]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/powerpc/kernel/ptrace.c
powerpc/ptrace: Enable support for EBB registers
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / ptrace.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
b123923d 11 * and Paul Mackerras (paulus@samba.org).
1da177e4
LT
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/sched.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
1da177e4
LT
22#include <linux/errno.h>
23#include <linux/ptrace.h>
f65255e8 24#include <linux/regset.h>
4f72c427 25#include <linux/tracehook.h>
3caf06c6 26#include <linux/elf.h>
1da177e4
LT
27#include <linux/user.h>
28#include <linux/security.h>
7ed20e1a 29#include <linux/signal.h>
ea9c102c
DW
30#include <linux/seccomp.h>
31#include <linux/audit.h>
02424d89 32#include <trace/syscall.h>
5aae8a53
P
33#include <linux/hw_breakpoint.h>
34#include <linux/perf_event.h>
22ecbe8d 35#include <linux/context_tracking.h>
1da177e4
LT
36
37#include <asm/uaccess.h>
38#include <asm/page.h>
39#include <asm/pgtable.h>
ae3a197e 40#include <asm/switch_to.h>
21a62902 41
02424d89
IM
42#define CREATE_TRACE_POINTS
43#include <trace/events/syscalls.h>
44
359e4284
MS
45/*
46 * The parameter save area on the stack is used to store arguments being passed
47 * to callee function and is located at fixed offset from stack pointer.
48 */
49#ifdef CONFIG_PPC32
50#define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
51#else /* CONFIG_PPC32 */
52#define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
53#endif
54
55struct pt_regs_offset {
56 const char *name;
57 int offset;
58};
59
60#define STR(s) #s /* convert to string */
61#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
62#define GPR_OFFSET_NAME(num) \
343c3327 63 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
359e4284
MS
64 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
65#define REG_OFFSET_END {.name = NULL, .offset = 0}
66
8c13f599 67#define TVSO(f) (offsetof(struct thread_vr_state, f))
9d3918f7 68#define TFSO(f) (offsetof(struct thread_fp_state, f))
08e1c01d 69#define TSO(f) (offsetof(struct thread_struct, f))
8c13f599 70
359e4284
MS
71static const struct pt_regs_offset regoffset_table[] = {
72 GPR_OFFSET_NAME(0),
73 GPR_OFFSET_NAME(1),
74 GPR_OFFSET_NAME(2),
75 GPR_OFFSET_NAME(3),
76 GPR_OFFSET_NAME(4),
77 GPR_OFFSET_NAME(5),
78 GPR_OFFSET_NAME(6),
79 GPR_OFFSET_NAME(7),
80 GPR_OFFSET_NAME(8),
81 GPR_OFFSET_NAME(9),
82 GPR_OFFSET_NAME(10),
83 GPR_OFFSET_NAME(11),
84 GPR_OFFSET_NAME(12),
85 GPR_OFFSET_NAME(13),
86 GPR_OFFSET_NAME(14),
87 GPR_OFFSET_NAME(15),
88 GPR_OFFSET_NAME(16),
89 GPR_OFFSET_NAME(17),
90 GPR_OFFSET_NAME(18),
91 GPR_OFFSET_NAME(19),
92 GPR_OFFSET_NAME(20),
93 GPR_OFFSET_NAME(21),
94 GPR_OFFSET_NAME(22),
95 GPR_OFFSET_NAME(23),
96 GPR_OFFSET_NAME(24),
97 GPR_OFFSET_NAME(25),
98 GPR_OFFSET_NAME(26),
99 GPR_OFFSET_NAME(27),
100 GPR_OFFSET_NAME(28),
101 GPR_OFFSET_NAME(29),
102 GPR_OFFSET_NAME(30),
103 GPR_OFFSET_NAME(31),
104 REG_OFFSET_NAME(nip),
105 REG_OFFSET_NAME(msr),
106 REG_OFFSET_NAME(ctr),
107 REG_OFFSET_NAME(link),
108 REG_OFFSET_NAME(xer),
109 REG_OFFSET_NAME(ccr),
110#ifdef CONFIG_PPC64
111 REG_OFFSET_NAME(softe),
112#else
113 REG_OFFSET_NAME(mq),
114#endif
115 REG_OFFSET_NAME(trap),
116 REG_OFFSET_NAME(dar),
117 REG_OFFSET_NAME(dsisr),
118 REG_OFFSET_END,
119};
120
121/**
122 * regs_query_register_offset() - query register offset from its name
123 * @name: the name of a register
124 *
125 * regs_query_register_offset() returns the offset of a register in struct
126 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
127 */
128int regs_query_register_offset(const char *name)
129{
130 const struct pt_regs_offset *roff;
131 for (roff = regoffset_table; roff->name != NULL; roff++)
132 if (!strcmp(roff->name, name))
133 return roff->offset;
134 return -EINVAL;
135}
136
137/**
138 * regs_query_register_name() - query register name from its offset
139 * @offset: the offset of a register in struct pt_regs.
140 *
141 * regs_query_register_name() returns the name of a register from its
142 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
143 */
144const char *regs_query_register_name(unsigned int offset)
145{
146 const struct pt_regs_offset *roff;
147 for (roff = regoffset_table; roff->name != NULL; roff++)
148 if (roff->offset == offset)
149 return roff->name;
150 return NULL;
151}
152
abd06505
BH
153/*
154 * does not yet catch signals sent when the child dies.
155 * in exit.c or in signal.c.
156 */
157
158/*
159 * Set of msr bits that gdb can change on behalf of a process.
160 */
172ae2e7 161#ifdef CONFIG_PPC_ADV_DEBUG_REGS
abd06505 162#define MSR_DEBUGCHANGE 0
1da177e4 163#else
abd06505 164#define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
1da177e4 165#endif
acd89828 166
1da177e4 167/*
abd06505 168 * Max register writeable via put_reg
1da177e4 169 */
abd06505
BH
170#ifdef CONFIG_PPC32
171#define PT_MAX_PUT_REG PT_MQ
172#else
173#define PT_MAX_PUT_REG PT_CCR
174#endif
1da177e4 175
26f77130
RM
176static unsigned long get_user_msr(struct task_struct *task)
177{
178 return task->thread.regs->msr | task->thread.fpexc_mode;
179}
180
181static int set_user_msr(struct task_struct *task, unsigned long msr)
182{
183 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
184 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
185 return 0;
186}
187
25847fb1
AK
188#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
189static unsigned long get_user_ckpt_msr(struct task_struct *task)
190{
191 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
192}
193
194static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
195{
196 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
197 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
198 return 0;
199}
200
201static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
202{
203 task->thread.ckpt_regs.trap = trap & 0xfff0;
204 return 0;
205}
206#endif
207
1715a826 208#ifdef CONFIG_PPC64
ee4a3916 209static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826 210{
ee4a3916
AK
211 *data = task->thread.dscr;
212 return 0;
1715a826
AK
213}
214
215static int set_user_dscr(struct task_struct *task, unsigned long dscr)
216{
217 task->thread.dscr = dscr;
218 task->thread.dscr_inherit = 1;
219 return 0;
220}
221#else
ee4a3916 222static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826
AK
223{
224 return -EIO;
225}
226
227static int set_user_dscr(struct task_struct *task, unsigned long dscr)
228{
229 return -EIO;
230}
231#endif
232
26f77130
RM
233/*
234 * We prevent mucking around with the reserved area of trap
235 * which are used internally by the kernel.
236 */
237static int set_user_trap(struct task_struct *task, unsigned long trap)
238{
239 task->thread.regs->trap = trap & 0xfff0;
240 return 0;
241}
242
865418d8
BH
243/*
244 * Get contents of register REGNO in task TASK.
245 */
ee4a3916 246int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
865418d8 247{
ee4a3916 248 if ((task->thread.regs == NULL) || !data)
865418d8
BH
249 return -EIO;
250
ee4a3916
AK
251 if (regno == PT_MSR) {
252 *data = get_user_msr(task);
253 return 0;
254 }
865418d8 255
1715a826 256 if (regno == PT_DSCR)
ee4a3916 257 return get_user_dscr(task, data);
1715a826 258
ee4a3916
AK
259 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
260 *data = ((unsigned long *)task->thread.regs)[regno];
261 return 0;
262 }
865418d8
BH
263
264 return -EIO;
265}
266
267/*
268 * Write contents of register REGNO in task TASK.
269 */
270int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
271{
272 if (task->thread.regs == NULL)
273 return -EIO;
274
26f77130
RM
275 if (regno == PT_MSR)
276 return set_user_msr(task, data);
277 if (regno == PT_TRAP)
278 return set_user_trap(task, data);
1715a826
AK
279 if (regno == PT_DSCR)
280 return set_user_dscr(task, data);
26f77130
RM
281
282 if (regno <= PT_MAX_PUT_REG) {
865418d8
BH
283 ((unsigned long *)task->thread.regs)[regno] = data;
284 return 0;
285 }
286 return -EIO;
287}
288
44dd3f50
RM
289static int gpr_get(struct task_struct *target, const struct user_regset *regset,
290 unsigned int pos, unsigned int count,
291 void *kbuf, void __user *ubuf)
292{
a71f5d5d 293 int i, ret;
44dd3f50
RM
294
295 if (target->thread.regs == NULL)
296 return -EIO;
297
a71f5d5d
MW
298 if (!FULL_REGS(target->thread.regs)) {
299 /* We have a partial register set. Fill 14-31 with bogus values */
300 for (i = 14; i < 32; i++)
301 target->thread.regs->gpr[i] = NV_REG_POISON;
302 }
44dd3f50
RM
303
304 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
305 target->thread.regs,
306 0, offsetof(struct pt_regs, msr));
307 if (!ret) {
308 unsigned long msr = get_user_msr(target);
309 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
310 offsetof(struct pt_regs, msr),
311 offsetof(struct pt_regs, msr) +
312 sizeof(msr));
313 }
314
315 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
316 offsetof(struct pt_regs, msr) + sizeof(long));
317
318 if (!ret)
319 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
320 &target->thread.regs->orig_gpr3,
321 offsetof(struct pt_regs, orig_gpr3),
322 sizeof(struct pt_regs));
323 if (!ret)
324 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
325 sizeof(struct pt_regs), -1);
326
327 return ret;
328}
329
330static int gpr_set(struct task_struct *target, const struct user_regset *regset,
331 unsigned int pos, unsigned int count,
332 const void *kbuf, const void __user *ubuf)
333{
334 unsigned long reg;
335 int ret;
336
337 if (target->thread.regs == NULL)
338 return -EIO;
339
340 CHECK_FULL_REGS(target->thread.regs);
341
342 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
343 target->thread.regs,
344 0, PT_MSR * sizeof(reg));
345
346 if (!ret && count > 0) {
347 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
348 PT_MSR * sizeof(reg),
349 (PT_MSR + 1) * sizeof(reg));
350 if (!ret)
351 ret = set_user_msr(target, reg);
352 }
353
354 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
355 offsetof(struct pt_regs, msr) + sizeof(long));
356
357 if (!ret)
358 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
359 &target->thread.regs->orig_gpr3,
360 PT_ORIG_R3 * sizeof(reg),
361 (PT_MAX_PUT_REG + 1) * sizeof(reg));
362
363 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
364 ret = user_regset_copyin_ignore(
365 &pos, &count, &kbuf, &ubuf,
366 (PT_MAX_PUT_REG + 1) * sizeof(reg),
367 PT_TRAP * sizeof(reg));
368
369 if (!ret && count > 0) {
370 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
371 PT_TRAP * sizeof(reg),
372 (PT_TRAP + 1) * sizeof(reg));
373 if (!ret)
374 ret = set_user_trap(target, reg);
375 }
376
377 if (!ret)
378 ret = user_regset_copyin_ignore(
379 &pos, &count, &kbuf, &ubuf,
380 (PT_TRAP + 1) * sizeof(reg), -1);
381
382 return ret;
383}
865418d8 384
1ec8549d
AK
385/*
386 * When the transaction is active, 'transact_fp' holds the current running
387 * value of all FPR registers and 'fp_state' holds the last checkpointed
388 * value of all FPR registers for the current transaction. When transaction
389 * is not active 'fp_state' holds the current running state of all the FPR
390 * registers. So this function which returns the current running values of
391 * all the FPR registers, needs to know whether any transaction is active
392 * or not.
393 *
394 * Userspace interface buffer layout:
395 *
396 * struct data {
397 * u64 fpr[32];
398 * u64 fpscr;
399 * };
400 *
401 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
402 * which determines the final code in this function. All the combinations of
403 * these two config options are possible except the one below as transactional
404 * memory config pulls in CONFIG_VSX automatically.
405 *
406 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
407 */
f65255e8
RM
408static int fpr_get(struct task_struct *target, const struct user_regset *regset,
409 unsigned int pos, unsigned int count,
410 void *kbuf, void __user *ubuf)
411{
c6e6771b 412#ifdef CONFIG_VSX
de79f7b9 413 u64 buf[33];
c6e6771b
MN
414 int i;
415#endif
f65255e8
RM
416 flush_fp_to_thread(target);
417
1ec8549d
AK
418#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
419 /* copy to local buffer then write that out */
420 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
421 flush_altivec_to_thread(target);
422 flush_tmregs_to_thread(target);
423 for (i = 0; i < 32 ; i++)
424 buf[i] = target->thread.TS_TRANS_FPR(i);
425 buf[32] = target->thread.transact_fp.fpscr;
426 } else {
427 for (i = 0; i < 32 ; i++)
428 buf[i] = target->thread.TS_FPR(i);
429 buf[32] = target->thread.fp_state.fpscr;
430 }
431 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
432#endif
433
434#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
c6e6771b
MN
435 /* copy to local buffer then write that out */
436 for (i = 0; i < 32 ; i++)
437 buf[i] = target->thread.TS_FPR(i);
de79f7b9 438 buf[32] = target->thread.fp_state.fpscr;
c6e6771b 439 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1ec8549d 440#endif
c6e6771b 441
1ec8549d 442#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
de79f7b9 443 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 444 offsetof(struct thread_fp_state, fpr[32]));
f65255e8
RM
445
446 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
de79f7b9 447 &target->thread.fp_state, 0, -1);
c6e6771b 448#endif
f65255e8
RM
449}
450
1ec8549d
AK
451/*
452 * When the transaction is active, 'transact_fp' holds the current running
453 * value of all FPR registers and 'fp_state' holds the last checkpointed
454 * value of all FPR registers for the current transaction. When transaction
455 * is not active 'fp_state' holds the current running state of all the FPR
456 * registers. So this function which setss the current running values of
457 * all the FPR registers, needs to know whether any transaction is active
458 * or not.
459 *
460 * Userspace interface buffer layout:
461 *
462 * struct data {
463 * u64 fpr[32];
464 * u64 fpscr;
465 * };
466 *
467 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
468 * which determines the final code in this function. All the combinations of
469 * these two config options are possible except the one below as transactional
470 * memory config pulls in CONFIG_VSX automatically.
471 *
472 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
473 */
f65255e8
RM
474static int fpr_set(struct task_struct *target, const struct user_regset *regset,
475 unsigned int pos, unsigned int count,
476 const void *kbuf, const void __user *ubuf)
477{
c6e6771b 478#ifdef CONFIG_VSX
de79f7b9 479 u64 buf[33];
c6e6771b
MN
480 int i;
481#endif
f65255e8
RM
482 flush_fp_to_thread(target);
483
1ec8549d
AK
484#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
485 /* copy to local buffer then write that out */
486 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
487 if (i)
488 return i;
489
490 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
491 flush_altivec_to_thread(target);
492 flush_tmregs_to_thread(target);
493 for (i = 0; i < 32 ; i++)
494 target->thread.TS_TRANS_FPR(i) = buf[i];
495 target->thread.transact_fp.fpscr = buf[32];
496 } else {
497 for (i = 0; i < 32 ; i++)
498 target->thread.TS_FPR(i) = buf[i];
499 target->thread.fp_state.fpscr = buf[32];
500 }
501 return 0;
502#endif
503
504#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
c6e6771b
MN
505 /* copy to local buffer then write that out */
506 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
507 if (i)
508 return i;
509 for (i = 0; i < 32 ; i++)
510 target->thread.TS_FPR(i) = buf[i];
de79f7b9 511 target->thread.fp_state.fpscr = buf[32];
c6e6771b 512 return 0;
1ec8549d
AK
513#endif
514
515#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
de79f7b9 516 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 517 offsetof(struct thread_fp_state, fpr[32]));
f65255e8
RM
518
519 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
de79f7b9 520 &target->thread.fp_state, 0, -1);
c6e6771b 521#endif
f65255e8
RM
522}
523
865418d8
BH
524#ifdef CONFIG_ALTIVEC
525/*
526 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
527 * The transfer totals 34 quadword. Quadwords 0-31 contain the
528 * corresponding vector registers. Quadword 32 contains the vscr as the
529 * last word (offset 12) within that quadword. Quadword 33 contains the
530 * vrsave as the first word (offset 0) within the quadword.
531 *
532 * This definition of the VMX state is compatible with the current PPC32
533 * ptrace interface. This allows signal handling and ptrace to use the
534 * same structures. This also simplifies the implementation of a bi-arch
535 * (combined (32- and 64-bit) gdb.
536 */
537
3caf06c6
RM
538static int vr_active(struct task_struct *target,
539 const struct user_regset *regset)
540{
541 flush_altivec_to_thread(target);
542 return target->thread.used_vr ? regset->n : 0;
543}
544
d844e279
AK
545/*
546 * When the transaction is active, 'transact_vr' holds the current running
547 * value of all the VMX registers and 'vr_state' holds the last checkpointed
548 * value of all the VMX registers for the current transaction to fall back
549 * on in case it aborts. When transaction is not active 'vr_state' holds
550 * the current running state of all the VMX registers. So this function which
551 * gets the current running values of all the VMX registers, needs to know
552 * whether any transaction is active or not.
553 *
554 * Userspace interface buffer layout:
555 *
556 * struct data {
557 * vector128 vr[32];
558 * vector128 vscr;
559 * vector128 vrsave;
560 * };
561 */
3caf06c6
RM
562static int vr_get(struct task_struct *target, const struct user_regset *regset,
563 unsigned int pos, unsigned int count,
564 void *kbuf, void __user *ubuf)
565{
d844e279 566 struct thread_vr_state *addr;
3caf06c6
RM
567 int ret;
568
569 flush_altivec_to_thread(target);
570
de79f7b9
PM
571 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
572 offsetof(struct thread_vr_state, vr[32]));
3caf06c6 573
d844e279
AK
574#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
575 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
576 flush_fp_to_thread(target);
577 flush_tmregs_to_thread(target);
578 addr = &target->thread.transact_vr;
579 } else {
580 addr = &target->thread.vr_state;
581 }
582#else
583 addr = &target->thread.vr_state;
584#endif
3caf06c6 585 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
d844e279 586 addr, 0,
3caf06c6
RM
587 33 * sizeof(vector128));
588 if (!ret) {
589 /*
590 * Copy out only the low-order word of vrsave.
591 */
592 union {
593 elf_vrreg_t reg;
594 u32 word;
595 } vrsave;
596 memset(&vrsave, 0, sizeof(vrsave));
d844e279
AK
597
598#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
599 if (MSR_TM_ACTIVE(target->thread.regs->msr))
600 vrsave.word = target->thread.transact_vrsave;
601 else
602 vrsave.word = target->thread.vrsave;
603#else
3caf06c6 604 vrsave.word = target->thread.vrsave;
d844e279
AK
605#endif
606
3caf06c6
RM
607 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
608 33 * sizeof(vector128), -1);
609 }
610
611 return ret;
612}
613
d844e279
AK
614/*
615 * When the transaction is active, 'transact_vr' holds the current running
616 * value of all the VMX registers and 'vr_state' holds the last checkpointed
617 * value of all the VMX registers for the current transaction to fall back
618 * on in case it aborts. When transaction is not active 'vr_state' holds
619 * the current running state of all the VMX registers. So this function which
620 * sets the current running values of all the VMX registers, needs to know
621 * whether any transaction is active or not.
622 *
623 * Userspace interface buffer layout:
624 *
625 * struct data {
626 * vector128 vr[32];
627 * vector128 vscr;
628 * vector128 vrsave;
629 * };
630 */
3caf06c6
RM
631static int vr_set(struct task_struct *target, const struct user_regset *regset,
632 unsigned int pos, unsigned int count,
633 const void *kbuf, const void __user *ubuf)
634{
d844e279 635 struct thread_vr_state *addr;
3caf06c6
RM
636 int ret;
637
638 flush_altivec_to_thread(target);
639
de79f7b9
PM
640 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
641 offsetof(struct thread_vr_state, vr[32]));
3caf06c6 642
d844e279
AK
643#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
644 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
645 flush_fp_to_thread(target);
646 flush_tmregs_to_thread(target);
647 addr = &target->thread.transact_vr;
648 } else {
649 addr = &target->thread.vr_state;
650 }
651#else
652 addr = &target->thread.vr_state;
653#endif
3caf06c6 654 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
d844e279 655 addr, 0,
de79f7b9 656 33 * sizeof(vector128));
3caf06c6
RM
657 if (!ret && count > 0) {
658 /*
659 * We use only the first word of vrsave.
660 */
661 union {
662 elf_vrreg_t reg;
663 u32 word;
664 } vrsave;
665 memset(&vrsave, 0, sizeof(vrsave));
d844e279
AK
666
667#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
668 if (MSR_TM_ACTIVE(target->thread.regs->msr))
669 vrsave.word = target->thread.transact_vrsave;
670 else
671 vrsave.word = target->thread.vrsave;
672#else
3caf06c6 673 vrsave.word = target->thread.vrsave;
d844e279 674#endif
3caf06c6
RM
675 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
676 33 * sizeof(vector128), -1);
d844e279
AK
677 if (!ret) {
678
679#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
680 if (MSR_TM_ACTIVE(target->thread.regs->msr))
681 target->thread.transact_vrsave = vrsave.word;
682 else
683 target->thread.vrsave = vrsave.word;
684#else
3caf06c6 685 target->thread.vrsave = vrsave.word;
d844e279
AK
686#endif
687 }
3caf06c6
RM
688 }
689
690 return ret;
691}
865418d8
BH
692#endif /* CONFIG_ALTIVEC */
693
ce48b210
MN
694#ifdef CONFIG_VSX
695/*
696 * Currently to set and and get all the vsx state, you need to call
25985edc 697 * the fp and VMX calls as well. This only get/sets the lower 32
ce48b210
MN
698 * 128bit VSX registers.
699 */
700
701static int vsr_active(struct task_struct *target,
702 const struct user_regset *regset)
703{
704 flush_vsx_to_thread(target);
705 return target->thread.used_vsr ? regset->n : 0;
706}
707
94b7d361
AK
708/*
709 * When the transaction is active, 'transact_fp' holds the current running
710 * value of all FPR registers and 'fp_state' holds the last checkpointed
711 * value of all FPR registers for the current transaction. When transaction
712 * is not active 'fp_state' holds the current running state of all the FPR
713 * registers. So this function which returns the current running values of
714 * all the FPR registers, needs to know whether any transaction is active
715 * or not.
716 *
717 * Userspace interface buffer layout:
718 *
719 * struct data {
720 * u64 vsx[32];
721 * };
722 */
ce48b210
MN
723static int vsr_get(struct task_struct *target, const struct user_regset *regset,
724 unsigned int pos, unsigned int count,
725 void *kbuf, void __user *ubuf)
726{
de79f7b9 727 u64 buf[32];
f3e909c2 728 int ret, i;
ce48b210 729
94b7d361
AK
730#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
731 flush_fp_to_thread(target);
732 flush_altivec_to_thread(target);
733 flush_tmregs_to_thread(target);
734#endif
ce48b210
MN
735 flush_vsx_to_thread(target);
736
94b7d361
AK
737#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
738 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
739 for (i = 0; i < 32 ; i++)
740 buf[i] = target->thread.
741 transact_fp.fpr[i][TS_VSRLOWOFFSET];
742 } else {
743 for (i = 0; i < 32 ; i++)
744 buf[i] = target->thread.
745 fp_state.fpr[i][TS_VSRLOWOFFSET];
746 }
747#else
f3e909c2 748 for (i = 0; i < 32 ; i++)
de79f7b9 749 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
94b7d361 750#endif
ce48b210 751 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
f3e909c2 752 buf, 0, 32 * sizeof(double));
ce48b210
MN
753
754 return ret;
755}
756
94b7d361
AK
757/*
758 * When the transaction is active, 'transact_fp' holds the current running
759 * value of all FPR registers and 'fp_state' holds the last checkpointed
760 * value of all FPR registers for the current transaction. When transaction
761 * is not active 'fp_state' holds the current running state of all the FPR
762 * registers. So this function which sets the current running values of all
763 * the FPR registers, needs to know whether any transaction is active or not.
764 *
765 * Userspace interface buffer layout:
766 *
767 * struct data {
768 * u64 vsx[32];
769 * };
770 */
ce48b210
MN
771static int vsr_set(struct task_struct *target, const struct user_regset *regset,
772 unsigned int pos, unsigned int count,
773 const void *kbuf, const void __user *ubuf)
774{
de79f7b9 775 u64 buf[32];
f3e909c2 776 int ret,i;
ce48b210 777
94b7d361
AK
778#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
779 flush_fp_to_thread(target);
780 flush_altivec_to_thread(target);
781 flush_tmregs_to_thread(target);
782#endif
ce48b210
MN
783 flush_vsx_to_thread(target);
784
785 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
f3e909c2 786 buf, 0, 32 * sizeof(double));
94b7d361
AK
787
788#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
789 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
790 for (i = 0; i < 32 ; i++)
791 target->thread.transact_fp.
792 fpr[i][TS_VSRLOWOFFSET] = buf[i];
793 } else {
794 for (i = 0; i < 32 ; i++)
795 target->thread.fp_state.
796 fpr[i][TS_VSRLOWOFFSET] = buf[i];
797 }
798#else
f3e909c2 799 for (i = 0; i < 32 ; i++)
de79f7b9 800 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
94b7d361 801#endif
f3e909c2 802
ce48b210
MN
803
804 return ret;
805}
806#endif /* CONFIG_VSX */
807
865418d8
BH
808#ifdef CONFIG_SPE
809
810/*
811 * For get_evrregs/set_evrregs functions 'data' has the following layout:
812 *
813 * struct {
814 * u32 evr[32];
815 * u64 acc;
816 * u32 spefscr;
817 * }
818 */
819
a4e4b175
RM
820static int evr_active(struct task_struct *target,
821 const struct user_regset *regset)
865418d8 822{
a4e4b175
RM
823 flush_spe_to_thread(target);
824 return target->thread.used_spe ? regset->n : 0;
825}
865418d8 826
a4e4b175
RM
827static int evr_get(struct task_struct *target, const struct user_regset *regset,
828 unsigned int pos, unsigned int count,
829 void *kbuf, void __user *ubuf)
830{
831 int ret;
865418d8 832
a4e4b175 833 flush_spe_to_thread(target);
865418d8 834
a4e4b175
RM
835 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
836 &target->thread.evr,
837 0, sizeof(target->thread.evr));
865418d8 838
a4e4b175
RM
839 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
840 offsetof(struct thread_struct, spefscr));
841
842 if (!ret)
843 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
844 &target->thread.acc,
845 sizeof(target->thread.evr), -1);
846
847 return ret;
848}
849
850static int evr_set(struct task_struct *target, const struct user_regset *regset,
851 unsigned int pos, unsigned int count,
852 const void *kbuf, const void __user *ubuf)
853{
854 int ret;
855
856 flush_spe_to_thread(target);
857
858 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
859 &target->thread.evr,
860 0, sizeof(target->thread.evr));
865418d8 861
a4e4b175
RM
862 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
863 offsetof(struct thread_struct, spefscr));
864
865 if (!ret)
866 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
867 &target->thread.acc,
868 sizeof(target->thread.evr), -1);
869
870 return ret;
865418d8 871}
865418d8
BH
872#endif /* CONFIG_SPE */
873
25847fb1
AK
874#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
875/**
876 * tm_cgpr_active - get active number of registers in CGPR
877 * @target: The target task.
878 * @regset: The user regset structure.
879 *
880 * This function checks for the active number of available
881 * regisers in transaction checkpointed GPR category.
882 */
883static int tm_cgpr_active(struct task_struct *target,
884 const struct user_regset *regset)
885{
886 if (!cpu_has_feature(CPU_FTR_TM))
887 return -ENODEV;
888
889 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
890 return 0;
891
892 return regset->n;
893}
894
895/**
896 * tm_cgpr_get - get CGPR registers
897 * @target: The target task.
898 * @regset: The user regset structure.
899 * @pos: The buffer position.
900 * @count: Number of bytes to copy.
901 * @kbuf: Kernel buffer to copy from.
902 * @ubuf: User buffer to copy into.
903 *
904 * This function gets transaction checkpointed GPR registers.
905 *
906 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
907 * GPR register values for the current transaction to fall back on if it
908 * aborts in between. This function gets those checkpointed GPR registers.
909 * The userspace interface buffer layout is as follows.
910 *
911 * struct data {
912 * struct pt_regs ckpt_regs;
913 * };
914 */
915static int tm_cgpr_get(struct task_struct *target,
916 const struct user_regset *regset,
917 unsigned int pos, unsigned int count,
918 void *kbuf, void __user *ubuf)
919{
920 int ret;
921
922 if (!cpu_has_feature(CPU_FTR_TM))
923 return -ENODEV;
924
925 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
926 return -ENODATA;
927
928 flush_fp_to_thread(target);
929 flush_altivec_to_thread(target);
930 flush_tmregs_to_thread(target);
931
932 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
933 &target->thread.ckpt_regs,
934 0, offsetof(struct pt_regs, msr));
935 if (!ret) {
936 unsigned long msr = get_user_ckpt_msr(target);
937
938 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
939 offsetof(struct pt_regs, msr),
940 offsetof(struct pt_regs, msr) +
941 sizeof(msr));
942 }
943
944 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
945 offsetof(struct pt_regs, msr) + sizeof(long));
946
947 if (!ret)
948 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
949 &target->thread.ckpt_regs.orig_gpr3,
950 offsetof(struct pt_regs, orig_gpr3),
951 sizeof(struct pt_regs));
952 if (!ret)
953 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
954 sizeof(struct pt_regs), -1);
955
956 return ret;
957}
958
959/*
960 * tm_cgpr_set - set the CGPR registers
961 * @target: The target task.
962 * @regset: The user regset structure.
963 * @pos: The buffer position.
964 * @count: Number of bytes to copy.
965 * @kbuf: Kernel buffer to copy into.
966 * @ubuf: User buffer to copy from.
967 *
968 * This function sets in transaction checkpointed GPR registers.
969 *
970 * When the transaction is active, 'ckpt_regs' holds the checkpointed
971 * GPR register values for the current transaction to fall back on if it
972 * aborts in between. This function sets those checkpointed GPR registers.
973 * The userspace interface buffer layout is as follows.
974 *
975 * struct data {
976 * struct pt_regs ckpt_regs;
977 * };
978 */
979static int tm_cgpr_set(struct task_struct *target,
980 const struct user_regset *regset,
981 unsigned int pos, unsigned int count,
982 const void *kbuf, const void __user *ubuf)
983{
984 unsigned long reg;
985 int ret;
986
987 if (!cpu_has_feature(CPU_FTR_TM))
988 return -ENODEV;
989
990 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
991 return -ENODATA;
992
993 flush_fp_to_thread(target);
994 flush_altivec_to_thread(target);
995 flush_tmregs_to_thread(target);
996
997 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
998 &target->thread.ckpt_regs,
999 0, PT_MSR * sizeof(reg));
1000
1001 if (!ret && count > 0) {
1002 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
1003 PT_MSR * sizeof(reg),
1004 (PT_MSR + 1) * sizeof(reg));
1005 if (!ret)
1006 ret = set_user_ckpt_msr(target, reg);
1007 }
1008
1009 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
1010 offsetof(struct pt_regs, msr) + sizeof(long));
1011
1012 if (!ret)
1013 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1014 &target->thread.ckpt_regs.orig_gpr3,
1015 PT_ORIG_R3 * sizeof(reg),
1016 (PT_MAX_PUT_REG + 1) * sizeof(reg));
1017
1018 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
1019 ret = user_regset_copyin_ignore(
1020 &pos, &count, &kbuf, &ubuf,
1021 (PT_MAX_PUT_REG + 1) * sizeof(reg),
1022 PT_TRAP * sizeof(reg));
1023
1024 if (!ret && count > 0) {
1025 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
1026 PT_TRAP * sizeof(reg),
1027 (PT_TRAP + 1) * sizeof(reg));
1028 if (!ret)
1029 ret = set_user_ckpt_trap(target, reg);
1030 }
1031
1032 if (!ret)
1033 ret = user_regset_copyin_ignore(
1034 &pos, &count, &kbuf, &ubuf,
1035 (PT_TRAP + 1) * sizeof(reg), -1);
1036
1037 return ret;
1038}
19cbcbf7
AK
1039
1040/**
1041 * tm_cfpr_active - get active number of registers in CFPR
1042 * @target: The target task.
1043 * @regset: The user regset structure.
1044 *
1045 * This function checks for the active number of available
1046 * regisers in transaction checkpointed FPR category.
1047 */
1048static int tm_cfpr_active(struct task_struct *target,
1049 const struct user_regset *regset)
1050{
1051 if (!cpu_has_feature(CPU_FTR_TM))
1052 return -ENODEV;
1053
1054 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1055 return 0;
1056
1057 return regset->n;
1058}
1059
1060/**
1061 * tm_cfpr_get - get CFPR registers
1062 * @target: The target task.
1063 * @regset: The user regset structure.
1064 * @pos: The buffer position.
1065 * @count: Number of bytes to copy.
1066 * @kbuf: Kernel buffer to copy from.
1067 * @ubuf: User buffer to copy into.
1068 *
1069 * This function gets in transaction checkpointed FPR registers.
1070 *
1071 * When the transaction is active 'fp_state' holds the checkpointed
1072 * values for the current transaction to fall back on if it aborts
1073 * in between. This function gets those checkpointed FPR registers.
1074 * The userspace interface buffer layout is as follows.
1075 *
1076 * struct data {
1077 * u64 fpr[32];
1078 * u64 fpscr;
1079 *};
1080 */
1081static int tm_cfpr_get(struct task_struct *target,
1082 const struct user_regset *regset,
1083 unsigned int pos, unsigned int count,
1084 void *kbuf, void __user *ubuf)
1085{
1086 u64 buf[33];
1087 int i;
1088
1089 if (!cpu_has_feature(CPU_FTR_TM))
1090 return -ENODEV;
1091
1092 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1093 return -ENODATA;
1094
1095 flush_fp_to_thread(target);
1096 flush_altivec_to_thread(target);
1097 flush_tmregs_to_thread(target);
1098
1099 /* copy to local buffer then write that out */
1100 for (i = 0; i < 32 ; i++)
1101 buf[i] = target->thread.TS_FPR(i);
1102 buf[32] = target->thread.fp_state.fpscr;
1103 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1104}
1105
1106/**
1107 * tm_cfpr_set - set CFPR registers
1108 * @target: The target task.
1109 * @regset: The user regset structure.
1110 * @pos: The buffer position.
1111 * @count: Number of bytes to copy.
1112 * @kbuf: Kernel buffer to copy into.
1113 * @ubuf: User buffer to copy from.
1114 *
1115 * This function sets in transaction checkpointed FPR registers.
1116 *
1117 * When the transaction is active 'fp_state' holds the checkpointed
1118 * FPR register values for the current transaction to fall back on
1119 * if it aborts in between. This function sets these checkpointed
1120 * FPR registers. The userspace interface buffer layout is as follows.
1121 *
1122 * struct data {
1123 * u64 fpr[32];
1124 * u64 fpscr;
1125 *};
1126 */
1127static int tm_cfpr_set(struct task_struct *target,
1128 const struct user_regset *regset,
1129 unsigned int pos, unsigned int count,
1130 const void *kbuf, const void __user *ubuf)
1131{
1132 u64 buf[33];
1133 int i;
1134
1135 if (!cpu_has_feature(CPU_FTR_TM))
1136 return -ENODEV;
1137
1138 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1139 return -ENODATA;
1140
1141 flush_fp_to_thread(target);
1142 flush_altivec_to_thread(target);
1143 flush_tmregs_to_thread(target);
1144
1145 /* copy to local buffer then write that out */
1146 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1147 if (i)
1148 return i;
1149 for (i = 0; i < 32 ; i++)
1150 target->thread.TS_FPR(i) = buf[i];
1151 target->thread.fp_state.fpscr = buf[32];
1152 return 0;
1153}
8c13f599
AK
1154
1155/**
1156 * tm_cvmx_active - get active number of registers in CVMX
1157 * @target: The target task.
1158 * @regset: The user regset structure.
1159 *
1160 * This function checks for the active number of available
1161 * regisers in checkpointed VMX category.
1162 */
1163static int tm_cvmx_active(struct task_struct *target,
1164 const struct user_regset *regset)
1165{
1166 if (!cpu_has_feature(CPU_FTR_TM))
1167 return -ENODEV;
1168
1169 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1170 return 0;
1171
1172 return regset->n;
1173}
1174
1175/**
1176 * tm_cvmx_get - get CMVX registers
1177 * @target: The target task.
1178 * @regset: The user regset structure.
1179 * @pos: The buffer position.
1180 * @count: Number of bytes to copy.
1181 * @kbuf: Kernel buffer to copy from.
1182 * @ubuf: User buffer to copy into.
1183 *
1184 * This function gets in transaction checkpointed VMX registers.
1185 *
1186 * When the transaction is active 'vr_state' and 'vr_save' hold
1187 * the checkpointed values for the current transaction to fall
1188 * back on if it aborts in between. The userspace interface buffer
1189 * layout is as follows.
1190 *
1191 * struct data {
1192 * vector128 vr[32];
1193 * vector128 vscr;
1194 * vector128 vrsave;
1195 *};
1196 */
1197static int tm_cvmx_get(struct task_struct *target,
1198 const struct user_regset *regset,
1199 unsigned int pos, unsigned int count,
1200 void *kbuf, void __user *ubuf)
1201{
1202 int ret;
1203
1204 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1205
1206 if (!cpu_has_feature(CPU_FTR_TM))
1207 return -ENODEV;
1208
1209 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1210 return -ENODATA;
1211
1212 /* Flush the state */
1213 flush_fp_to_thread(target);
1214 flush_altivec_to_thread(target);
1215 flush_tmregs_to_thread(target);
1216
1217 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1218 &target->thread.vr_state, 0,
1219 33 * sizeof(vector128));
1220 if (!ret) {
1221 /*
1222 * Copy out only the low-order word of vrsave.
1223 */
1224 union {
1225 elf_vrreg_t reg;
1226 u32 word;
1227 } vrsave;
1228 memset(&vrsave, 0, sizeof(vrsave));
1229 vrsave.word = target->thread.vrsave;
1230 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1231 33 * sizeof(vector128), -1);
1232 }
1233
1234 return ret;
1235}
1236
1237/**
1238 * tm_cvmx_set - set CMVX registers
1239 * @target: The target task.
1240 * @regset: The user regset structure.
1241 * @pos: The buffer position.
1242 * @count: Number of bytes to copy.
1243 * @kbuf: Kernel buffer to copy into.
1244 * @ubuf: User buffer to copy from.
1245 *
1246 * This function sets in transaction checkpointed VMX registers.
1247 *
1248 * When the transaction is active 'vr_state' and 'vr_save' hold
1249 * the checkpointed values for the current transaction to fall
1250 * back on if it aborts in between. The userspace interface buffer
1251 * layout is as follows.
1252 *
1253 * struct data {
1254 * vector128 vr[32];
1255 * vector128 vscr;
1256 * vector128 vrsave;
1257 *};
1258 */
1259static int tm_cvmx_set(struct task_struct *target,
1260 const struct user_regset *regset,
1261 unsigned int pos, unsigned int count,
1262 const void *kbuf, const void __user *ubuf)
1263{
1264 int ret;
1265
1266 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1267
1268 if (!cpu_has_feature(CPU_FTR_TM))
1269 return -ENODEV;
1270
1271 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1272 return -ENODATA;
1273
1274 flush_fp_to_thread(target);
1275 flush_altivec_to_thread(target);
1276 flush_tmregs_to_thread(target);
1277
1278 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1279 &target->thread.vr_state, 0,
1280 33 * sizeof(vector128));
1281 if (!ret && count > 0) {
1282 /*
1283 * We use only the low-order word of vrsave.
1284 */
1285 union {
1286 elf_vrreg_t reg;
1287 u32 word;
1288 } vrsave;
1289 memset(&vrsave, 0, sizeof(vrsave));
1290 vrsave.word = target->thread.vrsave;
1291 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1292 33 * sizeof(vector128), -1);
1293 if (!ret)
1294 target->thread.vrsave = vrsave.word;
1295 }
1296
1297 return ret;
1298}
9d3918f7
AK
1299
1300/**
1301 * tm_cvsx_active - get active number of registers in CVSX
1302 * @target: The target task.
1303 * @regset: The user regset structure.
1304 *
1305 * This function checks for the active number of available
1306 * regisers in transaction checkpointed VSX category.
1307 */
1308static int tm_cvsx_active(struct task_struct *target,
1309 const struct user_regset *regset)
1310{
1311 if (!cpu_has_feature(CPU_FTR_TM))
1312 return -ENODEV;
1313
1314 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1315 return 0;
1316
1317 flush_vsx_to_thread(target);
1318 return target->thread.used_vsr ? regset->n : 0;
1319}
1320
1321/**
1322 * tm_cvsx_get - get CVSX registers
1323 * @target: The target task.
1324 * @regset: The user regset structure.
1325 * @pos: The buffer position.
1326 * @count: Number of bytes to copy.
1327 * @kbuf: Kernel buffer to copy from.
1328 * @ubuf: User buffer to copy into.
1329 *
1330 * This function gets in transaction checkpointed VSX registers.
1331 *
1332 * When the transaction is active 'fp_state' holds the checkpointed
1333 * values for the current transaction to fall back on if it aborts
1334 * in between. This function gets those checkpointed VSX registers.
1335 * The userspace interface buffer layout is as follows.
1336 *
1337 * struct data {
1338 * u64 vsx[32];
1339 *};
1340 */
1341static int tm_cvsx_get(struct task_struct *target,
1342 const struct user_regset *regset,
1343 unsigned int pos, unsigned int count,
1344 void *kbuf, void __user *ubuf)
1345{
1346 u64 buf[32];
1347 int ret, i;
1348
1349 if (!cpu_has_feature(CPU_FTR_TM))
1350 return -ENODEV;
1351
1352 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1353 return -ENODATA;
1354
1355 /* Flush the state */
1356 flush_fp_to_thread(target);
1357 flush_altivec_to_thread(target);
1358 flush_tmregs_to_thread(target);
1359 flush_vsx_to_thread(target);
1360
1361 for (i = 0; i < 32 ; i++)
1362 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
1363 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1364 buf, 0, 32 * sizeof(double));
1365
1366 return ret;
1367}
1368
1369/**
1370 * tm_cvsx_set - set CFPR registers
1371 * @target: The target task.
1372 * @regset: The user regset structure.
1373 * @pos: The buffer position.
1374 * @count: Number of bytes to copy.
1375 * @kbuf: Kernel buffer to copy into.
1376 * @ubuf: User buffer to copy from.
1377 *
1378 * This function sets in transaction checkpointed VSX registers.
1379 *
1380 * When the transaction is active 'fp_state' holds the checkpointed
1381 * VSX register values for the current transaction to fall back on
1382 * if it aborts in between. This function sets these checkpointed
1383 * FPR registers. The userspace interface buffer layout is as follows.
1384 *
1385 * struct data {
1386 * u64 vsx[32];
1387 *};
1388 */
1389static int tm_cvsx_set(struct task_struct *target,
1390 const struct user_regset *regset,
1391 unsigned int pos, unsigned int count,
1392 const void *kbuf, const void __user *ubuf)
1393{
1394 u64 buf[32];
1395 int ret, i;
1396
1397 if (!cpu_has_feature(CPU_FTR_TM))
1398 return -ENODEV;
1399
1400 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1401 return -ENODATA;
1402
1403 /* Flush the state */
1404 flush_fp_to_thread(target);
1405 flush_altivec_to_thread(target);
1406 flush_tmregs_to_thread(target);
1407 flush_vsx_to_thread(target);
1408
1409 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1410 buf, 0, 32 * sizeof(double));
1411 for (i = 0; i < 32 ; i++)
1412 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1413
1414 return ret;
1415}
08e1c01d
AK
1416
1417/**
1418 * tm_spr_active - get active number of registers in TM SPR
1419 * @target: The target task.
1420 * @regset: The user regset structure.
1421 *
1422 * This function checks the active number of available
1423 * regisers in the transactional memory SPR category.
1424 */
1425static int tm_spr_active(struct task_struct *target,
1426 const struct user_regset *regset)
1427{
1428 if (!cpu_has_feature(CPU_FTR_TM))
1429 return -ENODEV;
1430
1431 return regset->n;
1432}
1433
1434/**
1435 * tm_spr_get - get the TM related SPR registers
1436 * @target: The target task.
1437 * @regset: The user regset structure.
1438 * @pos: The buffer position.
1439 * @count: Number of bytes to copy.
1440 * @kbuf: Kernel buffer to copy from.
1441 * @ubuf: User buffer to copy into.
1442 *
1443 * This function gets transactional memory related SPR registers.
1444 * The userspace interface buffer layout is as follows.
1445 *
1446 * struct {
1447 * u64 tm_tfhar;
1448 * u64 tm_texasr;
1449 * u64 tm_tfiar;
1450 * };
1451 */
1452static int tm_spr_get(struct task_struct *target,
1453 const struct user_regset *regset,
1454 unsigned int pos, unsigned int count,
1455 void *kbuf, void __user *ubuf)
1456{
1457 int ret;
1458
1459 /* Build tests */
1460 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1461 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1462 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1463
1464 if (!cpu_has_feature(CPU_FTR_TM))
1465 return -ENODEV;
1466
1467 /* Flush the states */
1468 flush_fp_to_thread(target);
1469 flush_altivec_to_thread(target);
1470 flush_tmregs_to_thread(target);
1471
1472 /* TFHAR register */
1473 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1474 &target->thread.tm_tfhar, 0, sizeof(u64));
1475
1476 /* TEXASR register */
1477 if (!ret)
1478 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1479 &target->thread.tm_texasr, sizeof(u64),
1480 2 * sizeof(u64));
1481
1482 /* TFIAR register */
1483 if (!ret)
1484 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1485 &target->thread.tm_tfiar,
1486 2 * sizeof(u64), 3 * sizeof(u64));
1487 return ret;
1488}
1489
1490/**
1491 * tm_spr_set - set the TM related SPR registers
1492 * @target: The target task.
1493 * @regset: The user regset structure.
1494 * @pos: The buffer position.
1495 * @count: Number of bytes to copy.
1496 * @kbuf: Kernel buffer to copy into.
1497 * @ubuf: User buffer to copy from.
1498 *
1499 * This function sets transactional memory related SPR registers.
1500 * The userspace interface buffer layout is as follows.
1501 *
1502 * struct {
1503 * u64 tm_tfhar;
1504 * u64 tm_texasr;
1505 * u64 tm_tfiar;
1506 * };
1507 */
1508static int tm_spr_set(struct task_struct *target,
1509 const struct user_regset *regset,
1510 unsigned int pos, unsigned int count,
1511 const void *kbuf, const void __user *ubuf)
1512{
1513 int ret;
1514
1515 /* Build tests */
1516 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1517 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1518 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1519
1520 if (!cpu_has_feature(CPU_FTR_TM))
1521 return -ENODEV;
1522
1523 /* Flush the states */
1524 flush_fp_to_thread(target);
1525 flush_altivec_to_thread(target);
1526 flush_tmregs_to_thread(target);
1527
1528 /* TFHAR register */
1529 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1530 &target->thread.tm_tfhar, 0, sizeof(u64));
1531
1532 /* TEXASR register */
1533 if (!ret)
1534 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1535 &target->thread.tm_texasr, sizeof(u64),
1536 2 * sizeof(u64));
1537
1538 /* TFIAR register */
1539 if (!ret)
1540 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1541 &target->thread.tm_tfiar,
1542 2 * sizeof(u64), 3 * sizeof(u64));
1543 return ret;
1544}
c45dc900
AK
1545
1546static int tm_tar_active(struct task_struct *target,
1547 const struct user_regset *regset)
1548{
1549 if (!cpu_has_feature(CPU_FTR_TM))
1550 return -ENODEV;
1551
1552 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1553 return regset->n;
1554
1555 return 0;
1556}
1557
1558static int tm_tar_get(struct task_struct *target,
1559 const struct user_regset *regset,
1560 unsigned int pos, unsigned int count,
1561 void *kbuf, void __user *ubuf)
1562{
1563 int ret;
1564
1565 if (!cpu_has_feature(CPU_FTR_TM))
1566 return -ENODEV;
1567
1568 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1569 return -ENODATA;
1570
1571 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1572 &target->thread.tm_tar, 0, sizeof(u64));
1573 return ret;
1574}
1575
1576static int tm_tar_set(struct task_struct *target,
1577 const struct user_regset *regset,
1578 unsigned int pos, unsigned int count,
1579 const void *kbuf, const void __user *ubuf)
1580{
1581 int ret;
1582
1583 if (!cpu_has_feature(CPU_FTR_TM))
1584 return -ENODEV;
1585
1586 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1587 return -ENODATA;
1588
1589 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1590 &target->thread.tm_tar, 0, sizeof(u64));
1591 return ret;
1592}
1593
1594static int tm_ppr_active(struct task_struct *target,
1595 const struct user_regset *regset)
1596{
1597 if (!cpu_has_feature(CPU_FTR_TM))
1598 return -ENODEV;
1599
1600 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1601 return regset->n;
1602
1603 return 0;
1604}
1605
1606
1607static int tm_ppr_get(struct task_struct *target,
1608 const struct user_regset *regset,
1609 unsigned int pos, unsigned int count,
1610 void *kbuf, void __user *ubuf)
1611{
1612 int ret;
1613
1614 if (!cpu_has_feature(CPU_FTR_TM))
1615 return -ENODEV;
1616
1617 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1618 return -ENODATA;
1619
1620 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1621 &target->thread.tm_ppr, 0, sizeof(u64));
1622 return ret;
1623}
1624
1625static int tm_ppr_set(struct task_struct *target,
1626 const struct user_regset *regset,
1627 unsigned int pos, unsigned int count,
1628 const void *kbuf, const void __user *ubuf)
1629{
1630 int ret;
1631
1632 if (!cpu_has_feature(CPU_FTR_TM))
1633 return -ENODEV;
1634
1635 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1636 return -ENODATA;
1637
1638 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1639 &target->thread.tm_ppr, 0, sizeof(u64));
1640 return ret;
1641}
1642
1643static int tm_dscr_active(struct task_struct *target,
1644 const struct user_regset *regset)
1645{
1646 if (!cpu_has_feature(CPU_FTR_TM))
1647 return -ENODEV;
1648
1649 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1650 return regset->n;
1651
1652 return 0;
1653}
1654
1655static int tm_dscr_get(struct task_struct *target,
1656 const struct user_regset *regset,
1657 unsigned int pos, unsigned int count,
1658 void *kbuf, void __user *ubuf)
1659{
1660 int ret;
1661
1662 if (!cpu_has_feature(CPU_FTR_TM))
1663 return -ENODEV;
1664
1665 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1666 return -ENODATA;
1667
1668 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1669 &target->thread.tm_dscr, 0, sizeof(u64));
1670 return ret;
1671}
1672
1673static int tm_dscr_set(struct task_struct *target,
1674 const struct user_regset *regset,
1675 unsigned int pos, unsigned int count,
1676 const void *kbuf, const void __user *ubuf)
1677{
1678 int ret;
1679
1680 if (!cpu_has_feature(CPU_FTR_TM))
1681 return -ENODEV;
1682
1683 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1684 return -ENODATA;
1685
1686 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1687 &target->thread.tm_dscr, 0, sizeof(u64));
1688 return ret;
1689}
08e1c01d 1690#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
865418d8 1691
fa439810
AK
1692#ifdef CONFIG_PPC64
1693static int ppr_get(struct task_struct *target,
1694 const struct user_regset *regset,
1695 unsigned int pos, unsigned int count,
1696 void *kbuf, void __user *ubuf)
1697{
1698 int ret;
1699
1700 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1701 &target->thread.ppr, 0, sizeof(u64));
1702 return ret;
1703}
1704
1705static int ppr_set(struct task_struct *target,
1706 const struct user_regset *regset,
1707 unsigned int pos, unsigned int count,
1708 const void *kbuf, const void __user *ubuf)
1709{
1710 int ret;
1711
1712 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1713 &target->thread.ppr, 0, sizeof(u64));
1714 return ret;
1715}
1716
1717static int dscr_get(struct task_struct *target,
1718 const struct user_regset *regset,
1719 unsigned int pos, unsigned int count,
1720 void *kbuf, void __user *ubuf)
1721{
1722 int ret;
1723
1724 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1725 &target->thread.dscr, 0, sizeof(u64));
1726 return ret;
1727}
1728static int dscr_set(struct task_struct *target,
1729 const struct user_regset *regset,
1730 unsigned int pos, unsigned int count,
1731 const void *kbuf, const void __user *ubuf)
1732{
1733 int ret;
1734
1735 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1736 &target->thread.dscr, 0, sizeof(u64));
1737 return ret;
1738}
1739#endif
1740#ifdef CONFIG_PPC_BOOK3S_64
1741static int tar_get(struct task_struct *target,
1742 const struct user_regset *regset,
1743 unsigned int pos, unsigned int count,
1744 void *kbuf, void __user *ubuf)
1745{
1746 int ret;
1747
1748 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1749 &target->thread.tar, 0, sizeof(u64));
1750 return ret;
1751}
1752static int tar_set(struct task_struct *target,
1753 const struct user_regset *regset,
1754 unsigned int pos, unsigned int count,
1755 const void *kbuf, const void __user *ubuf)
1756{
1757 int ret;
1758
1759 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1760 &target->thread.tar, 0, sizeof(u64));
1761 return ret;
1762}
cf89d4e1
AK
1763
1764static int ebb_active(struct task_struct *target,
1765 const struct user_regset *regset)
1766{
1767 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1768 return -ENODEV;
1769
1770 if (target->thread.used_ebb)
1771 return regset->n;
1772
1773 return 0;
1774}
1775
1776static int ebb_get(struct task_struct *target,
1777 const struct user_regset *regset,
1778 unsigned int pos, unsigned int count,
1779 void *kbuf, void __user *ubuf)
1780{
1781 /* Build tests */
1782 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1783 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1784
1785 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1786 return -ENODEV;
1787
1788 if (!target->thread.used_ebb)
1789 return -ENODATA;
1790
1791 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1792 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1793}
1794
1795static int ebb_set(struct task_struct *target,
1796 const struct user_regset *regset,
1797 unsigned int pos, unsigned int count,
1798 const void *kbuf, const void __user *ubuf)
1799{
1800 int ret = 0;
1801
1802 /* Build tests */
1803 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1804 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1805
1806 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1807 return -ENODEV;
1808
1809 if (target->thread.used_ebb)
1810 return -ENODATA;
1811
1812 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1813 &target->thread.ebbrr, 0, sizeof(unsigned long));
1814
1815 if (!ret)
1816 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1817 &target->thread.ebbhr, sizeof(unsigned long),
1818 2 * sizeof(unsigned long));
1819
1820 if (!ret)
1821 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1822 &target->thread.bescr,
1823 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1824
1825 return ret;
1826}
fa439810 1827#endif
80fdf470
RM
1828/*
1829 * These are our native regset flavors.
1830 */
1831enum powerpc_regset {
1832 REGSET_GPR,
1833 REGSET_FPR,
1834#ifdef CONFIG_ALTIVEC
1835 REGSET_VMX,
1836#endif
ce48b210
MN
1837#ifdef CONFIG_VSX
1838 REGSET_VSX,
1839#endif
80fdf470
RM
1840#ifdef CONFIG_SPE
1841 REGSET_SPE,
1842#endif
25847fb1
AK
1843#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1844 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
19cbcbf7 1845 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
8c13f599 1846 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
9d3918f7 1847 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
08e1c01d 1848 REGSET_TM_SPR, /* TM specific SPR registers */
c45dc900
AK
1849 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1850 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1851 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
25847fb1 1852#endif
fa439810
AK
1853#ifdef CONFIG_PPC64
1854 REGSET_PPR, /* PPR register */
1855 REGSET_DSCR, /* DSCR register */
1856#endif
1857#ifdef CONFIG_PPC_BOOK3S_64
1858 REGSET_TAR, /* TAR register */
cf89d4e1 1859 REGSET_EBB, /* EBB registers */
fa439810 1860#endif
80fdf470
RM
1861};
1862
1863static const struct user_regset native_regsets[] = {
1864 [REGSET_GPR] = {
1865 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1866 .size = sizeof(long), .align = sizeof(long),
1867 .get = gpr_get, .set = gpr_set
1868 },
1869 [REGSET_FPR] = {
1870 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1871 .size = sizeof(double), .align = sizeof(double),
1872 .get = fpr_get, .set = fpr_set
1873 },
1874#ifdef CONFIG_ALTIVEC
1875 [REGSET_VMX] = {
1876 .core_note_type = NT_PPC_VMX, .n = 34,
1877 .size = sizeof(vector128), .align = sizeof(vector128),
1878 .active = vr_active, .get = vr_get, .set = vr_set
1879 },
1880#endif
ce48b210
MN
1881#ifdef CONFIG_VSX
1882 [REGSET_VSX] = {
f3e909c2
MN
1883 .core_note_type = NT_PPC_VSX, .n = 32,
1884 .size = sizeof(double), .align = sizeof(double),
ce48b210
MN
1885 .active = vsr_active, .get = vsr_get, .set = vsr_set
1886 },
1887#endif
80fdf470
RM
1888#ifdef CONFIG_SPE
1889 [REGSET_SPE] = {
a0b38b4e 1890 .core_note_type = NT_PPC_SPE, .n = 35,
80fdf470
RM
1891 .size = sizeof(u32), .align = sizeof(u32),
1892 .active = evr_active, .get = evr_get, .set = evr_set
1893 },
1894#endif
25847fb1
AK
1895#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1896 [REGSET_TM_CGPR] = {
1897 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1898 .size = sizeof(long), .align = sizeof(long),
1899 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1900 },
19cbcbf7
AK
1901 [REGSET_TM_CFPR] = {
1902 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1903 .size = sizeof(double), .align = sizeof(double),
1904 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1905 },
8c13f599
AK
1906 [REGSET_TM_CVMX] = {
1907 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1908 .size = sizeof(vector128), .align = sizeof(vector128),
1909 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1910 },
9d3918f7
AK
1911 [REGSET_TM_CVSX] = {
1912 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1913 .size = sizeof(double), .align = sizeof(double),
1914 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1915 },
08e1c01d
AK
1916 [REGSET_TM_SPR] = {
1917 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1918 .size = sizeof(u64), .align = sizeof(u64),
1919 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1920 },
c45dc900
AK
1921 [REGSET_TM_CTAR] = {
1922 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1923 .size = sizeof(u64), .align = sizeof(u64),
1924 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1925 },
1926 [REGSET_TM_CPPR] = {
1927 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1928 .size = sizeof(u64), .align = sizeof(u64),
1929 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1930 },
1931 [REGSET_TM_CDSCR] = {
1932 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1933 .size = sizeof(u64), .align = sizeof(u64),
1934 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1935 },
25847fb1 1936#endif
fa439810
AK
1937#ifdef CONFIG_PPC64
1938 [REGSET_PPR] = {
1939 .core_note_type = NT_PPC_PPR, .n = 1,
1940 .size = sizeof(u64), .align = sizeof(u64),
1941 .get = ppr_get, .set = ppr_set
1942 },
1943 [REGSET_DSCR] = {
1944 .core_note_type = NT_PPC_DSCR, .n = 1,
1945 .size = sizeof(u64), .align = sizeof(u64),
1946 .get = dscr_get, .set = dscr_set
1947 },
1948#endif
1949#ifdef CONFIG_PPC_BOOK3S_64
1950 [REGSET_TAR] = {
1951 .core_note_type = NT_PPC_TAR, .n = 1,
1952 .size = sizeof(u64), .align = sizeof(u64),
1953 .get = tar_get, .set = tar_set
1954 },
cf89d4e1
AK
1955 [REGSET_EBB] = {
1956 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1957 .size = sizeof(u64), .align = sizeof(u64),
1958 .active = ebb_active, .get = ebb_get, .set = ebb_set
1959 },
fa439810 1960#endif
80fdf470
RM
1961};
1962
1963static const struct user_regset_view user_ppc_native_view = {
1964 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1965 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1966};
1967
fa8f5cb0
RM
1968#ifdef CONFIG_PPC64
1969#include <linux/compat.h>
1970
04fcadce 1971static int gpr32_get_common(struct task_struct *target,
fa8f5cb0
RM
1972 const struct user_regset *regset,
1973 unsigned int pos, unsigned int count,
04fcadce 1974 void *kbuf, void __user *ubuf, bool tm_active)
fa8f5cb0
RM
1975{
1976 const unsigned long *regs = &target->thread.regs->gpr[0];
04fcadce 1977 const unsigned long *ckpt_regs;
fa8f5cb0
RM
1978 compat_ulong_t *k = kbuf;
1979 compat_ulong_t __user *u = ubuf;
1980 compat_ulong_t reg;
a71f5d5d 1981 int i;
fa8f5cb0 1982
04fcadce
AK
1983#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1984 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
1985#endif
1986 if (tm_active) {
1987 regs = ckpt_regs;
1988 } else {
1989 if (target->thread.regs == NULL)
1990 return -EIO;
1991
1992 if (!FULL_REGS(target->thread.regs)) {
1993 /*
1994 * We have a partial register set.
1995 * Fill 14-31 with bogus values.
1996 */
1997 for (i = 14; i < 32; i++)
1998 target->thread.regs->gpr[i] = NV_REG_POISON;
1999 }
a71f5d5d 2000 }
fa8f5cb0
RM
2001
2002 pos /= sizeof(reg);
2003 count /= sizeof(reg);
2004
2005 if (kbuf)
2006 for (; count > 0 && pos < PT_MSR; --count)
2007 *k++ = regs[pos++];
2008 else
2009 for (; count > 0 && pos < PT_MSR; --count)
2010 if (__put_user((compat_ulong_t) regs[pos++], u++))
2011 return -EFAULT;
2012
2013 if (count > 0 && pos == PT_MSR) {
2014 reg = get_user_msr(target);
2015 if (kbuf)
2016 *k++ = reg;
2017 else if (__put_user(reg, u++))
2018 return -EFAULT;
2019 ++pos;
2020 --count;
2021 }
2022
2023 if (kbuf)
2024 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2025 *k++ = regs[pos++];
2026 else
2027 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2028 if (__put_user((compat_ulong_t) regs[pos++], u++))
2029 return -EFAULT;
2030
2031 kbuf = k;
2032 ubuf = u;
2033 pos *= sizeof(reg);
2034 count *= sizeof(reg);
2035 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
2036 PT_REGS_COUNT * sizeof(reg), -1);
2037}
2038
04fcadce 2039static int gpr32_set_common(struct task_struct *target,
fa8f5cb0
RM
2040 const struct user_regset *regset,
2041 unsigned int pos, unsigned int count,
04fcadce 2042 const void *kbuf, const void __user *ubuf, bool tm_active)
fa8f5cb0
RM
2043{
2044 unsigned long *regs = &target->thread.regs->gpr[0];
04fcadce 2045 unsigned long *ckpt_regs;
fa8f5cb0
RM
2046 const compat_ulong_t *k = kbuf;
2047 const compat_ulong_t __user *u = ubuf;
2048 compat_ulong_t reg;
2049
04fcadce
AK
2050#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2051 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
2052#endif
fa8f5cb0 2053
04fcadce
AK
2054 if (tm_active) {
2055 regs = ckpt_regs;
2056 } else {
2057 regs = &target->thread.regs->gpr[0];
2058
2059 if (target->thread.regs == NULL)
2060 return -EIO;
2061
2062 CHECK_FULL_REGS(target->thread.regs);
2063 }
fa8f5cb0
RM
2064
2065 pos /= sizeof(reg);
2066 count /= sizeof(reg);
2067
2068 if (kbuf)
2069 for (; count > 0 && pos < PT_MSR; --count)
2070 regs[pos++] = *k++;
2071 else
2072 for (; count > 0 && pos < PT_MSR; --count) {
2073 if (__get_user(reg, u++))
2074 return -EFAULT;
2075 regs[pos++] = reg;
2076 }
2077
2078
2079 if (count > 0 && pos == PT_MSR) {
2080 if (kbuf)
2081 reg = *k++;
2082 else if (__get_user(reg, u++))
2083 return -EFAULT;
2084 set_user_msr(target, reg);
2085 ++pos;
2086 --count;
2087 }
2088
c2372eb9 2089 if (kbuf) {
fa8f5cb0
RM
2090 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2091 regs[pos++] = *k++;
c2372eb9
RM
2092 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2093 ++k;
2094 } else {
fa8f5cb0
RM
2095 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2096 if (__get_user(reg, u++))
2097 return -EFAULT;
2098 regs[pos++] = reg;
2099 }
c2372eb9
RM
2100 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2101 if (__get_user(reg, u++))
2102 return -EFAULT;
2103 }
fa8f5cb0
RM
2104
2105 if (count > 0 && pos == PT_TRAP) {
2106 if (kbuf)
2107 reg = *k++;
2108 else if (__get_user(reg, u++))
2109 return -EFAULT;
2110 set_user_trap(target, reg);
2111 ++pos;
2112 --count;
2113 }
2114
2115 kbuf = k;
2116 ubuf = u;
2117 pos *= sizeof(reg);
2118 count *= sizeof(reg);
2119 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2120 (PT_TRAP + 1) * sizeof(reg), -1);
2121}
2122
25847fb1
AK
2123#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2124static int tm_cgpr32_get(struct task_struct *target,
2125 const struct user_regset *regset,
2126 unsigned int pos, unsigned int count,
2127 void *kbuf, void __user *ubuf)
2128{
2129 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 1);
2130}
2131
2132static int tm_cgpr32_set(struct task_struct *target,
2133 const struct user_regset *regset,
2134 unsigned int pos, unsigned int count,
2135 const void *kbuf, const void __user *ubuf)
2136{
2137 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 1);
2138}
2139#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2140
04fcadce
AK
2141static int gpr32_get(struct task_struct *target,
2142 const struct user_regset *regset,
2143 unsigned int pos, unsigned int count,
2144 void *kbuf, void __user *ubuf)
2145{
2146 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 0);
2147}
2148
2149static int gpr32_set(struct task_struct *target,
2150 const struct user_regset *regset,
2151 unsigned int pos, unsigned int count,
2152 const void *kbuf, const void __user *ubuf)
2153{
2154 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 0);
2155}
2156
fa8f5cb0
RM
2157/*
2158 * These are the regset flavors matching the CONFIG_PPC32 native set.
2159 */
2160static const struct user_regset compat_regsets[] = {
2161 [REGSET_GPR] = {
2162 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2163 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2164 .get = gpr32_get, .set = gpr32_set
2165 },
2166 [REGSET_FPR] = {
2167 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2168 .size = sizeof(double), .align = sizeof(double),
2169 .get = fpr_get, .set = fpr_set
2170 },
2171#ifdef CONFIG_ALTIVEC
2172 [REGSET_VMX] = {
2173 .core_note_type = NT_PPC_VMX, .n = 34,
2174 .size = sizeof(vector128), .align = sizeof(vector128),
2175 .active = vr_active, .get = vr_get, .set = vr_set
2176 },
2177#endif
2178#ifdef CONFIG_SPE
2179 [REGSET_SPE] = {
24f1a849 2180 .core_note_type = NT_PPC_SPE, .n = 35,
fa8f5cb0
RM
2181 .size = sizeof(u32), .align = sizeof(u32),
2182 .active = evr_active, .get = evr_get, .set = evr_set
2183 },
2184#endif
25847fb1
AK
2185#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2186 [REGSET_TM_CGPR] = {
2187 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2188 .size = sizeof(long), .align = sizeof(long),
2189 .active = tm_cgpr_active,
2190 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2191 },
19cbcbf7
AK
2192 [REGSET_TM_CFPR] = {
2193 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2194 .size = sizeof(double), .align = sizeof(double),
2195 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2196 },
8c13f599
AK
2197 [REGSET_TM_CVMX] = {
2198 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2199 .size = sizeof(vector128), .align = sizeof(vector128),
2200 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2201 },
9d3918f7
AK
2202 [REGSET_TM_CVSX] = {
2203 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2204 .size = sizeof(double), .align = sizeof(double),
2205 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2206 },
08e1c01d
AK
2207 [REGSET_TM_SPR] = {
2208 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2209 .size = sizeof(u64), .align = sizeof(u64),
2210 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2211 },
c45dc900
AK
2212 [REGSET_TM_CTAR] = {
2213 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2214 .size = sizeof(u64), .align = sizeof(u64),
2215 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2216 },
2217 [REGSET_TM_CPPR] = {
2218 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2219 .size = sizeof(u64), .align = sizeof(u64),
2220 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2221 },
2222 [REGSET_TM_CDSCR] = {
2223 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2224 .size = sizeof(u64), .align = sizeof(u64),
2225 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2226 },
25847fb1 2227#endif
fa439810
AK
2228#ifdef CONFIG_PPC64
2229 [REGSET_PPR] = {
2230 .core_note_type = NT_PPC_PPR, .n = 1,
2231 .size = sizeof(u64), .align = sizeof(u64),
2232 .get = ppr_get, .set = ppr_set
2233 },
2234 [REGSET_DSCR] = {
2235 .core_note_type = NT_PPC_DSCR, .n = 1,
2236 .size = sizeof(u64), .align = sizeof(u64),
2237 .get = dscr_get, .set = dscr_set
2238 },
2239#endif
2240#ifdef CONFIG_PPC_BOOK3S_64
2241 [REGSET_TAR] = {
2242 .core_note_type = NT_PPC_TAR, .n = 1,
2243 .size = sizeof(u64), .align = sizeof(u64),
2244 .get = tar_get, .set = tar_set
2245 },
cf89d4e1
AK
2246 [REGSET_EBB] = {
2247 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2248 .size = sizeof(u64), .align = sizeof(u64),
2249 .active = ebb_active, .get = ebb_get, .set = ebb_set
2250 },
fa439810 2251#endif
fa8f5cb0
RM
2252};
2253
2254static const struct user_regset_view user_ppc_compat_view = {
2255 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2256 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2257};
2258#endif /* CONFIG_PPC64 */
2259
80fdf470
RM
2260const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2261{
fa8f5cb0
RM
2262#ifdef CONFIG_PPC64
2263 if (test_tsk_thread_flag(task, TIF_32BIT))
2264 return &user_ppc_compat_view;
2265#endif
80fdf470
RM
2266 return &user_ppc_native_view;
2267}
2268
2269
2a84b0d7 2270void user_enable_single_step(struct task_struct *task)
865418d8
BH
2271{
2272 struct pt_regs *regs = task->thread.regs;
2273
2274 if (regs != NULL) {
172ae2e7 2275#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
2276 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2277 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
865418d8
BH
2278 regs->msr |= MSR_DE;
2279#else
ec097c84 2280 regs->msr &= ~MSR_BE;
865418d8
BH
2281 regs->msr |= MSR_SE;
2282#endif
2283 }
2284 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2285}
2286
ec097c84
RM
2287void user_enable_block_step(struct task_struct *task)
2288{
2289 struct pt_regs *regs = task->thread.regs;
2290
2291 if (regs != NULL) {
172ae2e7 2292#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
2293 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2294 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
ec097c84
RM
2295 regs->msr |= MSR_DE;
2296#else
2297 regs->msr &= ~MSR_SE;
2298 regs->msr |= MSR_BE;
2299#endif
2300 }
2301 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2302}
2303
2a84b0d7 2304void user_disable_single_step(struct task_struct *task)
865418d8
BH
2305{
2306 struct pt_regs *regs = task->thread.regs;
2307
2308 if (regs != NULL) {
172ae2e7 2309#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652
DK
2310 /*
2311 * The logic to disable single stepping should be as
2312 * simple as turning off the Instruction Complete flag.
2313 * And, after doing so, if all debug flags are off, turn
2314 * off DBCR0(IDM) and MSR(DE) .... Torez
2315 */
682775b8 2316 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
3bffb652
DK
2317 /*
2318 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2319 */
51ae8d4a
BB
2320 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2321 task->thread.debug.dbcr1)) {
3bffb652
DK
2322 /*
2323 * All debug events were off.....
2324 */
51ae8d4a 2325 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
28477fb1
DK
2326 regs->msr &= ~MSR_DE;
2327 }
865418d8 2328#else
ec097c84 2329 regs->msr &= ~(MSR_SE | MSR_BE);
865418d8
BH
2330#endif
2331 }
2332 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2333}
2334
5aae8a53 2335#ifdef CONFIG_HAVE_HW_BREAKPOINT
a8b0ca17 2336void ptrace_triggered(struct perf_event *bp,
5aae8a53
P
2337 struct perf_sample_data *data, struct pt_regs *regs)
2338{
2339 struct perf_event_attr attr;
2340
2341 /*
2342 * Disable the breakpoint request here since ptrace has defined a
2343 * one-shot behaviour for breakpoint exceptions in PPC64.
2344 * The SIGTRAP signal is generated automatically for us in do_dabr().
2345 * We don't have to do anything about that here
2346 */
2347 attr = bp->attr;
2348 attr.disabled = true;
2349 modify_user_hw_breakpoint(bp, &attr);
2350}
2351#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2352
e51df2c1 2353static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
abd06505
BH
2354 unsigned long data)
2355{
5aae8a53
P
2356#ifdef CONFIG_HAVE_HW_BREAKPOINT
2357 int ret;
2358 struct thread_struct *thread = &(task->thread);
2359 struct perf_event *bp;
2360 struct perf_event_attr attr;
2361#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e
MN
2362#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2363 struct arch_hw_breakpoint hw_brk;
2364#endif
5aae8a53 2365
d6a61bfc
LM
2366 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2367 * For embedded processors we support one DAC and no IAC's at the
2368 * moment.
2369 */
abd06505
BH
2370 if (addr > 0)
2371 return -EINVAL;
2372
2325f0a0 2373 /* The bottom 3 bits in dabr are flags */
abd06505
BH
2374 if ((data & ~0x7UL) >= TASK_SIZE)
2375 return -EIO;
2376
172ae2e7 2377#ifndef CONFIG_PPC_ADV_DEBUG_REGS
d6a61bfc
LM
2378 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2379 * It was assumed, on previous implementations, that 3 bits were
2380 * passed together with the data address, fitting the design of the
2381 * DABR register, as follows:
2382 *
2383 * bit 0: Read flag
2384 * bit 1: Write flag
2385 * bit 2: Breakpoint translation
2386 *
2387 * Thus, we use them here as so.
2388 */
2389
2390 /* Ensure breakpoint translation bit is set */
9422de3e 2391 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
abd06505 2392 return -EIO;
9422de3e
MN
2393 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2394 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2395 hw_brk.len = 8;
5aae8a53
P
2396#ifdef CONFIG_HAVE_HW_BREAKPOINT
2397 bp = thread->ptrace_bps[0];
9422de3e 2398 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
5aae8a53
P
2399 if (bp) {
2400 unregister_hw_breakpoint(bp);
2401 thread->ptrace_bps[0] = NULL;
2402 }
2403 return 0;
2404 }
2405 if (bp) {
2406 attr = bp->attr;
9422de3e
MN
2407 attr.bp_addr = hw_brk.address;
2408 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
a53fd61a
AP
2409
2410 /* Enable breakpoint */
2411 attr.disabled = false;
2412
5aae8a53 2413 ret = modify_user_hw_breakpoint(bp, &attr);
925f83c0 2414 if (ret) {
5aae8a53 2415 return ret;
925f83c0 2416 }
5aae8a53 2417 thread->ptrace_bps[0] = bp;
9422de3e 2418 thread->hw_brk = hw_brk;
5aae8a53
P
2419 return 0;
2420 }
2421
2422 /* Create a new breakpoint request if one doesn't exist already */
2423 hw_breakpoint_init(&attr);
9422de3e
MN
2424 attr.bp_addr = hw_brk.address;
2425 arch_bp_generic_fields(hw_brk.type,
2426 &attr.bp_type);
5aae8a53
P
2427
2428 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
4dc0da86 2429 ptrace_triggered, NULL, task);
5aae8a53
P
2430 if (IS_ERR(bp)) {
2431 thread->ptrace_bps[0] = NULL;
2432 return PTR_ERR(bp);
2433 }
2434
2435#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 2436 task->thread.hw_brk = hw_brk;
172ae2e7 2437#else /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc
LM
2438 /* As described above, it was assumed 3 bits were passed with the data
2439 * address, but we will assume only the mode bits will be passed
2440 * as to not cause alignment restrictions for DAC-based processors.
2441 */
2442
2443 /* DAC's hold the whole address without any mode flags */
51ae8d4a 2444 task->thread.debug.dac1 = data & ~0x3UL;
3bffb652 2445
51ae8d4a 2446 if (task->thread.debug.dac1 == 0) {
3bffb652 2447 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
51ae8d4a
BB
2448 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2449 task->thread.debug.dbcr1)) {
3bffb652 2450 task->thread.regs->msr &= ~MSR_DE;
51ae8d4a 2451 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652 2452 }
d6a61bfc
LM
2453 return 0;
2454 }
2455
2456 /* Read or Write bits must be set */
2457
2458 if (!(data & 0x3UL))
2459 return -EINVAL;
2460
2461 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2462 register */
51ae8d4a 2463 task->thread.debug.dbcr0 |= DBCR0_IDM;
d6a61bfc
LM
2464
2465 /* Check for write and read flags and set DBCR0
2466 accordingly */
3bffb652 2467 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
d6a61bfc 2468 if (data & 0x1UL)
3bffb652 2469 dbcr_dac(task) |= DBCR_DAC1R;
d6a61bfc 2470 if (data & 0x2UL)
3bffb652 2471 dbcr_dac(task) |= DBCR_DAC1W;
d6a61bfc 2472 task->thread.regs->msr |= MSR_DE;
172ae2e7 2473#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
abd06505
BH
2474 return 0;
2475}
abd06505 2476
1da177e4
LT
2477/*
2478 * Called by kernel/ptrace.c when detaching..
2479 *
2480 * Make sure single step bits etc are not set.
2481 */
2482void ptrace_disable(struct task_struct *child)
2483{
2484 /* make sure the single step bit is not set. */
2a84b0d7 2485 user_disable_single_step(child);
1da177e4
LT
2486}
2487
3bffb652 2488#ifdef CONFIG_PPC_ADV_DEBUG_REGS
84295dfc 2489static long set_instruction_bp(struct task_struct *child,
3bffb652
DK
2490 struct ppc_hw_breakpoint *bp_info)
2491{
2492 int slot;
51ae8d4a
BB
2493 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2494 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2495 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2496 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
3bffb652
DK
2497
2498 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2499 slot2_in_use = 1;
2500 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2501 slot4_in_use = 1;
2502
2503 if (bp_info->addr >= TASK_SIZE)
2504 return -EIO;
2505
2506 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2507
2508 /* Make sure range is valid. */
2509 if (bp_info->addr2 >= TASK_SIZE)
2510 return -EIO;
2511
2512 /* We need a pair of IAC regsisters */
2513 if ((!slot1_in_use) && (!slot2_in_use)) {
2514 slot = 1;
51ae8d4a
BB
2515 child->thread.debug.iac1 = bp_info->addr;
2516 child->thread.debug.iac2 = bp_info->addr2;
2517 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
2518 if (bp_info->addr_mode ==
2519 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2520 dbcr_iac_range(child) |= DBCR_IAC12X;
2521 else
2522 dbcr_iac_range(child) |= DBCR_IAC12I;
2523#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2524 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2525 slot = 3;
51ae8d4a
BB
2526 child->thread.debug.iac3 = bp_info->addr;
2527 child->thread.debug.iac4 = bp_info->addr2;
2528 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
2529 if (bp_info->addr_mode ==
2530 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2531 dbcr_iac_range(child) |= DBCR_IAC34X;
2532 else
2533 dbcr_iac_range(child) |= DBCR_IAC34I;
2534#endif
2535 } else
2536 return -ENOSPC;
2537 } else {
2538 /* We only need one. If possible leave a pair free in
2539 * case a range is needed later
2540 */
2541 if (!slot1_in_use) {
2542 /*
2543 * Don't use iac1 if iac1-iac2 are free and either
2544 * iac3 or iac4 (but not both) are free
2545 */
2546 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2547 slot = 1;
51ae8d4a
BB
2548 child->thread.debug.iac1 = bp_info->addr;
2549 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
2550 goto out;
2551 }
2552 }
2553 if (!slot2_in_use) {
2554 slot = 2;
51ae8d4a
BB
2555 child->thread.debug.iac2 = bp_info->addr;
2556 child->thread.debug.dbcr0 |= DBCR0_IAC2;
3bffb652
DK
2557#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2558 } else if (!slot3_in_use) {
2559 slot = 3;
51ae8d4a
BB
2560 child->thread.debug.iac3 = bp_info->addr;
2561 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
2562 } else if (!slot4_in_use) {
2563 slot = 4;
51ae8d4a
BB
2564 child->thread.debug.iac4 = bp_info->addr;
2565 child->thread.debug.dbcr0 |= DBCR0_IAC4;
3bffb652
DK
2566#endif
2567 } else
2568 return -ENOSPC;
2569 }
2570out:
51ae8d4a 2571 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
2572 child->thread.regs->msr |= MSR_DE;
2573
2574 return slot;
2575}
2576
2577static int del_instruction_bp(struct task_struct *child, int slot)
2578{
2579 switch (slot) {
2580 case 1:
51ae8d4a 2581 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
3bffb652
DK
2582 return -ENOENT;
2583
2584 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2585 /* address range - clear slots 1 & 2 */
51ae8d4a 2586 child->thread.debug.iac2 = 0;
3bffb652
DK
2587 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2588 }
51ae8d4a
BB
2589 child->thread.debug.iac1 = 0;
2590 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
3bffb652
DK
2591 break;
2592 case 2:
51ae8d4a 2593 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
3bffb652
DK
2594 return -ENOENT;
2595
2596 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2597 /* used in a range */
2598 return -EINVAL;
51ae8d4a
BB
2599 child->thread.debug.iac2 = 0;
2600 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
3bffb652
DK
2601 break;
2602#if CONFIG_PPC_ADV_DEBUG_IACS > 2
2603 case 3:
51ae8d4a 2604 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
3bffb652
DK
2605 return -ENOENT;
2606
2607 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2608 /* address range - clear slots 3 & 4 */
51ae8d4a 2609 child->thread.debug.iac4 = 0;
3bffb652
DK
2610 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2611 }
51ae8d4a
BB
2612 child->thread.debug.iac3 = 0;
2613 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
3bffb652
DK
2614 break;
2615 case 4:
51ae8d4a 2616 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
3bffb652
DK
2617 return -ENOENT;
2618
2619 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2620 /* Used in a range */
2621 return -EINVAL;
51ae8d4a
BB
2622 child->thread.debug.iac4 = 0;
2623 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
3bffb652
DK
2624 break;
2625#endif
2626 default:
2627 return -EINVAL;
2628 }
2629 return 0;
2630}
2631
2632static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2633{
2634 int byte_enable =
2635 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2636 & 0xf;
2637 int condition_mode =
2638 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2639 int slot;
2640
2641 if (byte_enable && (condition_mode == 0))
2642 return -EINVAL;
2643
2644 if (bp_info->addr >= TASK_SIZE)
2645 return -EIO;
2646
2647 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2648 slot = 1;
2649 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2650 dbcr_dac(child) |= DBCR_DAC1R;
2651 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2652 dbcr_dac(child) |= DBCR_DAC1W;
51ae8d4a 2653 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
3bffb652
DK
2654#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2655 if (byte_enable) {
51ae8d4a 2656 child->thread.debug.dvc1 =
3bffb652 2657 (unsigned long)bp_info->condition_value;
51ae8d4a 2658 child->thread.debug.dbcr2 |=
3bffb652
DK
2659 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2660 (condition_mode << DBCR2_DVC1M_SHIFT));
2661 }
2662#endif
2663#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 2664 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
3bffb652
DK
2665 /* Both dac1 and dac2 are part of a range */
2666 return -ENOSPC;
2667#endif
2668 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2669 slot = 2;
2670 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2671 dbcr_dac(child) |= DBCR_DAC2R;
2672 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2673 dbcr_dac(child) |= DBCR_DAC2W;
51ae8d4a 2674 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
3bffb652
DK
2675#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2676 if (byte_enable) {
51ae8d4a 2677 child->thread.debug.dvc2 =
3bffb652 2678 (unsigned long)bp_info->condition_value;
51ae8d4a 2679 child->thread.debug.dbcr2 |=
3bffb652
DK
2680 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2681 (condition_mode << DBCR2_DVC2M_SHIFT));
2682 }
2683#endif
2684 } else
2685 return -ENOSPC;
51ae8d4a 2686 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
2687 child->thread.regs->msr |= MSR_DE;
2688
2689 return slot + 4;
2690}
2691
2692static int del_dac(struct task_struct *child, int slot)
2693{
2694 if (slot == 1) {
30124d11 2695 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
3bffb652
DK
2696 return -ENOENT;
2697
51ae8d4a 2698 child->thread.debug.dac1 = 0;
3bffb652
DK
2699 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2700#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a
BB
2701 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2702 child->thread.debug.dac2 = 0;
2703 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
3bffb652 2704 }
51ae8d4a 2705 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
3bffb652
DK
2706#endif
2707#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 2708 child->thread.debug.dvc1 = 0;
3bffb652
DK
2709#endif
2710 } else if (slot == 2) {
30124d11 2711 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
3bffb652
DK
2712 return -ENOENT;
2713
2714#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 2715 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
3bffb652
DK
2716 /* Part of a range */
2717 return -EINVAL;
51ae8d4a 2718 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
3bffb652
DK
2719#endif
2720#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 2721 child->thread.debug.dvc2 = 0;
3bffb652 2722#endif
51ae8d4a 2723 child->thread.debug.dac2 = 0;
3bffb652
DK
2724 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2725 } else
2726 return -EINVAL;
2727
2728 return 0;
2729}
2730#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2731
2732#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2733static int set_dac_range(struct task_struct *child,
2734 struct ppc_hw_breakpoint *bp_info)
2735{
2736 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2737
2738 /* We don't allow range watchpoints to be used with DVC */
2739 if (bp_info->condition_mode)
2740 return -EINVAL;
2741
2742 /*
2743 * Best effort to verify the address range. The user/supervisor bits
2744 * prevent trapping in kernel space, but let's fail on an obvious bad
2745 * range. The simple test on the mask is not fool-proof, and any
2746 * exclusive range will spill over into kernel space.
2747 */
2748 if (bp_info->addr >= TASK_SIZE)
2749 return -EIO;
2750 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2751 /*
2752 * dac2 is a bitmask. Don't allow a mask that makes a
2753 * kernel space address from a valid dac1 value
2754 */
2755 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2756 return -EIO;
2757 } else {
2758 /*
2759 * For range breakpoints, addr2 must also be a valid address
2760 */
2761 if (bp_info->addr2 >= TASK_SIZE)
2762 return -EIO;
2763 }
2764
51ae8d4a 2765 if (child->thread.debug.dbcr0 &
3bffb652
DK
2766 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2767 return -ENOSPC;
2768
2769 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
51ae8d4a 2770 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
3bffb652 2771 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
51ae8d4a
BB
2772 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2773 child->thread.debug.dac1 = bp_info->addr;
2774 child->thread.debug.dac2 = bp_info->addr2;
3bffb652 2775 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
51ae8d4a 2776 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
3bffb652 2777 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
51ae8d4a 2778 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
3bffb652 2779 else /* PPC_BREAKPOINT_MODE_MASK */
51ae8d4a 2780 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
3bffb652
DK
2781 child->thread.regs->msr |= MSR_DE;
2782
2783 return 5;
2784}
2785#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2786
3162d92d
DK
2787static long ppc_set_hwdebug(struct task_struct *child,
2788 struct ppc_hw_breakpoint *bp_info)
2789{
6c7a2856
P
2790#ifdef CONFIG_HAVE_HW_BREAKPOINT
2791 int len = 0;
2792 struct thread_struct *thread = &(child->thread);
2793 struct perf_event *bp;
2794 struct perf_event_attr attr;
2795#endif /* CONFIG_HAVE_HW_BREAKPOINT */
4dfbf290 2796#ifndef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e 2797 struct arch_hw_breakpoint brk;
4dfbf290
AS
2798#endif
2799
3bffb652
DK
2800 if (bp_info->version != 1)
2801 return -ENOTSUPP;
2802#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2803 /*
2804 * Check for invalid flags and combinations
2805 */
2806 if ((bp_info->trigger_type == 0) ||
2807 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2808 PPC_BREAKPOINT_TRIGGER_RW)) ||
2809 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2810 (bp_info->condition_mode &
2811 ~(PPC_BREAKPOINT_CONDITION_MODE |
2812 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2813 return -EINVAL;
2814#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2815 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2816 return -EINVAL;
2817#endif
2818
2819 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2820 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2821 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2822 return -EINVAL;
84295dfc 2823 return set_instruction_bp(child, bp_info);
3bffb652
DK
2824 }
2825 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2826 return set_dac(child, bp_info);
2827
2828#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2829 return set_dac_range(child, bp_info);
2830#else
2831 return -EINVAL;
2832#endif
2833#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d 2834 /*
3bffb652 2835 * We only support one data breakpoint
3162d92d 2836 */
4dfbf290
AS
2837 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2838 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
4dfbf290 2839 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
3162d92d
DK
2840 return -EINVAL;
2841
3162d92d
DK
2842 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2843 return -EIO;
2844
9422de3e
MN
2845 brk.address = bp_info->addr & ~7UL;
2846 brk.type = HW_BRK_TYPE_TRANSLATE;
2bb78efa 2847 brk.len = 8;
4dfbf290 2848 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
9422de3e 2849 brk.type |= HW_BRK_TYPE_READ;
4dfbf290 2850 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
9422de3e 2851 brk.type |= HW_BRK_TYPE_WRITE;
6c7a2856 2852#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
2853 /*
2854 * Check if the request is for 'range' breakpoints. We can
2855 * support it if range < 8 bytes.
2856 */
6961ed96 2857 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
6c7a2856 2858 len = bp_info->addr2 - bp_info->addr;
6961ed96 2859 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
b0b0aa9c 2860 len = 1;
6961ed96 2861 else
6c7a2856 2862 return -EINVAL;
6c7a2856 2863 bp = thread->ptrace_bps[0];
6961ed96 2864 if (bp)
6c7a2856 2865 return -ENOSPC;
6c7a2856
P
2866
2867 /* Create a new breakpoint request if one doesn't exist already */
2868 hw_breakpoint_init(&attr);
2869 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2870 attr.bp_len = len;
9422de3e 2871 arch_bp_generic_fields(brk.type, &attr.bp_type);
6c7a2856
P
2872
2873 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2874 ptrace_triggered, NULL, child);
2875 if (IS_ERR(bp)) {
2876 thread->ptrace_bps[0] = NULL;
6c7a2856
P
2877 return PTR_ERR(bp);
2878 }
2879
6c7a2856
P
2880 return 1;
2881#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2882
2883 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2884 return -EINVAL;
2885
9422de3e 2886 if (child->thread.hw_brk.address)
6c7a2856 2887 return -ENOSPC;
4dfbf290 2888
9422de3e 2889 child->thread.hw_brk = brk;
3bffb652 2890
3162d92d 2891 return 1;
3bffb652 2892#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d
DK
2893}
2894
ec1b33dc 2895static long ppc_del_hwdebug(struct task_struct *child, long data)
3162d92d 2896{
6c7a2856
P
2897#ifdef CONFIG_HAVE_HW_BREAKPOINT
2898 int ret = 0;
2899 struct thread_struct *thread = &(child->thread);
2900 struct perf_event *bp;
2901#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
2902#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2903 int rc;
2904
2905 if (data <= 4)
2906 rc = del_instruction_bp(child, (int)data);
2907 else
2908 rc = del_dac(child, (int)data - 4);
2909
2910 if (!rc) {
51ae8d4a
BB
2911 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2912 child->thread.debug.dbcr1)) {
2913 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652
DK
2914 child->thread.regs->msr &= ~MSR_DE;
2915 }
2916 }
2917 return rc;
2918#else
3162d92d
DK
2919 if (data != 1)
2920 return -EINVAL;
6c7a2856
P
2921
2922#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
2923 bp = thread->ptrace_bps[0];
2924 if (bp) {
2925 unregister_hw_breakpoint(bp);
2926 thread->ptrace_bps[0] = NULL;
2927 } else
2928 ret = -ENOENT;
6c7a2856
P
2929 return ret;
2930#else /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 2931 if (child->thread.hw_brk.address == 0)
3162d92d
DK
2932 return -ENOENT;
2933
9422de3e
MN
2934 child->thread.hw_brk.address = 0;
2935 child->thread.hw_brk.type = 0;
6c7a2856 2936#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 2937
3162d92d 2938 return 0;
3bffb652 2939#endif
3162d92d
DK
2940}
2941
9b05a69e
NK
2942long arch_ptrace(struct task_struct *child, long request,
2943 unsigned long addr, unsigned long data)
1da177e4 2944{
1da177e4 2945 int ret = -EPERM;
f68d2048
NK
2946 void __user *datavp = (void __user *) data;
2947 unsigned long __user *datalp = datavp;
1da177e4 2948
1da177e4 2949 switch (request) {
1da177e4 2950 /* read the word at location addr in the USER area. */
1da177e4
LT
2951 case PTRACE_PEEKUSR: {
2952 unsigned long index, tmp;
2953
2954 ret = -EIO;
2955 /* convert to index and check */
e8a30302 2956#ifdef CONFIG_PPC32
9b05a69e 2957 index = addr >> 2;
e8a30302
SR
2958 if ((addr & 3) || (index > PT_FPSCR)
2959 || (child->thread.regs == NULL))
2960#else
9b05a69e 2961 index = addr >> 3;
e8a30302
SR
2962 if ((addr & 7) || (index > PT_FPSCR))
2963#endif
1da177e4
LT
2964 break;
2965
2966 CHECK_FULL_REGS(child->thread.regs);
2967 if (index < PT_FPR0) {
ee4a3916
AK
2968 ret = ptrace_get_reg(child, (int) index, &tmp);
2969 if (ret)
2970 break;
1da177e4 2971 } else {
e69b742a
BH
2972 unsigned int fpidx = index - PT_FPR0;
2973
e8a30302 2974 flush_fp_to_thread(child);
e69b742a 2975 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 2976 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
87fec051 2977 sizeof(long));
e69b742a 2978 else
de79f7b9 2979 tmp = child->thread.fp_state.fpscr;
1da177e4 2980 }
f68d2048 2981 ret = put_user(tmp, datalp);
1da177e4
LT
2982 break;
2983 }
2984
1da177e4
LT
2985 /* write the word at location addr in the USER area */
2986 case PTRACE_POKEUSR: {
2987 unsigned long index;
2988
2989 ret = -EIO;
2990 /* convert to index and check */
e8a30302 2991#ifdef CONFIG_PPC32
9b05a69e 2992 index = addr >> 2;
e8a30302
SR
2993 if ((addr & 3) || (index > PT_FPSCR)
2994 || (child->thread.regs == NULL))
2995#else
9b05a69e 2996 index = addr >> 3;
e8a30302
SR
2997 if ((addr & 7) || (index > PT_FPSCR))
2998#endif
1da177e4
LT
2999 break;
3000
3001 CHECK_FULL_REGS(child->thread.regs);
1da177e4 3002 if (index < PT_FPR0) {
865418d8 3003 ret = ptrace_put_reg(child, index, data);
1da177e4 3004 } else {
e69b742a
BH
3005 unsigned int fpidx = index - PT_FPR0;
3006
e8a30302 3007 flush_fp_to_thread(child);
e69b742a 3008 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 3009 memcpy(&child->thread.TS_FPR(fpidx), &data,
87fec051 3010 sizeof(long));
e69b742a 3011 else
de79f7b9 3012 child->thread.fp_state.fpscr = data;
1da177e4
LT
3013 ret = 0;
3014 }
3015 break;
3016 }
3017
3162d92d
DK
3018 case PPC_PTRACE_GETHWDBGINFO: {
3019 struct ppc_debug_info dbginfo;
3020
3021 dbginfo.version = 1;
3bffb652
DK
3022#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3023 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
3024 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
3025 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
3026 dbginfo.data_bp_alignment = 4;
3027 dbginfo.sizeof_condition = 4;
3028 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
3029 PPC_DEBUG_FEATURE_INSN_BP_MASK;
3030#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
3031 dbginfo.features |=
3032 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
3033 PPC_DEBUG_FEATURE_DATA_BP_MASK;
3034#endif
3035#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d
DK
3036 dbginfo.num_instruction_bps = 0;
3037 dbginfo.num_data_bps = 1;
3038 dbginfo.num_condition_regs = 0;
3039#ifdef CONFIG_PPC64
3040 dbginfo.data_bp_alignment = 8;
3041#else
3042 dbginfo.data_bp_alignment = 4;
3043#endif
3044 dbginfo.sizeof_condition = 0;
6c7a2856
P
3045#ifdef CONFIG_HAVE_HW_BREAKPOINT
3046 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
517b7314
MN
3047 if (cpu_has_feature(CPU_FTR_DAWR))
3048 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
6c7a2856 3049#else
3162d92d 3050 dbginfo.features = 0;
6c7a2856 3051#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 3052#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d 3053
f68d2048 3054 if (!access_ok(VERIFY_WRITE, datavp,
3162d92d
DK
3055 sizeof(struct ppc_debug_info)))
3056 return -EFAULT;
f68d2048
NK
3057 ret = __copy_to_user(datavp, &dbginfo,
3058 sizeof(struct ppc_debug_info)) ?
3162d92d
DK
3059 -EFAULT : 0;
3060 break;
3061 }
3062
3063 case PPC_PTRACE_SETHWDEBUG: {
3064 struct ppc_hw_breakpoint bp_info;
3065
f68d2048 3066 if (!access_ok(VERIFY_READ, datavp,
3162d92d
DK
3067 sizeof(struct ppc_hw_breakpoint)))
3068 return -EFAULT;
f68d2048 3069 ret = __copy_from_user(&bp_info, datavp,
3162d92d
DK
3070 sizeof(struct ppc_hw_breakpoint)) ?
3071 -EFAULT : 0;
3072 if (!ret)
3073 ret = ppc_set_hwdebug(child, &bp_info);
3074 break;
3075 }
3076
3077 case PPC_PTRACE_DELHWDEBUG: {
ec1b33dc 3078 ret = ppc_del_hwdebug(child, data);
3162d92d
DK
3079 break;
3080 }
3081
e8a30302 3082 case PTRACE_GET_DEBUGREG: {
9422de3e
MN
3083#ifndef CONFIG_PPC_ADV_DEBUG_REGS
3084 unsigned long dabr_fake;
3085#endif
e8a30302
SR
3086 ret = -EINVAL;
3087 /* We only support one DABR and no IABRS at the moment */
3088 if (addr > 0)
3089 break;
3bffb652 3090#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a 3091 ret = put_user(child->thread.debug.dac1, datalp);
3bffb652 3092#else
9422de3e
MN
3093 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3094 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3095 ret = put_user(dabr_fake, datalp);
3bffb652 3096#endif
e8a30302
SR
3097 break;
3098 }
3099
3100 case PTRACE_SET_DEBUGREG:
3101 ret = ptrace_set_debugreg(child, addr, data);
3102 break;
e8a30302 3103
e17666ba
BH
3104#ifdef CONFIG_PPC64
3105 case PTRACE_GETREGS64:
3106#endif
c391cd00
RM
3107 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3108 return copy_regset_to_user(child, &user_ppc_native_view,
3109 REGSET_GPR,
3110 0, sizeof(struct pt_regs),
f68d2048 3111 datavp);
e8a30302 3112
e17666ba
BH
3113#ifdef CONFIG_PPC64
3114 case PTRACE_SETREGS64:
3115#endif
c391cd00
RM
3116 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3117 return copy_regset_from_user(child, &user_ppc_native_view,
3118 REGSET_GPR,
3119 0, sizeof(struct pt_regs),
f68d2048 3120 datavp);
c391cd00
RM
3121
3122 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3123 return copy_regset_to_user(child, &user_ppc_native_view,
3124 REGSET_FPR,
3125 0, sizeof(elf_fpregset_t),
f68d2048 3126 datavp);
c391cd00
RM
3127
3128 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3129 return copy_regset_from_user(child, &user_ppc_native_view,
3130 REGSET_FPR,
3131 0, sizeof(elf_fpregset_t),
f68d2048 3132 datavp);
e8a30302 3133
1da177e4
LT
3134#ifdef CONFIG_ALTIVEC
3135 case PTRACE_GETVRREGS:
c391cd00
RM
3136 return copy_regset_to_user(child, &user_ppc_native_view,
3137 REGSET_VMX,
3138 0, (33 * sizeof(vector128) +
3139 sizeof(u32)),
f68d2048 3140 datavp);
1da177e4
LT
3141
3142 case PTRACE_SETVRREGS:
c391cd00
RM
3143 return copy_regset_from_user(child, &user_ppc_native_view,
3144 REGSET_VMX,
3145 0, (33 * sizeof(vector128) +
3146 sizeof(u32)),
f68d2048 3147 datavp);
1da177e4 3148#endif
ce48b210
MN
3149#ifdef CONFIG_VSX
3150 case PTRACE_GETVSRREGS:
3151 return copy_regset_to_user(child, &user_ppc_native_view,
3152 REGSET_VSX,
1ac42ef8 3153 0, 32 * sizeof(double),
f68d2048 3154 datavp);
ce48b210
MN
3155
3156 case PTRACE_SETVSRREGS:
3157 return copy_regset_from_user(child, &user_ppc_native_view,
3158 REGSET_VSX,
1ac42ef8 3159 0, 32 * sizeof(double),
f68d2048 3160 datavp);
ce48b210 3161#endif
1da177e4
LT
3162#ifdef CONFIG_SPE
3163 case PTRACE_GETEVRREGS:
3164 /* Get the child spe register state. */
c391cd00
RM
3165 return copy_regset_to_user(child, &user_ppc_native_view,
3166 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 3167 datavp);
1da177e4
LT
3168
3169 case PTRACE_SETEVRREGS:
3170 /* Set the child spe register state. */
c391cd00
RM
3171 return copy_regset_from_user(child, &user_ppc_native_view,
3172 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 3173 datavp);
1da177e4
LT
3174#endif
3175
3176 default:
3177 ret = ptrace_request(child, request, addr, data);
3178 break;
3179 }
1da177e4
LT
3180 return ret;
3181}
3182
2449acc5
ME
3183#ifdef CONFIG_SECCOMP
3184static int do_seccomp(struct pt_regs *regs)
3185{
3186 if (!test_thread_flag(TIF_SECCOMP))
3187 return 0;
3188
3189 /*
3190 * The ABI we present to seccomp tracers is that r3 contains
3191 * the syscall return value and orig_gpr3 contains the first
3192 * syscall parameter. This is different to the ptrace ABI where
3193 * both r3 and orig_gpr3 contain the first syscall parameter.
3194 */
3195 regs->gpr[3] = -ENOSYS;
3196
3197 /*
3198 * We use the __ version here because we have already checked
3199 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3200 * have already loaded -ENOSYS into r3, or seccomp has put
3201 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3202 */
2f275de5 3203 if (__secure_computing(NULL))
2449acc5
ME
3204 return -1;
3205
3206 /*
3207 * The syscall was allowed by seccomp, restore the register
1addc57e 3208 * state to what audit expects.
2449acc5
ME
3209 * Note that we use orig_gpr3, which means a seccomp tracer can
3210 * modify the first syscall parameter (in orig_gpr3) and also
3211 * allow the syscall to proceed.
3212 */
3213 regs->gpr[3] = regs->orig_gpr3;
3214
3215 return 0;
3216}
3217#else
3218static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3219#endif /* CONFIG_SECCOMP */
3220
d3837414
ME
3221/**
3222 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3223 * @regs: the pt_regs of the task to trace (current)
3224 *
3225 * Performs various types of tracing on syscall entry. This includes seccomp,
3226 * ptrace, syscall tracepoints and audit.
3227 *
3228 * The pt_regs are potentially visible to userspace via ptrace, so their
3229 * contents is ABI.
3230 *
3231 * One or more of the tracers may modify the contents of pt_regs, in particular
3232 * to modify arguments or even the syscall number itself.
3233 *
3234 * It's also possible that a tracer can choose to reject the system call. In
3235 * that case this function will return an illegal syscall number, and will put
3236 * an appropriate return value in regs->r3.
3237 *
3238 * Return: the (possibly changed) syscall number.
4f72c427
RM
3239 */
3240long do_syscall_trace_enter(struct pt_regs *regs)
1da177e4 3241{
22ecbe8d
LZ
3242 user_exit();
3243
1addc57e
KC
3244 /*
3245 * The tracer may decide to abort the syscall, if so tracehook
3246 * will return !0. Note that the tracer may also just change
3247 * regs->gpr[0] to an invalid syscall number, that is handled
3248 * below on the exit path.
3249 */
3250 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3251 tracehook_report_syscall_entry(regs))
3252 goto skip;
3253
3254 /* Run seccomp after ptrace; allow it to set gpr[3]. */
2449acc5
ME
3255 if (do_seccomp(regs))
3256 return -1;
e8a30302 3257
1addc57e
KC
3258 /* Avoid trace and audit when syscall is invalid. */
3259 if (regs->gpr[0] >= NR_syscalls)
3260 goto skip;
ea9c102c 3261
02424d89
IM
3262 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3263 trace_sys_enter(regs, regs->gpr[0]);
3264
cfcd1705 3265#ifdef CONFIG_PPC64
b05d8447 3266 if (!is_32bit_task())
91397401 3267 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
b05d8447
EP
3268 regs->gpr[5], regs->gpr[6]);
3269 else
e8a30302 3270#endif
91397401 3271 audit_syscall_entry(regs->gpr[0],
b05d8447
EP
3272 regs->gpr[3] & 0xffffffff,
3273 regs->gpr[4] & 0xffffffff,
3274 regs->gpr[5] & 0xffffffff,
3275 regs->gpr[6] & 0xffffffff);
4f72c427 3276
d3837414
ME
3277 /* Return the possibly modified but valid syscall number */
3278 return regs->gpr[0];
1addc57e
KC
3279
3280skip:
3281 /*
3282 * If we are aborting explicitly, or if the syscall number is
3283 * now invalid, set the return value to -ENOSYS.
3284 */
3285 regs->gpr[3] = -ENOSYS;
3286 return -1;
ea9c102c
DW
3287}
3288
3289void do_syscall_trace_leave(struct pt_regs *regs)
3290{
4f72c427
RM
3291 int step;
3292
d7e7528b 3293 audit_syscall_exit(regs);
ea9c102c 3294
02424d89
IM
3295 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3296 trace_sys_exit(regs, regs->result);
3297
4f72c427
RM
3298 step = test_thread_flag(TIF_SINGLESTEP);
3299 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3300 tracehook_report_syscall_exit(regs, step);
22ecbe8d
LZ
3301
3302 user_enter();
ea9c102c 3303}