]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/perf_event.c
perf, x86: Fix x86_pmu_start
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
74193ef0 24#include <linux/highmem.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
241771ef 27
241771ef 28#include <asm/apic.h>
d7d59fb3 29#include <asm/stacktrace.h>
4e935e47 30#include <asm/nmi.h>
241771ef 31
cdd6c482 32static u64 perf_event_mask __read_mostly;
703e937c 33
cdd6c482
IM
34/* The maximal number of PEBS events: */
35#define MAX_PEBS_EVENTS 4
30dd568c
MM
36
37/* The size of a BTS record in bytes: */
38#define BTS_RECORD_SIZE 24
39
40/* The size of a per-cpu BTS buffer in bytes: */
5622f295 41#define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
30dd568c
MM
42
43/* The BTS overflow threshold in bytes from the end of the buffer: */
5622f295 44#define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
30dd568c
MM
45
46
47/*
48 * Bits in the debugctlmsr controlling branch tracing.
49 */
50#define X86_DEBUGCTL_TR (1 << 6)
51#define X86_DEBUGCTL_BTS (1 << 7)
52#define X86_DEBUGCTL_BTINT (1 << 8)
53#define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
54#define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
55
56/*
57 * A debug store configuration.
58 *
59 * We only support architectures that use 64bit fields.
60 */
61struct debug_store {
62 u64 bts_buffer_base;
63 u64 bts_index;
64 u64 bts_absolute_maximum;
65 u64 bts_interrupt_threshold;
66 u64 pebs_buffer_base;
67 u64 pebs_index;
68 u64 pebs_absolute_maximum;
69 u64 pebs_interrupt_threshold;
cdd6c482 70 u64 pebs_event_reset[MAX_PEBS_EVENTS];
30dd568c
MM
71};
72
1da53e02 73struct event_constraint {
c91e0f5d
PZ
74 union {
75 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
b622d644 76 u64 idxmsk64;
c91e0f5d 77 };
b622d644
PZ
78 u64 code;
79 u64 cmask;
272d30be 80 int weight;
1da53e02
SE
81};
82
38331f62
SE
83struct amd_nb {
84 int nb_id; /* NorthBridge id */
85 int refcnt; /* reference count */
86 struct perf_event *owners[X86_PMC_IDX_MAX];
87 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
88};
89
cdd6c482 90struct cpu_hw_events {
1da53e02 91 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
43f6201a 92 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
4b39fd96 93 unsigned long interrupts;
b0f3f28e 94 int enabled;
30dd568c 95 struct debug_store *ds;
241771ef 96
1da53e02
SE
97 int n_events;
98 int n_added;
99 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
447a194b 100 u64 tags[X86_PMC_IDX_MAX];
1da53e02 101 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
38331f62 102 struct amd_nb *amd_nb;
b690081d
SE
103};
104
fce877e3 105#define __EVENT_CONSTRAINT(c, n, m, w) {\
b622d644 106 { .idxmsk64 = (n) }, \
c91e0f5d
PZ
107 .code = (c), \
108 .cmask = (m), \
fce877e3 109 .weight = (w), \
c91e0f5d 110}
b690081d 111
fce877e3
PZ
112#define EVENT_CONSTRAINT(c, n, m) \
113 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
114
ed8777fc
PZ
115#define INTEL_EVENT_CONSTRAINT(c, n) \
116 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
8433be11 117
ed8777fc 118#define FIXED_EVENT_CONSTRAINT(c, n) \
b622d644 119 EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
8433be11 120
ed8777fc
PZ
121#define EVENT_CONSTRAINT_END \
122 EVENT_CONSTRAINT(0, 0, 0)
123
124#define for_each_event_constraint(e, c) \
125 for ((e) = (c); (e)->cmask; (e)++)
b690081d 126
241771ef 127/*
5f4ec28f 128 * struct x86_pmu - generic x86 pmu
241771ef 129 */
5f4ec28f 130struct x86_pmu {
faa28ae0
RR
131 const char *name;
132 int version;
a3288106 133 int (*handle_irq)(struct pt_regs *);
9e35ad38
PZ
134 void (*disable_all)(void);
135 void (*enable_all)(void);
aff3d91a
PZ
136 void (*enable)(struct perf_event *);
137 void (*disable)(struct perf_event *);
169e41eb
JSR
138 unsigned eventsel;
139 unsigned perfctr;
b0f3f28e
PZ
140 u64 (*event_map)(int);
141 u64 (*raw_event)(u64);
169e41eb 142 int max_events;
cdd6c482
IM
143 int num_events;
144 int num_events_fixed;
145 int event_bits;
146 u64 event_mask;
04da8a43 147 int apic;
c619b8ff 148 u64 max_period;
9e35ad38 149 u64 intel_ctrl;
30dd568c
MM
150 void (*enable_bts)(u64 config);
151 void (*disable_bts)(void);
63b14649
PZ
152
153 struct event_constraint *
154 (*get_event_constraints)(struct cpu_hw_events *cpuc,
155 struct perf_event *event);
156
c91e0f5d
PZ
157 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
158 struct perf_event *event);
63b14649 159 struct event_constraint *event_constraints;
3f6da390
PZ
160
161 void (*cpu_prepare)(int cpu);
162 void (*cpu_starting)(int cpu);
163 void (*cpu_dying)(int cpu);
164 void (*cpu_dead)(int cpu);
b56a3802
JSR
165};
166
4a06bd85 167static struct x86_pmu x86_pmu __read_mostly;
b56a3802 168
cdd6c482 169static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
170 .enabled = 1,
171};
241771ef 172
07088edb 173static int x86_perf_event_set_period(struct perf_event *event);
b690081d 174
8326f44d 175/*
dfc65094 176 * Generalized hw caching related hw_event table, filled
8326f44d 177 * in on a per model basis. A value of 0 means
dfc65094
IM
178 * 'not supported', -1 means 'hw_event makes no sense on
179 * this CPU', any other value means the raw hw_event
8326f44d
IM
180 * ID.
181 */
182
183#define C(x) PERF_COUNT_HW_CACHE_##x
184
185static u64 __read_mostly hw_cache_event_ids
186 [PERF_COUNT_HW_CACHE_MAX]
187 [PERF_COUNT_HW_CACHE_OP_MAX]
188 [PERF_COUNT_HW_CACHE_RESULT_MAX];
189
ee06094f 190/*
cdd6c482
IM
191 * Propagate event elapsed time into the generic event.
192 * Can only be executed on the CPU where the event is active.
ee06094f
IM
193 * Returns the delta events processed.
194 */
4b7bfd0d 195static u64
cc2ad4ba 196x86_perf_event_update(struct perf_event *event)
ee06094f 197{
cc2ad4ba 198 struct hw_perf_event *hwc = &event->hw;
cdd6c482 199 int shift = 64 - x86_pmu.event_bits;
ec3232bd 200 u64 prev_raw_count, new_raw_count;
cc2ad4ba 201 int idx = hwc->idx;
ec3232bd 202 s64 delta;
ee06094f 203
30dd568c
MM
204 if (idx == X86_PMC_IDX_FIXED_BTS)
205 return 0;
206
ee06094f 207 /*
cdd6c482 208 * Careful: an NMI might modify the previous event value.
ee06094f
IM
209 *
210 * Our tactic to handle this is to first atomically read and
211 * exchange a new raw count - then add that new-prev delta
cdd6c482 212 * count to the generic event atomically:
ee06094f
IM
213 */
214again:
215 prev_raw_count = atomic64_read(&hwc->prev_count);
cdd6c482 216 rdmsrl(hwc->event_base + idx, new_raw_count);
ee06094f
IM
217
218 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
219 new_raw_count) != prev_raw_count)
220 goto again;
221
222 /*
223 * Now we have the new raw value and have updated the prev
224 * timestamp already. We can now calculate the elapsed delta
cdd6c482 225 * (event-)time and add that to the generic event.
ee06094f
IM
226 *
227 * Careful, not all hw sign-extends above the physical width
ec3232bd 228 * of the count.
ee06094f 229 */
ec3232bd
PZ
230 delta = (new_raw_count << shift) - (prev_raw_count << shift);
231 delta >>= shift;
ee06094f 232
cdd6c482 233 atomic64_add(delta, &event->count);
ee06094f 234 atomic64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
235
236 return new_raw_count;
ee06094f
IM
237}
238
cdd6c482 239static atomic_t active_events;
4e935e47
PZ
240static DEFINE_MUTEX(pmc_reserve_mutex);
241
242static bool reserve_pmc_hardware(void)
243{
04da8a43 244#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
245 int i;
246
247 if (nmi_watchdog == NMI_LOCAL_APIC)
248 disable_lapic_nmi_watchdog();
249
cdd6c482 250 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 251 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
4e935e47
PZ
252 goto perfctr_fail;
253 }
254
cdd6c482 255 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 256 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
4e935e47
PZ
257 goto eventsel_fail;
258 }
04da8a43 259#endif
4e935e47
PZ
260
261 return true;
262
04da8a43 263#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
264eventsel_fail:
265 for (i--; i >= 0; i--)
4a06bd85 266 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47 267
cdd6c482 268 i = x86_pmu.num_events;
4e935e47
PZ
269
270perfctr_fail:
271 for (i--; i >= 0; i--)
4a06bd85 272 release_perfctr_nmi(x86_pmu.perfctr + i);
4e935e47
PZ
273
274 if (nmi_watchdog == NMI_LOCAL_APIC)
275 enable_lapic_nmi_watchdog();
276
277 return false;
04da8a43 278#endif
4e935e47
PZ
279}
280
281static void release_pmc_hardware(void)
282{
04da8a43 283#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
284 int i;
285
cdd6c482 286 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85
RR
287 release_perfctr_nmi(x86_pmu.perfctr + i);
288 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47
PZ
289 }
290
291 if (nmi_watchdog == NMI_LOCAL_APIC)
292 enable_lapic_nmi_watchdog();
04da8a43 293#endif
4e935e47
PZ
294}
295
30dd568c
MM
296static inline bool bts_available(void)
297{
298 return x86_pmu.enable_bts != NULL;
299}
300
3f6da390 301static void init_debug_store_on_cpu(int cpu)
30dd568c 302{
cdd6c482 303 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
304
305 if (!ds)
306 return;
307
308 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
596da17f 309 (u32)((u64)(unsigned long)ds),
310 (u32)((u64)(unsigned long)ds >> 32));
30dd568c
MM
311}
312
3f6da390 313static void fini_debug_store_on_cpu(int cpu)
30dd568c 314{
cdd6c482 315 if (!per_cpu(cpu_hw_events, cpu).ds)
30dd568c
MM
316 return;
317
318 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
319}
320
321static void release_bts_hardware(void)
322{
323 int cpu;
324
325 if (!bts_available())
326 return;
327
328 get_online_cpus();
329
330 for_each_online_cpu(cpu)
331 fini_debug_store_on_cpu(cpu);
332
333 for_each_possible_cpu(cpu) {
cdd6c482 334 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
335
336 if (!ds)
337 continue;
338
cdd6c482 339 per_cpu(cpu_hw_events, cpu).ds = NULL;
30dd568c 340
596da17f 341 kfree((void *)(unsigned long)ds->bts_buffer_base);
30dd568c
MM
342 kfree(ds);
343 }
344
345 put_online_cpus();
346}
347
348static int reserve_bts_hardware(void)
349{
350 int cpu, err = 0;
351
352 if (!bts_available())
747b50aa 353 return 0;
30dd568c
MM
354
355 get_online_cpus();
356
357 for_each_possible_cpu(cpu) {
358 struct debug_store *ds;
359 void *buffer;
360
361 err = -ENOMEM;
362 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
363 if (unlikely(!buffer))
364 break;
365
366 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
367 if (unlikely(!ds)) {
368 kfree(buffer);
369 break;
370 }
371
596da17f 372 ds->bts_buffer_base = (u64)(unsigned long)buffer;
30dd568c
MM
373 ds->bts_index = ds->bts_buffer_base;
374 ds->bts_absolute_maximum =
375 ds->bts_buffer_base + BTS_BUFFER_SIZE;
376 ds->bts_interrupt_threshold =
377 ds->bts_absolute_maximum - BTS_OVFL_TH;
378
cdd6c482 379 per_cpu(cpu_hw_events, cpu).ds = ds;
30dd568c
MM
380 err = 0;
381 }
382
383 if (err)
384 release_bts_hardware();
385 else {
386 for_each_online_cpu(cpu)
387 init_debug_store_on_cpu(cpu);
388 }
389
390 put_online_cpus();
391
392 return err;
393}
394
cdd6c482 395static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 396{
cdd6c482 397 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 398 release_pmc_hardware();
30dd568c 399 release_bts_hardware();
4e935e47
PZ
400 mutex_unlock(&pmc_reserve_mutex);
401 }
402}
403
85cf9dba
RR
404static inline int x86_pmu_initialized(void)
405{
406 return x86_pmu.handle_irq != NULL;
407}
408
8326f44d 409static inline int
cdd6c482 410set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
8326f44d
IM
411{
412 unsigned int cache_type, cache_op, cache_result;
413 u64 config, val;
414
415 config = attr->config;
416
417 cache_type = (config >> 0) & 0xff;
418 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
419 return -EINVAL;
420
421 cache_op = (config >> 8) & 0xff;
422 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
423 return -EINVAL;
424
425 cache_result = (config >> 16) & 0xff;
426 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
427 return -EINVAL;
428
429 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
430
431 if (val == 0)
432 return -ENOENT;
433
434 if (val == -1)
435 return -EINVAL;
436
437 hwc->config |= val;
438
439 return 0;
440}
441
241771ef 442/*
0d48696f 443 * Setup the hardware configuration for a given attr_type
241771ef 444 */
cdd6c482 445static int __hw_perf_event_init(struct perf_event *event)
241771ef 446{
cdd6c482
IM
447 struct perf_event_attr *attr = &event->attr;
448 struct hw_perf_event *hwc = &event->hw;
9c74fb50 449 u64 config;
4e935e47 450 int err;
241771ef 451
85cf9dba
RR
452 if (!x86_pmu_initialized())
453 return -ENODEV;
241771ef 454
4e935e47 455 err = 0;
cdd6c482 456 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 457 mutex_lock(&pmc_reserve_mutex);
cdd6c482 458 if (atomic_read(&active_events) == 0) {
30dd568c
MM
459 if (!reserve_pmc_hardware())
460 err = -EBUSY;
461 else
747b50aa 462 err = reserve_bts_hardware();
30dd568c
MM
463 }
464 if (!err)
cdd6c482 465 atomic_inc(&active_events);
4e935e47
PZ
466 mutex_unlock(&pmc_reserve_mutex);
467 }
468 if (err)
469 return err;
470
cdd6c482 471 event->destroy = hw_perf_event_destroy;
a1792cda 472
241771ef 473 /*
0475f9ea 474 * Generate PMC IRQs:
241771ef
IM
475 * (keep 'enabled' bit clear for now)
476 */
0475f9ea 477 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
241771ef 478
b690081d 479 hwc->idx = -1;
447a194b
SE
480 hwc->last_cpu = -1;
481 hwc->last_tag = ~0ULL;
b690081d 482
241771ef 483 /*
0475f9ea 484 * Count user and OS events unless requested not to.
241771ef 485 */
0d48696f 486 if (!attr->exclude_user)
0475f9ea 487 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
0d48696f 488 if (!attr->exclude_kernel)
241771ef 489 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
0475f9ea 490
bd2b5b12 491 if (!hwc->sample_period) {
b23f3325 492 hwc->sample_period = x86_pmu.max_period;
9e350de3 493 hwc->last_period = hwc->sample_period;
bd2b5b12 494 atomic64_set(&hwc->period_left, hwc->sample_period);
04da8a43
IM
495 } else {
496 /*
497 * If we have a PMU initialized but no APIC
498 * interrupts, we cannot sample hardware
cdd6c482
IM
499 * events (user-space has to fall back and
500 * sample via a hrtimer based software event):
04da8a43
IM
501 */
502 if (!x86_pmu.apic)
503 return -EOPNOTSUPP;
bd2b5b12 504 }
d2517a49 505
241771ef 506 /*
dfc65094 507 * Raw hw_event type provide the config in the hw_event structure
241771ef 508 */
a21ca2ca
IM
509 if (attr->type == PERF_TYPE_RAW) {
510 hwc->config |= x86_pmu.raw_event(attr->config);
320ebf09
PZ
511 if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
512 perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
513 return -EACCES;
8326f44d 514 return 0;
241771ef 515 }
241771ef 516
8326f44d
IM
517 if (attr->type == PERF_TYPE_HW_CACHE)
518 return set_ext_hw_attr(hwc, attr);
519
520 if (attr->config >= x86_pmu.max_events)
521 return -EINVAL;
9c74fb50 522
8326f44d
IM
523 /*
524 * The generic map:
525 */
9c74fb50
PZ
526 config = x86_pmu.event_map(attr->config);
527
528 if (config == 0)
529 return -ENOENT;
530
531 if (config == -1LL)
532 return -EINVAL;
533
747b50aa 534 /*
535 * Branch tracing:
536 */
537 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
1653192f 538 (hwc->sample_period == 1)) {
539 /* BTS is not supported by this architecture. */
540 if (!bts_available())
541 return -EOPNOTSUPP;
542
543 /* BTS is currently only allowed for user-mode. */
544 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
545 return -EOPNOTSUPP;
546 }
747b50aa 547
9c74fb50 548 hwc->config |= config;
4e935e47 549
241771ef
IM
550 return 0;
551}
552
8c48e444 553static void x86_pmu_disable_all(void)
f87ad35d 554{
cdd6c482 555 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
556 int idx;
557
cdd6c482 558 for (idx = 0; idx < x86_pmu.num_events; idx++) {
b0f3f28e
PZ
559 u64 val;
560
43f6201a 561 if (!test_bit(idx, cpuc->active_mask))
4295ee62 562 continue;
8c48e444 563 rdmsrl(x86_pmu.eventsel + idx, val);
bb1165d6 564 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 565 continue;
bb1165d6 566 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 567 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d 568 }
f87ad35d
JSR
569}
570
9e35ad38 571void hw_perf_disable(void)
b56a3802 572{
1da53e02
SE
573 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
574
85cf9dba 575 if (!x86_pmu_initialized())
9e35ad38 576 return;
1da53e02 577
1a6e21f7
PZ
578 if (!cpuc->enabled)
579 return;
580
581 cpuc->n_added = 0;
582 cpuc->enabled = 0;
583 barrier();
1da53e02
SE
584
585 x86_pmu.disable_all();
b56a3802 586}
241771ef 587
8c48e444 588static void x86_pmu_enable_all(void)
f87ad35d 589{
cdd6c482 590 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
f87ad35d
JSR
591 int idx;
592
cdd6c482
IM
593 for (idx = 0; idx < x86_pmu.num_events; idx++) {
594 struct perf_event *event = cpuc->events[idx];
4295ee62 595 u64 val;
b0f3f28e 596
43f6201a 597 if (!test_bit(idx, cpuc->active_mask))
4295ee62 598 continue;
984b838c 599
cdd6c482 600 val = event->hw.config;
bb1165d6 601 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 602 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d
JSR
603 }
604}
605
1da53e02
SE
606static const struct pmu pmu;
607
608static inline int is_x86_event(struct perf_event *event)
609{
610 return event->pmu == &pmu;
611}
612
613static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
614{
63b14649 615 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1da53e02 616 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
c933c1a6 617 int i, j, w, wmax, num = 0;
1da53e02
SE
618 struct hw_perf_event *hwc;
619
620 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
621
622 for (i = 0; i < n; i++) {
b622d644
PZ
623 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
624 constraints[i] = c;
1da53e02
SE
625 }
626
8113070d
SE
627 /*
628 * fastpath, try to reuse previous register
629 */
c933c1a6 630 for (i = 0; i < n; i++) {
8113070d 631 hwc = &cpuc->event_list[i]->hw;
81269a08 632 c = constraints[i];
8113070d
SE
633
634 /* never assigned */
635 if (hwc->idx == -1)
636 break;
637
638 /* constraint still honored */
63b14649 639 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
640 break;
641
642 /* not already used */
643 if (test_bit(hwc->idx, used_mask))
644 break;
645
34538ee7 646 __set_bit(hwc->idx, used_mask);
8113070d
SE
647 if (assign)
648 assign[i] = hwc->idx;
649 }
c933c1a6 650 if (i == n)
8113070d
SE
651 goto done;
652
653 /*
654 * begin slow path
655 */
656
657 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
658
1da53e02
SE
659 /*
660 * weight = number of possible counters
661 *
662 * 1 = most constrained, only works on one counter
663 * wmax = least constrained, works on any counter
664 *
665 * assign events to counters starting with most
666 * constrained events.
667 */
668 wmax = x86_pmu.num_events;
669
670 /*
671 * when fixed event counters are present,
672 * wmax is incremented by 1 to account
673 * for one more choice
674 */
675 if (x86_pmu.num_events_fixed)
676 wmax++;
677
8113070d 678 for (w = 1, num = n; num && w <= wmax; w++) {
1da53e02 679 /* for each event */
8113070d 680 for (i = 0; num && i < n; i++) {
81269a08 681 c = constraints[i];
1da53e02
SE
682 hwc = &cpuc->event_list[i]->hw;
683
272d30be 684 if (c->weight != w)
1da53e02
SE
685 continue;
686
984b3f57 687 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
1da53e02
SE
688 if (!test_bit(j, used_mask))
689 break;
690 }
691
692 if (j == X86_PMC_IDX_MAX)
693 break;
1da53e02 694
34538ee7 695 __set_bit(j, used_mask);
8113070d 696
1da53e02
SE
697 if (assign)
698 assign[i] = j;
699 num--;
700 }
701 }
8113070d 702done:
1da53e02
SE
703 /*
704 * scheduling failed or is just a simulation,
705 * free resources if necessary
706 */
707 if (!assign || num) {
708 for (i = 0; i < n; i++) {
709 if (x86_pmu.put_event_constraints)
710 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
711 }
712 }
713 return num ? -ENOSPC : 0;
714}
715
716/*
717 * dogrp: true if must collect siblings events (group)
718 * returns total number of events and error code
719 */
720static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
721{
722 struct perf_event *event;
723 int n, max_count;
724
725 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
726
727 /* current number of events already accepted */
728 n = cpuc->n_events;
729
730 if (is_x86_event(leader)) {
731 if (n >= max_count)
732 return -ENOSPC;
733 cpuc->event_list[n] = leader;
734 n++;
735 }
736 if (!dogrp)
737 return n;
738
739 list_for_each_entry(event, &leader->sibling_list, group_entry) {
740 if (!is_x86_event(event) ||
8113070d 741 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
742 continue;
743
744 if (n >= max_count)
745 return -ENOSPC;
746
747 cpuc->event_list[n] = event;
748 n++;
749 }
750 return n;
751}
752
1da53e02 753static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 754 struct cpu_hw_events *cpuc, int i)
1da53e02 755{
447a194b
SE
756 struct hw_perf_event *hwc = &event->hw;
757
758 hwc->idx = cpuc->assign[i];
759 hwc->last_cpu = smp_processor_id();
760 hwc->last_tag = ++cpuc->tags[i];
1da53e02
SE
761
762 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
763 hwc->config_base = 0;
764 hwc->event_base = 0;
765 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
766 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
767 /*
768 * We set it so that event_base + idx in wrmsr/rdmsr maps to
769 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
770 */
771 hwc->event_base =
772 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
773 } else {
774 hwc->config_base = x86_pmu.eventsel;
775 hwc->event_base = x86_pmu.perfctr;
776 }
777}
778
447a194b
SE
779static inline int match_prev_assignment(struct hw_perf_event *hwc,
780 struct cpu_hw_events *cpuc,
781 int i)
782{
783 return hwc->idx == cpuc->assign[i] &&
784 hwc->last_cpu == smp_processor_id() &&
785 hwc->last_tag == cpuc->tags[i];
786}
787
c08053e6 788static int x86_pmu_start(struct perf_event *event);
d76a0812 789static void x86_pmu_stop(struct perf_event *event);
2e841873 790
9e35ad38 791void hw_perf_enable(void)
ee06094f 792{
1da53e02
SE
793 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
794 struct perf_event *event;
795 struct hw_perf_event *hwc;
796 int i;
797
85cf9dba 798 if (!x86_pmu_initialized())
2b9ff0db 799 return;
1a6e21f7
PZ
800
801 if (cpuc->enabled)
802 return;
803
1da53e02
SE
804 if (cpuc->n_added) {
805 /*
806 * apply assignment obtained either from
807 * hw_perf_group_sched_in() or x86_pmu_enable()
808 *
809 * step1: save events moving to new counters
810 * step2: reprogram moved events into new counters
811 */
812 for (i = 0; i < cpuc->n_events; i++) {
813
814 event = cpuc->event_list[i];
815 hwc = &event->hw;
816
447a194b
SE
817 /*
818 * we can avoid reprogramming counter if:
819 * - assigned same counter as last time
820 * - running on same CPU as last time
821 * - no other event has used the counter since
822 */
823 if (hwc->idx == -1 ||
824 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
825 continue;
826
d76a0812 827 x86_pmu_stop(event);
1da53e02
SE
828
829 hwc->idx = -1;
830 }
831
832 for (i = 0; i < cpuc->n_events; i++) {
833
834 event = cpuc->event_list[i];
835 hwc = &event->hw;
836
c08053e6 837 if (hwc->idx == -1)
447a194b 838 x86_assign_hw_event(event, cpuc, i);
1da53e02 839
c08053e6 840 x86_pmu_start(event);
1da53e02
SE
841 }
842 cpuc->n_added = 0;
843 perf_events_lapic_init();
844 }
1a6e21f7
PZ
845
846 cpuc->enabled = 1;
847 barrier();
848
9e35ad38 849 x86_pmu.enable_all();
ee06094f 850}
ee06094f 851
aff3d91a 852static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
b0f3f28e 853{
aff3d91a 854 (void)checking_wrmsrl(hwc->config_base + hwc->idx,
bb1165d6 855 hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
b0f3f28e
PZ
856}
857
aff3d91a 858static inline void x86_pmu_disable_event(struct perf_event *event)
b0f3f28e 859{
aff3d91a
PZ
860 struct hw_perf_event *hwc = &event->hw;
861 (void)checking_wrmsrl(hwc->config_base + hwc->idx, hwc->config);
b0f3f28e
PZ
862}
863
245b2e70 864static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 865
ee06094f
IM
866/*
867 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 868 * To be called with the event disabled in hw:
ee06094f 869 */
e4abb5d4 870static int
07088edb 871x86_perf_event_set_period(struct perf_event *event)
241771ef 872{
07088edb 873 struct hw_perf_event *hwc = &event->hw;
2f18d1e8 874 s64 left = atomic64_read(&hwc->period_left);
e4abb5d4 875 s64 period = hwc->sample_period;
07088edb 876 int err, ret = 0, idx = hwc->idx;
ee06094f 877
30dd568c
MM
878 if (idx == X86_PMC_IDX_FIXED_BTS)
879 return 0;
880
ee06094f 881 /*
af901ca1 882 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
883 */
884 if (unlikely(left <= -period)) {
885 left = period;
886 atomic64_set(&hwc->period_left, left);
9e350de3 887 hwc->last_period = period;
e4abb5d4 888 ret = 1;
ee06094f
IM
889 }
890
891 if (unlikely(left <= 0)) {
892 left += period;
893 atomic64_set(&hwc->period_left, left);
9e350de3 894 hwc->last_period = period;
e4abb5d4 895 ret = 1;
ee06094f 896 }
1c80f4b5 897 /*
dfc65094 898 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
899 */
900 if (unlikely(left < 2))
901 left = 2;
241771ef 902
e4abb5d4
PZ
903 if (left > x86_pmu.max_period)
904 left = x86_pmu.max_period;
905
245b2e70 906 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
907
908 /*
cdd6c482 909 * The hw event starts counting from this event offset,
ee06094f
IM
910 * mark it to be able to extra future deltas:
911 */
2f18d1e8 912 atomic64_set(&hwc->prev_count, (u64)-left);
ee06094f 913
cdd6c482
IM
914 err = checking_wrmsrl(hwc->event_base + idx,
915 (u64)(-left) & x86_pmu.event_mask);
e4abb5d4 916
cdd6c482 917 perf_event_update_userpage(event);
194002b2 918
e4abb5d4 919 return ret;
2f18d1e8
IM
920}
921
aff3d91a 922static void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 923{
cdd6c482 924 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
7c90cc45 925 if (cpuc->enabled)
aff3d91a 926 __x86_pmu_enable_event(&event->hw);
241771ef
IM
927}
928
b690081d 929/*
1da53e02
SE
930 * activate a single event
931 *
932 * The event is added to the group of enabled events
933 * but only if it can be scehduled with existing events.
934 *
935 * Called with PMU disabled. If successful and return value 1,
936 * then guaranteed to call perf_enable() and hw_perf_enable()
fe9081cc
PZ
937 */
938static int x86_pmu_enable(struct perf_event *event)
939{
940 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
941 struct hw_perf_event *hwc;
942 int assign[X86_PMC_IDX_MAX];
943 int n, n0, ret;
fe9081cc 944
1da53e02 945 hwc = &event->hw;
fe9081cc 946
1da53e02
SE
947 n0 = cpuc->n_events;
948 n = collect_events(cpuc, event, false);
949 if (n < 0)
950 return n;
53b441a5 951
1da53e02
SE
952 ret = x86_schedule_events(cpuc, n, assign);
953 if (ret)
954 return ret;
955 /*
956 * copy new assignment, now we know it is possible
957 * will be used by hw_perf_enable()
958 */
959 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 960
1da53e02
SE
961 cpuc->n_events = n;
962 cpuc->n_added = n - n0;
95cdd2e7
IM
963
964 return 0;
241771ef
IM
965}
966
d76a0812
SE
967static int x86_pmu_start(struct perf_event *event)
968{
c08053e6
PZ
969 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
970 int idx = event->hw.idx;
971
972 if (idx == -1)
d76a0812
SE
973 return -EAGAIN;
974
07088edb 975 x86_perf_event_set_period(event);
c08053e6
PZ
976 cpuc->events[idx] = event;
977 __set_bit(idx, cpuc->active_mask);
aff3d91a 978 x86_pmu.enable(event);
c08053e6 979 perf_event_update_userpage(event);
d76a0812
SE
980
981 return 0;
982}
983
cdd6c482 984static void x86_pmu_unthrottle(struct perf_event *event)
a78ac325 985{
cdd6c482
IM
986 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
987 struct hw_perf_event *hwc = &event->hw;
a78ac325
PZ
988
989 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
cdd6c482 990 cpuc->events[hwc->idx] != event))
a78ac325
PZ
991 return;
992
aff3d91a 993 x86_pmu.enable(event);
a78ac325
PZ
994}
995
cdd6c482 996void perf_event_print_debug(void)
241771ef 997{
2f18d1e8 998 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
cdd6c482 999 struct cpu_hw_events *cpuc;
5bb9efe3 1000 unsigned long flags;
1e125676
IM
1001 int cpu, idx;
1002
cdd6c482 1003 if (!x86_pmu.num_events)
1e125676 1004 return;
241771ef 1005
5bb9efe3 1006 local_irq_save(flags);
241771ef
IM
1007
1008 cpu = smp_processor_id();
cdd6c482 1009 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1010
faa28ae0 1011 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1012 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1013 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1014 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1015 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1016
1017 pr_info("\n");
1018 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1019 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1020 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1021 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
f87ad35d 1022 }
1da53e02 1023 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1024
cdd6c482 1025 for (idx = 0; idx < x86_pmu.num_events; idx++) {
4a06bd85
RR
1026 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1027 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
241771ef 1028
245b2e70 1029 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1030
a1ef58f4 1031 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1032 cpu, idx, pmc_ctrl);
a1ef58f4 1033 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1034 cpu, idx, pmc_count);
a1ef58f4 1035 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1036 cpu, idx, prev_left);
241771ef 1037 }
cdd6c482 1038 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
2f18d1e8
IM
1039 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1040
a1ef58f4 1041 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1042 cpu, idx, pmc_count);
1043 }
5bb9efe3 1044 local_irq_restore(flags);
241771ef
IM
1045}
1046
d76a0812 1047static void x86_pmu_stop(struct perf_event *event)
241771ef 1048{
d76a0812 1049 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
cdd6c482 1050 struct hw_perf_event *hwc = &event->hw;
2e841873 1051 int idx = hwc->idx;
241771ef 1052
09534238
RR
1053 /*
1054 * Must be done before we disable, otherwise the nmi handler
1055 * could reenable again:
1056 */
34538ee7 1057 __clear_bit(idx, cpuc->active_mask);
aff3d91a 1058 x86_pmu.disable(event);
241771ef 1059
ee06094f 1060 /*
cdd6c482 1061 * Drain the remaining delta count out of a event
ee06094f
IM
1062 * that we are disabling:
1063 */
cc2ad4ba 1064 x86_perf_event_update(event);
30dd568c 1065
cdd6c482 1066 cpuc->events[idx] = NULL;
2e841873
PZ
1067}
1068
1069static void x86_pmu_disable(struct perf_event *event)
1070{
1071 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1072 int i;
1073
d76a0812 1074 x86_pmu_stop(event);
194002b2 1075
1da53e02
SE
1076 for (i = 0; i < cpuc->n_events; i++) {
1077 if (event == cpuc->event_list[i]) {
1078
1079 if (x86_pmu.put_event_constraints)
1080 x86_pmu.put_event_constraints(cpuc, event);
1081
1082 while (++i < cpuc->n_events)
1083 cpuc->event_list[i-1] = cpuc->event_list[i];
1084
1085 --cpuc->n_events;
6c9687ab 1086 break;
1da53e02
SE
1087 }
1088 }
cdd6c482 1089 perf_event_update_userpage(event);
241771ef
IM
1090}
1091
8c48e444 1092static int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1093{
df1a132b 1094 struct perf_sample_data data;
cdd6c482
IM
1095 struct cpu_hw_events *cpuc;
1096 struct perf_event *event;
1097 struct hw_perf_event *hwc;
11d1578f 1098 int idx, handled = 0;
9029a5e3
IM
1099 u64 val;
1100
dc1d628a 1101 perf_sample_data_init(&data, 0);
df1a132b 1102
cdd6c482 1103 cpuc = &__get_cpu_var(cpu_hw_events);
962bf7a6 1104
cdd6c482 1105 for (idx = 0; idx < x86_pmu.num_events; idx++) {
43f6201a 1106 if (!test_bit(idx, cpuc->active_mask))
a29aa8a7 1107 continue;
962bf7a6 1108
cdd6c482
IM
1109 event = cpuc->events[idx];
1110 hwc = &event->hw;
a4016a79 1111
cc2ad4ba 1112 val = x86_perf_event_update(event);
cdd6c482 1113 if (val & (1ULL << (x86_pmu.event_bits - 1)))
48e22d56 1114 continue;
962bf7a6 1115
9e350de3 1116 /*
cdd6c482 1117 * event overflow
9e350de3
PZ
1118 */
1119 handled = 1;
cdd6c482 1120 data.period = event->hw.last_period;
9e350de3 1121
07088edb 1122 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1123 continue;
1124
cdd6c482 1125 if (perf_event_overflow(event, 1, &data, regs))
aff3d91a 1126 x86_pmu.disable(event);
a29aa8a7 1127 }
962bf7a6 1128
9e350de3
PZ
1129 if (handled)
1130 inc_irq_stat(apic_perf_irqs);
1131
a29aa8a7
RR
1132 return handled;
1133}
39d81eab 1134
b6276f35
PZ
1135void smp_perf_pending_interrupt(struct pt_regs *regs)
1136{
1137 irq_enter();
1138 ack_APIC_irq();
1139 inc_irq_stat(apic_pending_irqs);
cdd6c482 1140 perf_event_do_pending();
b6276f35
PZ
1141 irq_exit();
1142}
1143
cdd6c482 1144void set_perf_event_pending(void)
b6276f35 1145{
04da8a43 1146#ifdef CONFIG_X86_LOCAL_APIC
7d428966
PZ
1147 if (!x86_pmu.apic || !x86_pmu_initialized())
1148 return;
1149
b6276f35 1150 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
04da8a43 1151#endif
b6276f35
PZ
1152}
1153
cdd6c482 1154void perf_events_lapic_init(void)
241771ef 1155{
04da8a43
IM
1156#ifdef CONFIG_X86_LOCAL_APIC
1157 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1158 return;
85cf9dba 1159
241771ef 1160 /*
c323d95f 1161 * Always use NMI for PMU
241771ef 1162 */
c323d95f 1163 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 1164#endif
241771ef
IM
1165}
1166
1167static int __kprobes
cdd6c482 1168perf_event_nmi_handler(struct notifier_block *self,
241771ef
IM
1169 unsigned long cmd, void *__args)
1170{
1171 struct die_args *args = __args;
1172 struct pt_regs *regs;
b0f3f28e 1173
cdd6c482 1174 if (!atomic_read(&active_events))
63a809a2
PZ
1175 return NOTIFY_DONE;
1176
b0f3f28e
PZ
1177 switch (cmd) {
1178 case DIE_NMI:
1179 case DIE_NMI_IPI:
1180 break;
241771ef 1181
b0f3f28e 1182 default:
241771ef 1183 return NOTIFY_DONE;
b0f3f28e 1184 }
241771ef
IM
1185
1186 regs = args->regs;
1187
04da8a43 1188#ifdef CONFIG_X86_LOCAL_APIC
241771ef 1189 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 1190#endif
a4016a79
PZ
1191 /*
1192 * Can't rely on the handled return value to say it was our NMI, two
cdd6c482 1193 * events could trigger 'simultaneously' raising two back-to-back NMIs.
a4016a79
PZ
1194 *
1195 * If the first NMI handles both, the latter will be empty and daze
1196 * the CPU.
1197 */
a3288106 1198 x86_pmu.handle_irq(regs);
241771ef 1199
a4016a79 1200 return NOTIFY_STOP;
241771ef
IM
1201}
1202
f22f54f4
PZ
1203static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1204 .notifier_call = perf_event_nmi_handler,
1205 .next = NULL,
1206 .priority = 1
1207};
1208
63b14649 1209static struct event_constraint unconstrained;
38331f62 1210static struct event_constraint emptyconstraint;
63b14649 1211
63b14649 1212static struct event_constraint *
f22f54f4 1213x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1da53e02 1214{
63b14649 1215 struct event_constraint *c;
1da53e02 1216
1da53e02
SE
1217 if (x86_pmu.event_constraints) {
1218 for_each_event_constraint(c, x86_pmu.event_constraints) {
63b14649
PZ
1219 if ((event->hw.config & c->cmask) == c->code)
1220 return c;
1da53e02
SE
1221 }
1222 }
63b14649
PZ
1223
1224 return &unconstrained;
1da53e02
SE
1225}
1226
1da53e02 1227static int x86_event_sched_in(struct perf_event *event,
6e37738a 1228 struct perf_cpu_context *cpuctx)
1da53e02
SE
1229{
1230 int ret = 0;
1231
1232 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1233 event->oncpu = smp_processor_id();
1da53e02
SE
1234 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1235
1236 if (!is_x86_event(event))
1237 ret = event->pmu->enable(event);
1238
1239 if (!ret && !is_software_event(event))
1240 cpuctx->active_oncpu++;
1241
1242 if (!ret && event->attr.exclusive)
1243 cpuctx->exclusive = 1;
1244
1245 return ret;
1246}
1247
1248static void x86_event_sched_out(struct perf_event *event,
6e37738a 1249 struct perf_cpu_context *cpuctx)
1da53e02
SE
1250{
1251 event->state = PERF_EVENT_STATE_INACTIVE;
1252 event->oncpu = -1;
1253
1254 if (!is_x86_event(event))
1255 event->pmu->disable(event);
1256
1257 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1258
1259 if (!is_software_event(event))
1260 cpuctx->active_oncpu--;
1261
1262 if (event->attr.exclusive || !cpuctx->active_oncpu)
1263 cpuctx->exclusive = 0;
1264}
1265
1266/*
1267 * Called to enable a whole group of events.
1268 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1269 * Assumes the caller has disabled interrupts and has
1270 * frozen the PMU with hw_perf_save_disable.
1271 *
1272 * called with PMU disabled. If successful and return value 1,
1273 * then guaranteed to call perf_enable() and hw_perf_enable()
1274 */
1275int hw_perf_group_sched_in(struct perf_event *leader,
1276 struct perf_cpu_context *cpuctx,
6e37738a 1277 struct perf_event_context *ctx)
1da53e02 1278{
6e37738a 1279 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
1280 struct perf_event *sub;
1281 int assign[X86_PMC_IDX_MAX];
1282 int n0, n1, ret;
1283
1284 /* n0 = total number of events */
1285 n0 = collect_events(cpuc, leader, true);
1286 if (n0 < 0)
1287 return n0;
1288
1289 ret = x86_schedule_events(cpuc, n0, assign);
1290 if (ret)
1291 return ret;
1292
6e37738a 1293 ret = x86_event_sched_in(leader, cpuctx);
1da53e02
SE
1294 if (ret)
1295 return ret;
1296
1297 n1 = 1;
1298 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
8113070d 1299 if (sub->state > PERF_EVENT_STATE_OFF) {
6e37738a 1300 ret = x86_event_sched_in(sub, cpuctx);
1da53e02
SE
1301 if (ret)
1302 goto undo;
1303 ++n1;
1304 }
1305 }
1306 /*
1307 * copy new assignment, now we know it is possible
1308 * will be used by hw_perf_enable()
1309 */
1310 memcpy(cpuc->assign, assign, n0*sizeof(int));
1311
1312 cpuc->n_events = n0;
1313 cpuc->n_added = n1;
1314 ctx->nr_active += n1;
1315
1316 /*
1317 * 1 means successful and events are active
1318 * This is not quite true because we defer
1319 * actual activation until hw_perf_enable() but
1320 * this way we* ensure caller won't try to enable
1321 * individual events
1322 */
1323 return 1;
1324undo:
6e37738a 1325 x86_event_sched_out(leader, cpuctx);
1da53e02
SE
1326 n0 = 1;
1327 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1328 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
6e37738a 1329 x86_event_sched_out(sub, cpuctx);
1da53e02
SE
1330 if (++n0 == n1)
1331 break;
1332 }
1333 }
1334 return ret;
1335}
1336
f22f54f4
PZ
1337#include "perf_event_amd.c"
1338#include "perf_event_p6.c"
1339#include "perf_event_intel.c"
f87ad35d 1340
3f6da390
PZ
1341static int __cpuinit
1342x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1343{
1344 unsigned int cpu = (long)hcpu;
1345
1346 switch (action & ~CPU_TASKS_FROZEN) {
1347 case CPU_UP_PREPARE:
1348 if (x86_pmu.cpu_prepare)
1349 x86_pmu.cpu_prepare(cpu);
1350 break;
1351
1352 case CPU_STARTING:
1353 if (x86_pmu.cpu_starting)
1354 x86_pmu.cpu_starting(cpu);
1355 break;
1356
1357 case CPU_DYING:
1358 if (x86_pmu.cpu_dying)
1359 x86_pmu.cpu_dying(cpu);
1360 break;
1361
1362 case CPU_DEAD:
1363 if (x86_pmu.cpu_dead)
1364 x86_pmu.cpu_dead(cpu);
1365 break;
1366
1367 default:
1368 break;
1369 }
1370
1371 return NOTIFY_OK;
1372}
1373
12558038
CG
1374static void __init pmu_check_apic(void)
1375{
1376 if (cpu_has_apic)
1377 return;
1378
1379 x86_pmu.apic = 0;
1380 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1381 pr_info("no hardware sampling interrupt available.\n");
1382}
1383
cdd6c482 1384void __init init_hw_perf_events(void)
b56a3802 1385{
b622d644 1386 struct event_constraint *c;
72eae04d
RR
1387 int err;
1388
cdd6c482 1389 pr_info("Performance Events: ");
1123e3ad 1390
b56a3802
JSR
1391 switch (boot_cpu_data.x86_vendor) {
1392 case X86_VENDOR_INTEL:
72eae04d 1393 err = intel_pmu_init();
b56a3802 1394 break;
f87ad35d 1395 case X86_VENDOR_AMD:
72eae04d 1396 err = amd_pmu_init();
f87ad35d 1397 break;
4138960a
RR
1398 default:
1399 return;
b56a3802 1400 }
1123e3ad 1401 if (err != 0) {
cdd6c482 1402 pr_cont("no PMU driver, software events only.\n");
b56a3802 1403 return;
1123e3ad 1404 }
b56a3802 1405
12558038
CG
1406 pmu_check_apic();
1407
1123e3ad 1408 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1409
cdd6c482
IM
1410 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
1411 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1412 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
1413 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
241771ef 1414 }
cdd6c482
IM
1415 perf_event_mask = (1 << x86_pmu.num_events) - 1;
1416 perf_max_events = x86_pmu.num_events;
241771ef 1417
cdd6c482
IM
1418 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
1419 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1420 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
1421 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
703e937c 1422 }
862a1a5f 1423
cdd6c482
IM
1424 perf_event_mask |=
1425 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
1426 x86_pmu.intel_ctrl = perf_event_mask;
241771ef 1427
cdd6c482
IM
1428 perf_events_lapic_init();
1429 register_die_notifier(&perf_event_nmi_notifier);
1123e3ad 1430
63b14649 1431 unconstrained = (struct event_constraint)
fce877e3
PZ
1432 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
1433 0, x86_pmu.num_events);
63b14649 1434
b622d644
PZ
1435 if (x86_pmu.event_constraints) {
1436 for_each_event_constraint(c, x86_pmu.event_constraints) {
1437 if (c->cmask != INTEL_ARCH_FIXED_MASK)
1438 continue;
1439
1440 c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
1441 c->weight += x86_pmu.num_events;
1442 }
1443 }
1444
57c0c15b
IM
1445 pr_info("... version: %d\n", x86_pmu.version);
1446 pr_info("... bit width: %d\n", x86_pmu.event_bits);
1447 pr_info("... generic registers: %d\n", x86_pmu.num_events);
1448 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
1449 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1450 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
1451 pr_info("... event mask: %016Lx\n", perf_event_mask);
3f6da390
PZ
1452
1453 perf_cpu_notifier(x86_pmu_notifier);
241771ef 1454}
621a01ea 1455
cdd6c482 1456static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1457{
cc2ad4ba 1458 x86_perf_event_update(event);
ee06094f
IM
1459}
1460
4aeb0b42
RR
1461static const struct pmu pmu = {
1462 .enable = x86_pmu_enable,
1463 .disable = x86_pmu_disable,
d76a0812
SE
1464 .start = x86_pmu_start,
1465 .stop = x86_pmu_stop,
4aeb0b42 1466 .read = x86_pmu_read,
a78ac325 1467 .unthrottle = x86_pmu_unthrottle,
621a01ea
IM
1468};
1469
1da53e02
SE
1470/*
1471 * validate a single event group
1472 *
1473 * validation include:
184f412c
IM
1474 * - check events are compatible which each other
1475 * - events do not compete for the same counter
1476 * - number of events <= number of counters
1da53e02
SE
1477 *
1478 * validation ensures the group can be loaded onto the
1479 * PMU if it was the only group available.
1480 */
fe9081cc
PZ
1481static int validate_group(struct perf_event *event)
1482{
1da53e02 1483 struct perf_event *leader = event->group_leader;
502568d5
PZ
1484 struct cpu_hw_events *fake_cpuc;
1485 int ret, n;
fe9081cc 1486
502568d5
PZ
1487 ret = -ENOMEM;
1488 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1489 if (!fake_cpuc)
1490 goto out;
fe9081cc 1491
1da53e02
SE
1492 /*
1493 * the event is not yet connected with its
1494 * siblings therefore we must first collect
1495 * existing siblings, then add the new event
1496 * before we can simulate the scheduling
1497 */
502568d5
PZ
1498 ret = -ENOSPC;
1499 n = collect_events(fake_cpuc, leader, true);
1da53e02 1500 if (n < 0)
502568d5 1501 goto out_free;
fe9081cc 1502
502568d5
PZ
1503 fake_cpuc->n_events = n;
1504 n = collect_events(fake_cpuc, event, false);
1da53e02 1505 if (n < 0)
502568d5 1506 goto out_free;
fe9081cc 1507
502568d5 1508 fake_cpuc->n_events = n;
1da53e02 1509
502568d5
PZ
1510 ret = x86_schedule_events(fake_cpuc, n, NULL);
1511
1512out_free:
1513 kfree(fake_cpuc);
1514out:
1515 return ret;
fe9081cc
PZ
1516}
1517
cdd6c482 1518const struct pmu *hw_perf_event_init(struct perf_event *event)
621a01ea 1519{
8113070d 1520 const struct pmu *tmp;
621a01ea
IM
1521 int err;
1522
cdd6c482 1523 err = __hw_perf_event_init(event);
fe9081cc 1524 if (!err) {
8113070d
SE
1525 /*
1526 * we temporarily connect event to its pmu
1527 * such that validate_group() can classify
1528 * it as an x86 event using is_x86_event()
1529 */
1530 tmp = event->pmu;
1531 event->pmu = &pmu;
1532
fe9081cc
PZ
1533 if (event->group_leader != event)
1534 err = validate_group(event);
8113070d
SE
1535
1536 event->pmu = tmp;
fe9081cc 1537 }
a1792cda 1538 if (err) {
cdd6c482
IM
1539 if (event->destroy)
1540 event->destroy(event);
9ea98e19 1541 return ERR_PTR(err);
a1792cda 1542 }
621a01ea 1543
4aeb0b42 1544 return &pmu;
621a01ea 1545}
d7d59fb3
PZ
1546
1547/*
1548 * callchain support
1549 */
1550
1551static inline
f9188e02 1552void callchain_store(struct perf_callchain_entry *entry, u64 ip)
d7d59fb3 1553{
f9188e02 1554 if (entry->nr < PERF_MAX_STACK_DEPTH)
d7d59fb3
PZ
1555 entry->ip[entry->nr++] = ip;
1556}
1557
245b2e70
TH
1558static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1559static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
d7d59fb3
PZ
1560
1561
1562static void
1563backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1564{
1565 /* Ignore warnings */
1566}
1567
1568static void backtrace_warning(void *data, char *msg)
1569{
1570 /* Ignore warnings */
1571}
1572
1573static int backtrace_stack(void *data, char *name)
1574{
038e836e 1575 return 0;
d7d59fb3
PZ
1576}
1577
1578static void backtrace_address(void *data, unsigned long addr, int reliable)
1579{
1580 struct perf_callchain_entry *entry = data;
1581
1582 if (reliable)
1583 callchain_store(entry, addr);
1584}
1585
1586static const struct stacktrace_ops backtrace_ops = {
1587 .warning = backtrace_warning,
1588 .warning_symbol = backtrace_warning_symbol,
1589 .stack = backtrace_stack,
1590 .address = backtrace_address,
06d65bda 1591 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
1592};
1593
038e836e
IM
1594#include "../dumpstack.h"
1595
d7d59fb3
PZ
1596static void
1597perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1598{
f9188e02 1599 callchain_store(entry, PERF_CONTEXT_KERNEL);
038e836e 1600 callchain_store(entry, regs->ip);
d7d59fb3 1601
48b5ba9c 1602 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
d7d59fb3
PZ
1603}
1604
74193ef0
PZ
1605/*
1606 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1607 */
1608static unsigned long
1609copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
d7d59fb3 1610{
74193ef0
PZ
1611 unsigned long offset, addr = (unsigned long)from;
1612 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1613 unsigned long size, len = 0;
1614 struct page *page;
1615 void *map;
d7d59fb3
PZ
1616 int ret;
1617
74193ef0
PZ
1618 do {
1619 ret = __get_user_pages_fast(addr, 1, 0, &page);
1620 if (!ret)
1621 break;
d7d59fb3 1622
74193ef0
PZ
1623 offset = addr & (PAGE_SIZE - 1);
1624 size = min(PAGE_SIZE - offset, n - len);
d7d59fb3 1625
74193ef0
PZ
1626 map = kmap_atomic(page, type);
1627 memcpy(to, map+offset, size);
1628 kunmap_atomic(map, type);
1629 put_page(page);
1630
1631 len += size;
1632 to += size;
1633 addr += size;
1634
1635 } while (len < n);
1636
1637 return len;
1638}
1639
1640static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1641{
1642 unsigned long bytes;
1643
1644 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1645
1646 return bytes == sizeof(*frame);
d7d59fb3
PZ
1647}
1648
1649static void
1650perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1651{
1652 struct stack_frame frame;
1653 const void __user *fp;
1654
5a6cec3a
IM
1655 if (!user_mode(regs))
1656 regs = task_pt_regs(current);
1657
74193ef0 1658 fp = (void __user *)regs->bp;
d7d59fb3 1659
f9188e02 1660 callchain_store(entry, PERF_CONTEXT_USER);
d7d59fb3
PZ
1661 callchain_store(entry, regs->ip);
1662
f9188e02 1663 while (entry->nr < PERF_MAX_STACK_DEPTH) {
038e836e 1664 frame.next_frame = NULL;
d7d59fb3
PZ
1665 frame.return_address = 0;
1666
1667 if (!copy_stack_frame(fp, &frame))
1668 break;
1669
5a6cec3a 1670 if ((unsigned long)fp < regs->sp)
d7d59fb3
PZ
1671 break;
1672
1673 callchain_store(entry, frame.return_address);
038e836e 1674 fp = frame.next_frame;
d7d59fb3
PZ
1675 }
1676}
1677
1678static void
1679perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1680{
1681 int is_user;
1682
1683 if (!regs)
1684 return;
1685
1686 is_user = user_mode(regs);
1687
d7d59fb3
PZ
1688 if (is_user && current->state != TASK_RUNNING)
1689 return;
1690
1691 if (!is_user)
1692 perf_callchain_kernel(regs, entry);
1693
1694 if (current->mm)
1695 perf_callchain_user(regs, entry);
1696}
1697
1698struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1699{
1700 struct perf_callchain_entry *entry;
1701
1702 if (in_nmi())
245b2e70 1703 entry = &__get_cpu_var(pmc_nmi_entry);
d7d59fb3 1704 else
245b2e70 1705 entry = &__get_cpu_var(pmc_irq_entry);
d7d59fb3
PZ
1706
1707 entry->nr = 0;
1708
1709 perf_do_callchain(regs, entry);
1710
1711 return entry;
1712}