]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/frv/include/asm/pgtable.h
frv: drop _PAGE_FILE and pte_file()-related helpers
[mirror_ubuntu-artful-kernel.git] / arch / frv / include / asm / pgtable.h
CommitLineData
1da177e4
LT
1/* pgtable.h: FR-V page table mangling
2 *
3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Derived from:
12 * include/asm-m68knommu/pgtable.h
13 * include/asm-i386/pgtable.h
14 */
15
16#ifndef _ASM_PGTABLE_H
17#define _ASM_PGTABLE_H
18
1da177e4
LT
19#include <asm/mem-layout.h>
20#include <asm/setup.h>
21#include <asm/processor.h>
22
23#ifndef __ASSEMBLY__
24#include <linux/threads.h>
25#include <linux/slab.h>
26#include <linux/list.h>
27#include <linux/spinlock.h>
95203aec 28#include <linux/sched.h>
8c65b4a6 29struct vm_area_struct;
1da177e4
LT
30#endif
31
32#ifndef __ASSEMBLY__
33#if defined(CONFIG_HIGHPTE)
34typedef unsigned long pte_addr_t;
35#else
36typedef pte_t *pte_addr_t;
37#endif
38#endif
39
40/*****************************************************************************/
41/*
42 * MMU-less operation case first
43 */
44#ifndef CONFIG_MMU
45
46#define pgd_present(pgd) (1) /* pages are always present on NO_MM */
47#define pgd_none(pgd) (0)
48#define pgd_bad(pgd) (0)
49#define pgd_clear(pgdp)
50#define kern_addr_valid(addr) (1)
51#define pmd_offset(a, b) ((void *) 0)
52
53#define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */
54#define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */
55#define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */
56#define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */
57#define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */
58
59#define __swp_type(x) (0)
60#define __swp_offset(x) (0)
61#define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
62#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
63#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
64
1da177e4
LT
65#define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
66
67#define swapper_pg_dir ((pgd_t *) NULL)
68
28936117 69#define pgtable_cache_init() do {} while (0)
6fde836b
DH
70
71#include <asm-generic/pgtable.h>
1da177e4
LT
72
73#else /* !CONFIG_MMU */
74/*****************************************************************************/
75/*
76 * then MMU operation
77 */
78
79/*
80 * ZERO_PAGE is a global shared page that is always zero: used
81 * for zero-mapped memory areas etc..
82 */
83#ifndef __ASSEMBLY__
84extern unsigned long empty_zero_page;
85#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
86#endif
87
88/*
89 * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry)
0868ff7a 90 * [see Documentation/frv/mmu-layout.txt]
1da177e4
LT
91 *
92 * Page Directory:
93 * - Size: 16KB
94 * - 64 PGEs per PGD
95 * - Each PGE holds 1 PUD and covers 64MB
96 *
97 * Page Upper Directory:
98 * - Size: 256B
99 * - 1 PUE per PUD
100 * - Each PUE holds 1 PMD and covers 64MB
101 *
102 * Page Mid-Level Directory
103 * - Size: 256B
104 * - 1 PME per PMD
105 * - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table
106 * - All STEs are instantiated at the same time
107 *
108 * Page Table
109 * - Size: 16KB
110 * - 4096 PTEs per PT
111 * - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries
112 *
113 * Pages
114 * - Size: 4KB
115 *
116 * total PTEs
117 * = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs
118 * = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT
119 * = 262144 (or 256 * 1024)
120 */
121#define PGDIR_SHIFT 26
122#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
123#define PGDIR_MASK (~(PGDIR_SIZE - 1))
124#define PTRS_PER_PGD 64
125
126#define PUD_SHIFT 26
127#define PTRS_PER_PUD 1
128#define PUD_SIZE (1UL << PUD_SHIFT)
129#define PUD_MASK (~(PUD_SIZE - 1))
130#define PUE_SIZE 256
131
132#define PMD_SHIFT 26
133#define PMD_SIZE (1UL << PMD_SHIFT)
134#define PMD_MASK (~(PMD_SIZE - 1))
135#define PTRS_PER_PMD 1
136#define PME_SIZE 256
137
138#define __frv_PT_SIZE 256
139
140#define PTRS_PER_PTE 4096
141
142#define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE)
d455a369 143#define FIRST_USER_ADDRESS 0
1da177e4
LT
144
145#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
146#define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
147
148#define TWOLEVEL_PGDIR_SHIFT 26
149#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
150#define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS)
151
152#ifndef __ASSEMBLY__
153
154extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
155
156#define pte_ERROR(e) \
157 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte)
158#define pmd_ERROR(e) \
159 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
160#define pud_ERROR(e) \
161 printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e)))
162#define pgd_ERROR(e) \
163 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e))))
164
165/*
166 * Certain architectures need to do special things when PTEs
167 * within a page table are directly modified. Thus, the following
168 * hook is made available.
169 */
170#define set_pte(pteptr, pteval) \
171do { \
172 *(pteptr) = (pteval); \
173 asm volatile("dcf %M0" :: "U"(*pteptr)); \
174} while(0)
175#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
176
1da177e4
LT
177/*
178 * pgd_offset() returns a (pgd_t *)
179 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
180 */
181#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
182
183/*
184 * a shortcut which implies the use of the kernel's pgd, instead
185 * of a process's
186 */
187#define pgd_offset_k(address) pgd_offset(&init_mm, address)
188
189/*
190 * The "pgd_xxx()" functions here are trivial for a folded two-level
191 * setup: the pud is never bad, and a pud always exists (as it's folded
192 * into the pgd entry)
193 */
194static inline int pgd_none(pgd_t pgd) { return 0; }
195static inline int pgd_bad(pgd_t pgd) { return 0; }
196static inline int pgd_present(pgd_t pgd) { return 1; }
197static inline void pgd_clear(pgd_t *pgd) { }
198
199#define pgd_populate(mm, pgd, pud) do { } while (0)
200/*
201 * (puds are folded into pgds so this doesn't get actually called,
202 * but the define is needed for a generic inline function.)
203 */
204#define set_pgd(pgdptr, pgdval) \
205do { \
206 memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \
207 asm volatile("dcf %M0" :: "U"(*(pgdptr))); \
208} while(0)
209
210static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
211{
212 return (pud_t *) pgd;
213}
214
215#define pgd_page(pgd) (pud_page((pud_t){ pgd }))
46a82b2d 216#define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd }))
1da177e4
LT
217
218/*
219 * allocating and freeing a pud is trivial: the 1-entry pud is
220 * inside the pgd, so has no extra memory associated with it.
221 */
222#define pud_alloc_one(mm, address) NULL
5e541973 223#define pud_free(mm, x) do { } while (0)
9e1b32ca 224#define __pud_free_tlb(tlb, x, address) do { } while (0)
1da177e4
LT
225
226/*
227 * The "pud_xxx()" functions here are trivial for a folded two-level
228 * setup: the pmd is never bad, and a pmd always exists (as it's folded
229 * into the pud entry)
230 */
231static inline int pud_none(pud_t pud) { return 0; }
232static inline int pud_bad(pud_t pud) { return 0; }
233static inline int pud_present(pud_t pud) { return 1; }
234static inline void pud_clear(pud_t *pud) { }
235
236#define pud_populate(mm, pmd, pte) do { } while (0)
237
238/*
239 * (pmds are folded into puds so this doesn't get actually called,
240 * but the define is needed for a generic inline function.)
241 */
242#define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval })
243
244#define pud_page(pud) (pmd_page((pmd_t){ pud }))
46a82b2d 245#define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud }))
1da177e4
LT
246
247/*
248 * (pmds are folded into pgds so this doesn't get actually called,
249 * but the define is needed for a generic inline function.)
250 */
251extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd);
252
253#define set_pmd(pmdptr, pmdval) \
254do { \
255 __set_pmd((pmdptr), (pmdval).ste[0]); \
256} while(0)
257
258#define __pmd_index(address) 0
259
260static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address)
261{
262 return (pmd_t *) dir + __pmd_index(address);
263}
264
265#define pte_same(a, b) ((a).pte == (b).pte)
266#define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT))))
267#define pte_none(x) (!(x).pte)
268#define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT)))
269#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
270#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
271
272#define VMALLOC_VMADDR(x) ((unsigned long) (x))
273
274#endif /* !__ASSEMBLY__ */
275
276/*
277 * control flags in AMPR registers and TLB entries
278 */
279#define _PAGE_BIT_PRESENT xAMPRx_V_BIT
280#define _PAGE_BIT_WP DAMPRx_WP_BIT
281#define _PAGE_BIT_NOCACHE xAMPRx_C_BIT
282#define _PAGE_BIT_SUPER xAMPRx_S_BIT
283#define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT
284#define _PAGE_BIT_DIRTY xAMPRx_M_BIT
285#define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT
286
287#define _PAGE_PRESENT xAMPRx_V
288#define _PAGE_WP DAMPRx_WP
289#define _PAGE_NOCACHE xAMPRx_C
290#define _PAGE_SUPER xAMPRx_S
291#define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */
292#define _PAGE_DIRTY xAMPRx_M
293#define _PAGE_NOTGLOBAL xAMPRx_NG
294
295#define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13)
296
1da177e4
LT
297#define _PAGE_PROTNONE 0x000 /* If not present */
298
299#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
300
301#define __PGPROT_BASE \
302 (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED)
303
304#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
305#define PAGE_SHARED __pgprot(__PGPROT_BASE)
306#define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP)
307#define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP)
308
309#define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY)
310#define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE)
311#define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP)
312
313#define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL)
314
315#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
316#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
317#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
318
319#define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb)
320
321#ifndef __ASSEMBLY__
322
323/*
324 * The FR451 can do execute protection by virtue of having separate TLB miss handlers for
325 * instruction access and for data access. However, we don't have enough reserved bits to say
326 * "execute only", so we don't bother. If you can read it, you can execute it and vice versa.
327 */
328#define __P000 PAGE_NONE
329#define __P001 PAGE_READONLY
330#define __P010 PAGE_COPY
331#define __P011 PAGE_COPY
332#define __P100 PAGE_READONLY
333#define __P101 PAGE_READONLY
334#define __P110 PAGE_COPY
335#define __P111 PAGE_COPY
336
337#define __S000 PAGE_NONE
338#define __S001 PAGE_READONLY
339#define __S010 PAGE_SHARED
340#define __S011 PAGE_SHARED
341#define __S100 PAGE_READONLY
342#define __S101 PAGE_READONLY
343#define __S110 PAGE_SHARED
344#define __S111 PAGE_SHARED
345
346/*
347 * Define this to warn about kernel memory accesses that are
e49332bd 348 * done without a 'access_ok(VERIFY_WRITE,..)'
1da177e4 349 */
e49332bd 350#undef TEST_ACCESS_OK
1da177e4
LT
351
352#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
353#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
354
355#define pmd_none(x) (!pmd_val(x))
356#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
357#define pmd_bad(x) (pmd_val(x) & xAMPRx_SS)
358#define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0)
359
46a82b2d 360#define pmd_page_vaddr(pmd) \
1da177e4
LT
361 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
362
363#ifndef CONFIG_DISCONTIGMEM
364#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
365#endif
366
367#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
368
369/*
370 * The following only work if pte_present() is true.
371 * Undefined behaviour if not..
372 */
1da177e4
LT
373static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; }
374static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; }
375static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); }
7e675137 376static inline int pte_special(pte_t pte) { return 0; }
1da177e4 377
1da177e4
LT
378static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; }
379static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; }
380static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; }
1da177e4
LT
381static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; }
382static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; }
383static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; }
7e675137 384static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
1da177e4 385
1da177e4
LT
386static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
387{
388 int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep);
389 asm volatile("dcf %M0" :: "U"(*ptep));
390 return i;
391}
392
393static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
394{
395 unsigned long x = xchg(&ptep->pte, 0);
396 asm volatile("dcf %M0" :: "U"(*ptep));
397 return __pte(x);
398}
399
400static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
401{
402 set_bit(_PAGE_BIT_WP, ptep);
403 asm volatile("dcf %M0" :: "U"(*ptep));
404}
405
41be6aef
DH
406/*
407 * Macro to mark a page protection value as "uncacheable"
408 */
409#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE))
410
1da177e4
LT
411/*
412 * Conversion functions: convert a page and protection to a page entry,
413 * and a page entry and page directory to the page they refer to.
414 */
415
416#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
417#define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
418
419/* This takes a physical page address that is used by the remapping functions */
420#define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot)
421
422static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
423{
424 pte.pte &= _PAGE_CHG_MASK;
425 pte.pte |= pgprot_val(newprot);
426 return pte;
427}
428
1da177e4
LT
429/* to find an entry in a page-table-directory. */
430#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
431#define pgd_index_k(addr) pgd_index(addr)
432
433/* Find an entry in the bottom-level page table.. */
434#define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
435
436/*
437 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
438 *
439 * this macro returns the index of the entry in the pte page which would
440 * control the given virtual address
441 */
442#define pte_index(address) \
443 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
444#define pte_offset_kernel(dir, address) \
46a82b2d 445 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
1da177e4
LT
446
447#if defined(CONFIG_HIGHPTE)
448#define pte_offset_map(dir, address) \
ece0e2b6
PZ
449 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + pte_index(address))
450#define pte_unmap(pte) kunmap_atomic(pte)
1da177e4
LT
451#else
452#define pte_offset_map(dir, address) \
453 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
1da177e4 454#define pte_unmap(pte) do { } while (0)
1da177e4
LT
455#endif
456
457/*
458 * Handle swap and file entries
459 * - the PTE is encoded in the following format:
460 * bit 0: Must be 0 (!_PAGE_PRESENT)
ca5bfa7b
KS
461 * bits 1-6: Swap type
462 * bits 7-31: Swap offset
1da177e4 463 */
ca5bfa7b
KS
464#define __swp_type(x) (((x).val >> 1) & 0x1f)
465#define __swp_offset(x) ((x).val >> 7)
466#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 7) })
2f609712 467#define __pte_to_swp_entry(_pte) ((swp_entry_t) { (_pte).pte })
1da177e4
LT
468#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
469
1da177e4
LT
470/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
471#define PageSkip(page) (0)
472#define kern_addr_valid(addr) (1)
473
1da177e4 474#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1da177e4
LT
475#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
476#define __HAVE_ARCH_PTEP_SET_WRPROTECT
477#define __HAVE_ARCH_PTE_SAME
478#include <asm-generic/pgtable.h>
479
480/*
481 * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache
482 */
4b3073e1 483static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
1da177e4 484{
a31b9dd8 485 struct mm_struct *mm;
1da177e4 486 unsigned long ampr;
1da177e4 487
a31b9dd8
DH
488 mm = current->mm;
489 if (mm) {
490 pgd_t *pge = pgd_offset(mm, address);
491 pud_t *pue = pud_offset(pge, address);
492 pmd_t *pme = pmd_offset(pue, address);
493
494 ampr = pme->ste[0] & 0xffffff00;
495 ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C |
496 xAMPRx_V;
497 } else {
498 address = ULONG_MAX;
499 ampr = 0;
500 }
1da177e4
LT
501
502 asm volatile("movgs %0,scr0\n"
503 "movgs %0,scr1\n"
504 "movgs %1,dampr4\n"
505 "movgs %1,dampr5\n"
506 :
507 : "r"(address), "r"(ampr)
508 );
509}
510
511#ifdef CONFIG_PROC_FS
512extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer);
513#endif
514
515extern void __init pgtable_cache_init(void);
516
517#endif /* !__ASSEMBLY__ */
518#endif /* !CONFIG_MMU */
519
520#ifndef __ASSEMBLY__
521extern void __init paging_init(void);
522#endif /* !__ASSEMBLY__ */
523
524#endif /* _ASM_PGTABLE_H */