]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/sparc64/mm/init.c
pageflags: use an enum for the flags
[mirror_ubuntu-artful-kernel.git] / arch / sparc64 / mm / init.c
CommitLineData
1da177e4
LT
1/* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
c4bce90e 8#include <linux/module.h>
1da177e4
LT
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/bootmem.h>
14#include <linux/mm.h>
15#include <linux/hugetlb.h>
16#include <linux/slab.h>
17#include <linux/initrd.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
c9cf5528 20#include <linux/poison.h>
1da177e4
LT
21#include <linux/fs.h>
22#include <linux/seq_file.h>
05e14cb3 23#include <linux/kprobes.h>
1ac4f5eb 24#include <linux/cache.h>
13edad7a 25#include <linux/sort.h>
5cbc3073 26#include <linux/percpu.h>
3b2a7e23 27#include <linux/lmb.h>
919ee677 28#include <linux/mmzone.h>
1da177e4
LT
29
30#include <asm/head.h>
31#include <asm/system.h>
32#include <asm/page.h>
33#include <asm/pgalloc.h>
34#include <asm/pgtable.h>
35#include <asm/oplib.h>
36#include <asm/iommu.h>
37#include <asm/io.h>
38#include <asm/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/tlbflush.h>
41#include <asm/dma.h>
42#include <asm/starfire.h>
43#include <asm/tlb.h>
44#include <asm/spitfire.h>
45#include <asm/sections.h>
517af332 46#include <asm/tsb.h>
481295f9 47#include <asm/hypervisor.h>
372b07bb 48#include <asm/prom.h>
22d6a1cb 49#include <asm/sstate.h>
5cbc3073 50#include <asm/mdesc.h>
3d5ae6b6 51#include <asm/cpudata.h>
1da177e4 52
9cc3a1ac
DM
53#define MAX_PHYS_ADDRESS (1UL << 42UL)
54#define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
55#define KPTE_BITMAP_BYTES \
56 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
57
58unsigned long kern_linear_pte_xor[2] __read_mostly;
59
60/* A bitmap, one bit for every 256MB of physical memory. If the bit
61 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
62 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
63 */
64unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
65
d1acb421 66#ifndef CONFIG_DEBUG_PAGEALLOC
2d9e2763
DM
67/* A special kernel TSB for 4MB and 256MB linear mappings.
68 * Space is allocated for this right after the trap table
69 * in arch/sparc64/kernel/head.S
70 */
71extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
d1acb421 72#endif
d7744a09 73
13edad7a
DM
74#define MAX_BANKS 32
75
76static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
13edad7a 77static int pavail_ents __initdata;
13edad7a
DM
78
79static int cmp_p64(const void *a, const void *b)
80{
81 const struct linux_prom64_registers *x = a, *y = b;
82
83 if (x->phys_addr > y->phys_addr)
84 return 1;
85 if (x->phys_addr < y->phys_addr)
86 return -1;
87 return 0;
88}
89
90static void __init read_obp_memory(const char *property,
91 struct linux_prom64_registers *regs,
92 int *num_ents)
93{
94 int node = prom_finddevice("/memory");
95 int prop_size = prom_getproplen(node, property);
96 int ents, ret, i;
97
98 ents = prop_size / sizeof(struct linux_prom64_registers);
99 if (ents > MAX_BANKS) {
100 prom_printf("The machine has more %s property entries than "
101 "this kernel can support (%d).\n",
102 property, MAX_BANKS);
103 prom_halt();
104 }
105
106 ret = prom_getproperty(node, property, (char *) regs, prop_size);
107 if (ret == -1) {
108 prom_printf("Couldn't get %s property from /memory.\n");
109 prom_halt();
110 }
111
13edad7a
DM
112 /* Sanitize what we got from the firmware, by page aligning
113 * everything.
114 */
115 for (i = 0; i < ents; i++) {
116 unsigned long base, size;
117
118 base = regs[i].phys_addr;
119 size = regs[i].reg_size;
10147570 120
13edad7a
DM
121 size &= PAGE_MASK;
122 if (base & ~PAGE_MASK) {
123 unsigned long new_base = PAGE_ALIGN(base);
124
125 size -= new_base - base;
126 if ((long) size < 0L)
127 size = 0UL;
128 base = new_base;
129 }
0015d3d6
DM
130 if (size == 0UL) {
131 /* If it is empty, simply get rid of it.
132 * This simplifies the logic of the other
133 * functions that process these arrays.
134 */
135 memmove(&regs[i], &regs[i + 1],
136 (ents - i - 1) * sizeof(regs[0]));
486ad10a 137 i--;
0015d3d6
DM
138 ents--;
139 continue;
486ad10a 140 }
0015d3d6
DM
141 regs[i].phys_addr = base;
142 regs[i].reg_size = size;
486ad10a
DM
143 }
144
145 *num_ents = ents;
146
c9c10830 147 sort(regs, ents, sizeof(struct linux_prom64_registers),
13edad7a
DM
148 cmp_p64, NULL);
149}
1da177e4 150
2bdb3cb2 151unsigned long *sparc64_valid_addr_bitmap __read_mostly;
1da177e4 152
d1112018 153/* Kernel physical address base and size in bytes. */
1ac4f5eb
DM
154unsigned long kern_base __read_mostly;
155unsigned long kern_size __read_mostly;
1da177e4 156
1da177e4
LT
157/* Initial ramdisk setup */
158extern unsigned long sparc_ramdisk_image64;
159extern unsigned int sparc_ramdisk_image;
160extern unsigned int sparc_ramdisk_size;
161
1ac4f5eb 162struct page *mem_map_zero __read_mostly;
1da177e4 163
0835ae0f
DM
164unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165
166unsigned long sparc64_kern_pri_context __read_mostly;
167unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168unsigned long sparc64_kern_sec_context __read_mostly;
169
64658743 170int num_kernel_image_mappings;
1da177e4 171
1da177e4
LT
172#ifdef CONFIG_DEBUG_DCFLUSH
173atomic_t dcpage_flushes = ATOMIC_INIT(0);
174#ifdef CONFIG_SMP
175atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176#endif
177#endif
178
7a591cfe 179inline void flush_dcache_page_impl(struct page *page)
1da177e4 180{
7a591cfe 181 BUG_ON(tlb_type == hypervisor);
1da177e4
LT
182#ifdef CONFIG_DEBUG_DCFLUSH
183 atomic_inc(&dcpage_flushes);
184#endif
185
186#ifdef DCACHE_ALIASING_POSSIBLE
187 __flush_dcache_page(page_address(page),
188 ((tlb_type == spitfire) &&
189 page_mapping(page) != NULL));
190#else
191 if (page_mapping(page) != NULL &&
192 tlb_type == spitfire)
193 __flush_icache_page(__pa(page_address(page)));
194#endif
195}
196
197#define PG_dcache_dirty PG_arch_1
22adb358
DM
198#define PG_dcache_cpu_shift 32UL
199#define PG_dcache_cpu_mask \
200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
1da177e4
LT
201
202#define dcache_dirty_cpu(page) \
48b0e548 203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
1da177e4 204
d979f179 205static inline void set_dcache_dirty(struct page *page, int this_cpu)
1da177e4
LT
206{
207 unsigned long mask = this_cpu;
48b0e548
DM
208 unsigned long non_cpu_bits;
209
210 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212
1da177e4
LT
213 __asm__ __volatile__("1:\n\t"
214 "ldx [%2], %%g7\n\t"
215 "and %%g7, %1, %%g1\n\t"
216 "or %%g1, %0, %%g1\n\t"
217 "casx [%2], %%g7, %%g1\n\t"
218 "cmp %%g7, %%g1\n\t"
b445e26c 219 "membar #StoreLoad | #StoreStore\n\t"
1da177e4 220 "bne,pn %%xcc, 1b\n\t"
b445e26c 221 " nop"
1da177e4
LT
222 : /* no outputs */
223 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
224 : "g1", "g7");
225}
226
d979f179 227static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
1da177e4
LT
228{
229 unsigned long mask = (1UL << PG_dcache_dirty);
230
231 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
232 "1:\n\t"
233 "ldx [%2], %%g7\n\t"
48b0e548 234 "srlx %%g7, %4, %%g1\n\t"
1da177e4
LT
235 "and %%g1, %3, %%g1\n\t"
236 "cmp %%g1, %0\n\t"
237 "bne,pn %%icc, 2f\n\t"
238 " andn %%g7, %1, %%g1\n\t"
239 "casx [%2], %%g7, %%g1\n\t"
240 "cmp %%g7, %%g1\n\t"
b445e26c 241 "membar #StoreLoad | #StoreStore\n\t"
1da177e4 242 "bne,pn %%xcc, 1b\n\t"
b445e26c 243 " nop\n"
1da177e4
LT
244 "2:"
245 : /* no outputs */
246 : "r" (cpu), "r" (mask), "r" (&page->flags),
48b0e548
DM
247 "i" (PG_dcache_cpu_mask),
248 "i" (PG_dcache_cpu_shift)
1da177e4
LT
249 : "g1", "g7");
250}
251
517af332
DM
252static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
253{
254 unsigned long tsb_addr = (unsigned long) ent;
255
3b3ab2eb 256 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
517af332
DM
257 tsb_addr = __pa(tsb_addr);
258
259 __tsb_insert(tsb_addr, tag, pte);
260}
261
c4bce90e
DM
262unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
263unsigned long _PAGE_SZBITS __read_mostly;
264
1da177e4
LT
265void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
266{
bd40791e 267 struct mm_struct *mm;
74ae9987 268 struct tsb *tsb;
7a1ac526 269 unsigned long tag, flags;
dcc1e8dd 270 unsigned long tsb_index, tsb_hash_shift;
7a591cfe
DM
271
272 if (tlb_type != hypervisor) {
273 unsigned long pfn = pte_pfn(pte);
274 unsigned long pg_flags;
275 struct page *page;
276
277 if (pfn_valid(pfn) &&
278 (page = pfn_to_page(pfn), page_mapping(page)) &&
279 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
280 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
281 PG_dcache_cpu_mask);
282 int this_cpu = get_cpu();
283
284 /* This is just to optimize away some function calls
285 * in the SMP case.
286 */
287 if (cpu == this_cpu)
288 flush_dcache_page_impl(page);
289 else
290 smp_flush_dcache_page_impl(page, cpu);
291
292 clear_dcache_dirty_cpu(page, cpu);
293
294 put_cpu();
295 }
1da177e4 296 }
bd40791e
DM
297
298 mm = vma->vm_mm;
7a1ac526 299
dcc1e8dd
DM
300 tsb_index = MM_TSB_BASE;
301 tsb_hash_shift = PAGE_SHIFT;
302
7a1ac526
DM
303 spin_lock_irqsave(&mm->context.lock, flags);
304
dcc1e8dd
DM
305#ifdef CONFIG_HUGETLB_PAGE
306 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
307 if ((tlb_type == hypervisor &&
308 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
309 (tlb_type != hypervisor &&
310 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
311 tsb_index = MM_TSB_HUGE;
312 tsb_hash_shift = HPAGE_SHIFT;
313 }
314 }
315#endif
316
317 tsb = mm->context.tsb_block[tsb_index].tsb;
318 tsb += ((address >> tsb_hash_shift) &
319 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
74ae9987
DM
320 tag = (address >> 22UL);
321 tsb_insert(tsb, tag, pte_val(pte));
7a1ac526
DM
322
323 spin_unlock_irqrestore(&mm->context.lock, flags);
1da177e4
LT
324}
325
326void flush_dcache_page(struct page *page)
327{
a9546f59
DM
328 struct address_space *mapping;
329 int this_cpu;
1da177e4 330
7a591cfe
DM
331 if (tlb_type == hypervisor)
332 return;
333
a9546f59
DM
334 /* Do not bother with the expensive D-cache flush if it
335 * is merely the zero page. The 'bigcore' testcase in GDB
336 * causes this case to run millions of times.
337 */
338 if (page == ZERO_PAGE(0))
339 return;
340
341 this_cpu = get_cpu();
342
343 mapping = page_mapping(page);
1da177e4 344 if (mapping && !mapping_mapped(mapping)) {
a9546f59 345 int dirty = test_bit(PG_dcache_dirty, &page->flags);
1da177e4 346 if (dirty) {
a9546f59
DM
347 int dirty_cpu = dcache_dirty_cpu(page);
348
1da177e4
LT
349 if (dirty_cpu == this_cpu)
350 goto out;
351 smp_flush_dcache_page_impl(page, dirty_cpu);
352 }
353 set_dcache_dirty(page, this_cpu);
354 } else {
355 /* We could delay the flush for the !page_mapping
356 * case too. But that case is for exec env/arg
357 * pages and those are %99 certainly going to get
358 * faulted into the tlb (and thus flushed) anyways.
359 */
360 flush_dcache_page_impl(page);
361 }
362
363out:
364 put_cpu();
365}
366
05e14cb3 367void __kprobes flush_icache_range(unsigned long start, unsigned long end)
1da177e4 368{
a43fe0e7 369 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
1da177e4
LT
370 if (tlb_type == spitfire) {
371 unsigned long kaddr;
372
a94aa253
DM
373 /* This code only runs on Spitfire cpus so this is
374 * why we can assume _PAGE_PADDR_4U.
375 */
376 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
377 unsigned long paddr, mask = _PAGE_PADDR_4U;
378
379 if (kaddr >= PAGE_OFFSET)
380 paddr = kaddr & mask;
381 else {
382 pgd_t *pgdp = pgd_offset_k(kaddr);
383 pud_t *pudp = pud_offset(pgdp, kaddr);
384 pmd_t *pmdp = pmd_offset(pudp, kaddr);
385 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
386
387 paddr = pte_val(*ptep) & mask;
388 }
389 __flush_icache_page(paddr);
390 }
1da177e4
LT
391 }
392}
393
1da177e4
LT
394void show_mem(void)
395{
5be4a963
DM
396 unsigned long total = 0, reserved = 0;
397 unsigned long shared = 0, cached = 0;
398 pg_data_t *pgdat;
399
28256ca2 400 printk(KERN_INFO "Mem-info:\n");
1da177e4 401 show_free_areas();
28256ca2 402 printk(KERN_INFO "Free swap: %6ldkB\n",
1da177e4 403 nr_swap_pages << (PAGE_SHIFT-10));
5be4a963
DM
404 for_each_online_pgdat(pgdat) {
405 unsigned long i, flags;
406
407 pgdat_resize_lock(pgdat, &flags);
408 for (i = 0; i < pgdat->node_spanned_pages; i++) {
409 struct page *page = pgdat_page_nr(pgdat, i);
410 total++;
411 if (PageReserved(page))
412 reserved++;
413 else if (PageSwapCache(page))
414 cached++;
415 else if (page_count(page))
416 shared += page_count(page) - 1;
417 }
418 pgdat_resize_unlock(pgdat, &flags);
419 }
420
421 printk(KERN_INFO "%lu pages of RAM\n", total);
422 printk(KERN_INFO "%lu reserved pages\n", reserved);
423 printk(KERN_INFO "%lu pages shared\n", shared);
424 printk(KERN_INFO "%lu pages swap cached\n", cached);
425
426 printk(KERN_INFO "%lu pages dirty\n",
427 global_page_state(NR_FILE_DIRTY));
428 printk(KERN_INFO "%lu pages writeback\n",
429 global_page_state(NR_WRITEBACK));
430 printk(KERN_INFO "%lu pages mapped\n",
431 global_page_state(NR_FILE_MAPPED));
432 printk(KERN_INFO "%lu pages slab\n",
433 global_page_state(NR_SLAB_RECLAIMABLE) +
434 global_page_state(NR_SLAB_UNRECLAIMABLE));
435 printk(KERN_INFO "%lu pages pagetables\n",
436 global_page_state(NR_PAGETABLE));
1da177e4
LT
437}
438
439void mmu_info(struct seq_file *m)
440{
441 if (tlb_type == cheetah)
442 seq_printf(m, "MMU Type\t: Cheetah\n");
443 else if (tlb_type == cheetah_plus)
444 seq_printf(m, "MMU Type\t: Cheetah+\n");
445 else if (tlb_type == spitfire)
446 seq_printf(m, "MMU Type\t: Spitfire\n");
a43fe0e7
DM
447 else if (tlb_type == hypervisor)
448 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
1da177e4
LT
449 else
450 seq_printf(m, "MMU Type\t: ???\n");
451
452#ifdef CONFIG_DEBUG_DCFLUSH
453 seq_printf(m, "DCPageFlushes\t: %d\n",
454 atomic_read(&dcpage_flushes));
455#ifdef CONFIG_SMP
456 seq_printf(m, "DCPageFlushesXC\t: %d\n",
457 atomic_read(&dcpage_flushes_xcall));
458#endif /* CONFIG_SMP */
459#endif /* CONFIG_DEBUG_DCFLUSH */
460}
461
a94aa253
DM
462struct linux_prom_translation {
463 unsigned long virt;
464 unsigned long size;
465 unsigned long data;
466};
467
468/* Exported for kernel TLB miss handling in ktlb.S */
469struct linux_prom_translation prom_trans[512] __read_mostly;
470unsigned int prom_trans_ents __read_mostly;
471
1da177e4
LT
472/* Exported for SMP bootup purposes. */
473unsigned long kern_locked_tte_data;
474
c9c10830
DM
475/* The obp translations are saved based on 8k pagesize, since obp can
476 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
74bf4312 477 * HI_OBP_ADDRESS range are handled in ktlb.S.
c9c10830 478 */
5085b4a5
DM
479static inline int in_obp_range(unsigned long vaddr)
480{
481 return (vaddr >= LOW_OBP_ADDRESS &&
482 vaddr < HI_OBP_ADDRESS);
483}
484
c9c10830 485static int cmp_ptrans(const void *a, const void *b)
405599bd 486{
c9c10830 487 const struct linux_prom_translation *x = a, *y = b;
405599bd 488
c9c10830
DM
489 if (x->virt > y->virt)
490 return 1;
491 if (x->virt < y->virt)
492 return -1;
493 return 0;
405599bd
DM
494}
495
c9c10830 496/* Read OBP translations property into 'prom_trans[]'. */
9ad98c5b 497static void __init read_obp_translations(void)
405599bd 498{
c9c10830 499 int n, node, ents, first, last, i;
1da177e4
LT
500
501 node = prom_finddevice("/virtual-memory");
502 n = prom_getproplen(node, "translations");
405599bd 503 if (unlikely(n == 0 || n == -1)) {
b206fc4c 504 prom_printf("prom_mappings: Couldn't get size.\n");
1da177e4
LT
505 prom_halt();
506 }
405599bd
DM
507 if (unlikely(n > sizeof(prom_trans))) {
508 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
1da177e4
LT
509 prom_halt();
510 }
405599bd 511
b206fc4c 512 if ((n = prom_getproperty(node, "translations",
405599bd
DM
513 (char *)&prom_trans[0],
514 sizeof(prom_trans))) == -1) {
b206fc4c 515 prom_printf("prom_mappings: Couldn't get property.\n");
1da177e4
LT
516 prom_halt();
517 }
9ad98c5b 518
b206fc4c 519 n = n / sizeof(struct linux_prom_translation);
9ad98c5b 520
c9c10830
DM
521 ents = n;
522
523 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
524 cmp_ptrans, NULL);
525
526 /* Now kick out all the non-OBP entries. */
527 for (i = 0; i < ents; i++) {
528 if (in_obp_range(prom_trans[i].virt))
529 break;
530 }
531 first = i;
532 for (; i < ents; i++) {
533 if (!in_obp_range(prom_trans[i].virt))
534 break;
535 }
536 last = i;
537
538 for (i = 0; i < (last - first); i++) {
539 struct linux_prom_translation *src = &prom_trans[i + first];
540 struct linux_prom_translation *dest = &prom_trans[i];
541
542 *dest = *src;
543 }
544 for (; i < ents; i++) {
545 struct linux_prom_translation *dest = &prom_trans[i];
546 dest->virt = dest->size = dest->data = 0x0UL;
547 }
548
549 prom_trans_ents = last - first;
550
551 if (tlb_type == spitfire) {
552 /* Clear diag TTE bits. */
553 for (i = 0; i < prom_trans_ents; i++)
554 prom_trans[i].data &= ~0x0003fe0000000000UL;
555 }
405599bd 556}
1da177e4 557
d82ace7d
DM
558static void __init hypervisor_tlb_lock(unsigned long vaddr,
559 unsigned long pte,
560 unsigned long mmu)
561{
7db35f31
DM
562 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
563
564 if (ret != 0) {
12e126ad 565 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
7db35f31 566 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
12e126ad
DM
567 prom_halt();
568 }
d82ace7d
DM
569}
570
c4bce90e
DM
571static unsigned long kern_large_tte(unsigned long paddr);
572
898cf0ec 573static void __init remap_kernel(void)
405599bd
DM
574{
575 unsigned long phys_page, tte_vaddr, tte_data;
64658743 576 int i, tlb_ent = sparc64_highest_locked_tlbent();
405599bd 577
1da177e4 578 tte_vaddr = (unsigned long) KERNBASE;
bff06d55 579 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
c4bce90e 580 tte_data = kern_large_tte(phys_page);
1da177e4
LT
581
582 kern_locked_tte_data = tte_data;
583
d82ace7d
DM
584 /* Now lock us into the TLBs via Hypervisor or OBP. */
585 if (tlb_type == hypervisor) {
64658743 586 for (i = 0; i < num_kernel_image_mappings; i++) {
d82ace7d
DM
587 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
588 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
64658743
DM
589 tte_vaddr += 0x400000;
590 tte_data += 0x400000;
d82ace7d
DM
591 }
592 } else {
64658743
DM
593 for (i = 0; i < num_kernel_image_mappings; i++) {
594 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
595 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
596 tte_vaddr += 0x400000;
597 tte_data += 0x400000;
d82ace7d 598 }
64658743 599 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
1da177e4 600 }
0835ae0f
DM
601 if (tlb_type == cheetah_plus) {
602 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
603 CTX_CHEETAH_PLUS_NUC);
604 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
605 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
606 }
405599bd 607}
1da177e4 608
405599bd 609
c9c10830 610static void __init inherit_prom_mappings(void)
9ad98c5b
DM
611{
612 read_obp_translations();
405599bd
DM
613
614 /* Now fixup OBP's idea about where we really are mapped. */
3c62a2d3 615 printk("Remapping the kernel... ");
405599bd 616 remap_kernel();
3c62a2d3 617 printk("done.\n");
1da177e4
LT
618}
619
1da177e4
LT
620void prom_world(int enter)
621{
1da177e4
LT
622 if (!enter)
623 set_fs((mm_segment_t) { get_thread_current_ds() });
624
3487d1d4 625 __asm__ __volatile__("flushw");
1da177e4
LT
626}
627
1da177e4
LT
628void __flush_dcache_range(unsigned long start, unsigned long end)
629{
630 unsigned long va;
631
632 if (tlb_type == spitfire) {
633 int n = 0;
634
635 for (va = start; va < end; va += 32) {
636 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
637 if (++n >= 512)
638 break;
639 }
a43fe0e7 640 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
641 start = __pa(start);
642 end = __pa(end);
643 for (va = start; va < end; va += 32)
644 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
645 "membar #Sync"
646 : /* no outputs */
647 : "r" (va),
648 "i" (ASI_DCACHE_INVALIDATE));
649 }
650}
1da177e4 651
85f1e1f6
DM
652/* get_new_mmu_context() uses "cache + 1". */
653DEFINE_SPINLOCK(ctx_alloc_lock);
654unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
655#define MAX_CTX_NR (1UL << CTX_NR_BITS)
656#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
657DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
658
1da177e4
LT
659/* Caller does TLB context flushing on local CPU if necessary.
660 * The caller also ensures that CTX_VALID(mm->context) is false.
661 *
662 * We must be careful about boundary cases so that we never
663 * let the user have CTX 0 (nucleus) or we ever use a CTX
664 * version of zero (and thus NO_CONTEXT would not be caught
665 * by version mis-match tests in mmu_context.h).
a0663a79
DM
666 *
667 * Always invoked with interrupts disabled.
1da177e4
LT
668 */
669void get_new_mmu_context(struct mm_struct *mm)
670{
671 unsigned long ctx, new_ctx;
672 unsigned long orig_pgsz_bits;
a77754b4 673 unsigned long flags;
a0663a79 674 int new_version;
1da177e4 675
a77754b4 676 spin_lock_irqsave(&ctx_alloc_lock, flags);
1da177e4
LT
677 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
678 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
679 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
a0663a79 680 new_version = 0;
1da177e4
LT
681 if (new_ctx >= (1 << CTX_NR_BITS)) {
682 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
683 if (new_ctx >= ctx) {
684 int i;
685 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
686 CTX_FIRST_VERSION;
687 if (new_ctx == 1)
688 new_ctx = CTX_FIRST_VERSION;
689
690 /* Don't call memset, for 16 entries that's just
691 * plain silly...
692 */
693 mmu_context_bmap[0] = 3;
694 mmu_context_bmap[1] = 0;
695 mmu_context_bmap[2] = 0;
696 mmu_context_bmap[3] = 0;
697 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
698 mmu_context_bmap[i + 0] = 0;
699 mmu_context_bmap[i + 1] = 0;
700 mmu_context_bmap[i + 2] = 0;
701 mmu_context_bmap[i + 3] = 0;
702 }
a0663a79 703 new_version = 1;
1da177e4
LT
704 goto out;
705 }
706 }
707 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
708 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
709out:
710 tlb_context_cache = new_ctx;
711 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
a77754b4 712 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
a0663a79
DM
713
714 if (unlikely(new_version))
715 smp_new_mmu_context_version();
1da177e4
LT
716}
717
919ee677
DM
718static int numa_enabled = 1;
719static int numa_debug;
720
721static int __init early_numa(char *p)
1da177e4 722{
919ee677
DM
723 if (!p)
724 return 0;
725
726 if (strstr(p, "off"))
727 numa_enabled = 0;
d1112018 728
919ee677
DM
729 if (strstr(p, "debug"))
730 numa_debug = 1;
d1112018 731
919ee677 732 return 0;
d1112018 733}
919ee677
DM
734early_param("numa", early_numa);
735
736#define numadbg(f, a...) \
737do { if (numa_debug) \
738 printk(KERN_INFO f, ## a); \
739} while (0)
d1112018 740
4e82c9a6
DM
741static void __init find_ramdisk(unsigned long phys_base)
742{
743#ifdef CONFIG_BLK_DEV_INITRD
744 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
745 unsigned long ramdisk_image;
746
747 /* Older versions of the bootloader only supported a
748 * 32-bit physical address for the ramdisk image
749 * location, stored at sparc_ramdisk_image. Newer
750 * SILO versions set sparc_ramdisk_image to zero and
751 * provide a full 64-bit physical address at
752 * sparc_ramdisk_image64.
753 */
754 ramdisk_image = sparc_ramdisk_image;
755 if (!ramdisk_image)
756 ramdisk_image = sparc_ramdisk_image64;
757
758 /* Another bootloader quirk. The bootloader normalizes
759 * the physical address to KERNBASE, so we have to
760 * factor that back out and add in the lowest valid
761 * physical page address to get the true physical address.
762 */
763 ramdisk_image -= KERNBASE;
764 ramdisk_image += phys_base;
765
919ee677
DM
766 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
767 ramdisk_image, sparc_ramdisk_size);
768
4e82c9a6
DM
769 initrd_start = ramdisk_image;
770 initrd_end = ramdisk_image + sparc_ramdisk_size;
3b2a7e23
DM
771
772 lmb_reserve(initrd_start, initrd_end);
4e82c9a6
DM
773 }
774#endif
775}
776
919ee677
DM
777struct node_mem_mask {
778 unsigned long mask;
779 unsigned long val;
780 unsigned long bootmem_paddr;
781};
782static struct node_mem_mask node_masks[MAX_NUMNODES];
783static int num_node_masks;
784
785int numa_cpu_lookup_table[NR_CPUS];
786cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
787
788#ifdef CONFIG_NEED_MULTIPLE_NODES
789static bootmem_data_t plat_node_bdata[MAX_NUMNODES];
790
791struct mdesc_mblock {
792 u64 base;
793 u64 size;
794 u64 offset; /* RA-to-PA */
795};
796static struct mdesc_mblock *mblocks;
797static int num_mblocks;
798
799static unsigned long ra_to_pa(unsigned long addr)
800{
801 int i;
802
803 for (i = 0; i < num_mblocks; i++) {
804 struct mdesc_mblock *m = &mblocks[i];
805
806 if (addr >= m->base &&
807 addr < (m->base + m->size)) {
808 addr += m->offset;
809 break;
810 }
811 }
812 return addr;
813}
814
815static int find_node(unsigned long addr)
816{
817 int i;
818
819 addr = ra_to_pa(addr);
820 for (i = 0; i < num_node_masks; i++) {
821 struct node_mem_mask *p = &node_masks[i];
822
823 if ((addr & p->mask) == p->val)
824 return i;
825 }
826 return -1;
827}
828
829static unsigned long nid_range(unsigned long start, unsigned long end,
830 int *nid)
831{
832 *nid = find_node(start);
833 start += PAGE_SIZE;
834 while (start < end) {
835 int n = find_node(start);
836
837 if (n != *nid)
838 break;
839 start += PAGE_SIZE;
840 }
841
842 return start;
843}
844#else
845static unsigned long nid_range(unsigned long start, unsigned long end,
846 int *nid)
847{
848 *nid = 0;
849 return end;
850}
851#endif
852
853/* This must be invoked after performing all of the necessary
854 * add_active_range() calls for 'nid'. We need to be able to get
855 * correct data from get_pfn_range_for_nid().
f1cfdb55 856 */
919ee677
DM
857static void __init allocate_node_data(int nid)
858{
859 unsigned long paddr, num_pages, start_pfn, end_pfn;
860 struct pglist_data *p;
861
862#ifdef CONFIG_NEED_MULTIPLE_NODES
863 paddr = lmb_alloc_nid(sizeof(struct pglist_data),
864 SMP_CACHE_BYTES, nid, nid_range);
865 if (!paddr) {
866 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
867 prom_halt();
868 }
869 NODE_DATA(nid) = __va(paddr);
870 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
871
872 NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
873#endif
874
875 p = NODE_DATA(nid);
876
877 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
878 p->node_start_pfn = start_pfn;
879 p->node_spanned_pages = end_pfn - start_pfn;
880
881 if (p->node_spanned_pages) {
882 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
883
884 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
885 nid_range);
886 if (!paddr) {
887 prom_printf("Cannot allocate bootmap for nid[%d]\n",
888 nid);
889 prom_halt();
890 }
891 node_masks[nid].bootmem_paddr = paddr;
892 }
893}
894
895static void init_node_masks_nonnuma(void)
d1112018 896{
1da177e4
LT
897 int i;
898
919ee677 899 numadbg("Initializing tables for non-numa.\n");
6fc5bae7 900
919ee677
DM
901 node_masks[0].mask = node_masks[0].val = 0;
902 num_node_masks = 1;
d1112018 903
919ee677
DM
904 for (i = 0; i < NR_CPUS; i++)
905 numa_cpu_lookup_table[i] = 0;
1da177e4 906
919ee677
DM
907 numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
908}
909
910#ifdef CONFIG_NEED_MULTIPLE_NODES
911struct pglist_data *node_data[MAX_NUMNODES];
912
913EXPORT_SYMBOL(numa_cpu_lookup_table);
914EXPORT_SYMBOL(numa_cpumask_lookup_table);
915EXPORT_SYMBOL(node_data);
916
917struct mdesc_mlgroup {
918 u64 node;
919 u64 latency;
920 u64 match;
921 u64 mask;
922};
923static struct mdesc_mlgroup *mlgroups;
924static int num_mlgroups;
925
926static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
927 u32 cfg_handle)
928{
929 u64 arc;
930
931 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
932 u64 target = mdesc_arc_target(md, arc);
933 const u64 *val;
934
935 val = mdesc_get_property(md, target,
936 "cfg-handle", NULL);
937 if (val && *val == cfg_handle)
938 return 0;
939 }
940 return -ENODEV;
941}
942
943static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
944 u32 cfg_handle)
945{
946 u64 arc, candidate, best_latency = ~(u64)0;
947
948 candidate = MDESC_NODE_NULL;
949 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
950 u64 target = mdesc_arc_target(md, arc);
951 const char *name = mdesc_node_name(md, target);
952 const u64 *val;
953
954 if (strcmp(name, "pio-latency-group"))
955 continue;
956
957 val = mdesc_get_property(md, target, "latency", NULL);
958 if (!val)
959 continue;
960
961 if (*val < best_latency) {
962 candidate = target;
963 best_latency = *val;
964 }
965 }
966
967 if (candidate == MDESC_NODE_NULL)
968 return -ENODEV;
969
970 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
971}
972
973int of_node_to_nid(struct device_node *dp)
974{
975 const struct linux_prom64_registers *regs;
976 struct mdesc_handle *md;
977 u32 cfg_handle;
978 int count, nid;
979 u64 grp;
980
981 if (!mlgroups)
982 return -1;
983
984 regs = of_get_property(dp, "reg", NULL);
985 if (!regs)
986 return -1;
987
988 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
989
990 md = mdesc_grab();
991
992 count = 0;
993 nid = -1;
994 mdesc_for_each_node_by_name(md, grp, "group") {
995 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
996 nid = count;
997 break;
998 }
999 count++;
1000 }
1001
1002 mdesc_release(md);
1003
1004 return nid;
1005}
1006
1007static void add_node_ranges(void)
1008{
1009 int i;
1010
1011 for (i = 0; i < lmb.memory.cnt; i++) {
1012 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1013 unsigned long start, end;
1014
1015 start = lmb.memory.region[i].base;
1016 end = start + size;
1017 while (start < end) {
1018 unsigned long this_end;
1019 int nid;
1020
1021 this_end = nid_range(start, end, &nid);
1022
1023 numadbg("Adding active range nid[%d] "
1024 "start[%lx] end[%lx]\n",
1025 nid, start, this_end);
1026
1027 add_active_range(nid,
1028 start >> PAGE_SHIFT,
1029 this_end >> PAGE_SHIFT);
1030
1031 start = this_end;
1032 }
1033 }
1034}
1035
1036static int __init grab_mlgroups(struct mdesc_handle *md)
1037{
1038 unsigned long paddr;
1039 int count = 0;
1040 u64 node;
1041
1042 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1043 count++;
1044 if (!count)
1045 return -ENOENT;
1046
1047 paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1048 SMP_CACHE_BYTES);
1049 if (!paddr)
1050 return -ENOMEM;
1051
1052 mlgroups = __va(paddr);
1053 num_mlgroups = count;
1054
1055 count = 0;
1056 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1057 struct mdesc_mlgroup *m = &mlgroups[count++];
1058 const u64 *val;
1059
1060 m->node = node;
1061
1062 val = mdesc_get_property(md, node, "latency", NULL);
1063 m->latency = *val;
1064 val = mdesc_get_property(md, node, "address-match", NULL);
1065 m->match = *val;
1066 val = mdesc_get_property(md, node, "address-mask", NULL);
1067 m->mask = *val;
1068
1069 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1070 "match[%lx] mask[%lx]\n",
1071 count - 1, m->node, m->latency, m->match, m->mask);
1072 }
1073
1074 return 0;
1075}
1076
1077static int __init grab_mblocks(struct mdesc_handle *md)
1078{
1079 unsigned long paddr;
1080 int count = 0;
1081 u64 node;
1082
1083 mdesc_for_each_node_by_name(md, node, "mblock")
1084 count++;
1085 if (!count)
1086 return -ENOENT;
1087
1088 paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1089 SMP_CACHE_BYTES);
1090 if (!paddr)
1091 return -ENOMEM;
1092
1093 mblocks = __va(paddr);
1094 num_mblocks = count;
1095
1096 count = 0;
1097 mdesc_for_each_node_by_name(md, node, "mblock") {
1098 struct mdesc_mblock *m = &mblocks[count++];
1099 const u64 *val;
1100
1101 val = mdesc_get_property(md, node, "base", NULL);
1102 m->base = *val;
1103 val = mdesc_get_property(md, node, "size", NULL);
1104 m->size = *val;
1105 val = mdesc_get_property(md, node,
1106 "address-congruence-offset", NULL);
1107 m->offset = *val;
1108
1109 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1110 count - 1, m->base, m->size, m->offset);
1111 }
1112
1113 return 0;
1114}
1115
1116static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1117 u64 grp, cpumask_t *mask)
1118{
1119 u64 arc;
1120
1121 cpus_clear(*mask);
1122
1123 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1124 u64 target = mdesc_arc_target(md, arc);
1125 const char *name = mdesc_node_name(md, target);
1126 const u64 *id;
1127
1128 if (strcmp(name, "cpu"))
1129 continue;
1130 id = mdesc_get_property(md, target, "id", NULL);
1131 if (*id < NR_CPUS)
1132 cpu_set(*id, *mask);
1133 }
1134}
1135
1136static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1137{
1138 int i;
1139
1140 for (i = 0; i < num_mlgroups; i++) {
1141 struct mdesc_mlgroup *m = &mlgroups[i];
1142 if (m->node == node)
1143 return m;
1144 }
1145 return NULL;
1146}
1147
1148static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1149 int index)
1150{
1151 struct mdesc_mlgroup *candidate = NULL;
1152 u64 arc, best_latency = ~(u64)0;
1153 struct node_mem_mask *n;
1154
1155 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1156 u64 target = mdesc_arc_target(md, arc);
1157 struct mdesc_mlgroup *m = find_mlgroup(target);
1158 if (!m)
1159 continue;
1160 if (m->latency < best_latency) {
1161 candidate = m;
1162 best_latency = m->latency;
1163 }
1164 }
1165 if (!candidate)
1166 return -ENOENT;
1167
1168 if (num_node_masks != index) {
1169 printk(KERN_ERR "Inconsistent NUMA state, "
1170 "index[%d] != num_node_masks[%d]\n",
1171 index, num_node_masks);
1172 return -EINVAL;
1173 }
1174
1175 n = &node_masks[num_node_masks++];
1176
1177 n->mask = candidate->mask;
1178 n->val = candidate->match;
1da177e4 1179
919ee677
DM
1180 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1181 index, n->mask, n->val, candidate->latency);
1da177e4 1182
919ee677
DM
1183 return 0;
1184}
1185
1186static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1187 int index)
1188{
1189 cpumask_t mask;
1190 int cpu;
1191
1192 numa_parse_mdesc_group_cpus(md, grp, &mask);
1193
1194 for_each_cpu_mask(cpu, mask)
1195 numa_cpu_lookup_table[cpu] = index;
1196 numa_cpumask_lookup_table[index] = mask;
1197
1198 if (numa_debug) {
1199 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1200 for_each_cpu_mask(cpu, mask)
1201 printk("%d ", cpu);
1202 printk("]\n");
1203 }
1204
1205 return numa_attach_mlgroup(md, grp, index);
1206}
1207
1208static int __init numa_parse_mdesc(void)
1209{
1210 struct mdesc_handle *md = mdesc_grab();
1211 int i, err, count;
1212 u64 node;
1213
1214 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1215 if (node == MDESC_NODE_NULL) {
1216 mdesc_release(md);
1217 return -ENOENT;
1218 }
1219
1220 err = grab_mblocks(md);
1221 if (err < 0)
1222 goto out;
1223
1224 err = grab_mlgroups(md);
1225 if (err < 0)
1226 goto out;
1227
1228 count = 0;
1229 mdesc_for_each_node_by_name(md, node, "group") {
1230 err = numa_parse_mdesc_group(md, node, count);
1231 if (err < 0)
1232 break;
1233 count++;
1234 }
1235
1236 add_node_ranges();
1237
1238 for (i = 0; i < num_node_masks; i++) {
1239 allocate_node_data(i);
1240 node_set_online(i);
1241 }
1242
1243 err = 0;
1244out:
1245 mdesc_release(md);
1246 return err;
1247}
1248
1249static int __init numa_parse_sun4u(void)
1250{
1251 return -1;
1252}
1253
1254static int __init bootmem_init_numa(void)
1255{
1256 int err = -1;
1257
1258 numadbg("bootmem_init_numa()\n");
1259
1260 if (numa_enabled) {
1261 if (tlb_type == hypervisor)
1262 err = numa_parse_mdesc();
1263 else
1264 err = numa_parse_sun4u();
1265 }
1266 return err;
1267}
1268
1269#else
1da177e4 1270
919ee677
DM
1271static int bootmem_init_numa(void)
1272{
1273 return -1;
1274}
1275
1276#endif
1277
1278static void __init bootmem_init_nonnuma(void)
1279{
1280 unsigned long top_of_ram = lmb_end_of_DRAM();
1281 unsigned long total_ram = lmb_phys_mem_size();
1282 unsigned int i;
1283
1284 numadbg("bootmem_init_nonnuma()\n");
1285
1286 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1287 top_of_ram, total_ram);
1288 printk(KERN_INFO "Memory hole size: %ldMB\n",
1289 (top_of_ram - total_ram) >> 20);
1290
1291 init_node_masks_nonnuma();
1292
1293 for (i = 0; i < lmb.memory.cnt; i++) {
1294 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1295 unsigned long start_pfn, end_pfn;
1296
1297 if (!size)
1298 continue;
1da177e4 1299
9422273b 1300 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
919ee677
DM
1301 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1302 add_active_range(0, start_pfn, end_pfn);
1303 }
d1112018 1304
919ee677
DM
1305 allocate_node_data(0);
1306
1307 node_set_online(0);
1308}
1309
1310static void __init reserve_range_in_node(int nid, unsigned long start,
1311 unsigned long end)
1312{
1313 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1314 nid, start, end);
1315 while (start < end) {
1316 unsigned long this_end;
1317 int n;
1318
1319 this_end = nid_range(start, end, &n);
1320 if (n == nid) {
1321 numadbg(" MATCH reserving range [%lx:%lx]\n",
1322 start, this_end);
1323 reserve_bootmem_node(NODE_DATA(nid), start,
1324 (this_end - start), BOOTMEM_DEFAULT);
1325 } else
1326 numadbg(" NO MATCH, advancing start to %lx\n",
1327 this_end);
1328
1329 start = this_end;
d1112018 1330 }
919ee677
DM
1331}
1332
1333static void __init trim_reserved_in_node(int nid)
1334{
1335 int i;
1336
1337 numadbg(" trim_reserved_in_node(%d)\n", nid);
1338
1339 for (i = 0; i < lmb.reserved.cnt; i++) {
1340 unsigned long start = lmb.reserved.region[i].base;
1341 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1342 unsigned long end = start + size;
1343
1344 reserve_range_in_node(nid, start, end);
1345 }
1346}
1347
1348static void __init bootmem_init_one_node(int nid)
1349{
1350 struct pglist_data *p;
1351
1352 numadbg("bootmem_init_one_node(%d)\n", nid);
1353
1354 p = NODE_DATA(nid);
1355
1356 if (p->node_spanned_pages) {
1357 unsigned long paddr = node_masks[nid].bootmem_paddr;
1358 unsigned long end_pfn;
1359
1360 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1361
1362 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1363 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1364
1365 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1366 p->node_start_pfn, end_pfn);
1367
1368 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1369 nid, end_pfn);
1370 free_bootmem_with_active_regions(nid, end_pfn);
1371
1372 trim_reserved_in_node(nid);
1373
1374 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1375 nid);
1376 sparse_memory_present_with_active_regions(nid);
1377 }
1378}
1379
1380static unsigned long __init bootmem_init(unsigned long phys_base)
1381{
1382 unsigned long end_pfn;
1383 int nid;
1384
1385 end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1386 max_pfn = max_low_pfn = end_pfn;
1387 min_low_pfn = (phys_base >> PAGE_SHIFT);
1388
1389 if (bootmem_init_numa() < 0)
1390 bootmem_init_nonnuma();
1391
1392 /* XXX cpu notifier XXX */
1393
1394 for_each_online_node(nid)
1395 bootmem_init_one_node(nid);
d1112018
DM
1396
1397 sparse_init();
1398
1da177e4
LT
1399 return end_pfn;
1400}
1401
9cc3a1ac
DM
1402static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1403static int pall_ents __initdata;
1404
56425306 1405#ifdef CONFIG_DEBUG_PAGEALLOC
896aef43
SR
1406static unsigned long __ref kernel_map_range(unsigned long pstart,
1407 unsigned long pend, pgprot_t prot)
56425306
DM
1408{
1409 unsigned long vstart = PAGE_OFFSET + pstart;
1410 unsigned long vend = PAGE_OFFSET + pend;
1411 unsigned long alloc_bytes = 0UL;
1412
1413 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
13edad7a 1414 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
56425306
DM
1415 vstart, vend);
1416 prom_halt();
1417 }
1418
1419 while (vstart < vend) {
1420 unsigned long this_end, paddr = __pa(vstart);
1421 pgd_t *pgd = pgd_offset_k(vstart);
1422 pud_t *pud;
1423 pmd_t *pmd;
1424 pte_t *pte;
1425
1426 pud = pud_offset(pgd, vstart);
1427 if (pud_none(*pud)) {
1428 pmd_t *new;
1429
1430 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1431 alloc_bytes += PAGE_SIZE;
1432 pud_populate(&init_mm, pud, new);
1433 }
1434
1435 pmd = pmd_offset(pud, vstart);
1436 if (!pmd_present(*pmd)) {
1437 pte_t *new;
1438
1439 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1440 alloc_bytes += PAGE_SIZE;
1441 pmd_populate_kernel(&init_mm, pmd, new);
1442 }
1443
1444 pte = pte_offset_kernel(pmd, vstart);
1445 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1446 if (this_end > vend)
1447 this_end = vend;
1448
1449 while (vstart < this_end) {
1450 pte_val(*pte) = (paddr | pgprot_val(prot));
1451
1452 vstart += PAGE_SIZE;
1453 paddr += PAGE_SIZE;
1454 pte++;
1455 }
1456 }
1457
1458 return alloc_bytes;
1459}
1460
56425306 1461extern unsigned int kvmap_linear_patch[1];
9cc3a1ac
DM
1462#endif /* CONFIG_DEBUG_PAGEALLOC */
1463
1464static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1465{
1466 const unsigned long shift_256MB = 28;
1467 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1468 const unsigned long size_256MB = (1UL << shift_256MB);
1469
1470 while (start < end) {
1471 long remains;
1472
f7c00338
DM
1473 remains = end - start;
1474 if (remains < size_256MB)
1475 break;
1476
9cc3a1ac
DM
1477 if (start & mask_256MB) {
1478 start = (start + size_256MB) & ~mask_256MB;
1479 continue;
1480 }
1481
9cc3a1ac
DM
1482 while (remains >= size_256MB) {
1483 unsigned long index = start >> shift_256MB;
1484
1485 __set_bit(index, kpte_linear_bitmap);
1486
1487 start += size_256MB;
1488 remains -= size_256MB;
1489 }
1490 }
1491}
56425306 1492
8f361453 1493static void __init init_kpte_bitmap(void)
56425306 1494{
9cc3a1ac 1495 unsigned long i;
13edad7a
DM
1496
1497 for (i = 0; i < pall_ents; i++) {
56425306
DM
1498 unsigned long phys_start, phys_end;
1499
13edad7a
DM
1500 phys_start = pall[i].phys_addr;
1501 phys_end = phys_start + pall[i].reg_size;
9cc3a1ac
DM
1502
1503 mark_kpte_bitmap(phys_start, phys_end);
8f361453
DM
1504 }
1505}
9cc3a1ac 1506
8f361453
DM
1507static void __init kernel_physical_mapping_init(void)
1508{
9cc3a1ac 1509#ifdef CONFIG_DEBUG_PAGEALLOC
8f361453
DM
1510 unsigned long i, mem_alloced = 0UL;
1511
1512 for (i = 0; i < pall_ents; i++) {
1513 unsigned long phys_start, phys_end;
1514
1515 phys_start = pall[i].phys_addr;
1516 phys_end = phys_start + pall[i].reg_size;
1517
56425306
DM
1518 mem_alloced += kernel_map_range(phys_start, phys_end,
1519 PAGE_KERNEL);
56425306
DM
1520 }
1521
1522 printk("Allocated %ld bytes for kernel page tables.\n",
1523 mem_alloced);
1524
1525 kvmap_linear_patch[0] = 0x01000000; /* nop */
1526 flushi(&kvmap_linear_patch[0]);
1527
1528 __flush_tlb_all();
9cc3a1ac 1529#endif
56425306
DM
1530}
1531
9cc3a1ac 1532#ifdef CONFIG_DEBUG_PAGEALLOC
56425306
DM
1533void kernel_map_pages(struct page *page, int numpages, int enable)
1534{
1535 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1536 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1537
1538 kernel_map_range(phys_start, phys_end,
1539 (enable ? PAGE_KERNEL : __pgprot(0)));
1540
74bf4312
DM
1541 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1542 PAGE_OFFSET + phys_end);
1543
56425306
DM
1544 /* we should perform an IPI and flush all tlbs,
1545 * but that can deadlock->flush only current cpu.
1546 */
1547 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1548 PAGE_OFFSET + phys_end);
1549}
1550#endif
1551
10147570
DM
1552unsigned long __init find_ecache_flush_span(unsigned long size)
1553{
0836a0eb
DM
1554 int i;
1555
13edad7a
DM
1556 for (i = 0; i < pavail_ents; i++) {
1557 if (pavail[i].reg_size >= size)
1558 return pavail[i].phys_addr;
0836a0eb
DM
1559 }
1560
13edad7a 1561 return ~0UL;
0836a0eb
DM
1562}
1563
517af332
DM
1564static void __init tsb_phys_patch(void)
1565{
d257d5da 1566 struct tsb_ldquad_phys_patch_entry *pquad;
517af332
DM
1567 struct tsb_phys_patch_entry *p;
1568
d257d5da
DM
1569 pquad = &__tsb_ldquad_phys_patch;
1570 while (pquad < &__tsb_ldquad_phys_patch_end) {
1571 unsigned long addr = pquad->addr;
1572
1573 if (tlb_type == hypervisor)
1574 *(unsigned int *) addr = pquad->sun4v_insn;
1575 else
1576 *(unsigned int *) addr = pquad->sun4u_insn;
1577 wmb();
1578 __asm__ __volatile__("flush %0"
1579 : /* no outputs */
1580 : "r" (addr));
1581
1582 pquad++;
1583 }
1584
517af332
DM
1585 p = &__tsb_phys_patch;
1586 while (p < &__tsb_phys_patch_end) {
1587 unsigned long addr = p->addr;
1588
1589 *(unsigned int *) addr = p->insn;
1590 wmb();
1591 __asm__ __volatile__("flush %0"
1592 : /* no outputs */
1593 : "r" (addr));
1594
1595 p++;
1596 }
1597}
1598
490384e7 1599/* Don't mark as init, we give this to the Hypervisor. */
d1acb421
DM
1600#ifndef CONFIG_DEBUG_PAGEALLOC
1601#define NUM_KTSB_DESCR 2
1602#else
1603#define NUM_KTSB_DESCR 1
1604#endif
1605static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
490384e7
DM
1606extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1607
1608static void __init sun4v_ktsb_init(void)
1609{
1610 unsigned long ktsb_pa;
1611
d7744a09 1612 /* First KTSB for PAGE_SIZE mappings. */
490384e7
DM
1613 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1614
1615 switch (PAGE_SIZE) {
1616 case 8 * 1024:
1617 default:
1618 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1619 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1620 break;
1621
1622 case 64 * 1024:
1623 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1624 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1625 break;
1626
1627 case 512 * 1024:
1628 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1629 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1630 break;
1631
1632 case 4 * 1024 * 1024:
1633 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1634 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1635 break;
1636 };
1637
3f19a84e 1638 ktsb_descr[0].assoc = 1;
490384e7
DM
1639 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1640 ktsb_descr[0].ctx_idx = 0;
1641 ktsb_descr[0].tsb_base = ktsb_pa;
1642 ktsb_descr[0].resv = 0;
1643
d1acb421 1644#ifndef CONFIG_DEBUG_PAGEALLOC
d7744a09
DM
1645 /* Second KTSB for 4MB/256MB mappings. */
1646 ktsb_pa = (kern_base +
1647 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1648
1649 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1650 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1651 HV_PGSZ_MASK_256MB);
1652 ktsb_descr[1].assoc = 1;
1653 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1654 ktsb_descr[1].ctx_idx = 0;
1655 ktsb_descr[1].tsb_base = ktsb_pa;
1656 ktsb_descr[1].resv = 0;
d1acb421 1657#endif
490384e7
DM
1658}
1659
1660void __cpuinit sun4v_ktsb_register(void)
1661{
7db35f31 1662 unsigned long pa, ret;
490384e7
DM
1663
1664 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1665
7db35f31
DM
1666 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1667 if (ret != 0) {
1668 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1669 "errors with %lx\n", pa, ret);
1670 prom_halt();
1671 }
490384e7
DM
1672}
1673
1da177e4
LT
1674/* paging_init() sets up the page tables */
1675
5cbc3073
DM
1676extern void central_probe(void);
1677
1da177e4 1678static unsigned long last_valid_pfn;
56425306 1679pgd_t swapper_pg_dir[2048];
1da177e4 1680
c4bce90e
DM
1681static void sun4u_pgprot_init(void);
1682static void sun4v_pgprot_init(void);
1683
3afc6202 1684/* Dummy function */
1685void __init setup_per_cpu_areas(void)
1686{
1687}
1688
1da177e4
LT
1689void __init paging_init(void)
1690{
919ee677 1691 unsigned long end_pfn, shift, phys_base;
0836a0eb
DM
1692 unsigned long real_end, i;
1693
22adb358
DM
1694 /* These build time checkes make sure that the dcache_dirty_cpu()
1695 * page->flags usage will work.
1696 *
1697 * When a page gets marked as dcache-dirty, we store the
1698 * cpu number starting at bit 32 in the page->flags. Also,
1699 * functions like clear_dcache_dirty_cpu use the cpu mask
1700 * in 13-bit signed-immediate instruction fields.
1701 */
1702 BUILD_BUG_ON(FLAGS_RESERVED != 32);
1703 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1704 ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED);
1705 BUILD_BUG_ON(NR_CPUS > 4096);
1706
481295f9
DM
1707 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1708 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1709
22d6a1cb
DM
1710 sstate_booting();
1711
d7744a09 1712 /* Invalidate both kernel TSBs. */
8b234274 1713 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
d1acb421 1714#ifndef CONFIG_DEBUG_PAGEALLOC
d7744a09 1715 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
d1acb421 1716#endif
8b234274 1717
c4bce90e
DM
1718 if (tlb_type == hypervisor)
1719 sun4v_pgprot_init();
1720 else
1721 sun4u_pgprot_init();
1722
d257d5da
DM
1723 if (tlb_type == cheetah_plus ||
1724 tlb_type == hypervisor)
517af332
DM
1725 tsb_phys_patch();
1726
490384e7 1727 if (tlb_type == hypervisor) {
d257d5da 1728 sun4v_patch_tlb_handlers();
490384e7
DM
1729 sun4v_ktsb_init();
1730 }
d257d5da 1731
3b2a7e23
DM
1732 lmb_init();
1733
13edad7a
DM
1734 /* Find available physical memory... */
1735 read_obp_memory("available", &pavail[0], &pavail_ents);
0836a0eb
DM
1736
1737 phys_base = 0xffffffffffffffffUL;
3b2a7e23 1738 for (i = 0; i < pavail_ents; i++) {
13edad7a 1739 phys_base = min(phys_base, pavail[i].phys_addr);
3b2a7e23
DM
1740 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1741 }
1742
1743 lmb_reserve(kern_base, kern_size);
0836a0eb 1744
4e82c9a6
DM
1745 find_ramdisk(phys_base);
1746
25b0c659
DM
1747 if (cmdline_memory_size)
1748 lmb_enforce_memory_limit(phys_base + cmdline_memory_size);
1749
3b2a7e23
DM
1750 lmb_analyze();
1751 lmb_dump_all();
1752
1da177e4
LT
1753 set_bit(0, mmu_context_bmap);
1754
2bdb3cb2
DM
1755 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1756
1da177e4 1757 real_end = (unsigned long)_end;
64658743
DM
1758 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1759 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1760 num_kernel_image_mappings);
2bdb3cb2
DM
1761
1762 /* Set kernel pgd to upper alias so physical page computations
1da177e4
LT
1763 * work.
1764 */
1765 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1766
56425306 1767 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1da177e4
LT
1768
1769 /* Now can init the kernel/bad page tables. */
1770 pud_set(pud_offset(&swapper_pg_dir[0], 0),
56425306 1771 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1da177e4 1772
c9c10830 1773 inherit_prom_mappings();
5085b4a5 1774
8f361453
DM
1775 read_obp_memory("reg", &pall[0], &pall_ents);
1776
1777 init_kpte_bitmap();
1778
a8b900d8
DM
1779 /* Ok, we can use our TLB miss and window trap handlers safely. */
1780 setup_tba();
1da177e4 1781
c9c10830 1782 __flush_tlb_all();
9ad98c5b 1783
490384e7
DM
1784 if (tlb_type == hypervisor)
1785 sun4v_ktsb_register();
1786
b9709456
DM
1787 /* We must setup the per-cpu areas before we pull in the
1788 * PROM and the MDESC. The code there fills in cpu and
1789 * other information into per-cpu data structures.
1790 */
1791 real_setup_per_cpu_areas();
1792
ad072004
DM
1793 prom_build_devicetree();
1794
4a283339
DM
1795 if (tlb_type == hypervisor)
1796 sun4v_mdesc_init();
1797
2bdb3cb2 1798 /* Setup bootmem... */
919ee677 1799 last_valid_pfn = end_pfn = bootmem_init(phys_base);
d1112018 1800
919ee677 1801#ifndef CONFIG_NEED_MULTIPLE_NODES
17b0e199 1802 max_mapnr = last_valid_pfn;
919ee677 1803#endif
56425306 1804 kernel_physical_mapping_init();
56425306 1805
1da177e4 1806 {
919ee677 1807 unsigned long max_zone_pfns[MAX_NR_ZONES];
1da177e4 1808
919ee677 1809 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1da177e4 1810
919ee677 1811 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1da177e4 1812
919ee677 1813 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1814 }
1815
3c62a2d3 1816 printk("Booting Linux...\n");
5cbc3073
DM
1817
1818 central_probe();
1819 cpu_probe();
1da177e4
LT
1820}
1821
919ee677
DM
1822int __init page_in_phys_avail(unsigned long paddr)
1823{
1824 int i;
1825
1826 paddr &= PAGE_MASK;
1827
1828 for (i = 0; i < pavail_ents; i++) {
1829 unsigned long start, end;
1830
1831 start = pavail[i].phys_addr;
1832 end = start + pavail[i].reg_size;
1833
1834 if (paddr >= start && paddr < end)
1835 return 1;
1836 }
1837 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1838 return 1;
1839#ifdef CONFIG_BLK_DEV_INITRD
1840 if (paddr >= __pa(initrd_start) &&
1841 paddr < __pa(PAGE_ALIGN(initrd_end)))
1842 return 1;
1843#endif
1844
1845 return 0;
1846}
1847
1848static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1849static int pavail_rescan_ents __initdata;
1850
1851/* Certain OBP calls, such as fetching "available" properties, can
1852 * claim physical memory. So, along with initializing the valid
1853 * address bitmap, what we do here is refetch the physical available
1854 * memory list again, and make sure it provides at least as much
1855 * memory as 'pavail' does.
1856 */
1857static void setup_valid_addr_bitmap_from_pavail(void)
1da177e4 1858{
1da177e4
LT
1859 int i;
1860
13edad7a 1861 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1da177e4 1862
13edad7a 1863 for (i = 0; i < pavail_ents; i++) {
1da177e4
LT
1864 unsigned long old_start, old_end;
1865
13edad7a 1866 old_start = pavail[i].phys_addr;
919ee677 1867 old_end = old_start + pavail[i].reg_size;
1da177e4
LT
1868 while (old_start < old_end) {
1869 int n;
1870
c2a5a46b 1871 for (n = 0; n < pavail_rescan_ents; n++) {
1da177e4
LT
1872 unsigned long new_start, new_end;
1873
13edad7a
DM
1874 new_start = pavail_rescan[n].phys_addr;
1875 new_end = new_start +
1876 pavail_rescan[n].reg_size;
1da177e4
LT
1877
1878 if (new_start <= old_start &&
1879 new_end >= (old_start + PAGE_SIZE)) {
13edad7a
DM
1880 set_bit(old_start >> 22,
1881 sparc64_valid_addr_bitmap);
1da177e4
LT
1882 goto do_next_page;
1883 }
1884 }
919ee677
DM
1885
1886 prom_printf("mem_init: Lost memory in pavail\n");
1887 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1888 pavail[i].phys_addr,
1889 pavail[i].reg_size);
1890 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1891 pavail_rescan[i].phys_addr,
1892 pavail_rescan[i].reg_size);
1893 prom_printf("mem_init: Cannot continue, aborting.\n");
1894 prom_halt();
1da177e4
LT
1895
1896 do_next_page:
1897 old_start += PAGE_SIZE;
1898 }
1899 }
1900}
1901
1902void __init mem_init(void)
1903{
1904 unsigned long codepages, datapages, initpages;
1905 unsigned long addr, last;
1906 int i;
1907
1908 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1909 i += 1;
2bdb3cb2 1910 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1da177e4
LT
1911 if (sparc64_valid_addr_bitmap == NULL) {
1912 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1913 prom_halt();
1914 }
1915 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1916
1917 addr = PAGE_OFFSET + kern_base;
1918 last = PAGE_ALIGN(kern_size) + addr;
1919 while (addr < last) {
1920 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1921 addr += PAGE_SIZE;
1922 }
1923
919ee677 1924 setup_valid_addr_bitmap_from_pavail();
1da177e4 1925
1da177e4
LT
1926 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1927
919ee677
DM
1928#ifdef CONFIG_NEED_MULTIPLE_NODES
1929 for_each_online_node(i) {
1930 if (NODE_DATA(i)->node_spanned_pages != 0) {
1931 totalram_pages +=
1932 free_all_bootmem_node(NODE_DATA(i));
1933 }
1934 }
1935#else
1936 totalram_pages = free_all_bootmem();
1937#endif
1938
f1cfdb55
DM
1939 /* We subtract one to account for the mem_map_zero page
1940 * allocated below.
1941 */
919ee677
DM
1942 totalram_pages -= 1;
1943 num_physpages = totalram_pages;
1da177e4
LT
1944
1945 /*
1946 * Set up the zero page, mark it reserved, so that page count
1947 * is not manipulated when freeing the page from user ptes.
1948 */
1949 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1950 if (mem_map_zero == NULL) {
1951 prom_printf("paging_init: Cannot alloc zero page.\n");
1952 prom_halt();
1953 }
1954 SetPageReserved(mem_map_zero);
1955
1956 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1957 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1958 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1959 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1960 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1961 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1962
96177299 1963 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1da177e4
LT
1964 nr_free_pages() << (PAGE_SHIFT-10),
1965 codepages << (PAGE_SHIFT-10),
1966 datapages << (PAGE_SHIFT-10),
1967 initpages << (PAGE_SHIFT-10),
1968 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1969
1970 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1971 cheetah_ecache_flush_init();
1972}
1973
898cf0ec 1974void free_initmem(void)
1da177e4
LT
1975{
1976 unsigned long addr, initend;
1977
1978 /*
1979 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1980 */
1981 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1982 initend = (unsigned long)(__init_end) & PAGE_MASK;
1983 for (; addr < initend; addr += PAGE_SIZE) {
1984 unsigned long page;
1985 struct page *p;
1986
1987 page = (addr +
1988 ((unsigned long) __va(kern_base)) -
1989 ((unsigned long) KERNBASE));
c9cf5528 1990 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1da177e4
LT
1991 p = virt_to_page(page);
1992
1993 ClearPageReserved(p);
7835e98b 1994 init_page_count(p);
1da177e4
LT
1995 __free_page(p);
1996 num_physpages++;
1997 totalram_pages++;
1998 }
1999}
2000
2001#ifdef CONFIG_BLK_DEV_INITRD
2002void free_initrd_mem(unsigned long start, unsigned long end)
2003{
2004 if (start < end)
2005 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2006 for (; start < end; start += PAGE_SIZE) {
2007 struct page *p = virt_to_page(start);
2008
2009 ClearPageReserved(p);
7835e98b 2010 init_page_count(p);
1da177e4
LT
2011 __free_page(p);
2012 num_physpages++;
2013 totalram_pages++;
2014 }
2015}
2016#endif
c4bce90e 2017
c4bce90e
DM
2018#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2019#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2020#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2021#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2022#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2023#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2024
2025pgprot_t PAGE_KERNEL __read_mostly;
2026EXPORT_SYMBOL(PAGE_KERNEL);
2027
2028pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2029pgprot_t PAGE_COPY __read_mostly;
0f15952a
DM
2030
2031pgprot_t PAGE_SHARED __read_mostly;
2032EXPORT_SYMBOL(PAGE_SHARED);
2033
c4bce90e
DM
2034pgprot_t PAGE_EXEC __read_mostly;
2035unsigned long pg_iobits __read_mostly;
2036
2037unsigned long _PAGE_IE __read_mostly;
987c74fc 2038EXPORT_SYMBOL(_PAGE_IE);
b2bef442 2039
c4bce90e 2040unsigned long _PAGE_E __read_mostly;
b2bef442
DM
2041EXPORT_SYMBOL(_PAGE_E);
2042
c4bce90e 2043unsigned long _PAGE_CACHE __read_mostly;
b2bef442 2044EXPORT_SYMBOL(_PAGE_CACHE);
c4bce90e 2045
46644c24
DM
2046#ifdef CONFIG_SPARSEMEM_VMEMMAP
2047
2048#define VMEMMAP_CHUNK_SHIFT 22
2049#define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
2050#define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
2051#define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
2052
2053#define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
2054 sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
2055unsigned long vmemmap_table[VMEMMAP_SIZE];
2056
2057int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2058{
2059 unsigned long vstart = (unsigned long) start;
2060 unsigned long vend = (unsigned long) (start + nr);
2061 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2062 unsigned long phys_end = (vend - VMEMMAP_BASE);
2063 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2064 unsigned long end = VMEMMAP_ALIGN(phys_end);
2065 unsigned long pte_base;
2066
2067 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2068 _PAGE_CP_4U | _PAGE_CV_4U |
2069 _PAGE_P_4U | _PAGE_W_4U);
2070 if (tlb_type == hypervisor)
2071 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2072 _PAGE_CP_4V | _PAGE_CV_4V |
2073 _PAGE_P_4V | _PAGE_W_4V);
2074
2075 for (; addr < end; addr += VMEMMAP_CHUNK) {
2076 unsigned long *vmem_pp =
2077 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2078 void *block;
2079
2080 if (!(*vmem_pp & _PAGE_VALID)) {
2081 block = vmemmap_alloc_block(1UL << 22, node);
2082 if (!block)
2083 return -ENOMEM;
2084
2085 *vmem_pp = pte_base | __pa(block);
2086
2087 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2088 "node=%d entry=%lu/%lu\n", start, block, nr,
2089 node,
2090 addr >> VMEMMAP_CHUNK_SHIFT,
2091 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2092 }
2093 }
2094 return 0;
2095}
2096#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2097
c4bce90e
DM
2098static void prot_init_common(unsigned long page_none,
2099 unsigned long page_shared,
2100 unsigned long page_copy,
2101 unsigned long page_readonly,
2102 unsigned long page_exec_bit)
2103{
2104 PAGE_COPY = __pgprot(page_copy);
0f15952a 2105 PAGE_SHARED = __pgprot(page_shared);
c4bce90e
DM
2106
2107 protection_map[0x0] = __pgprot(page_none);
2108 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2109 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2110 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2111 protection_map[0x4] = __pgprot(page_readonly);
2112 protection_map[0x5] = __pgprot(page_readonly);
2113 protection_map[0x6] = __pgprot(page_copy);
2114 protection_map[0x7] = __pgprot(page_copy);
2115 protection_map[0x8] = __pgprot(page_none);
2116 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2117 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2118 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2119 protection_map[0xc] = __pgprot(page_readonly);
2120 protection_map[0xd] = __pgprot(page_readonly);
2121 protection_map[0xe] = __pgprot(page_shared);
2122 protection_map[0xf] = __pgprot(page_shared);
2123}
2124
2125static void __init sun4u_pgprot_init(void)
2126{
2127 unsigned long page_none, page_shared, page_copy, page_readonly;
2128 unsigned long page_exec_bit;
2129
2130 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2131 _PAGE_CACHE_4U | _PAGE_P_4U |
2132 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2133 _PAGE_EXEC_4U);
2134 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2135 _PAGE_CACHE_4U | _PAGE_P_4U |
2136 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2137 _PAGE_EXEC_4U | _PAGE_L_4U);
2138 PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
2139
2140 _PAGE_IE = _PAGE_IE_4U;
2141 _PAGE_E = _PAGE_E_4U;
2142 _PAGE_CACHE = _PAGE_CACHE_4U;
2143
2144 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2145 __ACCESS_BITS_4U | _PAGE_E_4U);
2146
d1acb421
DM
2147#ifdef CONFIG_DEBUG_PAGEALLOC
2148 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2149 0xfffff80000000000;
2150#else
9cc3a1ac 2151 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
c4bce90e 2152 0xfffff80000000000;
d1acb421 2153#endif
9cc3a1ac
DM
2154 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2155 _PAGE_P_4U | _PAGE_W_4U);
2156
2157 /* XXX Should use 256MB on Panther. XXX */
2158 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
c4bce90e
DM
2159
2160 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2161 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2162 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2163 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2164
2165
2166 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2167 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2168 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2169 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2170 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2171 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2172 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2173
2174 page_exec_bit = _PAGE_EXEC_4U;
2175
2176 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2177 page_exec_bit);
2178}
2179
2180static void __init sun4v_pgprot_init(void)
2181{
2182 unsigned long page_none, page_shared, page_copy, page_readonly;
2183 unsigned long page_exec_bit;
2184
2185 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2186 _PAGE_CACHE_4V | _PAGE_P_4V |
2187 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2188 _PAGE_EXEC_4V);
2189 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2190 PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
2191
2192 _PAGE_IE = _PAGE_IE_4V;
2193 _PAGE_E = _PAGE_E_4V;
2194 _PAGE_CACHE = _PAGE_CACHE_4V;
2195
d1acb421
DM
2196#ifdef CONFIG_DEBUG_PAGEALLOC
2197 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2198 0xfffff80000000000;
2199#else
9cc3a1ac
DM
2200 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2201 0xfffff80000000000;
d1acb421 2202#endif
9cc3a1ac
DM
2203 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2204 _PAGE_P_4V | _PAGE_W_4V);
2205
d1acb421
DM
2206#ifdef CONFIG_DEBUG_PAGEALLOC
2207 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2208 0xfffff80000000000;
2209#else
9cc3a1ac 2210 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
c4bce90e 2211 0xfffff80000000000;
d1acb421 2212#endif
9cc3a1ac
DM
2213 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2214 _PAGE_P_4V | _PAGE_W_4V);
c4bce90e
DM
2215
2216 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2217 __ACCESS_BITS_4V | _PAGE_E_4V);
2218
2219 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2220 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2221 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2222 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2223 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2224
2225 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2226 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2227 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2228 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2229 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2230 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2231 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2232
2233 page_exec_bit = _PAGE_EXEC_4V;
2234
2235 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2236 page_exec_bit);
2237}
2238
2239unsigned long pte_sz_bits(unsigned long sz)
2240{
2241 if (tlb_type == hypervisor) {
2242 switch (sz) {
2243 case 8 * 1024:
2244 default:
2245 return _PAGE_SZ8K_4V;
2246 case 64 * 1024:
2247 return _PAGE_SZ64K_4V;
2248 case 512 * 1024:
2249 return _PAGE_SZ512K_4V;
2250 case 4 * 1024 * 1024:
2251 return _PAGE_SZ4MB_4V;
2252 };
2253 } else {
2254 switch (sz) {
2255 case 8 * 1024:
2256 default:
2257 return _PAGE_SZ8K_4U;
2258 case 64 * 1024:
2259 return _PAGE_SZ64K_4U;
2260 case 512 * 1024:
2261 return _PAGE_SZ512K_4U;
2262 case 4 * 1024 * 1024:
2263 return _PAGE_SZ4MB_4U;
2264 };
2265 }
2266}
2267
2268pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2269{
2270 pte_t pte;
cf627156
DM
2271
2272 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
c4bce90e
DM
2273 pte_val(pte) |= (((unsigned long)space) << 32);
2274 pte_val(pte) |= pte_sz_bits(page_size);
c4bce90e 2275
cf627156 2276 return pte;
c4bce90e
DM
2277}
2278
2279static unsigned long kern_large_tte(unsigned long paddr)
2280{
2281 unsigned long val;
2282
2283 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2284 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2285 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2286 if (tlb_type == hypervisor)
2287 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2288 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2289 _PAGE_EXEC_4V | _PAGE_W_4V);
2290
2291 return val | paddr;
2292}
2293
c4bce90e
DM
2294/* If not locked, zap it. */
2295void __flush_tlb_all(void)
2296{
2297 unsigned long pstate;
2298 int i;
2299
2300 __asm__ __volatile__("flushw\n\t"
2301 "rdpr %%pstate, %0\n\t"
2302 "wrpr %0, %1, %%pstate"
2303 : "=r" (pstate)
2304 : "i" (PSTATE_IE));
8f361453
DM
2305 if (tlb_type == hypervisor) {
2306 sun4v_mmu_demap_all();
2307 } else if (tlb_type == spitfire) {
c4bce90e
DM
2308 for (i = 0; i < 64; i++) {
2309 /* Spitfire Errata #32 workaround */
2310 /* NOTE: Always runs on spitfire, so no
2311 * cheetah+ page size encodings.
2312 */
2313 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2314 "flush %%g6"
2315 : /* No outputs */
2316 : "r" (0),
2317 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2318
2319 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2320 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2321 "membar #Sync"
2322 : /* no outputs */
2323 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2324 spitfire_put_dtlb_data(i, 0x0UL);
2325 }
2326
2327 /* Spitfire Errata #32 workaround */
2328 /* NOTE: Always runs on spitfire, so no
2329 * cheetah+ page size encodings.
2330 */
2331 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2332 "flush %%g6"
2333 : /* No outputs */
2334 : "r" (0),
2335 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2336
2337 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2338 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2339 "membar #Sync"
2340 : /* no outputs */
2341 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2342 spitfire_put_itlb_data(i, 0x0UL);
2343 }
2344 }
2345 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2346 cheetah_flush_dtlb_all();
2347 cheetah_flush_itlb_all();
2348 }
2349 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2350 : : "r" (pstate));
2351}
88d70794
DM
2352
2353#ifdef CONFIG_MEMORY_HOTPLUG
2354
2355void online_page(struct page *page)
2356{
2357 ClearPageReserved(page);
fcab1e51
NP
2358 init_page_count(page);
2359 __free_page(page);
88d70794
DM
2360 totalram_pages++;
2361 num_physpages++;
2362}
2363
88d70794 2364#endif /* CONFIG_MEMORY_HOTPLUG */