]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/sparc64/kernel/smp.c
[SPARC64]: mdesc.c needs linux/mm.h
[mirror_ubuntu-zesty-kernel.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
23#include <linux/bootmem.h>
24
25#include <asm/head.h>
26#include <asm/ptrace.h>
27#include <asm/atomic.h>
28#include <asm/tlbflush.h>
29#include <asm/mmu_context.h>
30#include <asm/cpudata.h>
31
32#include <asm/irq.h>
6d24c8dc 33#include <asm/irq_regs.h>
1da177e4
LT
34#include <asm/page.h>
35#include <asm/pgtable.h>
36#include <asm/oplib.h>
37#include <asm/uaccess.h>
38#include <asm/timer.h>
39#include <asm/starfire.h>
40#include <asm/tlb.h>
56fb4df6 41#include <asm/sections.h>
07f8e5f3 42#include <asm/prom.h>
5cbc3073 43#include <asm/mdesc.h>
4f0234f4 44#include <asm/ldc.h>
1da177e4 45
1da177e4
LT
46extern void calibrate_delay(void);
47
a2f9f6bb
DM
48int sparc64_multi_core __read_mostly;
49
1da177e4 50/* Please don't make this stuff initdata!!! --DaveM */
777a4475 51unsigned char boot_cpu_id;
1da177e4 52
4f0234f4 53cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
c12a8289 54cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
8935dced
DM
55cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
56 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
f78eae2e
DM
57cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
58 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4
DM
59
60EXPORT_SYMBOL(cpu_possible_map);
61EXPORT_SYMBOL(cpu_online_map);
62EXPORT_SYMBOL(cpu_sibling_map);
63EXPORT_SYMBOL(cpu_core_map);
64
1da177e4
LT
65static cpumask_t smp_commenced_mask;
66static cpumask_t cpu_callout_map;
67
68void smp_info(struct seq_file *m)
69{
70 int i;
71
72 seq_printf(m, "State:\n");
394e3902
AM
73 for_each_online_cpu(i)
74 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
75}
76
77void smp_bogo(struct seq_file *m)
78{
79 int i;
80
394e3902
AM
81 for_each_online_cpu(i)
82 seq_printf(m,
83 "Cpu%dBogo\t: %lu.%02lu\n"
84 "Cpu%dClkTck\t: %016lx\n",
85 i, cpu_data(i).udelay_val / (500000/HZ),
86 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
87 i, cpu_data(i).clock_tick);
1da177e4
LT
88}
89
112f4871 90extern void setup_sparc64_timer(void);
1da177e4
LT
91
92static volatile unsigned long callin_flag = 0;
93
4f0234f4 94void __devinit smp_callin(void)
1da177e4
LT
95{
96 int cpuid = hard_smp_processor_id();
4f0234f4 97 struct trap_per_cpu *tb = &trap_block[cpuid];;
1da177e4 98
56fb4df6 99 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 100
4a07e646 101 if (tlb_type == hypervisor)
490384e7 102 sun4v_ktsb_register();
481295f9 103
56fb4df6 104 __flush_tlb_all();
1da177e4 105
112f4871 106 setup_sparc64_timer();
1da177e4 107
816242da
DM
108 if (cheetah_pcache_forced_on)
109 cheetah_enable_pcache();
110
1da177e4
LT
111 local_irq_enable();
112
113 calibrate_delay();
5cbc3073 114 cpu_data(cpuid).udelay_val = loops_per_jiffy;
1da177e4
LT
115 callin_flag = 1;
116 __asm__ __volatile__("membar #Sync\n\t"
117 "flush %%g6" : : : "memory");
118
119 /* Clear this or we will die instantly when we
120 * schedule back to this idler...
121 */
db7d9a4e 122 current_thread_info()->new_child = 0;
1da177e4
LT
123
124 /* Attach to the address space of init_task. */
125 atomic_inc(&init_mm.mm_count);
126 current->active_mm = &init_mm;
127
4f0234f4
DM
128 if (tb->hdesc) {
129 kfree(tb->hdesc);
130 tb->hdesc = NULL;
131 }
132
1da177e4 133 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 134 rmb();
1da177e4
LT
135
136 cpu_set(cpuid, cpu_online_map);
5bfb5d69
NP
137
138 /* idle thread is expected to have preempt disabled */
139 preempt_disable();
1da177e4
LT
140}
141
142void cpu_panic(void)
143{
144 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
145 panic("SMP bolixed\n");
146}
147
1da177e4
LT
148/* This tick register synchronization scheme is taken entirely from
149 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
150 *
151 * The only change I've made is to rework it so that the master
152 * initiates the synchonization instead of the slave. -DaveM
153 */
154
155#define MASTER 0
156#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
157
158#define NUM_ROUNDS 64 /* magic value */
159#define NUM_ITERS 5 /* likewise */
160
161static DEFINE_SPINLOCK(itc_sync_lock);
162static unsigned long go[SLAVE + 1];
163
164#define DEBUG_TICK_SYNC 0
165
166static inline long get_delta (long *rt, long *master)
167{
168 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
169 unsigned long tcenter, t0, t1, tm;
170 unsigned long i;
171
172 for (i = 0; i < NUM_ITERS; i++) {
173 t0 = tick_ops->get_tick();
174 go[MASTER] = 1;
4f07118f 175 membar_storeload();
1da177e4 176 while (!(tm = go[SLAVE]))
4f07118f 177 rmb();
1da177e4 178 go[SLAVE] = 0;
4f07118f 179 wmb();
1da177e4
LT
180 t1 = tick_ops->get_tick();
181
182 if (t1 - t0 < best_t1 - best_t0)
183 best_t0 = t0, best_t1 = t1, best_tm = tm;
184 }
185
186 *rt = best_t1 - best_t0;
187 *master = best_tm - best_t0;
188
189 /* average best_t0 and best_t1 without overflow: */
190 tcenter = (best_t0/2 + best_t1/2);
191 if (best_t0 % 2 + best_t1 % 2 == 2)
192 tcenter++;
193 return tcenter - best_tm;
194}
195
196void smp_synchronize_tick_client(void)
197{
198 long i, delta, adj, adjust_latency = 0, done = 0;
199 unsigned long flags, rt, master_time_stamp, bound;
200#if DEBUG_TICK_SYNC
201 struct {
202 long rt; /* roundtrip time */
203 long master; /* master's timestamp */
204 long diff; /* difference between midpoint and master's timestamp */
205 long lat; /* estimate of itc adjustment latency */
206 } t[NUM_ROUNDS];
207#endif
208
209 go[MASTER] = 1;
210
211 while (go[MASTER])
4f07118f 212 rmb();
1da177e4
LT
213
214 local_irq_save(flags);
215 {
216 for (i = 0; i < NUM_ROUNDS; i++) {
217 delta = get_delta(&rt, &master_time_stamp);
218 if (delta == 0) {
219 done = 1; /* let's lock on to this... */
220 bound = rt;
221 }
222
223 if (!done) {
224 if (i > 0) {
225 adjust_latency += -delta;
226 adj = -delta + adjust_latency/4;
227 } else
228 adj = -delta;
229
112f4871 230 tick_ops->add_tick(adj);
1da177e4
LT
231 }
232#if DEBUG_TICK_SYNC
233 t[i].rt = rt;
234 t[i].master = master_time_stamp;
235 t[i].diff = delta;
236 t[i].lat = adjust_latency/4;
237#endif
238 }
239 }
240 local_irq_restore(flags);
241
242#if DEBUG_TICK_SYNC
243 for (i = 0; i < NUM_ROUNDS; i++)
244 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
245 t[i].rt, t[i].master, t[i].diff, t[i].lat);
246#endif
247
248 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
249 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
250}
251
252static void smp_start_sync_tick_client(int cpu);
253
254static void smp_synchronize_one_tick(int cpu)
255{
256 unsigned long flags, i;
257
258 go[MASTER] = 0;
259
260 smp_start_sync_tick_client(cpu);
261
262 /* wait for client to be ready */
263 while (!go[MASTER])
4f07118f 264 rmb();
1da177e4
LT
265
266 /* now let the client proceed into his loop */
267 go[MASTER] = 0;
4f07118f 268 membar_storeload();
1da177e4
LT
269
270 spin_lock_irqsave(&itc_sync_lock, flags);
271 {
272 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
273 while (!go[MASTER])
4f07118f 274 rmb();
1da177e4 275 go[MASTER] = 0;
4f07118f 276 wmb();
1da177e4 277 go[SLAVE] = tick_ops->get_tick();
4f07118f 278 membar_storeload();
1da177e4
LT
279 }
280 }
281 spin_unlock_irqrestore(&itc_sync_lock, flags);
282}
283
b14f5c10
DM
284#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
285static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
286{
287 extern unsigned long sparc64_ttable_tl0;
288 extern unsigned long kern_locked_tte_data;
289 extern int bigkernel;
290 struct hvtramp_descr *hdesc;
291 unsigned long trampoline_ra;
292 struct trap_per_cpu *tb;
293 u64 tte_vaddr, tte_data;
294 unsigned long hv_err;
295
296 hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
297 if (!hdesc) {
298 printk(KERN_ERR PFX "ldom_startcpu_cpuid: Cannot allocate "
299 "hvtramp_descr.\n");
300 return;
301 }
302
303 hdesc->cpu = cpu;
304 hdesc->num_mappings = (bigkernel ? 2 : 1);
305
306 tb = &trap_block[cpu];
307 tb->hdesc = hdesc;
308
309 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
310 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311
312 hdesc->thread_reg = thread_reg;
313
314 tte_vaddr = (unsigned long) KERNBASE;
315 tte_data = kern_locked_tte_data;
316
317 hdesc->maps[0].vaddr = tte_vaddr;
318 hdesc->maps[0].tte = tte_data;
319 if (bigkernel) {
320 tte_vaddr += 0x400000;
321 tte_data += 0x400000;
322 hdesc->maps[1].vaddr = tte_vaddr;
323 hdesc->maps[1].tte = tte_data;
324 }
325
326 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327
328 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
329 kimage_addr_to_ra(&sparc64_ttable_tl0),
330 __pa(hdesc));
331}
332#endif
333
72aff53f
DM
334extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
335
1da177e4
LT
336extern unsigned long sparc64_cpu_startup;
337
338/* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
341 */
342static struct thread_info *cpu_new_thread = NULL;
343
344static int __devinit smp_boot_one_cpu(unsigned int cpu)
345{
346 unsigned long entry =
347 (unsigned long)(&sparc64_cpu_startup);
348 unsigned long cookie =
349 (unsigned long)(&cpu_new_thread);
350 struct task_struct *p;
7890f794 351 int timeout, ret;
1da177e4
LT
352
353 p = fork_idle(cpu);
354 callin_flag = 0;
f3169641 355 cpu_new_thread = task_thread_info(p);
1da177e4
LT
356 cpu_set(cpu, cpu_callout_map);
357
7890f794 358 if (tlb_type == hypervisor) {
72aff53f
DM
359 /* Alloc the mondo queues, cpu will load them. */
360 sun4v_init_mondo_queues(0, cpu, 1, 0);
361
b14f5c10 362#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
363 if (ldom_domaining_enabled)
364 ldom_startcpu_cpuid(cpu,
365 (unsigned long) cpu_new_thread);
366 else
367#endif
368 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 369 } else {
5cbc3073 370 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 371
07f8e5f3 372 prom_startcpu(dp->node, entry, cookie);
7890f794 373 }
1da177e4 374
4f0234f4 375 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
376 if (callin_flag)
377 break;
378 udelay(100);
379 }
72aff53f 380
1da177e4
LT
381 if (callin_flag) {
382 ret = 0;
383 } else {
384 printk("Processor %d is stuck.\n", cpu);
385 cpu_clear(cpu, cpu_callout_map);
386 ret = -ENODEV;
387 }
388 cpu_new_thread = NULL;
389
390 return ret;
391}
392
393static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
394{
395 u64 result, target;
396 int stuck, tmp;
397
398 if (this_is_starfire) {
399 /* map to real upaid */
400 cpu = (((cpu & 0x3c) << 1) |
401 ((cpu & 0x40) >> 4) |
402 (cpu & 0x3));
403 }
404
405 target = (cpu << 14) | 0x70;
406again:
407 /* Ok, this is the real Spitfire Errata #54.
408 * One must read back from a UDB internal register
409 * after writes to the UDB interrupt dispatch, but
410 * before the membar Sync for that write.
411 * So we use the high UDB control register (ASI 0x7f,
412 * ADDR 0x20) for the dummy read. -DaveM
413 */
414 tmp = 0x40;
415 __asm__ __volatile__(
416 "wrpr %1, %2, %%pstate\n\t"
417 "stxa %4, [%0] %3\n\t"
418 "stxa %5, [%0+%8] %3\n\t"
419 "add %0, %8, %0\n\t"
420 "stxa %6, [%0+%8] %3\n\t"
421 "membar #Sync\n\t"
422 "stxa %%g0, [%7] %3\n\t"
423 "membar #Sync\n\t"
424 "mov 0x20, %%g1\n\t"
425 "ldxa [%%g1] 0x7f, %%g0\n\t"
426 "membar #Sync"
427 : "=r" (tmp)
428 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
429 "r" (data0), "r" (data1), "r" (data2), "r" (target),
430 "r" (0x10), "0" (tmp)
431 : "g1");
432
433 /* NOTE: PSTATE_IE is still clear. */
434 stuck = 100000;
435 do {
436 __asm__ __volatile__("ldxa [%%g0] %1, %0"
437 : "=r" (result)
438 : "i" (ASI_INTR_DISPATCH_STAT));
439 if (result == 0) {
440 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
441 : : "r" (pstate));
442 return;
443 }
444 stuck -= 1;
445 if (stuck == 0)
446 break;
447 } while (result & 0x1);
448 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
449 : : "r" (pstate));
450 if (stuck == 0) {
451 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
452 smp_processor_id(), result);
453 } else {
454 udelay(2);
455 goto again;
456 }
457}
458
459static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
460{
461 u64 pstate;
462 int i;
463
464 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
465 for_each_cpu_mask(i, mask)
466 spitfire_xcall_helper(data0, data1, data2, pstate, i);
467}
468
469/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
470 * packet, but we have no use for that. However we do take advantage of
471 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
472 */
473static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
474{
475 u64 pstate, ver;
22adb358 476 int nack_busy_id, is_jbus, need_more;
1da177e4
LT
477
478 if (cpus_empty(mask))
479 return;
480
481 /* Unfortunately, someone at Sun had the brilliant idea to make the
482 * busy/nack fields hard-coded by ITID number for this Ultra-III
483 * derivative processor.
484 */
485 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
486 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
487 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
488
489 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
490
491retry:
22adb358 492 need_more = 0;
1da177e4
LT
493 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
494 : : "r" (pstate), "i" (PSTATE_IE));
495
496 /* Setup the dispatch data registers. */
497 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
498 "stxa %1, [%4] %6\n\t"
499 "stxa %2, [%5] %6\n\t"
500 "membar #Sync\n\t"
501 : /* no outputs */
502 : "r" (data0), "r" (data1), "r" (data2),
503 "r" (0x40), "r" (0x50), "r" (0x60),
504 "i" (ASI_INTR_W));
505
506 nack_busy_id = 0;
507 {
508 int i;
509
510 for_each_cpu_mask(i, mask) {
511 u64 target = (i << 14) | 0x70;
512
92704a1c 513 if (!is_jbus)
1da177e4
LT
514 target |= (nack_busy_id << 24);
515 __asm__ __volatile__(
516 "stxa %%g0, [%0] %1\n\t"
517 "membar #Sync\n\t"
518 : /* no outputs */
519 : "r" (target), "i" (ASI_INTR_W));
520 nack_busy_id++;
22adb358
DM
521 if (nack_busy_id == 32) {
522 need_more = 1;
523 break;
524 }
1da177e4
LT
525 }
526 }
527
528 /* Now, poll for completion. */
529 {
530 u64 dispatch_stat;
531 long stuck;
532
533 stuck = 100000 * nack_busy_id;
534 do {
535 __asm__ __volatile__("ldxa [%%g0] %1, %0"
536 : "=r" (dispatch_stat)
537 : "i" (ASI_INTR_DISPATCH_STAT));
538 if (dispatch_stat == 0UL) {
539 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
540 : : "r" (pstate));
22adb358
DM
541 if (unlikely(need_more)) {
542 int i, cnt = 0;
543 for_each_cpu_mask(i, mask) {
544 cpu_clear(i, mask);
545 cnt++;
546 if (cnt == 32)
547 break;
548 }
549 goto retry;
550 }
1da177e4
LT
551 return;
552 }
553 if (!--stuck)
554 break;
555 } while (dispatch_stat & 0x5555555555555555UL);
556
557 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
558 : : "r" (pstate));
559
560 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
561 /* Busy bits will not clear, continue instead
562 * of freezing up on this cpu.
563 */
564 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
565 smp_processor_id(), dispatch_stat);
566 } else {
567 int i, this_busy_nack = 0;
568
569 /* Delay some random time with interrupts enabled
570 * to prevent deadlock.
571 */
572 udelay(2 * nack_busy_id);
573
574 /* Clear out the mask bits for cpus which did not
575 * NACK us.
576 */
577 for_each_cpu_mask(i, mask) {
578 u64 check_mask;
579
92704a1c 580 if (is_jbus)
1da177e4
LT
581 check_mask = (0x2UL << (2*i));
582 else
583 check_mask = (0x2UL <<
584 this_busy_nack);
585 if ((dispatch_stat & check_mask) == 0)
586 cpu_clear(i, mask);
587 this_busy_nack += 2;
22adb358
DM
588 if (this_busy_nack == 64)
589 break;
1da177e4
LT
590 }
591
592 goto retry;
593 }
594 }
595}
596
1d2f1f90 597/* Multi-cpu list version. */
a43fe0e7
DM
598static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
599{
b830ab66
DM
600 struct trap_per_cpu *tb;
601 u16 *cpu_list;
602 u64 *mondo;
603 cpumask_t error_mask;
604 unsigned long flags, status;
3cab0c3e 605 int cnt, retries, this_cpu, prev_sent, i;
b830ab66 606
17f34f0e
DM
607 if (cpus_empty(mask))
608 return;
609
b830ab66
DM
610 /* We have to do this whole thing with interrupts fully disabled.
611 * Otherwise if we send an xcall from interrupt context it will
612 * corrupt both our mondo block and cpu list state.
613 *
614 * One consequence of this is that we cannot use timeout mechanisms
615 * that depend upon interrupts being delivered locally. So, for
616 * example, we cannot sample jiffies and expect it to advance.
617 *
618 * Fortunately, udelay() uses %stick/%tick so we can use that.
619 */
620 local_irq_save(flags);
621
622 this_cpu = smp_processor_id();
623 tb = &trap_block[this_cpu];
1d2f1f90 624
b830ab66 625 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
626 mondo[0] = data0;
627 mondo[1] = data1;
628 mondo[2] = data2;
629 wmb();
630
b830ab66
DM
631 cpu_list = __va(tb->cpu_list_pa);
632
633 /* Setup the initial cpu list. */
634 cnt = 0;
635 for_each_cpu_mask(i, mask)
636 cpu_list[cnt++] = i;
637
638 cpus_clear(error_mask);
1d2f1f90 639 retries = 0;
3cab0c3e 640 prev_sent = 0;
1d2f1f90 641 do {
3cab0c3e 642 int forward_progress, n_sent;
1d2f1f90 643
b830ab66
DM
644 status = sun4v_cpu_mondo_send(cnt,
645 tb->cpu_list_pa,
646 tb->cpu_mondo_block_pa);
647
648 /* HV_EOK means all cpus received the xcall, we're done. */
649 if (likely(status == HV_EOK))
1d2f1f90 650 break;
b830ab66 651
3cab0c3e
DM
652 /* First, see if we made any forward progress.
653 *
654 * The hypervisor indicates successful sends by setting
655 * cpu list entries to the value 0xffff.
b830ab66 656 */
3cab0c3e 657 n_sent = 0;
b830ab66 658 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
659 if (likely(cpu_list[i] == 0xffff))
660 n_sent++;
1d2f1f90
DM
661 }
662
3cab0c3e
DM
663 forward_progress = 0;
664 if (n_sent > prev_sent)
665 forward_progress = 1;
666
667 prev_sent = n_sent;
668
b830ab66
DM
669 /* If we get a HV_ECPUERROR, then one or more of the cpus
670 * in the list are in error state. Use the cpu_state()
671 * hypervisor call to find out which cpus are in error state.
672 */
673 if (unlikely(status == HV_ECPUERROR)) {
674 for (i = 0; i < cnt; i++) {
675 long err;
676 u16 cpu;
677
678 cpu = cpu_list[i];
679 if (cpu == 0xffff)
680 continue;
681
682 err = sun4v_cpu_state(cpu);
683 if (err >= 0 &&
684 err == HV_CPU_STATE_ERROR) {
3cab0c3e 685 cpu_list[i] = 0xffff;
b830ab66
DM
686 cpu_set(cpu, error_mask);
687 }
688 }
689 } else if (unlikely(status != HV_EWOULDBLOCK))
690 goto fatal_mondo_error;
691
3cab0c3e
DM
692 /* Don't bother rewriting the CPU list, just leave the
693 * 0xffff and non-0xffff entries in there and the
694 * hypervisor will do the right thing.
695 *
696 * Only advance timeout state if we didn't make any
697 * forward progress.
698 */
b830ab66
DM
699 if (unlikely(!forward_progress)) {
700 if (unlikely(++retries > 10000))
701 goto fatal_mondo_timeout;
702
703 /* Delay a little bit to let other cpus catch up
704 * on their cpu mondo queue work.
705 */
706 udelay(2 * cnt);
707 }
1d2f1f90
DM
708 } while (1);
709
b830ab66
DM
710 local_irq_restore(flags);
711
712 if (unlikely(!cpus_empty(error_mask)))
713 goto fatal_mondo_cpu_error;
714
715 return;
716
717fatal_mondo_cpu_error:
718 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
719 "were in error state\n",
720 this_cpu);
721 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
722 for_each_cpu_mask(i, error_mask)
723 printk("%d ", i);
724 printk("]\n");
725 return;
726
727fatal_mondo_timeout:
728 local_irq_restore(flags);
729 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
730 " progress after %d retries.\n",
731 this_cpu, retries);
732 goto dump_cpu_list_and_out;
733
734fatal_mondo_error:
735 local_irq_restore(flags);
736 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
737 this_cpu, status);
738 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
739 "mondo_block_pa(%lx)\n",
740 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
741
742dump_cpu_list_and_out:
743 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
744 for (i = 0; i < cnt; i++)
745 printk("%u ", cpu_list[i]);
746 printk("]\n");
1d2f1f90 747}
a43fe0e7 748
1da177e4
LT
749/* Send cross call to all processors mentioned in MASK
750 * except self.
751 */
752static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
753{
754 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
755 int this_cpu = get_cpu();
756
757 cpus_and(mask, mask, cpu_online_map);
758 cpu_clear(this_cpu, mask);
759
760 if (tlb_type == spitfire)
761 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 762 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 763 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
764 else
765 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
766 /* NOTE: Caller runs local copy on master. */
767
768 put_cpu();
769}
770
771extern unsigned long xcall_sync_tick;
772
773static void smp_start_sync_tick_client(int cpu)
774{
775 cpumask_t mask = cpumask_of_cpu(cpu);
776
777 smp_cross_call_masked(&xcall_sync_tick,
778 0, 0, 0, mask);
779}
780
781/* Send cross call to all processors except self. */
782#define smp_cross_call(func, ctx, data1, data2) \
783 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
784
785struct call_data_struct {
786 void (*func) (void *info);
787 void *info;
788 atomic_t finished;
789 int wait;
790};
791
aa1d1a0a 792static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
1da177e4
LT
793static struct call_data_struct *call_data;
794
795extern unsigned long xcall_call_function;
796
aa1d1a0a
DM
797/**
798 * smp_call_function(): Run a function on all other CPUs.
799 * @func: The function to run. This must be fast and non-blocking.
800 * @info: An arbitrary pointer to pass to the function.
801 * @nonatomic: currently unused.
802 * @wait: If true, wait (atomically) until function has completed on other CPUs.
803 *
804 * Returns 0 on success, else a negative status code. Does not return until
805 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
806 *
1da177e4
LT
807 * You must not call this function with disabled interrupts or from a
808 * hardware interrupt handler or from a bottom half handler.
809 */
bd40791e
DM
810static int smp_call_function_mask(void (*func)(void *info), void *info,
811 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
812{
813 struct call_data_struct data;
ee29074d 814 int cpus;
1da177e4 815
1da177e4
LT
816 /* Can deadlock when called with interrupts disabled */
817 WARN_ON(irqs_disabled());
818
819 data.func = func;
820 data.info = info;
821 atomic_set(&data.finished, 0);
822 data.wait = wait;
823
824 spin_lock(&call_lock);
825
ee29074d
DM
826 cpu_clear(smp_processor_id(), mask);
827 cpus = cpus_weight(mask);
828 if (!cpus)
829 goto out_unlock;
830
1da177e4 831 call_data = &data;
aa1d1a0a 832 mb();
1da177e4 833
bd40791e 834 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4 835
aa1d1a0a
DM
836 /* Wait for response */
837 while (atomic_read(&data.finished) != cpus)
838 cpu_relax();
1da177e4 839
ee29074d 840out_unlock:
1da177e4
LT
841 spin_unlock(&call_lock);
842
843 return 0;
1da177e4
LT
844}
845
bd40791e
DM
846int smp_call_function(void (*func)(void *info), void *info,
847 int nonatomic, int wait)
848{
849 return smp_call_function_mask(func, info, nonatomic, wait,
850 cpu_online_map);
851}
852
1da177e4
LT
853void smp_call_function_client(int irq, struct pt_regs *regs)
854{
855 void (*func) (void *info) = call_data->func;
856 void *info = call_data->info;
857
858 clear_softint(1 << irq);
859 if (call_data->wait) {
860 /* let initiator proceed only after completion */
861 func(info);
862 atomic_inc(&call_data->finished);
863 } else {
864 /* let initiator proceed after getting data */
865 atomic_inc(&call_data->finished);
866 func(info);
867 }
868}
869
bd40791e
DM
870static void tsb_sync(void *info)
871{
6f25f398 872 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
873 struct mm_struct *mm = info;
874
6f25f398
DM
875 /* It is not valid to test "currrent->active_mm == mm" here.
876 *
877 * The value of "current" is not changed atomically with
878 * switch_mm(). But that's OK, we just need to check the
879 * current cpu's trap block PGD physical address.
880 */
881 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
882 tsb_context_switch(mm);
883}
884
885void smp_tsb_sync(struct mm_struct *mm)
886{
887 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
888}
889
1da177e4
LT
890extern unsigned long xcall_flush_tlb_mm;
891extern unsigned long xcall_flush_tlb_pending;
892extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
893extern unsigned long xcall_report_regs;
894extern unsigned long xcall_receive_signal;
ee29074d 895extern unsigned long xcall_new_mmu_context_version;
1da177e4
LT
896
897#ifdef DCACHE_ALIASING_POSSIBLE
898extern unsigned long xcall_flush_dcache_page_cheetah;
899#endif
900extern unsigned long xcall_flush_dcache_page_spitfire;
901
902#ifdef CONFIG_DEBUG_DCFLUSH
903extern atomic_t dcpage_flushes;
904extern atomic_t dcpage_flushes_xcall;
905#endif
906
907static __inline__ void __local_flush_dcache_page(struct page *page)
908{
909#ifdef DCACHE_ALIASING_POSSIBLE
910 __flush_dcache_page(page_address(page),
911 ((tlb_type == spitfire) &&
912 page_mapping(page) != NULL));
913#else
914 if (page_mapping(page) != NULL &&
915 tlb_type == spitfire)
916 __flush_icache_page(__pa(page_address(page)));
917#endif
918}
919
920void smp_flush_dcache_page_impl(struct page *page, int cpu)
921{
922 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
923 int this_cpu;
924
925 if (tlb_type == hypervisor)
926 return;
1da177e4
LT
927
928#ifdef CONFIG_DEBUG_DCFLUSH
929 atomic_inc(&dcpage_flushes);
930#endif
a43fe0e7
DM
931
932 this_cpu = get_cpu();
933
1da177e4
LT
934 if (cpu == this_cpu) {
935 __local_flush_dcache_page(page);
936 } else if (cpu_online(cpu)) {
937 void *pg_addr = page_address(page);
938 u64 data0;
939
940 if (tlb_type == spitfire) {
941 data0 =
942 ((u64)&xcall_flush_dcache_page_spitfire);
943 if (page_mapping(page) != NULL)
944 data0 |= ((u64)1 << 32);
945 spitfire_xcall_deliver(data0,
946 __pa(pg_addr),
947 (u64) pg_addr,
948 mask);
a43fe0e7 949 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
950#ifdef DCACHE_ALIASING_POSSIBLE
951 data0 =
952 ((u64)&xcall_flush_dcache_page_cheetah);
953 cheetah_xcall_deliver(data0,
954 __pa(pg_addr),
955 0, mask);
956#endif
957 }
958#ifdef CONFIG_DEBUG_DCFLUSH
959 atomic_inc(&dcpage_flushes_xcall);
960#endif
961 }
962
963 put_cpu();
964}
965
966void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
967{
968 void *pg_addr = page_address(page);
969 cpumask_t mask = cpu_online_map;
970 u64 data0;
a43fe0e7
DM
971 int this_cpu;
972
973 if (tlb_type == hypervisor)
974 return;
975
976 this_cpu = get_cpu();
1da177e4
LT
977
978 cpu_clear(this_cpu, mask);
979
980#ifdef CONFIG_DEBUG_DCFLUSH
981 atomic_inc(&dcpage_flushes);
982#endif
983 if (cpus_empty(mask))
984 goto flush_self;
985 if (tlb_type == spitfire) {
986 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
987 if (page_mapping(page) != NULL)
988 data0 |= ((u64)1 << 32);
989 spitfire_xcall_deliver(data0,
990 __pa(pg_addr),
991 (u64) pg_addr,
992 mask);
a43fe0e7 993 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
994#ifdef DCACHE_ALIASING_POSSIBLE
995 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
996 cheetah_xcall_deliver(data0,
997 __pa(pg_addr),
998 0, mask);
999#endif
1000 }
1001#ifdef CONFIG_DEBUG_DCFLUSH
1002 atomic_inc(&dcpage_flushes_xcall);
1003#endif
1004 flush_self:
1005 __local_flush_dcache_page(page);
1006
1007 put_cpu();
1008}
1009
a0663a79
DM
1010static void __smp_receive_signal_mask(cpumask_t mask)
1011{
1012 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1013}
1014
1da177e4
LT
1015void smp_receive_signal(int cpu)
1016{
1017 cpumask_t mask = cpumask_of_cpu(cpu);
1018
a0663a79
DM
1019 if (cpu_online(cpu))
1020 __smp_receive_signal_mask(mask);
1da177e4
LT
1021}
1022
1023void smp_receive_signal_client(int irq, struct pt_regs *regs)
ee29074d
DM
1024{
1025 clear_softint(1 << irq);
1026}
1027
1028void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 1029{
a0663a79 1030 struct mm_struct *mm;
ee29074d 1031 unsigned long flags;
a0663a79 1032
1da177e4 1033 clear_softint(1 << irq);
a0663a79
DM
1034
1035 /* See if we need to allocate a new TLB context because
1036 * the version of the one we are using is now out of date.
1037 */
1038 mm = current->active_mm;
ee29074d
DM
1039 if (unlikely(!mm || (mm == &init_mm)))
1040 return;
a0663a79 1041
ee29074d 1042 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 1043
ee29074d
DM
1044 if (unlikely(!CTX_VALID(mm->context)))
1045 get_new_mmu_context(mm);
aac0aadf 1046
ee29074d 1047 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 1048
ee29074d
DM
1049 load_secondary_context(mm);
1050 __flush_tlb_mm(CTX_HWBITS(mm->context),
1051 SECONDARY_CONTEXT);
a0663a79
DM
1052}
1053
1054void smp_new_mmu_context_version(void)
1055{
ee29074d 1056 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
1057}
1058
1059void smp_report_regs(void)
1060{
1061 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1062}
1063
1da177e4
LT
1064/* We know that the window frames of the user have been flushed
1065 * to the stack before we get here because all callers of us
1066 * are flush_tlb_*() routines, and these run after flush_cache_*()
1067 * which performs the flushw.
1068 *
1069 * The SMP TLB coherency scheme we use works as follows:
1070 *
1071 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1072 * space has (potentially) executed on, this is the heuristic
1073 * we use to avoid doing cross calls.
1074 *
1075 * Also, for flushing from kswapd and also for clones, we
1076 * use cpu_vm_mask as the list of cpus to make run the TLB.
1077 *
1078 * 2) TLB context numbers are shared globally across all processors
1079 * in the system, this allows us to play several games to avoid
1080 * cross calls.
1081 *
1082 * One invariant is that when a cpu switches to a process, and
1083 * that processes tsk->active_mm->cpu_vm_mask does not have the
1084 * current cpu's bit set, that tlb context is flushed locally.
1085 *
1086 * If the address space is non-shared (ie. mm->count == 1) we avoid
1087 * cross calls when we want to flush the currently running process's
1088 * tlb state. This is done by clearing all cpu bits except the current
1089 * processor's in current->active_mm->cpu_vm_mask and performing the
1090 * flush locally only. This will force any subsequent cpus which run
1091 * this task to flush the context from the local tlb if the process
1092 * migrates to another cpu (again).
1093 *
1094 * 3) For shared address spaces (threads) and swapping we bite the
1095 * bullet for most cases and perform the cross call (but only to
1096 * the cpus listed in cpu_vm_mask).
1097 *
1098 * The performance gain from "optimizing" away the cross call for threads is
1099 * questionable (in theory the big win for threads is the massive sharing of
1100 * address space state across processors).
1101 */
62dbec78
DM
1102
1103/* This currently is only used by the hugetlb arch pre-fault
1104 * hook on UltraSPARC-III+ and later when changing the pagesize
1105 * bits of the context register for an address space.
1106 */
1da177e4
LT
1107void smp_flush_tlb_mm(struct mm_struct *mm)
1108{
62dbec78
DM
1109 u32 ctx = CTX_HWBITS(mm->context);
1110 int cpu = get_cpu();
1da177e4 1111
62dbec78
DM
1112 if (atomic_read(&mm->mm_users) == 1) {
1113 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1114 goto local_flush_and_out;
1115 }
1da177e4 1116
62dbec78
DM
1117 smp_cross_call_masked(&xcall_flush_tlb_mm,
1118 ctx, 0, 0,
1119 mm->cpu_vm_mask);
1da177e4 1120
62dbec78
DM
1121local_flush_and_out:
1122 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1123
62dbec78 1124 put_cpu();
1da177e4
LT
1125}
1126
1127void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1128{
1129 u32 ctx = CTX_HWBITS(mm->context);
1130 int cpu = get_cpu();
1131
dedeb002 1132 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1133 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1134 else
1135 smp_cross_call_masked(&xcall_flush_tlb_pending,
1136 ctx, nr, (unsigned long) vaddrs,
1137 mm->cpu_vm_mask);
1da177e4 1138
1da177e4
LT
1139 __flush_tlb_pending(ctx, nr, vaddrs);
1140
1141 put_cpu();
1142}
1143
1144void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1145{
1146 start &= PAGE_MASK;
1147 end = PAGE_ALIGN(end);
1148 if (start != end) {
1149 smp_cross_call(&xcall_flush_tlb_kernel_range,
1150 0, start, end);
1151
1152 __flush_tlb_kernel_range(start, end);
1153 }
1154}
1155
1156/* CPU capture. */
1157/* #define CAPTURE_DEBUG */
1158extern unsigned long xcall_capture;
1159
1160static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1161static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1162static unsigned long penguins_are_doing_time;
1163
1164void smp_capture(void)
1165{
1166 int result = atomic_add_ret(1, &smp_capture_depth);
1167
1168 if (result == 1) {
1169 int ncpus = num_online_cpus();
1170
1171#ifdef CAPTURE_DEBUG
1172 printk("CPU[%d]: Sending penguins to jail...",
1173 smp_processor_id());
1174#endif
1175 penguins_are_doing_time = 1;
4f07118f 1176 membar_storestore_loadstore();
1da177e4
LT
1177 atomic_inc(&smp_capture_registry);
1178 smp_cross_call(&xcall_capture, 0, 0, 0);
1179 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1180 rmb();
1da177e4
LT
1181#ifdef CAPTURE_DEBUG
1182 printk("done\n");
1183#endif
1184 }
1185}
1186
1187void smp_release(void)
1188{
1189 if (atomic_dec_and_test(&smp_capture_depth)) {
1190#ifdef CAPTURE_DEBUG
1191 printk("CPU[%d]: Giving pardon to "
1192 "imprisoned penguins\n",
1193 smp_processor_id());
1194#endif
1195 penguins_are_doing_time = 0;
4f07118f 1196 membar_storeload_storestore();
1da177e4
LT
1197 atomic_dec(&smp_capture_registry);
1198 }
1199}
1200
1201/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1202 * can service tlb flush xcalls...
1203 */
1204extern void prom_world(int);
96c6e0d8 1205
1da177e4
LT
1206void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1207{
1da177e4
LT
1208 clear_softint(1 << irq);
1209
1210 preempt_disable();
1211
1212 __asm__ __volatile__("flushw");
1da177e4
LT
1213 prom_world(1);
1214 atomic_inc(&smp_capture_registry);
4f07118f 1215 membar_storeload_storestore();
1da177e4 1216 while (penguins_are_doing_time)
4f07118f 1217 rmb();
1da177e4
LT
1218 atomic_dec(&smp_capture_registry);
1219 prom_world(0);
1220
1221 preempt_enable();
1222}
1223
1da177e4
LT
1224void __init smp_tick_init(void)
1225{
1226 boot_cpu_id = hard_smp_processor_id();
1da177e4
LT
1227}
1228
1229/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1230int setup_profiling_timer(unsigned int multiplier)
1231{
777a4475 1232 return -EINVAL;
1da177e4
LT
1233}
1234
1235void __init smp_prepare_cpus(unsigned int max_cpus)
1236{
5cbc3073 1237 cpu_data(boot_cpu_id).udelay_val = loops_per_jiffy;
1da177e4
LT
1238}
1239
5cbc3073 1240void __devinit smp_prepare_boot_cpu(void)
7abea921 1241{
7abea921
DM
1242}
1243
5cbc3073 1244void __devinit smp_fill_in_sib_core_maps(void)
1da177e4 1245{
5cbc3073
DM
1246 unsigned int i;
1247
1248 for_each_possible_cpu(i) {
1249 unsigned int j;
1250
1251 if (cpu_data(i).core_id == 0) {
f78eae2e 1252 cpu_set(i, cpu_core_map[i]);
5cbc3073
DM
1253 continue;
1254 }
1255
1256 for_each_possible_cpu(j) {
1257 if (cpu_data(i).core_id ==
1258 cpu_data(j).core_id)
f78eae2e
DM
1259 cpu_set(j, cpu_core_map[i]);
1260 }
1261 }
1262
1263 for_each_possible_cpu(i) {
1264 unsigned int j;
1265
1266 if (cpu_data(i).proc_id == -1) {
1267 cpu_set(i, cpu_sibling_map[i]);
1268 continue;
1269 }
1270
1271 for_each_possible_cpu(j) {
1272 if (cpu_data(i).proc_id ==
1273 cpu_data(j).proc_id)
5cbc3073
DM
1274 cpu_set(j, cpu_sibling_map[i]);
1275 }
1276 }
1da177e4
LT
1277}
1278
b282b6f8 1279int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1280{
1281 int ret = smp_boot_one_cpu(cpu);
1282
1283 if (!ret) {
1284 cpu_set(cpu, smp_commenced_mask);
1285 while (!cpu_isset(cpu, cpu_online_map))
1286 mb();
1287 if (!cpu_isset(cpu, cpu_online_map)) {
1288 ret = -ENODEV;
1289 } else {
02fead75
DM
1290 /* On SUN4V, writes to %tick and %stick are
1291 * not allowed.
1292 */
1293 if (tlb_type != hypervisor)
1294 smp_synchronize_one_tick(cpu);
1da177e4
LT
1295 }
1296 }
1297 return ret;
1298}
1299
4f0234f4
DM
1300#ifdef CONFIG_HOTPLUG_CPU
1301int __cpu_disable(void)
1302{
1303 printk(KERN_ERR "SMP: __cpu_disable() on cpu %d\n",
1304 smp_processor_id());
1305 return -ENODEV;
1306}
1307
1308void __cpu_die(unsigned int cpu)
1309{
1310 printk(KERN_ERR "SMP: __cpu_die(%u)\n", cpu);
1311}
1312#endif
1313
1da177e4
LT
1314void __init smp_cpus_done(unsigned int max_cpus)
1315{
1316 unsigned long bogosum = 0;
1317 int i;
1318
394e3902
AM
1319 for_each_online_cpu(i)
1320 bogosum += cpu_data(i).udelay_val;
1da177e4
LT
1321 printk("Total of %ld processors activated "
1322 "(%lu.%02lu BogoMIPS).\n",
1323 (long) num_online_cpus(),
1324 bogosum/(500000/HZ),
1325 (bogosum/(5000/HZ))%100);
1326}
1327
1da177e4
LT
1328void smp_send_reschedule(int cpu)
1329{
64c7c8f8 1330 smp_receive_signal(cpu);
1da177e4
LT
1331}
1332
1333/* This is a nop because we capture all other cpus
1334 * anyways when making the PROM active.
1335 */
1336void smp_send_stop(void)
1337{
1338}
1339
d369ddd2
DM
1340unsigned long __per_cpu_base __read_mostly;
1341unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1342
1343EXPORT_SYMBOL(__per_cpu_base);
1344EXPORT_SYMBOL(__per_cpu_shift);
1345
5cbc3073 1346void __init real_setup_per_cpu_areas(void)
1da177e4
LT
1347{
1348 unsigned long goal, size, i;
1349 char *ptr;
1da177e4
LT
1350
1351 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1352 goal = PERCPU_ENOUGH_ROOM;
1353
b6e3590f
JF
1354 __per_cpu_shift = PAGE_SHIFT;
1355 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1da177e4
LT
1356 __per_cpu_shift++;
1357
b6e3590f 1358 ptr = alloc_bootmem_pages(size * NR_CPUS);
1da177e4
LT
1359
1360 __per_cpu_base = ptr - __per_cpu_start;
1361
1da177e4
LT
1362 for (i = 0; i < NR_CPUS; i++, ptr += size)
1363 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1364
1365 /* Setup %g5 for the boot cpu. */
1366 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1367}