]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/include/asm/fpu/internal.h
Merge tag 'leds-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewsk...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / fpu / internal.h
CommitLineData
1361b83a
LT
1/*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
78f7f1e5
IM
10#ifndef _ASM_X86_FPU_INTERNAL_H
11#define _ASM_X86_FPU_INTERNAL_H
1361b83a 12
050902c0 13#include <linux/compat.h>
952f07ec 14#include <linux/sched.h>
1361b83a 15#include <linux/slab.h>
f89e32e0 16
1361b83a 17#include <asm/user.h>
df6b35f4 18#include <asm/fpu/api.h>
669ebabb 19#include <asm/fpu/xstate.h>
1361b83a 20
6ffc152e
IM
21/*
22 * High level FPU state handling functions:
23 */
0c306bcf 24extern void fpu__activate_curr(struct fpu *fpu);
05602812 25extern void fpu__activate_fpstate_read(struct fpu *fpu);
6a81d7eb 26extern void fpu__activate_fpstate_write(struct fpu *fpu);
6ffc152e 27extern void fpu__save(struct fpu *fpu);
e1884d69 28extern void fpu__restore(struct fpu *fpu);
82c0e45e 29extern int fpu__restore_sig(void __user *buf, int ia32_frame);
6ffc152e
IM
30extern void fpu__drop(struct fpu *fpu);
31extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
04c8e01d 32extern void fpu__clear(struct fpu *fpu);
b1b64dc3
IM
33extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
34extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
6ffc152e 35
b1b64dc3
IM
36/*
37 * Boot time FPU initialization functions:
38 */
39extern void fpu__init_cpu(void);
40extern void fpu__init_system_xstate(void);
41extern void fpu__init_cpu_xstate(void);
42extern void fpu__init_system(struct cpuinfo_x86 *c);
952f07ec
IM
43extern void fpu__init_check_bugs(void);
44extern void fpu__resume_cpu(void);
45
e97131a8
IM
46/*
47 * Debugging facility:
48 */
49#ifdef CONFIG_X86_DEBUG_FPU
50# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
51#else
83242c51 52# define WARN_ON_FPU(x) ({ (void)(x); 0; })
e97131a8
IM
53#endif
54
1c927eea 55/*
b1b64dc3 56 * FPU related CPU feature flag helper routines:
1c927eea 57 */
5d2bd700
SS
58static __always_inline __pure bool use_eager_fpu(void)
59{
c6b40691 60 return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
5d2bd700
SS
61}
62
1361b83a
LT
63static __always_inline __pure bool use_xsaveopt(void)
64{
c6b40691 65 return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
1361b83a
LT
66}
67
68static __always_inline __pure bool use_xsave(void)
69{
c6b40691 70 return static_cpu_has_safe(X86_FEATURE_XSAVE);
1361b83a
LT
71}
72
73static __always_inline __pure bool use_fxsr(void)
74{
c6b40691 75 return static_cpu_has_safe(X86_FEATURE_FXSR);
1361b83a
LT
76}
77
b1b64dc3
IM
78/*
79 * fpstate handling functions:
80 */
81
82extern union fpregs_state init_fpstate;
83
84extern void fpstate_init(union fpregs_state *state);
85#ifdef CONFIG_MATH_EMULATION
86extern void fpstate_init_soft(struct swregs_state *soft);
87#else
88static inline void fpstate_init_soft(struct swregs_state *soft) {}
89#endif
90static inline void fpstate_init_fxstate(struct fxregs_state *fx)
91{
92 fx->cwd = 0x37f;
93 fx->mxcsr = MXCSR_DEFAULT;
94}
36e49e7f 95extern void fpstate_sanitize_xstate(struct fpu *fpu);
1361b83a 96
49b8c695
PA
97#define user_insn(insn, output, input...) \
98({ \
99 int err; \
100 asm volatile(ASM_STAC "\n" \
101 "1:" #insn "\n\t" \
102 "2: " ASM_CLAC "\n" \
103 ".section .fixup,\"ax\"\n" \
104 "3: movl $-1,%[err]\n" \
105 " jmp 2b\n" \
106 ".previous\n" \
107 _ASM_EXTABLE(1b, 3b) \
108 : [err] "=r" (err), output \
109 : "0"(0), input); \
110 err; \
111})
112
0ca5bd0d
SS
113#define check_insn(insn, output, input...) \
114({ \
115 int err; \
116 asm volatile("1:" #insn "\n\t" \
117 "2:\n" \
118 ".section .fixup,\"ax\"\n" \
119 "3: movl $-1,%[err]\n" \
120 " jmp 2b\n" \
121 ".previous\n" \
122 _ASM_EXTABLE(1b, 3b) \
123 : [err] "=r" (err), output \
124 : "0"(0), input); \
125 err; \
126})
127
c47ada30 128static inline int copy_fregs_to_user(struct fregs_state __user *fx)
1361b83a 129{
49b8c695 130 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
1361b83a
LT
131}
132
c47ada30 133static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
1361b83a 134{
0ca5bd0d 135 if (config_enabled(CONFIG_X86_32))
49b8c695 136 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
0ca5bd0d 137 else if (config_enabled(CONFIG_AS_FXSAVEQ))
49b8c695 138 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
1361b83a 139
c6813144 140 /* See comment in copy_fxregs_to_kernel() below. */
49b8c695 141 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
1361b83a
LT
142}
143
9ccc27a5 144static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
1361b83a 145{
43b287b3
IM
146 int err;
147
148 if (config_enabled(CONFIG_X86_32)) {
149 err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
150 } else {
151 if (config_enabled(CONFIG_AS_FXSAVEQ)) {
152 err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
153 } else {
154 /* See comment in copy_fxregs_to_kernel() below. */
155 err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
156 }
157 }
158 /* Copying from a kernel buffer to FPU registers should never fail: */
159 WARN_ON_FPU(err);
1361b83a
LT
160}
161
c47ada30 162static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
e139e955
PA
163{
164 if (config_enabled(CONFIG_X86_32))
165 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
166 else if (config_enabled(CONFIG_AS_FXSAVEQ))
167 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
168
c6813144 169 /* See comment in copy_fxregs_to_kernel() below. */
e139e955
PA
170 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
171 "m" (*fx));
172}
173
9ccc27a5 174static inline void copy_kernel_to_fregs(struct fregs_state *fx)
1361b83a 175{
43b287b3
IM
176 int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
177
178 WARN_ON_FPU(err);
e139e955
PA
179}
180
c47ada30 181static inline int copy_user_to_fregs(struct fregs_state __user *fx)
e139e955
PA
182{
183 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
1361b83a
LT
184}
185
c6813144 186static inline void copy_fxregs_to_kernel(struct fpu *fpu)
1361b83a 187{
0ca5bd0d 188 if (config_enabled(CONFIG_X86_32))
7366ed77 189 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
0ca5bd0d 190 else if (config_enabled(CONFIG_AS_FXSAVEQ))
7366ed77 191 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
0ca5bd0d
SS
192 else {
193 /* Using "rex64; fxsave %0" is broken because, if the memory
194 * operand uses any extended registers for addressing, a second
195 * REX prefix will be generated (to the assembler, rex64
196 * followed by semicolon is a separate instruction), and hence
197 * the 64-bitness is lost.
198 *
199 * Using "fxsaveq %0" would be the ideal choice, but is only
200 * supported starting with gas 2.16.
201 *
202 * Using, as a workaround, the properly prefixed form below
203 * isn't accepted by any binutils version so far released,
204 * complaining that the same type of prefix is used twice if
205 * an extended register is needed for addressing (fix submitted
206 * to mainline 2005-11-21).
207 *
7366ed77 208 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
0ca5bd0d
SS
209 *
210 * This, however, we can work around by forcing the compiler to
211 * select an addressing mode that doesn't require extended
212 * registers.
213 */
214 asm volatile( "rex64/fxsave (%[fx])"
7366ed77
IM
215 : "=m" (fpu->state.fxsave)
216 : [fx] "R" (&fpu->state.fxsave));
0ca5bd0d 217 }
1361b83a
LT
218}
219
fd169b05
IM
220/* These macros all use (%edi)/(%rdi) as the single memory argument. */
221#define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
222#define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
223#define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
224#define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
225#define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
226
b74a0cf1
BP
227#define XSTATE_OP(op, st, lmask, hmask, err) \
228 asm volatile("1:" op "\n\t" \
229 "xor %[err], %[err]\n" \
230 "2:\n\t" \
231 ".pushsection .fixup,\"ax\"\n\t" \
232 "3: movl $-2,%[err]\n\t" \
233 "jmp 2b\n\t" \
234 ".popsection\n\t" \
235 _ASM_EXTABLE(1b, 3b) \
236 : [err] "=r" (err) \
237 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
238 : "memory")
239
b7106fa0
BP
240/*
241 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
242 * format and supervisor states in addition to modified optimization in
243 * XSAVEOPT.
244 *
245 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
246 * supports modified optimization which is not supported by XSAVE.
247 *
248 * We use XSAVE as a fallback.
249 *
250 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
251 * original instruction which gets replaced. We need to use it here as the
252 * address of the instruction where we might get an exception at.
253 */
254#define XSTATE_XSAVE(st, lmask, hmask, err) \
255 asm volatile(ALTERNATIVE_2(XSAVE, \
256 XSAVEOPT, X86_FEATURE_XSAVEOPT, \
257 XSAVES, X86_FEATURE_XSAVES) \
258 "\n" \
259 "xor %[err], %[err]\n" \
260 "3:\n" \
261 ".pushsection .fixup,\"ax\"\n" \
262 "4: movl $-2, %[err]\n" \
263 "jmp 3b\n" \
264 ".popsection\n" \
265 _ASM_EXTABLE(661b, 4b) \
266 : [err] "=r" (err) \
267 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
268 : "memory")
269
270/*
271 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
272 * XSAVE area format.
273 */
274#define XSTATE_XRESTORE(st, lmask, hmask, err) \
275 asm volatile(ALTERNATIVE(XRSTOR, \
276 XRSTORS, X86_FEATURE_XSAVES) \
277 "\n" \
278 "xor %[err], %[err]\n" \
279 "3:\n" \
280 ".pushsection .fixup,\"ax\"\n" \
281 "4: movl $-2, %[err]\n" \
282 "jmp 3b\n" \
283 ".popsection\n" \
284 _ASM_EXTABLE(661b, 4b) \
285 : [err] "=r" (err) \
286 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
287 : "memory")
b74a0cf1 288
fd169b05
IM
289/*
290 * This function is called only during boot time when x86 caps are not set
291 * up and alternative can not be used yet.
292 */
8c05f05e 293static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
fd169b05
IM
294{
295 u64 mask = -1;
296 u32 lmask = mask;
297 u32 hmask = mask >> 32;
b74a0cf1 298 int err;
fd169b05
IM
299
300 WARN_ON(system_state != SYSTEM_BOOTING);
301
b74a0cf1
BP
302 if (static_cpu_has_safe(X86_FEATURE_XSAVES))
303 XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
fd169b05 304 else
b74a0cf1 305 XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
8c05f05e
IM
306
307 /* We should never fault when copying to a kernel buffer: */
308 WARN_ON_FPU(err);
fd169b05
IM
309}
310
311/*
312 * This function is called only during boot time when x86 caps are not set
313 * up and alternative can not be used yet.
314 */
d65fcd60 315static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
fd169b05 316{
d65fcd60 317 u64 mask = -1;
fd169b05
IM
318 u32 lmask = mask;
319 u32 hmask = mask >> 32;
b74a0cf1 320 int err;
fd169b05
IM
321
322 WARN_ON(system_state != SYSTEM_BOOTING);
323
b74a0cf1
BP
324 if (static_cpu_has_safe(X86_FEATURE_XSAVES))
325 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
fd169b05 326 else
b74a0cf1 327 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
8c05f05e
IM
328
329 /* We should never fault when copying from a kernel buffer: */
330 WARN_ON_FPU(err);
fd169b05
IM
331}
332
333/*
334 * Save processor xstate to xsave area.
335 */
8c05f05e 336static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
fd169b05
IM
337{
338 u64 mask = -1;
339 u32 lmask = mask;
340 u32 hmask = mask >> 32;
b7106fa0 341 int err;
fd169b05
IM
342
343 WARN_ON(!alternatives_patched);
344
b7106fa0 345 XSTATE_XSAVE(xstate, lmask, hmask, err);
fd169b05 346
8c05f05e
IM
347 /* We should never fault when copying to a kernel buffer: */
348 WARN_ON_FPU(err);
fd169b05
IM
349}
350
351/*
352 * Restore processor xstate from xsave area.
353 */
8c05f05e 354static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
fd169b05 355{
fd169b05
IM
356 u32 lmask = mask;
357 u32 hmask = mask >> 32;
b7106fa0 358 int err;
fd169b05 359
b7106fa0 360 XSTATE_XRESTORE(xstate, lmask, hmask, err);
fd169b05 361
8c05f05e
IM
362 /* We should never fault when copying from a kernel buffer: */
363 WARN_ON_FPU(err);
fd169b05
IM
364}
365
366/*
367 * Save xstate to user space xsave area.
368 *
369 * We don't use modified optimization because xrstor/xrstors might track
370 * a different application.
371 *
372 * We don't use compacted format xsave area for
373 * backward compatibility for old applications which don't understand
374 * compacted format of xsave area.
375 */
376static inline int copy_xregs_to_user(struct xregs_state __user *buf)
377{
378 int err;
379
380 /*
381 * Clear the xsave header first, so that reserved fields are
382 * initialized to zero.
383 */
384 err = __clear_user(&buf->header, sizeof(buf->header));
385 if (unlikely(err))
386 return -EFAULT;
387
b74a0cf1
BP
388 stac();
389 XSTATE_OP(XSAVE, buf, -1, -1, err);
390 clac();
391
fd169b05
IM
392 return err;
393}
394
395/*
396 * Restore xstate from user space xsave area.
397 */
398static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
399{
fd169b05
IM
400 struct xregs_state *xstate = ((__force struct xregs_state *)buf);
401 u32 lmask = mask;
402 u32 hmask = mask >> 32;
b74a0cf1
BP
403 int err;
404
405 stac();
406 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
407 clac();
fd169b05 408
fd169b05
IM
409 return err;
410}
411
1361b83a
LT
412/*
413 * These must be called with preempt disabled. Returns
4f836347
IM
414 * 'true' if the FPU state is still intact and we can
415 * keep registers active.
416 *
417 * The legacy FNSAVE instruction cleared all FPU state
418 * unconditionally, so registers are essentially destroyed.
419 * Modern FPU state can be kept in registers, if there are
1bc6b056 420 * no pending FP exceptions.
1361b83a 421 */
4f836347 422static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
1361b83a 423{
1bc6b056 424 if (likely(use_xsave())) {
c6813144 425 copy_xregs_to_kernel(&fpu->state.xsave);
1bc6b056
IM
426 return 1;
427 }
1361b83a 428
1bc6b056 429 if (likely(use_fxsr())) {
c6813144 430 copy_fxregs_to_kernel(fpu);
1bc6b056 431 return 1;
1361b83a
LT
432 }
433
434 /*
1bc6b056
IM
435 * Legacy FPU register saving, FNSAVE always clears FPU registers,
436 * so we have to mark them inactive:
1361b83a 437 */
87dafd41 438 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
4f836347 439
4f836347 440 return 0;
1361b83a
LT
441}
442
003e2e8b 443static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
1361b83a 444{
8c05f05e 445 if (use_xsave()) {
003e2e8b 446 copy_kernel_to_xregs(&fpstate->xsave, -1);
8c05f05e
IM
447 } else {
448 if (use_fxsr())
003e2e8b 449 copy_kernel_to_fxregs(&fpstate->fxsave);
8c05f05e 450 else
003e2e8b 451 copy_kernel_to_fregs(&fpstate->fsave);
8c05f05e 452 }
1361b83a
LT
453}
454
003e2e8b 455static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
1361b83a 456{
6ca7a8a1
BP
457 /*
458 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
459 * pending. Clear the x87 state here by setting it to fixed values.
460 * "m" is a random variable that should be in L1.
461 */
9b13a93d 462 if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
26bef131
LT
463 asm volatile(
464 "fnclex\n\t"
465 "emms\n\t"
466 "fildl %P[addr]" /* set F?P to defined value */
003e2e8b 467 : : [addr] "m" (fpstate));
26bef131 468 }
1361b83a 469
003e2e8b 470 __copy_kernel_to_fpregs(fpstate);
1361b83a
LT
471}
472
87dafd41 473extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
b1b64dc3
IM
474
475/*
476 * FPU context switch related helper methods:
477 */
478
479DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
480
481/*
482 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
483 * on this CPU.
484 *
485 * This will disable any lazy FPU state restore of the current FPU state,
486 * but if the current thread owns the FPU, it will still be saved by.
487 */
488static inline void __cpu_disable_lazy_restore(unsigned int cpu)
489{
490 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
491}
492
493static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
494{
495 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
496}
497
498
32b49b3c
IM
499/*
500 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
501 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
502 */
503
504static inline void __fpregs_activate_hw(void)
505{
506 if (!use_eager_fpu())
507 clts();
508}
509
510static inline void __fpregs_deactivate_hw(void)
511{
512 if (!use_eager_fpu())
513 stts();
514}
515
516/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
723c58e4 517static inline void __fpregs_deactivate(struct fpu *fpu)
1361b83a 518{
e97131a8
IM
519 WARN_ON_FPU(!fpu->fpregs_active);
520
d5cea9b0 521 fpu->fpregs_active = 0;
36b544dc 522 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
1361b83a
LT
523}
524
32b49b3c 525/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
dfaea4e6 526static inline void __fpregs_activate(struct fpu *fpu)
1361b83a 527{
e97131a8
IM
528 WARN_ON_FPU(fpu->fpregs_active);
529
d5cea9b0 530 fpu->fpregs_active = 1;
c0311f63 531 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
1361b83a
LT
532}
533
952f07ec
IM
534/*
535 * The question "does this thread have fpu access?"
536 * is slightly racy, since preemption could come in
537 * and revoke it immediately after the test.
538 *
539 * However, even in that very unlikely scenario,
540 * we can just assume we have FPU access - typically
541 * to save the FP state - we'll just take a #NM
542 * fault and get the FPU access back.
543 */
3c6dffa9 544static inline int fpregs_active(void)
952f07ec
IM
545{
546 return current->thread.fpu.fpregs_active;
547}
548
1361b83a
LT
549/*
550 * Encapsulate the CR0.TS handling together with the
551 * software flag.
552 *
553 * These generally need preemption protection to work,
554 * do try to avoid using these on their own.
555 */
66af8e27 556static inline void fpregs_activate(struct fpu *fpu)
1361b83a 557{
32b49b3c 558 __fpregs_activate_hw();
66af8e27 559 __fpregs_activate(fpu);
1361b83a
LT
560}
561
66af8e27 562static inline void fpregs_deactivate(struct fpu *fpu)
1361b83a 563{
66af8e27 564 __fpregs_deactivate(fpu);
32b49b3c 565 __fpregs_deactivate_hw();
1361b83a
LT
566}
567
568/*
569 * FPU state switching for scheduling.
570 *
571 * This is a two-stage process:
572 *
573 * - switch_fpu_prepare() saves the old state and
574 * sets the new state of the CR0.TS bit. This is
575 * done within the context of the old process.
576 *
577 * - switch_fpu_finish() restores the new state as
578 * necessary.
579 */
580typedef struct { int preload; } fpu_switch_t;
581
cb8818b6
IM
582static inline fpu_switch_t
583switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
1361b83a
LT
584{
585 fpu_switch_t fpu;
586
304bceda
SS
587 /*
588 * If the task has used the math, pre-load the FPU on xsave processors
589 * or if the past 5 consecutive context-switches used math.
590 */
c5bedc68 591 fpu.preload = new_fpu->fpstate_active &&
cb8818b6 592 (use_eager_fpu() || new_fpu->counter > 5);
1361ef29 593
d5cea9b0 594 if (old_fpu->fpregs_active) {
4f836347 595 if (!copy_fpregs_to_fpstate(old_fpu))
cb8818b6 596 old_fpu->last_cpu = -1;
1361ef29 597 else
cb8818b6 598 old_fpu->last_cpu = cpu;
1361ef29 599
36b544dc 600 /* But leave fpu_fpregs_owner_ctx! */
d5cea9b0 601 old_fpu->fpregs_active = 0;
1361b83a
LT
602
603 /* Don't change CR0.TS if we just switch! */
604 if (fpu.preload) {
cb8818b6 605 new_fpu->counter++;
dfaea4e6 606 __fpregs_activate(new_fpu);
7366ed77 607 prefetch(&new_fpu->state);
32b49b3c
IM
608 } else {
609 __fpregs_deactivate_hw();
610 }
1361b83a 611 } else {
cb8818b6
IM
612 old_fpu->counter = 0;
613 old_fpu->last_cpu = -1;
1361b83a 614 if (fpu.preload) {
cb8818b6 615 new_fpu->counter++;
66ddc2cb 616 if (fpu_want_lazy_restore(new_fpu, cpu))
1361b83a
LT
617 fpu.preload = 0;
618 else
7366ed77 619 prefetch(&new_fpu->state);
232f62cd 620 fpregs_activate(new_fpu);
1361b83a
LT
621 }
622 }
623 return fpu;
624}
625
b1b64dc3
IM
626/*
627 * Misc helper functions:
628 */
629
1361b83a
LT
630/*
631 * By the time this gets called, we've already cleared CR0.TS and
632 * given the process the FPU if we are going to preload the FPU
633 * state - all we need to do is to conditionally restore the register
634 * state itself.
635 */
384a23f9 636static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
1361b83a 637{
9ccc27a5 638 if (fpu_switch.preload)
003e2e8b 639 copy_kernel_to_fpregs(&new_fpu->state);
1361b83a
LT
640}
641
1361b83a 642/*
fb14b4ea 643 * Needs to be preemption-safe.
1361b83a 644 *
377ffbcc 645 * NOTE! user_fpu_begin() must be used only immediately before restoring
fb14b4ea
ON
646 * the save state. It does not do any saving/restoring on its own. In
647 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
648 * the task can lose the FPU right after preempt_enable().
1361b83a 649 */
1361b83a
LT
650static inline void user_fpu_begin(void)
651{
4540d3fa
IM
652 struct fpu *fpu = &current->thread.fpu;
653
1361b83a 654 preempt_disable();
3c6dffa9 655 if (!fpregs_active())
232f62cd 656 fpregs_activate(fpu);
1361b83a
LT
657 preempt_enable();
658}
659
b1b64dc3
IM
660/*
661 * MXCSR and XCR definitions:
662 */
663
664extern unsigned int mxcsr_feature_mask;
665
666#define XCR_XFEATURE_ENABLED_MASK 0x00000000
667
668static inline u64 xgetbv(u32 index)
669{
670 u32 eax, edx;
671
672 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
673 : "=a" (eax), "=d" (edx)
674 : "c" (index));
675 return eax + ((u64)edx << 32);
676}
677
678static inline void xsetbv(u32 index, u64 value)
679{
680 u32 eax = value;
681 u32 edx = value >> 32;
682
683 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
684 : : "a" (eax), "d" (edx), "c" (index));
685}
686
78f7f1e5 687#endif /* _ASM_X86_FPU_INTERNAL_H */