]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/um/kernel/irq.c
uml: style fixes pass 2
[mirror_ubuntu-artful-kernel.git] / arch / um / kernel / irq.c
CommitLineData
2ea5bc5e 1/*
1da177e4
LT
2 * Copyright (C) 2000 Jeff Dike (jdike@karaya.com)
3 * Licensed under the GPL
4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
6 */
7
1da177e4
LT
8#include "linux/kernel.h"
9#include "linux/module.h"
10#include "linux/smp.h"
1da177e4
LT
11#include "linux/kernel_stat.h"
12#include "linux/interrupt.h"
13#include "linux/random.h"
14#include "linux/slab.h"
15#include "linux/file.h"
16#include "linux/proc_fs.h"
17#include "linux/init.h"
18#include "linux/seq_file.h"
19#include "linux/profile.h"
20#include "linux/hardirq.h"
21#include "asm/irq.h"
22#include "asm/hw_irq.h"
23#include "asm/atomic.h"
24#include "asm/signal.h"
25#include "asm/system.h"
26#include "asm/errno.h"
27#include "asm/uaccess.h"
1da177e4
LT
28#include "kern_util.h"
29#include "irq_user.h"
30#include "irq_kern.h"
75e5584c 31#include "os.h"
9b4f018d
JD
32#include "sigio.h"
33#include "misc_constants.h"
c14b8494 34#include "as-layout.h"
1da177e4
LT
35
36/*
37 * Generic, controller-independent functions:
38 */
39
40int show_interrupts(struct seq_file *p, void *v)
41{
42 int i = *(loff_t *) v, j;
43 struct irqaction * action;
44 unsigned long flags;
45
46 if (i == 0) {
47 seq_printf(p, " ");
48 for_each_online_cpu(j)
49 seq_printf(p, "CPU%d ",j);
50 seq_putc(p, '\n');
51 }
52
53 if (i < NR_IRQS) {
54 spin_lock_irqsave(&irq_desc[i].lock, flags);
55 action = irq_desc[i].action;
2ea5bc5e 56 if (!action)
1da177e4
LT
57 goto skip;
58 seq_printf(p, "%3d: ",i);
59#ifndef CONFIG_SMP
60 seq_printf(p, "%10u ", kstat_irqs(i));
61#else
62 for_each_online_cpu(j)
63 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
64#endif
d1bef4ed 65 seq_printf(p, " %14s", irq_desc[i].chip->typename);
1da177e4
LT
66 seq_printf(p, " %s", action->name);
67
68 for (action=action->next; action; action = action->next)
69 seq_printf(p, ", %s", action->name);
70
71 seq_putc(p, '\n');
72skip:
73 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
74 } else if (i == NR_IRQS) {
75 seq_putc(p, '\n');
76 }
77
78 return 0;
79}
80
d973a77b
JD
81/*
82 * This list is accessed under irq_lock, except in sigio_handler,
83 * where it is safe from being modified. IRQ handlers won't change it -
84 * if an IRQ source has vanished, it will be freed by free_irqs just
85 * before returning from sigio_handler. That will process a separate
86 * list of irqs to free, with its own locking, coming back here to
87 * remove list elements, taking the irq_lock to do so.
88 */
f2e62992 89static struct irq_fd *active_fds = NULL;
9b4f018d
JD
90static struct irq_fd **last_irq_ptr = &active_fds;
91
92extern void free_irqs(void);
93
94void sigio_handler(int sig, union uml_pt_regs *regs)
95{
96 struct irq_fd *irq_fd;
97 int n;
98
191ef966
JJ
99 if (smp_sigio_handler())
100 return;
101
102 while (1) {
9b4f018d
JD
103 n = os_waiting_for_events(active_fds);
104 if (n <= 0) {
105 if(n == -EINTR) continue;
106 else break;
107 }
108
191ef966
JJ
109 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
110 if (irq_fd->current_events != 0) {
9b4f018d
JD
111 irq_fd->current_events = 0;
112 do_IRQ(irq_fd->irq, regs);
113 }
114 }
115 }
116
117 free_irqs();
118}
119
bfaafd71
JD
120static DEFINE_SPINLOCK(irq_lock);
121
9b4f018d
JD
122int activate_fd(int irq, int fd, int type, void *dev_id)
123{
124 struct pollfd *tmp_pfd;
125 struct irq_fd *new_fd, *irq_fd;
126 unsigned long flags;
127 int pid, events, err, n;
128
129 pid = os_getpid();
130 err = os_set_fd_async(fd, pid);
191ef966 131 if (err < 0)
9b4f018d
JD
132 goto out;
133
9b4f018d 134 err = -ENOMEM;
f2e62992 135 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
191ef966 136 if (new_fd == NULL)
9b4f018d
JD
137 goto out;
138
191ef966
JJ
139 if (type == IRQ_READ)
140 events = UM_POLLIN | UM_POLLPRI;
141 else
142 events = UM_POLLOUT;
9b4f018d
JD
143 *new_fd = ((struct irq_fd) { .next = NULL,
144 .id = dev_id,
145 .fd = fd,
146 .type = type,
147 .irq = irq,
148 .pid = pid,
149 .events = events,
150 .current_events = 0 } );
151
0f97869d 152 err = -EBUSY;
bfaafd71 153 spin_lock_irqsave(&irq_lock, flags);
191ef966
JJ
154 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
155 if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
9b4f018d
JD
156 printk("Registering fd %d twice\n", fd);
157 printk("Irqs : %d, %d\n", irq_fd->irq, irq);
158 printk("Ids : 0x%p, 0x%p\n", irq_fd->id, dev_id);
159 goto out_unlock;
160 }
161 }
162
191ef966 163 if (type == IRQ_WRITE)
9b4f018d
JD
164 fd = -1;
165
166 tmp_pfd = NULL;
167 n = 0;
168
191ef966 169 while (1) {
9b4f018d
JD
170 n = os_create_pollfd(fd, events, tmp_pfd, n);
171 if (n == 0)
172 break;
173
174 /* n > 0
175 * It means we couldn't put new pollfd to current pollfds
176 * and tmp_fds is NULL or too small for new pollfds array.
177 * Needed size is equal to n as minimum.
178 *
179 * Here we have to drop the lock in order to call
180 * kmalloc, which might sleep.
181 * If something else came in and changed the pollfds array
182 * so we will not be able to put new pollfd struct to pollfds
183 * then we free the buffer tmp_fds and try again.
184 */
bfaafd71 185 spin_unlock_irqrestore(&irq_lock, flags);
191ef966 186 kfree(tmp_pfd);
9b4f018d 187
f2e62992 188 tmp_pfd = kmalloc(n, GFP_KERNEL);
9b4f018d
JD
189 if (tmp_pfd == NULL)
190 goto out_kfree;
191
bfaafd71 192 spin_lock_irqsave(&irq_lock, flags);
9b4f018d 193 }
9b4f018d
JD
194
195 *last_irq_ptr = new_fd;
196 last_irq_ptr = &new_fd->next;
197
bfaafd71 198 spin_unlock_irqrestore(&irq_lock, flags);
9b4f018d
JD
199
200 /* This calls activate_fd, so it has to be outside the critical
201 * section.
202 */
8e64d96a 203 maybe_sigio_broken(fd, (type == IRQ_READ));
9b4f018d 204
19bdf040 205 return 0;
9b4f018d
JD
206
207 out_unlock:
bfaafd71 208 spin_unlock_irqrestore(&irq_lock, flags);
9b4f018d
JD
209 out_kfree:
210 kfree(new_fd);
211 out:
19bdf040 212 return err;
9b4f018d
JD
213}
214
215static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
216{
217 unsigned long flags;
218
bfaafd71 219 spin_lock_irqsave(&irq_lock, flags);
9b4f018d 220 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
bfaafd71 221 spin_unlock_irqrestore(&irq_lock, flags);
9b4f018d
JD
222}
223
224struct irq_and_dev {
225 int irq;
226 void *dev;
227};
228
229static int same_irq_and_dev(struct irq_fd *irq, void *d)
230{
231 struct irq_and_dev *data = d;
232
191ef966 233 return ((irq->irq == data->irq) && (irq->id == data->dev));
9b4f018d
JD
234}
235
236void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
237{
238 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq,
239 .dev = dev });
240
241 free_irq_by_cb(same_irq_and_dev, &data);
242}
243
244static int same_fd(struct irq_fd *irq, void *fd)
245{
191ef966 246 return (irq->fd == *((int *)fd));
9b4f018d
JD
247}
248
249void free_irq_by_fd(int fd)
250{
251 free_irq_by_cb(same_fd, &fd);
252}
253
d973a77b 254/* Must be called with irq_lock held */
9b4f018d
JD
255static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
256{
257 struct irq_fd *irq;
258 int i = 0;
259 int fdi;
260
191ef966
JJ
261 for (irq = active_fds; irq != NULL; irq = irq->next) {
262 if ((irq->fd == fd) && (irq->irq == irqnum))
263 break;
9b4f018d
JD
264 i++;
265 }
191ef966 266 if (irq == NULL) {
9b4f018d
JD
267 printk("find_irq_by_fd doesn't have descriptor %d\n", fd);
268 goto out;
269 }
270 fdi = os_get_pollfd(i);
191ef966 271 if ((fdi != -1) && (fdi != fd)) {
9b4f018d
JD
272 printk("find_irq_by_fd - mismatch between active_fds and "
273 "pollfds, fd %d vs %d, need %d\n", irq->fd,
274 fdi, fd);
275 irq = NULL;
276 goto out;
277 }
278 *index_out = i;
279 out:
191ef966 280 return irq;
9b4f018d
JD
281}
282
283void reactivate_fd(int fd, int irqnum)
284{
285 struct irq_fd *irq;
286 unsigned long flags;
287 int i;
288
bfaafd71 289 spin_lock_irqsave(&irq_lock, flags);
9b4f018d 290 irq = find_irq_by_fd(fd, irqnum, &i);
191ef966 291 if (irq == NULL) {
bfaafd71 292 spin_unlock_irqrestore(&irq_lock, flags);
9b4f018d
JD
293 return;
294 }
295 os_set_pollfd(i, irq->fd);
bfaafd71 296 spin_unlock_irqrestore(&irq_lock, flags);
9b4f018d 297
19bdf040 298 add_sigio_fd(fd);
9b4f018d
JD
299}
300
301void deactivate_fd(int fd, int irqnum)
302{
303 struct irq_fd *irq;
304 unsigned long flags;
305 int i;
306
bfaafd71 307 spin_lock_irqsave(&irq_lock, flags);
9b4f018d 308 irq = find_irq_by_fd(fd, irqnum, &i);
19bdf040
JD
309 if(irq == NULL){
310 spin_unlock_irqrestore(&irq_lock, flags);
311 return;
312 }
313
9b4f018d 314 os_set_pollfd(i, -1);
bfaafd71 315 spin_unlock_irqrestore(&irq_lock, flags);
19bdf040
JD
316
317 ignore_sigio_fd(fd);
9b4f018d
JD
318}
319
d973a77b
JD
320/*
321 * Called just before shutdown in order to provide a clean exec
322 * environment in case the system is rebooting. No locking because
323 * that would cause a pointless shutdown hang if something hadn't
324 * released the lock.
325 */
9b4f018d
JD
326int deactivate_all_fds(void)
327{
328 struct irq_fd *irq;
329 int err;
330
191ef966 331 for (irq = active_fds; irq != NULL; irq = irq->next) {
9b4f018d 332 err = os_clear_fd_async(irq->fd);
191ef966
JJ
333 if (err)
334 return err;
9b4f018d
JD
335 }
336 /* If there is a signal already queued, after unblocking ignore it */
337 os_set_ioignore();
338
191ef966 339 return 0;
9b4f018d
JD
340}
341
1da177e4
LT
342/*
343 * do_IRQ handles all normal device IRQ's (the special
344 * SMP cross-CPU interrupts have their own specific
345 * handlers).
346 */
347unsigned int do_IRQ(int irq, union uml_pt_regs *regs)
348{
7bea96fd
AV
349 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
350 irq_enter();
351 __do_IRQ(irq);
352 irq_exit();
353 set_irq_regs(old_regs);
354 return 1;
1da177e4
LT
355}
356
357int um_request_irq(unsigned int irq, int fd, int type,
40220c1a 358 irq_handler_t handler,
1da177e4
LT
359 unsigned long irqflags, const char * devname,
360 void *dev_id)
361{
362 int err;
363
364 err = request_irq(irq, handler, irqflags, devname, dev_id);
191ef966
JJ
365 if (err)
366 return err;
1da177e4 367
191ef966 368 if (fd != -1)
1da177e4 369 err = activate_fd(irq, fd, type, dev_id);
191ef966 370 return err;
1da177e4
LT
371}
372EXPORT_SYMBOL(um_request_irq);
373EXPORT_SYMBOL(reactivate_fd);
374
dbce706e
PBG
375/* hw_interrupt_type must define (startup || enable) &&
376 * (shutdown || disable) && end */
1da177e4
LT
377static void dummy(unsigned int irq)
378{
379}
380
dbce706e
PBG
381/* This is used for everything else than the timer. */
382static struct hw_interrupt_type normal_irq_type = {
1da177e4 383 .typename = "SIGIO",
dbce706e 384 .release = free_irq_by_irq_and_dev,
1da177e4
LT
385 .disable = dummy,
386 .enable = dummy,
387 .ack = dummy,
388 .end = dummy
389};
390
391static struct hw_interrupt_type SIGVTALRM_irq_type = {
392 .typename = "SIGVTALRM",
dbce706e 393 .release = free_irq_by_irq_and_dev,
1da177e4
LT
394 .shutdown = dummy, /* never called */
395 .disable = dummy,
396 .enable = dummy,
397 .ack = dummy,
398 .end = dummy
399};
400
401void __init init_IRQ(void)
402{
403 int i;
404
405 irq_desc[TIMER_IRQ].status = IRQ_DISABLED;
406 irq_desc[TIMER_IRQ].action = NULL;
407 irq_desc[TIMER_IRQ].depth = 1;
d1bef4ed 408 irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type;
1da177e4 409 enable_irq(TIMER_IRQ);
191ef966 410 for (i = 1; i < NR_IRQS; i++) {
1da177e4
LT
411 irq_desc[i].status = IRQ_DISABLED;
412 irq_desc[i].action = NULL;
413 irq_desc[i].depth = 1;
d1bef4ed 414 irq_desc[i].chip = &normal_irq_type;
1da177e4
LT
415 enable_irq(i);
416 }
1da177e4
LT
417}
418
40220c1a 419int init_aio_irq(int irq, char *name, irq_handler_t handler)
75e5584c
JD
420{
421 int fds[2], err;
422
423 err = os_pipe(fds, 1, 1);
191ef966 424 if (err) {
75e5584c
JD
425 printk("init_aio_irq - os_pipe failed, err = %d\n", -err);
426 goto out;
427 }
428
429 err = um_request_irq(irq, fds[0], IRQ_READ, handler,
bd6aa650 430 IRQF_DISABLED | IRQF_SAMPLE_RANDOM, name,
75e5584c 431 (void *) (long) fds[0]);
191ef966 432 if (err) {
75e5584c
JD
433 printk("init_aio_irq - : um_request_irq failed, err = %d\n",
434 err);
435 goto out_close;
436 }
437
438 err = fds[1];
439 goto out;
440
441 out_close:
442 os_close_file(fds[0]);
443 os_close_file(fds[1]);
444 out:
191ef966 445 return err;
75e5584c 446}
c14b8494
JD
447
448/*
449 * IRQ stack entry and exit:
450 *
451 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
452 * and switch over to the IRQ stack after some preparation. We use
453 * sigaltstack to receive signals on a separate stack from the start.
454 * These two functions make sure the rest of the kernel won't be too
455 * upset by being on a different stack. The IRQ stack has a
456 * thread_info structure at the bottom so that current et al continue
457 * to work.
458 *
459 * to_irq_stack copies the current task's thread_info to the IRQ stack
460 * thread_info and sets the tasks's stack to point to the IRQ stack.
461 *
462 * from_irq_stack copies the thread_info struct back (flags may have
463 * been modified) and resets the task's stack pointer.
464 *
465 * Tricky bits -
466 *
467 * What happens when two signals race each other? UML doesn't block
468 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
469 * could arrive while a previous one is still setting up the
470 * thread_info.
471 *
472 * There are three cases -
473 * The first interrupt on the stack - sets up the thread_info and
474 * handles the interrupt
475 * A nested interrupt interrupting the copying of the thread_info -
476 * can't handle the interrupt, as the stack is in an unknown state
477 * A nested interrupt not interrupting the copying of the
478 * thread_info - doesn't do any setup, just handles the interrupt
479 *
480 * The first job is to figure out whether we interrupted stack setup.
481 * This is done by xchging the signal mask with thread_info->pending.
482 * If the value that comes back is zero, then there is no setup in
483 * progress, and the interrupt can be handled. If the value is
484 * non-zero, then there is stack setup in progress. In order to have
485 * the interrupt handled, we leave our signal in the mask, and it will
486 * be handled by the upper handler after it has set up the stack.
487 *
488 * Next is to figure out whether we are the outer handler or a nested
489 * one. As part of setting up the stack, thread_info->real_thread is
490 * set to non-NULL (and is reset to NULL on exit). This is the
491 * nesting indicator. If it is non-NULL, then the stack is already
492 * set up and the handler can run.
493 */
494
495static unsigned long pending_mask;
496
508a9274 497unsigned long to_irq_stack(unsigned long *mask_out)
c14b8494
JD
498{
499 struct thread_info *ti;
500 unsigned long mask, old;
501 int nested;
502
508a9274 503 mask = xchg(&pending_mask, *mask_out);
c14b8494
JD
504 if(mask != 0){
505 /* If any interrupts come in at this point, we want to
506 * make sure that their bits aren't lost by our
507 * putting our bit in. So, this loop accumulates bits
508 * until xchg returns the same value that we put in.
509 * When that happens, there were no new interrupts,
510 * and pending_mask contains a bit for each interrupt
511 * that came in.
512 */
508a9274 513 old = *mask_out;
c14b8494
JD
514 do {
515 old |= mask;
516 mask = xchg(&pending_mask, old);
517 } while(mask != old);
518 return 1;
519 }
520
521 ti = current_thread_info();
522 nested = (ti->real_thread != NULL);
523 if(!nested){
524 struct task_struct *task;
525 struct thread_info *tti;
526
527 task = cpu_tasks[ti->cpu].task;
528 tti = task_thread_info(task);
508a9274 529
c14b8494
JD
530 *ti = *tti;
531 ti->real_thread = tti;
532 task->stack = ti;
533 }
534
535 mask = xchg(&pending_mask, 0);
536 *mask_out |= mask | nested;
537 return 0;
538}
539
540unsigned long from_irq_stack(int nested)
541{
542 struct thread_info *ti, *to;
543 unsigned long mask;
544
545 ti = current_thread_info();
546
547 pending_mask = 1;
548
549 to = ti->real_thread;
550 current->stack = to;
551 ti->real_thread = NULL;
552 *to = *ti;
553
554 mask = xchg(&pending_mask, 0);
555 return mask & ~1;
556}
557