]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/amd_iommu.c
x86/amd-iommu: Cleanup attach/detach_device code
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
a345b23b 60static void reset_iommu_command_buffer(struct amd_iommu *iommu);
04bfdd84 61static void update_domain(struct protection_domain *domain);
c1eee67b 62
15898bbc
JR
63/****************************************************************************
64 *
65 * Helper functions
66 *
67 ****************************************************************************/
68
69static inline u16 get_device_id(struct device *dev)
70{
71 struct pci_dev *pdev = to_pci_dev(dev);
72
73 return calc_devid(pdev->bus->number, pdev->devfn);
74}
75
657cbb6b
JR
76static struct iommu_dev_data *get_dev_data(struct device *dev)
77{
78 return dev->archdata.iommu;
79}
80
71c70984
JR
81/*
82 * In this function the list of preallocated protection domains is traversed to
83 * find the domain for a specific device
84 */
85static struct dma_ops_domain *find_protection_domain(u16 devid)
86{
87 struct dma_ops_domain *entry, *ret = NULL;
88 unsigned long flags;
89 u16 alias = amd_iommu_alias_table[devid];
90
91 if (list_empty(&iommu_pd_list))
92 return NULL;
93
94 spin_lock_irqsave(&iommu_pd_list_lock, flags);
95
96 list_for_each_entry(entry, &iommu_pd_list, list) {
97 if (entry->target_dev == devid ||
98 entry->target_dev == alias) {
99 ret = entry;
100 break;
101 }
102 }
103
104 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
105
106 return ret;
107}
108
98fc5a69
JR
109/*
110 * This function checks if the driver got a valid device from the caller to
111 * avoid dereferencing invalid pointers.
112 */
113static bool check_device(struct device *dev)
114{
115 u16 devid;
116
117 if (!dev || !dev->dma_mask)
118 return false;
119
120 /* No device or no PCI device */
121 if (!dev || dev->bus != &pci_bus_type)
122 return false;
123
124 devid = get_device_id(dev);
125
126 /* Out of our scope? */
127 if (devid > amd_iommu_last_bdf)
128 return false;
129
130 if (amd_iommu_rlookup_table[devid] == NULL)
131 return false;
132
133 return true;
134}
135
657cbb6b
JR
136static int iommu_init_device(struct device *dev)
137{
138 struct iommu_dev_data *dev_data;
139 struct pci_dev *pdev;
140 u16 devid, alias;
141
142 if (dev->archdata.iommu)
143 return 0;
144
145 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 if (!dev_data)
147 return -ENOMEM;
148
149 devid = get_device_id(dev);
150 alias = amd_iommu_alias_table[devid];
151 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
152 if (pdev)
153 dev_data->alias = &pdev->dev;
154
24100055
JR
155 atomic_set(&dev_data->bind, 0);
156
657cbb6b
JR
157 dev->archdata.iommu = dev_data;
158
159
160 return 0;
161}
162
163static void iommu_uninit_device(struct device *dev)
164{
165 kfree(dev->archdata.iommu);
166}
7f26508b
JR
167#ifdef CONFIG_AMD_IOMMU_STATS
168
169/*
170 * Initialization code for statistics collection
171 */
172
da49f6df 173DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 174DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 175DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 176DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 177DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 178DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 179DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 180DECLARE_STATS_COUNTER(cross_page);
f57d98ae 181DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 182DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 183DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 184DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 185
7f26508b 186static struct dentry *stats_dir;
7f26508b
JR
187static struct dentry *de_fflush;
188
189static void amd_iommu_stats_add(struct __iommu_counter *cnt)
190{
191 if (stats_dir == NULL)
192 return;
193
194 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
195 &cnt->value);
196}
197
198static void amd_iommu_stats_init(void)
199{
200 stats_dir = debugfs_create_dir("amd-iommu", NULL);
201 if (stats_dir == NULL)
202 return;
203
7f26508b
JR
204 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
205 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
206
207 amd_iommu_stats_add(&compl_wait);
0f2a86f2 208 amd_iommu_stats_add(&cnt_map_single);
146a6917 209 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 210 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 211 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 212 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 213 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 214 amd_iommu_stats_add(&cross_page);
f57d98ae 215 amd_iommu_stats_add(&domain_flush_single);
18811f55 216 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 217 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 218 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
219}
220
221#endif
222
a80dc3e0
JR
223/****************************************************************************
224 *
225 * Interrupt handling functions
226 *
227 ****************************************************************************/
228
e3e59876
JR
229static void dump_dte_entry(u16 devid)
230{
231 int i;
232
233 for (i = 0; i < 8; ++i)
234 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
235 amd_iommu_dev_table[devid].data[i]);
236}
237
945b4ac4
JR
238static void dump_command(unsigned long phys_addr)
239{
240 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
241 int i;
242
243 for (i = 0; i < 4; ++i)
244 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
245}
246
a345b23b 247static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
248{
249 u32 *event = __evt;
250 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
251 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
252 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
253 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
254 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
255
4c6f40d4 256 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
257
258 switch (type) {
259 case EVENT_TYPE_ILL_DEV:
260 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
261 "address=0x%016llx flags=0x%04x]\n",
262 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
263 address, flags);
e3e59876 264 dump_dte_entry(devid);
90008ee4
JR
265 break;
266 case EVENT_TYPE_IO_FAULT:
267 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
268 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
269 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
270 domid, address, flags);
271 break;
272 case EVENT_TYPE_DEV_TAB_ERR:
273 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
274 "address=0x%016llx flags=0x%04x]\n",
275 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
276 address, flags);
277 break;
278 case EVENT_TYPE_PAGE_TAB_ERR:
279 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
280 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
281 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
282 domid, address, flags);
283 break;
284 case EVENT_TYPE_ILL_CMD:
285 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 286 reset_iommu_command_buffer(iommu);
945b4ac4 287 dump_command(address);
90008ee4
JR
288 break;
289 case EVENT_TYPE_CMD_HARD_ERR:
290 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
291 "flags=0x%04x]\n", address, flags);
292 break;
293 case EVENT_TYPE_IOTLB_INV_TO:
294 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
295 "address=0x%016llx]\n",
296 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
297 address);
298 break;
299 case EVENT_TYPE_INV_DEV_REQ:
300 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
301 "address=0x%016llx flags=0x%04x]\n",
302 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
303 address, flags);
304 break;
305 default:
306 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
307 }
308}
309
310static void iommu_poll_events(struct amd_iommu *iommu)
311{
312 u32 head, tail;
313 unsigned long flags;
314
315 spin_lock_irqsave(&iommu->lock, flags);
316
317 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
318 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
319
320 while (head != tail) {
a345b23b 321 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
322 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
323 }
324
325 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
326
327 spin_unlock_irqrestore(&iommu->lock, flags);
328}
329
a80dc3e0
JR
330irqreturn_t amd_iommu_int_handler(int irq, void *data)
331{
90008ee4
JR
332 struct amd_iommu *iommu;
333
3bd22172 334 for_each_iommu(iommu)
90008ee4
JR
335 iommu_poll_events(iommu);
336
337 return IRQ_HANDLED;
a80dc3e0
JR
338}
339
431b2a20
JR
340/****************************************************************************
341 *
342 * IOMMU command queuing functions
343 *
344 ****************************************************************************/
345
346/*
347 * Writes the command to the IOMMUs command buffer and informs the
348 * hardware about the new command. Must be called with iommu->lock held.
349 */
d6449536 350static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
351{
352 u32 tail, head;
353 u8 *target;
354
355 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 356 target = iommu->cmd_buf + tail;
a19ae1ec
JR
357 memcpy_toio(target, cmd, sizeof(*cmd));
358 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
359 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
360 if (tail == head)
361 return -ENOMEM;
362 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
363
364 return 0;
365}
366
431b2a20
JR
367/*
368 * General queuing function for commands. Takes iommu->lock and calls
369 * __iommu_queue_command().
370 */
d6449536 371static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
372{
373 unsigned long flags;
374 int ret;
375
376 spin_lock_irqsave(&iommu->lock, flags);
377 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 378 if (!ret)
0cfd7aa9 379 iommu->need_sync = true;
a19ae1ec
JR
380 spin_unlock_irqrestore(&iommu->lock, flags);
381
382 return ret;
383}
384
8d201968
JR
385/*
386 * This function waits until an IOMMU has completed a completion
387 * wait command
388 */
389static void __iommu_wait_for_completion(struct amd_iommu *iommu)
390{
391 int ready = 0;
392 unsigned status = 0;
393 unsigned long i = 0;
394
da49f6df
JR
395 INC_STATS_COUNTER(compl_wait);
396
8d201968
JR
397 while (!ready && (i < EXIT_LOOP_COUNT)) {
398 ++i;
399 /* wait for the bit to become one */
400 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
401 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
402 }
403
404 /* set bit back to zero */
405 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
406 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
407
6a1eddd2
JR
408 if (unlikely(i == EXIT_LOOP_COUNT)) {
409 spin_unlock(&iommu->lock);
410 reset_iommu_command_buffer(iommu);
411 spin_lock(&iommu->lock);
412 }
8d201968
JR
413}
414
415/*
416 * This function queues a completion wait command into the command
417 * buffer of an IOMMU
418 */
419static int __iommu_completion_wait(struct amd_iommu *iommu)
420{
421 struct iommu_cmd cmd;
422
423 memset(&cmd, 0, sizeof(cmd));
424 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
425 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
426
427 return __iommu_queue_command(iommu, &cmd);
428}
429
431b2a20
JR
430/*
431 * This function is called whenever we need to ensure that the IOMMU has
432 * completed execution of all commands we sent. It sends a
433 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
434 * us about that by writing a value to a physical address we pass with
435 * the command.
436 */
a19ae1ec
JR
437static int iommu_completion_wait(struct amd_iommu *iommu)
438{
8d201968
JR
439 int ret = 0;
440 unsigned long flags;
a19ae1ec 441
7e4f88da
JR
442 spin_lock_irqsave(&iommu->lock, flags);
443
09ee17eb
JR
444 if (!iommu->need_sync)
445 goto out;
446
8d201968 447 ret = __iommu_completion_wait(iommu);
09ee17eb 448
0cfd7aa9 449 iommu->need_sync = false;
a19ae1ec
JR
450
451 if (ret)
7e4f88da 452 goto out;
a19ae1ec 453
8d201968 454 __iommu_wait_for_completion(iommu);
84df8175 455
7e4f88da
JR
456out:
457 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
458
459 return 0;
460}
461
0518a3a4
JR
462static void iommu_flush_complete(struct protection_domain *domain)
463{
464 int i;
465
466 for (i = 0; i < amd_iommus_present; ++i) {
467 if (!domain->dev_iommu[i])
468 continue;
469
470 /*
471 * Devices of this domain are behind this IOMMU
472 * We need to wait for completion of all commands.
473 */
474 iommu_completion_wait(amd_iommus[i]);
475 }
476}
477
431b2a20
JR
478/*
479 * Command send function for invalidating a device table entry
480 */
a19ae1ec
JR
481static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
482{
d6449536 483 struct iommu_cmd cmd;
ee2fa743 484 int ret;
a19ae1ec
JR
485
486 BUG_ON(iommu == NULL);
487
488 memset(&cmd, 0, sizeof(cmd));
489 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
490 cmd.data[0] = devid;
491
ee2fa743
JR
492 ret = iommu_queue_command(iommu, &cmd);
493
ee2fa743 494 return ret;
a19ae1ec
JR
495}
496
237b6f33
JR
497static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
498 u16 domid, int pde, int s)
499{
500 memset(cmd, 0, sizeof(*cmd));
501 address &= PAGE_MASK;
502 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
503 cmd->data[1] |= domid;
504 cmd->data[2] = lower_32_bits(address);
505 cmd->data[3] = upper_32_bits(address);
506 if (s) /* size bit - we flush more than one 4kb page */
507 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
508 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
509 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
510}
511
431b2a20
JR
512/*
513 * Generic command send function for invalidaing TLB entries
514 */
a19ae1ec
JR
515static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
516 u64 address, u16 domid, int pde, int s)
517{
d6449536 518 struct iommu_cmd cmd;
ee2fa743 519 int ret;
a19ae1ec 520
237b6f33 521 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 522
ee2fa743
JR
523 ret = iommu_queue_command(iommu, &cmd);
524
ee2fa743 525 return ret;
a19ae1ec
JR
526}
527
431b2a20
JR
528/*
529 * TLB invalidation function which is called from the mapping functions.
530 * It invalidates a single PTE if the range to flush is within a single
531 * page. Otherwise it flushes the whole TLB of the IOMMU.
532 */
6de8ad9b
JR
533static void __iommu_flush_pages(struct protection_domain *domain,
534 u64 address, size_t size, int pde)
a19ae1ec 535{
6de8ad9b 536 int s = 0, i;
dcd1e92e 537 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
538
539 address &= PAGE_MASK;
540
999ba417
JR
541 if (pages > 1) {
542 /*
543 * If we have to flush more than one page, flush all
544 * TLB entries for this domain
545 */
546 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
547 s = 1;
a19ae1ec
JR
548 }
549
999ba417 550
6de8ad9b
JR
551 for (i = 0; i < amd_iommus_present; ++i) {
552 if (!domain->dev_iommu[i])
553 continue;
554
555 /*
556 * Devices of this domain are behind this IOMMU
557 * We need a TLB flush
558 */
559 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
560 domain->id, pde, s);
561 }
562
563 return;
564}
565
566static void iommu_flush_pages(struct protection_domain *domain,
567 u64 address, size_t size)
568{
569 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 570}
b6c02715 571
1c655773 572/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 573static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 574{
dcd1e92e 575 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
576}
577
42a49f96 578/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 579static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 580{
dcd1e92e 581 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
582}
583
43f49609 584/*
09b42804 585 * This function flushes all domains that have devices on the given IOMMU
43f49609 586 */
09b42804 587static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
43f49609 588{
09b42804
JR
589 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
590 struct protection_domain *domain;
e394d72a 591 unsigned long flags;
18811f55 592
09b42804 593 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
bfd1be18 594
09b42804
JR
595 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
596 if (domain->dev_iommu[iommu->index] == 0)
bfd1be18 597 continue;
09b42804
JR
598
599 spin_lock(&domain->lock);
600 iommu_queue_inv_iommu_pages(iommu, address, domain->id, 1, 1);
601 iommu_flush_complete(domain);
602 spin_unlock(&domain->lock);
bfd1be18 603 }
e394d72a 604
09b42804 605 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
e394d72a
JR
606}
607
09b42804
JR
608/*
609 * This function uses heavy locking and may disable irqs for some time. But
610 * this is no issue because it is only called during resume.
611 */
bfd1be18 612void amd_iommu_flush_all_domains(void)
e394d72a 613{
e3306664 614 struct protection_domain *domain;
09b42804
JR
615 unsigned long flags;
616
617 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
e394d72a 618
e3306664 619 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
09b42804 620 spin_lock(&domain->lock);
e3306664
JR
621 iommu_flush_tlb_pde(domain);
622 iommu_flush_complete(domain);
09b42804 623 spin_unlock(&domain->lock);
e3306664 624 }
09b42804
JR
625
626 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
bfd1be18
JR
627}
628
d586d785 629static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
bfd1be18
JR
630{
631 int i;
632
d586d785
JR
633 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
634 if (iommu != amd_iommu_rlookup_table[i])
bfd1be18 635 continue;
d586d785
JR
636
637 iommu_queue_inv_dev_entry(iommu, i);
638 iommu_completion_wait(iommu);
bfd1be18
JR
639 }
640}
641
6a0dbcbe 642static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
643{
644 struct amd_iommu *iommu;
645 int i;
646
647 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
648 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
649 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
650 continue;
651
652 iommu = amd_iommu_rlookup_table[i];
653 if (!iommu)
654 continue;
655
656 iommu_queue_inv_dev_entry(iommu, i);
657 iommu_completion_wait(iommu);
658 }
659}
660
a345b23b
JR
661static void reset_iommu_command_buffer(struct amd_iommu *iommu)
662{
663 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
664
b26e81b8
JR
665 if (iommu->reset_in_progress)
666 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
667
668 iommu->reset_in_progress = true;
669
a345b23b
JR
670 amd_iommu_reset_cmd_buffer(iommu);
671 flush_all_devices_for_iommu(iommu);
672 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
673
674 iommu->reset_in_progress = false;
a345b23b
JR
675}
676
6a0dbcbe
JR
677void amd_iommu_flush_all_devices(void)
678{
679 flush_devices_by_domain(NULL);
680}
681
431b2a20
JR
682/****************************************************************************
683 *
684 * The functions below are used the create the page table mappings for
685 * unity mapped regions.
686 *
687 ****************************************************************************/
688
308973d3
JR
689/*
690 * This function is used to add another level to an IO page table. Adding
691 * another level increases the size of the address space by 9 bits to a size up
692 * to 64 bits.
693 */
694static bool increase_address_space(struct protection_domain *domain,
695 gfp_t gfp)
696{
697 u64 *pte;
698
699 if (domain->mode == PAGE_MODE_6_LEVEL)
700 /* address space already 64 bit large */
701 return false;
702
703 pte = (void *)get_zeroed_page(gfp);
704 if (!pte)
705 return false;
706
707 *pte = PM_LEVEL_PDE(domain->mode,
708 virt_to_phys(domain->pt_root));
709 domain->pt_root = pte;
710 domain->mode += 1;
711 domain->updated = true;
712
713 return true;
714}
715
716static u64 *alloc_pte(struct protection_domain *domain,
717 unsigned long address,
718 int end_lvl,
719 u64 **pte_page,
720 gfp_t gfp)
721{
722 u64 *pte, *page;
723 int level;
724
725 while (address > PM_LEVEL_SIZE(domain->mode))
726 increase_address_space(domain, gfp);
727
728 level = domain->mode - 1;
729 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
730
731 while (level > end_lvl) {
732 if (!IOMMU_PTE_PRESENT(*pte)) {
733 page = (u64 *)get_zeroed_page(gfp);
734 if (!page)
735 return NULL;
736 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
737 }
738
739 level -= 1;
740
741 pte = IOMMU_PTE_PAGE(*pte);
742
743 if (pte_page && level == end_lvl)
744 *pte_page = pte;
745
746 pte = &pte[PM_LEVEL_INDEX(level, address)];
747 }
748
749 return pte;
750}
751
752/*
753 * This function checks if there is a PTE for a given dma address. If
754 * there is one, it returns the pointer to it.
755 */
756static u64 *fetch_pte(struct protection_domain *domain,
757 unsigned long address, int map_size)
758{
759 int level;
760 u64 *pte;
761
762 level = domain->mode - 1;
763 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
764
765 while (level > map_size) {
766 if (!IOMMU_PTE_PRESENT(*pte))
767 return NULL;
768
769 level -= 1;
770
771 pte = IOMMU_PTE_PAGE(*pte);
772 pte = &pte[PM_LEVEL_INDEX(level, address)];
773
774 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
775 pte = NULL;
776 break;
777 }
778 }
779
780 return pte;
781}
782
431b2a20
JR
783/*
784 * Generic mapping functions. It maps a physical address into a DMA
785 * address space. It allocates the page table pages if necessary.
786 * In the future it can be extended to a generic mapping function
787 * supporting all features of AMD IOMMU page tables like level skipping
788 * and full 64 bit address spaces.
789 */
38e817fe
JR
790static int iommu_map_page(struct protection_domain *dom,
791 unsigned long bus_addr,
792 unsigned long phys_addr,
abdc5eb3
JR
793 int prot,
794 int map_size)
bd0e5211 795{
8bda3092 796 u64 __pte, *pte;
bd0e5211
JR
797
798 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 799 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 800
abdc5eb3
JR
801 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
802 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
803
bad1cac2 804 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
805 return -EINVAL;
806
abdc5eb3 807 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
808
809 if (IOMMU_PTE_PRESENT(*pte))
810 return -EBUSY;
811
812 __pte = phys_addr | IOMMU_PTE_P;
813 if (prot & IOMMU_PROT_IR)
814 __pte |= IOMMU_PTE_IR;
815 if (prot & IOMMU_PROT_IW)
816 __pte |= IOMMU_PTE_IW;
817
818 *pte = __pte;
819
04bfdd84
JR
820 update_domain(dom);
821
bd0e5211
JR
822 return 0;
823}
824
eb74ff6c 825static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 826 unsigned long bus_addr, int map_size)
eb74ff6c 827{
a6b256b4 828 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 829
38a76eee
JR
830 if (pte)
831 *pte = 0;
eb74ff6c 832}
eb74ff6c 833
431b2a20
JR
834/*
835 * This function checks if a specific unity mapping entry is needed for
836 * this specific IOMMU.
837 */
bd0e5211
JR
838static int iommu_for_unity_map(struct amd_iommu *iommu,
839 struct unity_map_entry *entry)
840{
841 u16 bdf, i;
842
843 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
844 bdf = amd_iommu_alias_table[i];
845 if (amd_iommu_rlookup_table[bdf] == iommu)
846 return 1;
847 }
848
849 return 0;
850}
851
431b2a20
JR
852/*
853 * This function actually applies the mapping to the page table of the
854 * dma_ops domain.
855 */
bd0e5211
JR
856static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
857 struct unity_map_entry *e)
858{
859 u64 addr;
860 int ret;
861
862 for (addr = e->address_start; addr < e->address_end;
863 addr += PAGE_SIZE) {
abdc5eb3
JR
864 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
865 PM_MAP_4k);
bd0e5211
JR
866 if (ret)
867 return ret;
868 /*
869 * if unity mapping is in aperture range mark the page
870 * as allocated in the aperture
871 */
872 if (addr < dma_dom->aperture_size)
c3239567 873 __set_bit(addr >> PAGE_SHIFT,
384de729 874 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
875 }
876
877 return 0;
878}
879
171e7b37
JR
880/*
881 * Init the unity mappings for a specific IOMMU in the system
882 *
883 * Basically iterates over all unity mapping entries and applies them to
884 * the default domain DMA of that IOMMU if necessary.
885 */
886static int iommu_init_unity_mappings(struct amd_iommu *iommu)
887{
888 struct unity_map_entry *entry;
889 int ret;
890
891 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
892 if (!iommu_for_unity_map(iommu, entry))
893 continue;
894 ret = dma_ops_unity_map(iommu->default_dom, entry);
895 if (ret)
896 return ret;
897 }
898
899 return 0;
900}
901
431b2a20
JR
902/*
903 * Inits the unity mappings required for a specific device
904 */
bd0e5211
JR
905static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
906 u16 devid)
907{
908 struct unity_map_entry *e;
909 int ret;
910
911 list_for_each_entry(e, &amd_iommu_unity_map, list) {
912 if (!(devid >= e->devid_start && devid <= e->devid_end))
913 continue;
914 ret = dma_ops_unity_map(dma_dom, e);
915 if (ret)
916 return ret;
917 }
918
919 return 0;
920}
921
431b2a20
JR
922/****************************************************************************
923 *
924 * The next functions belong to the address allocator for the dma_ops
925 * interface functions. They work like the allocators in the other IOMMU
926 * drivers. Its basically a bitmap which marks the allocated pages in
927 * the aperture. Maybe it could be enhanced in the future to a more
928 * efficient allocator.
929 *
930 ****************************************************************************/
d3086444 931
431b2a20 932/*
384de729 933 * The address allocator core functions.
431b2a20
JR
934 *
935 * called with domain->lock held
936 */
384de729 937
171e7b37
JR
938/*
939 * Used to reserve address ranges in the aperture (e.g. for exclusion
940 * ranges.
941 */
942static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
943 unsigned long start_page,
944 unsigned int pages)
945{
946 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
947
948 if (start_page + pages > last_page)
949 pages = last_page - start_page;
950
951 for (i = start_page; i < start_page + pages; ++i) {
952 int index = i / APERTURE_RANGE_PAGES;
953 int page = i % APERTURE_RANGE_PAGES;
954 __set_bit(page, dom->aperture[index]->bitmap);
955 }
956}
957
9cabe89b
JR
958/*
959 * This function is used to add a new aperture range to an existing
960 * aperture in case of dma_ops domain allocation or address allocation
961 * failure.
962 */
576175c2 963static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
964 bool populate, gfp_t gfp)
965{
966 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 967 struct amd_iommu *iommu;
00cd122a 968 int i;
9cabe89b 969
f5e9705c
JR
970#ifdef CONFIG_IOMMU_STRESS
971 populate = false;
972#endif
973
9cabe89b
JR
974 if (index >= APERTURE_MAX_RANGES)
975 return -ENOMEM;
976
977 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
978 if (!dma_dom->aperture[index])
979 return -ENOMEM;
980
981 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
982 if (!dma_dom->aperture[index]->bitmap)
983 goto out_free;
984
985 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
986
987 if (populate) {
988 unsigned long address = dma_dom->aperture_size;
989 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
990 u64 *pte, *pte_page;
991
992 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 993 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
994 &pte_page, gfp);
995 if (!pte)
996 goto out_free;
997
998 dma_dom->aperture[index]->pte_pages[i] = pte_page;
999
1000 address += APERTURE_RANGE_SIZE / 64;
1001 }
1002 }
1003
1004 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1005
00cd122a 1006 /* Intialize the exclusion range if necessary */
576175c2
JR
1007 for_each_iommu(iommu) {
1008 if (iommu->exclusion_start &&
1009 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1010 && iommu->exclusion_start < dma_dom->aperture_size) {
1011 unsigned long startpage;
1012 int pages = iommu_num_pages(iommu->exclusion_start,
1013 iommu->exclusion_length,
1014 PAGE_SIZE);
1015 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1016 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1017 }
00cd122a
JR
1018 }
1019
1020 /*
1021 * Check for areas already mapped as present in the new aperture
1022 * range and mark those pages as reserved in the allocator. Such
1023 * mappings may already exist as a result of requested unity
1024 * mappings for devices.
1025 */
1026 for (i = dma_dom->aperture[index]->offset;
1027 i < dma_dom->aperture_size;
1028 i += PAGE_SIZE) {
a6b256b4 1029 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
1030 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1031 continue;
1032
1033 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1034 }
1035
04bfdd84
JR
1036 update_domain(&dma_dom->domain);
1037
9cabe89b
JR
1038 return 0;
1039
1040out_free:
04bfdd84
JR
1041 update_domain(&dma_dom->domain);
1042
9cabe89b
JR
1043 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1044
1045 kfree(dma_dom->aperture[index]);
1046 dma_dom->aperture[index] = NULL;
1047
1048 return -ENOMEM;
1049}
1050
384de729
JR
1051static unsigned long dma_ops_area_alloc(struct device *dev,
1052 struct dma_ops_domain *dom,
1053 unsigned int pages,
1054 unsigned long align_mask,
1055 u64 dma_mask,
1056 unsigned long start)
1057{
803b8cb4 1058 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1059 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1060 int i = start >> APERTURE_RANGE_SHIFT;
1061 unsigned long boundary_size;
1062 unsigned long address = -1;
1063 unsigned long limit;
1064
803b8cb4
JR
1065 next_bit >>= PAGE_SHIFT;
1066
384de729
JR
1067 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1068 PAGE_SIZE) >> PAGE_SHIFT;
1069
1070 for (;i < max_index; ++i) {
1071 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1072
1073 if (dom->aperture[i]->offset >= dma_mask)
1074 break;
1075
1076 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1077 dma_mask >> PAGE_SHIFT);
1078
1079 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1080 limit, next_bit, pages, 0,
1081 boundary_size, align_mask);
1082 if (address != -1) {
1083 address = dom->aperture[i]->offset +
1084 (address << PAGE_SHIFT);
803b8cb4 1085 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1086 break;
1087 }
1088
1089 next_bit = 0;
1090 }
1091
1092 return address;
1093}
1094
d3086444
JR
1095static unsigned long dma_ops_alloc_addresses(struct device *dev,
1096 struct dma_ops_domain *dom,
6d4f343f 1097 unsigned int pages,
832a90c3
JR
1098 unsigned long align_mask,
1099 u64 dma_mask)
d3086444 1100{
d3086444 1101 unsigned long address;
d3086444 1102
fe16f088
JR
1103#ifdef CONFIG_IOMMU_STRESS
1104 dom->next_address = 0;
1105 dom->need_flush = true;
1106#endif
d3086444 1107
384de729 1108 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1109 dma_mask, dom->next_address);
d3086444 1110
1c655773 1111 if (address == -1) {
803b8cb4 1112 dom->next_address = 0;
384de729
JR
1113 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1114 dma_mask, 0);
1c655773
JR
1115 dom->need_flush = true;
1116 }
d3086444 1117
384de729 1118 if (unlikely(address == -1))
8fd524b3 1119 address = DMA_ERROR_CODE;
d3086444
JR
1120
1121 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1122
1123 return address;
1124}
1125
431b2a20
JR
1126/*
1127 * The address free function.
1128 *
1129 * called with domain->lock held
1130 */
d3086444
JR
1131static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1132 unsigned long address,
1133 unsigned int pages)
1134{
384de729
JR
1135 unsigned i = address >> APERTURE_RANGE_SHIFT;
1136 struct aperture_range *range = dom->aperture[i];
80be308d 1137
384de729
JR
1138 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1139
47bccd6b
JR
1140#ifdef CONFIG_IOMMU_STRESS
1141 if (i < 4)
1142 return;
1143#endif
80be308d 1144
803b8cb4 1145 if (address >= dom->next_address)
80be308d 1146 dom->need_flush = true;
384de729
JR
1147
1148 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1149
384de729
JR
1150 iommu_area_free(range->bitmap, address, pages);
1151
d3086444
JR
1152}
1153
431b2a20
JR
1154/****************************************************************************
1155 *
1156 * The next functions belong to the domain allocation. A domain is
1157 * allocated for every IOMMU as the default domain. If device isolation
1158 * is enabled, every device get its own domain. The most important thing
1159 * about domains is the page table mapping the DMA address space they
1160 * contain.
1161 *
1162 ****************************************************************************/
1163
aeb26f55
JR
1164/*
1165 * This function adds a protection domain to the global protection domain list
1166 */
1167static void add_domain_to_list(struct protection_domain *domain)
1168{
1169 unsigned long flags;
1170
1171 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1172 list_add(&domain->list, &amd_iommu_pd_list);
1173 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1174}
1175
1176/*
1177 * This function removes a protection domain to the global
1178 * protection domain list
1179 */
1180static void del_domain_from_list(struct protection_domain *domain)
1181{
1182 unsigned long flags;
1183
1184 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1185 list_del(&domain->list);
1186 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1187}
1188
ec487d1a
JR
1189static u16 domain_id_alloc(void)
1190{
1191 unsigned long flags;
1192 int id;
1193
1194 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1195 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1196 BUG_ON(id == 0);
1197 if (id > 0 && id < MAX_DOMAIN_ID)
1198 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1199 else
1200 id = 0;
1201 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1202
1203 return id;
1204}
1205
a2acfb75
JR
1206static void domain_id_free(int id)
1207{
1208 unsigned long flags;
1209
1210 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1211 if (id > 0 && id < MAX_DOMAIN_ID)
1212 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1213 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1214}
a2acfb75 1215
86db2e5d 1216static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1217{
1218 int i, j;
1219 u64 *p1, *p2, *p3;
1220
86db2e5d 1221 p1 = domain->pt_root;
ec487d1a
JR
1222
1223 if (!p1)
1224 return;
1225
1226 for (i = 0; i < 512; ++i) {
1227 if (!IOMMU_PTE_PRESENT(p1[i]))
1228 continue;
1229
1230 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1231 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1232 if (!IOMMU_PTE_PRESENT(p2[j]))
1233 continue;
1234 p3 = IOMMU_PTE_PAGE(p2[j]);
1235 free_page((unsigned long)p3);
1236 }
1237
1238 free_page((unsigned long)p2);
1239 }
1240
1241 free_page((unsigned long)p1);
86db2e5d
JR
1242
1243 domain->pt_root = NULL;
ec487d1a
JR
1244}
1245
431b2a20
JR
1246/*
1247 * Free a domain, only used if something went wrong in the
1248 * allocation path and we need to free an already allocated page table
1249 */
ec487d1a
JR
1250static void dma_ops_domain_free(struct dma_ops_domain *dom)
1251{
384de729
JR
1252 int i;
1253
ec487d1a
JR
1254 if (!dom)
1255 return;
1256
aeb26f55
JR
1257 del_domain_from_list(&dom->domain);
1258
86db2e5d 1259 free_pagetable(&dom->domain);
ec487d1a 1260
384de729
JR
1261 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1262 if (!dom->aperture[i])
1263 continue;
1264 free_page((unsigned long)dom->aperture[i]->bitmap);
1265 kfree(dom->aperture[i]);
1266 }
ec487d1a
JR
1267
1268 kfree(dom);
1269}
1270
431b2a20
JR
1271/*
1272 * Allocates a new protection domain usable for the dma_ops functions.
1273 * It also intializes the page table and the address allocator data
1274 * structures required for the dma_ops interface
1275 */
87a64d52 1276static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1277{
1278 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1279
1280 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1281 if (!dma_dom)
1282 return NULL;
1283
1284 spin_lock_init(&dma_dom->domain.lock);
1285
1286 dma_dom->domain.id = domain_id_alloc();
1287 if (dma_dom->domain.id == 0)
1288 goto free_dma_dom;
7c392cbe 1289 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1290 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1291 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1292 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1293 dma_dom->domain.priv = dma_dom;
1294 if (!dma_dom->domain.pt_root)
1295 goto free_dma_dom;
ec487d1a 1296
1c655773 1297 dma_dom->need_flush = false;
bd60b735 1298 dma_dom->target_dev = 0xffff;
1c655773 1299
aeb26f55
JR
1300 add_domain_to_list(&dma_dom->domain);
1301
576175c2 1302 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1303 goto free_dma_dom;
ec487d1a 1304
431b2a20 1305 /*
ec487d1a
JR
1306 * mark the first page as allocated so we never return 0 as
1307 * a valid dma-address. So we can use 0 as error value
431b2a20 1308 */
384de729 1309 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1310 dma_dom->next_address = 0;
ec487d1a 1311
ec487d1a
JR
1312
1313 return dma_dom;
1314
1315free_dma_dom:
1316 dma_ops_domain_free(dma_dom);
1317
1318 return NULL;
1319}
1320
5b28df6f
JR
1321/*
1322 * little helper function to check whether a given protection domain is a
1323 * dma_ops domain
1324 */
1325static bool dma_ops_domain(struct protection_domain *domain)
1326{
1327 return domain->flags & PD_DMA_OPS_MASK;
1328}
1329
407d733e 1330static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1331{
b20ac0d4 1332 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1333
15898bbc
JR
1334 BUG_ON(amd_iommu_pd_table[devid] != NULL);
1335
38ddf41b
JR
1336 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1337 << DEV_ENTRY_MODE_SHIFT;
1338 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1339
b20ac0d4 1340 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1341 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1342 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
b20ac0d4
JR
1343
1344 amd_iommu_pd_table[devid] = domain;
15898bbc 1345
15898bbc
JR
1346}
1347
1348static void clear_dte_entry(u16 devid)
1349{
1350 struct protection_domain *domain = amd_iommu_pd_table[devid];
15898bbc
JR
1351
1352 BUG_ON(domain == NULL);
1353
1354 /* remove domain from the lookup table */
1355 amd_iommu_pd_table[devid] = NULL;
1356
1357 /* remove entry from the device table seen by the hardware */
1358 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1359 amd_iommu_dev_table[devid].data[1] = 0;
1360 amd_iommu_dev_table[devid].data[2] = 0;
1361
1362 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1363}
1364
1365static void do_attach(struct device *dev, struct protection_domain *domain)
1366{
1367 struct iommu_dev_data *dev_data;
1368 struct amd_iommu *iommu;
1369 u16 devid;
1370
1371 devid = get_device_id(dev);
1372 iommu = amd_iommu_rlookup_table[devid];
1373 dev_data = get_dev_data(dev);
1374
1375 /* Update data structures */
1376 dev_data->domain = domain;
1377 list_add(&dev_data->list, &domain->dev_list);
1378 set_dte_entry(devid, domain);
1379
1380 /* Do reference counting */
1381 domain->dev_iommu[iommu->index] += 1;
1382 domain->dev_cnt += 1;
1383
1384 /* Flush the DTE entry */
1385 iommu_queue_inv_dev_entry(iommu, devid);
1386}
1387
1388static void do_detach(struct device *dev)
1389{
1390 struct iommu_dev_data *dev_data;
1391 struct amd_iommu *iommu;
1392 u16 devid;
1393
1394 devid = get_device_id(dev);
1395 iommu = amd_iommu_rlookup_table[devid];
1396 dev_data = get_dev_data(dev);
15898bbc
JR
1397
1398 /* decrease reference counters */
7f760ddd
JR
1399 dev_data->domain->dev_iommu[iommu->index] -= 1;
1400 dev_data->domain->dev_cnt -= 1;
1401
1402 /* Update data structures */
1403 dev_data->domain = NULL;
1404 list_del(&dev_data->list);
1405 clear_dte_entry(devid);
15898bbc 1406
7f760ddd 1407 /* Flush the DTE entry */
15898bbc 1408 iommu_queue_inv_dev_entry(iommu, devid);
2b681faf
JR
1409}
1410
1411/*
1412 * If a device is not yet associated with a domain, this function does
1413 * assigns it visible for the hardware
1414 */
15898bbc
JR
1415static int __attach_device(struct device *dev,
1416 struct protection_domain *domain)
2b681faf 1417{
657cbb6b 1418 struct iommu_dev_data *dev_data, *alias_data;
657cbb6b 1419
657cbb6b
JR
1420 dev_data = get_dev_data(dev);
1421 alias_data = get_dev_data(dev_data->alias);
7f760ddd 1422
657cbb6b
JR
1423 if (!alias_data)
1424 return -EINVAL;
15898bbc 1425
2b681faf
JR
1426 /* lock domain */
1427 spin_lock(&domain->lock);
1428
15898bbc 1429 /* Some sanity checks */
657cbb6b
JR
1430 if (alias_data->domain != NULL &&
1431 alias_data->domain != domain)
15898bbc 1432 return -EBUSY;
eba6ac60 1433
657cbb6b
JR
1434 if (dev_data->domain != NULL &&
1435 dev_data->domain != domain)
15898bbc
JR
1436 return -EBUSY;
1437
1438 /* Do real assignment */
7f760ddd
JR
1439 if (dev_data->alias != dev) {
1440 alias_data = get_dev_data(dev_data->alias);
1441 if (alias_data->domain == NULL)
1442 do_attach(dev_data->alias, domain);
24100055
JR
1443
1444 atomic_inc(&alias_data->bind);
657cbb6b 1445 }
15898bbc 1446
7f760ddd
JR
1447 if (dev_data->domain == NULL)
1448 do_attach(dev, domain);
eba6ac60 1449
24100055
JR
1450 atomic_inc(&dev_data->bind);
1451
eba6ac60
JR
1452 /* ready */
1453 spin_unlock(&domain->lock);
15898bbc
JR
1454
1455 return 0;
0feae533 1456}
b20ac0d4 1457
407d733e
JR
1458/*
1459 * If a device is not yet associated with a domain, this function does
1460 * assigns it visible for the hardware
1461 */
15898bbc
JR
1462static int attach_device(struct device *dev,
1463 struct protection_domain *domain)
0feae533 1464{
eba6ac60 1465 unsigned long flags;
15898bbc 1466 int ret;
eba6ac60
JR
1467
1468 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1469 ret = __attach_device(dev, domain);
b20ac0d4
JR
1470 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1471
0feae533
JR
1472 /*
1473 * We might boot into a crash-kernel here. The crashed kernel
1474 * left the caches in the IOMMU dirty. So we have to flush
1475 * here to evict all dirty stuff.
1476 */
dcd1e92e 1477 iommu_flush_tlb_pde(domain);
15898bbc
JR
1478
1479 return ret;
b20ac0d4
JR
1480}
1481
355bf553
JR
1482/*
1483 * Removes a device from a protection domain (unlocked)
1484 */
15898bbc 1485static void __detach_device(struct device *dev)
355bf553 1486{
657cbb6b 1487 struct iommu_dev_data *dev_data = get_dev_data(dev);
24100055 1488 struct iommu_dev_data *alias_data;
7c392cbe 1489 unsigned long flags;
c4596114 1490
7f760ddd 1491 BUG_ON(!dev_data->domain);
355bf553 1492
7f760ddd 1493 spin_lock_irqsave(&dev_data->domain->lock, flags);
24100055 1494
7f760ddd 1495 if (dev_data->alias != dev) {
24100055 1496 alias_data = get_dev_data(dev_data->alias);
7f760ddd
JR
1497 if (atomic_dec_and_test(&alias_data->bind))
1498 do_detach(dev_data->alias);
24100055
JR
1499 }
1500
7f760ddd
JR
1501 if (atomic_dec_and_test(&dev_data->bind))
1502 do_detach(dev);
1503
1504 spin_unlock_irqrestore(&dev_data->domain->lock, flags);
21129f78
JR
1505
1506 /*
1507 * If we run in passthrough mode the device must be assigned to the
1508 * passthrough domain if it is detached from any other domain
1509 */
24100055 1510 if (iommu_pass_through && dev_data->domain == NULL)
15898bbc 1511 __attach_device(dev, pt_domain);
355bf553
JR
1512}
1513
1514/*
1515 * Removes a device from a protection domain (with devtable_lock held)
1516 */
15898bbc 1517static void detach_device(struct device *dev)
355bf553
JR
1518{
1519 unsigned long flags;
1520
1521 /* lock device table */
1522 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1523 __detach_device(dev);
355bf553
JR
1524 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1525}
e275a2a0 1526
15898bbc
JR
1527/*
1528 * Find out the protection domain structure for a given PCI device. This
1529 * will give us the pointer to the page table root for example.
1530 */
1531static struct protection_domain *domain_for_device(struct device *dev)
1532{
1533 struct protection_domain *dom;
657cbb6b 1534 struct iommu_dev_data *dev_data, *alias_data;
15898bbc
JR
1535 unsigned long flags;
1536 u16 devid, alias;
1537
657cbb6b
JR
1538 devid = get_device_id(dev);
1539 alias = amd_iommu_alias_table[devid];
1540 dev_data = get_dev_data(dev);
1541 alias_data = get_dev_data(dev_data->alias);
1542 if (!alias_data)
1543 return NULL;
15898bbc
JR
1544
1545 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
657cbb6b 1546 dom = dev_data->domain;
15898bbc 1547 if (dom == NULL &&
657cbb6b
JR
1548 alias_data->domain != NULL) {
1549 __attach_device(dev, alias_data->domain);
1550 dom = alias_data->domain;
15898bbc
JR
1551 }
1552
1553 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1554
1555 return dom;
1556}
1557
e275a2a0
JR
1558static int device_change_notifier(struct notifier_block *nb,
1559 unsigned long action, void *data)
1560{
1561 struct device *dev = data;
98fc5a69 1562 u16 devid;
e275a2a0
JR
1563 struct protection_domain *domain;
1564 struct dma_ops_domain *dma_domain;
1565 struct amd_iommu *iommu;
1ac4cbbc 1566 unsigned long flags;
e275a2a0 1567
98fc5a69
JR
1568 if (!check_device(dev))
1569 return 0;
e275a2a0 1570
98fc5a69
JR
1571 devid = get_device_id(dev);
1572 iommu = amd_iommu_rlookup_table[devid];
e275a2a0
JR
1573
1574 switch (action) {
c1eee67b 1575 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
1576
1577 domain = domain_for_device(dev);
1578
e275a2a0
JR
1579 if (!domain)
1580 goto out;
a1ca331c
JR
1581 if (iommu_pass_through)
1582 break;
15898bbc 1583 detach_device(dev);
1ac4cbbc
JR
1584 break;
1585 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
1586
1587 iommu_init_device(dev);
1588
1589 domain = domain_for_device(dev);
1590
1ac4cbbc
JR
1591 /* allocate a protection domain if a device is added */
1592 dma_domain = find_protection_domain(devid);
1593 if (dma_domain)
1594 goto out;
87a64d52 1595 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1596 if (!dma_domain)
1597 goto out;
1598 dma_domain->target_dev = devid;
1599
1600 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1601 list_add_tail(&dma_domain->list, &iommu_pd_list);
1602 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1603
e275a2a0 1604 break;
657cbb6b
JR
1605 case BUS_NOTIFY_DEL_DEVICE:
1606
1607 iommu_uninit_device(dev);
1608
e275a2a0
JR
1609 default:
1610 goto out;
1611 }
1612
1613 iommu_queue_inv_dev_entry(iommu, devid);
1614 iommu_completion_wait(iommu);
1615
1616out:
1617 return 0;
1618}
1619
b25ae679 1620static struct notifier_block device_nb = {
e275a2a0
JR
1621 .notifier_call = device_change_notifier,
1622};
355bf553 1623
431b2a20
JR
1624/*****************************************************************************
1625 *
1626 * The next functions belong to the dma_ops mapping/unmapping code.
1627 *
1628 *****************************************************************************/
1629
1630/*
1631 * In the dma_ops path we only have the struct device. This function
1632 * finds the corresponding IOMMU, the protection domain and the
1633 * requestor id for a given device.
1634 * If the device is not yet associated with a domain this is also done
1635 * in this function.
1636 */
94f6d190 1637static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1638{
94f6d190 1639 struct protection_domain *domain;
b20ac0d4 1640 struct dma_ops_domain *dma_dom;
94f6d190 1641 u16 devid = get_device_id(dev);
b20ac0d4 1642
f99c0f1c 1643 if (!check_device(dev))
94f6d190 1644 return ERR_PTR(-EINVAL);
b20ac0d4 1645
94f6d190
JR
1646 domain = domain_for_device(dev);
1647 if (domain != NULL && !dma_ops_domain(domain))
1648 return ERR_PTR(-EBUSY);
f99c0f1c 1649
94f6d190
JR
1650 if (domain != NULL)
1651 return domain;
b20ac0d4 1652
15898bbc 1653 /* Device not bount yet - bind it */
94f6d190 1654 dma_dom = find_protection_domain(devid);
15898bbc 1655 if (!dma_dom)
94f6d190
JR
1656 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1657 attach_device(dev, &dma_dom->domain);
15898bbc 1658 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1659 dma_dom->domain.id, dev_name(dev));
f91ba190 1660
94f6d190 1661 return &dma_dom->domain;
b20ac0d4
JR
1662}
1663
04bfdd84
JR
1664static void update_device_table(struct protection_domain *domain)
1665{
2b681faf 1666 unsigned long flags;
04bfdd84
JR
1667 int i;
1668
1669 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1670 if (amd_iommu_pd_table[i] != domain)
1671 continue;
2b681faf 1672 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
04bfdd84 1673 set_dte_entry(i, domain);
2b681faf 1674 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
04bfdd84
JR
1675 }
1676}
1677
1678static void update_domain(struct protection_domain *domain)
1679{
1680 if (!domain->updated)
1681 return;
1682
1683 update_device_table(domain);
1684 flush_devices_by_domain(domain);
601367d7 1685 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1686
1687 domain->updated = false;
1688}
1689
8bda3092
JR
1690/*
1691 * This function fetches the PTE for a given address in the aperture
1692 */
1693static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1694 unsigned long address)
1695{
384de729 1696 struct aperture_range *aperture;
8bda3092
JR
1697 u64 *pte, *pte_page;
1698
384de729
JR
1699 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1700 if (!aperture)
1701 return NULL;
1702
1703 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1704 if (!pte) {
abdc5eb3
JR
1705 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1706 GFP_ATOMIC);
384de729
JR
1707 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1708 } else
8c8c143c 1709 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1710
04bfdd84 1711 update_domain(&dom->domain);
8bda3092
JR
1712
1713 return pte;
1714}
1715
431b2a20
JR
1716/*
1717 * This is the generic map function. It maps one 4kb page at paddr to
1718 * the given address in the DMA address space for the domain.
1719 */
680525e0 1720static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1721 unsigned long address,
1722 phys_addr_t paddr,
1723 int direction)
1724{
1725 u64 *pte, __pte;
1726
1727 WARN_ON(address > dom->aperture_size);
1728
1729 paddr &= PAGE_MASK;
1730
8bda3092 1731 pte = dma_ops_get_pte(dom, address);
53812c11 1732 if (!pte)
8fd524b3 1733 return DMA_ERROR_CODE;
cb76c322
JR
1734
1735 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1736
1737 if (direction == DMA_TO_DEVICE)
1738 __pte |= IOMMU_PTE_IR;
1739 else if (direction == DMA_FROM_DEVICE)
1740 __pte |= IOMMU_PTE_IW;
1741 else if (direction == DMA_BIDIRECTIONAL)
1742 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1743
1744 WARN_ON(*pte);
1745
1746 *pte = __pte;
1747
1748 return (dma_addr_t)address;
1749}
1750
431b2a20
JR
1751/*
1752 * The generic unmapping function for on page in the DMA address space.
1753 */
680525e0 1754static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
1755 unsigned long address)
1756{
384de729 1757 struct aperture_range *aperture;
cb76c322
JR
1758 u64 *pte;
1759
1760 if (address >= dom->aperture_size)
1761 return;
1762
384de729
JR
1763 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1764 if (!aperture)
1765 return;
1766
1767 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1768 if (!pte)
1769 return;
cb76c322 1770
8c8c143c 1771 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1772
1773 WARN_ON(!*pte);
1774
1775 *pte = 0ULL;
1776}
1777
431b2a20
JR
1778/*
1779 * This function contains common code for mapping of a physically
24f81160
JR
1780 * contiguous memory region into DMA address space. It is used by all
1781 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1782 * Must be called with the domain lock held.
1783 */
cb76c322 1784static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
1785 struct dma_ops_domain *dma_dom,
1786 phys_addr_t paddr,
1787 size_t size,
6d4f343f 1788 int dir,
832a90c3
JR
1789 bool align,
1790 u64 dma_mask)
cb76c322
JR
1791{
1792 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1793 dma_addr_t address, start, ret;
cb76c322 1794 unsigned int pages;
6d4f343f 1795 unsigned long align_mask = 0;
cb76c322
JR
1796 int i;
1797
e3c449f5 1798 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1799 paddr &= PAGE_MASK;
1800
8ecaf8f1
JR
1801 INC_STATS_COUNTER(total_map_requests);
1802
c1858976
JR
1803 if (pages > 1)
1804 INC_STATS_COUNTER(cross_page);
1805
6d4f343f
JR
1806 if (align)
1807 align_mask = (1UL << get_order(size)) - 1;
1808
11b83888 1809retry:
832a90c3
JR
1810 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1811 dma_mask);
8fd524b3 1812 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1813 /*
1814 * setting next_address here will let the address
1815 * allocator only scan the new allocated range in the
1816 * first run. This is a small optimization.
1817 */
1818 dma_dom->next_address = dma_dom->aperture_size;
1819
576175c2 1820 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
1821 goto out;
1822
1823 /*
1824 * aperture was sucessfully enlarged by 128 MB, try
1825 * allocation again
1826 */
1827 goto retry;
1828 }
cb76c322
JR
1829
1830 start = address;
1831 for (i = 0; i < pages; ++i) {
680525e0 1832 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 1833 if (ret == DMA_ERROR_CODE)
53812c11
JR
1834 goto out_unmap;
1835
cb76c322
JR
1836 paddr += PAGE_SIZE;
1837 start += PAGE_SIZE;
1838 }
1839 address += offset;
1840
5774f7c5
JR
1841 ADD_STATS_COUNTER(alloced_io_mem, size);
1842
afa9fdc2 1843 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1844 iommu_flush_tlb(&dma_dom->domain);
1c655773 1845 dma_dom->need_flush = false;
318afd41 1846 } else if (unlikely(amd_iommu_np_cache))
6de8ad9b 1847 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1848
cb76c322
JR
1849out:
1850 return address;
53812c11
JR
1851
1852out_unmap:
1853
1854 for (--i; i >= 0; --i) {
1855 start -= PAGE_SIZE;
680525e0 1856 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
1857 }
1858
1859 dma_ops_free_addresses(dma_dom, address, pages);
1860
8fd524b3 1861 return DMA_ERROR_CODE;
cb76c322
JR
1862}
1863
431b2a20
JR
1864/*
1865 * Does the reverse of the __map_single function. Must be called with
1866 * the domain lock held too
1867 */
cd8c82e8 1868static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
1869 dma_addr_t dma_addr,
1870 size_t size,
1871 int dir)
1872{
1873 dma_addr_t i, start;
1874 unsigned int pages;
1875
8fd524b3 1876 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1877 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1878 return;
1879
e3c449f5 1880 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1881 dma_addr &= PAGE_MASK;
1882 start = dma_addr;
1883
1884 for (i = 0; i < pages; ++i) {
680525e0 1885 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
1886 start += PAGE_SIZE;
1887 }
1888
5774f7c5
JR
1889 SUB_STATS_COUNTER(alloced_io_mem, size);
1890
cb76c322 1891 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1892
80be308d 1893 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
6de8ad9b 1894 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
80be308d
JR
1895 dma_dom->need_flush = false;
1896 }
cb76c322
JR
1897}
1898
431b2a20
JR
1899/*
1900 * The exported map_single function for dma_ops.
1901 */
51491367
FT
1902static dma_addr_t map_page(struct device *dev, struct page *page,
1903 unsigned long offset, size_t size,
1904 enum dma_data_direction dir,
1905 struct dma_attrs *attrs)
4da70b9e
JR
1906{
1907 unsigned long flags;
4da70b9e 1908 struct protection_domain *domain;
4da70b9e 1909 dma_addr_t addr;
832a90c3 1910 u64 dma_mask;
51491367 1911 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1912
0f2a86f2
JR
1913 INC_STATS_COUNTER(cnt_map_single);
1914
94f6d190
JR
1915 domain = get_domain(dev);
1916 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 1917 return (dma_addr_t)paddr;
94f6d190
JR
1918 else if (IS_ERR(domain))
1919 return DMA_ERROR_CODE;
4da70b9e 1920
f99c0f1c
JR
1921 dma_mask = *dev->dma_mask;
1922
4da70b9e 1923 spin_lock_irqsave(&domain->lock, flags);
94f6d190 1924
cd8c82e8 1925 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 1926 dma_mask);
8fd524b3 1927 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1928 goto out;
1929
0518a3a4 1930 iommu_flush_complete(domain);
4da70b9e
JR
1931
1932out:
1933 spin_unlock_irqrestore(&domain->lock, flags);
1934
1935 return addr;
1936}
1937
431b2a20
JR
1938/*
1939 * The exported unmap_single function for dma_ops.
1940 */
51491367
FT
1941static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1942 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1943{
1944 unsigned long flags;
4da70b9e 1945 struct protection_domain *domain;
4da70b9e 1946
146a6917
JR
1947 INC_STATS_COUNTER(cnt_unmap_single);
1948
94f6d190
JR
1949 domain = get_domain(dev);
1950 if (IS_ERR(domain))
5b28df6f
JR
1951 return;
1952
4da70b9e
JR
1953 spin_lock_irqsave(&domain->lock, flags);
1954
cd8c82e8 1955 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 1956
0518a3a4 1957 iommu_flush_complete(domain);
4da70b9e
JR
1958
1959 spin_unlock_irqrestore(&domain->lock, flags);
1960}
1961
431b2a20
JR
1962/*
1963 * This is a special map_sg function which is used if we should map a
1964 * device which is not handled by an AMD IOMMU in the system.
1965 */
65b050ad
JR
1966static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1967 int nelems, int dir)
1968{
1969 struct scatterlist *s;
1970 int i;
1971
1972 for_each_sg(sglist, s, nelems, i) {
1973 s->dma_address = (dma_addr_t)sg_phys(s);
1974 s->dma_length = s->length;
1975 }
1976
1977 return nelems;
1978}
1979
431b2a20
JR
1980/*
1981 * The exported map_sg function for dma_ops (handles scatter-gather
1982 * lists).
1983 */
65b050ad 1984static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1985 int nelems, enum dma_data_direction dir,
1986 struct dma_attrs *attrs)
65b050ad
JR
1987{
1988 unsigned long flags;
65b050ad 1989 struct protection_domain *domain;
65b050ad
JR
1990 int i;
1991 struct scatterlist *s;
1992 phys_addr_t paddr;
1993 int mapped_elems = 0;
832a90c3 1994 u64 dma_mask;
65b050ad 1995
d03f067a
JR
1996 INC_STATS_COUNTER(cnt_map_sg);
1997
94f6d190
JR
1998 domain = get_domain(dev);
1999 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2000 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2001 else if (IS_ERR(domain))
2002 return 0;
dbcc112e 2003
832a90c3 2004 dma_mask = *dev->dma_mask;
65b050ad 2005
65b050ad
JR
2006 spin_lock_irqsave(&domain->lock, flags);
2007
2008 for_each_sg(sglist, s, nelems, i) {
2009 paddr = sg_phys(s);
2010
cd8c82e8 2011 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2012 paddr, s->length, dir, false,
2013 dma_mask);
65b050ad
JR
2014
2015 if (s->dma_address) {
2016 s->dma_length = s->length;
2017 mapped_elems++;
2018 } else
2019 goto unmap;
65b050ad
JR
2020 }
2021
0518a3a4 2022 iommu_flush_complete(domain);
65b050ad
JR
2023
2024out:
2025 spin_unlock_irqrestore(&domain->lock, flags);
2026
2027 return mapped_elems;
2028unmap:
2029 for_each_sg(sglist, s, mapped_elems, i) {
2030 if (s->dma_address)
cd8c82e8 2031 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2032 s->dma_length, dir);
2033 s->dma_address = s->dma_length = 0;
2034 }
2035
2036 mapped_elems = 0;
2037
2038 goto out;
2039}
2040
431b2a20
JR
2041/*
2042 * The exported map_sg function for dma_ops (handles scatter-gather
2043 * lists).
2044 */
65b050ad 2045static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2046 int nelems, enum dma_data_direction dir,
2047 struct dma_attrs *attrs)
65b050ad
JR
2048{
2049 unsigned long flags;
65b050ad
JR
2050 struct protection_domain *domain;
2051 struct scatterlist *s;
65b050ad
JR
2052 int i;
2053
55877a6b
JR
2054 INC_STATS_COUNTER(cnt_unmap_sg);
2055
94f6d190
JR
2056 domain = get_domain(dev);
2057 if (IS_ERR(domain))
5b28df6f
JR
2058 return;
2059
65b050ad
JR
2060 spin_lock_irqsave(&domain->lock, flags);
2061
2062 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2063 __unmap_single(domain->priv, s->dma_address,
65b050ad 2064 s->dma_length, dir);
65b050ad
JR
2065 s->dma_address = s->dma_length = 0;
2066 }
2067
0518a3a4 2068 iommu_flush_complete(domain);
65b050ad
JR
2069
2070 spin_unlock_irqrestore(&domain->lock, flags);
2071}
2072
431b2a20
JR
2073/*
2074 * The exported alloc_coherent function for dma_ops.
2075 */
5d8b53cf
JR
2076static void *alloc_coherent(struct device *dev, size_t size,
2077 dma_addr_t *dma_addr, gfp_t flag)
2078{
2079 unsigned long flags;
2080 void *virt_addr;
5d8b53cf 2081 struct protection_domain *domain;
5d8b53cf 2082 phys_addr_t paddr;
832a90c3 2083 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2084
c8f0fb36
JR
2085 INC_STATS_COUNTER(cnt_alloc_coherent);
2086
94f6d190
JR
2087 domain = get_domain(dev);
2088 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2089 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2090 *dma_addr = __pa(virt_addr);
2091 return virt_addr;
94f6d190
JR
2092 } else if (IS_ERR(domain))
2093 return NULL;
5d8b53cf 2094
f99c0f1c
JR
2095 dma_mask = dev->coherent_dma_mask;
2096 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2097 flag |= __GFP_ZERO;
5d8b53cf
JR
2098
2099 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2100 if (!virt_addr)
b25ae679 2101 return NULL;
5d8b53cf 2102
5d8b53cf
JR
2103 paddr = virt_to_phys(virt_addr);
2104
832a90c3
JR
2105 if (!dma_mask)
2106 dma_mask = *dev->dma_mask;
2107
5d8b53cf
JR
2108 spin_lock_irqsave(&domain->lock, flags);
2109
cd8c82e8 2110 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2111 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2112
8fd524b3 2113 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2114 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2115 goto out_free;
367d04c4 2116 }
5d8b53cf 2117
0518a3a4 2118 iommu_flush_complete(domain);
5d8b53cf 2119
5d8b53cf
JR
2120 spin_unlock_irqrestore(&domain->lock, flags);
2121
2122 return virt_addr;
5b28df6f
JR
2123
2124out_free:
2125
2126 free_pages((unsigned long)virt_addr, get_order(size));
2127
2128 return NULL;
5d8b53cf
JR
2129}
2130
431b2a20
JR
2131/*
2132 * The exported free_coherent function for dma_ops.
431b2a20 2133 */
5d8b53cf
JR
2134static void free_coherent(struct device *dev, size_t size,
2135 void *virt_addr, dma_addr_t dma_addr)
2136{
2137 unsigned long flags;
5d8b53cf 2138 struct protection_domain *domain;
5d8b53cf 2139
5d31ee7e
JR
2140 INC_STATS_COUNTER(cnt_free_coherent);
2141
94f6d190
JR
2142 domain = get_domain(dev);
2143 if (IS_ERR(domain))
5b28df6f
JR
2144 goto free_mem;
2145
5d8b53cf
JR
2146 spin_lock_irqsave(&domain->lock, flags);
2147
cd8c82e8 2148 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2149
0518a3a4 2150 iommu_flush_complete(domain);
5d8b53cf
JR
2151
2152 spin_unlock_irqrestore(&domain->lock, flags);
2153
2154free_mem:
2155 free_pages((unsigned long)virt_addr, get_order(size));
2156}
2157
b39ba6ad
JR
2158/*
2159 * This function is called by the DMA layer to find out if we can handle a
2160 * particular device. It is part of the dma_ops.
2161 */
2162static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2163{
420aef8a 2164 return check_device(dev);
b39ba6ad
JR
2165}
2166
c432f3df 2167/*
431b2a20
JR
2168 * The function for pre-allocating protection domains.
2169 *
c432f3df
JR
2170 * If the driver core informs the DMA layer if a driver grabs a device
2171 * we don't need to preallocate the protection domains anymore.
2172 * For now we have to.
2173 */
0e93dd88 2174static void prealloc_protection_domains(void)
c432f3df
JR
2175{
2176 struct pci_dev *dev = NULL;
2177 struct dma_ops_domain *dma_dom;
98fc5a69 2178 u16 devid;
c432f3df
JR
2179
2180 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
98fc5a69
JR
2181
2182 /* Do we handle this device? */
2183 if (!check_device(&dev->dev))
c432f3df 2184 continue;
98fc5a69 2185
657cbb6b
JR
2186 iommu_init_device(&dev->dev);
2187
98fc5a69 2188 /* Is there already any domain for it? */
15898bbc 2189 if (domain_for_device(&dev->dev))
c432f3df 2190 continue;
98fc5a69
JR
2191
2192 devid = get_device_id(&dev->dev);
2193
87a64d52 2194 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2195 if (!dma_dom)
2196 continue;
2197 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2198 dma_dom->target_dev = devid;
2199
15898bbc 2200 attach_device(&dev->dev, &dma_dom->domain);
be831297 2201
bd60b735 2202 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2203 }
2204}
2205
160c1d8e 2206static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2207 .alloc_coherent = alloc_coherent,
2208 .free_coherent = free_coherent,
51491367
FT
2209 .map_page = map_page,
2210 .unmap_page = unmap_page,
6631ee9d
JR
2211 .map_sg = map_sg,
2212 .unmap_sg = unmap_sg,
b39ba6ad 2213 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2214};
2215
431b2a20
JR
2216/*
2217 * The function which clues the AMD IOMMU driver into dma_ops.
2218 */
6631ee9d
JR
2219int __init amd_iommu_init_dma_ops(void)
2220{
2221 struct amd_iommu *iommu;
6631ee9d
JR
2222 int ret;
2223
431b2a20
JR
2224 /*
2225 * first allocate a default protection domain for every IOMMU we
2226 * found in the system. Devices not assigned to any other
2227 * protection domain will be assigned to the default one.
2228 */
3bd22172 2229 for_each_iommu(iommu) {
87a64d52 2230 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2231 if (iommu->default_dom == NULL)
2232 return -ENOMEM;
e2dc14a2 2233 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2234 ret = iommu_init_unity_mappings(iommu);
2235 if (ret)
2236 goto free_domains;
2237 }
2238
431b2a20 2239 /*
8793abeb 2240 * Pre-allocate the protection domains for each device.
431b2a20 2241 */
8793abeb 2242 prealloc_protection_domains();
6631ee9d
JR
2243
2244 iommu_detected = 1;
75f1cdf1 2245 swiotlb = 0;
92af4e29 2246#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2247 gart_iommu_aperture_disabled = 1;
2248 gart_iommu_aperture = 0;
92af4e29 2249#endif
6631ee9d 2250
431b2a20 2251 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2252 dma_ops = &amd_iommu_dma_ops;
2253
26961efe 2254 register_iommu(&amd_iommu_ops);
26961efe 2255
e275a2a0
JR
2256 bus_register_notifier(&pci_bus_type, &device_nb);
2257
7f26508b
JR
2258 amd_iommu_stats_init();
2259
6631ee9d
JR
2260 return 0;
2261
2262free_domains:
2263
3bd22172 2264 for_each_iommu(iommu) {
6631ee9d
JR
2265 if (iommu->default_dom)
2266 dma_ops_domain_free(iommu->default_dom);
2267 }
2268
2269 return ret;
2270}
6d98cd80
JR
2271
2272/*****************************************************************************
2273 *
2274 * The following functions belong to the exported interface of AMD IOMMU
2275 *
2276 * This interface allows access to lower level functions of the IOMMU
2277 * like protection domain handling and assignement of devices to domains
2278 * which is not possible with the dma_ops interface.
2279 *
2280 *****************************************************************************/
2281
6d98cd80
JR
2282static void cleanup_domain(struct protection_domain *domain)
2283{
2284 unsigned long flags;
2285 u16 devid;
2286
2287 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2288
2289 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2290 if (amd_iommu_pd_table[devid] == domain)
15898bbc 2291 clear_dte_entry(devid);
6d98cd80
JR
2292
2293 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2294}
2295
2650815f
JR
2296static void protection_domain_free(struct protection_domain *domain)
2297{
2298 if (!domain)
2299 return;
2300
aeb26f55
JR
2301 del_domain_from_list(domain);
2302
2650815f
JR
2303 if (domain->id)
2304 domain_id_free(domain->id);
2305
2306 kfree(domain);
2307}
2308
2309static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2310{
2311 struct protection_domain *domain;
2312
2313 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2314 if (!domain)
2650815f 2315 return NULL;
c156e347
JR
2316
2317 spin_lock_init(&domain->lock);
c156e347
JR
2318 domain->id = domain_id_alloc();
2319 if (!domain->id)
2650815f 2320 goto out_err;
7c392cbe 2321 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2322
aeb26f55
JR
2323 add_domain_to_list(domain);
2324
2650815f
JR
2325 return domain;
2326
2327out_err:
2328 kfree(domain);
2329
2330 return NULL;
2331}
2332
2333static int amd_iommu_domain_init(struct iommu_domain *dom)
2334{
2335 struct protection_domain *domain;
2336
2337 domain = protection_domain_alloc();
2338 if (!domain)
c156e347 2339 goto out_free;
2650815f
JR
2340
2341 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2342 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2343 if (!domain->pt_root)
2344 goto out_free;
2345
2346 dom->priv = domain;
2347
2348 return 0;
2349
2350out_free:
2650815f 2351 protection_domain_free(domain);
c156e347
JR
2352
2353 return -ENOMEM;
2354}
2355
98383fc3
JR
2356static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2357{
2358 struct protection_domain *domain = dom->priv;
2359
2360 if (!domain)
2361 return;
2362
2363 if (domain->dev_cnt > 0)
2364 cleanup_domain(domain);
2365
2366 BUG_ON(domain->dev_cnt != 0);
2367
2368 free_pagetable(domain);
2369
2370 domain_id_free(domain->id);
2371
2372 kfree(domain);
2373
2374 dom->priv = NULL;
2375}
2376
684f2888
JR
2377static void amd_iommu_detach_device(struct iommu_domain *dom,
2378 struct device *dev)
2379{
657cbb6b 2380 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2381 struct amd_iommu *iommu;
684f2888
JR
2382 u16 devid;
2383
98fc5a69 2384 if (!check_device(dev))
684f2888
JR
2385 return;
2386
98fc5a69 2387 devid = get_device_id(dev);
684f2888 2388
657cbb6b 2389 if (dev_data->domain != NULL)
15898bbc 2390 detach_device(dev);
684f2888
JR
2391
2392 iommu = amd_iommu_rlookup_table[devid];
2393 if (!iommu)
2394 return;
2395
2396 iommu_queue_inv_dev_entry(iommu, devid);
2397 iommu_completion_wait(iommu);
2398}
2399
01106066
JR
2400static int amd_iommu_attach_device(struct iommu_domain *dom,
2401 struct device *dev)
2402{
2403 struct protection_domain *domain = dom->priv;
657cbb6b 2404 struct iommu_dev_data *dev_data;
01106066 2405 struct amd_iommu *iommu;
15898bbc 2406 int ret;
01106066
JR
2407 u16 devid;
2408
98fc5a69 2409 if (!check_device(dev))
01106066
JR
2410 return -EINVAL;
2411
657cbb6b
JR
2412 dev_data = dev->archdata.iommu;
2413
98fc5a69 2414 devid = get_device_id(dev);
01106066
JR
2415
2416 iommu = amd_iommu_rlookup_table[devid];
2417 if (!iommu)
2418 return -EINVAL;
2419
657cbb6b 2420 if (dev_data->domain)
15898bbc 2421 detach_device(dev);
01106066 2422
15898bbc 2423 ret = attach_device(dev, domain);
01106066
JR
2424
2425 iommu_completion_wait(iommu);
2426
15898bbc 2427 return ret;
01106066
JR
2428}
2429
c6229ca6
JR
2430static int amd_iommu_map_range(struct iommu_domain *dom,
2431 unsigned long iova, phys_addr_t paddr,
2432 size_t size, int iommu_prot)
2433{
2434 struct protection_domain *domain = dom->priv;
2435 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2436 int prot = 0;
2437 int ret;
2438
2439 if (iommu_prot & IOMMU_READ)
2440 prot |= IOMMU_PROT_IR;
2441 if (iommu_prot & IOMMU_WRITE)
2442 prot |= IOMMU_PROT_IW;
2443
2444 iova &= PAGE_MASK;
2445 paddr &= PAGE_MASK;
2446
2447 for (i = 0; i < npages; ++i) {
abdc5eb3 2448 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2449 if (ret)
2450 return ret;
2451
2452 iova += PAGE_SIZE;
2453 paddr += PAGE_SIZE;
2454 }
2455
2456 return 0;
2457}
2458
eb74ff6c
JR
2459static void amd_iommu_unmap_range(struct iommu_domain *dom,
2460 unsigned long iova, size_t size)
2461{
2462
2463 struct protection_domain *domain = dom->priv;
2464 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2465
2466 iova &= PAGE_MASK;
2467
2468 for (i = 0; i < npages; ++i) {
a6b256b4 2469 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2470 iova += PAGE_SIZE;
2471 }
2472
601367d7 2473 iommu_flush_tlb_pde(domain);
eb74ff6c
JR
2474}
2475
645c4c8d
JR
2476static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2477 unsigned long iova)
2478{
2479 struct protection_domain *domain = dom->priv;
2480 unsigned long offset = iova & ~PAGE_MASK;
2481 phys_addr_t paddr;
2482 u64 *pte;
2483
a6b256b4 2484 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2485
a6d41a40 2486 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2487 return 0;
2488
2489 paddr = *pte & IOMMU_PAGE_MASK;
2490 paddr |= offset;
2491
2492 return paddr;
2493}
2494
dbb9fd86
SY
2495static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2496 unsigned long cap)
2497{
2498 return 0;
2499}
2500
26961efe
JR
2501static struct iommu_ops amd_iommu_ops = {
2502 .domain_init = amd_iommu_domain_init,
2503 .domain_destroy = amd_iommu_domain_destroy,
2504 .attach_dev = amd_iommu_attach_device,
2505 .detach_dev = amd_iommu_detach_device,
2506 .map = amd_iommu_map_range,
2507 .unmap = amd_iommu_unmap_range,
2508 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2509 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2510};
2511
0feae533
JR
2512/*****************************************************************************
2513 *
2514 * The next functions do a basic initialization of IOMMU for pass through
2515 * mode
2516 *
2517 * In passthrough mode the IOMMU is initialized and enabled but not used for
2518 * DMA-API translation.
2519 *
2520 *****************************************************************************/
2521
2522int __init amd_iommu_init_passthrough(void)
2523{
15898bbc 2524 struct amd_iommu *iommu;
0feae533 2525 struct pci_dev *dev = NULL;
15898bbc 2526 u16 devid;
0feae533
JR
2527
2528 /* allocate passthroug domain */
2529 pt_domain = protection_domain_alloc();
2530 if (!pt_domain)
2531 return -ENOMEM;
2532
2533 pt_domain->mode |= PAGE_MODE_NONE;
2534
2535 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
0feae533 2536
98fc5a69 2537 if (!check_device(&dev->dev))
0feae533
JR
2538 continue;
2539
98fc5a69
JR
2540 devid = get_device_id(&dev->dev);
2541
15898bbc 2542 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2543 if (!iommu)
2544 continue;
2545
15898bbc 2546 attach_device(&dev->dev, pt_domain);
0feae533
JR
2547 }
2548
2549 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2550
2551 return 0;
2552}