]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/perf_event.c
perf_events, x86: Implement intel core solo/duo support
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
74193ef0 24#include <linux/highmem.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
241771ef 27
241771ef 28#include <asm/apic.h>
d7d59fb3 29#include <asm/stacktrace.h>
4e935e47 30#include <asm/nmi.h>
241771ef 31
cdd6c482 32static u64 perf_event_mask __read_mostly;
703e937c 33
cdd6c482
IM
34/* The maximal number of PEBS events: */
35#define MAX_PEBS_EVENTS 4
30dd568c
MM
36
37/* The size of a BTS record in bytes: */
38#define BTS_RECORD_SIZE 24
39
40/* The size of a per-cpu BTS buffer in bytes: */
5622f295 41#define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
30dd568c
MM
42
43/* The BTS overflow threshold in bytes from the end of the buffer: */
5622f295 44#define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
30dd568c
MM
45
46
47/*
48 * Bits in the debugctlmsr controlling branch tracing.
49 */
50#define X86_DEBUGCTL_TR (1 << 6)
51#define X86_DEBUGCTL_BTS (1 << 7)
52#define X86_DEBUGCTL_BTINT (1 << 8)
53#define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
54#define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
55
56/*
57 * A debug store configuration.
58 *
59 * We only support architectures that use 64bit fields.
60 */
61struct debug_store {
62 u64 bts_buffer_base;
63 u64 bts_index;
64 u64 bts_absolute_maximum;
65 u64 bts_interrupt_threshold;
66 u64 pebs_buffer_base;
67 u64 pebs_index;
68 u64 pebs_absolute_maximum;
69 u64 pebs_interrupt_threshold;
cdd6c482 70 u64 pebs_event_reset[MAX_PEBS_EVENTS];
30dd568c
MM
71};
72
1da53e02 73struct event_constraint {
c91e0f5d
PZ
74 union {
75 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
76 u64 idxmsk64[1];
77 };
1da53e02
SE
78 int code;
79 int cmask;
272d30be 80 int weight;
1da53e02
SE
81};
82
cdd6c482 83struct cpu_hw_events {
1da53e02 84 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
43f6201a 85 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
4b39fd96 86 unsigned long interrupts;
b0f3f28e 87 int enabled;
30dd568c 88 struct debug_store *ds;
241771ef 89
1da53e02
SE
90 int n_events;
91 int n_added;
92 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
93 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
b690081d
SE
94};
95
184f412c 96#define EVENT_CONSTRAINT(c, n, m) { \
c91e0f5d
PZ
97 { .idxmsk64[0] = (n) }, \
98 .code = (c), \
99 .cmask = (m), \
272d30be 100 .weight = HWEIGHT64((u64)(n)), \
c91e0f5d 101}
b690081d 102
ed8777fc
PZ
103#define INTEL_EVENT_CONSTRAINT(c, n) \
104 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
8433be11 105
ed8777fc
PZ
106#define FIXED_EVENT_CONSTRAINT(c, n) \
107 EVENT_CONSTRAINT(c, n, INTEL_ARCH_FIXED_MASK)
8433be11 108
ed8777fc
PZ
109#define EVENT_CONSTRAINT_END \
110 EVENT_CONSTRAINT(0, 0, 0)
111
112#define for_each_event_constraint(e, c) \
113 for ((e) = (c); (e)->cmask; (e)++)
b690081d 114
241771ef 115/*
5f4ec28f 116 * struct x86_pmu - generic x86 pmu
241771ef 117 */
5f4ec28f 118struct x86_pmu {
faa28ae0
RR
119 const char *name;
120 int version;
a3288106 121 int (*handle_irq)(struct pt_regs *);
9e35ad38
PZ
122 void (*disable_all)(void);
123 void (*enable_all)(void);
cdd6c482
IM
124 void (*enable)(struct hw_perf_event *, int);
125 void (*disable)(struct hw_perf_event *, int);
169e41eb
JSR
126 unsigned eventsel;
127 unsigned perfctr;
b0f3f28e
PZ
128 u64 (*event_map)(int);
129 u64 (*raw_event)(u64);
169e41eb 130 int max_events;
cdd6c482
IM
131 int num_events;
132 int num_events_fixed;
133 int event_bits;
134 u64 event_mask;
04da8a43 135 int apic;
c619b8ff 136 u64 max_period;
9e35ad38 137 u64 intel_ctrl;
30dd568c
MM
138 void (*enable_bts)(u64 config);
139 void (*disable_bts)(void);
63b14649
PZ
140
141 struct event_constraint *
142 (*get_event_constraints)(struct cpu_hw_events *cpuc,
143 struct perf_event *event);
144
c91e0f5d
PZ
145 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
146 struct perf_event *event);
63b14649 147 struct event_constraint *event_constraints;
b56a3802
JSR
148};
149
4a06bd85 150static struct x86_pmu x86_pmu __read_mostly;
b56a3802 151
cdd6c482 152static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
153 .enabled = 1,
154};
241771ef 155
1da53e02
SE
156static int x86_perf_event_set_period(struct perf_event *event,
157 struct hw_perf_event *hwc, int idx);
b690081d 158
11d1578f
VW
159/*
160 * Not sure about some of these
161 */
162static const u64 p6_perfmon_event_map[] =
163{
164 [PERF_COUNT_HW_CPU_CYCLES] = 0x0079,
165 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
f64ccccb
IM
166 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e,
167 [PERF_COUNT_HW_CACHE_MISSES] = 0x012e,
11d1578f
VW
168 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
169 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
170 [PERF_COUNT_HW_BUS_CYCLES] = 0x0062,
171};
172
dfc65094 173static u64 p6_pmu_event_map(int hw_event)
11d1578f 174{
dfc65094 175 return p6_perfmon_event_map[hw_event];
11d1578f
VW
176}
177
9c74fb50 178/*
cdd6c482 179 * Event setting that is specified not to count anything.
9c74fb50
PZ
180 * We use this to effectively disable a counter.
181 *
182 * L2_RQSTS with 0 MESI unit mask.
183 */
cdd6c482 184#define P6_NOP_EVENT 0x0000002EULL
9c74fb50 185
dfc65094 186static u64 p6_pmu_raw_event(u64 hw_event)
11d1578f
VW
187{
188#define P6_EVNTSEL_EVENT_MASK 0x000000FFULL
189#define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL
190#define P6_EVNTSEL_EDGE_MASK 0x00040000ULL
191#define P6_EVNTSEL_INV_MASK 0x00800000ULL
cdd6c482 192#define P6_EVNTSEL_REG_MASK 0xFF000000ULL
11d1578f
VW
193
194#define P6_EVNTSEL_MASK \
195 (P6_EVNTSEL_EVENT_MASK | \
196 P6_EVNTSEL_UNIT_MASK | \
197 P6_EVNTSEL_EDGE_MASK | \
198 P6_EVNTSEL_INV_MASK | \
cdd6c482 199 P6_EVNTSEL_REG_MASK)
11d1578f 200
dfc65094 201 return hw_event & P6_EVNTSEL_MASK;
11d1578f
VW
202}
203
1da53e02 204static struct event_constraint intel_p6_event_constraints[] =
b690081d 205{
8433be11
PZ
206 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FLOPS */
207 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
208 INTEL_EVENT_CONSTRAINT(0x11, 0x1), /* FP_ASSIST */
209 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
210 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
211 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
b690081d
SE
212 EVENT_CONSTRAINT_END
213};
11d1578f 214
b56a3802
JSR
215/*
216 * Intel PerfMon v3. Used on Core2 and later.
217 */
b0f3f28e 218static const u64 intel_perfmon_event_map[] =
241771ef 219{
f4dbfa8f
PZ
220 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
221 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
222 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
223 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
224 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
225 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
226 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
241771ef
IM
227};
228
1da53e02 229static struct event_constraint intel_core_event_constraints[] =
8c48e444
PZ
230{
231 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
232 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
233 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
234 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
235 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
236 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
237 EVENT_CONSTRAINT_END
238};
239
240static struct event_constraint intel_core2_event_constraints[] =
1da53e02 241{
8433be11
PZ
242 FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
243 FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
244 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
245 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
246 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
247 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
248 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
249 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
250 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
251 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
252 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
b690081d
SE
253 EVENT_CONSTRAINT_END
254};
255
1da53e02
SE
256static struct event_constraint intel_nehalem_event_constraints[] =
257{
452a339a
PZ
258 FIXED_EVENT_CONSTRAINT(0xc0, (0xf|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
259 FIXED_EVENT_CONSTRAINT(0x3c, (0xf|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
8433be11
PZ
260 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
261 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
262 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
263 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
452a339a 264 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
8433be11 265 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
8433be11 266 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
452a339a
PZ
267 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
268 EVENT_CONSTRAINT_END
269};
270
271static struct event_constraint intel_westmere_event_constraints[] =
272{
273 FIXED_EVENT_CONSTRAINT(0xc0, (0xf|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
274 FIXED_EVENT_CONSTRAINT(0x3c, (0xf|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
275 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
276 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
277 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
1da53e02
SE
278 EVENT_CONSTRAINT_END
279};
280
281static struct event_constraint intel_gen_event_constraints[] =
282{
8433be11
PZ
283 FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
284 FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
b690081d
SE
285 EVENT_CONSTRAINT_END
286};
287
dfc65094 288static u64 intel_pmu_event_map(int hw_event)
b56a3802 289{
dfc65094 290 return intel_perfmon_event_map[hw_event];
b56a3802 291}
241771ef 292
8326f44d 293/*
dfc65094 294 * Generalized hw caching related hw_event table, filled
8326f44d 295 * in on a per model basis. A value of 0 means
dfc65094
IM
296 * 'not supported', -1 means 'hw_event makes no sense on
297 * this CPU', any other value means the raw hw_event
8326f44d
IM
298 * ID.
299 */
300
301#define C(x) PERF_COUNT_HW_CACHE_##x
302
303static u64 __read_mostly hw_cache_event_ids
304 [PERF_COUNT_HW_CACHE_MAX]
305 [PERF_COUNT_HW_CACHE_OP_MAX]
306 [PERF_COUNT_HW_CACHE_RESULT_MAX];
307
452a339a
PZ
308static __initconst u64 westmere_hw_cache_event_ids
309 [PERF_COUNT_HW_CACHE_MAX]
310 [PERF_COUNT_HW_CACHE_OP_MAX]
311 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
312{
313 [ C(L1D) ] = {
314 [ C(OP_READ) ] = {
315 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
316 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
317 },
318 [ C(OP_WRITE) ] = {
319 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
320 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
321 },
322 [ C(OP_PREFETCH) ] = {
323 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
324 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
325 },
326 },
327 [ C(L1I ) ] = {
328 [ C(OP_READ) ] = {
329 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
330 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
331 },
332 [ C(OP_WRITE) ] = {
333 [ C(RESULT_ACCESS) ] = -1,
334 [ C(RESULT_MISS) ] = -1,
335 },
336 [ C(OP_PREFETCH) ] = {
337 [ C(RESULT_ACCESS) ] = 0x0,
338 [ C(RESULT_MISS) ] = 0x0,
339 },
340 },
341 [ C(LL ) ] = {
342 [ C(OP_READ) ] = {
343 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
344 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
345 },
346 [ C(OP_WRITE) ] = {
347 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
348 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
349 },
350 [ C(OP_PREFETCH) ] = {
351 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
352 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
353 },
354 },
355 [ C(DTLB) ] = {
356 [ C(OP_READ) ] = {
357 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
358 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
359 },
360 [ C(OP_WRITE) ] = {
361 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
362 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
363 },
364 [ C(OP_PREFETCH) ] = {
365 [ C(RESULT_ACCESS) ] = 0x0,
366 [ C(RESULT_MISS) ] = 0x0,
367 },
368 },
369 [ C(ITLB) ] = {
370 [ C(OP_READ) ] = {
371 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
372 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
373 },
374 [ C(OP_WRITE) ] = {
375 [ C(RESULT_ACCESS) ] = -1,
376 [ C(RESULT_MISS) ] = -1,
377 },
378 [ C(OP_PREFETCH) ] = {
379 [ C(RESULT_ACCESS) ] = -1,
380 [ C(RESULT_MISS) ] = -1,
381 },
382 },
383 [ C(BPU ) ] = {
384 [ C(OP_READ) ] = {
385 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
386 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
387 },
388 [ C(OP_WRITE) ] = {
389 [ C(RESULT_ACCESS) ] = -1,
390 [ C(RESULT_MISS) ] = -1,
391 },
392 [ C(OP_PREFETCH) ] = {
393 [ C(RESULT_ACCESS) ] = -1,
394 [ C(RESULT_MISS) ] = -1,
395 },
396 },
397};
398
db48cccc 399static __initconst u64 nehalem_hw_cache_event_ids
8326f44d
IM
400 [PERF_COUNT_HW_CACHE_MAX]
401 [PERF_COUNT_HW_CACHE_OP_MAX]
402 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
403{
404 [ C(L1D) ] = {
405 [ C(OP_READ) ] = {
406 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
407 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
408 },
409 [ C(OP_WRITE) ] = {
410 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
411 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
412 },
413 [ C(OP_PREFETCH) ] = {
414 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
415 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
416 },
417 },
418 [ C(L1I ) ] = {
419 [ C(OP_READ) ] = {
fecc8ac8 420 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
8326f44d
IM
421 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
422 },
423 [ C(OP_WRITE) ] = {
424 [ C(RESULT_ACCESS) ] = -1,
425 [ C(RESULT_MISS) ] = -1,
426 },
427 [ C(OP_PREFETCH) ] = {
428 [ C(RESULT_ACCESS) ] = 0x0,
429 [ C(RESULT_MISS) ] = 0x0,
430 },
431 },
8be6e8f3 432 [ C(LL ) ] = {
8326f44d
IM
433 [ C(OP_READ) ] = {
434 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
435 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
436 },
437 [ C(OP_WRITE) ] = {
438 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
439 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
440 },
441 [ C(OP_PREFETCH) ] = {
8be6e8f3
PZ
442 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
443 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
8326f44d
IM
444 },
445 },
446 [ C(DTLB) ] = {
447 [ C(OP_READ) ] = {
448 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
449 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
450 },
451 [ C(OP_WRITE) ] = {
452 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
453 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
454 },
455 [ C(OP_PREFETCH) ] = {
456 [ C(RESULT_ACCESS) ] = 0x0,
457 [ C(RESULT_MISS) ] = 0x0,
458 },
459 },
460 [ C(ITLB) ] = {
461 [ C(OP_READ) ] = {
462 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
fecc8ac8 463 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
8326f44d
IM
464 },
465 [ C(OP_WRITE) ] = {
466 [ C(RESULT_ACCESS) ] = -1,
467 [ C(RESULT_MISS) ] = -1,
468 },
469 [ C(OP_PREFETCH) ] = {
470 [ C(RESULT_ACCESS) ] = -1,
471 [ C(RESULT_MISS) ] = -1,
472 },
473 },
474 [ C(BPU ) ] = {
475 [ C(OP_READ) ] = {
476 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
477 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
478 },
479 [ C(OP_WRITE) ] = {
480 [ C(RESULT_ACCESS) ] = -1,
481 [ C(RESULT_MISS) ] = -1,
482 },
483 [ C(OP_PREFETCH) ] = {
484 [ C(RESULT_ACCESS) ] = -1,
485 [ C(RESULT_MISS) ] = -1,
486 },
487 },
488};
489
db48cccc 490static __initconst u64 core2_hw_cache_event_ids
8326f44d
IM
491 [PERF_COUNT_HW_CACHE_MAX]
492 [PERF_COUNT_HW_CACHE_OP_MAX]
493 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
494{
0312af84
TG
495 [ C(L1D) ] = {
496 [ C(OP_READ) ] = {
497 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
498 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
499 },
500 [ C(OP_WRITE) ] = {
501 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
502 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
503 },
504 [ C(OP_PREFETCH) ] = {
505 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
506 [ C(RESULT_MISS) ] = 0,
507 },
508 },
509 [ C(L1I ) ] = {
510 [ C(OP_READ) ] = {
511 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
512 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
513 },
514 [ C(OP_WRITE) ] = {
515 [ C(RESULT_ACCESS) ] = -1,
516 [ C(RESULT_MISS) ] = -1,
517 },
518 [ C(OP_PREFETCH) ] = {
519 [ C(RESULT_ACCESS) ] = 0,
520 [ C(RESULT_MISS) ] = 0,
521 },
522 },
8be6e8f3 523 [ C(LL ) ] = {
0312af84
TG
524 [ C(OP_READ) ] = {
525 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
526 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
527 },
528 [ C(OP_WRITE) ] = {
529 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
530 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
531 },
532 [ C(OP_PREFETCH) ] = {
533 [ C(RESULT_ACCESS) ] = 0,
534 [ C(RESULT_MISS) ] = 0,
535 },
536 },
537 [ C(DTLB) ] = {
538 [ C(OP_READ) ] = {
539 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
540 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
541 },
542 [ C(OP_WRITE) ] = {
543 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
544 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
545 },
546 [ C(OP_PREFETCH) ] = {
547 [ C(RESULT_ACCESS) ] = 0,
548 [ C(RESULT_MISS) ] = 0,
549 },
550 },
551 [ C(ITLB) ] = {
552 [ C(OP_READ) ] = {
553 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
554 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
555 },
556 [ C(OP_WRITE) ] = {
557 [ C(RESULT_ACCESS) ] = -1,
558 [ C(RESULT_MISS) ] = -1,
559 },
560 [ C(OP_PREFETCH) ] = {
561 [ C(RESULT_ACCESS) ] = -1,
562 [ C(RESULT_MISS) ] = -1,
563 },
564 },
565 [ C(BPU ) ] = {
566 [ C(OP_READ) ] = {
567 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
568 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
569 },
570 [ C(OP_WRITE) ] = {
571 [ C(RESULT_ACCESS) ] = -1,
572 [ C(RESULT_MISS) ] = -1,
573 },
574 [ C(OP_PREFETCH) ] = {
575 [ C(RESULT_ACCESS) ] = -1,
576 [ C(RESULT_MISS) ] = -1,
577 },
578 },
8326f44d
IM
579};
580
db48cccc 581static __initconst u64 atom_hw_cache_event_ids
8326f44d
IM
582 [PERF_COUNT_HW_CACHE_MAX]
583 [PERF_COUNT_HW_CACHE_OP_MAX]
584 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
585{
ad689220
TG
586 [ C(L1D) ] = {
587 [ C(OP_READ) ] = {
588 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
589 [ C(RESULT_MISS) ] = 0,
590 },
591 [ C(OP_WRITE) ] = {
fecc8ac8 592 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
ad689220
TG
593 [ C(RESULT_MISS) ] = 0,
594 },
595 [ C(OP_PREFETCH) ] = {
596 [ C(RESULT_ACCESS) ] = 0x0,
597 [ C(RESULT_MISS) ] = 0,
598 },
599 },
600 [ C(L1I ) ] = {
601 [ C(OP_READ) ] = {
fecc8ac8
YW
602 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
603 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
ad689220
TG
604 },
605 [ C(OP_WRITE) ] = {
606 [ C(RESULT_ACCESS) ] = -1,
607 [ C(RESULT_MISS) ] = -1,
608 },
609 [ C(OP_PREFETCH) ] = {
610 [ C(RESULT_ACCESS) ] = 0,
611 [ C(RESULT_MISS) ] = 0,
612 },
613 },
8be6e8f3 614 [ C(LL ) ] = {
ad689220
TG
615 [ C(OP_READ) ] = {
616 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
617 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
618 },
619 [ C(OP_WRITE) ] = {
620 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
621 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
622 },
623 [ C(OP_PREFETCH) ] = {
624 [ C(RESULT_ACCESS) ] = 0,
625 [ C(RESULT_MISS) ] = 0,
626 },
627 },
628 [ C(DTLB) ] = {
629 [ C(OP_READ) ] = {
fecc8ac8 630 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
ad689220
TG
631 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
632 },
633 [ C(OP_WRITE) ] = {
fecc8ac8 634 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
ad689220
TG
635 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
636 },
637 [ C(OP_PREFETCH) ] = {
638 [ C(RESULT_ACCESS) ] = 0,
639 [ C(RESULT_MISS) ] = 0,
640 },
641 },
642 [ C(ITLB) ] = {
643 [ C(OP_READ) ] = {
644 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
645 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
646 },
647 [ C(OP_WRITE) ] = {
648 [ C(RESULT_ACCESS) ] = -1,
649 [ C(RESULT_MISS) ] = -1,
650 },
651 [ C(OP_PREFETCH) ] = {
652 [ C(RESULT_ACCESS) ] = -1,
653 [ C(RESULT_MISS) ] = -1,
654 },
655 },
656 [ C(BPU ) ] = {
657 [ C(OP_READ) ] = {
658 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
659 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
660 },
661 [ C(OP_WRITE) ] = {
662 [ C(RESULT_ACCESS) ] = -1,
663 [ C(RESULT_MISS) ] = -1,
664 },
665 [ C(OP_PREFETCH) ] = {
666 [ C(RESULT_ACCESS) ] = -1,
667 [ C(RESULT_MISS) ] = -1,
668 },
669 },
8326f44d
IM
670};
671
dfc65094 672static u64 intel_pmu_raw_event(u64 hw_event)
b0f3f28e 673{
82bae4f8
PZ
674#define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
675#define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
ff99be57
PZ
676#define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
677#define CORE_EVNTSEL_INV_MASK 0x00800000ULL
fe9081cc 678#define CORE_EVNTSEL_REG_MASK 0xFF000000ULL
b0f3f28e 679
128f048f 680#define CORE_EVNTSEL_MASK \
1da53e02
SE
681 (INTEL_ARCH_EVTSEL_MASK | \
682 INTEL_ARCH_UNIT_MASK | \
683 INTEL_ARCH_EDGE_MASK | \
684 INTEL_ARCH_INV_MASK | \
685 INTEL_ARCH_CNT_MASK)
b0f3f28e 686
dfc65094 687 return hw_event & CORE_EVNTSEL_MASK;
b0f3f28e
PZ
688}
689
db48cccc 690static __initconst u64 amd_hw_cache_event_ids
f86748e9
TG
691 [PERF_COUNT_HW_CACHE_MAX]
692 [PERF_COUNT_HW_CACHE_OP_MAX]
693 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
694{
695 [ C(L1D) ] = {
696 [ C(OP_READ) ] = {
f4db43a3
JSR
697 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
698 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
f86748e9
TG
699 },
700 [ C(OP_WRITE) ] = {
d9f2a5ec 701 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
f86748e9
TG
702 [ C(RESULT_MISS) ] = 0,
703 },
704 [ C(OP_PREFETCH) ] = {
f4db43a3
JSR
705 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
706 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
f86748e9
TG
707 },
708 },
709 [ C(L1I ) ] = {
710 [ C(OP_READ) ] = {
711 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
712 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
713 },
714 [ C(OP_WRITE) ] = {
715 [ C(RESULT_ACCESS) ] = -1,
716 [ C(RESULT_MISS) ] = -1,
717 },
718 [ C(OP_PREFETCH) ] = {
f4db43a3 719 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
f86748e9
TG
720 [ C(RESULT_MISS) ] = 0,
721 },
722 },
8be6e8f3 723 [ C(LL ) ] = {
f86748e9 724 [ C(OP_READ) ] = {
f4db43a3
JSR
725 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
726 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
f86748e9
TG
727 },
728 [ C(OP_WRITE) ] = {
f4db43a3 729 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
f86748e9
TG
730 [ C(RESULT_MISS) ] = 0,
731 },
732 [ C(OP_PREFETCH) ] = {
733 [ C(RESULT_ACCESS) ] = 0,
734 [ C(RESULT_MISS) ] = 0,
735 },
736 },
737 [ C(DTLB) ] = {
738 [ C(OP_READ) ] = {
f4db43a3
JSR
739 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
740 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
f86748e9
TG
741 },
742 [ C(OP_WRITE) ] = {
743 [ C(RESULT_ACCESS) ] = 0,
744 [ C(RESULT_MISS) ] = 0,
745 },
746 [ C(OP_PREFETCH) ] = {
747 [ C(RESULT_ACCESS) ] = 0,
748 [ C(RESULT_MISS) ] = 0,
749 },
750 },
751 [ C(ITLB) ] = {
752 [ C(OP_READ) ] = {
753 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
754 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
755 },
756 [ C(OP_WRITE) ] = {
757 [ C(RESULT_ACCESS) ] = -1,
758 [ C(RESULT_MISS) ] = -1,
759 },
760 [ C(OP_PREFETCH) ] = {
761 [ C(RESULT_ACCESS) ] = -1,
762 [ C(RESULT_MISS) ] = -1,
763 },
764 },
765 [ C(BPU ) ] = {
766 [ C(OP_READ) ] = {
767 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
768 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
769 },
770 [ C(OP_WRITE) ] = {
771 [ C(RESULT_ACCESS) ] = -1,
772 [ C(RESULT_MISS) ] = -1,
773 },
774 [ C(OP_PREFETCH) ] = {
775 [ C(RESULT_ACCESS) ] = -1,
776 [ C(RESULT_MISS) ] = -1,
777 },
778 },
779};
780
f87ad35d
JSR
781/*
782 * AMD Performance Monitor K7 and later.
783 */
b0f3f28e 784static const u64 amd_perfmon_event_map[] =
f87ad35d 785{
f4dbfa8f
PZ
786 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
787 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
788 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
789 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
790 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
791 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
f87ad35d
JSR
792};
793
dfc65094 794static u64 amd_pmu_event_map(int hw_event)
f87ad35d 795{
dfc65094 796 return amd_perfmon_event_map[hw_event];
f87ad35d
JSR
797}
798
dfc65094 799static u64 amd_pmu_raw_event(u64 hw_event)
b0f3f28e 800{
82bae4f8
PZ
801#define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
802#define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
ff99be57
PZ
803#define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
804#define K7_EVNTSEL_INV_MASK 0x000800000ULL
cdd6c482 805#define K7_EVNTSEL_REG_MASK 0x0FF000000ULL
b0f3f28e
PZ
806
807#define K7_EVNTSEL_MASK \
808 (K7_EVNTSEL_EVENT_MASK | \
809 K7_EVNTSEL_UNIT_MASK | \
ff99be57
PZ
810 K7_EVNTSEL_EDGE_MASK | \
811 K7_EVNTSEL_INV_MASK | \
cdd6c482 812 K7_EVNTSEL_REG_MASK)
b0f3f28e 813
dfc65094 814 return hw_event & K7_EVNTSEL_MASK;
b0f3f28e
PZ
815}
816
ee06094f 817/*
cdd6c482
IM
818 * Propagate event elapsed time into the generic event.
819 * Can only be executed on the CPU where the event is active.
ee06094f
IM
820 * Returns the delta events processed.
821 */
4b7bfd0d 822static u64
cdd6c482
IM
823x86_perf_event_update(struct perf_event *event,
824 struct hw_perf_event *hwc, int idx)
ee06094f 825{
cdd6c482 826 int shift = 64 - x86_pmu.event_bits;
ec3232bd
PZ
827 u64 prev_raw_count, new_raw_count;
828 s64 delta;
ee06094f 829
30dd568c
MM
830 if (idx == X86_PMC_IDX_FIXED_BTS)
831 return 0;
832
ee06094f 833 /*
cdd6c482 834 * Careful: an NMI might modify the previous event value.
ee06094f
IM
835 *
836 * Our tactic to handle this is to first atomically read and
837 * exchange a new raw count - then add that new-prev delta
cdd6c482 838 * count to the generic event atomically:
ee06094f
IM
839 */
840again:
841 prev_raw_count = atomic64_read(&hwc->prev_count);
cdd6c482 842 rdmsrl(hwc->event_base + idx, new_raw_count);
ee06094f
IM
843
844 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
845 new_raw_count) != prev_raw_count)
846 goto again;
847
848 /*
849 * Now we have the new raw value and have updated the prev
850 * timestamp already. We can now calculate the elapsed delta
cdd6c482 851 * (event-)time and add that to the generic event.
ee06094f
IM
852 *
853 * Careful, not all hw sign-extends above the physical width
ec3232bd 854 * of the count.
ee06094f 855 */
ec3232bd
PZ
856 delta = (new_raw_count << shift) - (prev_raw_count << shift);
857 delta >>= shift;
ee06094f 858
cdd6c482 859 atomic64_add(delta, &event->count);
ee06094f 860 atomic64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
861
862 return new_raw_count;
ee06094f
IM
863}
864
cdd6c482 865static atomic_t active_events;
4e935e47
PZ
866static DEFINE_MUTEX(pmc_reserve_mutex);
867
868static bool reserve_pmc_hardware(void)
869{
04da8a43 870#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
871 int i;
872
873 if (nmi_watchdog == NMI_LOCAL_APIC)
874 disable_lapic_nmi_watchdog();
875
cdd6c482 876 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 877 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
4e935e47
PZ
878 goto perfctr_fail;
879 }
880
cdd6c482 881 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 882 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
4e935e47
PZ
883 goto eventsel_fail;
884 }
04da8a43 885#endif
4e935e47
PZ
886
887 return true;
888
04da8a43 889#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
890eventsel_fail:
891 for (i--; i >= 0; i--)
4a06bd85 892 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47 893
cdd6c482 894 i = x86_pmu.num_events;
4e935e47
PZ
895
896perfctr_fail:
897 for (i--; i >= 0; i--)
4a06bd85 898 release_perfctr_nmi(x86_pmu.perfctr + i);
4e935e47
PZ
899
900 if (nmi_watchdog == NMI_LOCAL_APIC)
901 enable_lapic_nmi_watchdog();
902
903 return false;
04da8a43 904#endif
4e935e47
PZ
905}
906
907static void release_pmc_hardware(void)
908{
04da8a43 909#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
910 int i;
911
cdd6c482 912 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85
RR
913 release_perfctr_nmi(x86_pmu.perfctr + i);
914 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47
PZ
915 }
916
917 if (nmi_watchdog == NMI_LOCAL_APIC)
918 enable_lapic_nmi_watchdog();
04da8a43 919#endif
4e935e47
PZ
920}
921
30dd568c
MM
922static inline bool bts_available(void)
923{
924 return x86_pmu.enable_bts != NULL;
925}
926
927static inline void init_debug_store_on_cpu(int cpu)
928{
cdd6c482 929 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
930
931 if (!ds)
932 return;
933
934 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
596da17f 935 (u32)((u64)(unsigned long)ds),
936 (u32)((u64)(unsigned long)ds >> 32));
30dd568c
MM
937}
938
939static inline void fini_debug_store_on_cpu(int cpu)
940{
cdd6c482 941 if (!per_cpu(cpu_hw_events, cpu).ds)
30dd568c
MM
942 return;
943
944 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
945}
946
947static void release_bts_hardware(void)
948{
949 int cpu;
950
951 if (!bts_available())
952 return;
953
954 get_online_cpus();
955
956 for_each_online_cpu(cpu)
957 fini_debug_store_on_cpu(cpu);
958
959 for_each_possible_cpu(cpu) {
cdd6c482 960 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
961
962 if (!ds)
963 continue;
964
cdd6c482 965 per_cpu(cpu_hw_events, cpu).ds = NULL;
30dd568c 966
596da17f 967 kfree((void *)(unsigned long)ds->bts_buffer_base);
30dd568c
MM
968 kfree(ds);
969 }
970
971 put_online_cpus();
972}
973
974static int reserve_bts_hardware(void)
975{
976 int cpu, err = 0;
977
978 if (!bts_available())
747b50aa 979 return 0;
30dd568c
MM
980
981 get_online_cpus();
982
983 for_each_possible_cpu(cpu) {
984 struct debug_store *ds;
985 void *buffer;
986
987 err = -ENOMEM;
988 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
989 if (unlikely(!buffer))
990 break;
991
992 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
993 if (unlikely(!ds)) {
994 kfree(buffer);
995 break;
996 }
997
596da17f 998 ds->bts_buffer_base = (u64)(unsigned long)buffer;
30dd568c
MM
999 ds->bts_index = ds->bts_buffer_base;
1000 ds->bts_absolute_maximum =
1001 ds->bts_buffer_base + BTS_BUFFER_SIZE;
1002 ds->bts_interrupt_threshold =
1003 ds->bts_absolute_maximum - BTS_OVFL_TH;
1004
cdd6c482 1005 per_cpu(cpu_hw_events, cpu).ds = ds;
30dd568c
MM
1006 err = 0;
1007 }
1008
1009 if (err)
1010 release_bts_hardware();
1011 else {
1012 for_each_online_cpu(cpu)
1013 init_debug_store_on_cpu(cpu);
1014 }
1015
1016 put_online_cpus();
1017
1018 return err;
1019}
1020
cdd6c482 1021static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 1022{
cdd6c482 1023 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 1024 release_pmc_hardware();
30dd568c 1025 release_bts_hardware();
4e935e47
PZ
1026 mutex_unlock(&pmc_reserve_mutex);
1027 }
1028}
1029
85cf9dba
RR
1030static inline int x86_pmu_initialized(void)
1031{
1032 return x86_pmu.handle_irq != NULL;
1033}
1034
8326f44d 1035static inline int
cdd6c482 1036set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
8326f44d
IM
1037{
1038 unsigned int cache_type, cache_op, cache_result;
1039 u64 config, val;
1040
1041 config = attr->config;
1042
1043 cache_type = (config >> 0) & 0xff;
1044 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1045 return -EINVAL;
1046
1047 cache_op = (config >> 8) & 0xff;
1048 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1049 return -EINVAL;
1050
1051 cache_result = (config >> 16) & 0xff;
1052 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1053 return -EINVAL;
1054
1055 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
1056
1057 if (val == 0)
1058 return -ENOENT;
1059
1060 if (val == -1)
1061 return -EINVAL;
1062
1063 hwc->config |= val;
1064
1065 return 0;
1066}
1067
30dd568c
MM
1068static void intel_pmu_enable_bts(u64 config)
1069{
1070 unsigned long debugctlmsr;
1071
1072 debugctlmsr = get_debugctlmsr();
1073
1074 debugctlmsr |= X86_DEBUGCTL_TR;
1075 debugctlmsr |= X86_DEBUGCTL_BTS;
1076 debugctlmsr |= X86_DEBUGCTL_BTINT;
1077
1078 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
1079 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_OS;
1080
1081 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
1082 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_USR;
1083
1084 update_debugctlmsr(debugctlmsr);
1085}
1086
1087static void intel_pmu_disable_bts(void)
1088{
cdd6c482 1089 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
30dd568c
MM
1090 unsigned long debugctlmsr;
1091
1092 if (!cpuc->ds)
1093 return;
1094
1095 debugctlmsr = get_debugctlmsr();
1096
1097 debugctlmsr &=
1098 ~(X86_DEBUGCTL_TR | X86_DEBUGCTL_BTS | X86_DEBUGCTL_BTINT |
1099 X86_DEBUGCTL_BTS_OFF_OS | X86_DEBUGCTL_BTS_OFF_USR);
1100
1101 update_debugctlmsr(debugctlmsr);
1102}
1103
241771ef 1104/*
0d48696f 1105 * Setup the hardware configuration for a given attr_type
241771ef 1106 */
cdd6c482 1107static int __hw_perf_event_init(struct perf_event *event)
241771ef 1108{
cdd6c482
IM
1109 struct perf_event_attr *attr = &event->attr;
1110 struct hw_perf_event *hwc = &event->hw;
9c74fb50 1111 u64 config;
4e935e47 1112 int err;
241771ef 1113
85cf9dba
RR
1114 if (!x86_pmu_initialized())
1115 return -ENODEV;
241771ef 1116
4e935e47 1117 err = 0;
cdd6c482 1118 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 1119 mutex_lock(&pmc_reserve_mutex);
cdd6c482 1120 if (atomic_read(&active_events) == 0) {
30dd568c
MM
1121 if (!reserve_pmc_hardware())
1122 err = -EBUSY;
1123 else
747b50aa 1124 err = reserve_bts_hardware();
30dd568c
MM
1125 }
1126 if (!err)
cdd6c482 1127 atomic_inc(&active_events);
4e935e47
PZ
1128 mutex_unlock(&pmc_reserve_mutex);
1129 }
1130 if (err)
1131 return err;
1132
cdd6c482 1133 event->destroy = hw_perf_event_destroy;
a1792cda 1134
241771ef 1135 /*
0475f9ea 1136 * Generate PMC IRQs:
241771ef
IM
1137 * (keep 'enabled' bit clear for now)
1138 */
0475f9ea 1139 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
241771ef 1140
b690081d
SE
1141 hwc->idx = -1;
1142
241771ef 1143 /*
0475f9ea 1144 * Count user and OS events unless requested not to.
241771ef 1145 */
0d48696f 1146 if (!attr->exclude_user)
0475f9ea 1147 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
0d48696f 1148 if (!attr->exclude_kernel)
241771ef 1149 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
0475f9ea 1150
bd2b5b12 1151 if (!hwc->sample_period) {
b23f3325 1152 hwc->sample_period = x86_pmu.max_period;
9e350de3 1153 hwc->last_period = hwc->sample_period;
bd2b5b12 1154 atomic64_set(&hwc->period_left, hwc->sample_period);
04da8a43
IM
1155 } else {
1156 /*
1157 * If we have a PMU initialized but no APIC
1158 * interrupts, we cannot sample hardware
cdd6c482
IM
1159 * events (user-space has to fall back and
1160 * sample via a hrtimer based software event):
04da8a43
IM
1161 */
1162 if (!x86_pmu.apic)
1163 return -EOPNOTSUPP;
bd2b5b12 1164 }
d2517a49 1165
241771ef 1166 /*
dfc65094 1167 * Raw hw_event type provide the config in the hw_event structure
241771ef 1168 */
a21ca2ca
IM
1169 if (attr->type == PERF_TYPE_RAW) {
1170 hwc->config |= x86_pmu.raw_event(attr->config);
8326f44d 1171 return 0;
241771ef 1172 }
241771ef 1173
8326f44d
IM
1174 if (attr->type == PERF_TYPE_HW_CACHE)
1175 return set_ext_hw_attr(hwc, attr);
1176
1177 if (attr->config >= x86_pmu.max_events)
1178 return -EINVAL;
9c74fb50 1179
8326f44d
IM
1180 /*
1181 * The generic map:
1182 */
9c74fb50
PZ
1183 config = x86_pmu.event_map(attr->config);
1184
1185 if (config == 0)
1186 return -ENOENT;
1187
1188 if (config == -1LL)
1189 return -EINVAL;
1190
747b50aa 1191 /*
1192 * Branch tracing:
1193 */
1194 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
1653192f 1195 (hwc->sample_period == 1)) {
1196 /* BTS is not supported by this architecture. */
1197 if (!bts_available())
1198 return -EOPNOTSUPP;
1199
1200 /* BTS is currently only allowed for user-mode. */
1201 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1202 return -EOPNOTSUPP;
1203 }
747b50aa 1204
9c74fb50 1205 hwc->config |= config;
4e935e47 1206
241771ef
IM
1207 return 0;
1208}
1209
11d1578f
VW
1210static void p6_pmu_disable_all(void)
1211{
9c74fb50 1212 u64 val;
11d1578f 1213
11d1578f
VW
1214 /* p6 only has one enable register */
1215 rdmsrl(MSR_P6_EVNTSEL0, val);
1216 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1217 wrmsrl(MSR_P6_EVNTSEL0, val);
1218}
1219
9e35ad38 1220static void intel_pmu_disable_all(void)
4ac13294 1221{
cdd6c482 1222 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
30dd568c 1223
862a1a5f 1224 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
30dd568c
MM
1225
1226 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1227 intel_pmu_disable_bts();
241771ef 1228}
b56a3802 1229
8c48e444 1230static void x86_pmu_disable_all(void)
f87ad35d 1231{
cdd6c482 1232 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
1233 int idx;
1234
cdd6c482 1235 for (idx = 0; idx < x86_pmu.num_events; idx++) {
b0f3f28e
PZ
1236 u64 val;
1237
43f6201a 1238 if (!test_bit(idx, cpuc->active_mask))
4295ee62 1239 continue;
8c48e444 1240 rdmsrl(x86_pmu.eventsel + idx, val);
4295ee62
RR
1241 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
1242 continue;
1243 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
8c48e444 1244 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d 1245 }
f87ad35d
JSR
1246}
1247
9e35ad38 1248void hw_perf_disable(void)
b56a3802 1249{
1da53e02
SE
1250 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1251
85cf9dba 1252 if (!x86_pmu_initialized())
9e35ad38 1253 return;
1da53e02 1254
1a6e21f7
PZ
1255 if (!cpuc->enabled)
1256 return;
1257
1258 cpuc->n_added = 0;
1259 cpuc->enabled = 0;
1260 barrier();
1da53e02
SE
1261
1262 x86_pmu.disable_all();
b56a3802 1263}
241771ef 1264
11d1578f
VW
1265static void p6_pmu_enable_all(void)
1266{
11d1578f
VW
1267 unsigned long val;
1268
11d1578f
VW
1269 /* p6 only has one enable register */
1270 rdmsrl(MSR_P6_EVNTSEL0, val);
1271 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1272 wrmsrl(MSR_P6_EVNTSEL0, val);
1273}
1274
9e35ad38 1275static void intel_pmu_enable_all(void)
b56a3802 1276{
cdd6c482 1277 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
30dd568c 1278
9e35ad38 1279 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
30dd568c
MM
1280
1281 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
cdd6c482
IM
1282 struct perf_event *event =
1283 cpuc->events[X86_PMC_IDX_FIXED_BTS];
30dd568c 1284
cdd6c482 1285 if (WARN_ON_ONCE(!event))
30dd568c
MM
1286 return;
1287
cdd6c482 1288 intel_pmu_enable_bts(event->hw.config);
30dd568c 1289 }
b56a3802
JSR
1290}
1291
8c48e444 1292static void x86_pmu_enable_all(void)
f87ad35d 1293{
cdd6c482 1294 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
f87ad35d
JSR
1295 int idx;
1296
cdd6c482
IM
1297 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1298 struct perf_event *event = cpuc->events[idx];
4295ee62 1299 u64 val;
b0f3f28e 1300
43f6201a 1301 if (!test_bit(idx, cpuc->active_mask))
4295ee62 1302 continue;
984b838c 1303
cdd6c482 1304 val = event->hw.config;
4295ee62 1305 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
8c48e444 1306 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d
JSR
1307 }
1308}
1309
1da53e02
SE
1310static const struct pmu pmu;
1311
1312static inline int is_x86_event(struct perf_event *event)
1313{
1314 return event->pmu == &pmu;
1315}
1316
1317static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1318{
63b14649 1319 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1da53e02 1320 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
c933c1a6 1321 int i, j, w, wmax, num = 0;
1da53e02
SE
1322 struct hw_perf_event *hwc;
1323
1324 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1325
1326 for (i = 0; i < n; i++) {
63b14649
PZ
1327 constraints[i] =
1328 x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
1da53e02
SE
1329 }
1330
8113070d
SE
1331 /*
1332 * fastpath, try to reuse previous register
1333 */
c933c1a6 1334 for (i = 0; i < n; i++) {
8113070d 1335 hwc = &cpuc->event_list[i]->hw;
81269a08 1336 c = constraints[i];
8113070d
SE
1337
1338 /* never assigned */
1339 if (hwc->idx == -1)
1340 break;
1341
1342 /* constraint still honored */
63b14649 1343 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
1344 break;
1345
1346 /* not already used */
1347 if (test_bit(hwc->idx, used_mask))
1348 break;
1349
8113070d
SE
1350 set_bit(hwc->idx, used_mask);
1351 if (assign)
1352 assign[i] = hwc->idx;
1353 }
c933c1a6 1354 if (i == n)
8113070d
SE
1355 goto done;
1356
1357 /*
1358 * begin slow path
1359 */
1360
1361 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1362
1da53e02
SE
1363 /*
1364 * weight = number of possible counters
1365 *
1366 * 1 = most constrained, only works on one counter
1367 * wmax = least constrained, works on any counter
1368 *
1369 * assign events to counters starting with most
1370 * constrained events.
1371 */
1372 wmax = x86_pmu.num_events;
1373
1374 /*
1375 * when fixed event counters are present,
1376 * wmax is incremented by 1 to account
1377 * for one more choice
1378 */
1379 if (x86_pmu.num_events_fixed)
1380 wmax++;
1381
8113070d 1382 for (w = 1, num = n; num && w <= wmax; w++) {
1da53e02 1383 /* for each event */
8113070d 1384 for (i = 0; num && i < n; i++) {
81269a08 1385 c = constraints[i];
1da53e02
SE
1386 hwc = &cpuc->event_list[i]->hw;
1387
272d30be 1388 if (c->weight != w)
1da53e02
SE
1389 continue;
1390
63b14649 1391 for_each_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
1da53e02
SE
1392 if (!test_bit(j, used_mask))
1393 break;
1394 }
1395
1396 if (j == X86_PMC_IDX_MAX)
1397 break;
1da53e02 1398
8113070d
SE
1399 set_bit(j, used_mask);
1400
1da53e02
SE
1401 if (assign)
1402 assign[i] = j;
1403 num--;
1404 }
1405 }
8113070d 1406done:
1da53e02
SE
1407 /*
1408 * scheduling failed or is just a simulation,
1409 * free resources if necessary
1410 */
1411 if (!assign || num) {
1412 for (i = 0; i < n; i++) {
1413 if (x86_pmu.put_event_constraints)
1414 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
1415 }
1416 }
1417 return num ? -ENOSPC : 0;
1418}
1419
1420/*
1421 * dogrp: true if must collect siblings events (group)
1422 * returns total number of events and error code
1423 */
1424static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1425{
1426 struct perf_event *event;
1427 int n, max_count;
1428
1429 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
1430
1431 /* current number of events already accepted */
1432 n = cpuc->n_events;
1433
1434 if (is_x86_event(leader)) {
1435 if (n >= max_count)
1436 return -ENOSPC;
1437 cpuc->event_list[n] = leader;
1438 n++;
1439 }
1440 if (!dogrp)
1441 return n;
1442
1443 list_for_each_entry(event, &leader->sibling_list, group_entry) {
1444 if (!is_x86_event(event) ||
8113070d 1445 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
1446 continue;
1447
1448 if (n >= max_count)
1449 return -ENOSPC;
1450
1451 cpuc->event_list[n] = event;
1452 n++;
1453 }
1454 return n;
1455}
1456
1457
1458static inline void x86_assign_hw_event(struct perf_event *event,
1459 struct hw_perf_event *hwc, int idx)
1460{
1461 hwc->idx = idx;
1462
1463 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
1464 hwc->config_base = 0;
1465 hwc->event_base = 0;
1466 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
1467 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1468 /*
1469 * We set it so that event_base + idx in wrmsr/rdmsr maps to
1470 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1471 */
1472 hwc->event_base =
1473 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1474 } else {
1475 hwc->config_base = x86_pmu.eventsel;
1476 hwc->event_base = x86_pmu.perfctr;
1477 }
1478}
1479
2e841873
PZ
1480static void __x86_pmu_disable(struct perf_event *event, struct cpu_hw_events *cpuc);
1481
9e35ad38 1482void hw_perf_enable(void)
ee06094f 1483{
1da53e02
SE
1484 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1485 struct perf_event *event;
1486 struct hw_perf_event *hwc;
1487 int i;
1488
85cf9dba 1489 if (!x86_pmu_initialized())
2b9ff0db 1490 return;
1a6e21f7
PZ
1491
1492 if (cpuc->enabled)
1493 return;
1494
1da53e02
SE
1495 if (cpuc->n_added) {
1496 /*
1497 * apply assignment obtained either from
1498 * hw_perf_group_sched_in() or x86_pmu_enable()
1499 *
1500 * step1: save events moving to new counters
1501 * step2: reprogram moved events into new counters
1502 */
1503 for (i = 0; i < cpuc->n_events; i++) {
1504
1505 event = cpuc->event_list[i];
1506 hwc = &event->hw;
1507
1508 if (hwc->idx == -1 || hwc->idx == cpuc->assign[i])
1509 continue;
1510
2e841873 1511 __x86_pmu_disable(event, cpuc);
1da53e02
SE
1512
1513 hwc->idx = -1;
1514 }
1515
1516 for (i = 0; i < cpuc->n_events; i++) {
1517
1518 event = cpuc->event_list[i];
1519 hwc = &event->hw;
1520
1521 if (hwc->idx == -1) {
1522 x86_assign_hw_event(event, hwc, cpuc->assign[i]);
1523 x86_perf_event_set_period(event, hwc, hwc->idx);
1524 }
1525 /*
1526 * need to mark as active because x86_pmu_disable()
1527 * clear active_mask and eventsp[] yet it preserves
1528 * idx
1529 */
1530 set_bit(hwc->idx, cpuc->active_mask);
1531 cpuc->events[hwc->idx] = event;
1532
1533 x86_pmu.enable(hwc, hwc->idx);
1534 perf_event_update_userpage(event);
1535 }
1536 cpuc->n_added = 0;
1537 perf_events_lapic_init();
1538 }
1a6e21f7
PZ
1539
1540 cpuc->enabled = 1;
1541 barrier();
1542
9e35ad38 1543 x86_pmu.enable_all();
ee06094f 1544}
ee06094f 1545
19d84dab 1546static inline u64 intel_pmu_get_status(void)
b0f3f28e
PZ
1547{
1548 u64 status;
1549
b7f8859a 1550 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
b0f3f28e 1551
b7f8859a 1552 return status;
b0f3f28e
PZ
1553}
1554
dee5d906 1555static inline void intel_pmu_ack_status(u64 ack)
b0f3f28e
PZ
1556{
1557 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1558}
1559
8c48e444 1560static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
b0f3f28e 1561{
11d1578f 1562 (void)checking_wrmsrl(hwc->config_base + idx,
7c90cc45 1563 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
b0f3f28e
PZ
1564}
1565
cdd6c482 1566static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
b0f3f28e 1567{
11d1578f 1568 (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
b0f3f28e
PZ
1569}
1570
2f18d1e8 1571static inline void
cdd6c482 1572intel_pmu_disable_fixed(struct hw_perf_event *hwc, int __idx)
2f18d1e8
IM
1573{
1574 int idx = __idx - X86_PMC_IDX_FIXED;
1575 u64 ctrl_val, mask;
2f18d1e8
IM
1576
1577 mask = 0xfULL << (idx * 4);
1578
1579 rdmsrl(hwc->config_base, ctrl_val);
1580 ctrl_val &= ~mask;
11d1578f
VW
1581 (void)checking_wrmsrl(hwc->config_base, ctrl_val);
1582}
1583
1584static inline void
cdd6c482 1585p6_pmu_disable_event(struct hw_perf_event *hwc, int idx)
11d1578f 1586{
cdd6c482
IM
1587 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1588 u64 val = P6_NOP_EVENT;
11d1578f 1589
9c74fb50
PZ
1590 if (cpuc->enabled)
1591 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
11d1578f
VW
1592
1593 (void)checking_wrmsrl(hwc->config_base + idx, val);
2f18d1e8
IM
1594}
1595
7e2ae347 1596static inline void
cdd6c482 1597intel_pmu_disable_event(struct hw_perf_event *hwc, int idx)
7e2ae347 1598{
30dd568c
MM
1599 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1600 intel_pmu_disable_bts();
1601 return;
1602 }
1603
d4369891
RR
1604 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1605 intel_pmu_disable_fixed(hwc, idx);
1606 return;
1607 }
1608
cdd6c482 1609 x86_pmu_disable_event(hwc, idx);
d4369891
RR
1610}
1611
245b2e70 1612static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1613
ee06094f
IM
1614/*
1615 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1616 * To be called with the event disabled in hw:
ee06094f 1617 */
e4abb5d4 1618static int
cdd6c482
IM
1619x86_perf_event_set_period(struct perf_event *event,
1620 struct hw_perf_event *hwc, int idx)
241771ef 1621{
2f18d1e8 1622 s64 left = atomic64_read(&hwc->period_left);
e4abb5d4
PZ
1623 s64 period = hwc->sample_period;
1624 int err, ret = 0;
ee06094f 1625
30dd568c
MM
1626 if (idx == X86_PMC_IDX_FIXED_BTS)
1627 return 0;
1628
ee06094f 1629 /*
af901ca1 1630 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1631 */
1632 if (unlikely(left <= -period)) {
1633 left = period;
1634 atomic64_set(&hwc->period_left, left);
9e350de3 1635 hwc->last_period = period;
e4abb5d4 1636 ret = 1;
ee06094f
IM
1637 }
1638
1639 if (unlikely(left <= 0)) {
1640 left += period;
1641 atomic64_set(&hwc->period_left, left);
9e350de3 1642 hwc->last_period = period;
e4abb5d4 1643 ret = 1;
ee06094f 1644 }
1c80f4b5 1645 /*
dfc65094 1646 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1647 */
1648 if (unlikely(left < 2))
1649 left = 2;
241771ef 1650
e4abb5d4
PZ
1651 if (left > x86_pmu.max_period)
1652 left = x86_pmu.max_period;
1653
245b2e70 1654 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
1655
1656 /*
cdd6c482 1657 * The hw event starts counting from this event offset,
ee06094f
IM
1658 * mark it to be able to extra future deltas:
1659 */
2f18d1e8 1660 atomic64_set(&hwc->prev_count, (u64)-left);
ee06094f 1661
cdd6c482
IM
1662 err = checking_wrmsrl(hwc->event_base + idx,
1663 (u64)(-left) & x86_pmu.event_mask);
e4abb5d4 1664
cdd6c482 1665 perf_event_update_userpage(event);
194002b2 1666
e4abb5d4 1667 return ret;
2f18d1e8
IM
1668}
1669
1670static inline void
cdd6c482 1671intel_pmu_enable_fixed(struct hw_perf_event *hwc, int __idx)
2f18d1e8
IM
1672{
1673 int idx = __idx - X86_PMC_IDX_FIXED;
1674 u64 ctrl_val, bits, mask;
1675 int err;
1676
1677 /*
0475f9ea
PM
1678 * Enable IRQ generation (0x8),
1679 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1680 * if requested:
2f18d1e8 1681 */
0475f9ea
PM
1682 bits = 0x8ULL;
1683 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1684 bits |= 0x2;
2f18d1e8
IM
1685 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1686 bits |= 0x1;
b27d515a
SE
1687
1688 /*
1689 * ANY bit is supported in v3 and up
1690 */
1691 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1692 bits |= 0x4;
1693
2f18d1e8
IM
1694 bits <<= (idx * 4);
1695 mask = 0xfULL << (idx * 4);
1696
1697 rdmsrl(hwc->config_base, ctrl_val);
1698 ctrl_val &= ~mask;
1699 ctrl_val |= bits;
1700 err = checking_wrmsrl(hwc->config_base, ctrl_val);
7e2ae347
IM
1701}
1702
cdd6c482 1703static void p6_pmu_enable_event(struct hw_perf_event *hwc, int idx)
11d1578f 1704{
cdd6c482 1705 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
984b838c 1706 u64 val;
11d1578f 1707
984b838c 1708 val = hwc->config;
11d1578f 1709 if (cpuc->enabled)
984b838c
PZ
1710 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1711
1712 (void)checking_wrmsrl(hwc->config_base + idx, val);
11d1578f
VW
1713}
1714
1715
cdd6c482 1716static void intel_pmu_enable_event(struct hw_perf_event *hwc, int idx)
7e2ae347 1717{
30dd568c 1718 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
cdd6c482 1719 if (!__get_cpu_var(cpu_hw_events).enabled)
30dd568c
MM
1720 return;
1721
1722 intel_pmu_enable_bts(hwc->config);
1723 return;
1724 }
1725
7c90cc45
RR
1726 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1727 intel_pmu_enable_fixed(hwc, idx);
1728 return;
1729 }
1730
8c48e444 1731 __x86_pmu_enable_event(hwc, idx);
7c90cc45
RR
1732}
1733
8c48e444 1734static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
7c90cc45 1735{
cdd6c482 1736 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
7c90cc45 1737 if (cpuc->enabled)
8c48e444 1738 __x86_pmu_enable_event(hwc, idx);
241771ef
IM
1739}
1740
b690081d 1741/*
1da53e02
SE
1742 * activate a single event
1743 *
1744 * The event is added to the group of enabled events
1745 * but only if it can be scehduled with existing events.
1746 *
1747 * Called with PMU disabled. If successful and return value 1,
1748 * then guaranteed to call perf_enable() and hw_perf_enable()
fe9081cc
PZ
1749 */
1750static int x86_pmu_enable(struct perf_event *event)
1751{
1752 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
1753 struct hw_perf_event *hwc;
1754 int assign[X86_PMC_IDX_MAX];
1755 int n, n0, ret;
fe9081cc 1756
1da53e02 1757 hwc = &event->hw;
fe9081cc 1758
1da53e02
SE
1759 n0 = cpuc->n_events;
1760 n = collect_events(cpuc, event, false);
1761 if (n < 0)
1762 return n;
53b441a5 1763
1da53e02
SE
1764 ret = x86_schedule_events(cpuc, n, assign);
1765 if (ret)
1766 return ret;
1767 /*
1768 * copy new assignment, now we know it is possible
1769 * will be used by hw_perf_enable()
1770 */
1771 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1772
1da53e02
SE
1773 cpuc->n_events = n;
1774 cpuc->n_added = n - n0;
95cdd2e7
IM
1775
1776 return 0;
241771ef
IM
1777}
1778
cdd6c482 1779static void x86_pmu_unthrottle(struct perf_event *event)
a78ac325 1780{
cdd6c482
IM
1781 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1782 struct hw_perf_event *hwc = &event->hw;
a78ac325
PZ
1783
1784 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
cdd6c482 1785 cpuc->events[hwc->idx] != event))
a78ac325
PZ
1786 return;
1787
1788 x86_pmu.enable(hwc, hwc->idx);
1789}
1790
cdd6c482 1791void perf_event_print_debug(void)
241771ef 1792{
2f18d1e8 1793 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
cdd6c482 1794 struct cpu_hw_events *cpuc;
5bb9efe3 1795 unsigned long flags;
1e125676
IM
1796 int cpu, idx;
1797
cdd6c482 1798 if (!x86_pmu.num_events)
1e125676 1799 return;
241771ef 1800
5bb9efe3 1801 local_irq_save(flags);
241771ef
IM
1802
1803 cpu = smp_processor_id();
cdd6c482 1804 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1805
faa28ae0 1806 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1807 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1808 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1809 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1810 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1811
1812 pr_info("\n");
1813 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1814 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1815 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1816 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
f87ad35d 1817 }
1da53e02 1818 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1819
cdd6c482 1820 for (idx = 0; idx < x86_pmu.num_events; idx++) {
4a06bd85
RR
1821 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1822 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
241771ef 1823
245b2e70 1824 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1825
a1ef58f4 1826 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1827 cpu, idx, pmc_ctrl);
a1ef58f4 1828 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1829 cpu, idx, pmc_count);
a1ef58f4 1830 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1831 cpu, idx, prev_left);
241771ef 1832 }
cdd6c482 1833 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
2f18d1e8
IM
1834 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1835
a1ef58f4 1836 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1837 cpu, idx, pmc_count);
1838 }
5bb9efe3 1839 local_irq_restore(flags);
241771ef
IM
1840}
1841
cdd6c482 1842static void intel_pmu_drain_bts_buffer(struct cpu_hw_events *cpuc)
30dd568c
MM
1843{
1844 struct debug_store *ds = cpuc->ds;
1845 struct bts_record {
1846 u64 from;
1847 u64 to;
1848 u64 flags;
1849 };
cdd6c482 1850 struct perf_event *event = cpuc->events[X86_PMC_IDX_FIXED_BTS];
596da17f 1851 struct bts_record *at, *top;
5622f295
MM
1852 struct perf_output_handle handle;
1853 struct perf_event_header header;
1854 struct perf_sample_data data;
1855 struct pt_regs regs;
30dd568c 1856
cdd6c482 1857 if (!event)
30dd568c
MM
1858 return;
1859
1860 if (!ds)
1861 return;
1862
596da17f 1863 at = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
1864 top = (struct bts_record *)(unsigned long)ds->bts_index;
30dd568c 1865
5622f295
MM
1866 if (top <= at)
1867 return;
1868
596da17f 1869 ds->bts_index = ds->bts_buffer_base;
1870
5622f295 1871
cdd6c482 1872 data.period = event->hw.last_period;
5622f295 1873 data.addr = 0;
5e855db5 1874 data.raw = NULL;
5622f295
MM
1875 regs.ip = 0;
1876
1877 /*
1878 * Prepare a generic sample, i.e. fill in the invariant fields.
1879 * We will overwrite the from and to address before we output
1880 * the sample.
1881 */
cdd6c482 1882 perf_prepare_sample(&header, &data, event, &regs);
5622f295 1883
cdd6c482 1884 if (perf_output_begin(&handle, event,
5622f295
MM
1885 header.size * (top - at), 1, 1))
1886 return;
1887
596da17f 1888 for (; at < top; at++) {
5622f295
MM
1889 data.ip = at->from;
1890 data.addr = at->to;
30dd568c 1891
cdd6c482 1892 perf_output_sample(&handle, &header, &data, event);
30dd568c
MM
1893 }
1894
5622f295 1895 perf_output_end(&handle);
30dd568c
MM
1896
1897 /* There's new data available. */
cdd6c482
IM
1898 event->hw.interrupts++;
1899 event->pending_kill = POLL_IN;
30dd568c
MM
1900}
1901
2e841873 1902static void __x86_pmu_disable(struct perf_event *event, struct cpu_hw_events *cpuc)
241771ef 1903{
cdd6c482 1904 struct hw_perf_event *hwc = &event->hw;
2e841873 1905 int idx = hwc->idx;
241771ef 1906
09534238
RR
1907 /*
1908 * Must be done before we disable, otherwise the nmi handler
1909 * could reenable again:
1910 */
43f6201a 1911 clear_bit(idx, cpuc->active_mask);
d4369891 1912 x86_pmu.disable(hwc, idx);
241771ef 1913
ee06094f 1914 /*
cdd6c482 1915 * Drain the remaining delta count out of a event
ee06094f
IM
1916 * that we are disabling:
1917 */
cdd6c482 1918 x86_perf_event_update(event, hwc, idx);
30dd568c
MM
1919
1920 /* Drain the remaining BTS records. */
5622f295
MM
1921 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS))
1922 intel_pmu_drain_bts_buffer(cpuc);
30dd568c 1923
cdd6c482 1924 cpuc->events[idx] = NULL;
2e841873
PZ
1925}
1926
1927static void x86_pmu_disable(struct perf_event *event)
1928{
1929 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1930 int i;
1931
1932 __x86_pmu_disable(event, cpuc);
194002b2 1933
1da53e02
SE
1934 for (i = 0; i < cpuc->n_events; i++) {
1935 if (event == cpuc->event_list[i]) {
1936
1937 if (x86_pmu.put_event_constraints)
1938 x86_pmu.put_event_constraints(cpuc, event);
1939
1940 while (++i < cpuc->n_events)
1941 cpuc->event_list[i-1] = cpuc->event_list[i];
1942
1943 --cpuc->n_events;
6c9687ab 1944 break;
1da53e02
SE
1945 }
1946 }
cdd6c482 1947 perf_event_update_userpage(event);
241771ef
IM
1948}
1949
7e2ae347 1950/*
cdd6c482
IM
1951 * Save and restart an expired event. Called by NMI contexts,
1952 * so it has to be careful about preempting normal event ops:
7e2ae347 1953 */
cdd6c482 1954static int intel_pmu_save_and_restart(struct perf_event *event)
241771ef 1955{
cdd6c482 1956 struct hw_perf_event *hwc = &event->hw;
241771ef 1957 int idx = hwc->idx;
e4abb5d4 1958 int ret;
241771ef 1959
cdd6c482
IM
1960 x86_perf_event_update(event, hwc, idx);
1961 ret = x86_perf_event_set_period(event, hwc, idx);
7e2ae347 1962
cdd6c482
IM
1963 if (event->state == PERF_EVENT_STATE_ACTIVE)
1964 intel_pmu_enable_event(hwc, idx);
e4abb5d4
PZ
1965
1966 return ret;
241771ef
IM
1967}
1968
aaba9801
IM
1969static void intel_pmu_reset(void)
1970{
cdd6c482 1971 struct debug_store *ds = __get_cpu_var(cpu_hw_events).ds;
aaba9801
IM
1972 unsigned long flags;
1973 int idx;
1974
cdd6c482 1975 if (!x86_pmu.num_events)
aaba9801
IM
1976 return;
1977
1978 local_irq_save(flags);
1979
1980 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1981
cdd6c482 1982 for (idx = 0; idx < x86_pmu.num_events; idx++) {
aaba9801
IM
1983 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1984 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1985 }
cdd6c482 1986 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
aaba9801
IM
1987 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1988 }
30dd568c
MM
1989 if (ds)
1990 ds->bts_index = ds->bts_buffer_base;
aaba9801
IM
1991
1992 local_irq_restore(flags);
1993}
1994
241771ef
IM
1995/*
1996 * This handler is triggered by the local APIC, so the APIC IRQ handling
1997 * rules apply:
1998 */
a3288106 1999static int intel_pmu_handle_irq(struct pt_regs *regs)
241771ef 2000{
df1a132b 2001 struct perf_sample_data data;
cdd6c482 2002 struct cpu_hw_events *cpuc;
11d1578f 2003 int bit, loops;
4b39fd96 2004 u64 ack, status;
9029a5e3 2005
df1a132b 2006 data.addr = 0;
5e855db5 2007 data.raw = NULL;
df1a132b 2008
cdd6c482 2009 cpuc = &__get_cpu_var(cpu_hw_events);
241771ef 2010
9e35ad38 2011 perf_disable();
5622f295 2012 intel_pmu_drain_bts_buffer(cpuc);
19d84dab 2013 status = intel_pmu_get_status();
9e35ad38
PZ
2014 if (!status) {
2015 perf_enable();
2016 return 0;
2017 }
87b9cf46 2018
9029a5e3 2019 loops = 0;
241771ef 2020again:
9029a5e3 2021 if (++loops > 100) {
cdd6c482
IM
2022 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
2023 perf_event_print_debug();
aaba9801
IM
2024 intel_pmu_reset();
2025 perf_enable();
9029a5e3
IM
2026 return 1;
2027 }
2028
d278c484 2029 inc_irq_stat(apic_perf_irqs);
241771ef 2030 ack = status;
2f18d1e8 2031 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
cdd6c482 2032 struct perf_event *event = cpuc->events[bit];
241771ef
IM
2033
2034 clear_bit(bit, (unsigned long *) &status);
43f6201a 2035 if (!test_bit(bit, cpuc->active_mask))
241771ef
IM
2036 continue;
2037
cdd6c482 2038 if (!intel_pmu_save_and_restart(event))
e4abb5d4
PZ
2039 continue;
2040
cdd6c482 2041 data.period = event->hw.last_period;
60f916de 2042
cdd6c482
IM
2043 if (perf_event_overflow(event, 1, &data, regs))
2044 intel_pmu_disable_event(&event->hw, bit);
241771ef
IM
2045 }
2046
dee5d906 2047 intel_pmu_ack_status(ack);
241771ef
IM
2048
2049 /*
2050 * Repeat if there is more work to be done:
2051 */
19d84dab 2052 status = intel_pmu_get_status();
241771ef
IM
2053 if (status)
2054 goto again;
b0f3f28e 2055
48e22d56 2056 perf_enable();
9e35ad38
PZ
2057
2058 return 1;
1b023a96
MG
2059}
2060
8c48e444 2061static int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 2062{
df1a132b 2063 struct perf_sample_data data;
cdd6c482
IM
2064 struct cpu_hw_events *cpuc;
2065 struct perf_event *event;
2066 struct hw_perf_event *hwc;
11d1578f 2067 int idx, handled = 0;
9029a5e3
IM
2068 u64 val;
2069
df1a132b 2070 data.addr = 0;
5e855db5 2071 data.raw = NULL;
df1a132b 2072
cdd6c482 2073 cpuc = &__get_cpu_var(cpu_hw_events);
962bf7a6 2074
cdd6c482 2075 for (idx = 0; idx < x86_pmu.num_events; idx++) {
43f6201a 2076 if (!test_bit(idx, cpuc->active_mask))
a29aa8a7 2077 continue;
962bf7a6 2078
cdd6c482
IM
2079 event = cpuc->events[idx];
2080 hwc = &event->hw;
a4016a79 2081
cdd6c482
IM
2082 val = x86_perf_event_update(event, hwc, idx);
2083 if (val & (1ULL << (x86_pmu.event_bits - 1)))
48e22d56 2084 continue;
962bf7a6 2085
9e350de3 2086 /*
cdd6c482 2087 * event overflow
9e350de3
PZ
2088 */
2089 handled = 1;
cdd6c482 2090 data.period = event->hw.last_period;
9e350de3 2091
cdd6c482 2092 if (!x86_perf_event_set_period(event, hwc, idx))
e4abb5d4
PZ
2093 continue;
2094
cdd6c482 2095 if (perf_event_overflow(event, 1, &data, regs))
8c48e444 2096 x86_pmu.disable(hwc, idx);
a29aa8a7 2097 }
962bf7a6 2098
9e350de3
PZ
2099 if (handled)
2100 inc_irq_stat(apic_perf_irqs);
2101
a29aa8a7
RR
2102 return handled;
2103}
39d81eab 2104
b6276f35
PZ
2105void smp_perf_pending_interrupt(struct pt_regs *regs)
2106{
2107 irq_enter();
2108 ack_APIC_irq();
2109 inc_irq_stat(apic_pending_irqs);
cdd6c482 2110 perf_event_do_pending();
b6276f35
PZ
2111 irq_exit();
2112}
2113
cdd6c482 2114void set_perf_event_pending(void)
b6276f35 2115{
04da8a43 2116#ifdef CONFIG_X86_LOCAL_APIC
7d428966
PZ
2117 if (!x86_pmu.apic || !x86_pmu_initialized())
2118 return;
2119
b6276f35 2120 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
04da8a43 2121#endif
b6276f35
PZ
2122}
2123
cdd6c482 2124void perf_events_lapic_init(void)
241771ef 2125{
04da8a43
IM
2126#ifdef CONFIG_X86_LOCAL_APIC
2127 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 2128 return;
85cf9dba 2129
241771ef 2130 /*
c323d95f 2131 * Always use NMI for PMU
241771ef 2132 */
c323d95f 2133 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 2134#endif
241771ef
IM
2135}
2136
2137static int __kprobes
cdd6c482 2138perf_event_nmi_handler(struct notifier_block *self,
241771ef
IM
2139 unsigned long cmd, void *__args)
2140{
2141 struct die_args *args = __args;
2142 struct pt_regs *regs;
b0f3f28e 2143
cdd6c482 2144 if (!atomic_read(&active_events))
63a809a2
PZ
2145 return NOTIFY_DONE;
2146
b0f3f28e
PZ
2147 switch (cmd) {
2148 case DIE_NMI:
2149 case DIE_NMI_IPI:
2150 break;
241771ef 2151
b0f3f28e 2152 default:
241771ef 2153 return NOTIFY_DONE;
b0f3f28e 2154 }
241771ef
IM
2155
2156 regs = args->regs;
2157
04da8a43 2158#ifdef CONFIG_X86_LOCAL_APIC
241771ef 2159 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 2160#endif
a4016a79
PZ
2161 /*
2162 * Can't rely on the handled return value to say it was our NMI, two
cdd6c482 2163 * events could trigger 'simultaneously' raising two back-to-back NMIs.
a4016a79
PZ
2164 *
2165 * If the first NMI handles both, the latter will be empty and daze
2166 * the CPU.
2167 */
a3288106 2168 x86_pmu.handle_irq(regs);
241771ef 2169
a4016a79 2170 return NOTIFY_STOP;
241771ef
IM
2171}
2172
63b14649
PZ
2173static struct event_constraint unconstrained;
2174
c91e0f5d
PZ
2175static struct event_constraint bts_constraint =
2176 EVENT_CONSTRAINT(0, 1ULL << X86_PMC_IDX_FIXED_BTS, 0);
1da53e02 2177
63b14649
PZ
2178static struct event_constraint *
2179intel_special_constraints(struct perf_event *event)
1da53e02
SE
2180{
2181 unsigned int hw_event;
2182
2183 hw_event = event->hw.config & INTEL_ARCH_EVENT_MASK;
2184
2185 if (unlikely((hw_event ==
2186 x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS)) &&
2187 (event->hw.sample_period == 1))) {
2188
63b14649 2189 return &bts_constraint;
1da53e02 2190 }
63b14649 2191 return NULL;
1da53e02
SE
2192}
2193
63b14649
PZ
2194static struct event_constraint *
2195intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1da53e02 2196{
63b14649 2197 struct event_constraint *c;
1da53e02 2198
63b14649
PZ
2199 c = intel_special_constraints(event);
2200 if (c)
2201 return c;
1da53e02
SE
2202
2203 if (x86_pmu.event_constraints) {
2204 for_each_event_constraint(c, x86_pmu.event_constraints) {
63b14649
PZ
2205 if ((event->hw.config & c->cmask) == c->code)
2206 return c;
1da53e02
SE
2207 }
2208 }
63b14649
PZ
2209
2210 return &unconstrained;
1da53e02
SE
2211}
2212
63b14649
PZ
2213static struct event_constraint *
2214amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1da53e02 2215{
63b14649 2216 return &unconstrained;
1da53e02
SE
2217}
2218
2219static int x86_event_sched_in(struct perf_event *event,
2220 struct perf_cpu_context *cpuctx, int cpu)
2221{
2222 int ret = 0;
2223
2224 event->state = PERF_EVENT_STATE_ACTIVE;
2225 event->oncpu = cpu;
2226 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
2227
2228 if (!is_x86_event(event))
2229 ret = event->pmu->enable(event);
2230
2231 if (!ret && !is_software_event(event))
2232 cpuctx->active_oncpu++;
2233
2234 if (!ret && event->attr.exclusive)
2235 cpuctx->exclusive = 1;
2236
2237 return ret;
2238}
2239
2240static void x86_event_sched_out(struct perf_event *event,
2241 struct perf_cpu_context *cpuctx, int cpu)
2242{
2243 event->state = PERF_EVENT_STATE_INACTIVE;
2244 event->oncpu = -1;
2245
2246 if (!is_x86_event(event))
2247 event->pmu->disable(event);
2248
2249 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
2250
2251 if (!is_software_event(event))
2252 cpuctx->active_oncpu--;
2253
2254 if (event->attr.exclusive || !cpuctx->active_oncpu)
2255 cpuctx->exclusive = 0;
2256}
2257
2258/*
2259 * Called to enable a whole group of events.
2260 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
2261 * Assumes the caller has disabled interrupts and has
2262 * frozen the PMU with hw_perf_save_disable.
2263 *
2264 * called with PMU disabled. If successful and return value 1,
2265 * then guaranteed to call perf_enable() and hw_perf_enable()
2266 */
2267int hw_perf_group_sched_in(struct perf_event *leader,
2268 struct perf_cpu_context *cpuctx,
2269 struct perf_event_context *ctx, int cpu)
2270{
2271 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2272 struct perf_event *sub;
2273 int assign[X86_PMC_IDX_MAX];
2274 int n0, n1, ret;
2275
2276 /* n0 = total number of events */
2277 n0 = collect_events(cpuc, leader, true);
2278 if (n0 < 0)
2279 return n0;
2280
2281 ret = x86_schedule_events(cpuc, n0, assign);
2282 if (ret)
2283 return ret;
2284
2285 ret = x86_event_sched_in(leader, cpuctx, cpu);
2286 if (ret)
2287 return ret;
2288
2289 n1 = 1;
2290 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
8113070d 2291 if (sub->state > PERF_EVENT_STATE_OFF) {
1da53e02
SE
2292 ret = x86_event_sched_in(sub, cpuctx, cpu);
2293 if (ret)
2294 goto undo;
2295 ++n1;
2296 }
2297 }
2298 /*
2299 * copy new assignment, now we know it is possible
2300 * will be used by hw_perf_enable()
2301 */
2302 memcpy(cpuc->assign, assign, n0*sizeof(int));
2303
2304 cpuc->n_events = n0;
2305 cpuc->n_added = n1;
2306 ctx->nr_active += n1;
2307
2308 /*
2309 * 1 means successful and events are active
2310 * This is not quite true because we defer
2311 * actual activation until hw_perf_enable() but
2312 * this way we* ensure caller won't try to enable
2313 * individual events
2314 */
2315 return 1;
2316undo:
2317 x86_event_sched_out(leader, cpuctx, cpu);
2318 n0 = 1;
2319 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2320 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
2321 x86_event_sched_out(sub, cpuctx, cpu);
2322 if (++n0 == n1)
2323 break;
2324 }
2325 }
2326 return ret;
2327}
2328
cdd6c482
IM
2329static __read_mostly struct notifier_block perf_event_nmi_notifier = {
2330 .notifier_call = perf_event_nmi_handler,
5b75af0a
MG
2331 .next = NULL,
2332 .priority = 1
241771ef
IM
2333};
2334
db48cccc 2335static __initconst struct x86_pmu p6_pmu = {
11d1578f 2336 .name = "p6",
8c48e444 2337 .handle_irq = x86_pmu_handle_irq,
11d1578f
VW
2338 .disable_all = p6_pmu_disable_all,
2339 .enable_all = p6_pmu_enable_all,
cdd6c482
IM
2340 .enable = p6_pmu_enable_event,
2341 .disable = p6_pmu_disable_event,
11d1578f
VW
2342 .eventsel = MSR_P6_EVNTSEL0,
2343 .perfctr = MSR_P6_PERFCTR0,
2344 .event_map = p6_pmu_event_map,
2345 .raw_event = p6_pmu_raw_event,
2346 .max_events = ARRAY_SIZE(p6_perfmon_event_map),
04da8a43 2347 .apic = 1,
11d1578f
VW
2348 .max_period = (1ULL << 31) - 1,
2349 .version = 0,
cdd6c482 2350 .num_events = 2,
11d1578f 2351 /*
cdd6c482 2352 * Events have 40 bits implemented. However they are designed such
11d1578f 2353 * that bits [32-39] are sign extensions of bit 31. As such the
cdd6c482 2354 * effective width of a event for P6-like PMU is 32 bits only.
11d1578f
VW
2355 *
2356 * See IA-32 Intel Architecture Software developer manual Vol 3B
2357 */
cdd6c482
IM
2358 .event_bits = 32,
2359 .event_mask = (1ULL << 32) - 1,
1da53e02
SE
2360 .get_event_constraints = intel_get_event_constraints,
2361 .event_constraints = intel_p6_event_constraints
11d1578f
VW
2362};
2363
8c48e444
PZ
2364static __initconst struct x86_pmu core_pmu = {
2365 .name = "core",
2366 .handle_irq = x86_pmu_handle_irq,
2367 .disable_all = x86_pmu_disable_all,
2368 .enable_all = x86_pmu_enable_all,
2369 .enable = x86_pmu_enable_event,
2370 .disable = x86_pmu_disable_event,
2371 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2372 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2373 .event_map = intel_pmu_event_map,
2374 .raw_event = intel_pmu_raw_event,
2375 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2376 .apic = 1,
2377 /*
2378 * Intel PMCs cannot be accessed sanely above 32 bit width,
2379 * so we install an artificial 1<<31 period regardless of
2380 * the generic event period:
2381 */
2382 .max_period = (1ULL << 31) - 1,
2383 .get_event_constraints = intel_get_event_constraints,
2384 .event_constraints = intel_core_event_constraints,
2385};
2386
db48cccc 2387static __initconst struct x86_pmu intel_pmu = {
faa28ae0 2388 .name = "Intel",
39d81eab 2389 .handle_irq = intel_pmu_handle_irq,
9e35ad38
PZ
2390 .disable_all = intel_pmu_disable_all,
2391 .enable_all = intel_pmu_enable_all,
cdd6c482
IM
2392 .enable = intel_pmu_enable_event,
2393 .disable = intel_pmu_disable_event,
b56a3802
JSR
2394 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2395 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5f4ec28f
RR
2396 .event_map = intel_pmu_event_map,
2397 .raw_event = intel_pmu_raw_event,
b56a3802 2398 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
04da8a43 2399 .apic = 1,
c619b8ff
RR
2400 /*
2401 * Intel PMCs cannot be accessed sanely above 32 bit width,
2402 * so we install an artificial 1<<31 period regardless of
cdd6c482 2403 * the generic event period:
c619b8ff
RR
2404 */
2405 .max_period = (1ULL << 31) - 1,
30dd568c
MM
2406 .enable_bts = intel_pmu_enable_bts,
2407 .disable_bts = intel_pmu_disable_bts,
1da53e02 2408 .get_event_constraints = intel_get_event_constraints
b56a3802
JSR
2409};
2410
db48cccc 2411static __initconst struct x86_pmu amd_pmu = {
faa28ae0 2412 .name = "AMD",
8c48e444
PZ
2413 .handle_irq = x86_pmu_handle_irq,
2414 .disable_all = x86_pmu_disable_all,
2415 .enable_all = x86_pmu_enable_all,
2416 .enable = x86_pmu_enable_event,
2417 .disable = x86_pmu_disable_event,
f87ad35d
JSR
2418 .eventsel = MSR_K7_EVNTSEL0,
2419 .perfctr = MSR_K7_PERFCTR0,
5f4ec28f
RR
2420 .event_map = amd_pmu_event_map,
2421 .raw_event = amd_pmu_raw_event,
f87ad35d 2422 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
cdd6c482
IM
2423 .num_events = 4,
2424 .event_bits = 48,
2425 .event_mask = (1ULL << 48) - 1,
04da8a43 2426 .apic = 1,
c619b8ff
RR
2427 /* use highest bit to detect overflow */
2428 .max_period = (1ULL << 47) - 1,
1da53e02 2429 .get_event_constraints = amd_get_event_constraints
f87ad35d
JSR
2430};
2431
db48cccc 2432static __init int p6_pmu_init(void)
11d1578f 2433{
11d1578f
VW
2434 switch (boot_cpu_data.x86_model) {
2435 case 1:
2436 case 3: /* Pentium Pro */
2437 case 5:
2438 case 6: /* Pentium II */
2439 case 7:
2440 case 8:
2441 case 11: /* Pentium III */
11d1578f
VW
2442 case 9:
2443 case 13:
f1c6a581
DQ
2444 /* Pentium M */
2445 break;
11d1578f
VW
2446 default:
2447 pr_cont("unsupported p6 CPU model %d ",
2448 boot_cpu_data.x86_model);
2449 return -ENODEV;
2450 }
2451
04da8a43
IM
2452 x86_pmu = p6_pmu;
2453
11d1578f
VW
2454 return 0;
2455}
2456
db48cccc 2457static __init int intel_pmu_init(void)
241771ef 2458{
7bb497bd 2459 union cpuid10_edx edx;
241771ef 2460 union cpuid10_eax eax;
703e937c 2461 unsigned int unused;
7bb497bd 2462 unsigned int ebx;
faa28ae0 2463 int version;
241771ef 2464
11d1578f
VW
2465 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2466 /* check for P6 processor family */
2467 if (boot_cpu_data.x86 == 6) {
2468 return p6_pmu_init();
2469 } else {
72eae04d 2470 return -ENODEV;
11d1578f
VW
2471 }
2472 }
da1a776b 2473
241771ef
IM
2474 /*
2475 * Check whether the Architectural PerfMon supports
dfc65094 2476 * Branch Misses Retired hw_event or not.
241771ef 2477 */
703e937c 2478 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
241771ef 2479 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
72eae04d 2480 return -ENODEV;
241771ef 2481
faa28ae0
RR
2482 version = eax.split.version_id;
2483 if (version < 2)
8c48e444
PZ
2484 x86_pmu = core_pmu;
2485 else
2486 x86_pmu = intel_pmu;
7bb497bd 2487
1123e3ad 2488 x86_pmu.version = version;
cdd6c482
IM
2489 x86_pmu.num_events = eax.split.num_events;
2490 x86_pmu.event_bits = eax.split.bit_width;
2491 x86_pmu.event_mask = (1ULL << eax.split.bit_width) - 1;
066d7dea
IM
2492
2493 /*
cdd6c482
IM
2494 * Quirk: v2 perfmon does not report fixed-purpose events, so
2495 * assume at least 3 events:
066d7dea 2496 */
8c48e444
PZ
2497 if (version > 1)
2498 x86_pmu.num_events_fixed = max((int)edx.split.num_events_fixed, 3);
b56a3802 2499
8326f44d 2500 /*
1123e3ad 2501 * Install the hw-cache-events table:
8326f44d
IM
2502 */
2503 switch (boot_cpu_data.x86_model) {
8c48e444
PZ
2504 case 14: /* 65 nm core solo/duo, "Yonah" */
2505 pr_cont("Core events, ");
2506 break;
2507
dc81081b
YW
2508 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2509 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2510 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2511 case 29: /* six-core 45 nm xeon "Dunnington" */
8326f44d 2512 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
820a6442 2513 sizeof(hw_cache_event_ids));
8326f44d 2514
8c48e444 2515 x86_pmu.event_constraints = intel_core2_event_constraints;
1123e3ad 2516 pr_cont("Core2 events, ");
8326f44d 2517 break;
452a339a
PZ
2518
2519 case 26: /* 45 nm nehalem, "Bloomfield" */
2520 case 30: /* 45 nm nehalem, "Lynnfield" */
8326f44d 2521 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
820a6442 2522 sizeof(hw_cache_event_ids));
8326f44d 2523
1da53e02 2524 x86_pmu.event_constraints = intel_nehalem_event_constraints;
1123e3ad 2525 pr_cont("Nehalem/Corei7 events, ");
8326f44d
IM
2526 break;
2527 case 28:
2528 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
820a6442 2529 sizeof(hw_cache_event_ids));
8326f44d 2530
1da53e02 2531 x86_pmu.event_constraints = intel_gen_event_constraints;
1123e3ad 2532 pr_cont("Atom events, ");
8326f44d 2533 break;
452a339a
PZ
2534
2535 case 37: /* 32 nm nehalem, "Clarkdale" */
2536 case 44: /* 32 nm nehalem, "Gulftown" */
2537 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2538 sizeof(hw_cache_event_ids));
2539
2540 x86_pmu.event_constraints = intel_westmere_event_constraints;
2541 pr_cont("Westmere events, ");
2542 break;
1da53e02
SE
2543 default:
2544 /*
2545 * default constraints for v2 and up
2546 */
2547 x86_pmu.event_constraints = intel_gen_event_constraints;
2548 pr_cont("generic architected perfmon, ");
8326f44d 2549 }
72eae04d 2550 return 0;
b56a3802
JSR
2551}
2552
db48cccc 2553static __init int amd_pmu_init(void)
f87ad35d 2554{
4d2be126
JSR
2555 /* Performance-monitoring supported from K7 and later: */
2556 if (boot_cpu_data.x86 < 6)
2557 return -ENODEV;
2558
4a06bd85 2559 x86_pmu = amd_pmu;
f86748e9 2560
f4db43a3
JSR
2561 /* Events are common for all AMDs */
2562 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
2563 sizeof(hw_cache_event_ids));
f86748e9 2564
72eae04d 2565 return 0;
f87ad35d
JSR
2566}
2567
12558038
CG
2568static void __init pmu_check_apic(void)
2569{
2570 if (cpu_has_apic)
2571 return;
2572
2573 x86_pmu.apic = 0;
2574 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
2575 pr_info("no hardware sampling interrupt available.\n");
2576}
2577
cdd6c482 2578void __init init_hw_perf_events(void)
b56a3802 2579{
72eae04d
RR
2580 int err;
2581
cdd6c482 2582 pr_info("Performance Events: ");
1123e3ad 2583
b56a3802
JSR
2584 switch (boot_cpu_data.x86_vendor) {
2585 case X86_VENDOR_INTEL:
72eae04d 2586 err = intel_pmu_init();
b56a3802 2587 break;
f87ad35d 2588 case X86_VENDOR_AMD:
72eae04d 2589 err = amd_pmu_init();
f87ad35d 2590 break;
4138960a
RR
2591 default:
2592 return;
b56a3802 2593 }
1123e3ad 2594 if (err != 0) {
cdd6c482 2595 pr_cont("no PMU driver, software events only.\n");
b56a3802 2596 return;
1123e3ad 2597 }
b56a3802 2598
12558038
CG
2599 pmu_check_apic();
2600
1123e3ad 2601 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 2602
cdd6c482
IM
2603 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
2604 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2605 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
2606 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
241771ef 2607 }
cdd6c482
IM
2608 perf_event_mask = (1 << x86_pmu.num_events) - 1;
2609 perf_max_events = x86_pmu.num_events;
241771ef 2610
cdd6c482
IM
2611 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
2612 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2613 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
2614 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
703e937c 2615 }
862a1a5f 2616
cdd6c482
IM
2617 perf_event_mask |=
2618 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
2619 x86_pmu.intel_ctrl = perf_event_mask;
241771ef 2620
cdd6c482
IM
2621 perf_events_lapic_init();
2622 register_die_notifier(&perf_event_nmi_notifier);
1123e3ad 2623
63b14649
PZ
2624 unconstrained = (struct event_constraint)
2625 EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1, 0);
2626
57c0c15b
IM
2627 pr_info("... version: %d\n", x86_pmu.version);
2628 pr_info("... bit width: %d\n", x86_pmu.event_bits);
2629 pr_info("... generic registers: %d\n", x86_pmu.num_events);
2630 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
2631 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2632 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
2633 pr_info("... event mask: %016Lx\n", perf_event_mask);
241771ef 2634}
621a01ea 2635
cdd6c482 2636static inline void x86_pmu_read(struct perf_event *event)
ee06094f 2637{
cdd6c482 2638 x86_perf_event_update(event, &event->hw, event->hw.idx);
ee06094f
IM
2639}
2640
4aeb0b42
RR
2641static const struct pmu pmu = {
2642 .enable = x86_pmu_enable,
2643 .disable = x86_pmu_disable,
2644 .read = x86_pmu_read,
a78ac325 2645 .unthrottle = x86_pmu_unthrottle,
621a01ea
IM
2646};
2647
1da53e02
SE
2648/*
2649 * validate a single event group
2650 *
2651 * validation include:
184f412c
IM
2652 * - check events are compatible which each other
2653 * - events do not compete for the same counter
2654 * - number of events <= number of counters
1da53e02
SE
2655 *
2656 * validation ensures the group can be loaded onto the
2657 * PMU if it was the only group available.
2658 */
fe9081cc
PZ
2659static int validate_group(struct perf_event *event)
2660{
1da53e02 2661 struct perf_event *leader = event->group_leader;
502568d5
PZ
2662 struct cpu_hw_events *fake_cpuc;
2663 int ret, n;
fe9081cc 2664
502568d5
PZ
2665 ret = -ENOMEM;
2666 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
2667 if (!fake_cpuc)
2668 goto out;
fe9081cc 2669
1da53e02
SE
2670 /*
2671 * the event is not yet connected with its
2672 * siblings therefore we must first collect
2673 * existing siblings, then add the new event
2674 * before we can simulate the scheduling
2675 */
502568d5
PZ
2676 ret = -ENOSPC;
2677 n = collect_events(fake_cpuc, leader, true);
1da53e02 2678 if (n < 0)
502568d5 2679 goto out_free;
fe9081cc 2680
502568d5
PZ
2681 fake_cpuc->n_events = n;
2682 n = collect_events(fake_cpuc, event, false);
1da53e02 2683 if (n < 0)
502568d5 2684 goto out_free;
fe9081cc 2685
502568d5 2686 fake_cpuc->n_events = n;
1da53e02 2687
502568d5
PZ
2688 ret = x86_schedule_events(fake_cpuc, n, NULL);
2689
2690out_free:
2691 kfree(fake_cpuc);
2692out:
2693 return ret;
fe9081cc
PZ
2694}
2695
cdd6c482 2696const struct pmu *hw_perf_event_init(struct perf_event *event)
621a01ea 2697{
8113070d 2698 const struct pmu *tmp;
621a01ea
IM
2699 int err;
2700
cdd6c482 2701 err = __hw_perf_event_init(event);
fe9081cc 2702 if (!err) {
8113070d
SE
2703 /*
2704 * we temporarily connect event to its pmu
2705 * such that validate_group() can classify
2706 * it as an x86 event using is_x86_event()
2707 */
2708 tmp = event->pmu;
2709 event->pmu = &pmu;
2710
fe9081cc
PZ
2711 if (event->group_leader != event)
2712 err = validate_group(event);
8113070d
SE
2713
2714 event->pmu = tmp;
fe9081cc 2715 }
a1792cda 2716 if (err) {
cdd6c482
IM
2717 if (event->destroy)
2718 event->destroy(event);
9ea98e19 2719 return ERR_PTR(err);
a1792cda 2720 }
621a01ea 2721
4aeb0b42 2722 return &pmu;
621a01ea 2723}
d7d59fb3
PZ
2724
2725/*
2726 * callchain support
2727 */
2728
2729static inline
f9188e02 2730void callchain_store(struct perf_callchain_entry *entry, u64 ip)
d7d59fb3 2731{
f9188e02 2732 if (entry->nr < PERF_MAX_STACK_DEPTH)
d7d59fb3
PZ
2733 entry->ip[entry->nr++] = ip;
2734}
2735
245b2e70
TH
2736static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
2737static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
d7d59fb3
PZ
2738
2739
2740static void
2741backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
2742{
2743 /* Ignore warnings */
2744}
2745
2746static void backtrace_warning(void *data, char *msg)
2747{
2748 /* Ignore warnings */
2749}
2750
2751static int backtrace_stack(void *data, char *name)
2752{
038e836e 2753 return 0;
d7d59fb3
PZ
2754}
2755
2756static void backtrace_address(void *data, unsigned long addr, int reliable)
2757{
2758 struct perf_callchain_entry *entry = data;
2759
2760 if (reliable)
2761 callchain_store(entry, addr);
2762}
2763
2764static const struct stacktrace_ops backtrace_ops = {
2765 .warning = backtrace_warning,
2766 .warning_symbol = backtrace_warning_symbol,
2767 .stack = backtrace_stack,
2768 .address = backtrace_address,
06d65bda 2769 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2770};
2771
038e836e
IM
2772#include "../dumpstack.h"
2773
d7d59fb3
PZ
2774static void
2775perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
2776{
f9188e02 2777 callchain_store(entry, PERF_CONTEXT_KERNEL);
038e836e 2778 callchain_store(entry, regs->ip);
d7d59fb3 2779
48b5ba9c 2780 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
d7d59fb3
PZ
2781}
2782
74193ef0
PZ
2783/*
2784 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
2785 */
2786static unsigned long
2787copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
d7d59fb3 2788{
74193ef0
PZ
2789 unsigned long offset, addr = (unsigned long)from;
2790 int type = in_nmi() ? KM_NMI : KM_IRQ0;
2791 unsigned long size, len = 0;
2792 struct page *page;
2793 void *map;
d7d59fb3
PZ
2794 int ret;
2795
74193ef0
PZ
2796 do {
2797 ret = __get_user_pages_fast(addr, 1, 0, &page);
2798 if (!ret)
2799 break;
d7d59fb3 2800
74193ef0
PZ
2801 offset = addr & (PAGE_SIZE - 1);
2802 size = min(PAGE_SIZE - offset, n - len);
d7d59fb3 2803
74193ef0
PZ
2804 map = kmap_atomic(page, type);
2805 memcpy(to, map+offset, size);
2806 kunmap_atomic(map, type);
2807 put_page(page);
2808
2809 len += size;
2810 to += size;
2811 addr += size;
2812
2813 } while (len < n);
2814
2815 return len;
2816}
2817
2818static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
2819{
2820 unsigned long bytes;
2821
2822 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
2823
2824 return bytes == sizeof(*frame);
d7d59fb3
PZ
2825}
2826
2827static void
2828perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
2829{
2830 struct stack_frame frame;
2831 const void __user *fp;
2832
5a6cec3a
IM
2833 if (!user_mode(regs))
2834 regs = task_pt_regs(current);
2835
74193ef0 2836 fp = (void __user *)regs->bp;
d7d59fb3 2837
f9188e02 2838 callchain_store(entry, PERF_CONTEXT_USER);
d7d59fb3
PZ
2839 callchain_store(entry, regs->ip);
2840
f9188e02 2841 while (entry->nr < PERF_MAX_STACK_DEPTH) {
038e836e 2842 frame.next_frame = NULL;
d7d59fb3
PZ
2843 frame.return_address = 0;
2844
2845 if (!copy_stack_frame(fp, &frame))
2846 break;
2847
5a6cec3a 2848 if ((unsigned long)fp < regs->sp)
d7d59fb3
PZ
2849 break;
2850
2851 callchain_store(entry, frame.return_address);
038e836e 2852 fp = frame.next_frame;
d7d59fb3
PZ
2853 }
2854}
2855
2856static void
2857perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
2858{
2859 int is_user;
2860
2861 if (!regs)
2862 return;
2863
2864 is_user = user_mode(regs);
2865
d7d59fb3
PZ
2866 if (is_user && current->state != TASK_RUNNING)
2867 return;
2868
2869 if (!is_user)
2870 perf_callchain_kernel(regs, entry);
2871
2872 if (current->mm)
2873 perf_callchain_user(regs, entry);
2874}
2875
2876struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2877{
2878 struct perf_callchain_entry *entry;
2879
2880 if (in_nmi())
245b2e70 2881 entry = &__get_cpu_var(pmc_nmi_entry);
d7d59fb3 2882 else
245b2e70 2883 entry = &__get_cpu_var(pmc_irq_entry);
d7d59fb3
PZ
2884
2885 entry->nr = 0;
2886
2887 perf_do_callchain(regs, entry);
2888
2889 return entry;
2890}
30dd568c 2891
cdd6c482 2892void hw_perf_event_setup_online(int cpu)
30dd568c
MM
2893{
2894 init_debug_store_on_cpu(cpu);
2895}