974 7514.29 KVM_GET_CLOCK
afbcf7ab
GC
752
753Capability: KVM_CAP_ADJUST_CLOCK
754Architectures: x86
755Type: vm ioctl
756Parameters: struct kvm_clock_data (out)
757Returns: 0 on success, -1 on error
758
759Gets the current timestamp of kvmclock as seen by the current guest. In
760conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
761such as migration.
762
763struct kvm_clock_data {
764 __u64 clock; /* kvmclock current value */
765 __u32 flags;
766 __u32 pad[9];
767};
768
414fa985 769
68ba6974 7704.30 KVM_SET_CLOCK
afbcf7ab
GC
771
772Capability: KVM_CAP_ADJUST_CLOCK
773Architectures: x86
774Type: vm ioctl
775Parameters: struct kvm_clock_data (in)
776Returns: 0 on success, -1 on error
777
2044892d 778Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
779In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
780such as migration.
781
782struct kvm_clock_data {
783 __u64 clock; /* kvmclock current value */
784 __u32 flags;
785 __u32 pad[9];
786};
787
414fa985 788
68ba6974 7894.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
790
791Capability: KVM_CAP_VCPU_EVENTS
48005f64 792Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
793Architectures: x86
794Type: vm ioctl
795Parameters: struct kvm_vcpu_event (out)
796Returns: 0 on success, -1 on error
797
798Gets currently pending exceptions, interrupts, and NMIs as well as related
799states of the vcpu.
800
801struct kvm_vcpu_events {
802 struct {
803 __u8 injected;
804 __u8 nr;
805 __u8 has_error_code;
806 __u8 pad;
807 __u32 error_code;
808 } exception;
809 struct {
810 __u8 injected;
811 __u8 nr;
812 __u8 soft;
48005f64 813 __u8 shadow;
3cfc3092
JK
814 } interrupt;
815 struct {
816 __u8 injected;
817 __u8 pending;
818 __u8 masked;
819 __u8 pad;
820 } nmi;
821 __u32 sipi_vector;
dab4b911 822 __u32 flags;
f077825a
PB
823 struct {
824 __u8 smm;
825 __u8 pending;
826 __u8 smm_inside_nmi;
827 __u8 latched_init;
828 } smi;
3cfc3092
JK
829};
830
f077825a
PB
831Only two fields are defined in the flags field:
832
833- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
834 interrupt.shadow contains a valid state.
48005f64 835
f077825a
PB
836- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
837 smi contains a valid state.
414fa985 838
68ba6974 8394.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
840
841Capability: KVM_CAP_VCPU_EVENTS
48005f64 842Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
843Architectures: x86
844Type: vm ioctl
845Parameters: struct kvm_vcpu_event (in)
846Returns: 0 on success, -1 on error
847
848Set pending exceptions, interrupts, and NMIs as well as related states of the
849vcpu.
850
851See KVM_GET_VCPU_EVENTS for the data structure.
852
dab4b911 853Fields that may be modified asynchronously by running VCPUs can be excluded
f077825a
PB
854from the update. These fields are nmi.pending, sipi_vector, smi.smm,
855smi.pending. Keep the corresponding bits in the flags field cleared to
856suppress overwriting the current in-kernel state. The bits are:
dab4b911
JK
857
858KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
859KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
f077825a 860KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
dab4b911 861
48005f64
JK
862If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
863the flags field to signal that interrupt.shadow contains a valid state and
864shall be written into the VCPU.
865
f077825a
PB
866KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
867
414fa985 868
68ba6974 8694.33 KVM_GET_DEBUGREGS
a1efbe77
JK
870
871Capability: KVM_CAP_DEBUGREGS
872Architectures: x86
873Type: vm ioctl
874Parameters: struct kvm_debugregs (out)
875Returns: 0 on success, -1 on error
876
877Reads debug registers from the vcpu.
878
879struct kvm_debugregs {
880 __u64 db[4];
881 __u64 dr6;
882 __u64 dr7;
883 __u64 flags;
884 __u64 reserved[9];
885};
886
414fa985 887
68ba6974 8884.34 KVM_SET_DEBUGREGS
a1efbe77
JK
889
890Capability: KVM_CAP_DEBUGREGS
891Architectures: x86
892Type: vm ioctl
893Parameters: struct kvm_debugregs (in)
894Returns: 0 on success, -1 on error
895
896Writes debug registers into the vcpu.
897
898See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
899yet and must be cleared on entry.
900
414fa985 901
68ba6974 9024.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
903
904Capability: KVM_CAP_USER_MEM
905Architectures: all
906Type: vm ioctl
907Parameters: struct kvm_userspace_memory_region (in)
908Returns: 0 on success, -1 on error
909
910struct kvm_userspace_memory_region {
911 __u32 slot;
912 __u32 flags;
913 __u64 guest_phys_addr;
914 __u64 memory_size; /* bytes */
915 __u64 userspace_addr; /* start of the userspace allocated memory */
916};
917
918/* for kvm_memory_region::flags */
4d8b81ab
XG
919#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
920#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
921
922This ioctl allows the user to create or modify a guest physical memory
923slot. When changing an existing slot, it may be moved in the guest
924physical memory space, or its flags may be modified. It may not be
925resized. Slots may not overlap in guest physical address space.
926
927Memory for the region is taken starting at the address denoted by the
928field userspace_addr, which must point at user addressable memory for
929the entire memory slot size. Any object may back this memory, including
930anonymous memory, ordinary files, and hugetlbfs.
931
932It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
933be identical. This allows large pages in the guest to be backed by large
934pages in the host.
935
75d61fbc
TY
936The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
937KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
938writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
939use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
940to make a new slot read-only. In this case, writes to this memory will be
941posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
942
943When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
944the memory region are automatically reflected into the guest. For example, an
945mmap() that affects the region will be made visible immediately. Another
946example is madvise(MADV_DROP).
0f2d8f4d
AK
947
948It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
949The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
950allocation and is deprecated.
3cfc3092 951
414fa985 952
68ba6974 9534.36 KVM_SET_TSS_ADDR
8a5416db
AK
954
955Capability: KVM_CAP_SET_TSS_ADDR
956Architectures: x86
957Type: vm ioctl
958Parameters: unsigned long tss_address (in)
959Returns: 0 on success, -1 on error
960
961This ioctl defines the physical address of a three-page region in the guest
962physical address space. The region must be within the first 4GB of the
963guest physical address space and must not conflict with any memory slot
964or any mmio address. The guest may malfunction if it accesses this memory
965region.
966
967This ioctl is required on Intel-based hosts. This is needed on Intel hardware
968because of a quirk in the virtualization implementation (see the internals
969documentation when it pops into existence).
970
414fa985 971
68ba6974 9724.37 KVM_ENABLE_CAP
71fbfd5f 973
d938dc55 974Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
90de4a18
NA
975Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
976 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
d938dc55 977Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
978Parameters: struct kvm_enable_cap (in)
979Returns: 0 on success; -1 on error
980
981+Not all extensions are enabled by default. Using this ioctl the application
982can enable an extension, making it available to the guest.
983
984On systems that do not support this ioctl, it always fails. On systems that
985do support it, it only works for extensions that are supported for enablement.
986
987To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
988be used.
989
990struct kvm_enable_cap {
991 /* in */
992 __u32 cap;
993
994The capability that is supposed to get enabled.
995
996 __u32 flags;
997
998A bitfield indicating future enhancements. Has to be 0 for now.
999
1000 __u64 args[4];
1001
1002Arguments for enabling a feature. If a feature needs initial values to
1003function properly, this is the place to put them.
1004
1005 __u8 pad[64];
1006};
1007
d938dc55
CH
1008The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1009for vm-wide capabilities.
414fa985 1010
68ba6974 10114.38 KVM_GET_MP_STATE
b843f065
AK
1012
1013Capability: KVM_CAP_MP_STATE
ecccf0cc 1014Architectures: x86, s390, arm, arm64
b843f065
AK
1015Type: vcpu ioctl
1016Parameters: struct kvm_mp_state (out)
1017Returns: 0 on success; -1 on error
1018
1019struct kvm_mp_state {
1020 __u32 mp_state;
1021};
1022
1023Returns the vcpu's current "multiprocessing state" (though also valid on
1024uniprocessor guests).
1025
1026Possible values are:
1027
ecccf0cc 1028 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
b843f065 1029 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
c32a4272 1030 which has not yet received an INIT signal [x86]
b843f065 1031 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
c32a4272 1032 now ready for a SIPI [x86]
b843f065 1033 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
c32a4272 1034 is waiting for an interrupt [x86]
b843f065 1035 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
c32a4272 1036 accessible via KVM_GET_VCPU_EVENTS) [x86]
ecccf0cc 1037 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
6352e4d2
DH
1038 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1039 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1040 [s390]
1041 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1042 [s390]
b843f065 1043
c32a4272 1044On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1045in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1046these architectures.
b843f065 1047
ecccf0cc
AB
1048For arm/arm64:
1049
1050The only states that are valid are KVM_MP_STATE_STOPPED and
1051KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
414fa985 1052
68ba6974 10534.39 KVM_SET_MP_STATE
b843f065
AK
1054
1055Capability: KVM_CAP_MP_STATE
ecccf0cc 1056Architectures: x86, s390, arm, arm64
b843f065
AK
1057Type: vcpu ioctl
1058Parameters: struct kvm_mp_state (in)
1059Returns: 0 on success; -1 on error
1060
1061Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1062arguments.
1063
c32a4272 1064On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1065in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1066these architectures.
b843f065 1067
ecccf0cc
AB
1068For arm/arm64:
1069
1070The only states that are valid are KVM_MP_STATE_STOPPED and
1071KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
414fa985 1072
68ba6974 10734.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1074
1075Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1076Architectures: x86
1077Type: vm ioctl
1078Parameters: unsigned long identity (in)
1079Returns: 0 on success, -1 on error
1080
1081This ioctl defines the physical address of a one-page region in the guest
1082physical address space. The region must be within the first 4GB of the
1083guest physical address space and must not conflict with any memory slot
1084or any mmio address. The guest may malfunction if it accesses this memory
1085region.
1086
1087This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1088because of a quirk in the virtualization implementation (see the internals
1089documentation when it pops into existence).
1090
414fa985 1091
68ba6974 10924.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1093
1094Capability: KVM_CAP_SET_BOOT_CPU_ID
c32a4272 1095Architectures: x86
57bc24cf
AK
1096Type: vm ioctl
1097Parameters: unsigned long vcpu_id
1098Returns: 0 on success, -1 on error
1099
1100Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1101as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1102is vcpu 0.
1103
414fa985 1104
68ba6974 11054.42 KVM_GET_XSAVE
2d5b5a66
SY
1106
1107Capability: KVM_CAP_XSAVE
1108Architectures: x86
1109Type: vcpu ioctl
1110Parameters: struct kvm_xsave (out)
1111Returns: 0 on success, -1 on error
1112
1113struct kvm_xsave {
1114 __u32 region[1024];
1115};
1116
1117This ioctl would copy current vcpu's xsave struct to the userspace.
1118
414fa985 1119
68ba6974 11204.43 KVM_SET_XSAVE
2d5b5a66
SY
1121
1122Capability: KVM_CAP_XSAVE
1123Architectures: x86
1124Type: vcpu ioctl
1125Parameters: struct kvm_xsave (in)
1126Returns: 0 on success, -1 on error
1127
1128struct kvm_xsave {
1129 __u32 region[1024];
1130};
1131
1132This ioctl would copy userspace's xsave struct to the kernel.
1133
414fa985 1134
68ba6974 11354.44 KVM_GET_XCRS
2d5b5a66
SY
1136
1137Capability: KVM_CAP_XCRS
1138Architectures: x86
1139Type: vcpu ioctl
1140Parameters: struct kvm_xcrs (out)
1141Returns: 0 on success, -1 on error
1142
1143struct kvm_xcr {
1144 __u32 xcr;
1145 __u32 reserved;
1146 __u64 value;
1147};
1148
1149struct kvm_xcrs {
1150 __u32 nr_xcrs;
1151 __u32 flags;
1152 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1153 __u64 padding[16];
1154};
1155
1156This ioctl would copy current vcpu's xcrs to the userspace.
1157
414fa985 1158
68ba6974 11594.45 KVM_SET_XCRS
2d5b5a66
SY
1160
1161Capability: KVM_CAP_XCRS
1162Architectures: x86
1163Type: vcpu ioctl
1164Parameters: struct kvm_xcrs (in)
1165Returns: 0 on success, -1 on error
1166
1167struct kvm_xcr {
1168 __u32 xcr;
1169 __u32 reserved;
1170 __u64 value;
1171};
1172
1173struct kvm_xcrs {
1174 __u32 nr_xcrs;
1175 __u32 flags;
1176 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1177 __u64 padding[16];
1178};
1179
1180This ioctl would set vcpu's xcr to the value userspace specified.
1181
414fa985 1182
68ba6974 11834.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1184
1185Capability: KVM_CAP_EXT_CPUID
1186Architectures: x86
1187Type: system ioctl
1188Parameters: struct kvm_cpuid2 (in/out)
1189Returns: 0 on success, -1 on error
1190
1191struct kvm_cpuid2 {
1192 __u32 nent;
1193 __u32 padding;
1194 struct kvm_cpuid_entry2 entries[0];
1195};
1196
9c15bb1d
BP
1197#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1198#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1199#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1200
1201struct kvm_cpuid_entry2 {
1202 __u32 function;
1203 __u32 index;
1204 __u32 flags;
1205 __u32 eax;
1206 __u32 ebx;
1207 __u32 ecx;
1208 __u32 edx;
1209 __u32 padding[3];
1210};
1211
1212This ioctl returns x86 cpuid features which are supported by both the hardware
1213and kvm. Userspace can use the information returned by this ioctl to
1214construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1215hardware, kernel, and userspace capabilities, and with user requirements (for
1216example, the user may wish to constrain cpuid to emulate older hardware,
1217or for feature consistency across a cluster).
1218
1219Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1220with the 'nent' field indicating the number of entries in the variable-size
1221array 'entries'. If the number of entries is too low to describe the cpu
1222capabilities, an error (E2BIG) is returned. If the number is too high,
1223the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1224number is just right, the 'nent' field is adjusted to the number of valid
1225entries in the 'entries' array, which is then filled.
1226
1227The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1228with unknown or unsupported features masked out. Some features (for example,
1229x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1230emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1231
1232 function: the eax value used to obtain the entry
1233 index: the ecx value used to obtain the entry (for entries that are
1234 affected by ecx)
1235 flags: an OR of zero or more of the following:
1236 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1237 if the index field is valid
1238 KVM_CPUID_FLAG_STATEFUL_FUNC:
1239 if cpuid for this function returns different values for successive
1240 invocations; there will be several entries with the same function,
1241 all with this flag set
1242 KVM_CPUID_FLAG_STATE_READ_NEXT:
1243 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1244 the first entry to be read by a cpu
1245 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1246 this function/index combination
1247
4d25a066
JK
1248The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1249as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1250support. Instead it is reported via
1251
1252 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1253
1254if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1255feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1256
414fa985 1257
68ba6974 12584.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1259
1260Capability: KVM_CAP_PPC_GET_PVINFO
1261Architectures: ppc
1262Type: vm ioctl
1263Parameters: struct kvm_ppc_pvinfo (out)
1264Returns: 0 on success, !0 on error
1265
1266struct kvm_ppc_pvinfo {
1267 __u32 flags;
1268 __u32 hcall[4];
1269 __u8 pad[108];
1270};
1271
1272This ioctl fetches PV specific information that need to be passed to the guest
1273using the device tree or other means from vm context.
1274
9202e076 1275The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1276
1277If any additional field gets added to this structure later on, a bit for that
1278additional piece of information will be set in the flags bitmap.
1279
9202e076
LYB
1280The flags bitmap is defined as:
1281
1282 /* the host supports the ePAPR idle hcall
1283 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1284
68ba6974 12854.48 KVM_ASSIGN_PCI_DEVICE
49f48172 1286
7f05db6a 1287Capability: none
c32a4272 1288Architectures: x86
49f48172
JK
1289Type: vm ioctl
1290Parameters: struct kvm_assigned_pci_dev (in)
1291Returns: 0 on success, -1 on error
1292
1293Assigns a host PCI device to the VM.
1294
1295struct kvm_assigned_pci_dev {
1296 __u32 assigned_dev_id;
1297 __u32 busnr;
1298 __u32 devfn;
1299 __u32 flags;
1300 __u32 segnr;
1301 union {
1302 __u32 reserved[11];
1303 };
1304};
1305
1306The PCI device is specified by the triple segnr, busnr, and devfn.
1307Identification in succeeding service requests is done via assigned_dev_id. The
1308following flags are specified:
1309
1310/* Depends on KVM_CAP_IOMMU */
1311#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1312/* The following two depend on KVM_CAP_PCI_2_3 */
1313#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1314#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1315
1316If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1317via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1318assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1319guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1320
42387373
AW
1321The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1322isolation of the device. Usages not specifying this flag are deprecated.
1323
3d27e23b
AW
1324Only PCI header type 0 devices with PCI BAR resources are supported by
1325device assignment. The user requesting this ioctl must have read/write
1326access to the PCI sysfs resource files associated with the device.
1327
7f05db6a
MT
1328Errors:
1329 ENOTTY: kernel does not support this ioctl
1330
1331 Other error conditions may be defined by individual device types or
1332 have their standard meanings.
1333
414fa985 1334
68ba6974 13354.49 KVM_DEASSIGN_PCI_DEVICE
49f48172 1336
7f05db6a 1337Capability: none
c32a4272 1338Architectures: x86
49f48172
JK
1339Type: vm ioctl
1340Parameters: struct kvm_assigned_pci_dev (in)
1341Returns: 0 on success, -1 on error
1342
1343Ends PCI device assignment, releasing all associated resources.
1344
7f05db6a 1345See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1346used in kvm_assigned_pci_dev to identify the device.
1347
7f05db6a
MT
1348Errors:
1349 ENOTTY: kernel does not support this ioctl
1350
1351 Other error conditions may be defined by individual device types or
1352 have their standard meanings.
414fa985 1353
68ba6974 13544.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1355
1356Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1357Architectures: x86
49f48172
JK
1358Type: vm ioctl
1359Parameters: struct kvm_assigned_irq (in)
1360Returns: 0 on success, -1 on error
1361
1362Assigns an IRQ to a passed-through device.
1363
1364struct kvm_assigned_irq {
1365 __u32 assigned_dev_id;
91e3d71d 1366 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1367 __u32 guest_irq;
1368 __u32 flags;
1369 union {
49f48172
JK
1370 __u32 reserved[12];
1371 };
1372};
1373
1374The following flags are defined:
1375
1376#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1377#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1378#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1379
1380#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1381#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1382#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1383
1384It is not valid to specify multiple types per host or guest IRQ. However, the
1385IRQ type of host and guest can differ or can even be null.
1386
7f05db6a
MT
1387Errors:
1388 ENOTTY: kernel does not support this ioctl
1389
1390 Other error conditions may be defined by individual device types or
1391 have their standard meanings.
1392
414fa985 1393
68ba6974 13944.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1395
1396Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1397Architectures: x86
49f48172
JK
1398Type: vm ioctl
1399Parameters: struct kvm_assigned_irq (in)
1400Returns: 0 on success, -1 on error
1401
1402Ends an IRQ assignment to a passed-through device.
1403
1404See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1405by assigned_dev_id, flags must correspond to the IRQ type specified on
1406KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1407
414fa985 1408
68ba6974 14094.52 KVM_SET_GSI_ROUTING
49f48172
JK
1410
1411Capability: KVM_CAP_IRQ_ROUTING
c32a4272 1412Architectures: x86 s390
49f48172
JK
1413Type: vm ioctl
1414Parameters: struct kvm_irq_routing (in)
1415Returns: 0 on success, -1 on error
1416
1417Sets the GSI routing table entries, overwriting any previously set entries.
1418
1419struct kvm_irq_routing {
1420 __u32 nr;
1421 __u32 flags;
1422 struct kvm_irq_routing_entry entries[0];
1423};
1424
1425No flags are specified so far, the corresponding field must be set to zero.
1426
1427struct kvm_irq_routing_entry {
1428 __u32 gsi;
1429 __u32 type;
1430 __u32 flags;
1431 __u32 pad;
1432 union {
1433 struct kvm_irq_routing_irqchip irqchip;
1434 struct kvm_irq_routing_msi msi;
84223598 1435 struct kvm_irq_routing_s390_adapter adapter;
49f48172
JK
1436 __u32 pad[8];
1437 } u;
1438};
1439
1440/* gsi routing entry types */
1441#define KVM_IRQ_ROUTING_IRQCHIP 1
1442#define KVM_IRQ_ROUTING_MSI 2
84223598 1443#define KVM_IRQ_ROUTING_S390_ADAPTER 3
49f48172
JK
1444
1445No flags are specified so far, the corresponding field must be set to zero.
1446
1447struct kvm_irq_routing_irqchip {
1448 __u32 irqchip;
1449 __u32 pin;
1450};
1451
1452struct kvm_irq_routing_msi {
1453 __u32 address_lo;
1454 __u32 address_hi;
1455 __u32 data;
1456 __u32 pad;
1457};
1458
84223598
CH
1459struct kvm_irq_routing_s390_adapter {
1460 __u64 ind_addr;
1461 __u64 summary_addr;
1462 __u64 ind_offset;
1463 __u32 summary_offset;
1464 __u32 adapter_id;
1465};
1466
414fa985 1467
68ba6974 14684.53 KVM_ASSIGN_SET_MSIX_NR
49f48172 1469
7f05db6a 1470Capability: none
c32a4272 1471Architectures: x86
49f48172
JK
1472Type: vm ioctl
1473Parameters: struct kvm_assigned_msix_nr (in)
1474Returns: 0 on success, -1 on error
1475
58f0964e
JK
1476Set the number of MSI-X interrupts for an assigned device. The number is
1477reset again by terminating the MSI-X assignment of the device via
1478KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1479point will fail.
49f48172
JK
1480
1481struct kvm_assigned_msix_nr {
1482 __u32 assigned_dev_id;
1483 __u16 entry_nr;
1484 __u16 padding;
1485};
1486
1487#define KVM_MAX_MSIX_PER_DEV 256
1488
414fa985 1489
68ba6974 14904.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172 1491
7f05db6a 1492Capability: none
c32a4272 1493Architectures: x86
49f48172
JK
1494Type: vm ioctl
1495Parameters: struct kvm_assigned_msix_entry (in)
1496Returns: 0 on success, -1 on error
1497
1498Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1499the GSI vector to zero means disabling the interrupt.
1500
1501struct kvm_assigned_msix_entry {
1502 __u32 assigned_dev_id;
1503 __u32 gsi;
1504 __u16 entry; /* The index of entry in the MSI-X table */
1505 __u16 padding[3];
1506};
1507
7f05db6a
MT
1508Errors:
1509 ENOTTY: kernel does not support this ioctl
1510
1511 Other error conditions may be defined by individual device types or
1512 have their standard meanings.
1513
414fa985
JK
1514
15154.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1516
1517Capability: KVM_CAP_TSC_CONTROL
1518Architectures: x86
1519Type: vcpu ioctl
1520Parameters: virtual tsc_khz
1521Returns: 0 on success, -1 on error
1522
1523Specifies the tsc frequency for the virtual machine. The unit of the
1524frequency is KHz.
1525
414fa985
JK
1526
15274.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1528
1529Capability: KVM_CAP_GET_TSC_KHZ
1530Architectures: x86
1531Type: vcpu ioctl
1532Parameters: none
1533Returns: virtual tsc-khz on success, negative value on error
1534
1535Returns the tsc frequency of the guest. The unit of the return value is
1536KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1537error.
1538
414fa985
JK
1539
15404.57 KVM_GET_LAPIC
e7677933
AK
1541
1542Capability: KVM_CAP_IRQCHIP
1543Architectures: x86
1544Type: vcpu ioctl
1545Parameters: struct kvm_lapic_state (out)
1546Returns: 0 on success, -1 on error
1547
1548#define KVM_APIC_REG_SIZE 0x400
1549struct kvm_lapic_state {
1550 char regs[KVM_APIC_REG_SIZE];
1551};
1552
1553Reads the Local APIC registers and copies them into the input argument. The
1554data format and layout are the same as documented in the architecture manual.
1555
414fa985
JK
1556
15574.58 KVM_SET_LAPIC
e7677933
AK
1558
1559Capability: KVM_CAP_IRQCHIP
1560Architectures: x86
1561Type: vcpu ioctl
1562Parameters: struct kvm_lapic_state (in)
1563Returns: 0 on success, -1 on error
1564
1565#define KVM_APIC_REG_SIZE 0x400
1566struct kvm_lapic_state {
1567 char regs[KVM_APIC_REG_SIZE];
1568};
1569
df5cbb27 1570Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1571and layout are the same as documented in the architecture manual.
1572
414fa985
JK
1573
15744.59 KVM_IOEVENTFD
55399a02
SL
1575
1576Capability: KVM_CAP_IOEVENTFD
1577Architectures: all
1578Type: vm ioctl
1579Parameters: struct kvm_ioeventfd (in)
1580Returns: 0 on success, !0 on error
1581
1582This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1583within the guest. A guest write in the registered address will signal the
1584provided event instead of triggering an exit.
1585
1586struct kvm_ioeventfd {
1587 __u64 datamatch;
1588 __u64 addr; /* legal pio/mmio address */
1589 __u32 len; /* 1, 2, 4, or 8 bytes */
1590 __s32 fd;
1591 __u32 flags;
1592 __u8 pad[36];
1593};
1594
2b83451b
CH
1595For the special case of virtio-ccw devices on s390, the ioevent is matched
1596to a subchannel/virtqueue tuple instead.
1597
55399a02
SL
1598The following flags are defined:
1599
1600#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1601#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1602#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1603#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1604 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1605
1606If datamatch flag is set, the event will be signaled only if the written value
1607to the registered address is equal to datamatch in struct kvm_ioeventfd.
1608
2b83451b
CH
1609For virtio-ccw devices, addr contains the subchannel id and datamatch the
1610virtqueue index.
1611
414fa985
JK
1612
16134.60 KVM_DIRTY_TLB
dc83b8bc
SW
1614
1615Capability: KVM_CAP_SW_TLB
1616Architectures: ppc
1617Type: vcpu ioctl
1618Parameters: struct kvm_dirty_tlb (in)
1619Returns: 0 on success, -1 on error
1620
1621struct kvm_dirty_tlb {
1622 __u64 bitmap;
1623 __u32 num_dirty;
1624};
1625
1626This must be called whenever userspace has changed an entry in the shared
1627TLB, prior to calling KVM_RUN on the associated vcpu.
1628
1629The "bitmap" field is the userspace address of an array. This array
1630consists of a number of bits, equal to the total number of TLB entries as
1631determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1632nearest multiple of 64.
1633
1634Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1635array.
1636
1637The array is little-endian: the bit 0 is the least significant bit of the
1638first byte, bit 8 is the least significant bit of the second byte, etc.
1639This avoids any complications with differing word sizes.
1640
1641The "num_dirty" field is a performance hint for KVM to determine whether it
1642should skip processing the bitmap and just invalidate everything. It must
1643be set to the number of set bits in the bitmap.
1644
414fa985
JK
1645
16464.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1647
1648Capability: KVM_CAP_PCI_2_3
1649Architectures: x86
1650Type: vm ioctl
1651Parameters: struct kvm_assigned_pci_dev (in)
1652Returns: 0 on success, -1 on error
1653
1654Allows userspace to mask PCI INTx interrupts from the assigned device. The
1655kernel will not deliver INTx interrupts to the guest between setting and
1656clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1657and emulation of PCI 2.3 INTx disable command register behavior.
1658
1659This may be used for both PCI 2.3 devices supporting INTx disable natively and
1660older devices lacking this support. Userspace is responsible for emulating the
1661read value of the INTx disable bit in the guest visible PCI command register.
1662When modifying the INTx disable state, userspace should precede updating the
1663physical device command register by calling this ioctl to inform the kernel of
1664the new intended INTx mask state.
1665
1666Note that the kernel uses the device INTx disable bit to internally manage the
1667device interrupt state for PCI 2.3 devices. Reads of this register may
1668therefore not match the expected value. Writes should always use the guest
1669intended INTx disable value rather than attempting to read-copy-update the
1670current physical device state. Races between user and kernel updates to the
1671INTx disable bit are handled lazily in the kernel. It's possible the device
1672may generate unintended interrupts, but they will not be injected into the
1673guest.
1674
1675See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1676by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1677evaluated.
1678
414fa985 1679
54738c09
DG
16804.62 KVM_CREATE_SPAPR_TCE
1681
1682Capability: KVM_CAP_SPAPR_TCE
1683Architectures: powerpc
1684Type: vm ioctl
1685Parameters: struct kvm_create_spapr_tce (in)
1686Returns: file descriptor for manipulating the created TCE table
1687
1688This creates a virtual TCE (translation control entry) table, which
1689is an IOMMU for PAPR-style virtual I/O. It is used to translate
1690logical addresses used in virtual I/O into guest physical addresses,
1691and provides a scatter/gather capability for PAPR virtual I/O.
1692
1693/* for KVM_CAP_SPAPR_TCE */
1694struct kvm_create_spapr_tce {
1695 __u64 liobn;
1696 __u32 window_size;
1697};
1698
1699The liobn field gives the logical IO bus number for which to create a
1700TCE table. The window_size field specifies the size of the DMA window
1701which this TCE table will translate - the table will contain one 64
1702bit TCE entry for every 4kiB of the DMA window.
1703
1704When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1705table has been created using this ioctl(), the kernel will handle it
1706in real mode, updating the TCE table. H_PUT_TCE calls for other
1707liobns will cause a vm exit and must be handled by userspace.
1708
1709The return value is a file descriptor which can be passed to mmap(2)
1710to map the created TCE table into userspace. This lets userspace read
1711the entries written by kernel-handled H_PUT_TCE calls, and also lets
1712userspace update the TCE table directly which is useful in some
1713circumstances.
1714
414fa985 1715
aa04b4cc
PM
17164.63 KVM_ALLOCATE_RMA
1717
1718Capability: KVM_CAP_PPC_RMA
1719Architectures: powerpc
1720Type: vm ioctl
1721Parameters: struct kvm_allocate_rma (out)
1722Returns: file descriptor for mapping the allocated RMA
1723
1724This allocates a Real Mode Area (RMA) from the pool allocated at boot
1725time by the kernel. An RMA is a physically-contiguous, aligned region
1726of memory used on older POWER processors to provide the memory which
1727will be accessed by real-mode (MMU off) accesses in a KVM guest.
1728POWER processors support a set of sizes for the RMA that usually
1729includes 64MB, 128MB, 256MB and some larger powers of two.
1730
1731/* for KVM_ALLOCATE_RMA */
1732struct kvm_allocate_rma {
1733 __u64 rma_size;
1734};
1735
1736The return value is a file descriptor which can be passed to mmap(2)
1737to map the allocated RMA into userspace. The mapped area can then be
1738passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1739RMA for a virtual machine. The size of the RMA in bytes (which is
1740fixed at host kernel boot time) is returned in the rma_size field of
1741the argument structure.
1742
1743The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1744is supported; 2 if the processor requires all virtual machines to have
1745an RMA, or 1 if the processor can use an RMA but doesn't require it,
1746because it supports the Virtual RMA (VRMA) facility.
1747
414fa985 1748
3f745f1e
AK
17494.64 KVM_NMI
1750
1751Capability: KVM_CAP_USER_NMI
1752Architectures: x86
1753Type: vcpu ioctl
1754Parameters: none
1755Returns: 0 on success, -1 on error
1756
1757Queues an NMI on the thread's vcpu. Note this is well defined only
1758when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1759between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1760has been called, this interface is completely emulated within the kernel.
1761
1762To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1763following algorithm:
1764
1765 - pause the vpcu
1766 - read the local APIC's state (KVM_GET_LAPIC)
1767 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1768 - if so, issue KVM_NMI
1769 - resume the vcpu
1770
1771Some guests configure the LINT1 NMI input to cause a panic, aiding in
1772debugging.
1773
414fa985 1774
e24ed81f 17754.65 KVM_S390_UCAS_MAP
27e0393f
CO
1776
1777Capability: KVM_CAP_S390_UCONTROL
1778Architectures: s390
1779Type: vcpu ioctl
1780Parameters: struct kvm_s390_ucas_mapping (in)
1781Returns: 0 in case of success
1782
1783The parameter is defined like this:
1784 struct kvm_s390_ucas_mapping {
1785 __u64 user_addr;
1786 __u64 vcpu_addr;
1787 __u64 length;
1788 };
1789
1790This ioctl maps the memory at "user_addr" with the length "length" to
1791the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1792be aligned by 1 megabyte.
27e0393f 1793
414fa985 1794
e24ed81f 17954.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1796
1797Capability: KVM_CAP_S390_UCONTROL
1798Architectures: s390
1799Type: vcpu ioctl
1800Parameters: struct kvm_s390_ucas_mapping (in)
1801Returns: 0 in case of success
1802
1803The parameter is defined like this:
1804 struct kvm_s390_ucas_mapping {
1805 __u64 user_addr;
1806 __u64 vcpu_addr;
1807 __u64 length;
1808 };
1809
1810This ioctl unmaps the memory in the vcpu's address space starting at
1811"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1812All parameters need to be aligned by 1 megabyte.
27e0393f 1813
414fa985 1814
e24ed81f 18154.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1816
1817Capability: KVM_CAP_S390_UCONTROL
1818Architectures: s390
1819Type: vcpu ioctl
1820Parameters: vcpu absolute address (in)
1821Returns: 0 in case of success
1822
1823This call creates a page table entry on the virtual cpu's address space
1824(for user controlled virtual machines) or the virtual machine's address
1825space (for regular virtual machines). This only works for minor faults,
1826thus it's recommended to access subject memory page via the user page
1827table upfront. This is useful to handle validity intercepts for user
1828controlled virtual machines to fault in the virtual cpu's lowcore pages
1829prior to calling the KVM_RUN ioctl.
1830
414fa985 1831
e24ed81f
AG
18324.68 KVM_SET_ONE_REG
1833
1834Capability: KVM_CAP_ONE_REG
1835Architectures: all
1836Type: vcpu ioctl
1837Parameters: struct kvm_one_reg (in)
1838Returns: 0 on success, negative value on failure
1839
1840struct kvm_one_reg {
1841 __u64 id;
1842 __u64 addr;
1843};
1844
1845Using this ioctl, a single vcpu register can be set to a specific value
1846defined by user space with the passed in struct kvm_one_reg, where id
1847refers to the register identifier as described below and addr is a pointer
1848to a variable with the respective size. There can be architecture agnostic
1849and architecture specific registers. Each have their own range of operation
1850and their own constants and width. To keep track of the implemented
1851registers, find a list below:
1852
bf5590f3
JH
1853 Arch | Register | Width (bits)
1854 | |
1855 PPC | KVM_REG_PPC_HIOR | 64
1856 PPC | KVM_REG_PPC_IAC1 | 64
1857 PPC | KVM_REG_PPC_IAC2 | 64
1858 PPC | KVM_REG_PPC_IAC3 | 64
1859 PPC | KVM_REG_PPC_IAC4 | 64
1860 PPC | KVM_REG_PPC_DAC1 | 64
1861 PPC | KVM_REG_PPC_DAC2 | 64
1862 PPC | KVM_REG_PPC_DABR | 64
1863 PPC | KVM_REG_PPC_DSCR | 64
1864 PPC | KVM_REG_PPC_PURR | 64
1865 PPC | KVM_REG_PPC_SPURR | 64
1866 PPC | KVM_REG_PPC_DAR | 64
1867 PPC | KVM_REG_PPC_DSISR | 32
1868 PPC | KVM_REG_PPC_AMR | 64
1869 PPC | KVM_REG_PPC_UAMOR | 64
1870 PPC | KVM_REG_PPC_MMCR0 | 64
1871 PPC | KVM_REG_PPC_MMCR1 | 64
1872 PPC | KVM_REG_PPC_MMCRA | 64
1873 PPC | KVM_REG_PPC_MMCR2 | 64
1874 PPC | KVM_REG_PPC_MMCRS | 64
1875 PPC | KVM_REG_PPC_SIAR | 64
1876 PPC | KVM_REG_PPC_SDAR | 64
1877 PPC | KVM_REG_PPC_SIER | 64
1878 PPC | KVM_REG_PPC_PMC1 | 32
1879 PPC | KVM_REG_PPC_PMC2 | 32
1880 PPC | KVM_REG_PPC_PMC3 | 32
1881 PPC | KVM_REG_PPC_PMC4 | 32
1882 PPC | KVM_REG_PPC_PMC5 | 32
1883 PPC | KVM_REG_PPC_PMC6 | 32
1884 PPC | KVM_REG_PPC_PMC7 | 32
1885 PPC | KVM_REG_PPC_PMC8 | 32
1886 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1887 ...
bf5590f3
JH
1888 PPC | KVM_REG_PPC_FPR31 | 64
1889 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1890 ...
bf5590f3
JH
1891 PPC | KVM_REG_PPC_VR31 | 128
1892 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1893 ...
bf5590f3
JH
1894 PPC | KVM_REG_PPC_VSR31 | 128
1895 PPC | KVM_REG_PPC_FPSCR | 64
1896 PPC | KVM_REG_PPC_VSCR | 32
1897 PPC | KVM_REG_PPC_VPA_ADDR | 64
1898 PPC | KVM_REG_PPC_VPA_SLB | 128
1899 PPC | KVM_REG_PPC_VPA_DTL | 128
1900 PPC | KVM_REG_PPC_EPCR | 32
1901 PPC | KVM_REG_PPC_EPR | 32
1902 PPC | KVM_REG_PPC_TCR | 32
1903 PPC | KVM_REG_PPC_TSR | 32
1904 PPC | KVM_REG_PPC_OR_TSR | 32
1905 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1906 PPC | KVM_REG_PPC_MAS0 | 32
1907 PPC | KVM_REG_PPC_MAS1 | 32
1908 PPC | KVM_REG_PPC_MAS2 | 64
1909 PPC | KVM_REG_PPC_MAS7_3 | 64
1910 PPC | KVM_REG_PPC_MAS4 | 32
1911 PPC | KVM_REG_PPC_MAS6 | 32
1912 PPC | KVM_REG_PPC_MMUCFG | 32
1913 PPC | KVM_REG_PPC_TLB0CFG | 32
1914 PPC | KVM_REG_PPC_TLB1CFG | 32
1915 PPC | KVM_REG_PPC_TLB2CFG | 32
1916 PPC | KVM_REG_PPC_TLB3CFG | 32
1917 PPC | KVM_REG_PPC_TLB0PS | 32
1918 PPC | KVM_REG_PPC_TLB1PS | 32
1919 PPC | KVM_REG_PPC_TLB2PS | 32
1920 PPC | KVM_REG_PPC_TLB3PS | 32
1921 PPC | KVM_REG_PPC_EPTCFG | 32
1922 PPC | KVM_REG_PPC_ICP_STATE | 64
1923 PPC | KVM_REG_PPC_TB_OFFSET | 64
1924 PPC | KVM_REG_PPC_SPMC1 | 32
1925 PPC | KVM_REG_PPC_SPMC2 | 32
1926 PPC | KVM_REG_PPC_IAMR | 64
1927 PPC | KVM_REG_PPC_TFHAR | 64
1928 PPC | KVM_REG_PPC_TFIAR | 64
1929 PPC | KVM_REG_PPC_TEXASR | 64
1930 PPC | KVM_REG_PPC_FSCR | 64
1931 PPC | KVM_REG_PPC_PSPB | 32
1932 PPC | KVM_REG_PPC_EBBHR | 64
1933 PPC | KVM_REG_PPC_EBBRR | 64
1934 PPC | KVM_REG_PPC_BESCR | 64
1935 PPC | KVM_REG_PPC_TAR | 64
1936 PPC | KVM_REG_PPC_DPDES | 64
1937 PPC | KVM_REG_PPC_DAWR | 64
1938 PPC | KVM_REG_PPC_DAWRX | 64
1939 PPC | KVM_REG_PPC_CIABR | 64
1940 PPC | KVM_REG_PPC_IC | 64
1941 PPC | KVM_REG_PPC_VTB | 64
1942 PPC | KVM_REG_PPC_CSIGR | 64
1943 PPC | KVM_REG_PPC_TACR | 64
1944 PPC | KVM_REG_PPC_TCSCR | 64
1945 PPC | KVM_REG_PPC_PID | 64
1946 PPC | KVM_REG_PPC_ACOP | 64
1947 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
1948 PPC | KVM_REG_PPC_LPCR | 32
1949 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
1950 PPC | KVM_REG_PPC_PPR | 64
1951 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1952 PPC | KVM_REG_PPC_DABRX | 32
1953 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
1954 PPC | KVM_REG_PPC_SPRG9 | 64
1955 PPC | KVM_REG_PPC_DBSR | 32
bf5590f3 1956 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 1957 ...
bf5590f3
JH
1958 PPC | KVM_REG_PPC_TM_GPR31 | 64
1959 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 1960 ...
bf5590f3
JH
1961 PPC | KVM_REG_PPC_TM_VSR63 | 128
1962 PPC | KVM_REG_PPC_TM_CR | 64
1963 PPC | KVM_REG_PPC_TM_LR | 64
1964 PPC | KVM_REG_PPC_TM_CTR | 64
1965 PPC | KVM_REG_PPC_TM_FPSCR | 64
1966 PPC | KVM_REG_PPC_TM_AMR | 64
1967 PPC | KVM_REG_PPC_TM_PPR | 64
1968 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1969 PPC | KVM_REG_PPC_TM_VSCR | 32
1970 PPC | KVM_REG_PPC_TM_DSCR | 64
1971 PPC | KVM_REG_PPC_TM_TAR | 64
c2d2c21b
JH
1972 | |
1973 MIPS | KVM_REG_MIPS_R0 | 64
1974 ...
1975 MIPS | KVM_REG_MIPS_R31 | 64
1976 MIPS | KVM_REG_MIPS_HI | 64
1977 MIPS | KVM_REG_MIPS_LO | 64
1978 MIPS | KVM_REG_MIPS_PC | 64
1979 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
1980 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
1981 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
1982 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
1983 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
1984 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
1985 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
1986 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
1987 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
1988 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
1989 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
1990 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
1991 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1068eaaf 1992 MIPS | KVM_REG_MIPS_CP0_PRID | 32
c2d2c21b
JH
1993 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
1994 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
1995 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
1996 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
c771607a
JH
1997 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
1998 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
c2d2c21b
JH
1999 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
2000 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
2001 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2002 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2003 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
379245cd
JH
2004 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2005 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
ab86bd60 2006 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
379245cd
JH
2007 MIPS | KVM_REG_MIPS_FCR_IR | 32
2008 MIPS | KVM_REG_MIPS_FCR_CSR | 32
ab86bd60
JH
2009 MIPS | KVM_REG_MIPS_MSA_IR | 32
2010 MIPS | KVM_REG_MIPS_MSA_CSR | 32
414fa985 2011
749cf76c
CD
2012ARM registers are mapped using the lower 32 bits. The upper 16 of that
2013is the register group type, or coprocessor number:
2014
2015ARM core registers have the following id bit patterns:
aa404ddf 2016 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 2017
1138245c 2018ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 2019 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
2020
2021ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 2022 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 2023
c27581ed 2024ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 2025 0x4020 0000 0011 00 <csselr:8>
749cf76c 2026
4fe21e4c 2027ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 2028 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
2029
2030ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 2031 0x4030 0000 0012 0 <regno:12>
4fe21e4c 2032
379e04c7
MZ
2033
2034arm64 registers are mapped using the lower 32 bits. The upper 16 of
2035that is the register group type, or coprocessor number:
2036
2037arm64 core/FP-SIMD registers have the following id bit patterns. Note
2038that the size of the access is variable, as the kvm_regs structure
2039contains elements ranging from 32 to 128 bits. The index is a 32bit
2040value in the kvm_regs structure seen as a 32bit array.
2041 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2042
2043arm64 CCSIDR registers are demultiplexed by CSSELR value:
2044 0x6020 0000 0011 00 <csselr:8>
2045
2046arm64 system registers have the following id bit patterns:
2047 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2048
c2d2c21b
JH
2049
2050MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2051the register group type:
2052
2053MIPS core registers (see above) have the following id bit patterns:
2054 0x7030 0000 0000 <reg:16>
2055
2056MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2057patterns depending on whether they're 32-bit or 64-bit registers:
2058 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2059 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2060
2061MIPS KVM control registers (see above) have the following id bit patterns:
2062 0x7030 0000 0002 <reg:16>
2063
379245cd
JH
2064MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2065id bit patterns depending on the size of the register being accessed. They are
2066always accessed according to the current guest FPU mode (Status.FR and
2067Config5.FRE), i.e. as the guest would see them, and they become unpredictable
ab86bd60
JH
2068if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2069registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2070overlap the FPU registers:
379245cd
JH
2071 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2072 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
ab86bd60 2073 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
379245cd
JH
2074
2075MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2076following id bit patterns:
2077 0x7020 0000 0003 01 <0:3> <reg:5>
2078
ab86bd60
JH
2079MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2080following id bit patterns:
2081 0x7020 0000 0003 02 <0:3> <reg:5>
2082
c2d2c21b 2083
e24ed81f
AG
20844.69 KVM_GET_ONE_REG
2085
2086Capability: KVM_CAP_ONE_REG
2087Architectures: all
2088Type: vcpu ioctl
2089Parameters: struct kvm_one_reg (in and out)
2090Returns: 0 on success, negative value on failure
2091
2092This ioctl allows to receive the value of a single register implemented
2093in a vcpu. The register to read is indicated by the "id" field of the
2094kvm_one_reg struct passed in. On success, the register value can be found
2095at the memory location pointed to by "addr".
2096
2097The list of registers accessible using this interface is identical to the
2e232702 2098list in 4.68.
e24ed81f 2099
414fa985 2100
1c0b28c2
EM
21014.70 KVM_KVMCLOCK_CTRL
2102
2103Capability: KVM_CAP_KVMCLOCK_CTRL
2104Architectures: Any that implement pvclocks (currently x86 only)
2105Type: vcpu ioctl
2106Parameters: None
2107Returns: 0 on success, -1 on error
2108
2109This signals to the host kernel that the specified guest is being paused by
2110userspace. The host will set a flag in the pvclock structure that is checked
2111from the soft lockup watchdog. The flag is part of the pvclock structure that
2112is shared between guest and host, specifically the second bit of the flags
2113field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2114the host and read/cleared exclusively by the guest. The guest operation of
2115checking and clearing the flag must an atomic operation so
2116load-link/store-conditional, or equivalent must be used. There are two cases
2117where the guest will clear the flag: when the soft lockup watchdog timer resets
2118itself or when a soft lockup is detected. This ioctl can be called any time
2119after pausing the vcpu, but before it is resumed.
2120
414fa985 2121
07975ad3
JK
21224.71 KVM_SIGNAL_MSI
2123
2124Capability: KVM_CAP_SIGNAL_MSI
2125Architectures: x86
2126Type: vm ioctl
2127Parameters: struct kvm_msi (in)
2128Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2129
2130Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2131MSI messages.
2132
2133struct kvm_msi {
2134 __u32 address_lo;
2135 __u32 address_hi;
2136 __u32 data;
2137 __u32 flags;
2138 __u8 pad[16];
2139};
2140
2141No flags are defined so far. The corresponding field must be 0.
2142
414fa985 2143
0589ff6c
JK
21444.71 KVM_CREATE_PIT2
2145
2146Capability: KVM_CAP_PIT2
2147Architectures: x86
2148Type: vm ioctl
2149Parameters: struct kvm_pit_config (in)
2150Returns: 0 on success, -1 on error
2151
2152Creates an in-kernel device model for the i8254 PIT. This call is only valid
2153after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2154parameters have to be passed:
2155
2156struct kvm_pit_config {
2157 __u32 flags;
2158 __u32 pad[15];
2159};
2160
2161Valid flags are:
2162
2163#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2164
b6ddf05f
JK
2165PIT timer interrupts may use a per-VM kernel thread for injection. If it
2166exists, this thread will have a name of the following pattern:
2167
2168kvm-pit/<owner-process-pid>
2169
2170When running a guest with elevated priorities, the scheduling parameters of
2171this thread may have to be adjusted accordingly.
2172
0589ff6c
JK
2173This IOCTL replaces the obsolete KVM_CREATE_PIT.
2174
2175
21764.72 KVM_GET_PIT2
2177
2178Capability: KVM_CAP_PIT_STATE2
2179Architectures: x86
2180Type: vm ioctl
2181Parameters: struct kvm_pit_state2 (out)
2182Returns: 0 on success, -1 on error
2183
2184Retrieves the state of the in-kernel PIT model. Only valid after
2185KVM_CREATE_PIT2. The state is returned in the following structure:
2186
2187struct kvm_pit_state2 {
2188 struct kvm_pit_channel_state channels[3];
2189 __u32 flags;
2190 __u32 reserved[9];
2191};
2192
2193Valid flags are:
2194
2195/* disable PIT in HPET legacy mode */
2196#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2197
2198This IOCTL replaces the obsolete KVM_GET_PIT.
2199
2200
22014.73 KVM_SET_PIT2
2202
2203Capability: KVM_CAP_PIT_STATE2
2204Architectures: x86
2205Type: vm ioctl
2206Parameters: struct kvm_pit_state2 (in)
2207Returns: 0 on success, -1 on error
2208
2209Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2210See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2211
2212This IOCTL replaces the obsolete KVM_SET_PIT.
2213
2214
5b74716e
BH
22154.74 KVM_PPC_GET_SMMU_INFO
2216
2217Capability: KVM_CAP_PPC_GET_SMMU_INFO
2218Architectures: powerpc
2219Type: vm ioctl
2220Parameters: None
2221Returns: 0 on success, -1 on error
2222
2223This populates and returns a structure describing the features of
2224the "Server" class MMU emulation supported by KVM.
cc22c354 2225This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2226device-tree properties for the guest operating system.
2227
c98be0c9 2228The structure contains some global information, followed by an
5b74716e
BH
2229array of supported segment page sizes:
2230
2231 struct kvm_ppc_smmu_info {
2232 __u64 flags;
2233 __u32 slb_size;
2234 __u32 pad;
2235 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2236 };
2237
2238The supported flags are:
2239
2240 - KVM_PPC_PAGE_SIZES_REAL:
2241 When that flag is set, guest page sizes must "fit" the backing
2242 store page sizes. When not set, any page size in the list can
2243 be used regardless of how they are backed by userspace.
2244
2245 - KVM_PPC_1T_SEGMENTS
2246 The emulated MMU supports 1T segments in addition to the
2247 standard 256M ones.
2248
2249The "slb_size" field indicates how many SLB entries are supported
2250
2251The "sps" array contains 8 entries indicating the supported base
2252page sizes for a segment in increasing order. Each entry is defined
2253as follow:
2254
2255 struct kvm_ppc_one_seg_page_size {
2256 __u32 page_shift; /* Base page shift of segment (or 0) */
2257 __u32 slb_enc; /* SLB encoding for BookS */
2258 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2259 };
2260
2261An entry with a "page_shift" of 0 is unused. Because the array is
2262organized in increasing order, a lookup can stop when encoutering
2263such an entry.
2264
2265The "slb_enc" field provides the encoding to use in the SLB for the
2266page size. The bits are in positions such as the value can directly
2267be OR'ed into the "vsid" argument of the slbmte instruction.
2268
2269The "enc" array is a list which for each of those segment base page
2270size provides the list of supported actual page sizes (which can be
2271only larger or equal to the base page size), along with the
f884ab15 2272corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
22738 entries sorted by increasing sizes and an entry with a "0" shift
2274is an empty entry and a terminator:
2275
2276 struct kvm_ppc_one_page_size {
2277 __u32 page_shift; /* Page shift (or 0) */
2278 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2279 };
2280
2281The "pte_enc" field provides a value that can OR'ed into the hash
2282PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2283into the hash PTE second double word).
2284
f36992e3
AW
22854.75 KVM_IRQFD
2286
2287Capability: KVM_CAP_IRQFD
174178fe 2288Architectures: x86 s390 arm arm64
f36992e3
AW
2289Type: vm ioctl
2290Parameters: struct kvm_irqfd (in)
2291Returns: 0 on success, -1 on error
2292
2293Allows setting an eventfd to directly trigger a guest interrupt.
2294kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2295kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2296an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2297the guest using the specified gsi pin. The irqfd is removed using
2298the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2299and kvm_irqfd.gsi.
2300
7a84428a
AW
2301With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2302mechanism allowing emulation of level-triggered, irqfd-based
2303interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2304additional eventfd in the kvm_irqfd.resamplefd field. When operating
2305in resample mode, posting of an interrupt through kvm_irq.fd asserts
2306the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2307as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2308kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2309the interrupt if the device making use of it still requires service.
2310Note that closing the resamplefd is not sufficient to disable the
2311irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2312and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2313
174178fe
EA
2314On ARM/ARM64, the gsi field in the kvm_irqfd struct specifies the Shared
2315Peripheral Interrupt (SPI) index, such that the GIC interrupt ID is
2316given by gsi + 32.
2317
5fecc9d8 23184.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2319
2320Capability: KVM_CAP_PPC_ALLOC_HTAB
2321Architectures: powerpc
2322Type: vm ioctl
2323Parameters: Pointer to u32 containing hash table order (in/out)
2324Returns: 0 on success, -1 on error
2325
2326This requests the host kernel to allocate an MMU hash table for a
2327guest using the PAPR paravirtualization interface. This only does
2328anything if the kernel is configured to use the Book 3S HV style of
2329virtualization. Otherwise the capability doesn't exist and the ioctl
2330returns an ENOTTY error. The rest of this description assumes Book 3S
2331HV.
2332
2333There must be no vcpus running when this ioctl is called; if there
2334are, it will do nothing and return an EBUSY error.
2335
2336The parameter is a pointer to a 32-bit unsigned integer variable
2337containing the order (log base 2) of the desired size of the hash
2338table, which must be between 18 and 46. On successful return from the
2339ioctl, it will have been updated with the order of the hash table that
2340was allocated.
2341
2342If no hash table has been allocated when any vcpu is asked to run
2343(with the KVM_RUN ioctl), the host kernel will allocate a
2344default-sized hash table (16 MB).
2345
2346If this ioctl is called when a hash table has already been allocated,
2347the kernel will clear out the existing hash table (zero all HPTEs) and
2348return the hash table order in the parameter. (If the guest is using
2349the virtualized real-mode area (VRMA) facility, the kernel will
2350re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2351
416ad65f
CH
23524.77 KVM_S390_INTERRUPT
2353
2354Capability: basic
2355Architectures: s390
2356Type: vm ioctl, vcpu ioctl
2357Parameters: struct kvm_s390_interrupt (in)
2358Returns: 0 on success, -1 on error
2359
2360Allows to inject an interrupt to the guest. Interrupts can be floating
2361(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2362
2363Interrupt parameters are passed via kvm_s390_interrupt:
2364
2365struct kvm_s390_interrupt {
2366 __u32 type;
2367 __u32 parm;
2368 __u64 parm64;
2369};
2370
2371type can be one of the following:
2372
2822545f 2373KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
416ad65f
CH
2374KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2375KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2376KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2377KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2378KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2379KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2380 parameters in parm and parm64
2381KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2382KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2383KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2384KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2385 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2386 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2387 interruption subclass)
48a3e950
CH
2388KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2389 machine check interrupt code in parm64 (note that
2390 machine checks needing further payload are not
2391 supported by this ioctl)
416ad65f
CH
2392
2393Note that the vcpu ioctl is asynchronous to vcpu execution.
2394
a2932923
PM
23954.78 KVM_PPC_GET_HTAB_FD
2396
2397Capability: KVM_CAP_PPC_HTAB_FD
2398Architectures: powerpc
2399Type: vm ioctl
2400Parameters: Pointer to struct kvm_get_htab_fd (in)
2401Returns: file descriptor number (>= 0) on success, -1 on error
2402
2403This returns a file descriptor that can be used either to read out the
2404entries in the guest's hashed page table (HPT), or to write entries to
2405initialize the HPT. The returned fd can only be written to if the
2406KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2407can only be read if that bit is clear. The argument struct looks like
2408this:
2409
2410/* For KVM_PPC_GET_HTAB_FD */
2411struct kvm_get_htab_fd {
2412 __u64 flags;
2413 __u64 start_index;
2414 __u64 reserved[2];
2415};
2416
2417/* Values for kvm_get_htab_fd.flags */
2418#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2419#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2420
2421The `start_index' field gives the index in the HPT of the entry at
2422which to start reading. It is ignored when writing.
2423
2424Reads on the fd will initially supply information about all
2425"interesting" HPT entries. Interesting entries are those with the
2426bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2427all entries. When the end of the HPT is reached, the read() will
2428return. If read() is called again on the fd, it will start again from
2429the beginning of the HPT, but will only return HPT entries that have
2430changed since they were last read.
2431
2432Data read or written is structured as a header (8 bytes) followed by a
2433series of valid HPT entries (16 bytes) each. The header indicates how
2434many valid HPT entries there are and how many invalid entries follow
2435the valid entries. The invalid entries are not represented explicitly
2436in the stream. The header format is:
2437
2438struct kvm_get_htab_header {
2439 __u32 index;
2440 __u16 n_valid;
2441 __u16 n_invalid;
2442};
2443
2444Writes to the fd create HPT entries starting at the index given in the
2445header; first `n_valid' valid entries with contents from the data
2446written, then `n_invalid' invalid entries, invalidating any previously
2447valid entries found.
2448
852b6d57
SW
24494.79 KVM_CREATE_DEVICE
2450
2451Capability: KVM_CAP_DEVICE_CTRL
2452Type: vm ioctl
2453Parameters: struct kvm_create_device (in/out)
2454Returns: 0 on success, -1 on error
2455Errors:
2456 ENODEV: The device type is unknown or unsupported
2457 EEXIST: Device already created, and this type of device may not
2458 be instantiated multiple times
2459
2460 Other error conditions may be defined by individual device types or
2461 have their standard meanings.
2462
2463Creates an emulated device in the kernel. The file descriptor returned
2464in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2465
2466If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2467device type is supported (not necessarily whether it can be created
2468in the current vm).
2469
2470Individual devices should not define flags. Attributes should be used
2471for specifying any behavior that is not implied by the device type
2472number.
2473
2474struct kvm_create_device {
2475 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2476 __u32 fd; /* out: device handle */
2477 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2478};
2479
24804.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2481
f2061656
DD
2482Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2483Type: device ioctl, vm ioctl
852b6d57
SW
2484Parameters: struct kvm_device_attr
2485Returns: 0 on success, -1 on error
2486Errors:
2487 ENXIO: The group or attribute is unknown/unsupported for this device
2488 EPERM: The attribute cannot (currently) be accessed this way
2489 (e.g. read-only attribute, or attribute that only makes
2490 sense when the device is in a different state)
2491
2492 Other error conditions may be defined by individual device types.
2493
2494Gets/sets a specified piece of device configuration and/or state. The
2495semantics are device-specific. See individual device documentation in
2496the "devices" directory. As with ONE_REG, the size of the data
2497transferred is defined by the particular attribute.
2498
2499struct kvm_device_attr {
2500 __u32 flags; /* no flags currently defined */
2501 __u32 group; /* device-defined */
2502 __u64 attr; /* group-defined */
2503 __u64 addr; /* userspace address of attr data */
2504};
2505
25064.81 KVM_HAS_DEVICE_ATTR
2507
f2061656
DD
2508Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2509Type: device ioctl, vm ioctl
852b6d57
SW
2510Parameters: struct kvm_device_attr
2511Returns: 0 on success, -1 on error
2512Errors:
2513 ENXIO: The group or attribute is unknown/unsupported for this device
2514
2515Tests whether a device supports a particular attribute. A successful
2516return indicates the attribute is implemented. It does not necessarily
2517indicate that the attribute can be read or written in the device's
2518current state. "addr" is ignored.
f36992e3 2519
d8968f1f 25204.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2521
2522Capability: basic
379e04c7 2523Architectures: arm, arm64
749cf76c 2524Type: vcpu ioctl
beb11fc7 2525Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2526Returns: 0 on success; -1 on error
2527Errors:
2528  EINVAL:    the target is unknown, or the combination of features is invalid.
2529  ENOENT:    a features bit specified is unknown.
2530
2531This tells KVM what type of CPU to present to the guest, and what
2532optional features it should have.  This will cause a reset of the cpu
2533registers to their initial values.  If this is not called, KVM_RUN will
2534return ENOEXEC for that vcpu.
2535
2536Note that because some registers reflect machine topology, all vcpus
2537should be created before this ioctl is invoked.
2538
f7fa034d
CD
2539Userspace can call this function multiple times for a given vcpu, including
2540after the vcpu has been run. This will reset the vcpu to its initial
2541state. All calls to this function after the initial call must use the same
2542target and same set of feature flags, otherwise EINVAL will be returned.
2543
aa024c2f
MZ
2544Possible features:
2545 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
2546 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2547 and execute guest code when KVM_RUN is called.
379e04c7
MZ
2548 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2549 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2550 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2551 Depends on KVM_CAP_ARM_PSCI_0_2.
aa024c2f 2552
749cf76c 2553
740edfc0
AP
25544.83 KVM_ARM_PREFERRED_TARGET
2555
2556Capability: basic
2557Architectures: arm, arm64
2558Type: vm ioctl
2559Parameters: struct struct kvm_vcpu_init (out)
2560Returns: 0 on success; -1 on error
2561Errors:
a7265fb1 2562 ENODEV: no preferred target available for the host
740edfc0
AP
2563
2564This queries KVM for preferred CPU target type which can be emulated
2565by KVM on underlying host.
2566
2567The ioctl returns struct kvm_vcpu_init instance containing information
2568about preferred CPU target type and recommended features for it. The
2569kvm_vcpu_init->features bitmap returned will have feature bits set if
2570the preferred target recommends setting these features, but this is
2571not mandatory.
2572
2573The information returned by this ioctl can be used to prepare an instance
2574of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2575in VCPU matching underlying host.
2576
2577
25784.84 KVM_GET_REG_LIST
749cf76c
CD
2579
2580Capability: basic
c2d2c21b 2581Architectures: arm, arm64, mips
749cf76c
CD
2582Type: vcpu ioctl
2583Parameters: struct kvm_reg_list (in/out)
2584Returns: 0 on success; -1 on error
2585Errors:
2586  E2BIG:     the reg index list is too big to fit in the array specified by
2587             the user (the number required will be written into n).
2588
2589struct kvm_reg_list {
2590 __u64 n; /* number of registers in reg[] */
2591 __u64 reg[0];
2592};
2593
2594This ioctl returns the guest registers that are supported for the
2595KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2596
ce01e4e8
CD
2597
25984.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2599
2600Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2601Architectures: arm, arm64
3401d546
CD
2602Type: vm ioctl
2603Parameters: struct kvm_arm_device_address (in)
2604Returns: 0 on success, -1 on error
2605Errors:
2606 ENODEV: The device id is unknown
2607 ENXIO: Device not supported on current system
2608 EEXIST: Address already set
2609 E2BIG: Address outside guest physical address space
330690cd 2610 EBUSY: Address overlaps with other device range
3401d546
CD
2611
2612struct kvm_arm_device_addr {
2613 __u64 id;
2614 __u64 addr;
2615};
2616
2617Specify a device address in the guest's physical address space where guests
2618can access emulated or directly exposed devices, which the host kernel needs
2619to know about. The id field is an architecture specific identifier for a
2620specific device.
2621
379e04c7
MZ
2622ARM/arm64 divides the id field into two parts, a device id and an
2623address type id specific to the individual device.
3401d546
CD
2624
2625  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2626 field: | 0x00000000 | device id | addr type id |
2627
379e04c7
MZ
2628ARM/arm64 currently only require this when using the in-kernel GIC
2629support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2630as the device id. When setting the base address for the guest's
2631mapping of the VGIC virtual CPU and distributor interface, the ioctl
2632must be called after calling KVM_CREATE_IRQCHIP, but before calling
2633KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2634base addresses will return -EEXIST.
3401d546 2635
ce01e4e8
CD
2636Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2637should be used instead.
2638
2639
740edfc0 26404.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2641
2642Capability: KVM_CAP_PPC_RTAS
2643Architectures: ppc
2644Type: vm ioctl
2645Parameters: struct kvm_rtas_token_args
2646Returns: 0 on success, -1 on error
2647
2648Defines a token value for a RTAS (Run Time Abstraction Services)
2649service in order to allow it to be handled in the kernel. The
2650argument struct gives the name of the service, which must be the name
2651of a service that has a kernel-side implementation. If the token
2652value is non-zero, it will be associated with that service, and
2653subsequent RTAS calls by the guest specifying that token will be
2654handled by the kernel. If the token value is 0, then any token
2655associated with the service will be forgotten, and subsequent RTAS
2656calls by the guest for that service will be passed to userspace to be
2657handled.
2658
4bd9d344
AB
26594.87 KVM_SET_GUEST_DEBUG
2660
2661Capability: KVM_CAP_SET_GUEST_DEBUG
2662Architectures: x86, s390, ppc
2663Type: vcpu ioctl
2664Parameters: struct kvm_guest_debug (in)
2665Returns: 0 on success; -1 on error
2666
2667struct kvm_guest_debug {
2668 __u32 control;
2669 __u32 pad;
2670 struct kvm_guest_debug_arch arch;
2671};
2672
2673Set up the processor specific debug registers and configure vcpu for
2674handling guest debug events. There are two parts to the structure, the
2675first a control bitfield indicates the type of debug events to handle
2676when running. Common control bits are:
2677
2678 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2679 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2680
2681The top 16 bits of the control field are architecture specific control
2682flags which can include the following:
2683
2684 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86]
2685 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390]
2686 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2687 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2688 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2689
2690For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2691are enabled in memory so we need to ensure breakpoint exceptions are
2692correctly trapped and the KVM run loop exits at the breakpoint and not
2693running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2694we need to ensure the guest vCPUs architecture specific registers are
2695updated to the correct (supplied) values.
2696
2697The second part of the structure is architecture specific and
2698typically contains a set of debug registers.
2699
2700When debug events exit the main run loop with the reason
2701KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2702structure containing architecture specific debug information.
3401d546 2703
209cf19f
AB
27044.88 KVM_GET_EMULATED_CPUID
2705
2706Capability: KVM_CAP_EXT_EMUL_CPUID
2707Architectures: x86
2708Type: system ioctl
2709Parameters: struct kvm_cpuid2 (in/out)
2710Returns: 0 on success, -1 on error
2711
2712struct kvm_cpuid2 {
2713 __u32 nent;
2714 __u32 flags;
2715 struct kvm_cpuid_entry2 entries[0];
2716};
2717
2718The member 'flags' is used for passing flags from userspace.
2719
2720#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2721#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2722#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2723
2724struct kvm_cpuid_entry2 {
2725 __u32 function;
2726 __u32 index;
2727 __u32 flags;
2728 __u32 eax;
2729 __u32 ebx;
2730 __u32 ecx;
2731 __u32 edx;
2732 __u32 padding[3];
2733};
2734
2735This ioctl returns x86 cpuid features which are emulated by
2736kvm.Userspace can use the information returned by this ioctl to query
2737which features are emulated by kvm instead of being present natively.
2738
2739Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2740structure with the 'nent' field indicating the number of entries in
2741the variable-size array 'entries'. If the number of entries is too low
2742to describe the cpu capabilities, an error (E2BIG) is returned. If the
2743number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2744is returned. If the number is just right, the 'nent' field is adjusted
2745to the number of valid entries in the 'entries' array, which is then
2746filled.
2747
2748The entries returned are the set CPUID bits of the respective features
2749which kvm emulates, as returned by the CPUID instruction, with unknown
2750or unsupported feature bits cleared.
2751
2752Features like x2apic, for example, may not be present in the host cpu
2753but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2754emulated efficiently and thus not included here.
2755
2756The fields in each entry are defined as follows:
2757
2758 function: the eax value used to obtain the entry
2759 index: the ecx value used to obtain the entry (for entries that are
2760 affected by ecx)
2761 flags: an OR of zero or more of the following:
2762 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2763 if the index field is valid
2764 KVM_CPUID_FLAG_STATEFUL_FUNC:
2765 if cpuid for this function returns different values for successive
2766 invocations; there will be several entries with the same function,
2767 all with this flag set
2768 KVM_CPUID_FLAG_STATE_READ_NEXT:
2769 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2770 the first entry to be read by a cpu
2771 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2772 this function/index combination
2773
41408c28
TH
27744.89 KVM_S390_MEM_OP
2775
2776Capability: KVM_CAP_S390_MEM_OP
2777Architectures: s390
2778Type: vcpu ioctl
2779Parameters: struct kvm_s390_mem_op (in)
2780Returns: = 0 on success,
2781 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2782 > 0 if an exception occurred while walking the page tables
2783
2784Read or write data from/to the logical (virtual) memory of a VPCU.
2785
2786Parameters are specified via the following structure:
2787
2788struct kvm_s390_mem_op {
2789 __u64 gaddr; /* the guest address */
2790 __u64 flags; /* flags */
2791 __u32 size; /* amount of bytes */
2792 __u32 op; /* type of operation */
2793 __u64 buf; /* buffer in userspace */
2794 __u8 ar; /* the access register number */
2795 __u8 reserved[31]; /* should be set to 0 */
2796};
2797
2798The type of operation is specified in the "op" field. It is either
2799KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2800KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2801KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2802whether the corresponding memory access would create an access exception
2803(without touching the data in the memory at the destination). In case an
2804access exception occurred while walking the MMU tables of the guest, the
2805ioctl returns a positive error number to indicate the type of exception.
2806This exception is also raised directly at the corresponding VCPU if the
2807flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2808
2809The start address of the memory region has to be specified in the "gaddr"
2810field, and the length of the region in the "size" field. "buf" is the buffer
2811supplied by the userspace application where the read data should be written
2812to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2813is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2814when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2815register number to be used.
2816
2817The "reserved" field is meant for future extensions. It is not used by
2818KVM with the currently defined set of flags.
2819
30ee2a98
JH
28204.90 KVM_S390_GET_SKEYS
2821
2822Capability: KVM_CAP_S390_SKEYS
2823Architectures: s390
2824Type: vm ioctl
2825Parameters: struct kvm_s390_skeys
2826Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2827 keys, negative value on error
2828
2829This ioctl is used to get guest storage key values on the s390
2830architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2831
2832struct kvm_s390_skeys {
2833 __u64 start_gfn;
2834 __u64 count;
2835 __u64 skeydata_addr;
2836 __u32 flags;
2837 __u32 reserved[9];
2838};
2839
2840The start_gfn field is the number of the first guest frame whose storage keys
2841you want to get.
2842
2843The count field is the number of consecutive frames (starting from start_gfn)
2844whose storage keys to get. The count field must be at least 1 and the maximum
2845allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2846will cause the ioctl to return -EINVAL.
2847
2848The skeydata_addr field is the address to a buffer large enough to hold count
2849bytes. This buffer will be filled with storage key data by the ioctl.
2850
28514.91 KVM_S390_SET_SKEYS
2852
2853Capability: KVM_CAP_S390_SKEYS
2854Architectures: s390
2855Type: vm ioctl
2856Parameters: struct kvm_s390_skeys
2857Returns: 0 on success, negative value on error
2858
2859This ioctl is used to set guest storage key values on the s390
2860architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2861See section on KVM_S390_GET_SKEYS for struct definition.
2862
2863The start_gfn field is the number of the first guest frame whose storage keys
2864you want to set.
2865
2866The count field is the number of consecutive frames (starting from start_gfn)
2867whose storage keys to get. The count field must be at least 1 and the maximum
2868allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2869will cause the ioctl to return -EINVAL.
2870
2871The skeydata_addr field is the address to a buffer containing count bytes of
2872storage keys. Each byte in the buffer will be set as the storage key for a
2873single frame starting at start_gfn for count frames.
2874
2875Note: If any architecturally invalid key value is found in the given data then
2876the ioctl will return -EINVAL.
2877
47b43c52
JF
28784.92 KVM_S390_IRQ
2879
2880Capability: KVM_CAP_S390_INJECT_IRQ
2881Architectures: s390
2882Type: vcpu ioctl
2883Parameters: struct kvm_s390_irq (in)
2884Returns: 0 on success, -1 on error
2885Errors:
2886 EINVAL: interrupt type is invalid
2887 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2888 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2889 than the maximum of VCPUs
2890 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2891 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2892 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2893 is already pending
2894
2895Allows to inject an interrupt to the guest.
2896
2897Using struct kvm_s390_irq as a parameter allows
2898to inject additional payload which is not
2899possible via KVM_S390_INTERRUPT.
2900
2901Interrupt parameters are passed via kvm_s390_irq:
2902
2903struct kvm_s390_irq {
2904 __u64 type;
2905 union {
2906 struct kvm_s390_io_info io;
2907 struct kvm_s390_ext_info ext;
2908 struct kvm_s390_pgm_info pgm;
2909 struct kvm_s390_emerg_info emerg;
2910 struct kvm_s390_extcall_info extcall;
2911 struct kvm_s390_prefix_info prefix;
2912 struct kvm_s390_stop_info stop;
2913 struct kvm_s390_mchk_info mchk;
2914 char reserved[64];
2915 } u;
2916};
2917
2918type can be one of the following:
2919
2920KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2921KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2922KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2923KVM_S390_RESTART - restart; no parameters
2924KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
2925KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
2926KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
2927KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
2928KVM_S390_MCHK - machine check interrupt; parameters in .mchk
2929
2930
2931Note that the vcpu ioctl is asynchronous to vcpu execution.
2932
816c7667
JF
29334.94 KVM_S390_GET_IRQ_STATE
2934
2935Capability: KVM_CAP_S390_IRQ_STATE
2936Architectures: s390
2937Type: vcpu ioctl
2938Parameters: struct kvm_s390_irq_state (out)
2939Returns: >= number of bytes copied into buffer,
2940 -EINVAL if buffer size is 0,
2941 -ENOBUFS if buffer size is too small to fit all pending interrupts,
2942 -EFAULT if the buffer address was invalid
2943
2944This ioctl allows userspace to retrieve the complete state of all currently
2945pending interrupts in a single buffer. Use cases include migration
2946and introspection. The parameter structure contains the address of a
2947userspace buffer and its length:
2948
2949struct kvm_s390_irq_state {
2950 __u64 buf;
2951 __u32 flags;
2952 __u32 len;
2953 __u32 reserved[4];
2954};
2955
2956Userspace passes in the above struct and for each pending interrupt a
2957struct kvm_s390_irq is copied to the provided buffer.
2958
2959If -ENOBUFS is returned the buffer provided was too small and userspace
2960may retry with a bigger buffer.
2961
29624.95 KVM_S390_SET_IRQ_STATE
2963
2964Capability: KVM_CAP_S390_IRQ_STATE
2965Architectures: s390
2966Type: vcpu ioctl
2967Parameters: struct kvm_s390_irq_state (in)
2968Returns: 0 on success,
2969 -EFAULT if the buffer address was invalid,
2970 -EINVAL for an invalid buffer length (see below),
2971 -EBUSY if there were already interrupts pending,
2972 errors occurring when actually injecting the
2973 interrupt. See KVM_S390_IRQ.
2974
2975This ioctl allows userspace to set the complete state of all cpu-local
2976interrupts currently pending for the vcpu. It is intended for restoring
2977interrupt state after a migration. The input parameter is a userspace buffer
2978containing a struct kvm_s390_irq_state:
2979
2980struct kvm_s390_irq_state {
2981 __u64 buf;
2982 __u32 len;
2983 __u32 pad;
2984};
2985
2986The userspace memory referenced by buf contains a struct kvm_s390_irq
2987for each interrupt to be injected into the guest.
2988If one of the interrupts could not be injected for some reason the
2989ioctl aborts.
2990
2991len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
2992and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
2993which is the maximum number of possibly pending cpu-local interrupts.
47b43c52 2994
f077825a
PB
29954.90 KVM_SMI
2996
2997Capability: KVM_CAP_X86_SMM
2998Architectures: x86
2999Type: vcpu ioctl
3000Parameters: none
3001Returns: 0 on success, -1 on error
3002
3003Queues an SMI on the thread's vcpu.
3004
9c1b96e3 30055. The kvm_run structure
414fa985 3006------------------------
9c1b96e3
AK
3007
3008Application code obtains a pointer to the kvm_run structure by
3009mmap()ing a vcpu fd. From that point, application code can control
3010execution by changing fields in kvm_run prior to calling the KVM_RUN
3011ioctl, and obtain information about the reason KVM_RUN returned by
3012looking up structure members.
3013
3014struct kvm_run {
3015 /* in */
3016 __u8 request_interrupt_window;
3017
3018Request that KVM_RUN return when it becomes possible to inject external
3019interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3020
3021 __u8 padding1[7];
3022
3023 /* out */
3024 __u32 exit_reason;
3025
3026When KVM_RUN has returned successfully (return value 0), this informs
3027application code why KVM_RUN has returned. Allowable values for this
3028field are detailed below.
3029
3030 __u8 ready_for_interrupt_injection;
3031
3032If request_interrupt_window has been specified, this field indicates
3033an interrupt can be injected now with KVM_INTERRUPT.
3034
3035 __u8 if_flag;
3036
3037The value of the current interrupt flag. Only valid if in-kernel
3038local APIC is not used.
3039
f077825a
PB
3040 __u16 flags;
3041
3042More architecture-specific flags detailing state of the VCPU that may
3043affect the device's behavior. The only currently defined flag is
3044KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3045VCPU is in system management mode.
9c1b96e3
AK
3046
3047 /* in (pre_kvm_run), out (post_kvm_run) */
3048 __u64 cr8;
3049
3050The value of the cr8 register. Only valid if in-kernel local APIC is
3051not used. Both input and output.
3052
3053 __u64 apic_base;
3054
3055The value of the APIC BASE msr. Only valid if in-kernel local
3056APIC is not used. Both input and output.
3057
3058 union {
3059 /* KVM_EXIT_UNKNOWN */
3060 struct {
3061 __u64 hardware_exit_reason;
3062 } hw;
3063
3064If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3065reasons. Further architecture-specific information is available in
3066hardware_exit_reason.
3067
3068 /* KVM_EXIT_FAIL_ENTRY */
3069 struct {
3070 __u64 hardware_entry_failure_reason;
3071 } fail_entry;
3072
3073If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3074to unknown reasons. Further architecture-specific information is
3075available in hardware_entry_failure_reason.
3076
3077 /* KVM_EXIT_EXCEPTION */
3078 struct {
3079 __u32 exception;
3080 __u32 error_code;
3081 } ex;
3082
3083Unused.
3084
3085 /* KVM_EXIT_IO */
3086 struct {
3087#define KVM_EXIT_IO_IN 0
3088#define KVM_EXIT_IO_OUT 1
3089 __u8 direction;
3090 __u8 size; /* bytes */
3091 __u16 port;
3092 __u32 count;
3093 __u64 data_offset; /* relative to kvm_run start */
3094 } io;
3095
2044892d 3096If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
3097executed a port I/O instruction which could not be satisfied by kvm.
3098data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3099where kvm expects application code to place the data for the next
2044892d 3100KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
3101
3102 struct {
3103 struct kvm_debug_exit_arch arch;
3104 } debug;
3105
3106Unused.
3107
3108 /* KVM_EXIT_MMIO */
3109 struct {
3110 __u64 phys_addr;
3111 __u8 data[8];
3112 __u32 len;
3113 __u8 is_write;
3114 } mmio;
3115
2044892d 3116If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
3117executed a memory-mapped I/O instruction which could not be satisfied
3118by kvm. The 'data' member contains the written data if 'is_write' is
3119true, and should be filled by application code otherwise.
3120
6acdb160
CD
3121The 'data' member contains, in its first 'len' bytes, the value as it would
3122appear if the VCPU performed a load or store of the appropriate width directly
3123to the byte array.
3124
cc568ead 3125NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 3126 KVM_EXIT_EPR the corresponding
ad0a048b
AG
3127operations are complete (and guest state is consistent) only after userspace
3128has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
3129incomplete operations and then check for pending signals. Userspace
3130can re-enter the guest with an unmasked signal pending to complete
3131pending operations.
3132
9c1b96e3
AK
3133 /* KVM_EXIT_HYPERCALL */
3134 struct {
3135 __u64 nr;
3136 __u64 args[6];
3137 __u64 ret;
3138 __u32 longmode;
3139 __u32 pad;
3140 } hypercall;
3141
647dc49e
AK
3142Unused. This was once used for 'hypercall to userspace'. To implement
3143such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3144Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
3145
3146 /* KVM_EXIT_TPR_ACCESS */
3147 struct {
3148 __u64 rip;
3149 __u32 is_write;
3150 __u32 pad;
3151 } tpr_access;
3152
3153To be documented (KVM_TPR_ACCESS_REPORTING).
3154
3155 /* KVM_EXIT_S390_SIEIC */
3156 struct {
3157 __u8 icptcode;
3158 __u64 mask; /* psw upper half */
3159 __u64 addr; /* psw lower half */
3160 __u16 ipa;
3161 __u32 ipb;
3162 } s390_sieic;
3163
3164s390 specific.
3165
3166 /* KVM_EXIT_S390_RESET */
3167#define KVM_S390_RESET_POR 1
3168#define KVM_S390_RESET_CLEAR 2
3169#define KVM_S390_RESET_SUBSYSTEM 4
3170#define KVM_S390_RESET_CPU_INIT 8
3171#define KVM_S390_RESET_IPL 16
3172 __u64 s390_reset_flags;
3173
3174s390 specific.
3175
e168bf8d
CO
3176 /* KVM_EXIT_S390_UCONTROL */
3177 struct {
3178 __u64 trans_exc_code;
3179 __u32 pgm_code;
3180 } s390_ucontrol;
3181
3182s390 specific. A page fault has occurred for a user controlled virtual
3183machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3184resolved by the kernel.
3185The program code and the translation exception code that were placed
3186in the cpu's lowcore are presented here as defined by the z Architecture
3187Principles of Operation Book in the Chapter for Dynamic Address Translation
3188(DAT)
3189
9c1b96e3
AK
3190 /* KVM_EXIT_DCR */
3191 struct {
3192 __u32 dcrn;
3193 __u32 data;
3194 __u8 is_write;
3195 } dcr;
3196
ce91ddc4 3197Deprecated - was used for 440 KVM.
9c1b96e3 3198
ad0a048b
AG
3199 /* KVM_EXIT_OSI */
3200 struct {
3201 __u64 gprs[32];
3202 } osi;
3203
3204MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3205hypercalls and exit with this exit struct that contains all the guest gprs.
3206
3207If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3208Userspace can now handle the hypercall and when it's done modify the gprs as
3209necessary. Upon guest entry all guest GPRs will then be replaced by the values
3210in this struct.
3211
de56a948
PM
3212 /* KVM_EXIT_PAPR_HCALL */
3213 struct {
3214 __u64 nr;
3215 __u64 ret;
3216 __u64 args[9];
3217 } papr_hcall;
3218
3219This is used on 64-bit PowerPC when emulating a pSeries partition,
3220e.g. with the 'pseries' machine type in qemu. It occurs when the
3221guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3222contains the hypercall number (from the guest R3), and 'args' contains
3223the arguments (from the guest R4 - R12). Userspace should put the
3224return code in 'ret' and any extra returned values in args[].
3225The possible hypercalls are defined in the Power Architecture Platform
3226Requirements (PAPR) document available from www.power.org (free
3227developer registration required to access it).
3228
fa6b7fe9
CH
3229 /* KVM_EXIT_S390_TSCH */
3230 struct {
3231 __u16 subchannel_id;
3232 __u16 subchannel_nr;
3233 __u32 io_int_parm;
3234 __u32 io_int_word;
3235 __u32 ipb;
3236 __u8 dequeued;
3237 } s390_tsch;
3238
3239s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3240and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3241interrupt for the target subchannel has been dequeued and subchannel_id,
3242subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3243interrupt. ipb is needed for instruction parameter decoding.
3244
1c810636
AG
3245 /* KVM_EXIT_EPR */
3246 struct {
3247 __u32 epr;
3248 } epr;
3249
3250On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3251interrupt acknowledge path to the core. When the core successfully
3252delivers an interrupt, it automatically populates the EPR register with
3253the interrupt vector number and acknowledges the interrupt inside
3254the interrupt controller.
3255
3256In case the interrupt controller lives in user space, we need to do
3257the interrupt acknowledge cycle through it to fetch the next to be
3258delivered interrupt vector using this exit.
3259
3260It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3261external interrupt has just been delivered into the guest. User space
3262should put the acknowledged interrupt vector into the 'epr' field.
3263
8ad6b634
AP
3264 /* KVM_EXIT_SYSTEM_EVENT */
3265 struct {
3266#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3267#define KVM_SYSTEM_EVENT_RESET 2
3268 __u32 type;
3269 __u64 flags;
3270 } system_event;
3271
3272If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3273a system-level event using some architecture specific mechanism (hypercall
3274or some special instruction). In case of ARM/ARM64, this is triggered using
3275HVC instruction based PSCI call from the vcpu. The 'type' field describes
3276the system-level event type. The 'flags' field describes architecture
3277specific flags for the system-level event.
3278
cf5d3188
CD
3279Valid values for 'type' are:
3280 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3281 VM. Userspace is not obliged to honour this, and if it does honour
3282 this does not need to destroy the VM synchronously (ie it may call
3283 KVM_RUN again before shutdown finally occurs).
3284 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3285 As with SHUTDOWN, userspace can choose to ignore the request, or
3286 to schedule the reset to occur in the future and may call KVM_RUN again.
3287
9c1b96e3
AK
3288 /* Fix the size of the union. */
3289 char padding[256];
3290 };
b9e5dc8d
CB
3291
3292 /*
3293 * shared registers between kvm and userspace.
3294 * kvm_valid_regs specifies the register classes set by the host
3295 * kvm_dirty_regs specified the register classes dirtied by userspace
3296 * struct kvm_sync_regs is architecture specific, as well as the
3297 * bits for kvm_valid_regs and kvm_dirty_regs
3298 */
3299 __u64 kvm_valid_regs;
3300 __u64 kvm_dirty_regs;
3301 union {
3302 struct kvm_sync_regs regs;
3303 char padding[1024];
3304 } s;
3305
3306If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3307certain guest registers without having to call SET/GET_*REGS. Thus we can
3308avoid some system call overhead if userspace has to handle the exit.
3309Userspace can query the validity of the structure by checking
3310kvm_valid_regs for specific bits. These bits are architecture specific
3311and usually define the validity of a groups of registers. (e.g. one bit
3312 for general purpose registers)
3313
d8482c0d
DH
3314Please note that the kernel is allowed to use the kvm_run structure as the
3315primary storage for certain register types. Therefore, the kernel may use the
3316values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3317
9c1b96e3 3318};
821246a5 3319
414fa985 3320
9c15bb1d 3321
699a0ea0
PM
33226. Capabilities that can be enabled on vCPUs
3323--------------------------------------------
821246a5 3324
0907c855
CH
3325There are certain capabilities that change the behavior of the virtual CPU or
3326the virtual machine when enabled. To enable them, please see section 4.37.
3327Below you can find a list of capabilities and what their effect on the vCPU or
3328the virtual machine is when enabling them.
821246a5
AG
3329
3330The following information is provided along with the description:
3331
3332 Architectures: which instruction set architectures provide this ioctl.
3333 x86 includes both i386 and x86_64.
3334
0907c855
CH
3335 Target: whether this is a per-vcpu or per-vm capability.
3336
821246a5
AG
3337 Parameters: what parameters are accepted by the capability.
3338
3339 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3340 are not detailed, but errors with specific meanings are.
3341
414fa985 3342
821246a5
AG
33436.1 KVM_CAP_PPC_OSI
3344
3345Architectures: ppc
0907c855 3346Target: vcpu
821246a5
AG
3347Parameters: none
3348Returns: 0 on success; -1 on error
3349
3350This capability enables interception of OSI hypercalls that otherwise would
3351be treated as normal system calls to be injected into the guest. OSI hypercalls
3352were invented by Mac-on-Linux to have a standardized communication mechanism
3353between the guest and the host.
3354
3355When this capability is enabled, KVM_EXIT_OSI can occur.
3356
414fa985 3357
821246a5
AG
33586.2 KVM_CAP_PPC_PAPR
3359
3360Architectures: ppc
0907c855 3361Target: vcpu
821246a5
AG
3362Parameters: none
3363Returns: 0 on success; -1 on error
3364
3365This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3366done using the hypercall instruction "sc 1".
3367
3368It also sets the guest privilege level to "supervisor" mode. Usually the guest
3369runs in "hypervisor" privilege mode with a few missing features.
3370
3371In addition to the above, it changes the semantics of SDR1. In this mode, the
3372HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3373HTAB invisible to the guest.
3374
3375When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3376
414fa985 3377
dc83b8bc
SW
33786.3 KVM_CAP_SW_TLB
3379
3380Architectures: ppc
0907c855 3381Target: vcpu
dc83b8bc
SW
3382Parameters: args[0] is the address of a struct kvm_config_tlb
3383Returns: 0 on success; -1 on error
3384
3385struct kvm_config_tlb {
3386 __u64 params;
3387 __u64 array;
3388 __u32 mmu_type;
3389 __u32 array_len;
3390};
3391
3392Configures the virtual CPU's TLB array, establishing a shared memory area
3393between userspace and KVM. The "params" and "array" fields are userspace
3394addresses of mmu-type-specific data structures. The "array_len" field is an
3395safety mechanism, and should be set to the size in bytes of the memory that
3396userspace has reserved for the array. It must be at least the size dictated
3397by "mmu_type" and "params".
3398
3399While KVM_RUN is active, the shared region is under control of KVM. Its
3400contents are undefined, and any modification by userspace results in
3401boundedly undefined behavior.
3402
3403On return from KVM_RUN, the shared region will reflect the current state of
3404the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3405to tell KVM which entries have been changed, prior to calling KVM_RUN again
3406on this vcpu.
3407
3408For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3409 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3410 - The "array" field points to an array of type "struct
3411 kvm_book3e_206_tlb_entry".
3412 - The array consists of all entries in the first TLB, followed by all
3413 entries in the second TLB.
3414 - Within a TLB, entries are ordered first by increasing set number. Within a
3415 set, entries are ordered by way (increasing ESEL).
3416 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3417 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3418 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3419 hardware ignores this value for TLB0.
fa6b7fe9
CH
3420
34216.4 KVM_CAP_S390_CSS_SUPPORT
3422
3423Architectures: s390
0907c855 3424Target: vcpu
fa6b7fe9
CH
3425Parameters: none
3426Returns: 0 on success; -1 on error
3427
3428This capability enables support for handling of channel I/O instructions.
3429
3430TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3431handled in-kernel, while the other I/O instructions are passed to userspace.
3432
3433When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3434SUBCHANNEL intercepts.
1c810636 3435
0907c855
CH
3436Note that even though this capability is enabled per-vcpu, the complete
3437virtual machine is affected.
3438
1c810636
AG
34396.5 KVM_CAP_PPC_EPR
3440
3441Architectures: ppc
0907c855 3442Target: vcpu
1c810636
AG
3443Parameters: args[0] defines whether the proxy facility is active
3444Returns: 0 on success; -1 on error
3445
3446This capability enables or disables the delivery of interrupts through the
3447external proxy facility.
3448
3449When enabled (args[0] != 0), every time the guest gets an external interrupt
3450delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3451to receive the topmost interrupt vector.
3452
3453When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3454
3455When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3456
34576.6 KVM_CAP_IRQ_MPIC
3458
3459Architectures: ppc
3460Parameters: args[0] is the MPIC device fd
3461 args[1] is the MPIC CPU number for this vcpu
3462
3463This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3464
34656.7 KVM_CAP_IRQ_XICS
3466
3467Architectures: ppc
0907c855 3468Target: vcpu
5975a2e0
PM
3469Parameters: args[0] is the XICS device fd
3470 args[1] is the XICS CPU number (server ID) for this vcpu
3471
3472This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3473
34746.8 KVM_CAP_S390_IRQCHIP
3475
3476Architectures: s390
3477Target: vm
3478Parameters: none
3479
3480This capability enables the in-kernel irqchip for s390. Please refer to
3481"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0 3482
5fafd874
JH
34836.9 KVM_CAP_MIPS_FPU
3484
3485Architectures: mips
3486Target: vcpu
3487Parameters: args[0] is reserved for future use (should be 0).
3488
3489This capability allows the use of the host Floating Point Unit by the guest. It
3490allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3491done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3492(depending on the current guest FPU register mode), and the Status.FR,
3493Config5.FRE bits are accessible via the KVM API and also from the guest,
3494depending on them being supported by the FPU.
3495
d952bd07
JH
34966.10 KVM_CAP_MIPS_MSA
3497
3498Architectures: mips
3499Target: vcpu
3500Parameters: args[0] is reserved for future use (should be 0).
3501
3502This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3503It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3504Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3505accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3506the guest.
3507
699a0ea0
PM
35087. Capabilities that can be enabled on VMs
3509------------------------------------------
3510
3511There are certain capabilities that change the behavior of the virtual
3512machine when enabled. To enable them, please see section 4.37. Below
3513you can find a list of capabilities and what their effect on the VM
3514is when enabling them.
3515
3516The following information is provided along with the description:
3517
3518 Architectures: which instruction set architectures provide this ioctl.
3519 x86 includes both i386 and x86_64.
3520
3521 Parameters: what parameters are accepted by the capability.
3522
3523 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3524 are not detailed, but errors with specific meanings are.
3525
3526
35277.1 KVM_CAP_PPC_ENABLE_HCALL
3528
3529Architectures: ppc
3530Parameters: args[0] is the sPAPR hcall number
3531 args[1] is 0 to disable, 1 to enable in-kernel handling
3532
3533This capability controls whether individual sPAPR hypercalls (hcalls)
3534get handled by the kernel or not. Enabling or disabling in-kernel
3535handling of an hcall is effective across the VM. On creation, an
3536initial set of hcalls are enabled for in-kernel handling, which
3537consists of those hcalls for which in-kernel handlers were implemented
3538before this capability was implemented. If disabled, the kernel will
3539not to attempt to handle the hcall, but will always exit to userspace
3540to handle it. Note that it may not make sense to enable some and
3541disable others of a group of related hcalls, but KVM does not prevent
3542userspace from doing that.
ae2113a4
PM
3543
3544If the hcall number specified is not one that has an in-kernel
3545implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3546error.
2444b352
DH
3547
35487.2 KVM_CAP_S390_USER_SIGP
3549
3550Architectures: s390
3551Parameters: none
3552
3553This capability controls which SIGP orders will be handled completely in user
3554space. With this capability enabled, all fast orders will be handled completely
3555in the kernel:
3556- SENSE
3557- SENSE RUNNING
3558- EXTERNAL CALL
3559- EMERGENCY SIGNAL
3560- CONDITIONAL EMERGENCY SIGNAL
3561
3562All other orders will be handled completely in user space.
3563
3564Only privileged operation exceptions will be checked for in the kernel (or even
3565in the hardware prior to interception). If this capability is not enabled, the
3566old way of handling SIGP orders is used (partially in kernel and user space).
68c55750
EF
3567
35687.3 KVM_CAP_S390_VECTOR_REGISTERS
3569
3570Architectures: s390
3571Parameters: none
3572Returns: 0 on success, negative value on error
3573
3574Allows use of the vector registers introduced with z13 processor, and
3575provides for the synchronization between host and user space. Will
3576return -EINVAL if the machine does not support vectors.
e44fc8c9
ET
3577
35787.4 KVM_CAP_S390_USER_STSI
3579
3580Architectures: s390
3581Parameters: none
3582
3583This capability allows post-handlers for the STSI instruction. After
3584initial handling in the kernel, KVM exits to user space with
3585KVM_EXIT_S390_STSI to allow user space to insert further data.
3586
3587Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3588vcpu->run:
3589struct {
3590 __u64 addr;
3591 __u8 ar;
3592 __u8 reserved;
3593 __u8 fc;
3594 __u8 sel1;
3595 __u16 sel2;
3596} s390_stsi;
3597
3598@addr - guest address of STSI SYSIB
3599@fc - function code
3600@sel1 - selector 1
3601@sel2 - selector 2
3602@ar - access register number
3603
3604KVM handlers should exit to userspace with rc = -EREMOTE.
e928e9cb
ME
3605
3606
36078. Other capabilities.
3608----------------------
3609
3610This section lists capabilities that give information about other
3611features of the KVM implementation.
3612
36138.1 KVM_CAP_PPC_HWRNG
3614
3615Architectures: ppc
3616
3617This capability, if KVM_CHECK_EXTENSION indicates that it is
3618available, means that that the kernel has an implementation of the
3619H_RANDOM hypercall backed by a hardware random-number generator.
3620If present, the kernel H_RANDOM handler can be enabled for guest use
3621with the KVM_CAP_PPC_ENABLE_HCALL capability.