]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/arm64/kernel/smp.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[mirror_ubuntu-jammy-kernel.git] / arch / arm64 / kernel / smp.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
08e875c1
CM
2/*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
08e875c1
CM
7 */
8
0f078336 9#include <linux/acpi.h>
f5df2696 10#include <linux/arm_sdei.h>
08e875c1
CM
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/spinlock.h>
68e21be2 14#include <linux/sched/mm.h>
ef8bd77f 15#include <linux/sched/hotplug.h>
68db0cf1 16#include <linux/sched/task_stack.h>
08e875c1
CM
17#include <linux/interrupt.h>
18#include <linux/cache.h>
19#include <linux/profile.h>
20#include <linux/errno.h>
21#include <linux/mm.h>
22#include <linux/err.h>
23#include <linux/cpu.h>
24#include <linux/smp.h>
25#include <linux/seq_file.h>
26#include <linux/irq.h>
e7932188 27#include <linux/irqchip/arm-gic-v3.h>
08e875c1
CM
28#include <linux/percpu.h>
29#include <linux/clockchips.h>
30#include <linux/completion.h>
31#include <linux/of.h>
eb631bb5 32#include <linux/irq_work.h>
78fd584c 33#include <linux/kexec.h>
08e875c1 34
e039ee4e 35#include <asm/alternative.h>
08e875c1
CM
36#include <asm/atomic.h>
37#include <asm/cacheflush.h>
df857416 38#include <asm/cpu.h>
08e875c1 39#include <asm/cputype.h>
cd1aebf5 40#include <asm/cpu_ops.h>
0fbeb318 41#include <asm/daifflags.h>
08e875c1 42#include <asm/mmu_context.h>
1a2db300 43#include <asm/numa.h>
08e875c1
CM
44#include <asm/pgtable.h>
45#include <asm/pgalloc.h>
46#include <asm/processor.h>
4c7aa002 47#include <asm/smp_plat.h>
08e875c1
CM
48#include <asm/sections.h>
49#include <asm/tlbflush.h>
50#include <asm/ptrace.h>
377bcff9 51#include <asm/virt.h>
08e875c1 52
45ed695a
NP
53#define CREATE_TRACE_POINTS
54#include <trace/events/ipi.h>
55
57c82954
MR
56DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
57EXPORT_PER_CPU_SYMBOL(cpu_number);
58
08e875c1
CM
59/*
60 * as from 2.5, kernels no longer have an init_tasks structure
61 * so we need some other way of telling a new secondary core
62 * where to place its SVC stack
63 */
64struct secondary_data secondary_data;
bb905274
SP
65/* Number of CPUs which aren't online, but looping in kernel text. */
66int cpus_stuck_in_kernel;
08e875c1
CM
67
68enum ipi_msg_type {
69 IPI_RESCHEDULE,
70 IPI_CALL_FUNC,
08e875c1 71 IPI_CPU_STOP,
78fd584c 72 IPI_CPU_CRASH_STOP,
1f85008e 73 IPI_TIMER,
eb631bb5 74 IPI_IRQ_WORK,
5e89c55e 75 IPI_WAKEUP
08e875c1
CM
76};
77
bb905274
SP
78#ifdef CONFIG_HOTPLUG_CPU
79static int op_cpu_kill(unsigned int cpu);
80#else
81static inline int op_cpu_kill(unsigned int cpu)
82{
83 return -ENOSYS;
84}
85#endif
86
87
08e875c1
CM
88/*
89 * Boot a secondary CPU, and assign it the specified idle task.
90 * This also gives us the initial stack to use for this CPU.
91 */
b8c6453a 92static int boot_secondary(unsigned int cpu, struct task_struct *idle)
08e875c1 93{
652af899
MR
94 if (cpu_ops[cpu]->cpu_boot)
95 return cpu_ops[cpu]->cpu_boot(cpu);
08e875c1 96
652af899 97 return -EOPNOTSUPP;
08e875c1
CM
98}
99
100static DECLARE_COMPLETION(cpu_running);
101
b8c6453a 102int __cpu_up(unsigned int cpu, struct task_struct *idle)
08e875c1
CM
103{
104 int ret;
bb905274 105 long status;
08e875c1
CM
106
107 /*
108 * We need to tell the secondary core where to find its stack and the
109 * page tables.
110 */
c02433dd 111 secondary_data.task = idle;
34be98f4 112 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
bb905274 113 update_cpu_boot_status(CPU_MMU_OFF);
08e875c1
CM
114 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
115
116 /*
117 * Now bring the CPU into our world.
118 */
119 ret = boot_secondary(cpu, idle);
120 if (ret == 0) {
121 /*
122 * CPU was successfully started, wait for it to come online or
123 * time out.
124 */
125 wait_for_completion_timeout(&cpu_running,
126 msecs_to_jiffies(1000));
127
128 if (!cpu_online(cpu)) {
129 pr_crit("CPU%u: failed to come online\n", cpu);
130 ret = -EIO;
131 }
132 } else {
133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
f357b3a7 134 return ret;
08e875c1
CM
135 }
136
c02433dd 137 secondary_data.task = NULL;
08e875c1 138 secondary_data.stack = NULL;
bb905274
SP
139 status = READ_ONCE(secondary_data.status);
140 if (ret && status) {
141
142 if (status == CPU_MMU_OFF)
143 status = READ_ONCE(__early_cpu_boot_status);
144
66f16a24 145 switch (status & CPU_BOOT_STATUS_MASK) {
bb905274
SP
146 default:
147 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
148 cpu, status);
149 break;
150 case CPU_KILL_ME:
151 if (!op_cpu_kill(cpu)) {
152 pr_crit("CPU%u: died during early boot\n", cpu);
153 break;
154 }
155 /* Fall through */
156 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
157 case CPU_STUCK_IN_KERNEL:
158 pr_crit("CPU%u: is stuck in kernel\n", cpu);
66f16a24
WD
159 if (status & CPU_STUCK_REASON_52_BIT_VA)
160 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
161 if (status & CPU_STUCK_REASON_NO_GRAN)
162 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
bb905274
SP
163 cpus_stuck_in_kernel++;
164 break;
165 case CPU_PANIC_KERNEL:
166 panic("CPU%u detected unsupported configuration\n", cpu);
167 }
168 }
08e875c1
CM
169
170 return ret;
171}
172
e7932188
JT
173static void init_gic_priority_masking(void)
174{
175 u32 cpuflags;
176
177 if (WARN_ON(!gic_enable_sre()))
178 return;
179
180 cpuflags = read_sysreg(daif);
181
182 WARN_ON(!(cpuflags & PSR_I_BIT));
183
184 gic_write_pmr(GIC_PRIO_IRQOFF);
185
186 /* We can only unmask PSR.I if we can take aborts */
187 if (!(cpuflags & PSR_A_BIT))
188 write_sysreg(cpuflags & ~PSR_I_BIT, daif);
189}
190
08e875c1
CM
191/*
192 * This is the secondary CPU boot entry. We're using this CPUs
193 * idle thread stack, but a set of temporary page tables.
194 */
b154886f 195asmlinkage notrace void secondary_start_kernel(void)
08e875c1 196{
ccaac162 197 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
08e875c1 198 struct mm_struct *mm = &init_mm;
580efaa7
MR
199 unsigned int cpu;
200
201 cpu = task_cpu(current);
202 set_my_cpu_offset(per_cpu_offset(cpu));
08e875c1 203
08e875c1
CM
204 /*
205 * All kernel threads share the same mm context; grab a
206 * reference and switch to it.
207 */
f1f10076 208 mmgrab(mm);
08e875c1 209 current->active_mm = mm;
08e875c1
CM
210
211 /*
212 * TTBR0 is only used for the identity mapping at this stage. Make it
213 * point to zero page to avoid speculatively fetching new entries.
214 */
9e8e865b 215 cpu_uninstall_idmap();
08e875c1 216
e7932188
JT
217 if (system_uses_irq_prio_masking())
218 init_gic_priority_masking();
219
08e875c1
CM
220 preempt_disable();
221 trace_hardirqs_off();
222
dbb4e152
SP
223 /*
224 * If the system has established the capabilities, make sure
225 * this CPU ticks all of those. If it doesn't, the CPU will
226 * fail to come online.
227 */
c47a1900 228 check_local_cpu_capabilities();
dbb4e152 229
652af899
MR
230 if (cpu_ops[cpu]->cpu_postboot)
231 cpu_ops[cpu]->cpu_postboot();
08e875c1 232
df857416
MR
233 /*
234 * Log the CPU info before it is marked online and might get read.
235 */
236 cpuinfo_store_cpu();
237
7ade67b5
MZ
238 /*
239 * Enable GIC and timers.
240 */
241 notify_cpu_starting(cpu);
242
c18df0ad 243 store_cpu_topology(cpu);
97fd6016 244 numa_add_cpu(cpu);
f6e763b9 245
08e875c1
CM
246 /*
247 * OK, now it's safe to let the boot CPU continue. Wait for
248 * the CPU migration code to notice that the CPU is online
249 * before we continue.
250 */
ccaac162
MR
251 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
252 cpu, (unsigned long)mpidr,
253 read_cpuid_id());
bb905274 254 update_cpu_boot_status(CPU_BOOT_SUCCESS);
08e875c1 255 set_cpu_online(cpu, true);
b3770b32 256 complete(&cpu_running);
08e875c1 257
41bd5b5d 258 local_daif_restore(DAIF_PROCCTX);
53ae3acd 259
08e875c1
CM
260 /*
261 * OK, it's off to the idle thread for us
262 */
fc6d73d6 263 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
08e875c1
CM
264}
265
9327e2c6
MR
266#ifdef CONFIG_HOTPLUG_CPU
267static int op_cpu_disable(unsigned int cpu)
268{
269 /*
270 * If we don't have a cpu_die method, abort before we reach the point
271 * of no return. CPU0 may not have an cpu_ops, so test for it.
272 */
273 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
274 return -EOPNOTSUPP;
275
276 /*
277 * We may need to abort a hot unplug for some other mechanism-specific
278 * reason.
279 */
280 if (cpu_ops[cpu]->cpu_disable)
281 return cpu_ops[cpu]->cpu_disable(cpu);
282
283 return 0;
284}
285
286/*
287 * __cpu_disable runs on the processor to be shutdown.
288 */
289int __cpu_disable(void)
290{
291 unsigned int cpu = smp_processor_id();
292 int ret;
293
294 ret = op_cpu_disable(cpu);
295 if (ret)
296 return ret;
297
7f9545aa
SH
298 remove_cpu_topology(cpu);
299 numa_remove_cpu(cpu);
300
9327e2c6
MR
301 /*
302 * Take this CPU offline. Once we clear this, we can't return,
303 * and we must not schedule until we're ready to give up the cpu.
304 */
305 set_cpu_online(cpu, false);
306
307 /*
308 * OK - migrate IRQs away from this CPU
309 */
217d453d
YY
310 irq_migrate_all_off_this_cpu();
311
9327e2c6
MR
312 return 0;
313}
314
c814ca02
AC
315static int op_cpu_kill(unsigned int cpu)
316{
317 /*
318 * If we have no means of synchronising with the dying CPU, then assume
319 * that it is really dead. We can only wait for an arbitrary length of
320 * time and hope that it's dead, so let's skip the wait and just hope.
321 */
322 if (!cpu_ops[cpu]->cpu_kill)
6b99c68c 323 return 0;
c814ca02
AC
324
325 return cpu_ops[cpu]->cpu_kill(cpu);
326}
327
9327e2c6
MR
328/*
329 * called on the thread which is asking for a CPU to be shutdown -
330 * waits until shutdown has completed, or it is timed out.
331 */
332void __cpu_die(unsigned int cpu)
333{
6b99c68c
MR
334 int err;
335
05981277 336 if (!cpu_wait_death(cpu, 5)) {
9327e2c6
MR
337 pr_crit("CPU%u: cpu didn't die\n", cpu);
338 return;
339 }
340 pr_notice("CPU%u: shutdown\n", cpu);
c814ca02
AC
341
342 /*
343 * Now that the dying CPU is beyond the point of no return w.r.t.
344 * in-kernel synchronisation, try to get the firwmare to help us to
345 * verify that it has really left the kernel before we consider
346 * clobbering anything it might still be using.
347 */
6b99c68c
MR
348 err = op_cpu_kill(cpu);
349 if (err)
350 pr_warn("CPU%d may not have shut down cleanly: %d\n",
351 cpu, err);
9327e2c6
MR
352}
353
354/*
355 * Called from the idle thread for the CPU which has been shutdown.
356 *
9327e2c6
MR
357 */
358void cpu_die(void)
359{
360 unsigned int cpu = smp_processor_id();
361
362 idle_task_exit();
363
0fbeb318 364 local_daif_mask();
9327e2c6
MR
365
366 /* Tell __cpu_die() that this CPU is now safe to dispose of */
05981277 367 (void)cpu_report_death();
9327e2c6
MR
368
369 /*
370 * Actually shutdown the CPU. This must never fail. The specific hotplug
371 * mechanism must perform all required cache maintenance to ensure that
372 * no dirty lines are lost in the process of shutting down the CPU.
373 */
374 cpu_ops[cpu]->cpu_die(cpu);
375
376 BUG();
377}
378#endif
379
fce6361f
SP
380/*
381 * Kill the calling secondary CPU, early in bringup before it is turned
382 * online.
383 */
384void cpu_die_early(void)
385{
386 int cpu = smp_processor_id();
387
388 pr_crit("CPU%d: will not boot\n", cpu);
389
390 /* Mark this CPU absent */
391 set_cpu_present(cpu, 0);
392
393#ifdef CONFIG_HOTPLUG_CPU
bb905274 394 update_cpu_boot_status(CPU_KILL_ME);
fce6361f
SP
395 /* Check if we can park ourselves */
396 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
397 cpu_ops[cpu]->cpu_die(cpu);
398#endif
bb905274 399 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
fce6361f
SP
400
401 cpu_park_loop();
402}
403
377bcff9
JR
404static void __init hyp_mode_check(void)
405{
406 if (is_hyp_mode_available())
407 pr_info("CPU: All CPU(s) started at EL2\n");
408 else if (is_hyp_mode_mismatched())
409 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
410 "CPU: CPUs started in inconsistent modes");
411 else
412 pr_info("CPU: All CPU(s) started at EL1\n");
413}
414
08e875c1
CM
415void __init smp_cpus_done(unsigned int max_cpus)
416{
326b16db 417 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
3a75578e 418 setup_cpu_features();
377bcff9
JR
419 hyp_mode_check();
420 apply_alternatives_all();
5ea5306c 421 mark_linear_text_alias_ro();
08e875c1
CM
422}
423
424void __init smp_prepare_boot_cpu(void)
425{
9113c2aa 426 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
efd9e03f
CM
427 /*
428 * Initialise the static keys early as they may be enabled by the
429 * cpufeature code.
430 */
431 jump_label_init();
4b998ff1 432 cpuinfo_store_boot_cpu();
0ceb0d56
DT
433
434 /*
435 * We now know enough about the boot CPU to apply the
436 * alternatives that cannot wait until interrupt handling
437 * and/or scheduling is enabled.
438 */
439 apply_boot_alternatives();
e7932188
JT
440
441 /* Conditionally switch to GIC PMR for interrupt masking */
442 if (system_uses_irq_prio_masking())
443 init_gic_priority_masking();
08e875c1
CM
444}
445
0f078336
LP
446static u64 __init of_get_cpu_mpidr(struct device_node *dn)
447{
448 const __be32 *cell;
449 u64 hwid;
450
451 /*
452 * A cpu node with missing "reg" property is
453 * considered invalid to build a cpu_logical_map
454 * entry.
455 */
456 cell = of_get_property(dn, "reg", NULL);
457 if (!cell) {
a270f327 458 pr_err("%pOF: missing reg property\n", dn);
0f078336
LP
459 return INVALID_HWID;
460 }
461
462 hwid = of_read_number(cell, of_n_addr_cells(dn));
463 /*
464 * Non affinity bits must be set to 0 in the DT
465 */
466 if (hwid & ~MPIDR_HWID_BITMASK) {
a270f327 467 pr_err("%pOF: invalid reg property\n", dn);
0f078336
LP
468 return INVALID_HWID;
469 }
470 return hwid;
471}
472
473/*
474 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
475 * entries and check for duplicates. If any is found just ignore the
476 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
477 * matching valid MPIDR values.
478 */
479static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
480{
481 unsigned int i;
482
483 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
484 if (cpu_logical_map(i) == hwid)
485 return true;
486 return false;
487}
488
819a8826
LP
489/*
490 * Initialize cpu operations for a logical cpu and
491 * set it in the possible mask on success
492 */
493static int __init smp_cpu_setup(int cpu)
494{
495 if (cpu_read_ops(cpu))
496 return -ENODEV;
497
498 if (cpu_ops[cpu]->cpu_init(cpu))
499 return -ENODEV;
500
501 set_cpu_possible(cpu, true);
502
503 return 0;
504}
505
0f078336
LP
506static bool bootcpu_valid __initdata;
507static unsigned int cpu_count = 1;
508
509#ifdef CONFIG_ACPI
e0013aed
MR
510static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
511
512struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
513{
514 return &cpu_madt_gicc[cpu];
515}
516
0f078336
LP
517/*
518 * acpi_map_gic_cpu_interface - parse processor MADT entry
519 *
520 * Carry out sanity checks on MADT processor entry and initialize
521 * cpu_logical_map on success
522 */
523static void __init
524acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
525{
526 u64 hwid = processor->arm_mpidr;
527
f9058929
HG
528 if (!(processor->flags & ACPI_MADT_ENABLED)) {
529 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
0f078336
LP
530 return;
531 }
532
f9058929
HG
533 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
534 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
0f078336
LP
535 return;
536 }
537
538 if (is_mpidr_duplicate(cpu_count, hwid)) {
539 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
540 return;
541 }
542
543 /* Check if GICC structure of boot CPU is available in the MADT */
544 if (cpu_logical_map(0) == hwid) {
545 if (bootcpu_valid) {
546 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
547 hwid);
548 return;
549 }
550 bootcpu_valid = true;
e0013aed 551 cpu_madt_gicc[0] = *processor;
0f078336
LP
552 return;
553 }
554
555 if (cpu_count >= NR_CPUS)
556 return;
557
558 /* map the logical cpu id to cpu MPIDR */
559 cpu_logical_map(cpu_count) = hwid;
560
e0013aed
MR
561 cpu_madt_gicc[cpu_count] = *processor;
562
5e89c55e
LP
563 /*
564 * Set-up the ACPI parking protocol cpu entries
565 * while initializing the cpu_logical_map to
566 * avoid parsing MADT entries multiple times for
567 * nothing (ie a valid cpu_logical_map entry should
568 * contain a valid parking protocol data set to
569 * initialize the cpu if the parking protocol is
570 * the only available enable method).
571 */
572 acpi_set_mailbox_entry(cpu_count, processor);
573
0f078336
LP
574 cpu_count++;
575}
576
577static int __init
60574d1e 578acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
0f078336
LP
579 const unsigned long end)
580{
581 struct acpi_madt_generic_interrupt *processor;
582
583 processor = (struct acpi_madt_generic_interrupt *)header;
99e3e3ae 584 if (BAD_MADT_GICC_ENTRY(processor, end))
0f078336
LP
585 return -EINVAL;
586
60574d1e 587 acpi_table_print_madt_entry(&header->common);
0f078336
LP
588
589 acpi_map_gic_cpu_interface(processor);
590
591 return 0;
592}
e1896249
LP
593
594static void __init acpi_parse_and_init_cpus(void)
595{
596 int i;
597
598 /*
599 * do a walk of MADT to determine how many CPUs
600 * we have including disabled CPUs, and get information
601 * we need for SMP init.
602 */
603 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
604 acpi_parse_gic_cpu_interface, 0);
605
606 /*
607 * In ACPI, SMP and CPU NUMA information is provided in separate
608 * static tables, namely the MADT and the SRAT.
609 *
610 * Thus, it is simpler to first create the cpu logical map through
611 * an MADT walk and then map the logical cpus to their node ids
612 * as separate steps.
613 */
614 acpi_map_cpus_to_nodes();
615
616 for (i = 0; i < nr_cpu_ids; i++)
617 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
618}
0f078336 619#else
e1896249 620#define acpi_parse_and_init_cpus(...) do { } while (0)
0f078336
LP
621#endif
622
08e875c1 623/*
4c7aa002
JM
624 * Enumerate the possible CPU set from the device tree and build the
625 * cpu logical map array containing MPIDR values related to logical
626 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
08e875c1 627 */
29b8302b 628static void __init of_parse_and_init_cpus(void)
08e875c1 629{
3d29a9a0 630 struct device_node *dn;
08e875c1 631
de76e70a 632 for_each_of_cpu_node(dn) {
0f078336 633 u64 hwid = of_get_cpu_mpidr(dn);
4c7aa002 634
0f078336 635 if (hwid == INVALID_HWID)
4c7aa002 636 goto next;
4c7aa002 637
0f078336 638 if (is_mpidr_duplicate(cpu_count, hwid)) {
a270f327
RH
639 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
640 dn);
4c7aa002
JM
641 goto next;
642 }
643
4c7aa002
JM
644 /*
645 * The numbering scheme requires that the boot CPU
646 * must be assigned logical id 0. Record it so that
647 * the logical map built from DT is validated and can
648 * be used.
649 */
650 if (hwid == cpu_logical_map(0)) {
651 if (bootcpu_valid) {
a270f327
RH
652 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
653 dn);
4c7aa002
JM
654 goto next;
655 }
656
657 bootcpu_valid = true;
7ba5f605 658 early_map_cpu_to_node(0, of_node_to_nid(dn));
4c7aa002
JM
659
660 /*
661 * cpu_logical_map has already been
662 * initialized and the boot cpu doesn't need
663 * the enable-method so continue without
664 * incrementing cpu.
665 */
666 continue;
667 }
668
0f078336 669 if (cpu_count >= NR_CPUS)
08e875c1
CM
670 goto next;
671
4c7aa002 672 pr_debug("cpu logical map 0x%llx\n", hwid);
0f078336 673 cpu_logical_map(cpu_count) = hwid;
1a2db300
GK
674
675 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
08e875c1 676next:
0f078336 677 cpu_count++;
08e875c1 678 }
0f078336
LP
679}
680
681/*
682 * Enumerate the possible CPU set from the device tree or ACPI and build the
683 * cpu logical map array containing MPIDR values related to logical
684 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
685 */
686void __init smp_init_cpus(void)
687{
688 int i;
689
690 if (acpi_disabled)
691 of_parse_and_init_cpus();
692 else
e1896249 693 acpi_parse_and_init_cpus();
08e875c1 694
50ee91bd 695 if (cpu_count > nr_cpu_ids)
9b130ad5 696 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
50ee91bd 697 cpu_count, nr_cpu_ids);
4c7aa002
JM
698
699 if (!bootcpu_valid) {
0f078336 700 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
4c7aa002
JM
701 return;
702 }
703
704 /*
819a8826
LP
705 * We need to set the cpu_logical_map entries before enabling
706 * the cpus so that cpu processor description entries (DT cpu nodes
707 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
708 * with entries in cpu_logical_map while initializing the cpus.
709 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
4c7aa002 710 */
50ee91bd 711 for (i = 1; i < nr_cpu_ids; i++) {
819a8826
LP
712 if (cpu_logical_map(i) != INVALID_HWID) {
713 if (smp_cpu_setup(i))
714 cpu_logical_map(i) = INVALID_HWID;
715 }
716 }
08e875c1
CM
717}
718
719void __init smp_prepare_cpus(unsigned int max_cpus)
720{
cd1aebf5 721 int err;
44dbcc93 722 unsigned int cpu;
c18df0ad 723 unsigned int this_cpu;
08e875c1 724
f6e763b9
MB
725 init_cpu_topology();
726
c18df0ad
DD
727 this_cpu = smp_processor_id();
728 store_cpu_topology(this_cpu);
729 numa_store_cpu_info(this_cpu);
97fd6016 730 numa_add_cpu(this_cpu);
f6e763b9 731
e75118a7
SP
732 /*
733 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
734 * secondary CPUs present.
735 */
736 if (max_cpus == 0)
737 return;
738
08e875c1
CM
739 /*
740 * Initialise the present map (which describes the set of CPUs
741 * actually populated at the present time) and release the
742 * secondaries from the bootloader.
743 */
744 for_each_possible_cpu(cpu) {
08e875c1 745
57c82954
MR
746 per_cpu(cpu_number, cpu) = cpu;
747
d329de3f
MZ
748 if (cpu == smp_processor_id())
749 continue;
750
cd1aebf5 751 if (!cpu_ops[cpu])
08e875c1
CM
752 continue;
753
cd1aebf5 754 err = cpu_ops[cpu]->cpu_prepare(cpu);
d329de3f
MZ
755 if (err)
756 continue;
08e875c1
CM
757
758 set_cpu_present(cpu, true);
c18df0ad 759 numa_store_cpu_info(cpu);
08e875c1 760 }
08e875c1
CM
761}
762
36310736 763void (*__smp_cross_call)(const struct cpumask *, unsigned int);
08e875c1
CM
764
765void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
766{
45ed695a 767 __smp_cross_call = fn;
08e875c1
CM
768}
769
45ed695a
NP
770static const char *ipi_types[NR_IPI] __tracepoint_string = {
771#define S(x,s) [x] = s
08e875c1
CM
772 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
773 S(IPI_CALL_FUNC, "Function call interrupts"),
08e875c1 774 S(IPI_CPU_STOP, "CPU stop interrupts"),
78fd584c 775 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
1f85008e 776 S(IPI_TIMER, "Timer broadcast interrupts"),
eb631bb5 777 S(IPI_IRQ_WORK, "IRQ work interrupts"),
5e89c55e 778 S(IPI_WAKEUP, "CPU wake-up interrupts"),
08e875c1
CM
779};
780
45ed695a
NP
781static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
782{
783 trace_ipi_raise(target, ipi_types[ipinr]);
784 __smp_cross_call(target, ipinr);
785}
786
08e875c1
CM
787void show_ipi_list(struct seq_file *p, int prec)
788{
789 unsigned int cpu, i;
790
791 for (i = 0; i < NR_IPI; i++) {
45ed695a 792 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
08e875c1 793 prec >= 4 ? " " : "");
67317c26 794 for_each_online_cpu(cpu)
08e875c1
CM
795 seq_printf(p, "%10u ",
796 __get_irq_stat(cpu, ipi_irqs[i]));
797 seq_printf(p, " %s\n", ipi_types[i]);
798 }
799}
800
801u64 smp_irq_stat_cpu(unsigned int cpu)
802{
803 u64 sum = 0;
804 int i;
805
806 for (i = 0; i < NR_IPI; i++)
807 sum += __get_irq_stat(cpu, ipi_irqs[i]);
808
809 return sum;
810}
811
45ed695a
NP
812void arch_send_call_function_ipi_mask(const struct cpumask *mask)
813{
814 smp_cross_call(mask, IPI_CALL_FUNC);
815}
816
817void arch_send_call_function_single_ipi(int cpu)
818{
0aaf0dae 819 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
45ed695a
NP
820}
821
5e89c55e
LP
822#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
823void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
824{
825 smp_cross_call(mask, IPI_WAKEUP);
826}
827#endif
828
45ed695a
NP
829#ifdef CONFIG_IRQ_WORK
830void arch_irq_work_raise(void)
831{
832 if (__smp_cross_call)
833 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
834}
835#endif
836
08e875c1
CM
837/*
838 * ipi_cpu_stop - handle IPI from smp_send_stop()
839 */
840static void ipi_cpu_stop(unsigned int cpu)
841{
08e875c1
CM
842 set_cpu_online(cpu, false);
843
0fbeb318 844 local_daif_mask();
f5df2696 845 sdei_mask_local_cpu();
08e875c1
CM
846
847 while (1)
848 cpu_relax();
849}
850
78fd584c
AT
851#ifdef CONFIG_KEXEC_CORE
852static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
853#endif
854
855static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
856{
857#ifdef CONFIG_KEXEC_CORE
858 crash_save_cpu(regs, cpu);
859
860 atomic_dec(&waiting_for_crash_ipi);
861
862 local_irq_disable();
f5df2696 863 sdei_mask_local_cpu();
78fd584c
AT
864
865#ifdef CONFIG_HOTPLUG_CPU
866 if (cpu_ops[cpu]->cpu_die)
867 cpu_ops[cpu]->cpu_die(cpu);
868#endif
869
870 /* just in case */
871 cpu_park_loop();
872#endif
873}
874
08e875c1
CM
875/*
876 * Main handler for inter-processor interrupts
877 */
878void handle_IPI(int ipinr, struct pt_regs *regs)
879{
880 unsigned int cpu = smp_processor_id();
881 struct pt_regs *old_regs = set_irq_regs(regs);
882
45ed695a 883 if ((unsigned)ipinr < NR_IPI) {
be081d9b 884 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
45ed695a
NP
885 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
886 }
08e875c1
CM
887
888 switch (ipinr) {
889 case IPI_RESCHEDULE:
890 scheduler_ipi();
891 break;
892
893 case IPI_CALL_FUNC:
894 irq_enter();
895 generic_smp_call_function_interrupt();
896 irq_exit();
897 break;
898
08e875c1
CM
899 case IPI_CPU_STOP:
900 irq_enter();
901 ipi_cpu_stop(cpu);
902 irq_exit();
903 break;
904
78fd584c
AT
905 case IPI_CPU_CRASH_STOP:
906 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
907 irq_enter();
908 ipi_cpu_crash_stop(cpu, regs);
909
910 unreachable();
911 }
912 break;
913
1f85008e
LP
914#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
915 case IPI_TIMER:
916 irq_enter();
917 tick_receive_broadcast();
918 irq_exit();
919 break;
920#endif
921
eb631bb5
LB
922#ifdef CONFIG_IRQ_WORK
923 case IPI_IRQ_WORK:
924 irq_enter();
925 irq_work_run();
926 irq_exit();
927 break;
928#endif
929
5e89c55e
LP
930#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
931 case IPI_WAKEUP:
932 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
933 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
934 cpu);
935 break;
936#endif
937
08e875c1
CM
938 default:
939 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
940 break;
941 }
45ed695a
NP
942
943 if ((unsigned)ipinr < NR_IPI)
be081d9b 944 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
08e875c1
CM
945 set_irq_regs(old_regs);
946}
947
948void smp_send_reschedule(int cpu)
949{
950 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
951}
952
1f85008e
LP
953#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
954void tick_broadcast(const struct cpumask *mask)
955{
956 smp_cross_call(mask, IPI_TIMER);
957}
958#endif
959
08e875c1
CM
960void smp_send_stop(void)
961{
962 unsigned long timeout;
963
964 if (num_online_cpus() > 1) {
965 cpumask_t mask;
966
967 cpumask_copy(&mask, cpu_online_mask);
434ed7f4 968 cpumask_clear_cpu(smp_processor_id(), &mask);
08e875c1 969
ef284f5c 970 if (system_state <= SYSTEM_RUNNING)
82611c14 971 pr_crit("SMP: stopping secondary CPUs\n");
08e875c1
CM
972 smp_cross_call(&mask, IPI_CPU_STOP);
973 }
974
975 /* Wait up to one second for other CPUs to stop */
976 timeout = USEC_PER_SEC;
977 while (num_online_cpus() > 1 && timeout--)
978 udelay(1);
979
980 if (num_online_cpus() > 1)
82611c14
JG
981 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
982 cpumask_pr_args(cpu_online_mask));
f5df2696
JM
983
984 sdei_mask_local_cpu();
08e875c1
CM
985}
986
78fd584c 987#ifdef CONFIG_KEXEC_CORE
a88ce63b 988void crash_smp_send_stop(void)
78fd584c 989{
a88ce63b 990 static int cpus_stopped;
78fd584c
AT
991 cpumask_t mask;
992 unsigned long timeout;
993
a88ce63b
HR
994 /*
995 * This function can be called twice in panic path, but obviously
996 * we execute this only once.
997 */
998 if (cpus_stopped)
999 return;
1000
1001 cpus_stopped = 1;
1002
f5df2696
JM
1003 if (num_online_cpus() == 1) {
1004 sdei_mask_local_cpu();
78fd584c 1005 return;
f5df2696 1006 }
78fd584c
AT
1007
1008 cpumask_copy(&mask, cpu_online_mask);
1009 cpumask_clear_cpu(smp_processor_id(), &mask);
1010
1011 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1012
1013 pr_crit("SMP: stopping secondary CPUs\n");
1014 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1015
1016 /* Wait up to one second for other CPUs to stop */
1017 timeout = USEC_PER_SEC;
1018 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1019 udelay(1);
1020
1021 if (atomic_read(&waiting_for_crash_ipi) > 0)
1022 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1023 cpumask_pr_args(&mask));
f5df2696
JM
1024
1025 sdei_mask_local_cpu();
78fd584c
AT
1026}
1027
1028bool smp_crash_stop_failed(void)
1029{
1030 return (atomic_read(&waiting_for_crash_ipi) > 0);
1031}
1032#endif
1033
08e875c1
CM
1034/*
1035 * not supported here
1036 */
1037int setup_profiling_timer(unsigned int multiplier)
1038{
1039 return -EINVAL;
1040}
5c492c3f
JM
1041
1042static bool have_cpu_die(void)
1043{
1044#ifdef CONFIG_HOTPLUG_CPU
1045 int any_cpu = raw_smp_processor_id();
1046
335d2c2d 1047 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
5c492c3f
JM
1048 return true;
1049#endif
1050 return false;
1051}
1052
1053bool cpus_are_stuck_in_kernel(void)
1054{
1055 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1056
1057 return !!cpus_stuck_in_kernel || smp_spin_tables;
1058}