]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/mips/mm/dma-default.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / arch / mips / mm / dma-default.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
70342287 7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
1da177e4
LT
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
9a88cbb5 10
1da177e4 11#include <linux/types.h>
9a88cbb5 12#include <linux/dma-mapping.h>
1da177e4 13#include <linux/mm.h>
d9ba5778 14#include <linux/export.h>
4fcc47a0 15#include <linux/scatterlist.h>
6e86b0bf 16#include <linux/string.h>
5a0e3ad6 17#include <linux/gfp.h>
e36863a5 18#include <linux/highmem.h>
f4649382 19#include <linux/dma-contiguous.h>
1da177e4
LT
20
21#include <asm/cache.h>
69f24d17 22#include <asm/cpu-type.h>
1da177e4
LT
23#include <asm/io.h>
24
9a88cbb5
RB
25#include <dma-coherence.h>
26
20d33064 27#if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
f2302023
PB
28/* User defined DMA coherency from command line. */
29enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
b6d92b4a
SH
30EXPORT_SYMBOL_GPL(coherentio);
31int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
32
33static int __init setcoherentio(char *str)
34{
f2302023 35 coherentio = IO_COHERENCE_ENABLED;
b6d92b4a
SH
36 pr_info("Hardware DMA cache coherency (command line)\n");
37 return 0;
38}
39early_param("coherentio", setcoherentio);
40
41static int __init setnocoherentio(char *str)
42{
f2302023 43 coherentio = IO_COHERENCE_DISABLED;
b6d92b4a
SH
44 pr_info("Software DMA cache coherency (command line)\n");
45 return 0;
46}
47early_param("nocoherentio", setnocoherentio);
885014bc 48#endif
b6d92b4a 49
e36863a5 50static inline struct page *dma_addr_to_page(struct device *dev,
3807ef3f 51 dma_addr_t dma_addr)
c9d06962 52{
e36863a5
DD
53 return pfn_to_page(
54 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
c9d06962
FBH
55}
56
1da177e4 57/*
f86f55d3
JQ
58 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
59 * speculatively fill random cachelines with stale data at any time,
60 * requiring an extra flush post-DMA.
61 *
1da177e4
LT
62 * Warning on the terminology - Linux calls an uncached area coherent;
63 * MIPS terminology calls memory areas with hardware maintained coherency
64 * coherent.
0dc294c0
RB
65 *
66 * Note that the R14000 and R16000 should also be checked for in this
67 * condition. However this function is only called on non-I/O-coherent
68 * systems and only the R10000 and R12000 are used in such systems, the
69 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
1da177e4 70 */
f86f55d3 71static inline int cpu_needs_post_dma_flush(struct device *dev)
9a88cbb5
RB
72{
73 return !plat_device_is_coherent(dev) &&
d451e734 74 (boot_cpu_type() == CPU_R10000 ||
eb37e6dd
RB
75 boot_cpu_type() == CPU_R12000 ||
76 boot_cpu_type() == CPU_BMIPS5000);
9a88cbb5
RB
77}
78
cce335ae
RB
79static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
80{
a2e715a8
RB
81 gfp_t dma_flag;
82
cce335ae
RB
83 /* ignore region specifiers */
84 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
85
a2e715a8 86#ifdef CONFIG_ISA
cce335ae 87 if (dev == NULL)
a2e715a8 88 dma_flag = __GFP_DMA;
cce335ae
RB
89 else
90#endif
a2e715a8 91#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
8d4925e9 92 if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
a2e715a8
RB
93 dma_flag = __GFP_DMA;
94 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
95 dma_flag = __GFP_DMA32;
96 else
97#endif
98#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
8d4925e9 99 if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
a2e715a8
RB
100 dma_flag = __GFP_DMA32;
101 else
102#endif
103#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
8d4925e9
MR
104 if (dev == NULL ||
105 dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
a2e715a8 106 dma_flag = __GFP_DMA;
cce335ae
RB
107 else
108#endif
a2e715a8 109 dma_flag = 0;
cce335ae
RB
110
111 /* Don't invoke OOM killer */
112 gfp |= __GFP_NORETRY;
113
a2e715a8 114 return gfp | dma_flag;
cce335ae
RB
115}
116
1e893752 117static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
185a8ff5 118 dma_addr_t * dma_handle, gfp_t gfp)
1da177e4
LT
119{
120 void *ret;
9a88cbb5 121
cce335ae 122 gfp = massage_gfp_flags(dev, gfp);
1da177e4 123
1da177e4
LT
124 ret = (void *) __get_free_pages(gfp, get_order(size));
125
126 if (ret != NULL) {
127 memset(ret, 0, size);
9a88cbb5 128 *dma_handle = plat_map_dma_mem(dev, ret, size);
1da177e4
LT
129 }
130
131 return ret;
132}
1da177e4 133
48e1fd5a 134static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
00085f1e 135 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
1da177e4
LT
136{
137 void *ret;
f4649382
ZLK
138 struct page *page = NULL;
139 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1da177e4 140
1e893752
CH
141 /*
142 * XXX: seems like the coherent and non-coherent implementations could
143 * be consolidated.
144 */
00085f1e 145 if (attrs & DMA_ATTR_NON_CONSISTENT)
1e893752
CH
146 return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
147
cce335ae 148 gfp = massage_gfp_flags(dev, gfp);
9a88cbb5 149
9530d0fe 150 if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
f4649382
ZLK
151 page = dma_alloc_from_contiguous(dev,
152 count, get_order(size));
153 if (!page)
154 page = alloc_pages(gfp, get_order(size));
155
156 if (!page)
157 return NULL;
158
159 ret = page_address(page);
160 memset(ret, 0, size);
161 *dma_handle = plat_map_dma_mem(dev, ret, size);
162 if (!plat_device_is_coherent(dev)) {
163 dma_cache_wback_inv((unsigned long) ret, size);
cfa93fb9 164 ret = UNCAC_ADDR(ret);
1da177e4
LT
165 }
166
167 return ret;
168}
169
1da177e4 170
1e893752
CH
171static void mips_dma_free_noncoherent(struct device *dev, size_t size,
172 void *vaddr, dma_addr_t dma_handle)
1da177e4 173{
d3f634b9 174 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
1da177e4
LT
175 free_pages((unsigned long) vaddr, get_order(size));
176}
1da177e4 177
48e1fd5a 178static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
00085f1e 179 dma_addr_t dma_handle, unsigned long attrs)
1da177e4
LT
180{
181 unsigned long addr = (unsigned long) vaddr;
f4649382
ZLK
182 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
183 struct page *page = NULL;
f8ac0425 184
00085f1e 185 if (attrs & DMA_ATTR_NON_CONSISTENT) {
1e893752
CH
186 mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
187 return;
188 }
189
d3f634b9 190 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
11531ac2 191
cfa93fb9 192 if (!plat_device_is_coherent(dev))
9a88cbb5
RB
193 addr = CAC_ADDR(addr);
194
f4649382
ZLK
195 page = virt_to_page((void *) addr);
196
197 if (!dma_release_from_contiguous(dev, page, count))
198 __free_pages(page, get_order(size));
1da177e4
LT
199}
200
8c172467
AS
201static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 203 unsigned long attrs)
8c172467
AS
204{
205 unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
206 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
207 unsigned long addr = (unsigned long)cpu_addr;
208 unsigned long off = vma->vm_pgoff;
209 unsigned long pfn;
210 int ret = -ENXIO;
211
cfa93fb9 212 if (!plat_device_is_coherent(dev))
8c172467
AS
213 addr = CAC_ADDR(addr);
214
215 pfn = page_to_pfn(virt_to_page((void *)addr));
216
00085f1e 217 if (attrs & DMA_ATTR_WRITE_COMBINE)
8c172467
AS
218 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
219 else
220 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
221
222 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
223 return ret;
224
225 if (off < count && user_count <= (count - off)) {
226 ret = remap_pfn_range(vma, vma->vm_start,
227 pfn + off,
228 user_count << PAGE_SHIFT,
229 vma->vm_page_prot);
230 }
231
232 return ret;
233}
234
e36863a5 235static inline void __dma_sync_virtual(void *addr, size_t size,
1da177e4
LT
236 enum dma_data_direction direction)
237{
238 switch (direction) {
239 case DMA_TO_DEVICE:
e36863a5 240 dma_cache_wback((unsigned long)addr, size);
1da177e4
LT
241 break;
242
243 case DMA_FROM_DEVICE:
e36863a5 244 dma_cache_inv((unsigned long)addr, size);
1da177e4
LT
245 break;
246
247 case DMA_BIDIRECTIONAL:
e36863a5 248 dma_cache_wback_inv((unsigned long)addr, size);
1da177e4
LT
249 break;
250
251 default:
252 BUG();
253 }
254}
255
e36863a5
DD
256/*
257 * A single sg entry may refer to multiple physically contiguous
258 * pages. But we still need to process highmem pages individually.
259 * If highmem is not configured then the bulk of this loop gets
260 * optimized out.
261 */
262static inline void __dma_sync(struct page *page,
263 unsigned long offset, size_t size, enum dma_data_direction direction)
264{
265 size_t left = size;
266
267 do {
268 size_t len = left;
269
270 if (PageHighMem(page)) {
271 void *addr;
272
273 if (offset + len > PAGE_SIZE) {
274 if (offset >= PAGE_SIZE) {
275 page += offset >> PAGE_SHIFT;
276 offset &= ~PAGE_MASK;
277 }
278 len = PAGE_SIZE - offset;
279 }
280
281 addr = kmap_atomic(page);
282 __dma_sync_virtual(addr + offset, len, direction);
283 kunmap_atomic(addr);
284 } else
285 __dma_sync_virtual(page_address(page) + offset,
286 size, direction);
287 offset = 0;
288 page++;
289 left -= len;
290 } while (left);
291}
292
48e1fd5a 293static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
00085f1e 294 size_t size, enum dma_data_direction direction, unsigned long attrs)
1da177e4 295{
9f318d47 296 if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
e36863a5
DD
297 __dma_sync(dma_addr_to_page(dev, dma_addr),
298 dma_addr & ~PAGE_MASK, size, direction);
0acbfc66 299 plat_post_dma_flush(dev);
d3f634b9 300 plat_unmap_dma_mem(dev, dma_addr, size, direction);
1da177e4
LT
301}
302
1e51714c 303static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
00085f1e 304 int nents, enum dma_data_direction direction, unsigned long attrs)
1da177e4
LT
305{
306 int i;
1e51714c 307 struct scatterlist *sg;
1da177e4 308
1e51714c 309 for_each_sg(sglist, sg, nents, i) {
9f318d47
AD
310 if (!plat_device_is_coherent(dev) &&
311 !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
e36863a5
DD
312 __dma_sync(sg_page(sg), sg->offset, sg->length,
313 direction);
4954a9a2
J
314#ifdef CONFIG_NEED_SG_DMA_LENGTH
315 sg->dma_length = sg->length;
316#endif
e36863a5
DD
317 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
318 sg->offset;
1da177e4
LT
319 }
320
321 return nents;
322}
323
48e1fd5a
DD
324static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
325 unsigned long offset, size_t size, enum dma_data_direction direction,
00085f1e 326 unsigned long attrs)
1da177e4 327{
9f318d47 328 if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
e36863a5 329 __dma_sync(page, offset, size, direction);
1da177e4 330
e36863a5 331 return plat_map_dma_mem_page(dev, page) + offset;
1da177e4
LT
332}
333
1e51714c 334static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
48e1fd5a 335 int nhwentries, enum dma_data_direction direction,
00085f1e 336 unsigned long attrs)
1da177e4 337{
1da177e4 338 int i;
1e51714c 339 struct scatterlist *sg;
1da177e4 340
1e51714c 341 for_each_sg(sglist, sg, nhwentries, i) {
9a88cbb5 342 if (!plat_device_is_coherent(dev) &&
9f318d47 343 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
e36863a5
DD
344 direction != DMA_TO_DEVICE)
345 __dma_sync(sg_page(sg), sg->offset, sg->length,
346 direction);
d3f634b9 347 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
1da177e4
LT
348 }
349}
350
48e1fd5a
DD
351static void mips_dma_sync_single_for_cpu(struct device *dev,
352 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
1da177e4 353{
f86f55d3 354 if (cpu_needs_post_dma_flush(dev))
e36863a5
DD
355 __dma_sync(dma_addr_to_page(dev, dma_handle),
356 dma_handle & ~PAGE_MASK, size, direction);
0acbfc66 357 plat_post_dma_flush(dev);
1da177e4
LT
358}
359
48e1fd5a
DD
360static void mips_dma_sync_single_for_device(struct device *dev,
361 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
1da177e4 362{
e36863a5
DD
363 if (!plat_device_is_coherent(dev))
364 __dma_sync(dma_addr_to_page(dev, dma_handle),
365 dma_handle & ~PAGE_MASK, size, direction);
1da177e4
LT
366}
367
48e1fd5a 368static void mips_dma_sync_sg_for_cpu(struct device *dev,
1e51714c
AM
369 struct scatterlist *sglist, int nelems,
370 enum dma_data_direction direction)
1da177e4
LT
371{
372 int i;
1e51714c 373 struct scatterlist *sg;
42a3b4f2 374
1e51714c
AM
375 if (cpu_needs_post_dma_flush(dev)) {
376 for_each_sg(sglist, sg, nelems, i) {
e36863a5
DD
377 __dma_sync(sg_page(sg), sg->offset, sg->length,
378 direction);
1e51714c
AM
379 }
380 }
0acbfc66 381 plat_post_dma_flush(dev);
1da177e4
LT
382}
383
48e1fd5a 384static void mips_dma_sync_sg_for_device(struct device *dev,
1e51714c
AM
385 struct scatterlist *sglist, int nelems,
386 enum dma_data_direction direction)
1da177e4
LT
387{
388 int i;
1e51714c 389 struct scatterlist *sg;
1da177e4 390
1e51714c
AM
391 if (!plat_device_is_coherent(dev)) {
392 for_each_sg(sglist, sg, nelems, i) {
e36863a5
DD
393 __dma_sync(sg_page(sg), sg->offset, sg->length,
394 direction);
1e51714c
AM
395 }
396 }
1da177e4
LT
397}
398
48e1fd5a 399int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
1da177e4 400{
4e7f7266 401 return 0;
1da177e4
LT
402}
403
48e1fd5a 404int mips_dma_supported(struct device *dev, u64 mask)
1da177e4 405{
843aef49 406 return plat_dma_supported(dev, mask);
1da177e4
LT
407}
408
a3aad4aa 409void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
48e1fd5a 410 enum dma_data_direction direction)
1da177e4 411{
9a88cbb5 412 BUG_ON(direction == DMA_NONE);
1da177e4 413
9a88cbb5 414 if (!plat_device_is_coherent(dev))
e36863a5 415 __dma_sync_virtual(vaddr, size, direction);
1da177e4
LT
416}
417
a3aad4aa
RB
418EXPORT_SYMBOL(dma_cache_sync);
419
48e1fd5a 420static struct dma_map_ops mips_default_dma_map_ops = {
e8d51e54
AP
421 .alloc = mips_dma_alloc_coherent,
422 .free = mips_dma_free_coherent,
8c172467 423 .mmap = mips_dma_mmap,
48e1fd5a
DD
424 .map_page = mips_dma_map_page,
425 .unmap_page = mips_dma_unmap_page,
426 .map_sg = mips_dma_map_sg,
427 .unmap_sg = mips_dma_unmap_sg,
428 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
429 .sync_single_for_device = mips_dma_sync_single_for_device,
430 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
431 .sync_sg_for_device = mips_dma_sync_sg_for_device,
432 .mapping_error = mips_dma_mapping_error,
433 .dma_supported = mips_dma_supported
434};
435
436struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
437EXPORT_SYMBOL(mips_dma_map_ops);
438
439#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
440
441static int __init mips_dma_init(void)
442{
443 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
444
445 return 0;
446}
447fs_initcall(mips_dma_init);