]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/mips/kernel/traps.c
mm: add new mmgrab() helper
[mirror_ubuntu-jammy-kernel.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
60b0d655 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
2a0b24f5 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
b08a9c95 13 * Copyright (C) 2014, Imagination Technologies Ltd.
1da177e4 14 */
ed2d72c1 15#include <linux/bitops.h>
8e8a52ed 16#include <linux/bug.h>
60b0d655 17#include <linux/compiler.h>
c3fc5cd5 18#include <linux/context_tracking.h>
ae4ce454 19#include <linux/cpu_pm.h>
7aa1c8f4 20#include <linux/kexec.h>
1da177e4 21#include <linux/init.h>
8742cd23 22#include <linux/kernel.h>
f9ded569 23#include <linux/module.h>
9f3b8081 24#include <linux/extable.h>
1da177e4 25#include <linux/mm.h>
1da177e4
LT
26#include <linux/sched.h>
27#include <linux/smp.h>
1da177e4
LT
28#include <linux/spinlock.h>
29#include <linux/kallsyms.h>
e01402b1 30#include <linux/bootmem.h>
d4fd1989 31#include <linux/interrupt.h>
39b8d525 32#include <linux/ptrace.h>
88547001
JW
33#include <linux/kgdb.h>
34#include <linux/kdebug.h>
c1bf207d 35#include <linux/kprobes.h>
69f3a7de 36#include <linux/notifier.h>
5dd11d5d 37#include <linux/kdb.h>
ca4d3e67 38#include <linux/irq.h>
7f788d2d 39#include <linux/perf_event.h>
1da177e4 40
a13c9962 41#include <asm/addrspace.h>
1da177e4
LT
42#include <asm/bootinfo.h>
43#include <asm/branch.h>
44#include <asm/break.h>
69f3a7de 45#include <asm/cop2.h>
1da177e4 46#include <asm/cpu.h>
69f24d17 47#include <asm/cpu-type.h>
e50c0a8f 48#include <asm/dsp.h>
1da177e4 49#include <asm/fpu.h>
ba3049ed 50#include <asm/fpu_emulator.h>
bdc92d74 51#include <asm/idle.h>
dabdc185 52#include <asm/mips-cm.h>
b0a668fb 53#include <asm/mips-r2-to-r6-emul.h>
35e6de38 54#include <asm/mips-cm.h>
340ee4b9
RB
55#include <asm/mipsregs.h>
56#include <asm/mipsmtregs.h>
1da177e4 57#include <asm/module.h>
1db1af84 58#include <asm/msa.h>
1da177e4
LT
59#include <asm/pgtable.h>
60#include <asm/ptrace.h>
61#include <asm/sections.h>
3b143cca 62#include <asm/siginfo.h>
1da177e4
LT
63#include <asm/tlbdebug.h>
64#include <asm/traps.h>
7c0f6ba6 65#include <linux/uaccess.h>
b67b2b70 66#include <asm/watch.h>
1da177e4 67#include <asm/mmu_context.h>
1da177e4 68#include <asm/types.h>
1df0f0ff 69#include <asm/stacktrace.h>
92bbe1b9 70#include <asm/uasm.h>
1da177e4 71
c65a5480 72extern void check_wait(void);
c65a5480 73extern asmlinkage void rollback_handle_int(void);
e4ac58af 74extern asmlinkage void handle_int(void);
86a1708a
RB
75extern u32 handle_tlbl[];
76extern u32 handle_tlbs[];
77extern u32 handle_tlbm[];
1da177e4
LT
78extern asmlinkage void handle_adel(void);
79extern asmlinkage void handle_ades(void);
80extern asmlinkage void handle_ibe(void);
81extern asmlinkage void handle_dbe(void);
82extern asmlinkage void handle_sys(void);
83extern asmlinkage void handle_bp(void);
84extern asmlinkage void handle_ri(void);
5b10496b
AN
85extern asmlinkage void handle_ri_rdhwr_vivt(void);
86extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
87extern asmlinkage void handle_cpu(void);
88extern asmlinkage void handle_ov(void);
89extern asmlinkage void handle_tr(void);
2bcb3fbc 90extern asmlinkage void handle_msa_fpe(void);
1da177e4 91extern asmlinkage void handle_fpe(void);
75b5b5e0 92extern asmlinkage void handle_ftlb(void);
1db1af84 93extern asmlinkage void handle_msa(void);
1da177e4
LT
94extern asmlinkage void handle_mdmx(void);
95extern asmlinkage void handle_watch(void);
340ee4b9 96extern asmlinkage void handle_mt(void);
e50c0a8f 97extern asmlinkage void handle_dsp(void);
1da177e4
LT
98extern asmlinkage void handle_mcheck(void);
99extern asmlinkage void handle_reserved(void);
5890f70f 100extern void tlb_do_page_fault_0(void);
1da177e4 101
1da177e4
LT
102void (*board_be_init)(void);
103int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
104void (*board_nmi_handler_setup)(void);
105void (*board_ejtag_handler_setup)(void);
106void (*board_bind_eic_interrupt)(int irq, int regset);
6fb97eff 107void (*board_ebase_setup)(void);
078a55fc 108void(*board_cache_error_setup)(void);
1da177e4 109
4d157d5e 110static void show_raw_backtrace(unsigned long reg29)
e889d78f 111{
39b8d525 112 unsigned long *sp = (unsigned long *)(reg29 & ~3);
e889d78f
AN
113 unsigned long addr;
114
115 printk("Call Trace:");
116#ifdef CONFIG_KALLSYMS
117 printk("\n");
118#endif
10220c88
TB
119 while (!kstack_end(sp)) {
120 unsigned long __user *p =
121 (unsigned long __user *)(unsigned long)sp++;
122 if (__get_user(addr, p)) {
123 printk(" (Bad stack address)");
124 break;
39b8d525 125 }
10220c88
TB
126 if (__kernel_text_address(addr))
127 print_ip_sym(addr);
e889d78f 128 }
10220c88 129 printk("\n");
e889d78f
AN
130}
131
f66686f7 132#ifdef CONFIG_KALLSYMS
1df0f0ff 133int raw_show_trace;
f66686f7
AN
134static int __init set_raw_show_trace(char *str)
135{
136 raw_show_trace = 1;
137 return 1;
138}
139__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 140#endif
4d157d5e 141
eae23f2c 142static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
f66686f7 143{
4d157d5e
FBH
144 unsigned long sp = regs->regs[29];
145 unsigned long ra = regs->regs[31];
f66686f7 146 unsigned long pc = regs->cp0_epc;
f66686f7 147
e909be82
VW
148 if (!task)
149 task = current;
150
81a76d71 151 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
87151ae3 152 show_raw_backtrace(sp);
f66686f7
AN
153 return;
154 }
155 printk("Call Trace:\n");
4d157d5e 156 do {
87151ae3 157 print_ip_sym(pc);
1924600c 158 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 159 } while (pc);
bcf084de 160 pr_cont("\n");
f66686f7 161}
f66686f7 162
1da177e4
LT
163/*
164 * This routine abuses get_user()/put_user() to reference pointers
165 * with at least a bit of error checking ...
166 */
eae23f2c
RB
167static void show_stacktrace(struct task_struct *task,
168 const struct pt_regs *regs)
1da177e4
LT
169{
170 const int field = 2 * sizeof(unsigned long);
171 long stackdata;
172 int i;
5e0373b8 173 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
1da177e4
LT
174
175 printk("Stack :");
176 i = 0;
177 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
fe4e09e7
MR
178 if (i && ((i % (64 / field)) == 0)) {
179 pr_cont("\n");
180 printk(" ");
181 }
1da177e4 182 if (i > 39) {
fe4e09e7 183 pr_cont(" ...");
1da177e4
LT
184 break;
185 }
186
187 if (__get_user(stackdata, sp++)) {
fe4e09e7 188 pr_cont(" (Bad stack address)");
1da177e4
LT
189 break;
190 }
191
fe4e09e7 192 pr_cont(" %0*lx", field, stackdata);
1da177e4
LT
193 i++;
194 }
fe4e09e7 195 pr_cont("\n");
87151ae3 196 show_backtrace(task, regs);
f66686f7
AN
197}
198
f66686f7
AN
199void show_stack(struct task_struct *task, unsigned long *sp)
200{
201 struct pt_regs regs;
1e77863a 202 mm_segment_t old_fs = get_fs();
f66686f7
AN
203 if (sp) {
204 regs.regs[29] = (unsigned long)sp;
205 regs.regs[31] = 0;
206 regs.cp0_epc = 0;
207 } else {
208 if (task && task != current) {
209 regs.regs[29] = task->thread.reg29;
210 regs.regs[31] = 0;
211 regs.cp0_epc = task->thread.reg31;
5dd11d5d
JW
212#ifdef CONFIG_KGDB_KDB
213 } else if (atomic_read(&kgdb_active) != -1 &&
214 kdb_current_regs) {
215 memcpy(&regs, kdb_current_regs, sizeof(regs));
216#endif /* CONFIG_KGDB_KDB */
f66686f7
AN
217 } else {
218 prepare_frametrace(&regs);
219 }
220 }
1e77863a
JH
221 /*
222 * show_stack() deals exclusively with kernel mode, so be sure to access
223 * the stack in the kernel (not user) address space.
224 */
225 set_fs(KERNEL_DS);
f66686f7 226 show_stacktrace(task, &regs);
1e77863a 227 set_fs(old_fs);
1da177e4
LT
228}
229
e1bb8289 230static void show_code(unsigned int __user *pc)
1da177e4
LT
231{
232 long i;
39b8d525 233 unsigned short __user *pc16 = NULL;
1da177e4 234
41000c58 235 printk("Code:");
1da177e4 236
39b8d525
RB
237 if ((unsigned long)pc & 1)
238 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
1da177e4
LT
239 for(i = -3 ; i < 6 ; i++) {
240 unsigned int insn;
39b8d525 241 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
41000c58 242 pr_cont(" (Bad address in epc)\n");
1da177e4
LT
243 break;
244 }
41000c58 245 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
1da177e4 246 }
41000c58 247 pr_cont("\n");
1da177e4
LT
248}
249
eae23f2c 250static void __show_regs(const struct pt_regs *regs)
1da177e4
LT
251{
252 const int field = 2 * sizeof(unsigned long);
253 unsigned int cause = regs->cp0_cause;
37dd3818 254 unsigned int exccode;
1da177e4
LT
255 int i;
256
a43cb95d 257 show_regs_print_info(KERN_DEFAULT);
1da177e4
LT
258
259 /*
260 * Saved main processor registers
261 */
262 for (i = 0; i < 32; ) {
263 if ((i % 4) == 0)
264 printk("$%2d :", i);
265 if (i == 0)
752f5499 266 pr_cont(" %0*lx", field, 0UL);
1da177e4 267 else if (i == 26 || i == 27)
752f5499 268 pr_cont(" %*s", field, "");
1da177e4 269 else
752f5499 270 pr_cont(" %0*lx", field, regs->regs[i]);
1da177e4
LT
271
272 i++;
273 if ((i % 4) == 0)
752f5499 274 pr_cont("\n");
1da177e4
LT
275 }
276
9693a853
FBH
277#ifdef CONFIG_CPU_HAS_SMARTMIPS
278 printk("Acx : %0*lx\n", field, regs->acx);
279#endif
1da177e4
LT
280 printk("Hi : %0*lx\n", field, regs->hi);
281 printk("Lo : %0*lx\n", field, regs->lo);
282
283 /*
284 * Saved cp0 registers
285 */
b012cffe
RB
286 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
287 (void *) regs->cp0_epc);
b012cffe
RB
288 printk("ra : %0*lx %pS\n", field, regs->regs[31],
289 (void *) regs->regs[31]);
1da177e4 290
70342287 291 printk("Status: %08x ", (uint32_t) regs->cp0_status);
1da177e4 292
1990e542 293 if (cpu_has_3kex) {
3b2396d9 294 if (regs->cp0_status & ST0_KUO)
752f5499 295 pr_cont("KUo ");
3b2396d9 296 if (regs->cp0_status & ST0_IEO)
752f5499 297 pr_cont("IEo ");
3b2396d9 298 if (regs->cp0_status & ST0_KUP)
752f5499 299 pr_cont("KUp ");
3b2396d9 300 if (regs->cp0_status & ST0_IEP)
752f5499 301 pr_cont("IEp ");
3b2396d9 302 if (regs->cp0_status & ST0_KUC)
752f5499 303 pr_cont("KUc ");
3b2396d9 304 if (regs->cp0_status & ST0_IEC)
752f5499 305 pr_cont("IEc ");
1990e542 306 } else if (cpu_has_4kex) {
3b2396d9 307 if (regs->cp0_status & ST0_KX)
752f5499 308 pr_cont("KX ");
3b2396d9 309 if (regs->cp0_status & ST0_SX)
752f5499 310 pr_cont("SX ");
3b2396d9 311 if (regs->cp0_status & ST0_UX)
752f5499 312 pr_cont("UX ");
3b2396d9
MR
313 switch (regs->cp0_status & ST0_KSU) {
314 case KSU_USER:
752f5499 315 pr_cont("USER ");
3b2396d9
MR
316 break;
317 case KSU_SUPERVISOR:
752f5499 318 pr_cont("SUPERVISOR ");
3b2396d9
MR
319 break;
320 case KSU_KERNEL:
752f5499 321 pr_cont("KERNEL ");
3b2396d9
MR
322 break;
323 default:
752f5499 324 pr_cont("BAD_MODE ");
3b2396d9
MR
325 break;
326 }
327 if (regs->cp0_status & ST0_ERL)
752f5499 328 pr_cont("ERL ");
3b2396d9 329 if (regs->cp0_status & ST0_EXL)
752f5499 330 pr_cont("EXL ");
3b2396d9 331 if (regs->cp0_status & ST0_IE)
752f5499 332 pr_cont("IE ");
1da177e4 333 }
752f5499 334 pr_cont("\n");
1da177e4 335
37dd3818
PG
336 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
337 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
1da177e4 338
37dd3818 339 if (1 <= exccode && exccode <= 5)
1da177e4
LT
340 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
341
9966db25
RB
342 printk("PrId : %08x (%s)\n", read_c0_prid(),
343 cpu_name_string());
1da177e4
LT
344}
345
eae23f2c
RB
346/*
347 * FIXME: really the generic show_regs should take a const pointer argument.
348 */
349void show_regs(struct pt_regs *regs)
350{
351 __show_regs((struct pt_regs *)regs);
352}
353
c1bf207d 354void show_registers(struct pt_regs *regs)
1da177e4 355{
39b8d525 356 const int field = 2 * sizeof(unsigned long);
83e4da1e 357 mm_segment_t old_fs = get_fs();
39b8d525 358
eae23f2c 359 __show_regs(regs);
1da177e4 360 print_modules();
39b8d525
RB
361 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
362 current->comm, current->pid, current_thread_info(), current,
363 field, current_thread_info()->tp_value);
364 if (cpu_has_userlocal) {
365 unsigned long tls;
366
367 tls = read_c0_userlocal();
368 if (tls != current_thread_info()->tp_value)
369 printk("*HwTLS: %0*lx\n", field, tls);
370 }
371
83e4da1e
LY
372 if (!user_mode(regs))
373 /* Necessary for getting the correct stack content */
374 set_fs(KERNEL_DS);
f66686f7 375 show_stacktrace(current, regs);
e1bb8289 376 show_code((unsigned int __user *) regs->cp0_epc);
1da177e4 377 printk("\n");
83e4da1e 378 set_fs(old_fs);
1da177e4
LT
379}
380
4d85f6af 381static DEFINE_RAW_SPINLOCK(die_lock);
1da177e4 382
70dc6f04 383void __noreturn die(const char *str, struct pt_regs *regs)
1da177e4
LT
384{
385 static int die_counter;
ce384d83 386 int sig = SIGSEGV;
1da177e4 387
8742cd23
NL
388 oops_enter();
389
e3b28831 390 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
dc73e4c1 391 SIGSEGV) == NOTIFY_STOP)
10423c91 392 sig = 0;
5dd11d5d 393
1da177e4 394 console_verbose();
4d85f6af 395 raw_spin_lock_irq(&die_lock);
41c594ab 396 bust_spinlocks(1);
ce384d83 397
178086c8 398 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 399 show_registers(regs);
373d4d09 400 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
4d85f6af 401 raw_spin_unlock_irq(&die_lock);
d4fd1989 402
8742cd23
NL
403 oops_exit();
404
d4fd1989
MB
405 if (in_interrupt())
406 panic("Fatal exception in interrupt");
407
99a7a234 408 if (panic_on_oops)
d4fd1989 409 panic("Fatal exception");
d4fd1989 410
7aa1c8f4
RB
411 if (regs && kexec_should_crash(current))
412 crash_kexec(regs);
413
ce384d83 414 do_exit(sig);
1da177e4
LT
415}
416
0510617b
TB
417extern struct exception_table_entry __start___dbe_table[];
418extern struct exception_table_entry __stop___dbe_table[];
1da177e4 419
b6dcec9b
RB
420__asm__(
421" .section __dbe_table, \"a\"\n"
422" .previous \n");
1da177e4
LT
423
424/* Given an address, look for it in the exception tables. */
425static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
426{
427 const struct exception_table_entry *e;
428
429 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
430 if (!e)
431 e = search_module_dbetables(addr);
432 return e;
433}
434
435asmlinkage void do_be(struct pt_regs *regs)
436{
437 const int field = 2 * sizeof(unsigned long);
438 const struct exception_table_entry *fixup = NULL;
439 int data = regs->cp0_cause & 4;
440 int action = MIPS_BE_FATAL;
c3fc5cd5 441 enum ctx_state prev_state;
1da177e4 442
c3fc5cd5 443 prev_state = exception_enter();
70342287 444 /* XXX For now. Fixme, this searches the wrong table ... */
1da177e4
LT
445 if (data && !user_mode(regs))
446 fixup = search_dbe_tables(exception_epc(regs));
447
448 if (fixup)
449 action = MIPS_BE_FIXUP;
450
451 if (board_be_handler)
28fc582c 452 action = board_be_handler(regs, fixup != NULL);
dabdc185
PB
453 else
454 mips_cm_error_report();
1da177e4
LT
455
456 switch (action) {
457 case MIPS_BE_DISCARD:
c3fc5cd5 458 goto out;
1da177e4
LT
459 case MIPS_BE_FIXUP:
460 if (fixup) {
461 regs->cp0_epc = fixup->nextinsn;
c3fc5cd5 462 goto out;
1da177e4
LT
463 }
464 break;
465 default:
466 break;
467 }
468
469 /*
470 * Assume it would be too dangerous to continue ...
471 */
472 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
473 data ? "Data" : "Instruction",
474 field, regs->cp0_epc, field, regs->regs[31]);
e3b28831 475 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
dc73e4c1 476 SIGBUS) == NOTIFY_STOP)
c3fc5cd5 477 goto out;
88547001 478
1da177e4
LT
479 die_if_kernel("Oops", regs);
480 force_sig(SIGBUS, current);
c3fc5cd5
RB
481
482out:
483 exception_exit(prev_state);
1da177e4
LT
484}
485
1da177e4 486/*
60b0d655 487 * ll/sc, rdhwr, sync emulation
1da177e4
LT
488 */
489
490#define OPCODE 0xfc000000
491#define BASE 0x03e00000
492#define RT 0x001f0000
493#define OFFSET 0x0000ffff
494#define LL 0xc0000000
495#define SC 0xe0000000
60b0d655 496#define SPEC0 0x00000000
3c37026d
RB
497#define SPEC3 0x7c000000
498#define RD 0x0000f800
499#define FUNC 0x0000003f
60b0d655 500#define SYNC 0x0000000f
3c37026d 501#define RDHWR 0x0000003b
1da177e4 502
2a0b24f5
SH
503/* microMIPS definitions */
504#define MM_POOL32A_FUNC 0xfc00ffff
505#define MM_RDHWR 0x00006b3c
506#define MM_RS 0x001f0000
507#define MM_RT 0x03e00000
508
1da177e4
LT
509/*
510 * The ll_bit is cleared by r*_switch.S
511 */
512
f1e39a4a
RB
513unsigned int ll_bit;
514struct task_struct *ll_task;
1da177e4 515
60b0d655 516static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
1da177e4 517{
fe00f943 518 unsigned long value, __user *vaddr;
1da177e4 519 long offset;
1da177e4
LT
520
521 /*
522 * analyse the ll instruction that just caused a ri exception
523 * and put the referenced address to addr.
524 */
525
526 /* sign extend offset */
527 offset = opcode & OFFSET;
528 offset <<= 16;
529 offset >>= 16;
530
fe00f943 531 vaddr = (unsigned long __user *)
b9688310 532 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4 533
60b0d655
MR
534 if ((unsigned long)vaddr & 3)
535 return SIGBUS;
536 if (get_user(value, vaddr))
537 return SIGSEGV;
1da177e4
LT
538
539 preempt_disable();
540
541 if (ll_task == NULL || ll_task == current) {
542 ll_bit = 1;
543 } else {
544 ll_bit = 0;
545 }
546 ll_task = current;
547
548 preempt_enable();
549
550 regs->regs[(opcode & RT) >> 16] = value;
551
60b0d655 552 return 0;
1da177e4
LT
553}
554
60b0d655 555static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
1da177e4 556{
fe00f943
RB
557 unsigned long __user *vaddr;
558 unsigned long reg;
1da177e4 559 long offset;
1da177e4
LT
560
561 /*
562 * analyse the sc instruction that just caused a ri exception
563 * and put the referenced address to addr.
564 */
565
566 /* sign extend offset */
567 offset = opcode & OFFSET;
568 offset <<= 16;
569 offset >>= 16;
570
fe00f943 571 vaddr = (unsigned long __user *)
b9688310 572 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
573 reg = (opcode & RT) >> 16;
574
60b0d655
MR
575 if ((unsigned long)vaddr & 3)
576 return SIGBUS;
1da177e4
LT
577
578 preempt_disable();
579
580 if (ll_bit == 0 || ll_task != current) {
581 regs->regs[reg] = 0;
582 preempt_enable();
60b0d655 583 return 0;
1da177e4
LT
584 }
585
586 preempt_enable();
587
60b0d655
MR
588 if (put_user(regs->regs[reg], vaddr))
589 return SIGSEGV;
1da177e4
LT
590
591 regs->regs[reg] = 1;
592
60b0d655 593 return 0;
1da177e4
LT
594}
595
596/*
597 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
598 * opcodes are supposed to result in coprocessor unusable exceptions if
599 * executed on ll/sc-less processors. That's the theory. In practice a
600 * few processors such as NEC's VR4100 throw reserved instruction exceptions
601 * instead, so we're doing the emulation thing in both exception handlers.
602 */
60b0d655 603static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
1da177e4 604{
7f788d2d
DZ
605 if ((opcode & OPCODE) == LL) {
606 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 607 1, regs, 0);
60b0d655 608 return simulate_ll(regs, opcode);
7f788d2d
DZ
609 }
610 if ((opcode & OPCODE) == SC) {
611 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 612 1, regs, 0);
60b0d655 613 return simulate_sc(regs, opcode);
7f788d2d 614 }
1da177e4 615
60b0d655 616 return -1; /* Must be something else ... */
1da177e4
LT
617}
618
3c37026d
RB
619/*
620 * Simulate trapping 'rdhwr' instructions to provide user accessible
1f5826bd 621 * registers not implemented in hardware.
3c37026d 622 */
2a0b24f5 623static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
3c37026d 624{
dc8f6029 625 struct thread_info *ti = task_thread_info(current);
3c37026d 626
2a0b24f5
SH
627 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
628 1, regs, 0);
629 switch (rd) {
aff565aa 630 case MIPS_HWR_CPUNUM: /* CPU number */
2a0b24f5
SH
631 regs->regs[rt] = smp_processor_id();
632 return 0;
aff565aa 633 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
2a0b24f5
SH
634 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
635 current_cpu_data.icache.linesz);
636 return 0;
aff565aa 637 case MIPS_HWR_CC: /* Read count register */
2a0b24f5
SH
638 regs->regs[rt] = read_c0_count();
639 return 0;
aff565aa 640 case MIPS_HWR_CCRES: /* Count register resolution */
69f24d17 641 switch (current_cpu_type()) {
2a0b24f5
SH
642 case CPU_20KC:
643 case CPU_25KF:
644 regs->regs[rt] = 1;
645 break;
646 default:
647 regs->regs[rt] = 2;
648 }
649 return 0;
aff565aa 650 case MIPS_HWR_ULR: /* Read UserLocal register */
2a0b24f5
SH
651 regs->regs[rt] = ti->tp_value;
652 return 0;
653 default:
654 return -1;
655 }
656}
657
658static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
659{
3c37026d
RB
660 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
661 int rd = (opcode & RD) >> 11;
662 int rt = (opcode & RT) >> 16;
2a0b24f5
SH
663
664 simulate_rdhwr(regs, rd, rt);
665 return 0;
666 }
667
668 /* Not ours. */
669 return -1;
670}
671
7aa70471 672static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
2a0b24f5
SH
673{
674 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
675 int rd = (opcode & MM_RS) >> 16;
676 int rt = (opcode & MM_RT) >> 21;
677 simulate_rdhwr(regs, rd, rt);
678 return 0;
3c37026d
RB
679 }
680
56ebd51b 681 /* Not ours. */
60b0d655
MR
682 return -1;
683}
e5679882 684
60b0d655
MR
685static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
686{
7f788d2d
DZ
687 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
688 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
a8b0ca17 689 1, regs, 0);
60b0d655 690 return 0;
7f788d2d 691 }
60b0d655
MR
692
693 return -1; /* Must be something else ... */
3c37026d
RB
694}
695
1da177e4
LT
696asmlinkage void do_ov(struct pt_regs *regs)
697{
c3fc5cd5 698 enum ctx_state prev_state;
e723e3f7
MR
699 siginfo_t info = {
700 .si_signo = SIGFPE,
701 .si_code = FPE_INTOVF,
702 .si_addr = (void __user *)regs->cp0_epc,
703 };
1da177e4 704
c3fc5cd5 705 prev_state = exception_enter();
36ccf1c0
RB
706 die_if_kernel("Integer overflow", regs);
707
1da177e4 708 force_sig_info(SIGFPE, &info, current);
c3fc5cd5 709 exception_exit(prev_state);
1da177e4
LT
710}
711
5a1aca44
MR
712/*
713 * Send SIGFPE according to FCSR Cause bits, which must have already
714 * been masked against Enable bits. This is impotant as Inexact can
715 * happen together with Overflow or Underflow, and `ptrace' can set
716 * any bits.
717 */
718void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
719 struct task_struct *tsk)
720{
721 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
722
723 if (fcr31 & FPU_CSR_INV_X)
724 si.si_code = FPE_FLTINV;
725 else if (fcr31 & FPU_CSR_DIV_X)
726 si.si_code = FPE_FLTDIV;
727 else if (fcr31 & FPU_CSR_OVF_X)
728 si.si_code = FPE_FLTOVF;
729 else if (fcr31 & FPU_CSR_UDF_X)
730 si.si_code = FPE_FLTUND;
731 else if (fcr31 & FPU_CSR_INE_X)
732 si.si_code = FPE_FLTRES;
733 else
734 si.si_code = __SI_FAULT;
735 force_sig_info(SIGFPE, &si, tsk);
736}
737
304acb71 738int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
515b029d 739{
304acb71 740 struct siginfo si = { 0 };
bcfc8f0d 741 struct vm_area_struct *vma;
304acb71
MR
742
743 switch (sig) {
744 case 0:
745 return 0;
ad70c13a 746
304acb71 747 case SIGFPE:
5a1aca44 748 force_fcr31_sig(fcr31, fault_addr, current);
515b029d 749 return 1;
304acb71
MR
750
751 case SIGBUS:
752 si.si_addr = fault_addr;
753 si.si_signo = sig;
754 si.si_code = BUS_ADRERR;
755 force_sig_info(sig, &si, current);
756 return 1;
757
758 case SIGSEGV:
759 si.si_addr = fault_addr;
760 si.si_signo = sig;
761 down_read(&current->mm->mmap_sem);
bcfc8f0d
PJ
762 vma = find_vma(current->mm, (unsigned long)fault_addr);
763 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
304acb71
MR
764 si.si_code = SEGV_ACCERR;
765 else
766 si.si_code = SEGV_MAPERR;
767 up_read(&current->mm->mmap_sem);
768 force_sig_info(sig, &si, current);
769 return 1;
770
771 default:
515b029d
DD
772 force_sig(sig, current);
773 return 1;
515b029d
DD
774 }
775}
776
4227a2d4
PB
777static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
778 unsigned long old_epc, unsigned long old_ra)
779{
780 union mips_instruction inst = { .word = opcode };
304acb71
MR
781 void __user *fault_addr;
782 unsigned long fcr31;
4227a2d4
PB
783 int sig;
784
785 /* If it's obviously not an FP instruction, skip it */
786 switch (inst.i_format.opcode) {
787 case cop1_op:
788 case cop1x_op:
789 case lwc1_op:
790 case ldc1_op:
791 case swc1_op:
792 case sdc1_op:
793 break;
794
795 default:
796 return -1;
797 }
798
799 /*
800 * do_ri skipped over the instruction via compute_return_epc, undo
801 * that for the FPU emulator.
802 */
803 regs->cp0_epc = old_epc;
804 regs->regs[31] = old_ra;
805
806 /* Save the FP context to struct thread_struct */
807 lose_fpu(1);
808
809 /* Run the emulator */
810 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
811 &fault_addr);
812
443c4403 813 /*
5a1aca44
MR
814 * We can't allow the emulated instruction to leave any
815 * enabled Cause bits set in $fcr31.
443c4403 816 */
5a1aca44
MR
817 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
818 current->thread.fpu.fcr31 &= ~fcr31;
4227a2d4
PB
819
820 /* Restore the hardware register state */
821 own_fpu(1);
822
304acb71
MR
823 /* Send a signal if required. */
824 process_fpemu_return(sig, fault_addr, fcr31);
825
4227a2d4
PB
826 return 0;
827}
828
1da177e4
LT
829/*
830 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
831 */
832asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
833{
c3fc5cd5 834 enum ctx_state prev_state;
304acb71
MR
835 void __user *fault_addr;
836 int sig;
948a34cf 837
c3fc5cd5 838 prev_state = exception_enter();
e3b28831 839 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
dc73e4c1 840 SIGFPE) == NOTIFY_STOP)
c3fc5cd5 841 goto out;
64bedffe
JH
842
843 /* Clear FCSR.Cause before enabling interrupts */
5a1aca44 844 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
64bedffe
JH
845 local_irq_enable();
846
57725f9e
CD
847 die_if_kernel("FP exception in kernel code", regs);
848
1da177e4 849 if (fcr31 & FPU_CSR_UNI_X) {
1da177e4 850 /*
a3dddd56 851 * Unimplemented operation exception. If we've got the full
1da177e4
LT
852 * software emulator on-board, let's use it...
853 *
854 * Force FPU to dump state into task/thread context. We're
855 * moving a lot of data here for what is probably a single
856 * instruction, but the alternative is to pre-decode the FP
857 * register operands before invoking the emulator, which seems
858 * a bit extreme for what should be an infrequent event.
859 */
cd21dfcf 860 /* Ensure 'resume' not overwrite saved fp context again. */
53dc8028 861 lose_fpu(1);
1da177e4
LT
862
863 /* Run the emulator */
515b029d
DD
864 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
865 &fault_addr);
1da177e4
LT
866
867 /*
5a1aca44
MR
868 * We can't allow the emulated instruction to leave any
869 * enabled Cause bits set in $fcr31.
1da177e4 870 */
5a1aca44
MR
871 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
872 current->thread.fpu.fcr31 &= ~fcr31;
1da177e4
LT
873
874 /* Restore the hardware register state */
70342287 875 own_fpu(1); /* Using the FPU again. */
304acb71
MR
876 } else {
877 sig = SIGFPE;
878 fault_addr = (void __user *) regs->cp0_epc;
ed2d72c1 879 }
1da177e4 880
304acb71
MR
881 /* Send a signal if required. */
882 process_fpemu_return(sig, fault_addr, fcr31);
c3fc5cd5
RB
883
884out:
885 exception_exit(prev_state);
1da177e4
LT
886}
887
3b143cca 888void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
df270051 889 const char *str)
1da177e4 890{
e723e3f7 891 siginfo_t info = { 0 };
df270051 892 char b[40];
1da177e4 893
5dd11d5d 894#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
e3b28831
RB
895 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
896 SIGTRAP) == NOTIFY_STOP)
5dd11d5d
JW
897 return;
898#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
899
e3b28831 900 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
dc73e4c1 901 SIGTRAP) == NOTIFY_STOP)
88547001
JW
902 return;
903
1da177e4 904 /*
df270051
RB
905 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
906 * insns, even for trap and break codes that indicate arithmetic
907 * failures. Weird ...
1da177e4
LT
908 * But should we continue the brokenness??? --macro
909 */
df270051
RB
910 switch (code) {
911 case BRK_OVERFLOW:
912 case BRK_DIVZERO:
913 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
914 die_if_kernel(b, regs);
915 if (code == BRK_DIVZERO)
1da177e4
LT
916 info.si_code = FPE_INTDIV;
917 else
918 info.si_code = FPE_INTOVF;
919 info.si_signo = SIGFPE;
fe00f943 920 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
921 force_sig_info(SIGFPE, &info, current);
922 break;
63dc68a8 923 case BRK_BUG:
df270051
RB
924 die_if_kernel("Kernel bug detected", regs);
925 force_sig(SIGTRAP, current);
63dc68a8 926 break;
ba3049ed
RB
927 case BRK_MEMU:
928 /*
1f443779
MR
929 * This breakpoint code is used by the FPU emulator to retake
930 * control of the CPU after executing the instruction from the
931 * delay slot of an emulated branch.
ba3049ed
RB
932 *
933 * Terminate if exception was recognized as a delay slot return
934 * otherwise handle as normal.
935 */
936 if (do_dsemulret(regs))
937 return;
938
939 die_if_kernel("Math emu break/trap", regs);
940 force_sig(SIGTRAP, current);
941 break;
1da177e4 942 default:
df270051
RB
943 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
944 die_if_kernel(b, regs);
3b143cca
MR
945 if (si_code) {
946 info.si_signo = SIGTRAP;
947 info.si_code = si_code;
948 force_sig_info(SIGTRAP, &info, current);
949 } else {
950 force_sig(SIGTRAP, current);
951 }
1da177e4 952 }
df270051
RB
953}
954
955asmlinkage void do_bp(struct pt_regs *regs)
956{
f6a31da5 957 unsigned long epc = msk_isa16_mode(exception_epc(regs));
df270051 958 unsigned int opcode, bcode;
c3fc5cd5 959 enum ctx_state prev_state;
078dde5e
LY
960 mm_segment_t seg;
961
962 seg = get_fs();
963 if (!user_mode(regs))
964 set_fs(KERNEL_DS);
2a0b24f5 965
c3fc5cd5 966 prev_state = exception_enter();
e3b28831 967 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
2a0b24f5 968 if (get_isa16_mode(regs->cp0_epc)) {
f6a31da5
MR
969 u16 instr[2];
970
971 if (__get_user(instr[0], (u16 __user *)epc))
972 goto out_sigsegv;
973
974 if (!cpu_has_mmips) {
b08a9c95 975 /* MIPS16e mode */
68893e00 976 bcode = (instr[0] >> 5) & 0x3f;
f6a31da5
MR
977 } else if (mm_insn_16bit(instr[0])) {
978 /* 16-bit microMIPS BREAK */
979 bcode = instr[0] & 0xf;
980 } else {
981 /* 32-bit microMIPS BREAK */
982 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 983 goto out_sigsegv;
f6a31da5
MR
984 opcode = (instr[0] << 16) | instr[1];
985 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5
SH
986 }
987 } else {
f6a31da5 988 if (__get_user(opcode, (unsigned int __user *)epc))
2a0b24f5 989 goto out_sigsegv;
f6a31da5 990 bcode = (opcode >> 6) & ((1 << 20) - 1);
2a0b24f5 991 }
df270051
RB
992
993 /*
994 * There is the ancient bug in the MIPS assemblers that the break
995 * code starts left to bit 16 instead to bit 6 in the opcode.
996 * Gas is bug-compatible, but not always, grrr...
997 * We handle both cases with a simple heuristics. --macro
998 */
df270051 999 if (bcode >= (1 << 10))
c9875032 1000 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
df270051 1001
c1bf207d
DD
1002 /*
1003 * notify the kprobe handlers, if instruction is likely to
1004 * pertain to them.
1005 */
1006 switch (bcode) {
40e084a5
RB
1007 case BRK_UPROBE:
1008 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1009 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1010 goto out;
1011 else
1012 break;
1013 case BRK_UPROBE_XOL:
1014 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1015 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1016 goto out;
1017 else
1018 break;
c1bf207d 1019 case BRK_KPROBE_BP:
dc73e4c1 1020 if (notify_die(DIE_BREAK, "debug", regs, bcode,
e3b28831 1021 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1022 goto out;
c1bf207d
DD
1023 else
1024 break;
1025 case BRK_KPROBE_SSTEPBP:
dc73e4c1 1026 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
e3b28831 1027 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
c3fc5cd5 1028 goto out;
c1bf207d
DD
1029 else
1030 break;
1031 default:
1032 break;
1033 }
1034
3b143cca 1035 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
c3fc5cd5
RB
1036
1037out:
078dde5e 1038 set_fs(seg);
c3fc5cd5 1039 exception_exit(prev_state);
90fccb13 1040 return;
e5679882
RB
1041
1042out_sigsegv:
1043 force_sig(SIGSEGV, current);
c3fc5cd5 1044 goto out;
1da177e4
LT
1045}
1046
1047asmlinkage void do_tr(struct pt_regs *regs)
1048{
a9a6e7a0 1049 u32 opcode, tcode = 0;
c3fc5cd5 1050 enum ctx_state prev_state;
2a0b24f5 1051 u16 instr[2];
078dde5e 1052 mm_segment_t seg;
a9a6e7a0 1053 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1da177e4 1054
078dde5e
LY
1055 seg = get_fs();
1056 if (!user_mode(regs))
1057 set_fs(get_ds());
1058
c3fc5cd5 1059 prev_state = exception_enter();
e3b28831 1060 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
a9a6e7a0
MR
1061 if (get_isa16_mode(regs->cp0_epc)) {
1062 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1063 __get_user(instr[1], (u16 __user *)(epc + 2)))
2a0b24f5 1064 goto out_sigsegv;
a9a6e7a0
MR
1065 opcode = (instr[0] << 16) | instr[1];
1066 /* Immediate versions don't provide a code. */
1067 if (!(opcode & OPCODE))
1068 tcode = (opcode >> 12) & ((1 << 4) - 1);
1069 } else {
1070 if (__get_user(opcode, (u32 __user *)epc))
1071 goto out_sigsegv;
1072 /* Immediate versions don't provide a code. */
1073 if (!(opcode & OPCODE))
1074 tcode = (opcode >> 6) & ((1 << 10) - 1);
2a0b24f5 1075 }
1da177e4 1076
3b143cca 1077 do_trap_or_bp(regs, tcode, 0, "Trap");
c3fc5cd5
RB
1078
1079out:
078dde5e 1080 set_fs(seg);
c3fc5cd5 1081 exception_exit(prev_state);
90fccb13 1082 return;
e5679882
RB
1083
1084out_sigsegv:
1085 force_sig(SIGSEGV, current);
c3fc5cd5 1086 goto out;
1da177e4
LT
1087}
1088
1089asmlinkage void do_ri(struct pt_regs *regs)
1090{
60b0d655
MR
1091 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1092 unsigned long old_epc = regs->cp0_epc;
2a0b24f5 1093 unsigned long old31 = regs->regs[31];
c3fc5cd5 1094 enum ctx_state prev_state;
60b0d655
MR
1095 unsigned int opcode = 0;
1096 int status = -1;
1da177e4 1097
b0a668fb
LY
1098 /*
1099 * Avoid any kernel code. Just emulate the R2 instruction
1100 * as quickly as possible.
1101 */
1102 if (mipsr2_emulation && cpu_has_mips_r6 &&
4a7c2371
MR
1103 likely(user_mode(regs)) &&
1104 likely(get_user(opcode, epc) >= 0)) {
304acb71
MR
1105 unsigned long fcr31 = 0;
1106
1107 status = mipsr2_decoder(regs, opcode, &fcr31);
4a7c2371
MR
1108 switch (status) {
1109 case 0:
1110 case SIGEMT:
4a7c2371
MR
1111 return;
1112 case SIGILL:
1113 goto no_r2_instr;
1114 default:
1115 process_fpemu_return(status,
304acb71
MR
1116 &current->thread.cp0_baduaddr,
1117 fcr31);
4a7c2371 1118 return;
b0a668fb
LY
1119 }
1120 }
1121
1122no_r2_instr:
1123
c3fc5cd5 1124 prev_state = exception_enter();
e3b28831 1125 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
b0a668fb 1126
e3b28831 1127 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
dc73e4c1 1128 SIGILL) == NOTIFY_STOP)
c3fc5cd5 1129 goto out;
88547001 1130
60b0d655 1131 die_if_kernel("Reserved instruction in kernel code", regs);
1da177e4 1132
60b0d655 1133 if (unlikely(compute_return_epc(regs) < 0))
c3fc5cd5 1134 goto out;
3c37026d 1135
3d50a7fb 1136 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1137 if (unlikely(get_user(opcode, epc) < 0))
1138 status = SIGSEGV;
60b0d655 1139
2a0b24f5
SH
1140 if (!cpu_has_llsc && status < 0)
1141 status = simulate_llsc(regs, opcode);
1142
1143 if (status < 0)
1144 status = simulate_rdhwr_normal(regs, opcode);
1145
1146 if (status < 0)
1147 status = simulate_sync(regs, opcode);
4227a2d4
PB
1148
1149 if (status < 0)
1150 status = simulate_fp(regs, opcode, old_epc, old31);
3d50a7fb
MR
1151 } else if (cpu_has_mmips) {
1152 unsigned short mmop[2] = { 0 };
1153
1154 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1155 status = SIGSEGV;
1156 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1157 status = SIGSEGV;
1158 opcode = mmop[0];
1159 opcode = (opcode << 16) | mmop[1];
1160
1161 if (status < 0)
1162 status = simulate_rdhwr_mm(regs, opcode);
2a0b24f5 1163 }
60b0d655
MR
1164
1165 if (status < 0)
1166 status = SIGILL;
1167
1168 if (unlikely(status > 0)) {
1169 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1170 regs->regs[31] = old31;
60b0d655
MR
1171 force_sig(status, current);
1172 }
c3fc5cd5
RB
1173
1174out:
1175 exception_exit(prev_state);
1da177e4
LT
1176}
1177
d223a861
RB
1178/*
1179 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1180 * emulated more than some threshold number of instructions, force migration to
1181 * a "CPU" that has FP support.
1182 */
1183static void mt_ase_fp_affinity(void)
1184{
1185#ifdef CONFIG_MIPS_MT_FPAFF
1186 if (mt_fpemul_threshold > 0 &&
1187 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1188 /*
1189 * If there's no FPU present, or if the application has already
1190 * restricted the allowed set to exclude any CPUs with FPUs,
1191 * we'll skip the procedure.
1192 */
8dd92891 1193 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
d223a861
RB
1194 cpumask_t tmask;
1195
9cc12363
KK
1196 current->thread.user_cpus_allowed
1197 = current->cpus_allowed;
8dd92891
RR
1198 cpumask_and(&tmask, &current->cpus_allowed,
1199 &mt_fpu_cpumask);
ed1bbdef 1200 set_cpus_allowed_ptr(current, &tmask);
293c5bd1 1201 set_thread_flag(TIF_FPUBOUND);
d223a861
RB
1202 }
1203 }
1204#endif /* CONFIG_MIPS_MT_FPAFF */
1205}
1206
69f3a7de
RB
1207/*
1208 * No lock; only written during early bootup by CPU 0.
1209 */
1210static RAW_NOTIFIER_HEAD(cu2_chain);
1211
1212int __ref register_cu2_notifier(struct notifier_block *nb)
1213{
1214 return raw_notifier_chain_register(&cu2_chain, nb);
1215}
1216
1217int cu2_notifier_call_chain(unsigned long val, void *v)
1218{
1219 return raw_notifier_call_chain(&cu2_chain, val, v);
1220}
1221
1222static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
70342287 1223 void *data)
69f3a7de
RB
1224{
1225 struct pt_regs *regs = data;
1226
83bee792 1227 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
69f3a7de 1228 "instruction", regs);
83bee792 1229 force_sig(SIGILL, current);
69f3a7de
RB
1230
1231 return NOTIFY_OK;
1232}
1233
9791554b
PB
1234static int wait_on_fp_mode_switch(atomic_t *p)
1235{
1236 /*
1237 * The FP mode for this task is currently being switched. That may
1238 * involve modifications to the format of this tasks FP context which
1239 * make it unsafe to proceed with execution for the moment. Instead,
1240 * schedule some other task.
1241 */
1242 schedule();
1243 return 0;
1244}
1245
1db1af84
PB
1246static int enable_restore_fp_context(int msa)
1247{
c9017757 1248 int err, was_fpu_owner, prior_msa;
1db1af84 1249
9791554b
PB
1250 /*
1251 * If an FP mode switch is currently underway, wait for it to
1252 * complete before proceeding.
1253 */
1254 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1255 wait_on_fp_mode_switch, TASK_KILLABLE);
1256
1db1af84
PB
1257 if (!used_math()) {
1258 /* First time FP context user. */
762a1f43 1259 preempt_disable();
1db1af84 1260 err = init_fpu();
c9017757 1261 if (msa && !err) {
1db1af84 1262 enable_msa();
e49d3848 1263 init_msa_upper();
732c0c3c
PB
1264 set_thread_flag(TIF_USEDMSA);
1265 set_thread_flag(TIF_MSA_CTX_LIVE);
c9017757 1266 }
762a1f43 1267 preempt_enable();
1db1af84
PB
1268 if (!err)
1269 set_used_math();
1270 return err;
1271 }
1272
1273 /*
1274 * This task has formerly used the FP context.
1275 *
1276 * If this thread has no live MSA vector context then we can simply
1277 * restore the scalar FP context. If it has live MSA vector context
1278 * (that is, it has or may have used MSA since last performing a
1279 * function call) then we'll need to restore the vector context. This
1280 * applies even if we're currently only executing a scalar FP
1281 * instruction. This is because if we were to later execute an MSA
1282 * instruction then we'd either have to:
1283 *
1284 * - Restore the vector context & clobber any registers modified by
1285 * scalar FP instructions between now & then.
1286 *
1287 * or
1288 *
1289 * - Not restore the vector context & lose the most significant bits
1290 * of all vector registers.
1291 *
1292 * Neither of those options is acceptable. We cannot restore the least
1293 * significant bits of the registers now & only restore the most
1294 * significant bits later because the most significant bits of any
1295 * vector registers whose aliased FP register is modified now will have
1296 * been zeroed. We'd have no way to know that when restoring the vector
1297 * context & thus may load an outdated value for the most significant
1298 * bits of a vector register.
1299 */
1300 if (!msa && !thread_msa_context_live())
1301 return own_fpu(1);
1302
1303 /*
1304 * This task is using or has previously used MSA. Thus we require
1305 * that Status.FR == 1.
1306 */
762a1f43 1307 preempt_disable();
1db1af84 1308 was_fpu_owner = is_fpu_owner();
762a1f43 1309 err = own_fpu_inatomic(0);
1db1af84 1310 if (err)
762a1f43 1311 goto out;
1db1af84
PB
1312
1313 enable_msa();
1314 write_msa_csr(current->thread.fpu.msacsr);
1315 set_thread_flag(TIF_USEDMSA);
1316
1317 /*
1318 * If this is the first time that the task is using MSA and it has
1319 * previously used scalar FP in this time slice then we already nave
c9017757
PB
1320 * FP context which we shouldn't clobber. We do however need to clear
1321 * the upper 64b of each vector register so that this task has no
1322 * opportunity to see data left behind by another.
1db1af84 1323 */
c9017757
PB
1324 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1325 if (!prior_msa && was_fpu_owner) {
e49d3848 1326 init_msa_upper();
762a1f43
PB
1327
1328 goto out;
c9017757 1329 }
1db1af84 1330
c9017757
PB
1331 if (!prior_msa) {
1332 /*
1333 * Restore the least significant 64b of each vector register
1334 * from the existing scalar FP context.
1335 */
1336 _restore_fp(current);
b8340673 1337
c9017757
PB
1338 /*
1339 * The task has not formerly used MSA, so clear the upper 64b
1340 * of each vector register such that it cannot see data left
1341 * behind by another task.
1342 */
e49d3848 1343 init_msa_upper();
c9017757
PB
1344 } else {
1345 /* We need to restore the vector context. */
1346 restore_msa(current);
b8340673 1347
c9017757
PB
1348 /* Restore the scalar FP control & status register */
1349 if (!was_fpu_owner)
d76e9b9f
JH
1350 write_32bit_cp1_register(CP1_STATUS,
1351 current->thread.fpu.fcr31);
c9017757 1352 }
762a1f43
PB
1353
1354out:
1355 preempt_enable();
1356
1db1af84
PB
1357 return 0;
1358}
1359
1da177e4
LT
1360asmlinkage void do_cpu(struct pt_regs *regs)
1361{
c3fc5cd5 1362 enum ctx_state prev_state;
60b0d655 1363 unsigned int __user *epc;
2a0b24f5 1364 unsigned long old_epc, old31;
304acb71 1365 void __user *fault_addr;
60b0d655 1366 unsigned int opcode;
304acb71 1367 unsigned long fcr31;
1da177e4 1368 unsigned int cpid;
597ce172 1369 int status, err;
304acb71 1370 int sig;
1da177e4 1371
c3fc5cd5 1372 prev_state = exception_enter();
1da177e4
LT
1373 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1374
83bee792
J
1375 if (cpid != 2)
1376 die_if_kernel("do_cpu invoked from kernel context!", regs);
1377
1da177e4
LT
1378 switch (cpid) {
1379 case 0:
60b0d655
MR
1380 epc = (unsigned int __user *)exception_epc(regs);
1381 old_epc = regs->cp0_epc;
2a0b24f5 1382 old31 = regs->regs[31];
60b0d655
MR
1383 opcode = 0;
1384 status = -1;
1da177e4 1385
60b0d655 1386 if (unlikely(compute_return_epc(regs) < 0))
27e28e8e 1387 break;
3c37026d 1388
10f6d99f 1389 if (!get_isa16_mode(regs->cp0_epc)) {
2a0b24f5
SH
1390 if (unlikely(get_user(opcode, epc) < 0))
1391 status = SIGSEGV;
1392
1393 if (!cpu_has_llsc && status < 0)
1394 status = simulate_llsc(regs, opcode);
2a0b24f5 1395 }
60b0d655
MR
1396
1397 if (status < 0)
1398 status = SIGILL;
1399
1400 if (unlikely(status > 0)) {
1401 regs->cp0_epc = old_epc; /* Undo skip-over. */
2a0b24f5 1402 regs->regs[31] = old31;
60b0d655
MR
1403 force_sig(status, current);
1404 }
1405
27e28e8e 1406 break;
1da177e4 1407
051ff44a
MR
1408 case 3:
1409 /*
2d83fea7
MR
1410 * The COP3 opcode space and consequently the CP0.Status.CU3
1411 * bit and the CP0.Cause.CE=3 encoding have been removed as
1412 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1413 * up the space has been reused for COP1X instructions, that
1414 * are enabled by the CP0.Status.CU1 bit and consequently
1415 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1416 * exceptions. Some FPU-less processors that implement one
1417 * of these ISAs however use this code erroneously for COP1X
1418 * instructions. Therefore we redirect this trap to the FP
1419 * emulator too.
051ff44a 1420 */
2d83fea7 1421 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
27e28e8e 1422 force_sig(SIGILL, current);
051ff44a 1423 break;
27e28e8e 1424 }
051ff44a
MR
1425 /* Fall through. */
1426
1da177e4 1427 case 1:
1db1af84 1428 err = enable_restore_fp_context(0);
1da177e4 1429
304acb71
MR
1430 if (raw_cpu_has_fpu && !err)
1431 break;
1da177e4 1432
304acb71
MR
1433 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1434 &fault_addr);
304acb71
MR
1435
1436 /*
1437 * We can't allow the emulated instruction to leave
5a1aca44 1438 * any enabled Cause bits set in $fcr31.
304acb71 1439 */
5a1aca44
MR
1440 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1441 current->thread.fpu.fcr31 &= ~fcr31;
304acb71
MR
1442
1443 /* Send a signal if required. */
1444 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1445 mt_ase_fp_affinity();
1da177e4 1446
27e28e8e 1447 break;
1da177e4
LT
1448
1449 case 2:
69f3a7de 1450 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
27e28e8e 1451 break;
1da177e4
LT
1452 }
1453
c3fc5cd5 1454 exception_exit(prev_state);
1da177e4
LT
1455}
1456
64bedffe 1457asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
2bcb3fbc
PB
1458{
1459 enum ctx_state prev_state;
1460
1461 prev_state = exception_enter();
e3b28831 1462 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
64bedffe 1463 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
e3b28831 1464 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
64bedffe
JH
1465 goto out;
1466
1467 /* Clear MSACSR.Cause before enabling interrupts */
1468 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1469 local_irq_enable();
1470
2bcb3fbc
PB
1471 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1472 force_sig(SIGFPE, current);
64bedffe 1473out:
2bcb3fbc
PB
1474 exception_exit(prev_state);
1475}
1476
1db1af84
PB
1477asmlinkage void do_msa(struct pt_regs *regs)
1478{
1479 enum ctx_state prev_state;
1480 int err;
1481
1482 prev_state = exception_enter();
1483
1484 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1485 force_sig(SIGILL, current);
1486 goto out;
1487 }
1488
1489 die_if_kernel("do_msa invoked from kernel context!", regs);
1490
1491 err = enable_restore_fp_context(1);
1492 if (err)
1493 force_sig(SIGILL, current);
1494out:
1495 exception_exit(prev_state);
1496}
1497
1da177e4
LT
1498asmlinkage void do_mdmx(struct pt_regs *regs)
1499{
c3fc5cd5
RB
1500 enum ctx_state prev_state;
1501
1502 prev_state = exception_enter();
1da177e4 1503 force_sig(SIGILL, current);
c3fc5cd5 1504 exception_exit(prev_state);
1da177e4
LT
1505}
1506
8bc6d05b
DD
1507/*
1508 * Called with interrupts disabled.
1509 */
1da177e4
LT
1510asmlinkage void do_watch(struct pt_regs *regs)
1511{
3b143cca 1512 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
c3fc5cd5 1513 enum ctx_state prev_state;
b67b2b70 1514
c3fc5cd5 1515 prev_state = exception_enter();
1da177e4 1516 /*
b67b2b70
DD
1517 * Clear WP (bit 22) bit of cause register so we don't loop
1518 * forever.
1da177e4 1519 */
e233c733 1520 clear_c0_cause(CAUSEF_WP);
b67b2b70
DD
1521
1522 /*
1523 * If the current thread has the watch registers loaded, save
1524 * their values and send SIGTRAP. Otherwise another thread
1525 * left the registers set, clear them and continue.
1526 */
1527 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1528 mips_read_watch_registers();
8bc6d05b 1529 local_irq_enable();
3b143cca 1530 force_sig_info(SIGTRAP, &info, current);
8bc6d05b 1531 } else {
b67b2b70 1532 mips_clear_watch_registers();
8bc6d05b
DD
1533 local_irq_enable();
1534 }
c3fc5cd5 1535 exception_exit(prev_state);
1da177e4
LT
1536}
1537
1538asmlinkage void do_mcheck(struct pt_regs *regs)
1539{
cac4bcbc 1540 int multi_match = regs->cp0_status & ST0_TS;
c3fc5cd5 1541 enum ctx_state prev_state;
55c723e1 1542 mm_segment_t old_fs = get_fs();
cac4bcbc 1543
c3fc5cd5 1544 prev_state = exception_enter();
1da177e4 1545 show_regs(regs);
cac4bcbc
RB
1546
1547 if (multi_match) {
3c865dd9
JH
1548 dump_tlb_regs();
1549 pr_info("\n");
cac4bcbc
RB
1550 dump_tlb_all();
1551 }
1552
55c723e1
JH
1553 if (!user_mode(regs))
1554 set_fs(KERNEL_DS);
1555
e1bb8289 1556 show_code((unsigned int __user *) regs->cp0_epc);
cac4bcbc 1557
55c723e1
JH
1558 set_fs(old_fs);
1559
1da177e4
LT
1560 /*
1561 * Some chips may have other causes of machine check (e.g. SB1
1562 * graduation timer)
1563 */
1564 panic("Caught Machine Check exception - %scaused by multiple "
1565 "matching entries in the TLB.",
cac4bcbc 1566 (multi_match) ? "" : "not ");
1da177e4
LT
1567}
1568
340ee4b9
RB
1569asmlinkage void do_mt(struct pt_regs *regs)
1570{
41c594ab
RB
1571 int subcode;
1572
41c594ab
RB
1573 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1574 >> VPECONTROL_EXCPT_SHIFT;
1575 switch (subcode) {
1576 case 0:
e35a5e35 1577 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
1578 break;
1579 case 1:
e35a5e35 1580 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
1581 break;
1582 case 2:
e35a5e35 1583 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
1584 break;
1585 case 3:
e35a5e35 1586 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
1587 break;
1588 case 4:
e35a5e35 1589 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
1590 break;
1591 case 5:
f232c7e8 1592 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
41c594ab
RB
1593 break;
1594 default:
e35a5e35 1595 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
1596 subcode);
1597 break;
1598 }
340ee4b9
RB
1599 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1600
1601 force_sig(SIGILL, current);
1602}
1603
1604
e50c0a8f
RB
1605asmlinkage void do_dsp(struct pt_regs *regs)
1606{
1607 if (cpu_has_dsp)
ab75dc02 1608 panic("Unexpected DSP exception");
e50c0a8f
RB
1609
1610 force_sig(SIGILL, current);
1611}
1612
1da177e4
LT
1613asmlinkage void do_reserved(struct pt_regs *regs)
1614{
1615 /*
70342287 1616 * Game over - no way to handle this if it ever occurs. Most probably
1da177e4
LT
1617 * caused by a new unknown cpu type or after another deadly
1618 * hard/software error.
1619 */
1620 show_regs(regs);
1621 panic("Caught reserved exception %ld - should not happen.",
1622 (regs->cp0_cause & 0x7f) >> 2);
1623}
1624
39b8d525
RB
1625static int __initdata l1parity = 1;
1626static int __init nol1parity(char *s)
1627{
1628 l1parity = 0;
1629 return 1;
1630}
1631__setup("nol1par", nol1parity);
1632static int __initdata l2parity = 1;
1633static int __init nol2parity(char *s)
1634{
1635 l2parity = 0;
1636 return 1;
1637}
1638__setup("nol2par", nol2parity);
1639
1da177e4
LT
1640/*
1641 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1642 * it different ways.
1643 */
1644static inline void parity_protection_init(void)
1645{
35e6de38
PB
1646#define ERRCTL_PE 0x80000000
1647#define ERRCTL_L2P 0x00800000
1648
1649 if (mips_cm_revision() >= CM_REV_CM3) {
1650 ulong gcr_ectl, cp0_ectl;
1651
1652 /*
1653 * With CM3 systems we need to ensure that the L1 & L2
1654 * parity enables are set to the same value, since this
1655 * is presumed by the hardware engineers.
1656 *
1657 * If the user disabled either of L1 or L2 ECC checking,
1658 * disable both.
1659 */
1660 l1parity &= l2parity;
1661 l2parity &= l1parity;
1662
1663 /* Probe L1 ECC support */
1664 cp0_ectl = read_c0_ecc();
1665 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1666 back_to_back_c0_hazard();
1667 cp0_ectl = read_c0_ecc();
1668
1669 /* Probe L2 ECC support */
1670 gcr_ectl = read_gcr_err_control();
1671
1672 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) ||
1673 !(cp0_ectl & ERRCTL_PE)) {
1674 /*
1675 * One of L1 or L2 ECC checking isn't supported,
1676 * so we cannot enable either.
1677 */
1678 l1parity = l2parity = 0;
1679 }
1680
1681 /* Configure L1 ECC checking */
1682 if (l1parity)
1683 cp0_ectl |= ERRCTL_PE;
1684 else
1685 cp0_ectl &= ~ERRCTL_PE;
1686 write_c0_ecc(cp0_ectl);
1687 back_to_back_c0_hazard();
1688 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1689
1690 /* Configure L2 ECC checking */
1691 if (l2parity)
1692 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1693 else
1694 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1695 write_gcr_err_control(gcr_ectl);
1696 gcr_ectl = read_gcr_err_control();
1697 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1698 WARN_ON(!!gcr_ectl != l2parity);
1699
1700 pr_info("Cache parity protection %sabled\n",
1701 l1parity ? "en" : "dis");
1702 return;
1703 }
1704
10cc3529 1705 switch (current_cpu_type()) {
1da177e4 1706 case CPU_24K:
98a41de9 1707 case CPU_34K:
39b8d525
RB
1708 case CPU_74K:
1709 case CPU_1004K:
442e14a2 1710 case CPU_1074K:
26ab96df 1711 case CPU_INTERAPTIV:
708ac4b8 1712 case CPU_PROAPTIV:
aced4cbd 1713 case CPU_P5600:
4695089f 1714 case CPU_QEMU_GENERIC:
1091bfa2 1715 case CPU_P6600:
39b8d525 1716 {
39b8d525
RB
1717 unsigned long errctl;
1718 unsigned int l1parity_present, l2parity_present;
1719
1720 errctl = read_c0_ecc();
1721 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1722
1723 /* probe L1 parity support */
1724 write_c0_ecc(errctl | ERRCTL_PE);
1725 back_to_back_c0_hazard();
1726 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1727
1728 /* probe L2 parity support */
1729 write_c0_ecc(errctl|ERRCTL_L2P);
1730 back_to_back_c0_hazard();
1731 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1732
1733 if (l1parity_present && l2parity_present) {
1734 if (l1parity)
1735 errctl |= ERRCTL_PE;
1736 if (l1parity ^ l2parity)
1737 errctl |= ERRCTL_L2P;
1738 } else if (l1parity_present) {
1739 if (l1parity)
1740 errctl |= ERRCTL_PE;
1741 } else if (l2parity_present) {
1742 if (l2parity)
1743 errctl |= ERRCTL_L2P;
1744 } else {
1745 /* No parity available */
1746 }
1747
1748 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1749
1750 write_c0_ecc(errctl);
1751 back_to_back_c0_hazard();
1752 errctl = read_c0_ecc();
1753 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1754
1755 if (l1parity_present)
1756 printk(KERN_INFO "Cache parity protection %sabled\n",
1757 (errctl & ERRCTL_PE) ? "en" : "dis");
1758
1759 if (l2parity_present) {
1760 if (l1parity_present && l1parity)
1761 errctl ^= ERRCTL_L2P;
1762 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1763 (errctl & ERRCTL_L2P) ? "en" : "dis");
1764 }
1765 }
1766 break;
1767
1da177e4 1768 case CPU_5KC:
78d4803f 1769 case CPU_5KE:
2fa36399 1770 case CPU_LOONGSON1:
14f18b7f
RB
1771 write_c0_ecc(0x80000000);
1772 back_to_back_c0_hazard();
1773 /* Set the PE bit (bit 31) in the c0_errctl register. */
1774 printk(KERN_INFO "Cache parity protection %sabled\n",
1775 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
1776 break;
1777 case CPU_20KC:
1778 case CPU_25KF:
1779 /* Clear the DE bit (bit 16) in the c0_status register. */
1780 printk(KERN_INFO "Enable cache parity protection for "
1781 "MIPS 20KC/25KF CPUs.\n");
1782 clear_c0_status(ST0_DE);
1783 break;
1784 default:
1785 break;
1786 }
1787}
1788
1789asmlinkage void cache_parity_error(void)
1790{
1791 const int field = 2 * sizeof(unsigned long);
1792 unsigned int reg_val;
1793
1794 /* For the moment, report the problem and hang. */
1795 printk("Cache error exception:\n");
1796 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1797 reg_val = read_c0_cacheerr();
1798 printk("c0_cacheerr == %08x\n", reg_val);
1799
1800 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1801 reg_val & (1<<30) ? "secondary" : "primary",
1802 reg_val & (1<<31) ? "data" : "insn");
9c7d5768 1803 if ((cpu_has_mips_r2_r6) &&
721a9205 1804 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
6de20451
LY
1805 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1806 reg_val & (1<<29) ? "ED " : "",
1807 reg_val & (1<<28) ? "ET " : "",
1808 reg_val & (1<<27) ? "ES " : "",
1809 reg_val & (1<<26) ? "EE " : "",
1810 reg_val & (1<<25) ? "EB " : "",
1811 reg_val & (1<<24) ? "EI " : "",
1812 reg_val & (1<<23) ? "E1 " : "",
1813 reg_val & (1<<22) ? "E0 " : "");
1814 } else {
1815 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1816 reg_val & (1<<29) ? "ED " : "",
1817 reg_val & (1<<28) ? "ET " : "",
1818 reg_val & (1<<26) ? "EE " : "",
1819 reg_val & (1<<25) ? "EB " : "",
1820 reg_val & (1<<24) ? "EI " : "",
1821 reg_val & (1<<23) ? "E1 " : "",
1822 reg_val & (1<<22) ? "E0 " : "");
1823 }
1da177e4
LT
1824 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1825
ec917c2c 1826#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1827 if (reg_val & (1<<22))
1828 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1829
1830 if (reg_val & (1<<23))
1831 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1832#endif
1833
1834 panic("Can't handle the cache error!");
1835}
1836
75b5b5e0
LY
1837asmlinkage void do_ftlb(void)
1838{
1839 const int field = 2 * sizeof(unsigned long);
1840 unsigned int reg_val;
1841
1842 /* For the moment, report the problem and hang. */
9c7d5768 1843 if ((cpu_has_mips_r2_r6) &&
b2edcfc8
HC
1844 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1845 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
75b5b5e0
LY
1846 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1847 read_c0_ecc());
1848 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1849 reg_val = read_c0_cacheerr();
1850 pr_err("c0_cacheerr == %08x\n", reg_val);
1851
1852 if ((reg_val & 0xc0000000) == 0xc0000000) {
1853 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1854 } else {
1855 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1856 reg_val & (1<<30) ? "secondary" : "primary",
1857 reg_val & (1<<31) ? "data" : "insn");
1858 }
1859 } else {
1860 pr_err("FTLB error exception\n");
1861 }
1862 /* Just print the cacheerr bits for now */
1863 cache_parity_error();
1864}
1865
1da177e4
LT
1866/*
1867 * SDBBP EJTAG debug exception handler.
1868 * We skip the instruction and return to the next instruction.
1869 */
1870void ejtag_exception_handler(struct pt_regs *regs)
1871{
1872 const int field = 2 * sizeof(unsigned long);
2a0b24f5 1873 unsigned long depc, old_epc, old_ra;
1da177e4
LT
1874 unsigned int debug;
1875
70ae6126 1876 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1877 depc = read_c0_depc();
1878 debug = read_c0_debug();
70ae6126 1879 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1880 if (debug & 0x80000000) {
1881 /*
1882 * In branch delay slot.
1883 * We cheat a little bit here and use EPC to calculate the
1884 * debug return address (DEPC). EPC is restored after the
1885 * calculation.
1886 */
1887 old_epc = regs->cp0_epc;
2a0b24f5 1888 old_ra = regs->regs[31];
1da177e4 1889 regs->cp0_epc = depc;
2a0b24f5 1890 compute_return_epc(regs);
1da177e4
LT
1891 depc = regs->cp0_epc;
1892 regs->cp0_epc = old_epc;
2a0b24f5 1893 regs->regs[31] = old_ra;
1da177e4
LT
1894 } else
1895 depc += 4;
1896 write_c0_depc(depc);
1897
1898#if 0
70ae6126 1899 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1900 write_c0_debug(debug | 0x100);
1901#endif
1902}
1903
1904/*
1905 * NMI exception handler.
34bd92e2 1906 * No lock; only written during early bootup by CPU 0.
1da177e4 1907 */
34bd92e2
KC
1908static RAW_NOTIFIER_HEAD(nmi_chain);
1909
1910int register_nmi_notifier(struct notifier_block *nb)
1911{
1912 return raw_notifier_chain_register(&nmi_chain, nb);
1913}
1914
ff2d8b19 1915void __noreturn nmi_exception_handler(struct pt_regs *regs)
1da177e4 1916{
83e4da1e
LY
1917 char str[100];
1918
7963b3f1 1919 nmi_enter();
34bd92e2 1920 raw_notifier_call_chain(&nmi_chain, 0, regs);
41c594ab 1921 bust_spinlocks(1);
83e4da1e
LY
1922 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1923 smp_processor_id(), regs->cp0_epc);
1924 regs->cp0_epc = read_c0_errorepc();
1925 die(str, regs);
7963b3f1 1926 nmi_exit();
1da177e4
LT
1927}
1928
e01402b1
RB
1929#define VECTORSPACING 0x100 /* for EI/VI mode */
1930
1931unsigned long ebase;
878edf01 1932EXPORT_SYMBOL_GPL(ebase);
1da177e4 1933unsigned long exception_handlers[32];
e01402b1 1934unsigned long vi_handlers[64];
1da177e4 1935
2d1b6e95 1936void __init *set_except_vector(int n, void *addr)
1da177e4
LT
1937{
1938 unsigned long handler = (unsigned long) addr;
b22d1b6a 1939 unsigned long old_handler;
1da177e4 1940
2a0b24f5
SH
1941#ifdef CONFIG_CPU_MICROMIPS
1942 /*
1943 * Only the TLB handlers are cache aligned with an even
1944 * address. All other handlers are on an odd address and
1945 * require no modification. Otherwise, MIPS32 mode will
1946 * be entered when handling any TLB exceptions. That
1947 * would be bad...since we must stay in microMIPS mode.
1948 */
1949 if (!(handler & 0x1))
1950 handler |= 1;
1951#endif
b22d1b6a 1952 old_handler = xchg(&exception_handlers[n], handler);
1da177e4 1953
1da177e4 1954 if (n == 0 && cpu_has_divec) {
2a0b24f5
SH
1955#ifdef CONFIG_CPU_MICROMIPS
1956 unsigned long jump_mask = ~((1 << 27) - 1);
1957#else
92bbe1b9 1958 unsigned long jump_mask = ~((1 << 28) - 1);
2a0b24f5 1959#endif
92bbe1b9
FF
1960 u32 *buf = (u32 *)(ebase + 0x200);
1961 unsigned int k0 = 26;
1962 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1963 uasm_i_j(&buf, handler & ~jump_mask);
1964 uasm_i_nop(&buf);
1965 } else {
1966 UASM_i_LA(&buf, k0, handler);
1967 uasm_i_jr(&buf, k0);
1968 uasm_i_nop(&buf);
1969 }
1970 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
e01402b1
RB
1971 }
1972 return (void *)old_handler;
1973}
1974
86a1708a 1975static void do_default_vi(void)
6ba07e59
AN
1976{
1977 show_regs(get_irq_regs());
1978 panic("Caught unexpected vectored interrupt.");
1979}
1980
ef300e42 1981static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
1982{
1983 unsigned long handler;
1984 unsigned long old_handler = vi_handlers[n];
f6771dbb 1985 int srssets = current_cpu_data.srsets;
2a0b24f5 1986 u16 *h;
e01402b1
RB
1987 unsigned char *b;
1988
b72b7092 1989 BUG_ON(!cpu_has_veic && !cpu_has_vint);
e01402b1
RB
1990
1991 if (addr == NULL) {
1992 handler = (unsigned long) do_default_vi;
1993 srs = 0;
41c594ab 1994 } else
e01402b1 1995 handler = (unsigned long) addr;
2a0b24f5 1996 vi_handlers[n] = handler;
e01402b1
RB
1997
1998 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1999
f6771dbb 2000 if (srs >= srssets)
e01402b1
RB
2001 panic("Shadow register set %d not supported", srs);
2002
2003 if (cpu_has_veic) {
2004 if (board_bind_eic_interrupt)
49a89efb 2005 board_bind_eic_interrupt(n, srs);
41c594ab 2006 } else if (cpu_has_vint) {
e01402b1 2007 /* SRSMap is only defined if shadow sets are implemented */
f6771dbb 2008 if (srssets > 1)
49a89efb 2009 change_c0_srsmap(0xf << n*4, srs << n*4);
e01402b1
RB
2010 }
2011
2012 if (srs == 0) {
2013 /*
2014 * If no shadow set is selected then use the default handler
2a0b24f5 2015 * that does normal register saving and standard interrupt exit
e01402b1 2016 */
e01402b1
RB
2017 extern char except_vec_vi, except_vec_vi_lui;
2018 extern char except_vec_vi_ori, except_vec_vi_end;
c65a5480 2019 extern char rollback_except_vec_vi;
f94d9a8e 2020 char *vec_start = using_rollback_handler() ?
c65a5480 2021 &rollback_except_vec_vi : &except_vec_vi;
2a0b24f5
SH
2022#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2023 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2024 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2025#else
c65a5480
AN
2026 const int lui_offset = &except_vec_vi_lui - vec_start;
2027 const int ori_offset = &except_vec_vi_ori - vec_start;
2a0b24f5
SH
2028#endif
2029 const int handler_len = &except_vec_vi_end - vec_start;
e01402b1
RB
2030
2031 if (handler_len > VECTORSPACING) {
2032 /*
2033 * Sigh... panicing won't help as the console
2034 * is probably not configured :(
2035 */
49a89efb 2036 panic("VECTORSPACING too small");
e01402b1
RB
2037 }
2038
2a0b24f5
SH
2039 set_handler(((unsigned long)b - ebase), vec_start,
2040#ifdef CONFIG_CPU_MICROMIPS
2041 (handler_len - 1));
2042#else
2043 handler_len);
2044#endif
2a0b24f5
SH
2045 h = (u16 *)(b + lui_offset);
2046 *h = (handler >> 16) & 0xffff;
2047 h = (u16 *)(b + ori_offset);
2048 *h = (handler & 0xffff);
e0cee3ee
TB
2049 local_flush_icache_range((unsigned long)b,
2050 (unsigned long)(b+handler_len));
e01402b1
RB
2051 }
2052 else {
2053 /*
2a0b24f5
SH
2054 * In other cases jump directly to the interrupt handler. It
2055 * is the handler's responsibility to save registers if required
2056 * (eg hi/lo) and return from the exception using "eret".
e01402b1 2057 */
2a0b24f5
SH
2058 u32 insn;
2059
2060 h = (u16 *)b;
2061 /* j handler */
2062#ifdef CONFIG_CPU_MICROMIPS
2063 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2064#else
2065 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2066#endif
2067 h[0] = (insn >> 16) & 0xffff;
2068 h[1] = insn & 0xffff;
2069 h[2] = 0;
2070 h[3] = 0;
e0cee3ee
TB
2071 local_flush_icache_range((unsigned long)b,
2072 (unsigned long)(b+8));
1da177e4 2073 }
e01402b1 2074
1da177e4
LT
2075 return (void *)old_handler;
2076}
2077
ef300e42 2078void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 2079{
ff3eab2a 2080 return set_vi_srs_handler(n, addr, 0);
e01402b1 2081}
f41ae0b2 2082
1da177e4
LT
2083extern void tlb_init(void);
2084
42f77542
RB
2085/*
2086 * Timer interrupt
2087 */
2088int cp0_compare_irq;
68b6352c 2089EXPORT_SYMBOL_GPL(cp0_compare_irq);
010c108d 2090int cp0_compare_irq_shift;
42f77542
RB
2091
2092/*
2093 * Performance counter IRQ or -1 if shared with timer
2094 */
2095int cp0_perfcount_irq;
2096EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2097
8f7ff027
JH
2098/*
2099 * Fast debug channel IRQ or -1 if not present
2100 */
2101int cp0_fdc_irq;
2102EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2103
078a55fc 2104static int noulri;
bdc94eb4
CD
2105
2106static int __init ulri_disable(char *s)
2107{
2108 pr_info("Disabling ulri\n");
2109 noulri = 1;
2110
2111 return 1;
2112}
2113__setup("noulri", ulri_disable);
2114
ae4ce454
JH
2115/* configure STATUS register */
2116static void configure_status(void)
1da177e4 2117{
1da177e4
LT
2118 /*
2119 * Disable coprocessors and select 32-bit or 64-bit addressing
2120 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2121 * flag that some firmware may have left set and the TS bit (for
2122 * IP27). Set XX for ISA IV code to work.
2123 */
ae4ce454 2124 unsigned int status_set = ST0_CU0;
875d43e7 2125#ifdef CONFIG_64BIT
1da177e4
LT
2126 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2127#endif
adb37892 2128 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1da177e4 2129 status_set |= ST0_XX;
bbaf238b
CD
2130 if (cpu_has_dsp)
2131 status_set |= ST0_MX;
2132
b38c7399 2133 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4 2134 status_set);
ae4ce454
JH
2135}
2136
b937ff62
JH
2137unsigned int hwrena;
2138EXPORT_SYMBOL_GPL(hwrena);
2139
ae4ce454
JH
2140/* configure HWRENA register */
2141static void configure_hwrena(void)
2142{
b937ff62 2143 hwrena = cpu_hwrena_impl_bits;
1da177e4 2144
9c7d5768 2145 if (cpu_has_mips_r2_r6)
aff565aa
JH
2146 hwrena |= MIPS_HWRENA_CPUNUM |
2147 MIPS_HWRENA_SYNCISTEP |
2148 MIPS_HWRENA_CC |
2149 MIPS_HWRENA_CCRES;
a3692020 2150
18d693b3 2151 if (!noulri && cpu_has_userlocal)
aff565aa 2152 hwrena |= MIPS_HWRENA_ULR;
a3692020 2153
18d693b3
KC
2154 if (hwrena)
2155 write_c0_hwrena(hwrena);
ae4ce454 2156}
e01402b1 2157
ae4ce454
JH
2158static void configure_exception_vector(void)
2159{
e01402b1 2160 if (cpu_has_veic || cpu_has_vint) {
9fb4c2b9 2161 unsigned long sr = set_c0_status(ST0_BEV);
4b22c693
MR
2162 /* If available, use WG to set top bits of EBASE */
2163 if (cpu_has_ebase_wg) {
2164#ifdef CONFIG_64BIT
2165 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2166#else
2167 write_c0_ebase(ebase | MIPS_EBASE_WG);
2168#endif
2169 }
49a89efb 2170 write_c0_ebase(ebase);
9fb4c2b9 2171 write_c0_status(sr);
e01402b1 2172 /* Setting vector spacing enables EI/VI mode */
49a89efb 2173 change_c0_intctl(0x3e0, VECTORSPACING);
e01402b1 2174 }
d03d0a57
RB
2175 if (cpu_has_divec) {
2176 if (cpu_has_mipsmt) {
2177 unsigned int vpflags = dvpe();
2178 set_c0_cause(CAUSEF_IV);
2179 evpe(vpflags);
2180 } else
2181 set_c0_cause(CAUSEF_IV);
2182 }
ae4ce454
JH
2183}
2184
2185void per_cpu_trap_init(bool is_boot_cpu)
2186{
2187 unsigned int cpu = smp_processor_id();
ae4ce454
JH
2188
2189 configure_status();
2190 configure_hwrena();
2191
ae4ce454 2192 configure_exception_vector();
3b1d4ed5
RB
2193
2194 /*
2195 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2196 *
2197 * o read IntCtl.IPTI to determine the timer interrupt
2198 * o read IntCtl.IPPCI to determine the performance counter interrupt
8f7ff027 2199 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
3b1d4ed5 2200 */
9c7d5768 2201 if (cpu_has_mips_r2_r6) {
04d83f94
MC
2202 /*
2203 * We shouldn't trust a secondary core has a sane EBASE register
2204 * so use the one calculated by the boot CPU.
2205 */
4b22c693
MR
2206 if (!is_boot_cpu) {
2207 /* If available, use WG to set top bits of EBASE */
2208 if (cpu_has_ebase_wg) {
2209#ifdef CONFIG_64BIT
2210 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2211#else
2212 write_c0_ebase(ebase | MIPS_EBASE_WG);
2213#endif
2214 }
04d83f94 2215 write_c0_ebase(ebase);
4b22c693 2216 }
04d83f94 2217
010c108d
DV
2218 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2219 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2220 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
8f7ff027
JH
2221 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2222 if (!cp0_fdc_irq)
2223 cp0_fdc_irq = -1;
2224
c3e838a2
CD
2225 } else {
2226 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
c6a4ebb9 2227 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
c3e838a2 2228 cp0_perfcount_irq = -1;
8f7ff027 2229 cp0_fdc_irq = -1;
3b1d4ed5
RB
2230 }
2231
48c4ac97 2232 if (!cpu_data[cpu].asid_cache)
4edf00a4 2233 cpu_data[cpu].asid_cache = asid_first_version(cpu);
1da177e4 2234
f1f10076 2235 mmgrab(&init_mm);
1da177e4
LT
2236 current->active_mm = &init_mm;
2237 BUG_ON(current->mm);
2238 enter_lazy_tlb(&init_mm, current);
2239
761b4493
MC
2240 /* Boot CPU's cache setup in setup_arch(). */
2241 if (!is_boot_cpu)
2242 cpu_cache_init();
2243 tlb_init();
3d8bfdd0 2244 TLBMISS_HANDLER_SETUP();
1da177e4
LT
2245}
2246
e01402b1 2247/* Install CPU exception handler */
078a55fc 2248void set_handler(unsigned long offset, void *addr, unsigned long size)
e01402b1 2249{
2a0b24f5
SH
2250#ifdef CONFIG_CPU_MICROMIPS
2251 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2252#else
e01402b1 2253 memcpy((void *)(ebase + offset), addr, size);
2a0b24f5 2254#endif
e0cee3ee 2255 local_flush_icache_range(ebase + offset, ebase + offset + size);
e01402b1
RB
2256}
2257
078a55fc 2258static char panic_null_cerr[] =
641e97f3
RB
2259 "Trying to set NULL cache error exception handler";
2260
42fe7ee3
RB
2261/*
2262 * Install uncached CPU exception handler.
2263 * This is suitable only for the cache error exception which is the only
2264 * exception handler that is being run uncached.
2265 */
078a55fc 2266void set_uncached_handler(unsigned long offset, void *addr,
234fcd14 2267 unsigned long size)
e01402b1 2268{
4f81b01a 2269 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
e01402b1 2270
641e97f3
RB
2271 if (!addr)
2272 panic(panic_null_cerr);
2273
e01402b1
RB
2274 memcpy((void *)(uncached_ebase + offset), addr, size);
2275}
2276
5b10496b
AN
2277static int __initdata rdhwr_noopt;
2278static int __init set_rdhwr_noopt(char *str)
2279{
2280 rdhwr_noopt = 1;
2281 return 1;
2282}
2283
2284__setup("rdhwr_noopt", set_rdhwr_noopt);
2285
1da177e4
LT
2286void __init trap_init(void)
2287{
2a0b24f5 2288 extern char except_vec3_generic;
1da177e4 2289 extern char except_vec4;
2a0b24f5 2290 extern char except_vec3_r4000;
1da177e4 2291 unsigned long i;
c65a5480
AN
2292
2293 check_wait();
1da177e4 2294
9fb4c2b9
CD
2295 if (cpu_has_veic || cpu_has_vint) {
2296 unsigned long size = 0x200 + VECTORSPACING*64;
c195e079
JH
2297 phys_addr_t ebase_pa;
2298
9fb4c2b9
CD
2299 ebase = (unsigned long)
2300 __alloc_bootmem(size, 1 << fls(size), 0);
c195e079
JH
2301
2302 /*
2303 * Try to ensure ebase resides in KSeg0 if possible.
2304 *
2305 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2306 * hitting a poorly defined exception base for Cache Errors.
2307 * The allocation is likely to be in the low 512MB of physical,
2308 * in which case we should be able to convert to KSeg0.
2309 *
2310 * EVA is special though as it allows segments to be rearranged
2311 * and to become uncached during cache error handling.
2312 */
2313 ebase_pa = __pa(ebase);
2314 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2315 ebase = CKSEG0ADDR(ebase_pa);
9fb4c2b9 2316 } else {
a13c9962
PB
2317 ebase = CAC_BASE;
2318
18022894
JH
2319 if (cpu_has_mips_r2_r6) {
2320 if (cpu_has_ebase_wg) {
2321#ifdef CONFIG_64BIT
2322 ebase = (read_c0_ebase_64() & ~0xfff);
2323#else
2324 ebase = (read_c0_ebase() & ~0xfff);
2325#endif
2326 } else {
2327 ebase += (read_c0_ebase() & 0x3ffff000);
2328 }
2329 }
566f74f6 2330 }
e01402b1 2331
c6213c6c
SH
2332 if (cpu_has_mmips) {
2333 unsigned int config3 = read_c0_config3();
2334
2335 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2336 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2337 else
2338 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2339 }
2340
6fb97eff
KC
2341 if (board_ebase_setup)
2342 board_ebase_setup();
6650df3c 2343 per_cpu_trap_init(true);
1da177e4
LT
2344
2345 /*
2346 * Copy the generic exception handlers to their final destination.
92a76f6d 2347 * This will be overridden later as suitable for a particular
1da177e4
LT
2348 * configuration.
2349 */
e01402b1 2350 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
2351
2352 /*
2353 * Setup default vectors
2354 */
2355 for (i = 0; i <= 31; i++)
2356 set_except_vector(i, handle_reserved);
2357
2358 /*
2359 * Copy the EJTAG debug exception vector handler code to it's final
2360 * destination.
2361 */
e01402b1 2362 if (cpu_has_ejtag && board_ejtag_handler_setup)
49a89efb 2363 board_ejtag_handler_setup();
1da177e4
LT
2364
2365 /*
2366 * Only some CPUs have the watch exceptions.
2367 */
2368 if (cpu_has_watch)
1b505def 2369 set_except_vector(EXCCODE_WATCH, handle_watch);
1da177e4
LT
2370
2371 /*
e01402b1 2372 * Initialise interrupt handlers
1da177e4 2373 */
e01402b1
RB
2374 if (cpu_has_veic || cpu_has_vint) {
2375 int nvec = cpu_has_veic ? 64 : 8;
2376 for (i = 0; i < nvec; i++)
ff3eab2a 2377 set_vi_handler(i, NULL);
e01402b1
RB
2378 }
2379 else if (cpu_has_divec)
2380 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
2381
2382 /*
2383 * Some CPUs can enable/disable for cache parity detection, but does
2384 * it different ways.
2385 */
2386 parity_protection_init();
2387
2388 /*
2389 * The Data Bus Errors / Instruction Bus Errors are signaled
2390 * by external hardware. Therefore these two exceptions
2391 * may have board specific handlers.
2392 */
2393 if (board_be_init)
2394 board_be_init();
2395
1b505def
JH
2396 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2397 rollback_handle_int : handle_int);
2398 set_except_vector(EXCCODE_MOD, handle_tlbm);
2399 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2400 set_except_vector(EXCCODE_TLBS, handle_tlbs);
1da177e4 2401
1b505def
JH
2402 set_except_vector(EXCCODE_ADEL, handle_adel);
2403 set_except_vector(EXCCODE_ADES, handle_ades);
1da177e4 2404
1b505def
JH
2405 set_except_vector(EXCCODE_IBE, handle_ibe);
2406 set_except_vector(EXCCODE_DBE, handle_dbe);
1da177e4 2407
1b505def
JH
2408 set_except_vector(EXCCODE_SYS, handle_sys);
2409 set_except_vector(EXCCODE_BP, handle_bp);
2410 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
5b10496b
AN
2411 (cpu_has_vtag_icache ?
2412 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1b505def
JH
2413 set_except_vector(EXCCODE_CPU, handle_cpu);
2414 set_except_vector(EXCCODE_OV, handle_ov);
2415 set_except_vector(EXCCODE_TR, handle_tr);
2416 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
1da177e4 2417
10cc3529
RB
2418 if (current_cpu_type() == CPU_R6000 ||
2419 current_cpu_type() == CPU_R6000A) {
1da177e4
LT
2420 /*
2421 * The R6000 is the only R-series CPU that features a machine
2422 * check exception (similar to the R4000 cache error) and
2423 * unaligned ldc1/sdc1 exception. The handlers have not been
70342287 2424 * written yet. Well, anyway there is no R6000 machine on the
1da177e4
LT
2425 * current list of targets for Linux/MIPS.
2426 * (Duh, crap, there is someone with a triple R6k machine)
2427 */
2428 //set_except_vector(14, handle_mc);
2429 //set_except_vector(15, handle_ndc);
2430 }
2431
e01402b1
RB
2432
2433 if (board_nmi_handler_setup)
2434 board_nmi_handler_setup();
2435
e50c0a8f 2436 if (cpu_has_fpu && !cpu_has_nofpuex)
1b505def 2437 set_except_vector(EXCCODE_FPE, handle_fpe);
e50c0a8f 2438
1b505def 2439 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
5890f70f
LY
2440
2441 if (cpu_has_rixiex) {
1b505def
JH
2442 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2443 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
5890f70f
LY
2444 }
2445
1b505def
JH
2446 set_except_vector(EXCCODE_MSADIS, handle_msa);
2447 set_except_vector(EXCCODE_MDMX, handle_mdmx);
e50c0a8f
RB
2448
2449 if (cpu_has_mcheck)
1b505def 2450 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
e50c0a8f 2451
340ee4b9 2452 if (cpu_has_mipsmt)
1b505def 2453 set_except_vector(EXCCODE_THREAD, handle_mt);
340ee4b9 2454
1b505def 2455 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
e50c0a8f 2456
fcbf1dfd
DD
2457 if (board_cache_error_setup)
2458 board_cache_error_setup();
2459
e50c0a8f
RB
2460 if (cpu_has_vce)
2461 /* Special exception: R4[04]00 uses also the divec space. */
2a0b24f5 2462 set_handler(0x180, &except_vec3_r4000, 0x100);
e50c0a8f 2463 else if (cpu_has_4kex)
2a0b24f5 2464 set_handler(0x180, &except_vec3_generic, 0x80);
e50c0a8f 2465 else
2a0b24f5 2466 set_handler(0x080, &except_vec3_generic, 0x80);
e50c0a8f 2467
e0cee3ee 2468 local_flush_icache_range(ebase, ebase + 0x400);
0510617b
TB
2469
2470 sort_extable(__start___dbe_table, __stop___dbe_table);
69f3a7de 2471
4483b159 2472 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1da177e4 2473}
ae4ce454
JH
2474
2475static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2476 void *v)
2477{
2478 switch (cmd) {
2479 case CPU_PM_ENTER_FAILED:
2480 case CPU_PM_EXIT:
2481 configure_status();
2482 configure_hwrena();
2483 configure_exception_vector();
2484
2485 /* Restore register with CPU number for TLB handlers */
2486 TLBMISS_HANDLER_RESTORE();
2487
2488 break;
2489 }
2490
2491 return NOTIFY_OK;
2492}
2493
2494static struct notifier_block trap_pm_notifier_block = {
2495 .notifier_call = trap_pm_notifier,
2496};
2497
2498static int __init trap_pm_init(void)
2499{
2500 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2501}
2502arch_initcall(trap_pm_init);