]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/amd_iommu.c
AMD IOMMU: add stats counter for unmap_sg requests
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715
JR
24#include <linux/scatterlist.h>
25#include <linux/iommu-helper.h>
c156e347
JR
26#ifdef CONFIG_IOMMU_API
27#include <linux/iommu.h>
28#endif
b6c02715 29#include <asm/proto.h>
46a7fa27 30#include <asm/iommu.h>
1d9b16d1 31#include <asm/gart.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
26961efe
JR
45#ifdef CONFIG_IOMMU_API
46static struct iommu_ops amd_iommu_ops;
47#endif
48
431b2a20
JR
49/*
50 * general struct to manage commands send to an IOMMU
51 */
d6449536 52struct iommu_cmd {
b6c02715
JR
53 u32 data[4];
54};
55
bd0e5211
JR
56static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
57 struct unity_map_entry *e);
e275a2a0
JR
58static struct dma_ops_domain *find_protection_domain(u16 devid);
59
bd0e5211 60
7f26508b
JR
61#ifdef CONFIG_AMD_IOMMU_STATS
62
63/*
64 * Initialization code for statistics collection
65 */
66
da49f6df 67DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 68DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 69DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 70DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 71DECLARE_STATS_COUNTER(cnt_unmap_sg);
da49f6df 72
7f26508b
JR
73static struct dentry *stats_dir;
74static struct dentry *de_isolate;
75static struct dentry *de_fflush;
76
77static void amd_iommu_stats_add(struct __iommu_counter *cnt)
78{
79 if (stats_dir == NULL)
80 return;
81
82 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
83 &cnt->value);
84}
85
86static void amd_iommu_stats_init(void)
87{
88 stats_dir = debugfs_create_dir("amd-iommu", NULL);
89 if (stats_dir == NULL)
90 return;
91
92 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
93 (u32 *)&amd_iommu_isolate);
94
95 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
96 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
97
98 amd_iommu_stats_add(&compl_wait);
0f2a86f2 99 amd_iommu_stats_add(&cnt_map_single);
146a6917 100 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 101 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 102 amd_iommu_stats_add(&cnt_unmap_sg);
7f26508b
JR
103}
104
105#endif
106
431b2a20 107/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
108static int iommu_has_npcache(struct amd_iommu *iommu)
109{
ae9b9403 110 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
111}
112
a80dc3e0
JR
113/****************************************************************************
114 *
115 * Interrupt handling functions
116 *
117 ****************************************************************************/
118
90008ee4
JR
119static void iommu_print_event(void *__evt)
120{
121 u32 *event = __evt;
122 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
123 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
124 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
125 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
126 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
127
128 printk(KERN_ERR "AMD IOMMU: Event logged [");
129
130 switch (type) {
131 case EVENT_TYPE_ILL_DEV:
132 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
133 "address=0x%016llx flags=0x%04x]\n",
134 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
135 address, flags);
136 break;
137 case EVENT_TYPE_IO_FAULT:
138 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
139 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
140 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
141 domid, address, flags);
142 break;
143 case EVENT_TYPE_DEV_TAB_ERR:
144 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
145 "address=0x%016llx flags=0x%04x]\n",
146 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
147 address, flags);
148 break;
149 case EVENT_TYPE_PAGE_TAB_ERR:
150 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
151 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
152 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
153 domid, address, flags);
154 break;
155 case EVENT_TYPE_ILL_CMD:
156 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
157 break;
158 case EVENT_TYPE_CMD_HARD_ERR:
159 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
160 "flags=0x%04x]\n", address, flags);
161 break;
162 case EVENT_TYPE_IOTLB_INV_TO:
163 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
164 "address=0x%016llx]\n",
165 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
166 address);
167 break;
168 case EVENT_TYPE_INV_DEV_REQ:
169 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
170 "address=0x%016llx flags=0x%04x]\n",
171 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
172 address, flags);
173 break;
174 default:
175 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
176 }
177}
178
179static void iommu_poll_events(struct amd_iommu *iommu)
180{
181 u32 head, tail;
182 unsigned long flags;
183
184 spin_lock_irqsave(&iommu->lock, flags);
185
186 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
187 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
188
189 while (head != tail) {
190 iommu_print_event(iommu->evt_buf + head);
191 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
192 }
193
194 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
195
196 spin_unlock_irqrestore(&iommu->lock, flags);
197}
198
a80dc3e0
JR
199irqreturn_t amd_iommu_int_handler(int irq, void *data)
200{
90008ee4
JR
201 struct amd_iommu *iommu;
202
203 list_for_each_entry(iommu, &amd_iommu_list, list)
204 iommu_poll_events(iommu);
205
206 return IRQ_HANDLED;
a80dc3e0
JR
207}
208
431b2a20
JR
209/****************************************************************************
210 *
211 * IOMMU command queuing functions
212 *
213 ****************************************************************************/
214
215/*
216 * Writes the command to the IOMMUs command buffer and informs the
217 * hardware about the new command. Must be called with iommu->lock held.
218 */
d6449536 219static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
220{
221 u32 tail, head;
222 u8 *target;
223
224 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 225 target = iommu->cmd_buf + tail;
a19ae1ec
JR
226 memcpy_toio(target, cmd, sizeof(*cmd));
227 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
228 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
229 if (tail == head)
230 return -ENOMEM;
231 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
232
233 return 0;
234}
235
431b2a20
JR
236/*
237 * General queuing function for commands. Takes iommu->lock and calls
238 * __iommu_queue_command().
239 */
d6449536 240static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
241{
242 unsigned long flags;
243 int ret;
244
245 spin_lock_irqsave(&iommu->lock, flags);
246 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 247 if (!ret)
0cfd7aa9 248 iommu->need_sync = true;
a19ae1ec
JR
249 spin_unlock_irqrestore(&iommu->lock, flags);
250
251 return ret;
252}
253
8d201968
JR
254/*
255 * This function waits until an IOMMU has completed a completion
256 * wait command
257 */
258static void __iommu_wait_for_completion(struct amd_iommu *iommu)
259{
260 int ready = 0;
261 unsigned status = 0;
262 unsigned long i = 0;
263
da49f6df
JR
264 INC_STATS_COUNTER(compl_wait);
265
8d201968
JR
266 while (!ready && (i < EXIT_LOOP_COUNT)) {
267 ++i;
268 /* wait for the bit to become one */
269 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
270 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
271 }
272
273 /* set bit back to zero */
274 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
275 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
276
277 if (unlikely(i == EXIT_LOOP_COUNT))
278 panic("AMD IOMMU: Completion wait loop failed\n");
279}
280
281/*
282 * This function queues a completion wait command into the command
283 * buffer of an IOMMU
284 */
285static int __iommu_completion_wait(struct amd_iommu *iommu)
286{
287 struct iommu_cmd cmd;
288
289 memset(&cmd, 0, sizeof(cmd));
290 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
291 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
292
293 return __iommu_queue_command(iommu, &cmd);
294}
295
431b2a20
JR
296/*
297 * This function is called whenever we need to ensure that the IOMMU has
298 * completed execution of all commands we sent. It sends a
299 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
300 * us about that by writing a value to a physical address we pass with
301 * the command.
302 */
a19ae1ec
JR
303static int iommu_completion_wait(struct amd_iommu *iommu)
304{
8d201968
JR
305 int ret = 0;
306 unsigned long flags;
a19ae1ec 307
7e4f88da
JR
308 spin_lock_irqsave(&iommu->lock, flags);
309
09ee17eb
JR
310 if (!iommu->need_sync)
311 goto out;
312
8d201968 313 ret = __iommu_completion_wait(iommu);
09ee17eb 314
0cfd7aa9 315 iommu->need_sync = false;
a19ae1ec
JR
316
317 if (ret)
7e4f88da 318 goto out;
a19ae1ec 319
8d201968 320 __iommu_wait_for_completion(iommu);
84df8175 321
7e4f88da
JR
322out:
323 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
324
325 return 0;
326}
327
431b2a20
JR
328/*
329 * Command send function for invalidating a device table entry
330 */
a19ae1ec
JR
331static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
332{
d6449536 333 struct iommu_cmd cmd;
ee2fa743 334 int ret;
a19ae1ec
JR
335
336 BUG_ON(iommu == NULL);
337
338 memset(&cmd, 0, sizeof(cmd));
339 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
340 cmd.data[0] = devid;
341
ee2fa743
JR
342 ret = iommu_queue_command(iommu, &cmd);
343
ee2fa743 344 return ret;
a19ae1ec
JR
345}
346
237b6f33
JR
347static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
348 u16 domid, int pde, int s)
349{
350 memset(cmd, 0, sizeof(*cmd));
351 address &= PAGE_MASK;
352 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
353 cmd->data[1] |= domid;
354 cmd->data[2] = lower_32_bits(address);
355 cmd->data[3] = upper_32_bits(address);
356 if (s) /* size bit - we flush more than one 4kb page */
357 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
358 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
359 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
360}
361
431b2a20
JR
362/*
363 * Generic command send function for invalidaing TLB entries
364 */
a19ae1ec
JR
365static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
366 u64 address, u16 domid, int pde, int s)
367{
d6449536 368 struct iommu_cmd cmd;
ee2fa743 369 int ret;
a19ae1ec 370
237b6f33 371 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 372
ee2fa743
JR
373 ret = iommu_queue_command(iommu, &cmd);
374
ee2fa743 375 return ret;
a19ae1ec
JR
376}
377
431b2a20
JR
378/*
379 * TLB invalidation function which is called from the mapping functions.
380 * It invalidates a single PTE if the range to flush is within a single
381 * page. Otherwise it flushes the whole TLB of the IOMMU.
382 */
a19ae1ec
JR
383static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
384 u64 address, size_t size)
385{
999ba417 386 int s = 0;
e3c449f5 387 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
388
389 address &= PAGE_MASK;
390
999ba417
JR
391 if (pages > 1) {
392 /*
393 * If we have to flush more than one page, flush all
394 * TLB entries for this domain
395 */
396 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
397 s = 1;
a19ae1ec
JR
398 }
399
999ba417
JR
400 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
401
a19ae1ec
JR
402 return 0;
403}
b6c02715 404
1c655773
JR
405/* Flush the whole IO/TLB for a given protection domain */
406static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
407{
408 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
409
410 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
411}
412
43f49609
JR
413#ifdef CONFIG_IOMMU_API
414/*
415 * This function is used to flush the IO/TLB for a given protection domain
416 * on every IOMMU in the system
417 */
418static void iommu_flush_domain(u16 domid)
419{
420 unsigned long flags;
421 struct amd_iommu *iommu;
422 struct iommu_cmd cmd;
423
424 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
425 domid, 1, 1);
426
427 list_for_each_entry(iommu, &amd_iommu_list, list) {
428 spin_lock_irqsave(&iommu->lock, flags);
429 __iommu_queue_command(iommu, &cmd);
430 __iommu_completion_wait(iommu);
431 __iommu_wait_for_completion(iommu);
432 spin_unlock_irqrestore(&iommu->lock, flags);
433 }
434}
435#endif
436
431b2a20
JR
437/****************************************************************************
438 *
439 * The functions below are used the create the page table mappings for
440 * unity mapped regions.
441 *
442 ****************************************************************************/
443
444/*
445 * Generic mapping functions. It maps a physical address into a DMA
446 * address space. It allocates the page table pages if necessary.
447 * In the future it can be extended to a generic mapping function
448 * supporting all features of AMD IOMMU page tables like level skipping
449 * and full 64 bit address spaces.
450 */
38e817fe
JR
451static int iommu_map_page(struct protection_domain *dom,
452 unsigned long bus_addr,
453 unsigned long phys_addr,
454 int prot)
bd0e5211
JR
455{
456 u64 __pte, *pte, *page;
457
458 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 459 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
460
461 /* only support 512GB address spaces for now */
462 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
463 return -EINVAL;
464
465 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
466
467 if (!IOMMU_PTE_PRESENT(*pte)) {
468 page = (u64 *)get_zeroed_page(GFP_KERNEL);
469 if (!page)
470 return -ENOMEM;
471 *pte = IOMMU_L2_PDE(virt_to_phys(page));
472 }
473
474 pte = IOMMU_PTE_PAGE(*pte);
475 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
476
477 if (!IOMMU_PTE_PRESENT(*pte)) {
478 page = (u64 *)get_zeroed_page(GFP_KERNEL);
479 if (!page)
480 return -ENOMEM;
481 *pte = IOMMU_L1_PDE(virt_to_phys(page));
482 }
483
484 pte = IOMMU_PTE_PAGE(*pte);
485 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
486
487 if (IOMMU_PTE_PRESENT(*pte))
488 return -EBUSY;
489
490 __pte = phys_addr | IOMMU_PTE_P;
491 if (prot & IOMMU_PROT_IR)
492 __pte |= IOMMU_PTE_IR;
493 if (prot & IOMMU_PROT_IW)
494 __pte |= IOMMU_PTE_IW;
495
496 *pte = __pte;
497
498 return 0;
499}
500
eb74ff6c
JR
501#ifdef CONFIG_IOMMU_API
502static void iommu_unmap_page(struct protection_domain *dom,
503 unsigned long bus_addr)
504{
505 u64 *pte;
506
507 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
508
509 if (!IOMMU_PTE_PRESENT(*pte))
510 return;
511
512 pte = IOMMU_PTE_PAGE(*pte);
513 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
514
515 if (!IOMMU_PTE_PRESENT(*pte))
516 return;
517
518 pte = IOMMU_PTE_PAGE(*pte);
519 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
520
521 *pte = 0;
522}
523#endif
524
431b2a20
JR
525/*
526 * This function checks if a specific unity mapping entry is needed for
527 * this specific IOMMU.
528 */
bd0e5211
JR
529static int iommu_for_unity_map(struct amd_iommu *iommu,
530 struct unity_map_entry *entry)
531{
532 u16 bdf, i;
533
534 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
535 bdf = amd_iommu_alias_table[i];
536 if (amd_iommu_rlookup_table[bdf] == iommu)
537 return 1;
538 }
539
540 return 0;
541}
542
431b2a20
JR
543/*
544 * Init the unity mappings for a specific IOMMU in the system
545 *
546 * Basically iterates over all unity mapping entries and applies them to
547 * the default domain DMA of that IOMMU if necessary.
548 */
bd0e5211
JR
549static int iommu_init_unity_mappings(struct amd_iommu *iommu)
550{
551 struct unity_map_entry *entry;
552 int ret;
553
554 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
555 if (!iommu_for_unity_map(iommu, entry))
556 continue;
557 ret = dma_ops_unity_map(iommu->default_dom, entry);
558 if (ret)
559 return ret;
560 }
561
562 return 0;
563}
564
431b2a20
JR
565/*
566 * This function actually applies the mapping to the page table of the
567 * dma_ops domain.
568 */
bd0e5211
JR
569static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
570 struct unity_map_entry *e)
571{
572 u64 addr;
573 int ret;
574
575 for (addr = e->address_start; addr < e->address_end;
576 addr += PAGE_SIZE) {
38e817fe 577 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
578 if (ret)
579 return ret;
580 /*
581 * if unity mapping is in aperture range mark the page
582 * as allocated in the aperture
583 */
584 if (addr < dma_dom->aperture_size)
585 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
586 }
587
588 return 0;
589}
590
431b2a20
JR
591/*
592 * Inits the unity mappings required for a specific device
593 */
bd0e5211
JR
594static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
595 u16 devid)
596{
597 struct unity_map_entry *e;
598 int ret;
599
600 list_for_each_entry(e, &amd_iommu_unity_map, list) {
601 if (!(devid >= e->devid_start && devid <= e->devid_end))
602 continue;
603 ret = dma_ops_unity_map(dma_dom, e);
604 if (ret)
605 return ret;
606 }
607
608 return 0;
609}
610
431b2a20
JR
611/****************************************************************************
612 *
613 * The next functions belong to the address allocator for the dma_ops
614 * interface functions. They work like the allocators in the other IOMMU
615 * drivers. Its basically a bitmap which marks the allocated pages in
616 * the aperture. Maybe it could be enhanced in the future to a more
617 * efficient allocator.
618 *
619 ****************************************************************************/
d3086444 620
431b2a20
JR
621/*
622 * The address allocator core function.
623 *
624 * called with domain->lock held
625 */
d3086444
JR
626static unsigned long dma_ops_alloc_addresses(struct device *dev,
627 struct dma_ops_domain *dom,
6d4f343f 628 unsigned int pages,
832a90c3
JR
629 unsigned long align_mask,
630 u64 dma_mask)
d3086444 631{
40becd8d 632 unsigned long limit;
d3086444 633 unsigned long address;
d3086444
JR
634 unsigned long boundary_size;
635
636 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
637 PAGE_SIZE) >> PAGE_SHIFT;
40becd8d
FT
638 limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
639 dma_mask >> PAGE_SHIFT);
d3086444 640
1c655773 641 if (dom->next_bit >= limit) {
d3086444 642 dom->next_bit = 0;
1c655773
JR
643 dom->need_flush = true;
644 }
d3086444
JR
645
646 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
6d4f343f 647 0 , boundary_size, align_mask);
1c655773 648 if (address == -1) {
d3086444 649 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
6d4f343f 650 0, boundary_size, align_mask);
1c655773
JR
651 dom->need_flush = true;
652 }
d3086444
JR
653
654 if (likely(address != -1)) {
d3086444
JR
655 dom->next_bit = address + pages;
656 address <<= PAGE_SHIFT;
657 } else
658 address = bad_dma_address;
659
660 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
661
662 return address;
663}
664
431b2a20
JR
665/*
666 * The address free function.
667 *
668 * called with domain->lock held
669 */
d3086444
JR
670static void dma_ops_free_addresses(struct dma_ops_domain *dom,
671 unsigned long address,
672 unsigned int pages)
673{
674 address >>= PAGE_SHIFT;
675 iommu_area_free(dom->bitmap, address, pages);
80be308d 676
8501c45c 677 if (address >= dom->next_bit)
80be308d 678 dom->need_flush = true;
d3086444
JR
679}
680
431b2a20
JR
681/****************************************************************************
682 *
683 * The next functions belong to the domain allocation. A domain is
684 * allocated for every IOMMU as the default domain. If device isolation
685 * is enabled, every device get its own domain. The most important thing
686 * about domains is the page table mapping the DMA address space they
687 * contain.
688 *
689 ****************************************************************************/
690
ec487d1a
JR
691static u16 domain_id_alloc(void)
692{
693 unsigned long flags;
694 int id;
695
696 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
697 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
698 BUG_ON(id == 0);
699 if (id > 0 && id < MAX_DOMAIN_ID)
700 __set_bit(id, amd_iommu_pd_alloc_bitmap);
701 else
702 id = 0;
703 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
704
705 return id;
706}
707
a2acfb75
JR
708#ifdef CONFIG_IOMMU_API
709static void domain_id_free(int id)
710{
711 unsigned long flags;
712
713 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
714 if (id > 0 && id < MAX_DOMAIN_ID)
715 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
716 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
717}
718#endif
719
431b2a20
JR
720/*
721 * Used to reserve address ranges in the aperture (e.g. for exclusion
722 * ranges.
723 */
ec487d1a
JR
724static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
725 unsigned long start_page,
726 unsigned int pages)
727{
728 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
729
730 if (start_page + pages > last_page)
731 pages = last_page - start_page;
732
d26dbc5c 733 iommu_area_reserve(dom->bitmap, start_page, pages);
ec487d1a
JR
734}
735
86db2e5d 736static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
737{
738 int i, j;
739 u64 *p1, *p2, *p3;
740
86db2e5d 741 p1 = domain->pt_root;
ec487d1a
JR
742
743 if (!p1)
744 return;
745
746 for (i = 0; i < 512; ++i) {
747 if (!IOMMU_PTE_PRESENT(p1[i]))
748 continue;
749
750 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 751 for (j = 0; j < 512; ++j) {
ec487d1a
JR
752 if (!IOMMU_PTE_PRESENT(p2[j]))
753 continue;
754 p3 = IOMMU_PTE_PAGE(p2[j]);
755 free_page((unsigned long)p3);
756 }
757
758 free_page((unsigned long)p2);
759 }
760
761 free_page((unsigned long)p1);
86db2e5d
JR
762
763 domain->pt_root = NULL;
ec487d1a
JR
764}
765
431b2a20
JR
766/*
767 * Free a domain, only used if something went wrong in the
768 * allocation path and we need to free an already allocated page table
769 */
ec487d1a
JR
770static void dma_ops_domain_free(struct dma_ops_domain *dom)
771{
772 if (!dom)
773 return;
774
86db2e5d 775 free_pagetable(&dom->domain);
ec487d1a
JR
776
777 kfree(dom->pte_pages);
778
779 kfree(dom->bitmap);
780
781 kfree(dom);
782}
783
431b2a20
JR
784/*
785 * Allocates a new protection domain usable for the dma_ops functions.
786 * It also intializes the page table and the address allocator data
787 * structures required for the dma_ops interface
788 */
ec487d1a
JR
789static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
790 unsigned order)
791{
792 struct dma_ops_domain *dma_dom;
793 unsigned i, num_pte_pages;
794 u64 *l2_pde;
795 u64 address;
796
797 /*
798 * Currently the DMA aperture must be between 32 MB and 1GB in size
799 */
800 if ((order < 25) || (order > 30))
801 return NULL;
802
803 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
804 if (!dma_dom)
805 return NULL;
806
807 spin_lock_init(&dma_dom->domain.lock);
808
809 dma_dom->domain.id = domain_id_alloc();
810 if (dma_dom->domain.id == 0)
811 goto free_dma_dom;
812 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
813 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 814 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
815 dma_dom->domain.priv = dma_dom;
816 if (!dma_dom->domain.pt_root)
817 goto free_dma_dom;
818 dma_dom->aperture_size = (1ULL << order);
819 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
820 GFP_KERNEL);
821 if (!dma_dom->bitmap)
822 goto free_dma_dom;
823 /*
824 * mark the first page as allocated so we never return 0 as
825 * a valid dma-address. So we can use 0 as error value
826 */
827 dma_dom->bitmap[0] = 1;
828 dma_dom->next_bit = 0;
829
1c655773 830 dma_dom->need_flush = false;
bd60b735 831 dma_dom->target_dev = 0xffff;
1c655773 832
431b2a20 833 /* Intialize the exclusion range if necessary */
ec487d1a
JR
834 if (iommu->exclusion_start &&
835 iommu->exclusion_start < dma_dom->aperture_size) {
836 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
e3c449f5
JR
837 int pages = iommu_num_pages(iommu->exclusion_start,
838 iommu->exclusion_length,
839 PAGE_SIZE);
ec487d1a
JR
840 dma_ops_reserve_addresses(dma_dom, startpage, pages);
841 }
842
431b2a20
JR
843 /*
844 * At the last step, build the page tables so we don't need to
845 * allocate page table pages in the dma_ops mapping/unmapping
846 * path.
847 */
ec487d1a
JR
848 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
849 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
850 GFP_KERNEL);
851 if (!dma_dom->pte_pages)
852 goto free_dma_dom;
853
854 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
855 if (l2_pde == NULL)
856 goto free_dma_dom;
857
858 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
859
860 for (i = 0; i < num_pte_pages; ++i) {
861 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
862 if (!dma_dom->pte_pages[i])
863 goto free_dma_dom;
864 address = virt_to_phys(dma_dom->pte_pages[i]);
865 l2_pde[i] = IOMMU_L1_PDE(address);
866 }
867
868 return dma_dom;
869
870free_dma_dom:
871 dma_ops_domain_free(dma_dom);
872
873 return NULL;
874}
875
5b28df6f
JR
876/*
877 * little helper function to check whether a given protection domain is a
878 * dma_ops domain
879 */
880static bool dma_ops_domain(struct protection_domain *domain)
881{
882 return domain->flags & PD_DMA_OPS_MASK;
883}
884
431b2a20
JR
885/*
886 * Find out the protection domain structure for a given PCI device. This
887 * will give us the pointer to the page table root for example.
888 */
b20ac0d4
JR
889static struct protection_domain *domain_for_device(u16 devid)
890{
891 struct protection_domain *dom;
892 unsigned long flags;
893
894 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
895 dom = amd_iommu_pd_table[devid];
896 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
897
898 return dom;
899}
900
431b2a20
JR
901/*
902 * If a device is not yet associated with a domain, this function does
903 * assigns it visible for the hardware
904 */
f1179dc0
JR
905static void attach_device(struct amd_iommu *iommu,
906 struct protection_domain *domain,
907 u16 devid)
b20ac0d4
JR
908{
909 unsigned long flags;
b20ac0d4
JR
910 u64 pte_root = virt_to_phys(domain->pt_root);
911
863c74eb
JR
912 domain->dev_cnt += 1;
913
38ddf41b
JR
914 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
915 << DEV_ENTRY_MODE_SHIFT;
916 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
917
918 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
919 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
920 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
921 amd_iommu_dev_table[devid].data[2] = domain->id;
922
923 amd_iommu_pd_table[devid] = domain;
924 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
925
926 iommu_queue_inv_dev_entry(iommu, devid);
b20ac0d4
JR
927}
928
355bf553
JR
929/*
930 * Removes a device from a protection domain (unlocked)
931 */
932static void __detach_device(struct protection_domain *domain, u16 devid)
933{
934
935 /* lock domain */
936 spin_lock(&domain->lock);
937
938 /* remove domain from the lookup table */
939 amd_iommu_pd_table[devid] = NULL;
940
941 /* remove entry from the device table seen by the hardware */
942 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
943 amd_iommu_dev_table[devid].data[1] = 0;
944 amd_iommu_dev_table[devid].data[2] = 0;
945
946 /* decrease reference counter */
947 domain->dev_cnt -= 1;
948
949 /* ready */
950 spin_unlock(&domain->lock);
951}
952
953/*
954 * Removes a device from a protection domain (with devtable_lock held)
955 */
956static void detach_device(struct protection_domain *domain, u16 devid)
957{
958 unsigned long flags;
959
960 /* lock device table */
961 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
962 __detach_device(domain, devid);
963 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
964}
e275a2a0
JR
965
966static int device_change_notifier(struct notifier_block *nb,
967 unsigned long action, void *data)
968{
969 struct device *dev = data;
970 struct pci_dev *pdev = to_pci_dev(dev);
971 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
972 struct protection_domain *domain;
973 struct dma_ops_domain *dma_domain;
974 struct amd_iommu *iommu;
1ac4cbbc
JR
975 int order = amd_iommu_aperture_order;
976 unsigned long flags;
e275a2a0
JR
977
978 if (devid > amd_iommu_last_bdf)
979 goto out;
980
981 devid = amd_iommu_alias_table[devid];
982
983 iommu = amd_iommu_rlookup_table[devid];
984 if (iommu == NULL)
985 goto out;
986
987 domain = domain_for_device(devid);
988
989 if (domain && !dma_ops_domain(domain))
990 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
991 "to a non-dma-ops domain\n", dev_name(dev));
992
993 switch (action) {
994 case BUS_NOTIFY_BOUND_DRIVER:
995 if (domain)
996 goto out;
997 dma_domain = find_protection_domain(devid);
998 if (!dma_domain)
999 dma_domain = iommu->default_dom;
1000 attach_device(iommu, &dma_domain->domain, devid);
1001 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1002 "device %s\n", dma_domain->domain.id, dev_name(dev));
1003 break;
1004 case BUS_NOTIFY_UNBIND_DRIVER:
1005 if (!domain)
1006 goto out;
1007 detach_device(domain, devid);
1ac4cbbc
JR
1008 break;
1009 case BUS_NOTIFY_ADD_DEVICE:
1010 /* allocate a protection domain if a device is added */
1011 dma_domain = find_protection_domain(devid);
1012 if (dma_domain)
1013 goto out;
1014 dma_domain = dma_ops_domain_alloc(iommu, order);
1015 if (!dma_domain)
1016 goto out;
1017 dma_domain->target_dev = devid;
1018
1019 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1020 list_add_tail(&dma_domain->list, &iommu_pd_list);
1021 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1022
e275a2a0
JR
1023 break;
1024 default:
1025 goto out;
1026 }
1027
1028 iommu_queue_inv_dev_entry(iommu, devid);
1029 iommu_completion_wait(iommu);
1030
1031out:
1032 return 0;
1033}
1034
1035struct notifier_block device_nb = {
1036 .notifier_call = device_change_notifier,
1037};
355bf553 1038
431b2a20
JR
1039/*****************************************************************************
1040 *
1041 * The next functions belong to the dma_ops mapping/unmapping code.
1042 *
1043 *****************************************************************************/
1044
dbcc112e
JR
1045/*
1046 * This function checks if the driver got a valid device from the caller to
1047 * avoid dereferencing invalid pointers.
1048 */
1049static bool check_device(struct device *dev)
1050{
1051 if (!dev || !dev->dma_mask)
1052 return false;
1053
1054 return true;
1055}
1056
bd60b735
JR
1057/*
1058 * In this function the list of preallocated protection domains is traversed to
1059 * find the domain for a specific device
1060 */
1061static struct dma_ops_domain *find_protection_domain(u16 devid)
1062{
1063 struct dma_ops_domain *entry, *ret = NULL;
1064 unsigned long flags;
1065
1066 if (list_empty(&iommu_pd_list))
1067 return NULL;
1068
1069 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1070
1071 list_for_each_entry(entry, &iommu_pd_list, list) {
1072 if (entry->target_dev == devid) {
1073 ret = entry;
bd60b735
JR
1074 break;
1075 }
1076 }
1077
1078 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1079
1080 return ret;
1081}
1082
431b2a20
JR
1083/*
1084 * In the dma_ops path we only have the struct device. This function
1085 * finds the corresponding IOMMU, the protection domain and the
1086 * requestor id for a given device.
1087 * If the device is not yet associated with a domain this is also done
1088 * in this function.
1089 */
b20ac0d4
JR
1090static int get_device_resources(struct device *dev,
1091 struct amd_iommu **iommu,
1092 struct protection_domain **domain,
1093 u16 *bdf)
1094{
1095 struct dma_ops_domain *dma_dom;
1096 struct pci_dev *pcidev;
1097 u16 _bdf;
1098
dbcc112e
JR
1099 *iommu = NULL;
1100 *domain = NULL;
1101 *bdf = 0xffff;
1102
1103 if (dev->bus != &pci_bus_type)
1104 return 0;
b20ac0d4
JR
1105
1106 pcidev = to_pci_dev(dev);
d591b0a3 1107 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1108
431b2a20 1109 /* device not translated by any IOMMU in the system? */
dbcc112e 1110 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1111 return 0;
b20ac0d4
JR
1112
1113 *bdf = amd_iommu_alias_table[_bdf];
1114
1115 *iommu = amd_iommu_rlookup_table[*bdf];
1116 if (*iommu == NULL)
1117 return 0;
b20ac0d4
JR
1118 *domain = domain_for_device(*bdf);
1119 if (*domain == NULL) {
bd60b735
JR
1120 dma_dom = find_protection_domain(*bdf);
1121 if (!dma_dom)
1122 dma_dom = (*iommu)->default_dom;
b20ac0d4 1123 *domain = &dma_dom->domain;
f1179dc0 1124 attach_device(*iommu, *domain, *bdf);
b20ac0d4 1125 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
ab896722 1126 "device %s\n", (*domain)->id, dev_name(dev));
b20ac0d4
JR
1127 }
1128
f91ba190 1129 if (domain_for_device(_bdf) == NULL)
f1179dc0 1130 attach_device(*iommu, *domain, _bdf);
f91ba190 1131
b20ac0d4
JR
1132 return 1;
1133}
1134
431b2a20
JR
1135/*
1136 * This is the generic map function. It maps one 4kb page at paddr to
1137 * the given address in the DMA address space for the domain.
1138 */
cb76c322
JR
1139static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1140 struct dma_ops_domain *dom,
1141 unsigned long address,
1142 phys_addr_t paddr,
1143 int direction)
1144{
1145 u64 *pte, __pte;
1146
1147 WARN_ON(address > dom->aperture_size);
1148
1149 paddr &= PAGE_MASK;
1150
1151 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
1152 pte += IOMMU_PTE_L0_INDEX(address);
1153
1154 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1155
1156 if (direction == DMA_TO_DEVICE)
1157 __pte |= IOMMU_PTE_IR;
1158 else if (direction == DMA_FROM_DEVICE)
1159 __pte |= IOMMU_PTE_IW;
1160 else if (direction == DMA_BIDIRECTIONAL)
1161 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1162
1163 WARN_ON(*pte);
1164
1165 *pte = __pte;
1166
1167 return (dma_addr_t)address;
1168}
1169
431b2a20
JR
1170/*
1171 * The generic unmapping function for on page in the DMA address space.
1172 */
cb76c322
JR
1173static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1174 struct dma_ops_domain *dom,
1175 unsigned long address)
1176{
1177 u64 *pte;
1178
1179 if (address >= dom->aperture_size)
1180 return;
1181
8ad909c4 1182 WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
cb76c322
JR
1183
1184 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
1185 pte += IOMMU_PTE_L0_INDEX(address);
1186
1187 WARN_ON(!*pte);
1188
1189 *pte = 0ULL;
1190}
1191
431b2a20
JR
1192/*
1193 * This function contains common code for mapping of a physically
24f81160
JR
1194 * contiguous memory region into DMA address space. It is used by all
1195 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1196 * Must be called with the domain lock held.
1197 */
cb76c322
JR
1198static dma_addr_t __map_single(struct device *dev,
1199 struct amd_iommu *iommu,
1200 struct dma_ops_domain *dma_dom,
1201 phys_addr_t paddr,
1202 size_t size,
6d4f343f 1203 int dir,
832a90c3
JR
1204 bool align,
1205 u64 dma_mask)
cb76c322
JR
1206{
1207 dma_addr_t offset = paddr & ~PAGE_MASK;
1208 dma_addr_t address, start;
1209 unsigned int pages;
6d4f343f 1210 unsigned long align_mask = 0;
cb76c322
JR
1211 int i;
1212
e3c449f5 1213 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1214 paddr &= PAGE_MASK;
1215
6d4f343f
JR
1216 if (align)
1217 align_mask = (1UL << get_order(size)) - 1;
1218
832a90c3
JR
1219 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1220 dma_mask);
cb76c322
JR
1221 if (unlikely(address == bad_dma_address))
1222 goto out;
1223
1224 start = address;
1225 for (i = 0; i < pages; ++i) {
1226 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1227 paddr += PAGE_SIZE;
1228 start += PAGE_SIZE;
1229 }
1230 address += offset;
1231
afa9fdc2 1232 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1233 iommu_flush_tlb(iommu, dma_dom->domain.id);
1234 dma_dom->need_flush = false;
1235 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1236 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1237
cb76c322
JR
1238out:
1239 return address;
1240}
1241
431b2a20
JR
1242/*
1243 * Does the reverse of the __map_single function. Must be called with
1244 * the domain lock held too
1245 */
cb76c322
JR
1246static void __unmap_single(struct amd_iommu *iommu,
1247 struct dma_ops_domain *dma_dom,
1248 dma_addr_t dma_addr,
1249 size_t size,
1250 int dir)
1251{
1252 dma_addr_t i, start;
1253 unsigned int pages;
1254
b8d9905d
JR
1255 if ((dma_addr == bad_dma_address) ||
1256 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1257 return;
1258
e3c449f5 1259 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1260 dma_addr &= PAGE_MASK;
1261 start = dma_addr;
1262
1263 for (i = 0; i < pages; ++i) {
1264 dma_ops_domain_unmap(iommu, dma_dom, start);
1265 start += PAGE_SIZE;
1266 }
1267
1268 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1269
80be308d 1270 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1271 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1272 dma_dom->need_flush = false;
1273 }
cb76c322
JR
1274}
1275
431b2a20
JR
1276/*
1277 * The exported map_single function for dma_ops.
1278 */
4da70b9e
JR
1279static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
1280 size_t size, int dir)
1281{
1282 unsigned long flags;
1283 struct amd_iommu *iommu;
1284 struct protection_domain *domain;
1285 u16 devid;
1286 dma_addr_t addr;
832a90c3 1287 u64 dma_mask;
4da70b9e 1288
0f2a86f2
JR
1289 INC_STATS_COUNTER(cnt_map_single);
1290
dbcc112e
JR
1291 if (!check_device(dev))
1292 return bad_dma_address;
1293
832a90c3 1294 dma_mask = *dev->dma_mask;
4da70b9e
JR
1295
1296 get_device_resources(dev, &iommu, &domain, &devid);
1297
1298 if (iommu == NULL || domain == NULL)
431b2a20 1299 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1300 return (dma_addr_t)paddr;
1301
5b28df6f
JR
1302 if (!dma_ops_domain(domain))
1303 return bad_dma_address;
1304
4da70b9e 1305 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1306 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1307 dma_mask);
4da70b9e
JR
1308 if (addr == bad_dma_address)
1309 goto out;
1310
09ee17eb 1311 iommu_completion_wait(iommu);
4da70b9e
JR
1312
1313out:
1314 spin_unlock_irqrestore(&domain->lock, flags);
1315
1316 return addr;
1317}
1318
431b2a20
JR
1319/*
1320 * The exported unmap_single function for dma_ops.
1321 */
4da70b9e
JR
1322static void unmap_single(struct device *dev, dma_addr_t dma_addr,
1323 size_t size, int dir)
1324{
1325 unsigned long flags;
1326 struct amd_iommu *iommu;
1327 struct protection_domain *domain;
1328 u16 devid;
1329
146a6917
JR
1330 INC_STATS_COUNTER(cnt_unmap_single);
1331
dbcc112e
JR
1332 if (!check_device(dev) ||
1333 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1334 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1335 return;
1336
5b28df6f
JR
1337 if (!dma_ops_domain(domain))
1338 return;
1339
4da70b9e
JR
1340 spin_lock_irqsave(&domain->lock, flags);
1341
1342 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1343
09ee17eb 1344 iommu_completion_wait(iommu);
4da70b9e
JR
1345
1346 spin_unlock_irqrestore(&domain->lock, flags);
1347}
1348
431b2a20
JR
1349/*
1350 * This is a special map_sg function which is used if we should map a
1351 * device which is not handled by an AMD IOMMU in the system.
1352 */
65b050ad
JR
1353static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1354 int nelems, int dir)
1355{
1356 struct scatterlist *s;
1357 int i;
1358
1359 for_each_sg(sglist, s, nelems, i) {
1360 s->dma_address = (dma_addr_t)sg_phys(s);
1361 s->dma_length = s->length;
1362 }
1363
1364 return nelems;
1365}
1366
431b2a20
JR
1367/*
1368 * The exported map_sg function for dma_ops (handles scatter-gather
1369 * lists).
1370 */
65b050ad
JR
1371static int map_sg(struct device *dev, struct scatterlist *sglist,
1372 int nelems, int dir)
1373{
1374 unsigned long flags;
1375 struct amd_iommu *iommu;
1376 struct protection_domain *domain;
1377 u16 devid;
1378 int i;
1379 struct scatterlist *s;
1380 phys_addr_t paddr;
1381 int mapped_elems = 0;
832a90c3 1382 u64 dma_mask;
65b050ad 1383
d03f067a
JR
1384 INC_STATS_COUNTER(cnt_map_sg);
1385
dbcc112e
JR
1386 if (!check_device(dev))
1387 return 0;
1388
832a90c3 1389 dma_mask = *dev->dma_mask;
65b050ad
JR
1390
1391 get_device_resources(dev, &iommu, &domain, &devid);
1392
1393 if (!iommu || !domain)
1394 return map_sg_no_iommu(dev, sglist, nelems, dir);
1395
5b28df6f
JR
1396 if (!dma_ops_domain(domain))
1397 return 0;
1398
65b050ad
JR
1399 spin_lock_irqsave(&domain->lock, flags);
1400
1401 for_each_sg(sglist, s, nelems, i) {
1402 paddr = sg_phys(s);
1403
1404 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1405 paddr, s->length, dir, false,
1406 dma_mask);
65b050ad
JR
1407
1408 if (s->dma_address) {
1409 s->dma_length = s->length;
1410 mapped_elems++;
1411 } else
1412 goto unmap;
65b050ad
JR
1413 }
1414
09ee17eb 1415 iommu_completion_wait(iommu);
65b050ad
JR
1416
1417out:
1418 spin_unlock_irqrestore(&domain->lock, flags);
1419
1420 return mapped_elems;
1421unmap:
1422 for_each_sg(sglist, s, mapped_elems, i) {
1423 if (s->dma_address)
1424 __unmap_single(iommu, domain->priv, s->dma_address,
1425 s->dma_length, dir);
1426 s->dma_address = s->dma_length = 0;
1427 }
1428
1429 mapped_elems = 0;
1430
1431 goto out;
1432}
1433
431b2a20
JR
1434/*
1435 * The exported map_sg function for dma_ops (handles scatter-gather
1436 * lists).
1437 */
65b050ad
JR
1438static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1439 int nelems, int dir)
1440{
1441 unsigned long flags;
1442 struct amd_iommu *iommu;
1443 struct protection_domain *domain;
1444 struct scatterlist *s;
1445 u16 devid;
1446 int i;
1447
55877a6b
JR
1448 INC_STATS_COUNTER(cnt_unmap_sg);
1449
dbcc112e
JR
1450 if (!check_device(dev) ||
1451 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1452 return;
1453
5b28df6f
JR
1454 if (!dma_ops_domain(domain))
1455 return;
1456
65b050ad
JR
1457 spin_lock_irqsave(&domain->lock, flags);
1458
1459 for_each_sg(sglist, s, nelems, i) {
1460 __unmap_single(iommu, domain->priv, s->dma_address,
1461 s->dma_length, dir);
65b050ad
JR
1462 s->dma_address = s->dma_length = 0;
1463 }
1464
09ee17eb 1465 iommu_completion_wait(iommu);
65b050ad
JR
1466
1467 spin_unlock_irqrestore(&domain->lock, flags);
1468}
1469
431b2a20
JR
1470/*
1471 * The exported alloc_coherent function for dma_ops.
1472 */
5d8b53cf
JR
1473static void *alloc_coherent(struct device *dev, size_t size,
1474 dma_addr_t *dma_addr, gfp_t flag)
1475{
1476 unsigned long flags;
1477 void *virt_addr;
1478 struct amd_iommu *iommu;
1479 struct protection_domain *domain;
1480 u16 devid;
1481 phys_addr_t paddr;
832a90c3 1482 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1483
dbcc112e
JR
1484 if (!check_device(dev))
1485 return NULL;
5d8b53cf 1486
13d9fead
FT
1487 if (!get_device_resources(dev, &iommu, &domain, &devid))
1488 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1489
c97ac535 1490 flag |= __GFP_ZERO;
5d8b53cf
JR
1491 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1492 if (!virt_addr)
1493 return 0;
1494
5d8b53cf
JR
1495 paddr = virt_to_phys(virt_addr);
1496
5d8b53cf
JR
1497 if (!iommu || !domain) {
1498 *dma_addr = (dma_addr_t)paddr;
1499 return virt_addr;
1500 }
1501
5b28df6f
JR
1502 if (!dma_ops_domain(domain))
1503 goto out_free;
1504
832a90c3
JR
1505 if (!dma_mask)
1506 dma_mask = *dev->dma_mask;
1507
5d8b53cf
JR
1508 spin_lock_irqsave(&domain->lock, flags);
1509
1510 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1511 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1512
5b28df6f
JR
1513 if (*dma_addr == bad_dma_address)
1514 goto out_free;
5d8b53cf 1515
09ee17eb 1516 iommu_completion_wait(iommu);
5d8b53cf 1517
5d8b53cf
JR
1518 spin_unlock_irqrestore(&domain->lock, flags);
1519
1520 return virt_addr;
5b28df6f
JR
1521
1522out_free:
1523
1524 free_pages((unsigned long)virt_addr, get_order(size));
1525
1526 return NULL;
5d8b53cf
JR
1527}
1528
431b2a20
JR
1529/*
1530 * The exported free_coherent function for dma_ops.
431b2a20 1531 */
5d8b53cf
JR
1532static void free_coherent(struct device *dev, size_t size,
1533 void *virt_addr, dma_addr_t dma_addr)
1534{
1535 unsigned long flags;
1536 struct amd_iommu *iommu;
1537 struct protection_domain *domain;
1538 u16 devid;
1539
dbcc112e
JR
1540 if (!check_device(dev))
1541 return;
1542
5d8b53cf
JR
1543 get_device_resources(dev, &iommu, &domain, &devid);
1544
1545 if (!iommu || !domain)
1546 goto free_mem;
1547
5b28df6f
JR
1548 if (!dma_ops_domain(domain))
1549 goto free_mem;
1550
5d8b53cf
JR
1551 spin_lock_irqsave(&domain->lock, flags);
1552
1553 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1554
09ee17eb 1555 iommu_completion_wait(iommu);
5d8b53cf
JR
1556
1557 spin_unlock_irqrestore(&domain->lock, flags);
1558
1559free_mem:
1560 free_pages((unsigned long)virt_addr, get_order(size));
1561}
1562
b39ba6ad
JR
1563/*
1564 * This function is called by the DMA layer to find out if we can handle a
1565 * particular device. It is part of the dma_ops.
1566 */
1567static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1568{
1569 u16 bdf;
1570 struct pci_dev *pcidev;
1571
1572 /* No device or no PCI device */
1573 if (!dev || dev->bus != &pci_bus_type)
1574 return 0;
1575
1576 pcidev = to_pci_dev(dev);
1577
1578 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1579
1580 /* Out of our scope? */
1581 if (bdf > amd_iommu_last_bdf)
1582 return 0;
1583
1584 return 1;
1585}
1586
c432f3df 1587/*
431b2a20
JR
1588 * The function for pre-allocating protection domains.
1589 *
c432f3df
JR
1590 * If the driver core informs the DMA layer if a driver grabs a device
1591 * we don't need to preallocate the protection domains anymore.
1592 * For now we have to.
1593 */
1594void prealloc_protection_domains(void)
1595{
1596 struct pci_dev *dev = NULL;
1597 struct dma_ops_domain *dma_dom;
1598 struct amd_iommu *iommu;
1599 int order = amd_iommu_aperture_order;
1600 u16 devid;
1601
1602 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1603 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1604 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1605 continue;
1606 devid = amd_iommu_alias_table[devid];
1607 if (domain_for_device(devid))
1608 continue;
1609 iommu = amd_iommu_rlookup_table[devid];
1610 if (!iommu)
1611 continue;
1612 dma_dom = dma_ops_domain_alloc(iommu, order);
1613 if (!dma_dom)
1614 continue;
1615 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1616 dma_dom->target_dev = devid;
1617
1618 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1619 }
1620}
1621
6631ee9d
JR
1622static struct dma_mapping_ops amd_iommu_dma_ops = {
1623 .alloc_coherent = alloc_coherent,
1624 .free_coherent = free_coherent,
1625 .map_single = map_single,
1626 .unmap_single = unmap_single,
1627 .map_sg = map_sg,
1628 .unmap_sg = unmap_sg,
b39ba6ad 1629 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1630};
1631
431b2a20
JR
1632/*
1633 * The function which clues the AMD IOMMU driver into dma_ops.
1634 */
6631ee9d
JR
1635int __init amd_iommu_init_dma_ops(void)
1636{
1637 struct amd_iommu *iommu;
1638 int order = amd_iommu_aperture_order;
1639 int ret;
1640
431b2a20
JR
1641 /*
1642 * first allocate a default protection domain for every IOMMU we
1643 * found in the system. Devices not assigned to any other
1644 * protection domain will be assigned to the default one.
1645 */
6631ee9d
JR
1646 list_for_each_entry(iommu, &amd_iommu_list, list) {
1647 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1648 if (iommu->default_dom == NULL)
1649 return -ENOMEM;
e2dc14a2 1650 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1651 ret = iommu_init_unity_mappings(iommu);
1652 if (ret)
1653 goto free_domains;
1654 }
1655
431b2a20
JR
1656 /*
1657 * If device isolation is enabled, pre-allocate the protection
1658 * domains for each device.
1659 */
6631ee9d
JR
1660 if (amd_iommu_isolate)
1661 prealloc_protection_domains();
1662
1663 iommu_detected = 1;
1664 force_iommu = 1;
1665 bad_dma_address = 0;
92af4e29 1666#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1667 gart_iommu_aperture_disabled = 1;
1668 gart_iommu_aperture = 0;
92af4e29 1669#endif
6631ee9d 1670
431b2a20 1671 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1672 dma_ops = &amd_iommu_dma_ops;
1673
26961efe
JR
1674#ifdef CONFIG_IOMMU_API
1675 register_iommu(&amd_iommu_ops);
1676#endif
1677
e275a2a0
JR
1678 bus_register_notifier(&pci_bus_type, &device_nb);
1679
7f26508b
JR
1680 amd_iommu_stats_init();
1681
6631ee9d
JR
1682 return 0;
1683
1684free_domains:
1685
1686 list_for_each_entry(iommu, &amd_iommu_list, list) {
1687 if (iommu->default_dom)
1688 dma_ops_domain_free(iommu->default_dom);
1689 }
1690
1691 return ret;
1692}
6d98cd80
JR
1693
1694/*****************************************************************************
1695 *
1696 * The following functions belong to the exported interface of AMD IOMMU
1697 *
1698 * This interface allows access to lower level functions of the IOMMU
1699 * like protection domain handling and assignement of devices to domains
1700 * which is not possible with the dma_ops interface.
1701 *
1702 *****************************************************************************/
1703
1704#ifdef CONFIG_IOMMU_API
1705
1706static void cleanup_domain(struct protection_domain *domain)
1707{
1708 unsigned long flags;
1709 u16 devid;
1710
1711 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1712
1713 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1714 if (amd_iommu_pd_table[devid] == domain)
1715 __detach_device(domain, devid);
1716
1717 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1718}
1719
c156e347
JR
1720static int amd_iommu_domain_init(struct iommu_domain *dom)
1721{
1722 struct protection_domain *domain;
1723
1724 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1725 if (!domain)
1726 return -ENOMEM;
1727
1728 spin_lock_init(&domain->lock);
1729 domain->mode = PAGE_MODE_3_LEVEL;
1730 domain->id = domain_id_alloc();
1731 if (!domain->id)
1732 goto out_free;
1733 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1734 if (!domain->pt_root)
1735 goto out_free;
1736
1737 dom->priv = domain;
1738
1739 return 0;
1740
1741out_free:
1742 kfree(domain);
1743
1744 return -ENOMEM;
1745}
1746
98383fc3
JR
1747static void amd_iommu_domain_destroy(struct iommu_domain *dom)
1748{
1749 struct protection_domain *domain = dom->priv;
1750
1751 if (!domain)
1752 return;
1753
1754 if (domain->dev_cnt > 0)
1755 cleanup_domain(domain);
1756
1757 BUG_ON(domain->dev_cnt != 0);
1758
1759 free_pagetable(domain);
1760
1761 domain_id_free(domain->id);
1762
1763 kfree(domain);
1764
1765 dom->priv = NULL;
1766}
1767
684f2888
JR
1768static void amd_iommu_detach_device(struct iommu_domain *dom,
1769 struct device *dev)
1770{
1771 struct protection_domain *domain = dom->priv;
1772 struct amd_iommu *iommu;
1773 struct pci_dev *pdev;
1774 u16 devid;
1775
1776 if (dev->bus != &pci_bus_type)
1777 return;
1778
1779 pdev = to_pci_dev(dev);
1780
1781 devid = calc_devid(pdev->bus->number, pdev->devfn);
1782
1783 if (devid > 0)
1784 detach_device(domain, devid);
1785
1786 iommu = amd_iommu_rlookup_table[devid];
1787 if (!iommu)
1788 return;
1789
1790 iommu_queue_inv_dev_entry(iommu, devid);
1791 iommu_completion_wait(iommu);
1792}
1793
01106066
JR
1794static int amd_iommu_attach_device(struct iommu_domain *dom,
1795 struct device *dev)
1796{
1797 struct protection_domain *domain = dom->priv;
1798 struct protection_domain *old_domain;
1799 struct amd_iommu *iommu;
1800 struct pci_dev *pdev;
1801 u16 devid;
1802
1803 if (dev->bus != &pci_bus_type)
1804 return -EINVAL;
1805
1806 pdev = to_pci_dev(dev);
1807
1808 devid = calc_devid(pdev->bus->number, pdev->devfn);
1809
1810 if (devid >= amd_iommu_last_bdf ||
1811 devid != amd_iommu_alias_table[devid])
1812 return -EINVAL;
1813
1814 iommu = amd_iommu_rlookup_table[devid];
1815 if (!iommu)
1816 return -EINVAL;
1817
1818 old_domain = domain_for_device(devid);
1819 if (old_domain)
1820 return -EBUSY;
1821
1822 attach_device(iommu, domain, devid);
1823
1824 iommu_completion_wait(iommu);
1825
1826 return 0;
1827}
1828
c6229ca6
JR
1829static int amd_iommu_map_range(struct iommu_domain *dom,
1830 unsigned long iova, phys_addr_t paddr,
1831 size_t size, int iommu_prot)
1832{
1833 struct protection_domain *domain = dom->priv;
1834 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
1835 int prot = 0;
1836 int ret;
1837
1838 if (iommu_prot & IOMMU_READ)
1839 prot |= IOMMU_PROT_IR;
1840 if (iommu_prot & IOMMU_WRITE)
1841 prot |= IOMMU_PROT_IW;
1842
1843 iova &= PAGE_MASK;
1844 paddr &= PAGE_MASK;
1845
1846 for (i = 0; i < npages; ++i) {
1847 ret = iommu_map_page(domain, iova, paddr, prot);
1848 if (ret)
1849 return ret;
1850
1851 iova += PAGE_SIZE;
1852 paddr += PAGE_SIZE;
1853 }
1854
1855 return 0;
1856}
1857
eb74ff6c
JR
1858static void amd_iommu_unmap_range(struct iommu_domain *dom,
1859 unsigned long iova, size_t size)
1860{
1861
1862 struct protection_domain *domain = dom->priv;
1863 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
1864
1865 iova &= PAGE_MASK;
1866
1867 for (i = 0; i < npages; ++i) {
1868 iommu_unmap_page(domain, iova);
1869 iova += PAGE_SIZE;
1870 }
1871
1872 iommu_flush_domain(domain->id);
1873}
1874
645c4c8d
JR
1875static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
1876 unsigned long iova)
1877{
1878 struct protection_domain *domain = dom->priv;
1879 unsigned long offset = iova & ~PAGE_MASK;
1880 phys_addr_t paddr;
1881 u64 *pte;
1882
1883 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
1884
1885 if (!IOMMU_PTE_PRESENT(*pte))
1886 return 0;
1887
1888 pte = IOMMU_PTE_PAGE(*pte);
1889 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
1890
1891 if (!IOMMU_PTE_PRESENT(*pte))
1892 return 0;
1893
1894 pte = IOMMU_PTE_PAGE(*pte);
1895 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
1896
1897 if (!IOMMU_PTE_PRESENT(*pte))
1898 return 0;
1899
1900 paddr = *pte & IOMMU_PAGE_MASK;
1901 paddr |= offset;
1902
1903 return paddr;
1904}
1905
26961efe
JR
1906static struct iommu_ops amd_iommu_ops = {
1907 .domain_init = amd_iommu_domain_init,
1908 .domain_destroy = amd_iommu_domain_destroy,
1909 .attach_dev = amd_iommu_attach_device,
1910 .detach_dev = amd_iommu_detach_device,
1911 .map = amd_iommu_map_range,
1912 .unmap = amd_iommu_unmap_range,
1913 .iova_to_phys = amd_iommu_iova_to_phys,
1914};
1915
6d98cd80 1916#endif