]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/kernel/process.c
powerpc: Create disable_kernel_{fp,altivec,vsx,spe}()
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
7b051f66 40#include <linux/uaccess.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
76032de8 47#include <asm/machdep.h>
c6622f63 48#include <asm/time.h>
ae3a197e 49#include <asm/runlatch.h>
a7f31841 50#include <asm/syscalls.h>
ae3a197e 51#include <asm/switch_to.h>
fb09692e 52#include <asm/tm.h>
ae3a197e 53#include <asm/debug.h>
06d67d54
PM
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
06d67d54 56#endif
7cedd601 57#include <asm/code-patching.h>
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
d31626f7 70#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
b86fd2bd 71static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
72{
73 /*
74 * If we are saving the current thread's registers, and the
75 * thread is in a transactional state, set the TIF_RESTORE_TM
76 * bit so that we know to restore the registers before
77 * returning to userspace.
78 */
79 if (tsk == current && tsk->thread.regs &&
80 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 82 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
83 set_thread_flag(TIF_RESTORE_TM);
84 }
d31626f7 85}
d31626f7 86#else
b86fd2bd 87static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
88#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
89
a0e72cf1 90static void msr_check_and_set(unsigned long bits)
98da581e 91{
a0e72cf1
AB
92 unsigned long oldmsr = mfmsr();
93 unsigned long newmsr;
98da581e 94
a0e72cf1 95 newmsr = oldmsr | bits;
98da581e 96
98da581e 97#ifdef CONFIG_VSX
a0e72cf1 98 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
99 newmsr |= MSR_VSX;
100#endif
a0e72cf1 101
98da581e
AB
102 if (oldmsr != newmsr)
103 mtmsr_isync(newmsr);
a0e72cf1 104}
98da581e 105
a0e72cf1
AB
106static void msr_check_and_clear(unsigned long bits)
107{
108 unsigned long oldmsr = mfmsr();
109 unsigned long newmsr;
110
111 newmsr = oldmsr & ~bits;
112
113#ifdef CONFIG_VSX
114 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
115 newmsr &= ~MSR_VSX;
116#endif
117
118 if (oldmsr != newmsr)
119 mtmsr_isync(newmsr);
120}
121
122#ifdef CONFIG_PPC_FPU
123void giveup_fpu(struct task_struct *tsk)
124{
125 check_if_tm_restore_required(tsk);
126
127 msr_check_and_set(MSR_FP);
98da581e 128 __giveup_fpu(tsk);
a0e72cf1 129 msr_check_and_clear(MSR_FP);
98da581e
AB
130}
131EXPORT_SYMBOL(giveup_fpu);
132
14cf11af
PM
133/*
134 * Make sure the floating-point register state in the
135 * the thread_struct is up to date for task tsk.
136 */
137void flush_fp_to_thread(struct task_struct *tsk)
138{
139 if (tsk->thread.regs) {
140 /*
141 * We need to disable preemption here because if we didn't,
142 * another process could get scheduled after the regs->msr
143 * test but before we have finished saving the FP registers
144 * to the thread_struct. That process could take over the
145 * FPU, and then when we get scheduled again we would store
146 * bogus values for the remaining FP registers.
147 */
148 preempt_disable();
149 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
150 /*
151 * This should only ever be called for current or
152 * for a stopped child process. Since we save away
af1bbc3d 153 * the FP register state on context switch,
14cf11af
PM
154 * there is something wrong if a stopped child appears
155 * to still have its FP state in the CPU registers.
156 */
157 BUG_ON(tsk != current);
b86fd2bd 158 giveup_fpu(tsk);
14cf11af
PM
159 }
160 preempt_enable();
161 }
162}
de56a948 163EXPORT_SYMBOL_GPL(flush_fp_to_thread);
d31626f7 164#endif /* CONFIG_PPC_FPU */
14cf11af
PM
165
166void enable_kernel_fp(void)
167{
168 WARN_ON(preemptible());
169
a0e72cf1 170 msr_check_and_set(MSR_FP);
611b0e5c 171
a0e72cf1
AB
172 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
173 __giveup_fpu(current);
14cf11af
PM
174}
175EXPORT_SYMBOL(enable_kernel_fp);
176
14cf11af 177#ifdef CONFIG_ALTIVEC
98da581e
AB
178void giveup_altivec(struct task_struct *tsk)
179{
98da581e
AB
180 check_if_tm_restore_required(tsk);
181
a0e72cf1 182 msr_check_and_set(MSR_VEC);
98da581e 183 __giveup_altivec(tsk);
a0e72cf1 184 msr_check_and_clear(MSR_VEC);
98da581e
AB
185}
186EXPORT_SYMBOL(giveup_altivec);
187
14cf11af
PM
188void enable_kernel_altivec(void)
189{
190 WARN_ON(preemptible());
191
a0e72cf1 192 msr_check_and_set(MSR_VEC);
611b0e5c 193
a0e72cf1
AB
194 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
195 __giveup_altivec(current);
14cf11af
PM
196}
197EXPORT_SYMBOL(enable_kernel_altivec);
198
199/*
200 * Make sure the VMX/Altivec register state in the
201 * the thread_struct is up to date for task tsk.
202 */
203void flush_altivec_to_thread(struct task_struct *tsk)
204{
205 if (tsk->thread.regs) {
206 preempt_disable();
207 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 208 BUG_ON(tsk != current);
b86fd2bd 209 giveup_altivec(tsk);
14cf11af
PM
210 }
211 preempt_enable();
212 }
213}
de56a948 214EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
215#endif /* CONFIG_ALTIVEC */
216
ce48b210 217#ifdef CONFIG_VSX
a7d623d4
AB
218void giveup_vsx(struct task_struct *tsk)
219{
a7d623d4
AB
220 check_if_tm_restore_required(tsk);
221
a0e72cf1 222 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4
AB
223 if (tsk->thread.regs->msr & MSR_FP)
224 __giveup_fpu(tsk);
225 if (tsk->thread.regs->msr & MSR_VEC)
226 __giveup_altivec(tsk);
227 __giveup_vsx(tsk);
a0e72cf1 228 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4
AB
229}
230EXPORT_SYMBOL(giveup_vsx);
231
ce48b210
MN
232void enable_kernel_vsx(void)
233{
234 WARN_ON(preemptible());
235
a0e72cf1 236 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 237
a0e72cf1
AB
238 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
239 if (current->thread.regs->msr & MSR_FP)
240 __giveup_fpu(current);
241 if (current->thread.regs->msr & MSR_VEC)
242 __giveup_altivec(current);
243 __giveup_vsx(current);
611b0e5c 244 }
ce48b210
MN
245}
246EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
247
248void flush_vsx_to_thread(struct task_struct *tsk)
249{
250 if (tsk->thread.regs) {
251 preempt_disable();
252 if (tsk->thread.regs->msr & MSR_VSX) {
ce48b210 253 BUG_ON(tsk != current);
ce48b210
MN
254 giveup_vsx(tsk);
255 }
256 preempt_enable();
257 }
258}
de56a948 259EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
260#endif /* CONFIG_VSX */
261
14cf11af 262#ifdef CONFIG_SPE
98da581e
AB
263void giveup_spe(struct task_struct *tsk)
264{
98da581e
AB
265 check_if_tm_restore_required(tsk);
266
a0e72cf1 267 msr_check_and_set(MSR_SPE);
98da581e 268 __giveup_spe(tsk);
a0e72cf1 269 msr_check_and_clear(MSR_SPE);
98da581e
AB
270}
271EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
272
273void enable_kernel_spe(void)
274{
275 WARN_ON(preemptible());
276
a0e72cf1 277 msr_check_and_set(MSR_SPE);
611b0e5c 278
a0e72cf1
AB
279 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
280 __giveup_spe(current);
14cf11af
PM
281}
282EXPORT_SYMBOL(enable_kernel_spe);
283
284void flush_spe_to_thread(struct task_struct *tsk)
285{
286 if (tsk->thread.regs) {
287 preempt_disable();
288 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 289 BUG_ON(tsk != current);
685659ee 290 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 291 giveup_spe(tsk);
14cf11af
PM
292 }
293 preempt_enable();
294 }
295}
14cf11af
PM
296#endif /* CONFIG_SPE */
297
3bffb652
DK
298#ifdef CONFIG_PPC_ADV_DEBUG_REGS
299void do_send_trap(struct pt_regs *regs, unsigned long address,
300 unsigned long error_code, int signal_code, int breakpt)
301{
302 siginfo_t info;
303
41ab5266 304 current->thread.trap_nr = signal_code;
3bffb652
DK
305 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
306 11, SIGSEGV) == NOTIFY_STOP)
307 return;
308
309 /* Deliver the signal to userspace */
310 info.si_signo = SIGTRAP;
311 info.si_errno = breakpt; /* breakpoint or watchpoint id */
312 info.si_code = signal_code;
313 info.si_addr = (void __user *)address;
314 force_sig_info(SIGTRAP, &info, current);
315}
316#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 317void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
318 unsigned long error_code)
319{
320 siginfo_t info;
321
41ab5266 322 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
323 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
324 11, SIGSEGV) == NOTIFY_STOP)
325 return;
326
9422de3e 327 if (debugger_break_match(regs))
d6a61bfc
LM
328 return;
329
9422de3e
MN
330 /* Clear the breakpoint */
331 hw_breakpoint_disable();
d6a61bfc
LM
332
333 /* Deliver the signal to userspace */
334 info.si_signo = SIGTRAP;
335 info.si_errno = 0;
336 info.si_code = TRAP_HWBKPT;
337 info.si_addr = (void __user *)address;
338 force_sig_info(SIGTRAP, &info, current);
339}
3bffb652 340#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 341
9422de3e 342static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 343
3bffb652
DK
344#ifdef CONFIG_PPC_ADV_DEBUG_REGS
345/*
346 * Set the debug registers back to their default "safe" values.
347 */
348static void set_debug_reg_defaults(struct thread_struct *thread)
349{
51ae8d4a 350 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 351#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 352 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 353#endif
51ae8d4a 354 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 355#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 356 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 357#endif
51ae8d4a 358 thread->debug.dbcr0 = 0;
3bffb652
DK
359#ifdef CONFIG_BOOKE
360 /*
361 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
362 */
51ae8d4a 363 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
364 DBCR1_IAC3US | DBCR1_IAC4US;
365 /*
366 * Force Data Address Compare User/Supervisor bits to be User-only
367 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
368 */
51ae8d4a 369 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 370#else
51ae8d4a 371 thread->debug.dbcr1 = 0;
3bffb652
DK
372#endif
373}
374
f5f97210 375static void prime_debug_regs(struct debug_reg *debug)
3bffb652 376{
6cecf76b
SW
377 /*
378 * We could have inherited MSR_DE from userspace, since
379 * it doesn't get cleared on exception entry. Make sure
380 * MSR_DE is clear before we enable any debug events.
381 */
382 mtmsr(mfmsr() & ~MSR_DE);
383
f5f97210
SW
384 mtspr(SPRN_IAC1, debug->iac1);
385 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 386#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
387 mtspr(SPRN_IAC3, debug->iac3);
388 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 389#endif
f5f97210
SW
390 mtspr(SPRN_DAC1, debug->dac1);
391 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 392#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
393 mtspr(SPRN_DVC1, debug->dvc1);
394 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 395#endif
f5f97210
SW
396 mtspr(SPRN_DBCR0, debug->dbcr0);
397 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 398#ifdef CONFIG_BOOKE
f5f97210 399 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
400#endif
401}
402/*
403 * Unless neither the old or new thread are making use of the
404 * debug registers, set the debug registers from the values
405 * stored in the new thread.
406 */
f5f97210 407void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 408{
51ae8d4a 409 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
410 || (new_debug->dbcr0 & DBCR0_IDM))
411 prime_debug_regs(new_debug);
3bffb652 412}
3743c9b8 413EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 414#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 415#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
416static void set_debug_reg_defaults(struct thread_struct *thread)
417{
9422de3e
MN
418 thread->hw_brk.address = 0;
419 thread->hw_brk.type = 0;
b9818c33 420 set_breakpoint(&thread->hw_brk);
3bffb652 421}
e0780b72 422#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
423#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
424
172ae2e7 425#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
426static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
427{
d6a61bfc 428 mtspr(SPRN_DAC1, dabr);
221c185d
DK
429#ifdef CONFIG_PPC_47x
430 isync();
431#endif
9422de3e
MN
432 return 0;
433}
c6c9eace 434#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
435static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
436{
c6c9eace 437 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
438 if (cpu_has_feature(CPU_FTR_DABRX))
439 mtspr(SPRN_DABRX, dabrx);
cab0af98 440 return 0;
14cf11af 441}
9422de3e
MN
442#else
443static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
444{
445 return -EINVAL;
446}
447#endif
448
449static inline int set_dabr(struct arch_hw_breakpoint *brk)
450{
451 unsigned long dabr, dabrx;
452
453 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
454 dabrx = ((brk->type >> 3) & 0x7);
455
456 if (ppc_md.set_dabr)
457 return ppc_md.set_dabr(dabr, dabrx);
458
459 return __set_dabr(dabr, dabrx);
460}
461
bf99de36
MN
462static inline int set_dawr(struct arch_hw_breakpoint *brk)
463{
05d694ea 464 unsigned long dawr, dawrx, mrd;
bf99de36
MN
465
466 dawr = brk->address;
467
468 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
469 << (63 - 58); //* read/write bits */
470 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
471 << (63 - 59); //* translate */
472 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
473 >> 3; //* PRIM bits */
05d694ea
MN
474 /* dawr length is stored in field MDR bits 48:53. Matches range in
475 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
476 0b111111=64DW.
477 brk->len is in bytes.
478 This aligns up to double word size, shifts and does the bias.
479 */
480 mrd = ((brk->len + 7) >> 3) - 1;
481 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
482
483 if (ppc_md.set_dawr)
484 return ppc_md.set_dawr(dawr, dawrx);
485 mtspr(SPRN_DAWR, dawr);
486 mtspr(SPRN_DAWRX, dawrx);
487 return 0;
488}
489
21f58507 490void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 491{
69111bac 492 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 493
bf99de36 494 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
495 set_dawr(brk);
496 else
497 set_dabr(brk);
9422de3e 498}
14cf11af 499
21f58507
PG
500void set_breakpoint(struct arch_hw_breakpoint *brk)
501{
502 preempt_disable();
503 __set_breakpoint(brk);
504 preempt_enable();
505}
506
06d67d54
PM
507#ifdef CONFIG_PPC64
508DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 509#endif
14cf11af 510
9422de3e
MN
511static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
512 struct arch_hw_breakpoint *b)
513{
514 if (a->address != b->address)
515 return false;
516 if (a->type != b->type)
517 return false;
518 if (a->len != b->len)
519 return false;
520 return true;
521}
d31626f7 522
fb09692e 523#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
524static void tm_reclaim_thread(struct thread_struct *thr,
525 struct thread_info *ti, uint8_t cause)
526{
527 unsigned long msr_diff = 0;
528
529 /*
530 * If FP/VSX registers have been already saved to the
531 * thread_struct, move them to the transact_fp array.
532 * We clear the TIF_RESTORE_TM bit since after the reclaim
533 * the thread will no longer be transactional.
534 */
535 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
829023df 536 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
d31626f7
PM
537 if (msr_diff & MSR_FP)
538 memcpy(&thr->transact_fp, &thr->fp_state,
539 sizeof(struct thread_fp_state));
540 if (msr_diff & MSR_VEC)
541 memcpy(&thr->transact_vr, &thr->vr_state,
542 sizeof(struct thread_vr_state));
543 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
544 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
545 }
546
547 tm_reclaim(thr, thr->regs->msr, cause);
548
549 /* Having done the reclaim, we now have the checkpointed
550 * FP/VSX values in the registers. These might be valid
551 * even if we have previously called enable_kernel_fp() or
552 * flush_fp_to_thread(), so update thr->regs->msr to
553 * indicate their current validity.
554 */
555 thr->regs->msr |= msr_diff;
556}
557
558void tm_reclaim_current(uint8_t cause)
559{
560 tm_enable();
561 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
562}
563
fb09692e
MN
564static inline void tm_reclaim_task(struct task_struct *tsk)
565{
566 /* We have to work out if we're switching from/to a task that's in the
567 * middle of a transaction.
568 *
569 * In switching we need to maintain a 2nd register state as
570 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
571 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
572 * (current) FPRs into oldtask->thread.transact_fpr[].
573 *
574 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
575 */
576 struct thread_struct *thr = &tsk->thread;
577
578 if (!thr->regs)
579 return;
580
581 if (!MSR_TM_ACTIVE(thr->regs->msr))
582 goto out_and_saveregs;
583
584 /* Stash the original thread MSR, as giveup_fpu et al will
585 * modify it. We hold onto it to see whether the task used
d31626f7 586 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
829023df 587 * ckpt_regs.msr is already set.
fb09692e 588 */
d31626f7 589 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
829023df 590 thr->ckpt_regs.msr = thr->regs->msr;
fb09692e
MN
591
592 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
593 "ccr=%lx, msr=%lx, trap=%lx)\n",
594 tsk->pid, thr->regs->nip,
595 thr->regs->ccr, thr->regs->msr,
596 thr->regs->trap);
597
d31626f7 598 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
599
600 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
601 tsk->pid);
602
603out_and_saveregs:
604 /* Always save the regs here, even if a transaction's not active.
605 * This context-switches a thread's TM info SPRs. We do it here to
606 * be consistent with the restore path (in recheckpoint) which
607 * cannot happen later in _switch().
608 */
609 tm_save_sprs(thr);
610}
611
e6b8fd02
MN
612extern void __tm_recheckpoint(struct thread_struct *thread,
613 unsigned long orig_msr);
614
615void tm_recheckpoint(struct thread_struct *thread,
616 unsigned long orig_msr)
617{
618 unsigned long flags;
619
620 /* We really can't be interrupted here as the TEXASR registers can't
621 * change and later in the trecheckpoint code, we have a userspace R1.
622 * So let's hard disable over this region.
623 */
624 local_irq_save(flags);
625 hard_irq_disable();
626
627 /* The TM SPRs are restored here, so that TEXASR.FS can be set
628 * before the trecheckpoint and no explosion occurs.
629 */
630 tm_restore_sprs(thread);
631
632 __tm_recheckpoint(thread, orig_msr);
633
634 local_irq_restore(flags);
635}
636
bc2a9408 637static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
638{
639 unsigned long msr;
640
641 if (!cpu_has_feature(CPU_FTR_TM))
642 return;
643
644 /* Recheckpoint the registers of the thread we're about to switch to.
645 *
646 * If the task was using FP, we non-lazily reload both the original and
647 * the speculative FP register states. This is because the kernel
648 * doesn't see if/when a TM rollback occurs, so if we take an FP
649 * unavoidable later, we are unable to determine which set of FP regs
650 * need to be restored.
651 */
652 if (!new->thread.regs)
653 return;
654
e6b8fd02
MN
655 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
656 tm_restore_sprs(&new->thread);
fb09692e 657 return;
e6b8fd02 658 }
829023df 659 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
660 /* Recheckpoint to restore original checkpointed register state. */
661 TM_DEBUG("*** tm_recheckpoint of pid %d "
662 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
663 new->pid, new->thread.regs->msr, msr);
664
665 /* This loads the checkpointed FP/VEC state, if used */
666 tm_recheckpoint(&new->thread, msr);
667
668 /* This loads the speculative FP/VEC state, if used */
669 if (msr & MSR_FP) {
670 do_load_up_transact_fpu(&new->thread);
671 new->thread.regs->msr |=
672 (MSR_FP | new->thread.fpexc_mode);
673 }
f110c0c1 674#ifdef CONFIG_ALTIVEC
fb09692e
MN
675 if (msr & MSR_VEC) {
676 do_load_up_transact_altivec(&new->thread);
677 new->thread.regs->msr |= MSR_VEC;
678 }
f110c0c1 679#endif
fb09692e
MN
680 /* We may as well turn on VSX too since all the state is restored now */
681 if (msr & MSR_VSX)
682 new->thread.regs->msr |= MSR_VSX;
683
684 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
685 "(kernel msr 0x%lx)\n",
686 new->pid, mfmsr());
687}
688
689static inline void __switch_to_tm(struct task_struct *prev)
690{
691 if (cpu_has_feature(CPU_FTR_TM)) {
692 tm_enable();
693 tm_reclaim_task(prev);
694 }
695}
d31626f7
PM
696
697/*
698 * This is called if we are on the way out to userspace and the
699 * TIF_RESTORE_TM flag is set. It checks if we need to reload
700 * FP and/or vector state and does so if necessary.
701 * If userspace is inside a transaction (whether active or
702 * suspended) and FP/VMX/VSX instructions have ever been enabled
703 * inside that transaction, then we have to keep them enabled
704 * and keep the FP/VMX/VSX state loaded while ever the transaction
705 * continues. The reason is that if we didn't, and subsequently
706 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
707 * we don't know whether it's the same transaction, and thus we
708 * don't know which of the checkpointed state and the transactional
709 * state to use.
710 */
711void restore_tm_state(struct pt_regs *regs)
712{
713 unsigned long msr_diff;
714
715 clear_thread_flag(TIF_RESTORE_TM);
716 if (!MSR_TM_ACTIVE(regs->msr))
717 return;
718
829023df 719 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7
PM
720 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
721 if (msr_diff & MSR_FP) {
722 fp_enable();
723 load_fp_state(&current->thread.fp_state);
724 regs->msr |= current->thread.fpexc_mode;
725 }
726 if (msr_diff & MSR_VEC) {
727 vec_enable();
728 load_vr_state(&current->thread.vr_state);
729 }
730 regs->msr |= msr_diff;
731}
732
fb09692e
MN
733#else
734#define tm_recheckpoint_new_task(new)
735#define __switch_to_tm(prev)
736#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 737
152d523e
AB
738static inline void save_sprs(struct thread_struct *t)
739{
740#ifdef CONFIG_ALTIVEC
741 if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
742 t->vrsave = mfspr(SPRN_VRSAVE);
743#endif
744#ifdef CONFIG_PPC_BOOK3S_64
745 if (cpu_has_feature(CPU_FTR_DSCR))
746 t->dscr = mfspr(SPRN_DSCR);
747
748 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
749 t->bescr = mfspr(SPRN_BESCR);
750 t->ebbhr = mfspr(SPRN_EBBHR);
751 t->ebbrr = mfspr(SPRN_EBBRR);
752
753 t->fscr = mfspr(SPRN_FSCR);
754
755 /*
756 * Note that the TAR is not available for use in the kernel.
757 * (To provide this, the TAR should be backed up/restored on
758 * exception entry/exit instead, and be in pt_regs. FIXME,
759 * this should be in pt_regs anyway (for debug).)
760 */
761 t->tar = mfspr(SPRN_TAR);
762 }
763#endif
764}
765
766static inline void restore_sprs(struct thread_struct *old_thread,
767 struct thread_struct *new_thread)
768{
769#ifdef CONFIG_ALTIVEC
770 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
771 old_thread->vrsave != new_thread->vrsave)
772 mtspr(SPRN_VRSAVE, new_thread->vrsave);
773#endif
774#ifdef CONFIG_PPC_BOOK3S_64
775 if (cpu_has_feature(CPU_FTR_DSCR)) {
776 u64 dscr = get_paca()->dscr_default;
777 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
778
779 if (new_thread->dscr_inherit) {
780 dscr = new_thread->dscr;
781 fscr |= FSCR_DSCR;
782 }
783
784 if (old_thread->dscr != dscr)
785 mtspr(SPRN_DSCR, dscr);
786
787 if (old_thread->fscr != fscr)
788 mtspr(SPRN_FSCR, fscr);
789 }
790
791 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
792 if (old_thread->bescr != new_thread->bescr)
793 mtspr(SPRN_BESCR, new_thread->bescr);
794 if (old_thread->ebbhr != new_thread->ebbhr)
795 mtspr(SPRN_EBBHR, new_thread->ebbhr);
796 if (old_thread->ebbrr != new_thread->ebbrr)
797 mtspr(SPRN_EBBRR, new_thread->ebbrr);
798
799 if (old_thread->tar != new_thread->tar)
800 mtspr(SPRN_TAR, new_thread->tar);
801 }
802#endif
803}
804
14cf11af
PM
805struct task_struct *__switch_to(struct task_struct *prev,
806 struct task_struct *new)
807{
808 struct thread_struct *new_thread, *old_thread;
14cf11af 809 struct task_struct *last;
d6bf29b4
PZ
810#ifdef CONFIG_PPC_BOOK3S_64
811 struct ppc64_tlb_batch *batch;
812#endif
14cf11af 813
152d523e
AB
814 new_thread = &new->thread;
815 old_thread = &current->thread;
816
7ba5fef7
MN
817 WARN_ON(!irqs_disabled());
818
152d523e
AB
819 /*
820 * We need to save SPRs before treclaim/trecheckpoint as these will
821 * change a number of them.
c2d52644 822 */
152d523e 823 save_sprs(&prev->thread);
c2d52644 824
bc2a9408
MN
825 __switch_to_tm(prev);
826
14cf11af
PM
827 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
828 giveup_fpu(prev);
829#ifdef CONFIG_ALTIVEC
14cf11af
PM
830 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
831 giveup_altivec(prev);
14cf11af 832#endif /* CONFIG_ALTIVEC */
ce48b210
MN
833#ifdef CONFIG_VSX
834 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
835 /* VMX and FPU registers are already save here */
836 __giveup_vsx(prev);
ce48b210 837#endif /* CONFIG_VSX */
14cf11af 838#ifdef CONFIG_SPE
14cf11af
PM
839 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
840 giveup_spe(prev);
c0c0d996
PM
841#endif /* CONFIG_SPE */
842
172ae2e7 843#ifdef CONFIG_PPC_ADV_DEBUG_REGS
f5f97210 844 switch_booke_debug_regs(&new->thread.debug);
c6c9eace 845#else
5aae8a53
P
846/*
847 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
848 * schedule DABR
849 */
850#ifndef CONFIG_HAVE_HW_BREAKPOINT
69111bac 851 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
21f58507 852 __set_breakpoint(&new->thread.hw_brk);
5aae8a53 853#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
854#endif
855
06d67d54
PM
856#ifdef CONFIG_PPC64
857 /*
858 * Collect processor utilization data per process
859 */
860 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 861 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
862 long unsigned start_tb, current_tb;
863 start_tb = old_thread->start_tb;
864 cu->current_tb = current_tb = mfspr(SPRN_PURR);
865 old_thread->accum_tb += (current_tb - start_tb);
866 new_thread->start_tb = current_tb;
867 }
d6bf29b4
PZ
868#endif /* CONFIG_PPC64 */
869
870#ifdef CONFIG_PPC_BOOK3S_64
69111bac 871 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
872 if (batch->active) {
873 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
874 if (batch->index)
875 __flush_tlb_pending(batch);
876 batch->active = 0;
877 }
878#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 879
44387e9f
AB
880 /*
881 * We can't take a PMU exception inside _switch() since there is a
882 * window where the kernel stack SLB and the kernel stack are out
883 * of sync. Hard disable here.
884 */
885 hard_irq_disable();
bc2a9408
MN
886
887 tm_recheckpoint_new_task(new);
888
14cf11af
PM
889 last = _switch(old_thread, new_thread);
890
152d523e
AB
891 /* Need to recalculate these after calling _switch() */
892 old_thread = &last->thread;
893 new_thread = &current->thread;
894
d6bf29b4
PZ
895#ifdef CONFIG_PPC_BOOK3S_64
896 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
897 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 898 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
899 batch->active = 1;
900 }
901#endif /* CONFIG_PPC_BOOK3S_64 */
902
152d523e
AB
903 restore_sprs(old_thread, new_thread);
904
14cf11af
PM
905 return last;
906}
907
06d67d54
PM
908static int instructions_to_print = 16;
909
06d67d54
PM
910static void show_instructions(struct pt_regs *regs)
911{
912 int i;
913 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
914 sizeof(int));
915
916 printk("Instruction dump:");
917
918 for (i = 0; i < instructions_to_print; i++) {
919 int instr;
920
921 if (!(i % 8))
922 printk("\n");
923
0de2d820
SW
924#if !defined(CONFIG_BOOKE)
925 /* If executing with the IMMU off, adjust pc rather
926 * than print XXXXXXXX.
927 */
928 if (!(regs->msr & MSR_IR))
929 pc = (unsigned long)phys_to_virt(pc);
930#endif
931
00ae36de 932 if (!__kernel_text_address(pc) ||
7b051f66 933 probe_kernel_address((unsigned int __user *)pc, instr)) {
40c8cefa 934 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
935 } else {
936 if (regs->nip == pc)
40c8cefa 937 printk(KERN_CONT "<%08x> ", instr);
06d67d54 938 else
40c8cefa 939 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
940 }
941
942 pc += sizeof(int);
943 }
944
945 printk("\n");
946}
947
948static struct regbit {
949 unsigned long bit;
950 const char *name;
951} msr_bits[] = {
3bfd0c9c
AB
952#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
953 {MSR_SF, "SF"},
954 {MSR_HV, "HV"},
955#endif
956 {MSR_VEC, "VEC"},
957 {MSR_VSX, "VSX"},
958#ifdef CONFIG_BOOKE
959 {MSR_CE, "CE"},
960#endif
06d67d54
PM
961 {MSR_EE, "EE"},
962 {MSR_PR, "PR"},
963 {MSR_FP, "FP"},
964 {MSR_ME, "ME"},
3bfd0c9c 965#ifdef CONFIG_BOOKE
1b98326b 966 {MSR_DE, "DE"},
3bfd0c9c
AB
967#else
968 {MSR_SE, "SE"},
969 {MSR_BE, "BE"},
970#endif
06d67d54
PM
971 {MSR_IR, "IR"},
972 {MSR_DR, "DR"},
3bfd0c9c
AB
973 {MSR_PMM, "PMM"},
974#ifndef CONFIG_BOOKE
975 {MSR_RI, "RI"},
976 {MSR_LE, "LE"},
977#endif
06d67d54
PM
978 {0, NULL}
979};
980
981static void printbits(unsigned long val, struct regbit *bits)
982{
983 const char *sep = "";
984
985 printk("<");
986 for (; bits->bit; ++bits)
987 if (val & bits->bit) {
988 printk("%s%s", sep, bits->name);
989 sep = ",";
990 }
991 printk(">");
992}
993
994#ifdef CONFIG_PPC64
f6f7dde3 995#define REG "%016lx"
06d67d54
PM
996#define REGS_PER_LINE 4
997#define LAST_VOLATILE 13
998#else
f6f7dde3 999#define REG "%08lx"
06d67d54
PM
1000#define REGS_PER_LINE 8
1001#define LAST_VOLATILE 12
1002#endif
1003
14cf11af
PM
1004void show_regs(struct pt_regs * regs)
1005{
1006 int i, trap;
1007
a43cb95d
TH
1008 show_regs_print_info(KERN_DEFAULT);
1009
06d67d54
PM
1010 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1011 regs->nip, regs->link, regs->ctr);
1012 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1013 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
1014 printk("MSR: "REG" ", regs->msr);
1015 printbits(regs->msr, msr_bits);
f6f7dde3 1016 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1017 trap = TRAP(regs);
5115a026 1018 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 1019 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1020 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1021#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 1022 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1023#else
9db8bcfd
AB
1024 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1025#endif
1026#ifdef CONFIG_PPC64
1027 printk("SOFTE: %ld ", regs->softe);
1028#endif
1029#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
1030 if (MSR_TM_ACTIVE(regs->msr))
1031 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1032#endif
14cf11af
PM
1033
1034 for (i = 0; i < 32; i++) {
06d67d54 1035 if ((i % REGS_PER_LINE) == 0)
a2367194 1036 printk("\nGPR%02d: ", i);
06d67d54
PM
1037 printk(REG " ", regs->gpr[i]);
1038 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1039 break;
1040 }
1041 printk("\n");
1042#ifdef CONFIG_KALLSYMS
1043 /*
1044 * Lookup NIP late so we have the best change of getting the
1045 * above info out without failing
1046 */
058c78f4
BH
1047 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1048 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1049#endif
14cf11af 1050 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1051 if (!user_mode(regs))
1052 show_instructions(regs);
14cf11af
PM
1053}
1054
1055void exit_thread(void)
1056{
14cf11af
PM
1057}
1058
1059void flush_thread(void)
1060{
e0780b72 1061#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1062 flush_ptrace_hw_breakpoint(current);
e0780b72 1063#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1064 set_debug_reg_defaults(&current->thread);
e0780b72 1065#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1066}
1067
1068void
1069release_thread(struct task_struct *t)
1070{
1071}
1072
1073/*
55ccf3fe
SS
1074 * this gets called so that we can store coprocessor state into memory and
1075 * copy the current task into the new thread.
14cf11af 1076 */
55ccf3fe 1077int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1078{
55ccf3fe
SS
1079 flush_fp_to_thread(src);
1080 flush_altivec_to_thread(src);
1081 flush_vsx_to_thread(src);
1082 flush_spe_to_thread(src);
621b5060
MN
1083 /*
1084 * Flush TM state out so we can copy it. __switch_to_tm() does this
1085 * flush but it removes the checkpointed state from the current CPU and
1086 * transitions the CPU out of TM mode. Hence we need to call
1087 * tm_recheckpoint_new_task() (on the same task) to restore the
1088 * checkpointed state back and the TM mode.
1089 */
1090 __switch_to_tm(src);
1091 tm_recheckpoint_new_task(src);
330a1eb7 1092
55ccf3fe 1093 *dst = *src;
330a1eb7
ME
1094
1095 clear_task_ebb(dst);
1096
55ccf3fe 1097 return 0;
14cf11af
PM
1098}
1099
cec15488
ME
1100static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1101{
1102#ifdef CONFIG_PPC_STD_MMU_64
1103 unsigned long sp_vsid;
1104 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1105
1106 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1107 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1108 << SLB_VSID_SHIFT_1T;
1109 else
1110 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1111 << SLB_VSID_SHIFT;
1112 sp_vsid |= SLB_VSID_KERNEL | llp;
1113 p->thread.ksp_vsid = sp_vsid;
1114#endif
1115}
1116
14cf11af
PM
1117/*
1118 * Copy a thread..
1119 */
efcac658 1120
6eca8933
AD
1121/*
1122 * Copy architecture-specific thread state
1123 */
6f2c55b8 1124int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1125 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1126{
1127 struct pt_regs *childregs, *kregs;
1128 extern void ret_from_fork(void);
58254e10
AV
1129 extern void ret_from_kernel_thread(void);
1130 void (*f)(void);
0cec6fd1 1131 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 1132
14cf11af
PM
1133 /* Copy registers */
1134 sp -= sizeof(struct pt_regs);
1135 childregs = (struct pt_regs *) sp;
ab75819d 1136 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1137 /* kernel thread */
138d1ce8 1138 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 1139 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1140 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1141 /* function */
1142 if (usp)
1143 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1144#ifdef CONFIG_PPC64
b5e2fc1c 1145 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1146 childregs->softe = 1;
06d67d54 1147#endif
6eca8933 1148 childregs->gpr[15] = kthread_arg;
14cf11af 1149 p->thread.regs = NULL; /* no user register state */
138d1ce8 1150 ti->flags |= _TIF_RESTOREALL;
58254e10 1151 f = ret_from_kernel_thread;
14cf11af 1152 } else {
6eca8933 1153 /* user thread */
afa86fc4 1154 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1155 CHECK_FULL_REGS(regs);
1156 *childregs = *regs;
ea516b11
AV
1157 if (usp)
1158 childregs->gpr[1] = usp;
14cf11af 1159 p->thread.regs = childregs;
58254e10 1160 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1161 if (clone_flags & CLONE_SETTLS) {
1162#ifdef CONFIG_PPC64
9904b005 1163 if (!is_32bit_task())
06d67d54
PM
1164 childregs->gpr[13] = childregs->gpr[6];
1165 else
1166#endif
1167 childregs->gpr[2] = childregs->gpr[6];
1168 }
58254e10
AV
1169
1170 f = ret_from_fork;
14cf11af 1171 }
14cf11af 1172 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1173
1174 /*
1175 * The way this works is that at some point in the future
1176 * some task will call _switch to switch to the new task.
1177 * That will pop off the stack frame created below and start
1178 * the new task running at ret_from_fork. The new task will
1179 * do some house keeping and then return from the fork or clone
1180 * system call, using the stack frame created above.
1181 */
af945cf4 1182 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1183 sp -= sizeof(struct pt_regs);
1184 kregs = (struct pt_regs *) sp;
1185 sp -= STACK_FRAME_OVERHEAD;
1186 p->thread.ksp = sp;
cbc9565e 1187#ifdef CONFIG_PPC32
85218827
KG
1188 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1189 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1190#endif
28d170ab
ON
1191#ifdef CONFIG_HAVE_HW_BREAKPOINT
1192 p->thread.ptrace_bps[0] = NULL;
1193#endif
1194
18461960
PM
1195 p->thread.fp_save_area = NULL;
1196#ifdef CONFIG_ALTIVEC
1197 p->thread.vr_save_area = NULL;
1198#endif
1199
cec15488
ME
1200 setup_ksp_vsid(p, sp);
1201
efcac658
AK
1202#ifdef CONFIG_PPC64
1203 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1204 p->thread.dscr_inherit = current->thread.dscr_inherit;
1205 p->thread.dscr = current->thread.dscr;
efcac658 1206 }
92779245
HM
1207 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1208 p->thread.ppr = INIT_PPR;
efcac658 1209#endif
7cedd601 1210 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1211 return 0;
1212}
1213
1214/*
1215 * Set up a thread for executing a new program
1216 */
06d67d54 1217void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1218{
90eac727
ME
1219#ifdef CONFIG_PPC64
1220 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1221#endif
1222
06d67d54
PM
1223 /*
1224 * If we exec out of a kernel thread then thread.regs will not be
1225 * set. Do it now.
1226 */
1227 if (!current->thread.regs) {
0cec6fd1
AV
1228 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1229 current->thread.regs = regs - 1;
06d67d54
PM
1230 }
1231
14cf11af
PM
1232 memset(regs->gpr, 0, sizeof(regs->gpr));
1233 regs->ctr = 0;
1234 regs->link = 0;
1235 regs->xer = 0;
1236 regs->ccr = 0;
14cf11af 1237 regs->gpr[1] = sp;
06d67d54 1238
474f8196
RM
1239 /*
1240 * We have just cleared all the nonvolatile GPRs, so make
1241 * FULL_REGS(regs) return true. This is necessary to allow
1242 * ptrace to examine the thread immediately after exec.
1243 */
1244 regs->trap &= ~1UL;
1245
06d67d54
PM
1246#ifdef CONFIG_PPC32
1247 regs->mq = 0;
1248 regs->nip = start;
14cf11af 1249 regs->msr = MSR_USER;
06d67d54 1250#else
9904b005 1251 if (!is_32bit_task()) {
94af3abf 1252 unsigned long entry;
06d67d54 1253
94af3abf
RR
1254 if (is_elf2_task()) {
1255 /* Look ma, no function descriptors! */
1256 entry = start;
06d67d54 1257
94af3abf
RR
1258 /*
1259 * Ulrich says:
1260 * The latest iteration of the ABI requires that when
1261 * calling a function (at its global entry point),
1262 * the caller must ensure r12 holds the entry point
1263 * address (so that the function can quickly
1264 * establish addressability).
1265 */
1266 regs->gpr[12] = start;
1267 /* Make sure that's restored on entry to userspace. */
1268 set_thread_flag(TIF_RESTOREALL);
1269 } else {
1270 unsigned long toc;
1271
1272 /* start is a relocated pointer to the function
1273 * descriptor for the elf _start routine. The first
1274 * entry in the function descriptor is the entry
1275 * address of _start and the second entry is the TOC
1276 * value we need to use.
1277 */
1278 __get_user(entry, (unsigned long __user *)start);
1279 __get_user(toc, (unsigned long __user *)start+1);
1280
1281 /* Check whether the e_entry function descriptor entries
1282 * need to be relocated before we can use them.
1283 */
1284 if (load_addr != 0) {
1285 entry += load_addr;
1286 toc += load_addr;
1287 }
1288 regs->gpr[2] = toc;
06d67d54
PM
1289 }
1290 regs->nip = entry;
06d67d54 1291 regs->msr = MSR_USER64;
d4bf9a78
SR
1292 } else {
1293 regs->nip = start;
1294 regs->gpr[2] = 0;
1295 regs->msr = MSR_USER32;
06d67d54
PM
1296 }
1297#endif
ce48b210
MN
1298#ifdef CONFIG_VSX
1299 current->thread.used_vsr = 0;
1300#endif
de79f7b9 1301 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1302 current->thread.fp_save_area = NULL;
14cf11af 1303#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1304 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1305 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1306 current->thread.vr_save_area = NULL;
14cf11af
PM
1307 current->thread.vrsave = 0;
1308 current->thread.used_vr = 0;
1309#endif /* CONFIG_ALTIVEC */
1310#ifdef CONFIG_SPE
1311 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1312 current->thread.acc = 0;
1313 current->thread.spefscr = 0;
1314 current->thread.used_spe = 0;
1315#endif /* CONFIG_SPE */
bc2a9408
MN
1316#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1317 if (cpu_has_feature(CPU_FTR_TM))
1318 regs->msr |= MSR_TM;
1319 current->thread.tm_tfhar = 0;
1320 current->thread.tm_texasr = 0;
1321 current->thread.tm_tfiar = 0;
1322#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1323}
e1802b06 1324EXPORT_SYMBOL(start_thread);
14cf11af
PM
1325
1326#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1327 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1328
1329int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1330{
1331 struct pt_regs *regs = tsk->thread.regs;
1332
1333 /* This is a bit hairy. If we are an SPE enabled processor
1334 * (have embedded fp) we store the IEEE exception enable flags in
1335 * fpexc_mode. fpexc_mode is also used for setting FP exception
1336 * mode (asyn, precise, disabled) for 'Classic' FP. */
1337 if (val & PR_FP_EXC_SW_ENABLE) {
1338#ifdef CONFIG_SPE
5e14d21e 1339 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1340 /*
1341 * When the sticky exception bits are set
1342 * directly by userspace, it must call prctl
1343 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1344 * in the existing prctl settings) or
1345 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1346 * the bits being set). <fenv.h> functions
1347 * saving and restoring the whole
1348 * floating-point environment need to do so
1349 * anyway to restore the prctl settings from
1350 * the saved environment.
1351 */
1352 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1353 tsk->thread.fpexc_mode = val &
1354 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1355 return 0;
1356 } else {
1357 return -EINVAL;
1358 }
14cf11af
PM
1359#else
1360 return -EINVAL;
1361#endif
14cf11af 1362 }
06d67d54
PM
1363
1364 /* on a CONFIG_SPE this does not hurt us. The bits that
1365 * __pack_fe01 use do not overlap with bits used for
1366 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1367 * on CONFIG_SPE implementations are reserved so writing to
1368 * them does not change anything */
1369 if (val > PR_FP_EXC_PRECISE)
1370 return -EINVAL;
1371 tsk->thread.fpexc_mode = __pack_fe01(val);
1372 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1373 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1374 | tsk->thread.fpexc_mode;
14cf11af
PM
1375 return 0;
1376}
1377
1378int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1379{
1380 unsigned int val;
1381
1382 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1383#ifdef CONFIG_SPE
640e9225
JM
1384 if (cpu_has_feature(CPU_FTR_SPE)) {
1385 /*
1386 * When the sticky exception bits are set
1387 * directly by userspace, it must call prctl
1388 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1389 * in the existing prctl settings) or
1390 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1391 * the bits being set). <fenv.h> functions
1392 * saving and restoring the whole
1393 * floating-point environment need to do so
1394 * anyway to restore the prctl settings from
1395 * the saved environment.
1396 */
1397 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1398 val = tsk->thread.fpexc_mode;
640e9225 1399 } else
5e14d21e 1400 return -EINVAL;
14cf11af
PM
1401#else
1402 return -EINVAL;
1403#endif
1404 else
1405 val = __unpack_fe01(tsk->thread.fpexc_mode);
1406 return put_user(val, (unsigned int __user *) adr);
1407}
1408
fab5db97
PM
1409int set_endian(struct task_struct *tsk, unsigned int val)
1410{
1411 struct pt_regs *regs = tsk->thread.regs;
1412
1413 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1414 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1415 return -EINVAL;
1416
1417 if (regs == NULL)
1418 return -EINVAL;
1419
1420 if (val == PR_ENDIAN_BIG)
1421 regs->msr &= ~MSR_LE;
1422 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1423 regs->msr |= MSR_LE;
1424 else
1425 return -EINVAL;
1426
1427 return 0;
1428}
1429
1430int get_endian(struct task_struct *tsk, unsigned long adr)
1431{
1432 struct pt_regs *regs = tsk->thread.regs;
1433 unsigned int val;
1434
1435 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1436 !cpu_has_feature(CPU_FTR_REAL_LE))
1437 return -EINVAL;
1438
1439 if (regs == NULL)
1440 return -EINVAL;
1441
1442 if (regs->msr & MSR_LE) {
1443 if (cpu_has_feature(CPU_FTR_REAL_LE))
1444 val = PR_ENDIAN_LITTLE;
1445 else
1446 val = PR_ENDIAN_PPC_LITTLE;
1447 } else
1448 val = PR_ENDIAN_BIG;
1449
1450 return put_user(val, (unsigned int __user *)adr);
1451}
1452
e9370ae1
PM
1453int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1454{
1455 tsk->thread.align_ctl = val;
1456 return 0;
1457}
1458
1459int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1460{
1461 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1462}
1463
bb72c481
PM
1464static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1465 unsigned long nbytes)
1466{
1467 unsigned long stack_page;
1468 unsigned long cpu = task_cpu(p);
1469
1470 /*
1471 * Avoid crashing if the stack has overflowed and corrupted
1472 * task_cpu(p), which is in the thread_info struct.
1473 */
1474 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1475 stack_page = (unsigned long) hardirq_ctx[cpu];
1476 if (sp >= stack_page + sizeof(struct thread_struct)
1477 && sp <= stack_page + THREAD_SIZE - nbytes)
1478 return 1;
1479
1480 stack_page = (unsigned long) softirq_ctx[cpu];
1481 if (sp >= stack_page + sizeof(struct thread_struct)
1482 && sp <= stack_page + THREAD_SIZE - nbytes)
1483 return 1;
1484 }
1485 return 0;
1486}
1487
2f25194d 1488int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1489 unsigned long nbytes)
1490{
0cec6fd1 1491 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1492
1493 if (sp >= stack_page + sizeof(struct thread_struct)
1494 && sp <= stack_page + THREAD_SIZE - nbytes)
1495 return 1;
1496
bb72c481 1497 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1498}
1499
2f25194d
AB
1500EXPORT_SYMBOL(validate_sp);
1501
14cf11af
PM
1502unsigned long get_wchan(struct task_struct *p)
1503{
1504 unsigned long ip, sp;
1505 int count = 0;
1506
1507 if (!p || p == current || p->state == TASK_RUNNING)
1508 return 0;
1509
1510 sp = p->thread.ksp;
ec2b36b9 1511 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1512 return 0;
1513
1514 do {
1515 sp = *(unsigned long *)sp;
ec2b36b9 1516 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1517 return 0;
1518 if (count > 0) {
ec2b36b9 1519 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1520 if (!in_sched_functions(ip))
1521 return ip;
1522 }
1523 } while (count++ < 16);
1524 return 0;
1525}
06d67d54 1526
c4d04be1 1527static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1528
1529void show_stack(struct task_struct *tsk, unsigned long *stack)
1530{
1531 unsigned long sp, ip, lr, newsp;
1532 int count = 0;
1533 int firstframe = 1;
6794c782
SR
1534#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1535 int curr_frame = current->curr_ret_stack;
1536 extern void return_to_handler(void);
9135c3cc 1537 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1538#endif
06d67d54
PM
1539
1540 sp = (unsigned long) stack;
1541 if (tsk == NULL)
1542 tsk = current;
1543 if (sp == 0) {
1544 if (tsk == current)
acf620ec 1545 sp = current_stack_pointer();
06d67d54
PM
1546 else
1547 sp = tsk->thread.ksp;
1548 }
1549
1550 lr = 0;
1551 printk("Call Trace:\n");
1552 do {
ec2b36b9 1553 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1554 return;
1555
1556 stack = (unsigned long *) sp;
1557 newsp = stack[0];
ec2b36b9 1558 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1559 if (!firstframe || ip != lr) {
058c78f4 1560 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1561#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1562 if ((ip == rth) && curr_frame >= 0) {
6794c782
SR
1563 printk(" (%pS)",
1564 (void *)current->ret_stack[curr_frame].ret);
1565 curr_frame--;
1566 }
1567#endif
06d67d54
PM
1568 if (firstframe)
1569 printk(" (unreliable)");
1570 printk("\n");
1571 }
1572 firstframe = 0;
1573
1574 /*
1575 * See if this is an exception frame.
1576 * We look for the "regshere" marker in the current frame.
1577 */
ec2b36b9
BH
1578 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1579 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1580 struct pt_regs *regs = (struct pt_regs *)
1581 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1582 lr = regs->link;
9be9be2e 1583 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1584 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1585 firstframe = 1;
1586 }
1587
1588 sp = newsp;
1589 } while (count++ < kstack_depth_to_print);
1590}
1591
cb2c9b27 1592#ifdef CONFIG_PPC64
fe1952fc 1593/* Called with hard IRQs off */
0e37739b 1594void notrace __ppc64_runlatch_on(void)
cb2c9b27 1595{
fe1952fc 1596 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1597 unsigned long ctrl;
1598
fe1952fc
BH
1599 ctrl = mfspr(SPRN_CTRLF);
1600 ctrl |= CTRL_RUNLATCH;
1601 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1602
fae2e0fb 1603 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1604}
1605
fe1952fc 1606/* Called with hard IRQs off */
0e37739b 1607void notrace __ppc64_runlatch_off(void)
cb2c9b27 1608{
fe1952fc 1609 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1610 unsigned long ctrl;
1611
fae2e0fb 1612 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1613
4138d653
AB
1614 ctrl = mfspr(SPRN_CTRLF);
1615 ctrl &= ~CTRL_RUNLATCH;
1616 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1617}
fe1952fc 1618#endif /* CONFIG_PPC64 */
f6a61680 1619
d839088c
AB
1620unsigned long arch_align_stack(unsigned long sp)
1621{
1622 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1623 sp -= get_random_int() & ~PAGE_MASK;
1624 return sp & ~0xf;
1625}
912f9ee2
AB
1626
1627static inline unsigned long brk_rnd(void)
1628{
1629 unsigned long rnd = 0;
1630
1631 /* 8MB for 32bit, 1GB for 64bit */
1632 if (is_32bit_task())
1633 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1634 else
1635 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1636
1637 return rnd << PAGE_SHIFT;
1638}
1639
1640unsigned long arch_randomize_brk(struct mm_struct *mm)
1641{
8bbde7a7
AB
1642 unsigned long base = mm->brk;
1643 unsigned long ret;
1644
ce7a35c7 1645#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1646 /*
1647 * If we are using 1TB segments and we are allowed to randomise
1648 * the heap, we can put it above 1TB so it is backed by a 1TB
1649 * segment. Otherwise the heap will be in the bottom 1TB
1650 * which always uses 256MB segments and this may result in a
1651 * performance penalty.
1652 */
1653 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1654 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1655#endif
1656
1657 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1658
1659 if (ret < mm->brk)
1660 return mm->brk;
1661
1662 return ret;
1663}
501cb16d 1664