]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c
Linux 2.6.29
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
CommitLineData
1da177e4 1/*
fe27cb35 2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
1da177e4
LT
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
fe27cb35 7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
1da177e4
LT
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
fe27cb35
VP
31#include <linux/smp.h>
32#include <linux/sched.h>
1da177e4 33#include <linux/cpufreq.h>
d395bf12 34#include <linux/compiler.h>
8adcc0c6 35#include <linux/dmi.h>
f3f47a67 36#include <linux/ftrace.h>
1da177e4
LT
37
38#include <linux/acpi.h>
39#include <acpi/processor.h>
40
fe27cb35 41#include <asm/io.h>
dde9f7ba 42#include <asm/msr.h>
fe27cb35
VP
43#include <asm/processor.h>
44#include <asm/cpufeature.h>
45#include <asm/delay.h>
46#include <asm/uaccess.h>
47
1da177e4
LT
48#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52MODULE_LICENSE("GPL");
53
dde9f7ba
VP
54enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
58};
59
60#define INTEL_MSR_RANGE (0xffff)
dfde5d62 61#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
dde9f7ba 62
fe27cb35 63struct acpi_cpufreq_data {
64be7eed
VP
64 struct acpi_processor_performance *acpi_data;
65 struct cpufreq_frequency_table *freq_table;
dfde5d62 66 unsigned int max_freq;
64be7eed
VP
67 unsigned int resume;
68 unsigned int cpu_feature;
1da177e4
LT
69};
70
ea348f3e 71static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
72
50109292
FY
73/* acpi_perf_data is a pointer to percpu data. */
74static struct acpi_processor_performance *acpi_perf_data;
1da177e4
LT
75
76static struct cpufreq_driver acpi_cpufreq_driver;
77
d395bf12
VP
78static unsigned int acpi_pstate_strict;
79
dde9f7ba
VP
80static int check_est_cpu(unsigned int cpuid)
81{
92cb7612 82 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
dde9f7ba
VP
83
84 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
64be7eed 85 !cpu_has(cpu, X86_FEATURE_EST))
dde9f7ba
VP
86 return 0;
87
88 return 1;
89}
90
dde9f7ba 91static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
fe27cb35 92{
64be7eed
VP
93 struct acpi_processor_performance *perf;
94 int i;
fe27cb35
VP
95
96 perf = data->acpi_data;
97
95dd7227 98 for (i=0; i<perf->state_count; i++) {
fe27cb35
VP
99 if (value == perf->states[i].status)
100 return data->freq_table[i].frequency;
101 }
102 return 0;
103}
104
dde9f7ba
VP
105static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
106{
107 int i;
a6f6e6e6 108 struct acpi_processor_performance *perf;
dde9f7ba
VP
109
110 msr &= INTEL_MSR_RANGE;
a6f6e6e6
VP
111 perf = data->acpi_data;
112
95dd7227 113 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
a6f6e6e6 114 if (msr == perf->states[data->freq_table[i].index].status)
dde9f7ba
VP
115 return data->freq_table[i].frequency;
116 }
117 return data->freq_table[0].frequency;
118}
119
dde9f7ba
VP
120static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
121{
122 switch (data->cpu_feature) {
64be7eed 123 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba 124 return extract_msr(val, data);
64be7eed 125 case SYSTEM_IO_CAPABLE:
dde9f7ba 126 return extract_io(val, data);
64be7eed 127 default:
dde9f7ba
VP
128 return 0;
129 }
130}
131
dde9f7ba
VP
132struct msr_addr {
133 u32 reg;
134};
135
fe27cb35
VP
136struct io_addr {
137 u16 port;
138 u8 bit_width;
139};
140
dde9f7ba
VP
141typedef union {
142 struct msr_addr msr;
143 struct io_addr io;
144} drv_addr_union;
145
fe27cb35 146struct drv_cmd {
dde9f7ba 147 unsigned int type;
bfa318ad 148 const struct cpumask *mask;
dde9f7ba 149 drv_addr_union addr;
fe27cb35
VP
150 u32 val;
151};
152
72859081 153static long do_drv_read(void *_cmd)
1da177e4 154{
72859081 155 struct drv_cmd *cmd = _cmd;
dde9f7ba
VP
156 u32 h;
157
158 switch (cmd->type) {
64be7eed 159 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba
VP
160 rdmsr(cmd->addr.msr.reg, cmd->val, h);
161 break;
64be7eed 162 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
163 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
164 &cmd->val,
165 (u32)cmd->addr.io.bit_width);
dde9f7ba 166 break;
64be7eed 167 default:
dde9f7ba
VP
168 break;
169 }
72859081 170 return 0;
fe27cb35 171}
1da177e4 172
72859081 173static long do_drv_write(void *_cmd)
fe27cb35 174{
72859081 175 struct drv_cmd *cmd = _cmd;
13424f65 176 u32 lo, hi;
dde9f7ba
VP
177
178 switch (cmd->type) {
64be7eed 179 case SYSTEM_INTEL_MSR_CAPABLE:
13424f65
VP
180 rdmsr(cmd->addr.msr.reg, lo, hi);
181 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
182 wrmsr(cmd->addr.msr.reg, lo, hi);
dde9f7ba 183 break;
64be7eed 184 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
185 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
186 cmd->val,
187 (u32)cmd->addr.io.bit_width);
dde9f7ba 188 break;
64be7eed 189 default:
dde9f7ba
VP
190 break;
191 }
72859081 192 return 0;
fe27cb35 193}
1da177e4 194
95dd7227 195static void drv_read(struct drv_cmd *cmd)
fe27cb35 196{
fe27cb35
VP
197 cmd->val = 0;
198
72859081 199 work_on_cpu(cpumask_any(cmd->mask), do_drv_read, cmd);
fe27cb35
VP
200}
201
202static void drv_write(struct drv_cmd *cmd)
203{
64be7eed 204 unsigned int i;
fe27cb35 205
4d8bb537 206 for_each_cpu(i, cmd->mask) {
72859081 207 work_on_cpu(i, do_drv_write, cmd);
1da177e4 208 }
fe27cb35 209}
1da177e4 210
4d8bb537 211static u32 get_cur_val(const struct cpumask *mask)
fe27cb35 212{
64be7eed
VP
213 struct acpi_processor_performance *perf;
214 struct drv_cmd cmd;
1da177e4 215
4d8bb537 216 if (unlikely(cpumask_empty(mask)))
fe27cb35 217 return 0;
1da177e4 218
4d8bb537 219 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
dde9f7ba
VP
220 case SYSTEM_INTEL_MSR_CAPABLE:
221 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
222 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
223 break;
224 case SYSTEM_IO_CAPABLE:
225 cmd.type = SYSTEM_IO_CAPABLE;
4d8bb537 226 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
dde9f7ba
VP
227 cmd.addr.io.port = perf->control_register.address;
228 cmd.addr.io.bit_width = perf->control_register.bit_width;
229 break;
230 default:
231 return 0;
232 }
233
bfa318ad 234 cmd.mask = mask;
fe27cb35 235 drv_read(&cmd);
1da177e4 236
fe27cb35
VP
237 dprintk("get_cur_val = %u\n", cmd.val);
238
239 return cmd.val;
240}
1da177e4 241
e39ad415
MT
242struct perf_cur {
243 union {
244 struct {
245 u32 lo;
246 u32 hi;
247 } split;
248 u64 whole;
249 } aperf_cur, mperf_cur;
250};
251
252
253static long read_measured_perf_ctrs(void *_cur)
254{
255 struct perf_cur *cur = _cur;
256
257 rdmsr(MSR_IA32_APERF, cur->aperf_cur.split.lo, cur->aperf_cur.split.hi);
258 rdmsr(MSR_IA32_MPERF, cur->mperf_cur.split.lo, cur->mperf_cur.split.hi);
259
260 wrmsr(MSR_IA32_APERF, 0, 0);
261 wrmsr(MSR_IA32_MPERF, 0, 0);
262
263 return 0;
264}
265
dfde5d62
VP
266/*
267 * Return the measured active (C0) frequency on this CPU since last call
268 * to this function.
269 * Input: cpu number
270 * Return: Average CPU frequency in terms of max frequency (zero on error)
271 *
272 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
273 * over a period of time, while CPU is in C0 state.
274 * IA32_MPERF counts at the rate of max advertised frequency
275 * IA32_APERF counts at the rate of actual CPU frequency
276 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
277 * no meaning should be associated with absolute values of these MSRs.
278 */
bf0b90e3 279static unsigned int get_measured_perf(struct cpufreq_policy *policy,
280 unsigned int cpu)
dfde5d62 281{
e39ad415 282 struct perf_cur cur;
dfde5d62
VP
283 unsigned int perf_percent;
284 unsigned int retval;
285
e39ad415 286 if (!work_on_cpu(cpu, read_measured_perf_ctrs, &cur))
dfde5d62 287 return 0;
dfde5d62
VP
288
289#ifdef __i386__
290 /*
291 * We dont want to do 64 bit divide with 32 bit kernel
292 * Get an approximate value. Return failure in case we cannot get
293 * an approximate value.
294 */
e39ad415 295 if (unlikely(cur.aperf_cur.split.hi || cur.mperf_cur.split.hi)) {
dfde5d62
VP
296 int shift_count;
297 u32 h;
298
e39ad415 299 h = max_t(u32, cur.aperf_cur.split.hi, cur.mperf_cur.split.hi);
dfde5d62
VP
300 shift_count = fls(h);
301
e39ad415
MT
302 cur.aperf_cur.whole >>= shift_count;
303 cur.mperf_cur.whole >>= shift_count;
dfde5d62
VP
304 }
305
e39ad415 306 if (((unsigned long)(-1) / 100) < cur.aperf_cur.split.lo) {
dfde5d62 307 int shift_count = 7;
e39ad415
MT
308 cur.aperf_cur.split.lo >>= shift_count;
309 cur.mperf_cur.split.lo >>= shift_count;
dfde5d62
VP
310 }
311
e39ad415
MT
312 if (cur.aperf_cur.split.lo && cur.mperf_cur.split.lo)
313 perf_percent = (cur.aperf_cur.split.lo * 100) /
314 cur.mperf_cur.split.lo;
95dd7227 315 else
dfde5d62 316 perf_percent = 0;
dfde5d62
VP
317
318#else
e39ad415 319 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf_cur.whole)) {
dfde5d62 320 int shift_count = 7;
e39ad415
MT
321 cur.aperf_cur.whole >>= shift_count;
322 cur.mperf_cur.whole >>= shift_count;
dfde5d62
VP
323 }
324
e39ad415
MT
325 if (cur.aperf_cur.whole && cur.mperf_cur.whole)
326 perf_percent = (cur.aperf_cur.whole * 100) /
327 cur.mperf_cur.whole;
95dd7227 328 else
dfde5d62 329 perf_percent = 0;
dfde5d62
VP
330
331#endif
332
bf0b90e3 333 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
dfde5d62 334
dfde5d62
VP
335 return retval;
336}
337
fe27cb35
VP
338static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
339{
ea348f3e 340 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
64be7eed 341 unsigned int freq;
e56a727b 342 unsigned int cached_freq;
fe27cb35
VP
343
344 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
345
346 if (unlikely(data == NULL ||
64be7eed 347 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35 348 return 0;
1da177e4
LT
349 }
350
e56a727b 351 cached_freq = data->freq_table[data->acpi_data->state].frequency;
e39ad415 352 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
e56a727b
VP
353 if (freq != cached_freq) {
354 /*
355 * The dreaded BIOS frequency change behind our back.
356 * Force set the frequency on next target call.
357 */
358 data->resume = 1;
359 }
360
fe27cb35 361 dprintk("cur freq = %u\n", freq);
1da177e4 362
fe27cb35 363 return freq;
1da177e4
LT
364}
365
72859081 366static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
64be7eed 367 struct acpi_cpufreq_data *data)
fe27cb35 368{
64be7eed
VP
369 unsigned int cur_freq;
370 unsigned int i;
1da177e4 371
95dd7227 372 for (i=0; i<100; i++) {
fe27cb35
VP
373 cur_freq = extract_freq(get_cur_val(mask), data);
374 if (cur_freq == freq)
375 return 1;
376 udelay(10);
377 }
378 return 0;
379}
380
381static int acpi_cpufreq_target(struct cpufreq_policy *policy,
64be7eed 382 unsigned int target_freq, unsigned int relation)
1da177e4 383{
ea348f3e 384 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
64be7eed
VP
385 struct acpi_processor_performance *perf;
386 struct cpufreq_freqs freqs;
64be7eed 387 struct drv_cmd cmd;
8edc59d9
VP
388 unsigned int next_state = 0; /* Index into freq_table */
389 unsigned int next_perf_state = 0; /* Index into perf table */
64be7eed
VP
390 unsigned int i;
391 int result = 0;
f3f47a67 392 struct power_trace it;
fe27cb35
VP
393
394 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
395
396 if (unlikely(data == NULL ||
95dd7227 397 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35
VP
398 return -ENODEV;
399 }
1da177e4 400
fe27cb35 401 perf = data->acpi_data;
1da177e4 402 result = cpufreq_frequency_table_target(policy,
64be7eed
VP
403 data->freq_table,
404 target_freq,
405 relation, &next_state);
4d8bb537
MT
406 if (unlikely(result)) {
407 result = -ENODEV;
408 goto out;
409 }
1da177e4 410
fe27cb35 411 next_perf_state = data->freq_table[next_state].index;
7650b281 412 if (perf->state == next_perf_state) {
fe27cb35 413 if (unlikely(data->resume)) {
64be7eed
VP
414 dprintk("Called after resume, resetting to P%d\n",
415 next_perf_state);
fe27cb35
VP
416 data->resume = 0;
417 } else {
64be7eed
VP
418 dprintk("Already at target state (P%d)\n",
419 next_perf_state);
4d8bb537 420 goto out;
fe27cb35 421 }
09b4d1ee
VP
422 }
423
f3f47a67
AV
424 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
425
64be7eed
VP
426 switch (data->cpu_feature) {
427 case SYSTEM_INTEL_MSR_CAPABLE:
428 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
429 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
13424f65 430 cmd.val = (u32) perf->states[next_perf_state].control;
64be7eed
VP
431 break;
432 case SYSTEM_IO_CAPABLE:
433 cmd.type = SYSTEM_IO_CAPABLE;
434 cmd.addr.io.port = perf->control_register.address;
435 cmd.addr.io.bit_width = perf->control_register.bit_width;
436 cmd.val = (u32) perf->states[next_perf_state].control;
437 break;
438 default:
4d8bb537
MT
439 result = -ENODEV;
440 goto out;
64be7eed 441 }
09b4d1ee 442
4d8bb537 443 /* cpufreq holds the hotplug lock, so we are safe from here on */
fe27cb35 444 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
bfa318ad 445 cmd.mask = policy->cpus;
fe27cb35 446 else
bfa318ad 447 cmd.mask = cpumask_of(policy->cpu);
09b4d1ee 448
8edc59d9
VP
449 freqs.old = perf->states[perf->state].core_frequency * 1000;
450 freqs.new = data->freq_table[next_state].frequency;
4d8bb537 451 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
452 freqs.cpu = i;
453 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
09b4d1ee 454 }
1da177e4 455
fe27cb35 456 drv_write(&cmd);
09b4d1ee 457
fe27cb35 458 if (acpi_pstate_strict) {
4d8bb537 459 if (!check_freqs(cmd.mask, freqs.new, data)) {
fe27cb35 460 dprintk("acpi_cpufreq_target failed (%d)\n",
64be7eed 461 policy->cpu);
4d8bb537
MT
462 result = -EAGAIN;
463 goto out;
09b4d1ee
VP
464 }
465 }
466
4d8bb537 467 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
468 freqs.cpu = i;
469 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
470 }
471 perf->state = next_perf_state;
472
4d8bb537 473out:
fe27cb35 474 return result;
1da177e4
LT
475}
476
64be7eed 477static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
1da177e4 478{
ea348f3e 479 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4
LT
480
481 dprintk("acpi_cpufreq_verify\n");
482
fe27cb35 483 return cpufreq_frequency_table_verify(policy, data->freq_table);
1da177e4
LT
484}
485
1da177e4 486static unsigned long
64be7eed 487acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
1da177e4 488{
64be7eed 489 struct acpi_processor_performance *perf = data->acpi_data;
09b4d1ee 490
1da177e4
LT
491 if (cpu_khz) {
492 /* search the closest match to cpu_khz */
493 unsigned int i;
494 unsigned long freq;
09b4d1ee 495 unsigned long freqn = perf->states[0].core_frequency * 1000;
1da177e4 496
95dd7227 497 for (i=0; i<(perf->state_count-1); i++) {
1da177e4 498 freq = freqn;
95dd7227 499 freqn = perf->states[i+1].core_frequency * 1000;
1da177e4 500 if ((2 * cpu_khz) > (freqn + freq)) {
09b4d1ee 501 perf->state = i;
64be7eed 502 return freq;
1da177e4
LT
503 }
504 }
95dd7227 505 perf->state = perf->state_count-1;
64be7eed 506 return freqn;
09b4d1ee 507 } else {
1da177e4 508 /* assume CPU is at P0... */
09b4d1ee
VP
509 perf->state = 0;
510 return perf->states[0].core_frequency * 1000;
511 }
1da177e4
LT
512}
513
2fdf66b4
RR
514static void free_acpi_perf_data(void)
515{
516 unsigned int i;
517
518 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
519 for_each_possible_cpu(i)
520 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
521 ->shared_cpu_map);
522 free_percpu(acpi_perf_data);
523}
524
09b4d1ee
VP
525/*
526 * acpi_cpufreq_early_init - initialize ACPI P-States library
527 *
528 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
529 * in order to determine correct frequency and voltage pairings. We can
530 * do _PDC and _PSD and find out the processor dependency for the
531 * actual init that will happen later...
532 */
50109292 533static int __init acpi_cpufreq_early_init(void)
09b4d1ee 534{
2fdf66b4 535 unsigned int i;
09b4d1ee
VP
536 dprintk("acpi_cpufreq_early_init\n");
537
50109292
FY
538 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
539 if (!acpi_perf_data) {
540 dprintk("Memory allocation error for acpi_perf_data.\n");
541 return -ENOMEM;
09b4d1ee 542 }
2fdf66b4 543 for_each_possible_cpu(i) {
80855f73
MT
544 if (!alloc_cpumask_var_node(
545 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
546 GFP_KERNEL, cpu_to_node(i))) {
2fdf66b4
RR
547
548 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
549 free_acpi_perf_data();
550 return -ENOMEM;
551 }
552 }
09b4d1ee
VP
553
554 /* Do initialization in ACPI core */
fe27cb35
VP
555 acpi_processor_preregister_performance(acpi_perf_data);
556 return 0;
09b4d1ee
VP
557}
558
95625b8f 559#ifdef CONFIG_SMP
8adcc0c6
VP
560/*
561 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
562 * or do it in BIOS firmware and won't inform about it to OS. If not
563 * detected, this has a side effect of making CPU run at a different speed
564 * than OS intended it to run at. Detect it and handle it cleanly.
565 */
566static int bios_with_sw_any_bug;
567
1855256c 568static int sw_any_bug_found(const struct dmi_system_id *d)
8adcc0c6
VP
569{
570 bios_with_sw_any_bug = 1;
571 return 0;
572}
573
1855256c 574static const struct dmi_system_id sw_any_bug_dmi_table[] = {
8adcc0c6
VP
575 {
576 .callback = sw_any_bug_found,
577 .ident = "Supermicro Server X6DLP",
578 .matches = {
579 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
580 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
581 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
582 },
583 },
584 { }
585};
95625b8f 586#endif
8adcc0c6 587
64be7eed 588static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
1da177e4 589{
64be7eed
VP
590 unsigned int i;
591 unsigned int valid_states = 0;
592 unsigned int cpu = policy->cpu;
593 struct acpi_cpufreq_data *data;
64be7eed 594 unsigned int result = 0;
92cb7612 595 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
64be7eed 596 struct acpi_processor_performance *perf;
1da177e4 597
1da177e4 598 dprintk("acpi_cpufreq_cpu_init\n");
1da177e4 599
fe27cb35 600 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
1da177e4 601 if (!data)
64be7eed 602 return -ENOMEM;
1da177e4 603
50109292 604 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
ea348f3e 605 per_cpu(drv_data, cpu) = data;
1da177e4 606
95dd7227 607 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
fe27cb35 608 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
1da177e4 609
fe27cb35 610 result = acpi_processor_register_performance(data->acpi_data, cpu);
1da177e4
LT
611 if (result)
612 goto err_free;
613
09b4d1ee 614 perf = data->acpi_data;
09b4d1ee 615 policy->shared_type = perf->shared_type;
95dd7227 616
46f18e3a 617 /*
95dd7227 618 * Will let policy->cpus know about dependency only when software
46f18e3a
VP
619 * coordination is required.
620 */
621 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
8adcc0c6 622 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
835481d9 623 cpumask_copy(policy->cpus, perf->shared_cpu_map);
8adcc0c6 624 }
835481d9 625 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
8adcc0c6
VP
626
627#ifdef CONFIG_SMP
628 dmi_check_system(sw_any_bug_dmi_table);
835481d9 629 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
8adcc0c6 630 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
835481d9 631 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
8adcc0c6
VP
632 }
633#endif
09b4d1ee 634
1da177e4 635 /* capability check */
09b4d1ee 636 if (perf->state_count <= 1) {
1da177e4
LT
637 dprintk("No P-States\n");
638 result = -ENODEV;
639 goto err_unreg;
640 }
09b4d1ee 641
fe27cb35
VP
642 if (perf->control_register.space_id != perf->status_register.space_id) {
643 result = -ENODEV;
644 goto err_unreg;
645 }
646
647 switch (perf->control_register.space_id) {
64be7eed 648 case ACPI_ADR_SPACE_SYSTEM_IO:
fe27cb35 649 dprintk("SYSTEM IO addr space\n");
dde9f7ba
VP
650 data->cpu_feature = SYSTEM_IO_CAPABLE;
651 break;
64be7eed 652 case ACPI_ADR_SPACE_FIXED_HARDWARE:
dde9f7ba
VP
653 dprintk("HARDWARE addr space\n");
654 if (!check_est_cpu(cpu)) {
655 result = -ENODEV;
656 goto err_unreg;
657 }
658 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
fe27cb35 659 break;
64be7eed 660 default:
fe27cb35 661 dprintk("Unknown addr space %d\n",
64be7eed 662 (u32) (perf->control_register.space_id));
1da177e4
LT
663 result = -ENODEV;
664 goto err_unreg;
665 }
666
95dd7227
DJ
667 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
668 (perf->state_count+1), GFP_KERNEL);
1da177e4
LT
669 if (!data->freq_table) {
670 result = -ENOMEM;
671 goto err_unreg;
672 }
673
674 /* detect transition latency */
675 policy->cpuinfo.transition_latency = 0;
95dd7227 676 for (i=0; i<perf->state_count; i++) {
64be7eed
VP
677 if ((perf->states[i].transition_latency * 1000) >
678 policy->cpuinfo.transition_latency)
679 policy->cpuinfo.transition_latency =
680 perf->states[i].transition_latency * 1000;
1da177e4 681 }
1da177e4 682
dfde5d62 683 data->max_freq = perf->states[0].core_frequency * 1000;
1da177e4 684 /* table init */
95dd7227 685 for (i=0; i<perf->state_count; i++) {
3cdf552b
ZR
686 if (i>0 && perf->states[i].core_frequency >=
687 data->freq_table[valid_states-1].frequency / 1000)
fe27cb35
VP
688 continue;
689
690 data->freq_table[valid_states].index = i;
691 data->freq_table[valid_states].frequency =
64be7eed 692 perf->states[i].core_frequency * 1000;
fe27cb35 693 valid_states++;
1da177e4 694 }
3d4a7ef3 695 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
8edc59d9 696 perf->state = 0;
1da177e4
LT
697
698 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
95dd7227 699 if (result)
1da177e4 700 goto err_freqfree;
1da177e4 701
a507ac4b 702 switch (perf->control_register.space_id) {
64be7eed 703 case ACPI_ADR_SPACE_SYSTEM_IO:
dde9f7ba
VP
704 /* Current speed is unknown and not detectable by IO port */
705 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
706 break;
64be7eed 707 case ACPI_ADR_SPACE_FIXED_HARDWARE:
7650b281 708 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
a507ac4b 709 policy->cur = get_cur_freq_on_cpu(cpu);
dde9f7ba 710 break;
64be7eed 711 default:
dde9f7ba
VP
712 break;
713 }
714
1da177e4
LT
715 /* notify BIOS that we exist */
716 acpi_processor_notify_smm(THIS_MODULE);
717
dfde5d62
VP
718 /* Check for APERF/MPERF support in hardware */
719 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
720 unsigned int ecx;
721 ecx = cpuid_ecx(6);
95dd7227 722 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
dfde5d62 723 acpi_cpufreq_driver.getavg = get_measured_perf;
dfde5d62
VP
724 }
725
fe27cb35 726 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
09b4d1ee 727 for (i = 0; i < perf->state_count; i++)
1da177e4 728 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
64be7eed 729 (i == perf->state ? '*' : ' '), i,
09b4d1ee
VP
730 (u32) perf->states[i].core_frequency,
731 (u32) perf->states[i].power,
732 (u32) perf->states[i].transition_latency);
1da177e4
LT
733
734 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
64be7eed 735
4b31e774
DB
736 /*
737 * the first call to ->target() should result in us actually
738 * writing something to the appropriate registers.
739 */
740 data->resume = 1;
64be7eed 741
fe27cb35 742 return result;
1da177e4 743
95dd7227 744err_freqfree:
1da177e4 745 kfree(data->freq_table);
95dd7227 746err_unreg:
09b4d1ee 747 acpi_processor_unregister_performance(perf, cpu);
95dd7227 748err_free:
1da177e4 749 kfree(data);
ea348f3e 750 per_cpu(drv_data, cpu) = NULL;
1da177e4 751
64be7eed 752 return result;
1da177e4
LT
753}
754
64be7eed 755static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
1da177e4 756{
ea348f3e 757 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 758
1da177e4
LT
759 dprintk("acpi_cpufreq_cpu_exit\n");
760
761 if (data) {
762 cpufreq_frequency_table_put_attr(policy->cpu);
ea348f3e 763 per_cpu(drv_data, policy->cpu) = NULL;
64be7eed
VP
764 acpi_processor_unregister_performance(data->acpi_data,
765 policy->cpu);
1da177e4
LT
766 kfree(data);
767 }
768
64be7eed 769 return 0;
1da177e4
LT
770}
771
64be7eed 772static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
1da177e4 773{
ea348f3e 774 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 775
1da177e4
LT
776 dprintk("acpi_cpufreq_resume\n");
777
778 data->resume = 1;
779
64be7eed 780 return 0;
1da177e4
LT
781}
782
64be7eed 783static struct freq_attr *acpi_cpufreq_attr[] = {
1da177e4
LT
784 &cpufreq_freq_attr_scaling_available_freqs,
785 NULL,
786};
787
788static struct cpufreq_driver acpi_cpufreq_driver = {
64be7eed
VP
789 .verify = acpi_cpufreq_verify,
790 .target = acpi_cpufreq_target,
64be7eed
VP
791 .init = acpi_cpufreq_cpu_init,
792 .exit = acpi_cpufreq_cpu_exit,
793 .resume = acpi_cpufreq_resume,
794 .name = "acpi-cpufreq",
795 .owner = THIS_MODULE,
796 .attr = acpi_cpufreq_attr,
1da177e4
LT
797};
798
64be7eed 799static int __init acpi_cpufreq_init(void)
1da177e4 800{
50109292
FY
801 int ret;
802
ee297533
YL
803 if (acpi_disabled)
804 return 0;
805
1da177e4
LT
806 dprintk("acpi_cpufreq_init\n");
807
50109292
FY
808 ret = acpi_cpufreq_early_init();
809 if (ret)
810 return ret;
09b4d1ee 811
847aef6f
AM
812 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
813 if (ret)
2fdf66b4 814 free_acpi_perf_data();
847aef6f
AM
815
816 return ret;
1da177e4
LT
817}
818
64be7eed 819static void __exit acpi_cpufreq_exit(void)
1da177e4
LT
820{
821 dprintk("acpi_cpufreq_exit\n");
822
823 cpufreq_unregister_driver(&acpi_cpufreq_driver);
824
50109292 825 free_percpu(acpi_perf_data);
1da177e4
LT
826}
827
d395bf12 828module_param(acpi_pstate_strict, uint, 0644);
64be7eed 829MODULE_PARM_DESC(acpi_pstate_strict,
95dd7227
DJ
830 "value 0 or non-zero. non-zero -> strict ACPI checks are "
831 "performed during frequency changes.");
1da177e4
LT
832
833late_initcall(acpi_cpufreq_init);
834module_exit(acpi_cpufreq_exit);
835
836MODULE_ALIAS("acpi");