]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/events/intel/cqm.c
perf/x86/cqm: Fix CQM memory leak and notifier leak
[mirror_ubuntu-artful-kernel.git] / arch / x86 / events / intel / cqm.c
CommitLineData
4afbb24c
MF
1/*
2 * Intel Cache Quality-of-Service Monitoring (CQM) support.
3 *
4 * Based very, very heavily on work by Peter Zijlstra.
5 */
6
7#include <linux/perf_event.h>
8#include <linux/slab.h>
9#include <asm/cpu_device_id.h>
27f6d22b 10#include "../perf_event.h"
4afbb24c
MF
11
12#define MSR_IA32_PQR_ASSOC 0x0c8f
13#define MSR_IA32_QM_CTR 0x0c8e
14#define MSR_IA32_QM_EVTSEL 0x0c8d
15
adafa999 16static u32 cqm_max_rmid = -1;
4afbb24c
MF
17static unsigned int cqm_l3_scale; /* supposedly cacheline size */
18
bf926731
TG
19/**
20 * struct intel_pqr_state - State cache for the PQR MSR
21 * @rmid: The cached Resource Monitoring ID
22 * @closid: The cached Class Of Service ID
23 * @rmid_usecnt: The usage counter for rmid
24 *
25 * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
26 * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
27 * contains both parts, so we need to cache them.
28 *
29 * The cache also helps to avoid pointless updates if the value does
30 * not change.
31 */
32struct intel_pqr_state {
b3df4ec4 33 u32 rmid;
bf926731
TG
34 u32 closid;
35 int rmid_usecnt;
4afbb24c
MF
36};
37
9e7eaac9 38/*
bf926731 39 * The cached intel_pqr_state is strictly per CPU and can never be
9e7eaac9
TG
40 * updated from a remote CPU. Both functions which modify the state
41 * (intel_cqm_event_start and intel_cqm_event_stop) are called with
42 * interrupts disabled, which is sufficient for the protection.
43 */
bf926731 44static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
4afbb24c
MF
45
46/*
bff671db
MF
47 * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
48 * Also protects event->hw.cqm_rmid
49 *
50 * Hold either for stability, both for modification of ->hw.cqm_rmid.
4afbb24c
MF
51 */
52static DEFINE_MUTEX(cache_mutex);
bff671db 53static DEFINE_RAW_SPINLOCK(cache_lock);
4afbb24c
MF
54
55/*
56 * Groups of events that have the same target(s), one RMID per group.
57 */
58static LIST_HEAD(cache_groups);
59
60/*
61 * Mask of CPUs for reading CQM values. We only need one per-socket.
62 */
63static cpumask_t cqm_cpumask;
64
65#define RMID_VAL_ERROR (1ULL << 63)
66#define RMID_VAL_UNAVAIL (1ULL << 62)
67
68#define QOS_L3_OCCUP_EVENT_ID (1 << 0)
69
70#define QOS_EVENT_MASK QOS_L3_OCCUP_EVENT_ID
71
bff671db
MF
72/*
73 * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
74 *
75 * This rmid is always free and is guaranteed to have an associated
76 * near-zero occupancy value, i.e. no cachelines are tagged with this
77 * RMID, once __intel_cqm_rmid_rotate() returns.
78 */
adafa999 79static u32 intel_cqm_rotation_rmid;
bff671db
MF
80
81#define INVALID_RMID (-1)
82
83/*
84 * Is @rmid valid for programming the hardware?
85 *
86 * rmid 0 is reserved by the hardware for all non-monitored tasks, which
87 * means that we should never come across an rmid with that value.
88 * Likewise, an rmid value of -1 is used to indicate "no rmid currently
89 * assigned" and is used as part of the rotation code.
90 */
adafa999 91static inline bool __rmid_valid(u32 rmid)
bff671db
MF
92{
93 if (!rmid || rmid == INVALID_RMID)
94 return false;
95
96 return true;
97}
98
adafa999 99static u64 __rmid_read(u32 rmid)
4afbb24c
MF
100{
101 u64 val;
102
103 /*
104 * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
105 * it just says that to increase confusion.
106 */
107 wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
108 rdmsrl(MSR_IA32_QM_CTR, val);
109
110 /*
111 * Aside from the ERROR and UNAVAIL bits, assume this thing returns
112 * the number of cachelines tagged with @rmid.
113 */
114 return val;
115}
116
bff671db
MF
117enum rmid_recycle_state {
118 RMID_YOUNG = 0,
119 RMID_AVAILABLE,
120 RMID_DIRTY,
121};
122
35298e55 123struct cqm_rmid_entry {
adafa999 124 u32 rmid;
bff671db 125 enum rmid_recycle_state state;
35298e55 126 struct list_head list;
bff671db 127 unsigned long queue_time;
35298e55
MF
128};
129
130/*
bff671db 131 * cqm_rmid_free_lru - A least recently used list of RMIDs.
35298e55
MF
132 *
133 * Oldest entry at the head, newest (most recently used) entry at the
134 * tail. This list is never traversed, it's only used to keep track of
135 * the lru order. That is, we only pick entries of the head or insert
136 * them on the tail.
137 *
138 * All entries on the list are 'free', and their RMIDs are not currently
139 * in use. To mark an RMID as in use, remove its entry from the lru
140 * list.
141 *
bff671db
MF
142 *
143 * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
144 *
145 * This list is contains RMIDs that no one is currently using but that
146 * may have a non-zero occupancy value associated with them. The
147 * rotation worker moves RMIDs from the limbo list to the free list once
148 * the occupancy value drops below __intel_cqm_threshold.
149 *
150 * Both lists are protected by cache_mutex.
35298e55 151 */
bff671db
MF
152static LIST_HEAD(cqm_rmid_free_lru);
153static LIST_HEAD(cqm_rmid_limbo_lru);
35298e55
MF
154
155/*
156 * We use a simple array of pointers so that we can lookup a struct
157 * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
158 * and __put_rmid() from having to worry about dealing with struct
159 * cqm_rmid_entry - they just deal with rmids, i.e. integers.
160 *
161 * Once this array is initialized it is read-only. No locks are required
162 * to access it.
163 *
164 * All entries for all RMIDs can be looked up in the this array at all
165 * times.
166 */
167static struct cqm_rmid_entry **cqm_rmid_ptrs;
168
adafa999 169static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
35298e55
MF
170{
171 struct cqm_rmid_entry *entry;
172
173 entry = cqm_rmid_ptrs[rmid];
174 WARN_ON(entry->rmid != rmid);
175
176 return entry;
177}
4afbb24c
MF
178
179/*
180 * Returns < 0 on fail.
35298e55
MF
181 *
182 * We expect to be called with cache_mutex held.
4afbb24c 183 */
adafa999 184static u32 __get_rmid(void)
4afbb24c 185{
35298e55
MF
186 struct cqm_rmid_entry *entry;
187
188 lockdep_assert_held(&cache_mutex);
189
bff671db
MF
190 if (list_empty(&cqm_rmid_free_lru))
191 return INVALID_RMID;
35298e55 192
bff671db 193 entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
35298e55
MF
194 list_del(&entry->list);
195
196 return entry->rmid;
4afbb24c
MF
197}
198
adafa999 199static void __put_rmid(u32 rmid)
4afbb24c 200{
35298e55
MF
201 struct cqm_rmid_entry *entry;
202
203 lockdep_assert_held(&cache_mutex);
204
bff671db 205 WARN_ON(!__rmid_valid(rmid));
35298e55
MF
206 entry = __rmid_entry(rmid);
207
bff671db
MF
208 entry->queue_time = jiffies;
209 entry->state = RMID_YOUNG;
210
211 list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
4afbb24c
MF
212}
213
ada2f634
VS
214static void cqm_cleanup(void)
215{
216 int i;
217
218 if (!cqm_rmid_ptrs)
219 return;
220
221 for (i = 0; i < cqm_max_rmid; i++)
222 kfree(cqm_rmid_ptrs[i]);
223
224 kfree(cqm_rmid_ptrs);
225 cqm_rmid_ptrs = NULL;
226}
227
4afbb24c
MF
228static int intel_cqm_setup_rmid_cache(void)
229{
35298e55 230 struct cqm_rmid_entry *entry;
bff671db
MF
231 unsigned int nr_rmids;
232 int r = 0;
35298e55 233
bff671db 234 nr_rmids = cqm_max_rmid + 1;
ada2f634 235 cqm_rmid_ptrs = kzalloc(sizeof(struct cqm_rmid_entry *) *
bff671db 236 nr_rmids, GFP_KERNEL);
35298e55 237 if (!cqm_rmid_ptrs)
4afbb24c
MF
238 return -ENOMEM;
239
bff671db 240 for (; r <= cqm_max_rmid; r++) {
35298e55
MF
241 struct cqm_rmid_entry *entry;
242
243 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
244 if (!entry)
245 goto fail;
246
247 INIT_LIST_HEAD(&entry->list);
248 entry->rmid = r;
249 cqm_rmid_ptrs[r] = entry;
250
bff671db 251 list_add_tail(&entry->list, &cqm_rmid_free_lru);
35298e55 252 }
4afbb24c
MF
253
254 /*
255 * RMID 0 is special and is always allocated. It's used for all
256 * tasks that are not monitored.
257 */
35298e55
MF
258 entry = __rmid_entry(0);
259 list_del(&entry->list);
4afbb24c 260
bff671db
MF
261 mutex_lock(&cache_mutex);
262 intel_cqm_rotation_rmid = __get_rmid();
263 mutex_unlock(&cache_mutex);
264
4afbb24c 265 return 0;
35298e55 266
ada2f634
VS
267fail:
268 cqm_cleanup();
35298e55 269 return -ENOMEM;
4afbb24c
MF
270}
271
272/*
273 * Determine if @a and @b measure the same set of tasks.
bfe1fcd2
MF
274 *
275 * If @a and @b measure the same set of tasks then we want to share a
276 * single RMID.
4afbb24c
MF
277 */
278static bool __match_event(struct perf_event *a, struct perf_event *b)
279{
bfe1fcd2 280 /* Per-cpu and task events don't mix */
4afbb24c
MF
281 if ((a->attach_state & PERF_ATTACH_TASK) !=
282 (b->attach_state & PERF_ATTACH_TASK))
283 return false;
284
bfe1fcd2
MF
285#ifdef CONFIG_CGROUP_PERF
286 if (a->cgrp != b->cgrp)
287 return false;
288#endif
289
290 /* If not task event, we're machine wide */
291 if (!(b->attach_state & PERF_ATTACH_TASK))
292 return true;
293
294 /*
295 * Events that target same task are placed into the same cache group.
a223c1c7
VS
296 * Mark it as a multi event group, so that we update ->count
297 * for every event rather than just the group leader later.
bfe1fcd2 298 */
a223c1c7
VS
299 if (a->hw.target == b->hw.target) {
300 b->hw.is_group_event = true;
bfe1fcd2 301 return true;
a223c1c7 302 }
bfe1fcd2
MF
303
304 /*
305 * Are we an inherited event?
306 */
307 if (b->parent == a)
308 return true;
309
310 return false;
311}
312
313#ifdef CONFIG_CGROUP_PERF
314static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
315{
316 if (event->attach_state & PERF_ATTACH_TASK)
614e4c4e 317 return perf_cgroup_from_task(event->hw.target, event->ctx);
4afbb24c 318
bfe1fcd2 319 return event->cgrp;
4afbb24c 320}
bfe1fcd2 321#endif
4afbb24c
MF
322
323/*
324 * Determine if @a's tasks intersect with @b's tasks
bfe1fcd2
MF
325 *
326 * There are combinations of events that we explicitly prohibit,
327 *
328 * PROHIBITS
329 * system-wide -> cgroup and task
330 * cgroup -> system-wide
331 * -> task in cgroup
332 * task -> system-wide
333 * -> task in cgroup
334 *
335 * Call this function before allocating an RMID.
4afbb24c
MF
336 */
337static bool __conflict_event(struct perf_event *a, struct perf_event *b)
338{
bfe1fcd2
MF
339#ifdef CONFIG_CGROUP_PERF
340 /*
341 * We can have any number of cgroups but only one system-wide
342 * event at a time.
343 */
344 if (a->cgrp && b->cgrp) {
345 struct perf_cgroup *ac = a->cgrp;
346 struct perf_cgroup *bc = b->cgrp;
347
348 /*
349 * This condition should have been caught in
350 * __match_event() and we should be sharing an RMID.
351 */
352 WARN_ON_ONCE(ac == bc);
353
354 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
355 cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
356 return true;
357
358 return false;
359 }
360
361 if (a->cgrp || b->cgrp) {
362 struct perf_cgroup *ac, *bc;
363
364 /*
365 * cgroup and system-wide events are mutually exclusive
366 */
367 if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
368 (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
369 return true;
370
371 /*
372 * Ensure neither event is part of the other's cgroup
373 */
374 ac = event_to_cgroup(a);
375 bc = event_to_cgroup(b);
376 if (ac == bc)
377 return true;
378
379 /*
380 * Must have cgroup and non-intersecting task events.
381 */
382 if (!ac || !bc)
383 return false;
384
385 /*
386 * We have cgroup and task events, and the task belongs
387 * to a cgroup. Check for for overlap.
388 */
389 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
390 cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
391 return true;
392
393 return false;
394 }
395#endif
4afbb24c
MF
396 /*
397 * If one of them is not a task, same story as above with cgroups.
398 */
399 if (!(a->attach_state & PERF_ATTACH_TASK) ||
400 !(b->attach_state & PERF_ATTACH_TASK))
401 return true;
402
403 /*
404 * Must be non-overlapping.
405 */
406 return false;
407}
408
bff671db 409struct rmid_read {
adafa999 410 u32 rmid;
bff671db
MF
411 atomic64_t value;
412};
413
414static void __intel_cqm_event_count(void *info);
415
416/*
417 * Exchange the RMID of a group of events.
418 */
adafa999 419static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
bff671db
MF
420{
421 struct perf_event *event;
bff671db 422 struct list_head *head = &group->hw.cqm_group_entry;
adafa999 423 u32 old_rmid = group->hw.cqm_rmid;
bff671db
MF
424
425 lockdep_assert_held(&cache_mutex);
426
427 /*
428 * If our RMID is being deallocated, perform a read now.
429 */
430 if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
431 struct rmid_read rr = {
432 .value = ATOMIC64_INIT(0),
433 .rmid = old_rmid,
434 };
435
436 on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
437 &rr, 1);
438 local64_set(&group->count, atomic64_read(&rr.value));
439 }
440
441 raw_spin_lock_irq(&cache_lock);
442
443 group->hw.cqm_rmid = rmid;
444 list_for_each_entry(event, head, hw.cqm_group_entry)
445 event->hw.cqm_rmid = rmid;
446
447 raw_spin_unlock_irq(&cache_lock);
448
449 return old_rmid;
450}
451
452/*
453 * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
454 * cachelines are still tagged with RMIDs in limbo, we progressively
455 * increment the threshold until we find an RMID in limbo with <=
456 * __intel_cqm_threshold lines tagged. This is designed to mitigate the
457 * problem where cachelines tagged with an RMID are not steadily being
458 * evicted.
459 *
460 * On successful rotations we decrease the threshold back towards zero.
461 *
462 * __intel_cqm_max_threshold provides an upper bound on the threshold,
463 * and is measured in bytes because it's exposed to userland.
464 */
465static unsigned int __intel_cqm_threshold;
466static unsigned int __intel_cqm_max_threshold;
467
468/*
469 * Test whether an RMID has a zero occupancy value on this cpu.
470 */
471static void intel_cqm_stable(void *arg)
472{
473 struct cqm_rmid_entry *entry;
474
475 list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
476 if (entry->state != RMID_AVAILABLE)
477 break;
478
479 if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
480 entry->state = RMID_DIRTY;
481 }
482}
483
484/*
485 * If we have group events waiting for an RMID that don't conflict with
486 * events already running, assign @rmid.
487 */
adafa999 488static bool intel_cqm_sched_in_event(u32 rmid)
bff671db
MF
489{
490 struct perf_event *leader, *event;
491
492 lockdep_assert_held(&cache_mutex);
493
494 leader = list_first_entry(&cache_groups, struct perf_event,
495 hw.cqm_groups_entry);
496 event = leader;
497
498 list_for_each_entry_continue(event, &cache_groups,
499 hw.cqm_groups_entry) {
500 if (__rmid_valid(event->hw.cqm_rmid))
501 continue;
502
503 if (__conflict_event(event, leader))
504 continue;
505
506 intel_cqm_xchg_rmid(event, rmid);
507 return true;
508 }
509
510 return false;
511}
512
513/*
514 * Initially use this constant for both the limbo queue time and the
515 * rotation timer interval, pmu::hrtimer_interval_ms.
516 *
517 * They don't need to be the same, but the two are related since if you
518 * rotate faster than you recycle RMIDs, you may run out of available
519 * RMIDs.
520 */
521#define RMID_DEFAULT_QUEUE_TIME 250 /* ms */
522
523static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
524
525/*
526 * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
527 * @nr_available: number of freeable RMIDs on the limbo list
528 *
529 * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
530 * cachelines are tagged with those RMIDs. After this we can reuse them
531 * and know that the current set of active RMIDs is stable.
532 *
533 * Return %true or %false depending on whether stabilization needs to be
534 * reattempted.
535 *
536 * If we return %true then @nr_available is updated to indicate the
537 * number of RMIDs on the limbo list that have been queued for the
538 * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
539 * are above __intel_cqm_threshold.
540 */
541static bool intel_cqm_rmid_stabilize(unsigned int *available)
542{
543 struct cqm_rmid_entry *entry, *tmp;
bff671db
MF
544
545 lockdep_assert_held(&cache_mutex);
546
547 *available = 0;
548 list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
549 unsigned long min_queue_time;
550 unsigned long now = jiffies;
551
552 /*
553 * We hold RMIDs placed into limbo for a minimum queue
554 * time. Before the minimum queue time has elapsed we do
555 * not recycle RMIDs.
556 *
557 * The reasoning is that until a sufficient time has
558 * passed since we stopped using an RMID, any RMID
559 * placed onto the limbo list will likely still have
560 * data tagged in the cache, which means we'll probably
561 * fail to recycle it anyway.
562 *
563 * We can save ourselves an expensive IPI by skipping
564 * any RMIDs that have not been queued for the minimum
565 * time.
566 */
567 min_queue_time = entry->queue_time +
568 msecs_to_jiffies(__rmid_queue_time_ms);
569
570 if (time_after(min_queue_time, now))
571 break;
572
573 entry->state = RMID_AVAILABLE;
574 (*available)++;
575 }
576
577 /*
578 * Fast return if none of the RMIDs on the limbo list have been
579 * sitting on the queue for the minimum queue time.
580 */
581 if (!*available)
582 return false;
583
584 /*
585 * Test whether an RMID is free for each package.
586 */
587 on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
588
589 list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
590 /*
591 * Exhausted all RMIDs that have waited min queue time.
592 */
593 if (entry->state == RMID_YOUNG)
594 break;
595
596 if (entry->state == RMID_DIRTY)
597 continue;
598
599 list_del(&entry->list); /* remove from limbo */
600
601 /*
602 * The rotation RMID gets priority if it's
603 * currently invalid. In which case, skip adding
604 * the RMID to the the free lru.
605 */
606 if (!__rmid_valid(intel_cqm_rotation_rmid)) {
607 intel_cqm_rotation_rmid = entry->rmid;
608 continue;
609 }
610
611 /*
612 * If we have groups waiting for RMIDs, hand
59bf7fd4 613 * them one now provided they don't conflict.
bff671db 614 */
59bf7fd4 615 if (intel_cqm_sched_in_event(entry->rmid))
bff671db
MF
616 continue;
617
618 /*
619 * Otherwise place it onto the free list.
620 */
621 list_add_tail(&entry->list, &cqm_rmid_free_lru);
622 }
623
624
625 return __rmid_valid(intel_cqm_rotation_rmid);
626}
627
628/*
629 * Pick a victim group and move it to the tail of the group list.
59bf7fd4 630 * @next: The first group without an RMID
bff671db 631 */
59bf7fd4 632static void __intel_cqm_pick_and_rotate(struct perf_event *next)
bff671db
MF
633{
634 struct perf_event *rotor;
adafa999 635 u32 rmid;
bff671db
MF
636
637 lockdep_assert_held(&cache_mutex);
bff671db
MF
638
639 rotor = list_first_entry(&cache_groups, struct perf_event,
640 hw.cqm_groups_entry);
59bf7fd4
MF
641
642 /*
643 * The group at the front of the list should always have a valid
644 * RMID. If it doesn't then no groups have RMIDs assigned and we
645 * don't need to rotate the list.
646 */
647 if (next == rotor)
648 return;
649
650 rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
651 __put_rmid(rmid);
652
bff671db 653 list_rotate_left(&cache_groups);
59bf7fd4
MF
654}
655
656/*
657 * Deallocate the RMIDs from any events that conflict with @event, and
658 * place them on the back of the group list.
659 */
660static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
661{
662 struct perf_event *group, *g;
adafa999 663 u32 rmid;
59bf7fd4
MF
664
665 lockdep_assert_held(&cache_mutex);
666
667 list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
668 if (group == event)
669 continue;
670
671 rmid = group->hw.cqm_rmid;
672
673 /*
674 * Skip events that don't have a valid RMID.
675 */
676 if (!__rmid_valid(rmid))
677 continue;
678
679 /*
680 * No conflict? No problem! Leave the event alone.
681 */
682 if (!__conflict_event(group, event))
683 continue;
bff671db 684
59bf7fd4
MF
685 intel_cqm_xchg_rmid(group, INVALID_RMID);
686 __put_rmid(rmid);
687 }
bff671db
MF
688}
689
690/*
691 * Attempt to rotate the groups and assign new RMIDs.
692 *
59bf7fd4
MF
693 * We rotate for two reasons,
694 * 1. To handle the scheduling of conflicting events
695 * 2. To recycle RMIDs
696 *
bff671db
MF
697 * Rotating RMIDs is complicated because the hardware doesn't give us
698 * any clues.
699 *
700 * There's problems with the hardware interface; when you change the
701 * task:RMID map cachelines retain their 'old' tags, giving a skewed
702 * picture. In order to work around this, we must always keep one free
703 * RMID - intel_cqm_rotation_rmid.
704 *
705 * Rotation works by taking away an RMID from a group (the old RMID),
706 * and assigning the free RMID to another group (the new RMID). We must
707 * then wait for the old RMID to not be used (no cachelines tagged).
708 * This ensure that all cachelines are tagged with 'active' RMIDs. At
709 * this point we can start reading values for the new RMID and treat the
710 * old RMID as the free RMID for the next rotation.
711 *
712 * Return %true or %false depending on whether we did any rotating.
713 */
714static bool __intel_cqm_rmid_rotate(void)
715{
59bf7fd4 716 struct perf_event *group, *start = NULL;
bff671db
MF
717 unsigned int threshold_limit;
718 unsigned int nr_needed = 0;
719 unsigned int nr_available;
bff671db
MF
720 bool rotated = false;
721
722 mutex_lock(&cache_mutex);
723
724again:
725 /*
726 * Fast path through this function if there are no groups and no
727 * RMIDs that need cleaning.
728 */
729 if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
730 goto out;
731
732 list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
733 if (!__rmid_valid(group->hw.cqm_rmid)) {
734 if (!start)
735 start = group;
736 nr_needed++;
737 }
738 }
739
740 /*
741 * We have some event groups, but they all have RMIDs assigned
742 * and no RMIDs need cleaning.
743 */
744 if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
745 goto out;
746
747 if (!nr_needed)
748 goto stabilize;
749
750 /*
59bf7fd4
MF
751 * We have more event groups without RMIDs than available RMIDs,
752 * or we have event groups that conflict with the ones currently
753 * scheduled.
bff671db
MF
754 *
755 * We force deallocate the rmid of the group at the head of
756 * cache_groups. The first event group without an RMID then gets
757 * assigned intel_cqm_rotation_rmid. This ensures we always make
758 * forward progress.
759 *
760 * Rotate the cache_groups list so the previous head is now the
761 * tail.
762 */
59bf7fd4 763 __intel_cqm_pick_and_rotate(start);
bff671db
MF
764
765 /*
766 * If the rotation is going to succeed, reduce the threshold so
767 * that we don't needlessly reuse dirty RMIDs.
768 */
769 if (__rmid_valid(intel_cqm_rotation_rmid)) {
770 intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
59bf7fd4
MF
771 intel_cqm_rotation_rmid = __get_rmid();
772
773 intel_cqm_sched_out_conflicting_events(start);
bff671db
MF
774
775 if (__intel_cqm_threshold)
776 __intel_cqm_threshold--;
777 }
778
bff671db
MF
779 rotated = true;
780
781stabilize:
782 /*
783 * We now need to stablize the RMID we freed above (if any) to
784 * ensure that the next time we rotate we have an RMID with zero
785 * occupancy value.
786 *
787 * Alternatively, if we didn't need to perform any rotation,
788 * we'll have a bunch of RMIDs in limbo that need stabilizing.
789 */
790 threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
791
792 while (intel_cqm_rmid_stabilize(&nr_available) &&
793 __intel_cqm_threshold < threshold_limit) {
794 unsigned int steal_limit;
795
796 /*
797 * Don't spin if nobody is actively waiting for an RMID,
798 * the rotation worker will be kicked as soon as an
799 * event needs an RMID anyway.
800 */
801 if (!nr_needed)
802 break;
803
804 /* Allow max 25% of RMIDs to be in limbo. */
805 steal_limit = (cqm_max_rmid + 1) / 4;
806
807 /*
808 * We failed to stabilize any RMIDs so our rotation
809 * logic is now stuck. In order to make forward progress
810 * we have a few options:
811 *
812 * 1. rotate ("steal") another RMID
813 * 2. increase the threshold
814 * 3. do nothing
815 *
816 * We do both of 1. and 2. until we hit the steal limit.
817 *
818 * The steal limit prevents all RMIDs ending up on the
819 * limbo list. This can happen if every RMID has a
820 * non-zero occupancy above threshold_limit, and the
821 * occupancy values aren't dropping fast enough.
822 *
823 * Note that there is prioritisation at work here - we'd
824 * rather increase the number of RMIDs on the limbo list
825 * than increase the threshold, because increasing the
826 * threshold skews the event data (because we reuse
827 * dirty RMIDs) - threshold bumps are a last resort.
828 */
829 if (nr_available < steal_limit)
830 goto again;
831
832 __intel_cqm_threshold++;
833 }
834
835out:
836 mutex_unlock(&cache_mutex);
837 return rotated;
838}
839
840static void intel_cqm_rmid_rotate(struct work_struct *work);
841
842static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
843
844static struct pmu intel_cqm_pmu;
845
846static void intel_cqm_rmid_rotate(struct work_struct *work)
847{
848 unsigned long delay;
849
850 __intel_cqm_rmid_rotate();
851
852 delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
853 schedule_delayed_work(&intel_cqm_rmid_work, delay);
854}
855
4afbb24c
MF
856/*
857 * Find a group and setup RMID.
858 *
859 * If we're part of a group, we use the group's RMID.
860 */
59bf7fd4
MF
861static void intel_cqm_setup_event(struct perf_event *event,
862 struct perf_event **group)
4afbb24c
MF
863{
864 struct perf_event *iter;
59bf7fd4 865 bool conflict = false;
adafa999 866 u32 rmid;
4afbb24c 867
a223c1c7 868 event->hw.is_group_event = false;
4afbb24c 869 list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
59bf7fd4
MF
870 rmid = iter->hw.cqm_rmid;
871
4afbb24c
MF
872 if (__match_event(iter, event)) {
873 /* All tasks in a group share an RMID */
59bf7fd4 874 event->hw.cqm_rmid = rmid;
4afbb24c 875 *group = iter;
59bf7fd4 876 return;
4afbb24c
MF
877 }
878
59bf7fd4
MF
879 /*
880 * We only care about conflicts for events that are
881 * actually scheduled in (and hence have a valid RMID).
882 */
883 if (__conflict_event(iter, event) && __rmid_valid(rmid))
884 conflict = true;
4afbb24c
MF
885 }
886
59bf7fd4
MF
887 if (conflict)
888 rmid = INVALID_RMID;
889 else
890 rmid = __get_rmid();
891
892 event->hw.cqm_rmid = rmid;
4afbb24c
MF
893}
894
895static void intel_cqm_event_read(struct perf_event *event)
896{
bff671db 897 unsigned long flags;
adafa999 898 u32 rmid;
4afbb24c
MF
899 u64 val;
900
bfe1fcd2
MF
901 /*
902 * Task events are handled by intel_cqm_event_count().
903 */
904 if (event->cpu == -1)
905 return;
906
bff671db 907 raw_spin_lock_irqsave(&cache_lock, flags);
bfe1fcd2 908 rmid = event->hw.cqm_rmid;
bff671db
MF
909
910 if (!__rmid_valid(rmid))
911 goto out;
912
4afbb24c
MF
913 val = __rmid_read(rmid);
914
915 /*
916 * Ignore this reading on error states and do not update the value.
917 */
918 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
bff671db 919 goto out;
4afbb24c
MF
920
921 local64_set(&event->count, val);
bff671db
MF
922out:
923 raw_spin_unlock_irqrestore(&cache_lock, flags);
4afbb24c
MF
924}
925
bfe1fcd2
MF
926static void __intel_cqm_event_count(void *info)
927{
928 struct rmid_read *rr = info;
929 u64 val;
930
931 val = __rmid_read(rr->rmid);
932
933 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
934 return;
935
936 atomic64_add(val, &rr->value);
937}
938
939static inline bool cqm_group_leader(struct perf_event *event)
940{
941 return !list_empty(&event->hw.cqm_groups_entry);
942}
943
944static u64 intel_cqm_event_count(struct perf_event *event)
945{
bff671db 946 unsigned long flags;
bfe1fcd2 947 struct rmid_read rr = {
bfe1fcd2
MF
948 .value = ATOMIC64_INIT(0),
949 };
950
951 /*
952 * We only need to worry about task events. System-wide events
953 * are handled like usual, i.e. entirely with
954 * intel_cqm_event_read().
955 */
956 if (event->cpu != -1)
957 return __perf_event_count(event);
958
959 /*
a223c1c7
VS
960 * Only the group leader gets to report values except in case of
961 * multiple events in the same group, we still need to read the
962 * other events.This stops us
bfe1fcd2
MF
963 * reporting duplicate values to userspace, and gives us a clear
964 * rule for which task gets to report the values.
965 *
966 * Note that it is impossible to attribute these values to
967 * specific packages - we forfeit that ability when we create
968 * task events.
969 */
a223c1c7 970 if (!cqm_group_leader(event) && !event->hw.is_group_event)
bfe1fcd2
MF
971 return 0;
972
2c534c0d
MF
973 /*
974 * Getting up-to-date values requires an SMP IPI which is not
975 * possible if we're being called in interrupt context. Return
976 * the cached values instead.
977 */
978 if (unlikely(in_interrupt()))
979 goto out;
980
bff671db
MF
981 /*
982 * Notice that we don't perform the reading of an RMID
983 * atomically, because we can't hold a spin lock across the
984 * IPIs.
985 *
986 * Speculatively perform the read, since @event might be
987 * assigned a different (possibly invalid) RMID while we're
988 * busying performing the IPI calls. It's therefore necessary to
989 * check @event's RMID afterwards, and if it has changed,
990 * discard the result of the read.
991 */
992 rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
bfe1fcd2 993
bff671db
MF
994 if (!__rmid_valid(rr.rmid))
995 goto out;
996
997 on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
bfe1fcd2 998
bff671db
MF
999 raw_spin_lock_irqsave(&cache_lock, flags);
1000 if (event->hw.cqm_rmid == rr.rmid)
1001 local64_set(&event->count, atomic64_read(&rr.value));
1002 raw_spin_unlock_irqrestore(&cache_lock, flags);
1003out:
bfe1fcd2
MF
1004 return __perf_event_count(event);
1005}
1006
4afbb24c
MF
1007static void intel_cqm_event_start(struct perf_event *event, int mode)
1008{
bf926731 1009 struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
b3df4ec4 1010 u32 rmid = event->hw.cqm_rmid;
4afbb24c
MF
1011
1012 if (!(event->hw.cqm_state & PERF_HES_STOPPED))
1013 return;
1014
1015 event->hw.cqm_state &= ~PERF_HES_STOPPED;
1016
bf926731 1017 if (state->rmid_usecnt++) {
0bac2378
TG
1018 if (!WARN_ON_ONCE(state->rmid != rmid))
1019 return;
1020 } else {
4afbb24c 1021 WARN_ON_ONCE(state->rmid);
0bac2378 1022 }
4afbb24c
MF
1023
1024 state->rmid = rmid;
bf926731 1025 wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
4afbb24c
MF
1026}
1027
1028static void intel_cqm_event_stop(struct perf_event *event, int mode)
1029{
bf926731 1030 struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
4afbb24c
MF
1031
1032 if (event->hw.cqm_state & PERF_HES_STOPPED)
1033 return;
1034
1035 event->hw.cqm_state |= PERF_HES_STOPPED;
1036
4afbb24c
MF
1037 intel_cqm_event_read(event);
1038
bf926731 1039 if (!--state->rmid_usecnt) {
4afbb24c 1040 state->rmid = 0;
bf926731 1041 wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
4afbb24c
MF
1042 } else {
1043 WARN_ON_ONCE(!state->rmid);
1044 }
4afbb24c
MF
1045}
1046
1047static int intel_cqm_event_add(struct perf_event *event, int mode)
1048{
bff671db 1049 unsigned long flags;
adafa999 1050 u32 rmid;
bff671db
MF
1051
1052 raw_spin_lock_irqsave(&cache_lock, flags);
4afbb24c
MF
1053
1054 event->hw.cqm_state = PERF_HES_STOPPED;
1055 rmid = event->hw.cqm_rmid;
4afbb24c 1056
bff671db 1057 if (__rmid_valid(rmid) && (mode & PERF_EF_START))
4afbb24c
MF
1058 intel_cqm_event_start(event, mode);
1059
bff671db
MF
1060 raw_spin_unlock_irqrestore(&cache_lock, flags);
1061
4afbb24c
MF
1062 return 0;
1063}
1064
4afbb24c
MF
1065static void intel_cqm_event_destroy(struct perf_event *event)
1066{
1067 struct perf_event *group_other = NULL;
1068
1069 mutex_lock(&cache_mutex);
1070
1071 /*
1072 * If there's another event in this group...
1073 */
1074 if (!list_empty(&event->hw.cqm_group_entry)) {
1075 group_other = list_first_entry(&event->hw.cqm_group_entry,
1076 struct perf_event,
1077 hw.cqm_group_entry);
1078 list_del(&event->hw.cqm_group_entry);
1079 }
1080
1081 /*
1082 * And we're the group leader..
1083 */
bfe1fcd2 1084 if (cqm_group_leader(event)) {
4afbb24c
MF
1085 /*
1086 * If there was a group_other, make that leader, otherwise
1087 * destroy the group and return the RMID.
1088 */
1089 if (group_other) {
1090 list_replace(&event->hw.cqm_groups_entry,
1091 &group_other->hw.cqm_groups_entry);
1092 } else {
adafa999 1093 u32 rmid = event->hw.cqm_rmid;
4afbb24c 1094
bff671db
MF
1095 if (__rmid_valid(rmid))
1096 __put_rmid(rmid);
4afbb24c
MF
1097 list_del(&event->hw.cqm_groups_entry);
1098 }
1099 }
1100
1101 mutex_unlock(&cache_mutex);
1102}
1103
4afbb24c
MF
1104static int intel_cqm_event_init(struct perf_event *event)
1105{
1106 struct perf_event *group = NULL;
bff671db 1107 bool rotate = false;
4afbb24c
MF
1108
1109 if (event->attr.type != intel_cqm_pmu.type)
1110 return -ENOENT;
1111
1112 if (event->attr.config & ~QOS_EVENT_MASK)
1113 return -EINVAL;
1114
4afbb24c
MF
1115 /* unsupported modes and filters */
1116 if (event->attr.exclude_user ||
1117 event->attr.exclude_kernel ||
1118 event->attr.exclude_hv ||
1119 event->attr.exclude_idle ||
1120 event->attr.exclude_host ||
1121 event->attr.exclude_guest ||
1122 event->attr.sample_period) /* no sampling */
1123 return -EINVAL;
1124
1125 INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1126 INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1127
1128 event->destroy = intel_cqm_event_destroy;
1129
1130 mutex_lock(&cache_mutex);
1131
bfe1fcd2 1132 /* Will also set rmid */
59bf7fd4 1133 intel_cqm_setup_event(event, &group);
4afbb24c
MF
1134
1135 if (group) {
1136 list_add_tail(&event->hw.cqm_group_entry,
1137 &group->hw.cqm_group_entry);
1138 } else {
1139 list_add_tail(&event->hw.cqm_groups_entry,
1140 &cache_groups);
bff671db
MF
1141
1142 /*
1143 * All RMIDs are either in use or have recently been
1144 * used. Kick the rotation worker to clean/free some.
1145 *
1146 * We only do this for the group leader, rather than for
1147 * every event in a group to save on needless work.
1148 */
1149 if (!__rmid_valid(event->hw.cqm_rmid))
1150 rotate = true;
4afbb24c
MF
1151 }
1152
4afbb24c 1153 mutex_unlock(&cache_mutex);
bff671db
MF
1154
1155 if (rotate)
1156 schedule_delayed_work(&intel_cqm_rmid_work, 0);
1157
59bf7fd4 1158 return 0;
4afbb24c
MF
1159}
1160
1161EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1162EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1163EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1164EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1165EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1166
1167static struct attribute *intel_cqm_events_attr[] = {
1168 EVENT_PTR(intel_cqm_llc),
1169 EVENT_PTR(intel_cqm_llc_pkg),
1170 EVENT_PTR(intel_cqm_llc_unit),
1171 EVENT_PTR(intel_cqm_llc_scale),
1172 EVENT_PTR(intel_cqm_llc_snapshot),
1173 NULL,
1174};
1175
1176static struct attribute_group intel_cqm_events_group = {
1177 .name = "events",
1178 .attrs = intel_cqm_events_attr,
1179};
1180
1181PMU_FORMAT_ATTR(event, "config:0-7");
1182static struct attribute *intel_cqm_formats_attr[] = {
1183 &format_attr_event.attr,
1184 NULL,
1185};
1186
1187static struct attribute_group intel_cqm_format_group = {
1188 .name = "format",
1189 .attrs = intel_cqm_formats_attr,
1190};
1191
bff671db
MF
1192static ssize_t
1193max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1194 char *page)
1195{
1196 ssize_t rv;
1197
1198 mutex_lock(&cache_mutex);
1199 rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1200 mutex_unlock(&cache_mutex);
1201
1202 return rv;
1203}
1204
1205static ssize_t
1206max_recycle_threshold_store(struct device *dev,
1207 struct device_attribute *attr,
1208 const char *buf, size_t count)
1209{
1210 unsigned int bytes, cachelines;
1211 int ret;
1212
1213 ret = kstrtouint(buf, 0, &bytes);
1214 if (ret)
1215 return ret;
1216
1217 mutex_lock(&cache_mutex);
1218
1219 __intel_cqm_max_threshold = bytes;
1220 cachelines = bytes / cqm_l3_scale;
1221
1222 /*
1223 * The new maximum takes effect immediately.
1224 */
1225 if (__intel_cqm_threshold > cachelines)
1226 __intel_cqm_threshold = cachelines;
1227
1228 mutex_unlock(&cache_mutex);
1229
1230 return count;
1231}
1232
1233static DEVICE_ATTR_RW(max_recycle_threshold);
1234
1235static struct attribute *intel_cqm_attrs[] = {
1236 &dev_attr_max_recycle_threshold.attr,
1237 NULL,
1238};
1239
1240static const struct attribute_group intel_cqm_group = {
1241 .attrs = intel_cqm_attrs,
1242};
1243
4afbb24c
MF
1244static const struct attribute_group *intel_cqm_attr_groups[] = {
1245 &intel_cqm_events_group,
1246 &intel_cqm_format_group,
bff671db 1247 &intel_cqm_group,
4afbb24c
MF
1248 NULL,
1249};
1250
1251static struct pmu intel_cqm_pmu = {
bff671db
MF
1252 .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1253 .attr_groups = intel_cqm_attr_groups,
1254 .task_ctx_nr = perf_sw_context,
1255 .event_init = intel_cqm_event_init,
1256 .add = intel_cqm_event_add,
43d0c2f6 1257 .del = intel_cqm_event_stop,
bff671db
MF
1258 .start = intel_cqm_event_start,
1259 .stop = intel_cqm_event_stop,
1260 .read = intel_cqm_event_read,
1261 .count = intel_cqm_event_count,
4afbb24c
MF
1262};
1263
1264static inline void cqm_pick_event_reader(int cpu)
1265{
827db839 1266 int reader;
4afbb24c 1267
827db839
TG
1268 /* First online cpu in package becomes the reader */
1269 reader = cpumask_any_and(&cqm_cpumask, topology_core_cpumask(cpu));
1270 if (reader >= nr_cpu_ids)
1271 cpumask_set_cpu(cpu, &cqm_cpumask);
4afbb24c
MF
1272}
1273
d7a702f0 1274static void intel_cqm_cpu_starting(unsigned int cpu)
4afbb24c 1275{
bf926731 1276 struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
4afbb24c
MF
1277 struct cpuinfo_x86 *c = &cpu_data(cpu);
1278
4afbb24c 1279 state->rmid = 0;
bf926731
TG
1280 state->closid = 0;
1281 state->rmid_usecnt = 0;
4afbb24c
MF
1282
1283 WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1284 WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1285}
1286
1287static void intel_cqm_cpu_exit(unsigned int cpu)
1288{
827db839 1289 int target;
4afbb24c 1290
827db839 1291 /* Is @cpu the current cqm reader for this package ? */
4afbb24c
MF
1292 if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1293 return;
1294
827db839
TG
1295 /* Find another online reader in this package */
1296 target = cpumask_any_but(topology_core_cpumask(cpu), cpu);
4afbb24c 1297
827db839
TG
1298 if (target < nr_cpu_ids)
1299 cpumask_set_cpu(target, &cqm_cpumask);
4afbb24c
MF
1300}
1301
1302static int intel_cqm_cpu_notifier(struct notifier_block *nb,
1303 unsigned long action, void *hcpu)
1304{
1305 unsigned int cpu = (unsigned long)hcpu;
1306
1307 switch (action & ~CPU_TASKS_FROZEN) {
4afbb24c
MF
1308 case CPU_DOWN_PREPARE:
1309 intel_cqm_cpu_exit(cpu);
1310 break;
1311 case CPU_STARTING:
d7a702f0 1312 intel_cqm_cpu_starting(cpu);
4afbb24c
MF
1313 cqm_pick_event_reader(cpu);
1314 break;
1315 }
1316
1317 return NOTIFY_OK;
1318}
1319
1320static const struct x86_cpu_id intel_cqm_match[] = {
1321 { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1322 {}
1323};
1324
1325static int __init intel_cqm_init(void)
1326{
ada2f634 1327 char *str = NULL, scale[20];
4afbb24c
MF
1328 int i, cpu, ret;
1329
1330 if (!x86_match_cpu(intel_cqm_match))
1331 return -ENODEV;
1332
1333 cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1334
1335 /*
1336 * It's possible that not all resources support the same number
1337 * of RMIDs. Instead of making scheduling much more complicated
1338 * (where we have to match a task's RMID to a cpu that supports
1339 * that many RMIDs) just find the minimum RMIDs supported across
1340 * all cpus.
1341 *
1342 * Also, check that the scales match on all cpus.
1343 */
1344 cpu_notifier_register_begin();
1345
1346 for_each_online_cpu(cpu) {
1347 struct cpuinfo_x86 *c = &cpu_data(cpu);
1348
1349 if (c->x86_cache_max_rmid < cqm_max_rmid)
1350 cqm_max_rmid = c->x86_cache_max_rmid;
1351
1352 if (c->x86_cache_occ_scale != cqm_l3_scale) {
1353 pr_err("Multiple LLC scale values, disabling\n");
1354 ret = -EINVAL;
1355 goto out;
1356 }
1357 }
1358
bff671db
MF
1359 /*
1360 * A reasonable upper limit on the max threshold is the number
1361 * of lines tagged per RMID if all RMIDs have the same number of
1362 * lines tagged in the LLC.
1363 *
1364 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1365 */
1366 __intel_cqm_max_threshold =
1367 boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1368
4afbb24c
MF
1369 snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1370 str = kstrdup(scale, GFP_KERNEL);
1371 if (!str) {
1372 ret = -ENOMEM;
1373 goto out;
1374 }
1375
1376 event_attr_intel_cqm_llc_scale.event_str = str;
1377
1378 ret = intel_cqm_setup_rmid_cache();
1379 if (ret)
1380 goto out;
1381
1382 for_each_online_cpu(i) {
d7a702f0 1383 intel_cqm_cpu_starting(i);
4afbb24c
MF
1384 cqm_pick_event_reader(i);
1385 }
1386
50f16a8b 1387 ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
ada2f634 1388 if (ret) {
4afbb24c 1389 pr_err("Intel CQM perf registration failed: %d\n", ret);
ada2f634
VS
1390 goto out;
1391 }
4afbb24c 1392
ada2f634
VS
1393 pr_info("Intel CQM monitoring enabled\n");
1394
1395 /*
1396 * Register the hot cpu notifier once we are sure cqm
1397 * is enabled to avoid notifier leak.
1398 */
1399 __perf_cpu_notifier(intel_cqm_cpu_notifier);
4afbb24c
MF
1400out:
1401 cpu_notifier_register_done();
ada2f634
VS
1402 if (ret) {
1403 kfree(str);
1404 cqm_cleanup();
1405 }
4afbb24c
MF
1406
1407 return ret;
1408}
1409device_initcall(intel_cqm_init);