]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: Expand collapsible SPTE zap for TDP MMU to ZONE_DEVICE and HugeTLB...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
13673a90 51#include <asm/vmx.h>
3d0c27ad 52#include <asm/kvm_page_track.h>
1261bfa3 53#include "trace.h"
6aa8b732 54
b8e8c830
PB
55extern bool itlb_multihit_kvm_mitigation;
56
57static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
58#ifdef CONFIG_PREEMPT_RT
59/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61#else
1aa9b957 62static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 63#endif
b8e8c830
PB
64
65static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 66static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 67
d5d6c18d 68static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71};
72
d5d6c18d 73static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76};
77
b8e8c830
PB
78module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
80module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 83
71fe7013
SC
84static bool __read_mostly force_flush_and_sync_on_reuse;
85module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
18552672
JR
87/*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
2f333bcb 94bool tdp_enabled = false;
18552672 95
1d92d2e8 96static int max_huge_page_level __read_mostly;
83013059 97static int max_tdp_level __read_mostly;
703c335d 98
8b1fe17c
XG
99enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
6903074c
XG
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
8b1fe17c 106};
37a7d8b0 107
37a7d8b0 108#ifdef MMU_DEBUG
5a9624af 109bool dbg = 0;
fa4a2c08 110module_param(dbg, bool, 0644);
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
6aa8b732
AK
115#define PT32_LEVEL_BITS 10
116
117#define PT32_LEVEL_SHIFT(level) \
d77c26fc 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 119
e04da980
JR
120#define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
6aa8b732
AK
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
90bb6fc5
AK
135#include <trace/events/kvm.h>
136
220f773a
TY
137/* make pte_list_desc fit well in cache line */
138#define PTE_LIST_EXT 3
139
53c07b18
XG
140struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
cd4a4e53
AK
143};
144
2d11123a
AK
145struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
2d11123a 148 u64 *sptep;
dd3bfd59 149 int level;
2d11123a
AK
150 unsigned index;
151};
152
7eb77e9f
JS
153#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
c2a2ac2b
XG
164#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
53c07b18 170static struct kmem_cache *pte_list_desc_cache;
02c00b3a 171struct kmem_cache *mmu_page_header_cache;
45221ab6 172static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 173
ce88decf 174static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
175static union kvm_mmu_page_role
176kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 177
335e192a
PB
178#define CREATE_TRACE_POINTS
179#include "mmutrace.h"
180
40ef75a7
LT
181
182static inline bool kvm_available_flush_tlb_with_range(void)
183{
afaf0b2f 184 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
185}
186
187static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189{
190 int ret = -ENOTSUPP;
191
afaf0b2f 192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
b3646477 193 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
40ef75a7
LT
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197}
198
2f2fad08 199void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
200 u64 start_gfn, u64 pages)
201{
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208}
209
5a9624af 210bool is_nx_huge_page_enabled(void)
b8e8c830
PB
211{
212 return READ_ONCE(nx_huge_pages);
213}
214
8f79b064
BG
215static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217{
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
8f79b064 219
bb18842e 220 trace_mark_mmio_spte(sptep, gfn, mask);
f2fd125d 221 mmu_spte_set(sptep, mask);
ce88decf
XG
222}
223
ce88decf
XG
224static gfn_t get_mmio_spte_gfn(u64 spte)
225{
daa07cbc 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac 227
8a967d65 228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
28a1f3ac
JS
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
ce88decf
XG
232}
233
234static unsigned get_mmio_spte_access(u64 spte)
235{
4af77151 236 return spte & shadow_mmio_access_mask;
ce88decf
XG
237}
238
54bf36aa 239static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 240 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
241{
242 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 243 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
244 return true;
245 }
246
247 return false;
248}
c7addb90 249
54bf36aa 250static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 251{
cae7ed3c 252 u64 kvm_gen, spte_gen, gen;
089504c0 253
cae7ed3c
SC
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
089504c0 257
cae7ed3c 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
f8f55942
XG
263}
264
cd313569
MG
265static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267{
ec7771ab 268 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
cd313569
MG
274 return gpa;
275}
276
6aa8b732
AK
277static int is_cpuid_PSE36(void)
278{
279 return 1;
280}
281
73b1087e
AK
282static int is_nx(struct kvm_vcpu *vcpu)
283{
f6801dff 284 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
285}
286
da928521
AK
287static gfn_t pse36_gfn_delta(u32 gpte)
288{
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292}
293
603e0651 294#ifdef CONFIG_X86_64
d555c333 295static void __set_spte(u64 *sptep, u64 spte)
e663ee64 296{
b19ee2ff 297 WRITE_ONCE(*sptep, spte);
e663ee64
AK
298}
299
603e0651 300static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 301{
b19ee2ff 302 WRITE_ONCE(*sptep, spte);
603e0651
XG
303}
304
305static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306{
307 return xchg(sptep, spte);
308}
c2a2ac2b
XG
309
310static u64 __get_spte_lockless(u64 *sptep)
311{
6aa7de05 312 return READ_ONCE(*sptep);
c2a2ac2b 313}
a9221dd5 314#else
603e0651
XG
315union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321};
a9221dd5 322
c2a2ac2b
XG
323static void count_spte_clear(u64 *sptep, u64 spte)
324{
57354682 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333}
334
603e0651
XG
335static void __set_spte(u64 *sptep, u64 spte)
336{
337 union split_spte *ssptep, sspte;
a9221dd5 338
603e0651
XG
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
b19ee2ff 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
352}
353
603e0651
XG
354static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355{
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
b19ee2ff 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 370 count_spte_clear(sptep, spte);
603e0651
XG
371}
372
373static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374{
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 384 count_spte_clear(sptep, spte);
603e0651
XG
385
386 return orig.spte;
387}
c2a2ac2b
XG
388
389/*
390 * The idea using the light way get the spte on x86_32 guest is from
39656e83 391 * gup_get_pte (mm/gup.c).
accaefe0
XG
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
57354682 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
603e0651
XG
429#endif
430
8672b721
XG
431static bool spte_has_volatile_bits(u64 spte)
432{
f160c7b7
JS
433 if (!is_shadow_present_pte(spte))
434 return false;
435
c7ba5b48 436 /*
6a6256f9 437 * Always atomically update spte if it can be updated
c7ba5b48
XG
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
f160c7b7
JS
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
c7ba5b48
XG
444 return true;
445
ac8d57e5 446 if (spte_ad_enabled(spte)) {
f160c7b7
JS
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
8672b721 451
f160c7b7 452 return false;
8672b721
XG
453}
454
1df9f2dc
XG
455/* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
461static void mmu_spte_set(u64 *sptep, u64 new_spte)
462{
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465}
466
f39a058d
JS
467/*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
1df9f2dc 470 */
f39a058d 471static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 472{
c7ba5b48 473 u64 old_spte = *sptep;
4132779b 474
afd28fe1 475 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 476
6e7d0354
XG
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
f39a058d 479 return old_spte;
6e7d0354 480 }
4132779b 481
c7ba5b48 482 if (!spte_has_volatile_bits(old_spte))
603e0651 483 __update_clear_spte_fast(sptep, new_spte);
4132779b 484 else
603e0651 485 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 486
83ef6c81
JS
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
f39a058d
JS
489 return old_spte;
490}
491
492/* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
503static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504{
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
c7ba5b48
XG
511 /*
512 * For the spte updated out of mmu-lock is safe, since
6a6256f9 513 * we always atomically update it, see the comments in
c7ba5b48
XG
514 * spte_has_volatile_bits().
515 */
ea4114bc 516 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 517 !is_writable_pte(new_spte))
83ef6c81 518 flush = true;
4132779b 519
7e71a59b 520 /*
83ef6c81 521 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
522 * to guarantee consistency between TLB and page tables.
523 */
7e71a59b 524
83ef6c81
JS
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
4132779b 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
4132779b 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 533 }
6e7d0354 534
83ef6c81 535 return flush;
b79b93f9
AK
536}
537
1df9f2dc
XG
538/*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
83ef6c81 542 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
543 */
544static int mmu_spte_clear_track_bits(u64 *sptep)
545{
ba049e93 546 kvm_pfn_t pfn;
1df9f2dc
XG
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
603e0651 550 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 551 else
603e0651 552 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 553
afd28fe1 554 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
86fde74c
XG
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
bf4bea8e 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 565
83ef6c81 566 if (is_accessed_spte(old_spte))
1df9f2dc 567 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
568
569 if (is_dirty_spte(old_spte))
1df9f2dc 570 kvm_set_pfn_dirty(pfn);
83ef6c81 571
1df9f2dc
XG
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
d3e328f2
JS
590/* Restore an acc-track PTE back to a regular PTE */
591static u64 restore_acc_track_spte(u64 spte)
592{
593 u64 new_spte = spte;
8a967d65
PB
594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
d3e328f2 596
ac8d57e5 597 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
8a967d65
PB
601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
d3e328f2
JS
603 new_spte |= saved_bits;
604
605 return new_spte;
606}
607
f160c7b7
JS
608/* Returns the Accessed status of the PTE and resets it at the same time. */
609static bool mmu_spte_age(u64 *sptep)
610{
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
ac8d57e5 616 if (spte_ad_enabled(spte)) {
f160c7b7
JS
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632}
633
c2a2ac2b
XG
634static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635{
c142786c
AK
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
36ca7e0a 641
c142786c
AK
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
36ca7e0a 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
647}
648
649static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650{
c142786c
AK
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
36ca7e0a 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 657 local_irq_enable();
c2a2ac2b
XG
658}
659
378f5cd6 660static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 661{
e2dec939
AK
662 int r;
663
531281ad 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 667 if (r)
284aa868 668 return r;
94ce87ef
SC
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
d3d25b04 671 if (r)
171a90d7 672 return r;
378f5cd6 673 if (maybe_indirect) {
94ce87ef
SC
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
676 if (r)
677 return r;
678 }
94ce87ef
SC
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
94ce87ef
SC
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
689}
690
53c07b18 691static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 692{
94ce87ef 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
694}
695
53c07b18 696static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 697{
53c07b18 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
699}
700
2032a93d
LJ
701static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702{
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707}
708
709static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710{
e9f2a760 711 if (!sp->role.direct) {
2032a93d 712 sp->gfns[index] = gfn;
e9f2a760
PB
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
721}
722
05da4558 723/*
d4dbf470
TY
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
05da4558 726 */
d4dbf470
TY
727static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
05da4558
MT
730{
731 unsigned long idx;
732
fb03cb6f 733 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 734 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
735}
736
547ffaed
XG
737static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739{
740 struct kvm_lpage_info *linfo;
741 int i;
742
3bae0459 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748}
749
750void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751{
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753}
754
755void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756{
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758}
759
3ed1a478 760static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 761{
699023e2 762 struct kvm_memslots *slots;
d25797b2 763 struct kvm_memory_slot *slot;
3ed1a478 764 gfn_t gfn;
05da4558 765
56ca57f9 766 kvm->arch.indirect_shadow_pages++;
3ed1a478 767 gfn = sp->gfn;
699023e2
PB
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
770
771 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 772 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
547ffaed 776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
777}
778
29cf0f50 779void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
780{
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
787 sp->lpage_disallowed = true;
788}
789
3ed1a478 790static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 791{
699023e2 792 struct kvm_memslots *slots;
d25797b2 793 struct kvm_memory_slot *slot;
3ed1a478 794 gfn_t gfn;
05da4558 795
56ca57f9 796 kvm->arch.indirect_shadow_pages--;
3ed1a478 797 gfn = sp->gfn;
699023e2
PB
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
3bae0459 800 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
547ffaed 804 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
805}
806
29cf0f50 807void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
808{
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
1aa9b957 811 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
812}
813
5d163b1c
XG
814static struct kvm_memory_slot *
815gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
05da4558
MT
817{
818 struct kvm_memory_slot *slot;
5d163b1c 819
54bf36aa 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
044c59c4 823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
91b0d268 824 return NULL;
5d163b1c
XG
825
826 return slot;
827}
828
290fc38d 829/*
018aabb5 830 * About rmap_head encoding:
cd4a4e53 831 *
018aabb5
TY
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 834 * pte_list_desc containing more mappings.
018aabb5
TY
835 */
836
837/*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 839 */
53c07b18 840static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 841 struct kvm_rmap_head *rmap_head)
cd4a4e53 842{
53c07b18 843 struct pte_list_desc *desc;
53a27b39 844 int i, count = 0;
cd4a4e53 845
018aabb5 846 if (!rmap_head->val) {
805a0f83 847 rmap_printk("%p %llx 0->1\n", spte, *spte);
018aabb5
TY
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
805a0f83 850 rmap_printk("%p %llx 1->many\n", spte, *spte);
53c07b18 851 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 852 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 853 desc->sptes[1] = spte;
018aabb5 854 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 855 ++count;
cd4a4e53 856 } else {
805a0f83 857 rmap_printk("%p %llx many->many\n", spte, *spte);
018aabb5 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
c6c4f961 859 while (desc->sptes[PTE_LIST_EXT-1]) {
53c07b18 860 count += PTE_LIST_EXT;
c6c4f961
LR
861
862 if (!desc->more) {
863 desc->more = mmu_alloc_pte_list_desc(vcpu);
864 desc = desc->more;
865 break;
866 }
cd4a4e53
AK
867 desc = desc->more;
868 }
d555c333 869 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 870 ++count;
d555c333 871 desc->sptes[i] = spte;
cd4a4e53 872 }
53a27b39 873 return count;
cd4a4e53
AK
874}
875
53c07b18 876static void
018aabb5
TY
877pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 struct pte_list_desc *desc, int i,
879 struct pte_list_desc *prev_desc)
cd4a4e53
AK
880{
881 int j;
882
53c07b18 883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 884 ;
d555c333
AK
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
cd4a4e53
AK
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
fe3c2b4c 890 rmap_head->val = 0;
cd4a4e53
AK
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
018aabb5 895 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 896 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
897}
898
8daf3462 899static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 900{
53c07b18
XG
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
cd4a4e53
AK
903 int i;
904
018aabb5 905 if (!rmap_head->val) {
8daf3462 906 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 907 BUG();
018aabb5 908 } else if (!(rmap_head->val & 1)) {
805a0f83 909 rmap_printk("%p 1->0\n", spte);
018aabb5 910 if ((u64 *)rmap_head->val != spte) {
8daf3462 911 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
912 BUG();
913 }
018aabb5 914 rmap_head->val = 0;
cd4a4e53 915 } else {
805a0f83 916 rmap_printk("%p many->many\n", spte);
018aabb5 917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
918 prev_desc = NULL;
919 while (desc) {
018aabb5 920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 921 if (desc->sptes[i] == spte) {
018aabb5
TY
922 pte_list_desc_remove_entry(rmap_head,
923 desc, i, prev_desc);
cd4a4e53
AK
924 return;
925 }
018aabb5 926 }
cd4a4e53
AK
927 prev_desc = desc;
928 desc = desc->more;
929 }
8daf3462 930 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
931 BUG();
932 }
933}
934
e7912386
WY
935static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936{
937 mmu_spte_clear_track_bits(sptep);
938 __pte_list_remove(sptep, rmap_head);
939}
940
018aabb5
TY
941static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 struct kvm_memory_slot *slot)
53c07b18 943{
77d11309 944 unsigned long idx;
53c07b18 945
77d11309 946 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
948}
949
018aabb5
TY
950static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 struct kvm_mmu_page *sp)
9b9b1492 952{
699023e2 953 struct kvm_memslots *slots;
9b9b1492
TY
954 struct kvm_memory_slot *slot;
955
699023e2
PB
956 slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 958 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
959}
960
f759e2b4
XG
961static bool rmap_can_add(struct kvm_vcpu *vcpu)
962{
356ec69a 963 struct kvm_mmu_memory_cache *mc;
f759e2b4 964
356ec69a 965 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 966 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
967}
968
53c07b18
XG
969static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970{
971 struct kvm_mmu_page *sp;
018aabb5 972 struct kvm_rmap_head *rmap_head;
53c07b18 973
57354682 974 sp = sptep_to_sp(spte);
53c07b18 975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
978}
979
53c07b18
XG
980static void rmap_remove(struct kvm *kvm, u64 *spte)
981{
982 struct kvm_mmu_page *sp;
983 gfn_t gfn;
018aabb5 984 struct kvm_rmap_head *rmap_head;
53c07b18 985
57354682 986 sp = sptep_to_sp(spte);
53c07b18 987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 988 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 989 __pte_list_remove(spte, rmap_head);
53c07b18
XG
990}
991
1e3f42f0
TY
992/*
993 * Used by the following functions to iterate through the sptes linked by a
994 * rmap. All fields are private and not assumed to be used outside.
995 */
996struct rmap_iterator {
997 /* private fields */
998 struct pte_list_desc *desc; /* holds the sptep if not NULL */
999 int pos; /* index of the sptep */
1000};
1001
1002/*
1003 * Iteration must be started by this function. This should also be used after
1004 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1005 * information in the iterator may not be valid.
1e3f42f0
TY
1006 *
1007 * Returns sptep if found, NULL otherwise.
1008 */
018aabb5
TY
1009static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 struct rmap_iterator *iter)
1e3f42f0 1011{
77fbbbd2
TY
1012 u64 *sptep;
1013
018aabb5 1014 if (!rmap_head->val)
1e3f42f0
TY
1015 return NULL;
1016
018aabb5 1017 if (!(rmap_head->val & 1)) {
1e3f42f0 1018 iter->desc = NULL;
77fbbbd2
TY
1019 sptep = (u64 *)rmap_head->val;
1020 goto out;
1e3f42f0
TY
1021 }
1022
018aabb5 1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1024 iter->pos = 0;
77fbbbd2
TY
1025 sptep = iter->desc->sptes[iter->pos];
1026out:
1027 BUG_ON(!is_shadow_present_pte(*sptep));
1028 return sptep;
1e3f42f0
TY
1029}
1030
1031/*
1032 * Must be used with a valid iterator: e.g. after rmap_get_first().
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_next(struct rmap_iterator *iter)
1037{
77fbbbd2
TY
1038 u64 *sptep;
1039
1e3f42f0
TY
1040 if (iter->desc) {
1041 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1042 ++iter->pos;
1043 sptep = iter->desc->sptes[iter->pos];
1044 if (sptep)
77fbbbd2 1045 goto out;
1e3f42f0
TY
1046 }
1047
1048 iter->desc = iter->desc->more;
1049
1050 if (iter->desc) {
1051 iter->pos = 0;
1052 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1053 sptep = iter->desc->sptes[iter->pos];
1054 goto out;
1e3f42f0
TY
1055 }
1056 }
1057
1058 return NULL;
77fbbbd2
TY
1059out:
1060 BUG_ON(!is_shadow_present_pte(*sptep));
1061 return sptep;
1e3f42f0
TY
1062}
1063
018aabb5
TY
1064#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1066 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1067
c3707958 1068static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1069{
1df9f2dc 1070 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1071 rmap_remove(kvm, sptep);
be38d276
AK
1072}
1073
8e22f955
XG
1074
1075static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076{
1077 if (is_large_pte(*sptep)) {
57354682 1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1079 drop_spte(kvm, sptep);
1080 --kvm->stat.lpages;
1081 return true;
1082 }
1083
1084 return false;
1085}
1086
1087static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088{
c3134ce2 1089 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1091
1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 KVM_PAGES_PER_HPAGE(sp->role.level));
1094 }
8e22f955
XG
1095}
1096
1097/*
49fde340 1098 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1099 * spte write-protection is caused by protecting shadow page table.
49fde340 1100 *
b4619660 1101 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1102 * protection:
1103 * - for dirty logging, the spte can be set to writable at anytime if
1104 * its dirty bitmap is properly set.
1105 * - for spte protection, the spte can be writable only after unsync-ing
1106 * shadow page.
8e22f955 1107 *
c126d94f 1108 * Return true if tlb need be flushed.
8e22f955 1109 */
c4f138b4 1110static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1111{
1112 u64 spte = *sptep;
1113
49fde340 1114 if (!is_writable_pte(spte) &&
ea4114bc 1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1116 return false;
1117
805a0f83 1118 rmap_printk("spte %p %llx\n", sptep, *sptep);
d13bc5b5 1119
49fde340
XG
1120 if (pt_protect)
1121 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1122 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1123
c126d94f 1124 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1125}
1126
018aabb5
TY
1127static bool __rmap_write_protect(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head,
245c3912 1129 bool pt_protect)
98348e95 1130{
1e3f42f0
TY
1131 u64 *sptep;
1132 struct rmap_iterator iter;
d13bc5b5 1133 bool flush = false;
374cbac0 1134
018aabb5 1135 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1136 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1137
d13bc5b5 1138 return flush;
a0ed4607
TY
1139}
1140
c4f138b4 1141static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1142{
1143 u64 spte = *sptep;
1144
805a0f83 1145 rmap_printk("spte %p %llx\n", sptep, *sptep);
f4b4b180 1146
1f4e5fc8 1147 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1148 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1149 return mmu_spte_update(sptep, spte);
1150}
1151
1f4e5fc8 1152static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1153{
1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 (unsigned long *)sptep);
1f4e5fc8 1156 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159 return was_writable;
1160}
1161
1162/*
1163 * Gets the GFN ready for another round of dirty logging by clearing the
1164 * - D bit on ad-enabled SPTEs, and
1165 * - W bit on ad-disabled SPTEs.
1166 * Returns true iff any D or W bits were cleared.
1167 */
018aabb5 1168static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1169{
1170 u64 *sptep;
1171 struct rmap_iterator iter;
1172 bool flush = false;
1173
018aabb5 1174 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1175 if (spte_ad_need_write_protect(*sptep))
1176 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1177 else
1f4e5fc8 1178 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1179
1180 return flush;
1181}
1182
c4f138b4 1183static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1184{
1185 u64 spte = *sptep;
1186
805a0f83 1187 rmap_printk("spte %p %llx\n", sptep, *sptep);
f4b4b180 1188
1f4e5fc8 1189 /*
afaf0b2f 1190 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1191 * do not bother adding back write access to pages marked
1192 * SPTE_AD_WRPROT_ONLY_MASK.
1193 */
f4b4b180
KH
1194 spte |= shadow_dirty_mask;
1195
1196 return mmu_spte_update(sptep, spte);
1197}
1198
018aabb5 1199static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1200{
1201 u64 *sptep;
1202 struct rmap_iterator iter;
1203 bool flush = false;
1204
018aabb5 1205 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1206 if (spte_ad_enabled(*sptep))
1207 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1208
1209 return flush;
1210}
1211
5dc99b23 1212/**
3b0f1d01 1213 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1214 * @kvm: kvm instance
1215 * @slot: slot to protect
1216 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217 * @mask: indicates which pages we should protect
1218 *
1219 * Used when we do not need to care about huge page mappings: e.g. during dirty
1220 * logging we do not have any such mappings.
1221 */
3b0f1d01 1222static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1223 struct kvm_memory_slot *slot,
1224 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1225{
018aabb5 1226 struct kvm_rmap_head *rmap_head;
a0ed4607 1227
897218ff 1228 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1229 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230 slot->base_gfn + gfn_offset, mask, true);
5dc99b23 1231 while (mask) {
018aabb5 1232 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1233 PG_LEVEL_4K, slot);
018aabb5 1234 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1235
5dc99b23
TY
1236 /* clear the first set bit */
1237 mask &= mask - 1;
1238 }
374cbac0
AK
1239}
1240
f4b4b180 1241/**
ac8d57e5
PF
1242 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1244 * @kvm: kvm instance
1245 * @slot: slot to clear D-bit
1246 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247 * @mask: indicates which pages we should clear D-bit
1248 *
1249 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250 */
1251void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252 struct kvm_memory_slot *slot,
1253 gfn_t gfn_offset, unsigned long mask)
1254{
018aabb5 1255 struct kvm_rmap_head *rmap_head;
f4b4b180 1256
897218ff 1257 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1258 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259 slot->base_gfn + gfn_offset, mask, false);
f4b4b180 1260 while (mask) {
018aabb5 1261 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1262 PG_LEVEL_4K, slot);
018aabb5 1263 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1264
1265 /* clear the first set bit */
1266 mask &= mask - 1;
1267 }
1268}
1269EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270
3b0f1d01
KH
1271/**
1272 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273 * PT level pages.
1274 *
1275 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276 * enable dirty logging for them.
1277 *
1278 * Used when we do not need to care about huge page mappings: e.g. during dirty
1279 * logging we do not have any such mappings.
1280 */
1281void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282 struct kvm_memory_slot *slot,
1283 gfn_t gfn_offset, unsigned long mask)
1284{
afaf0b2f 1285 if (kvm_x86_ops.enable_log_dirty_pt_masked)
b3646477
JB
1286 static_call(kvm_x86_enable_log_dirty_pt_masked)(kvm, slot,
1287 gfn_offset,
1288 mask);
88178fd4
KH
1289 else
1290 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1291}
1292
fb04a1ed
PX
1293int kvm_cpu_dirty_log_size(void)
1294{
1295 if (kvm_x86_ops.cpu_dirty_log_size)
b3646477 1296 return static_call(kvm_x86_cpu_dirty_log_size)();
fb04a1ed
PX
1297
1298 return 0;
1299}
1300
aeecee2e
XG
1301bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1302 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1303{
018aabb5 1304 struct kvm_rmap_head *rmap_head;
5dc99b23 1305 int i;
2f84569f 1306 bool write_protected = false;
95d4c16c 1307
3bae0459 1308 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1309 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1310 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1311 }
1312
897218ff 1313 if (is_tdp_mmu_enabled(kvm))
46044f72
BG
1314 write_protected |=
1315 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1316
5dc99b23 1317 return write_protected;
95d4c16c
TY
1318}
1319
aeecee2e
XG
1320static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1321{
1322 struct kvm_memory_slot *slot;
1323
1324 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1325 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1326}
1327
018aabb5 1328static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1329{
1e3f42f0
TY
1330 u64 *sptep;
1331 struct rmap_iterator iter;
6a49f85c 1332 bool flush = false;
e930bffe 1333
018aabb5 1334 while ((sptep = rmap_get_first(rmap_head, &iter))) {
805a0f83 1335 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1e3f42f0 1336
e7912386 1337 pte_list_remove(rmap_head, sptep);
6a49f85c 1338 flush = true;
e930bffe 1339 }
1e3f42f0 1340
6a49f85c
XG
1341 return flush;
1342}
1343
018aabb5 1344static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1345 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1346 unsigned long data)
1347{
018aabb5 1348 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1349}
1350
018aabb5 1351static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1352 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1353 unsigned long data)
3da0dd43 1354{
1e3f42f0
TY
1355 u64 *sptep;
1356 struct rmap_iterator iter;
3da0dd43 1357 int need_flush = 0;
1e3f42f0 1358 u64 new_spte;
3da0dd43 1359 pte_t *ptep = (pte_t *)data;
ba049e93 1360 kvm_pfn_t new_pfn;
3da0dd43
IE
1361
1362 WARN_ON(pte_huge(*ptep));
1363 new_pfn = pte_pfn(*ptep);
1e3f42f0 1364
0d536790 1365restart:
018aabb5 1366 for_each_rmap_spte(rmap_head, &iter, sptep) {
805a0f83 1367 rmap_printk("spte %p %llx gfn %llx (%d)\n",
f160c7b7 1368 sptep, *sptep, gfn, level);
1e3f42f0 1369
3da0dd43 1370 need_flush = 1;
1e3f42f0 1371
3da0dd43 1372 if (pte_write(*ptep)) {
e7912386 1373 pte_list_remove(rmap_head, sptep);
0d536790 1374 goto restart;
3da0dd43 1375 } else {
cb3eedab
PB
1376 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1377 *sptep, new_pfn);
1e3f42f0
TY
1378
1379 mmu_spte_clear_track_bits(sptep);
1380 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1381 }
1382 }
1e3f42f0 1383
3cc5ea94
LT
1384 if (need_flush && kvm_available_flush_tlb_with_range()) {
1385 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1386 return 0;
1387 }
1388
0cf853c5 1389 return need_flush;
3da0dd43
IE
1390}
1391
6ce1f4e2
XG
1392struct slot_rmap_walk_iterator {
1393 /* input fields. */
1394 struct kvm_memory_slot *slot;
1395 gfn_t start_gfn;
1396 gfn_t end_gfn;
1397 int start_level;
1398 int end_level;
1399
1400 /* output fields. */
1401 gfn_t gfn;
018aabb5 1402 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1403 int level;
1404
1405 /* private field. */
018aabb5 1406 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1407};
1408
1409static void
1410rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1411{
1412 iterator->level = level;
1413 iterator->gfn = iterator->start_gfn;
1414 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1415 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1416 iterator->slot);
1417}
1418
1419static void
1420slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1421 struct kvm_memory_slot *slot, int start_level,
1422 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1423{
1424 iterator->slot = slot;
1425 iterator->start_level = start_level;
1426 iterator->end_level = end_level;
1427 iterator->start_gfn = start_gfn;
1428 iterator->end_gfn = end_gfn;
1429
1430 rmap_walk_init_level(iterator, iterator->start_level);
1431}
1432
1433static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1434{
1435 return !!iterator->rmap;
1436}
1437
1438static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1439{
1440 if (++iterator->rmap <= iterator->end_rmap) {
1441 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1442 return;
1443 }
1444
1445 if (++iterator->level > iterator->end_level) {
1446 iterator->rmap = NULL;
1447 return;
1448 }
1449
1450 rmap_walk_init_level(iterator, iterator->level);
1451}
1452
1453#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1454 _start_gfn, _end_gfn, _iter_) \
1455 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1456 _end_level_, _start_gfn, _end_gfn); \
1457 slot_rmap_walk_okay(_iter_); \
1458 slot_rmap_walk_next(_iter_))
1459
8f5c44f9
MS
1460static __always_inline int
1461kvm_handle_hva_range(struct kvm *kvm,
1462 unsigned long start,
1463 unsigned long end,
1464 unsigned long data,
1465 int (*handler)(struct kvm *kvm,
1466 struct kvm_rmap_head *rmap_head,
1467 struct kvm_memory_slot *slot,
1468 gfn_t gfn,
1469 int level,
1470 unsigned long data))
e930bffe 1471{
bc6678a3 1472 struct kvm_memslots *slots;
be6ba0f0 1473 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1474 struct slot_rmap_walk_iterator iterator;
1475 int ret = 0;
9da0e4d5 1476 int i;
bc6678a3 1477
9da0e4d5
PB
1478 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1479 slots = __kvm_memslots(kvm, i);
1480 kvm_for_each_memslot(memslot, slots) {
1481 unsigned long hva_start, hva_end;
1482 gfn_t gfn_start, gfn_end;
e930bffe 1483
9da0e4d5
PB
1484 hva_start = max(start, memslot->userspace_addr);
1485 hva_end = min(end, memslot->userspace_addr +
1486 (memslot->npages << PAGE_SHIFT));
1487 if (hva_start >= hva_end)
1488 continue;
1489 /*
1490 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1491 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1492 */
1493 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1494 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1495
3bae0459 1496 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1497 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1498 gfn_start, gfn_end - 1,
1499 &iterator)
1500 ret |= handler(kvm, iterator.rmap, memslot,
1501 iterator.gfn, iterator.level, data);
1502 }
e930bffe
AA
1503 }
1504
f395302e 1505 return ret;
e930bffe
AA
1506}
1507
84504ef3
TY
1508static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1509 unsigned long data,
018aabb5
TY
1510 int (*handler)(struct kvm *kvm,
1511 struct kvm_rmap_head *rmap_head,
048212d0 1512 struct kvm_memory_slot *slot,
8a9522d2 1513 gfn_t gfn, int level,
84504ef3
TY
1514 unsigned long data))
1515{
1516 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1517}
1518
fdfe7cbd
WD
1519int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1520 unsigned flags)
b3ae2096 1521{
063afacd
BG
1522 int r;
1523
1524 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1525
897218ff 1526 if (is_tdp_mmu_enabled(kvm))
063afacd
BG
1527 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1528
1529 return r;
b3ae2096
TY
1530}
1531
748c0e31 1532int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1533{
1d8dd6b3
BG
1534 int r;
1535
1536 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1537
897218ff 1538 if (is_tdp_mmu_enabled(kvm))
1d8dd6b3
BG
1539 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1540
1541 return r;
e930bffe
AA
1542}
1543
018aabb5 1544static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1545 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1546 unsigned long data)
e930bffe 1547{
1e3f42f0 1548 u64 *sptep;
3f649ab7 1549 struct rmap_iterator iter;
e930bffe
AA
1550 int young = 0;
1551
f160c7b7
JS
1552 for_each_rmap_spte(rmap_head, &iter, sptep)
1553 young |= mmu_spte_age(sptep);
0d536790 1554
8a9522d2 1555 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1556 return young;
1557}
1558
018aabb5 1559static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1560 struct kvm_memory_slot *slot, gfn_t gfn,
1561 int level, unsigned long data)
8ee53820 1562{
1e3f42f0
TY
1563 u64 *sptep;
1564 struct rmap_iterator iter;
8ee53820 1565
83ef6c81
JS
1566 for_each_rmap_spte(rmap_head, &iter, sptep)
1567 if (is_accessed_spte(*sptep))
1568 return 1;
83ef6c81 1569 return 0;
8ee53820
AA
1570}
1571
53a27b39
MT
1572#define RMAP_RECYCLE_THRESHOLD 1000
1573
852e3c19 1574static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1575{
018aabb5 1576 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1577 struct kvm_mmu_page *sp;
1578
57354682 1579 sp = sptep_to_sp(spte);
53a27b39 1580
018aabb5 1581 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1582
018aabb5 1583 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1584 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1585 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1586}
1587
57128468 1588int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1589{
f8e14497
BG
1590 int young = false;
1591
1592 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
897218ff 1593 if (is_tdp_mmu_enabled(kvm))
f8e14497
BG
1594 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1595
1596 return young;
e930bffe
AA
1597}
1598
8ee53820
AA
1599int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1600{
f8e14497
BG
1601 int young = false;
1602
1603 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
897218ff 1604 if (is_tdp_mmu_enabled(kvm))
f8e14497
BG
1605 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1606
1607 return young;
8ee53820
AA
1608}
1609
d6c69ee9 1610#ifdef MMU_DEBUG
47ad8e68 1611static int is_empty_shadow_page(u64 *spt)
6aa8b732 1612{
139bdb2d
AK
1613 u64 *pos;
1614 u64 *end;
1615
47ad8e68 1616 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1617 if (is_shadow_present_pte(*pos)) {
b8688d51 1618 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1619 pos, *pos);
6aa8b732 1620 return 0;
139bdb2d 1621 }
6aa8b732
AK
1622 return 1;
1623}
d6c69ee9 1624#endif
6aa8b732 1625
45221ab6
DH
1626/*
1627 * This value is the sum of all of the kvm instances's
1628 * kvm->arch.n_used_mmu_pages values. We need a global,
1629 * aggregate version in order to make the slab shrinker
1630 * faster
1631 */
bc8a3d89 1632static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1633{
1634 kvm->arch.n_used_mmu_pages += nr;
1635 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1636}
1637
834be0d8 1638static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1639{
fa4a2c08 1640 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1641 hlist_del(&sp->hash_link);
bd4c86ea
XG
1642 list_del(&sp->link);
1643 free_page((unsigned long)sp->spt);
834be0d8
GN
1644 if (!sp->role.direct)
1645 free_page((unsigned long)sp->gfns);
e8ad9a70 1646 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1647}
1648
cea0f0e7
AK
1649static unsigned kvm_page_table_hashfn(gfn_t gfn)
1650{
114df303 1651 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1652}
1653
714b93da 1654static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1655 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1656{
cea0f0e7
AK
1657 if (!parent_pte)
1658 return;
cea0f0e7 1659
67052b35 1660 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1661}
1662
4db35314 1663static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1664 u64 *parent_pte)
1665{
8daf3462 1666 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1667}
1668
bcdd9a93
XG
1669static void drop_parent_pte(struct kvm_mmu_page *sp,
1670 u64 *parent_pte)
1671{
1672 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1673 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1674}
1675
47005792 1676static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1677{
67052b35 1678 struct kvm_mmu_page *sp;
7ddca7e4 1679
94ce87ef
SC
1680 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1681 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1682 if (!direct)
94ce87ef 1683 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1684 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1685
1686 /*
1687 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1688 * depends on valid pages being added to the head of the list. See
1689 * comments in kvm_zap_obsolete_pages().
1690 */
ca333add 1691 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1692 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1693 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1694 return sp;
ad8cfbe3
MT
1695}
1696
67052b35 1697static void mark_unsync(u64 *spte);
1047df1f 1698static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1699{
74c4e63a
TY
1700 u64 *sptep;
1701 struct rmap_iterator iter;
1702
1703 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1704 mark_unsync(sptep);
1705 }
0074ff63
MT
1706}
1707
67052b35 1708static void mark_unsync(u64 *spte)
0074ff63 1709{
67052b35 1710 struct kvm_mmu_page *sp;
1047df1f 1711 unsigned int index;
0074ff63 1712
57354682 1713 sp = sptep_to_sp(spte);
1047df1f
XG
1714 index = spte - sp->spt;
1715 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1716 return;
1047df1f 1717 if (sp->unsync_children++)
0074ff63 1718 return;
1047df1f 1719 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1720}
1721
e8bc217a 1722static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1723 struct kvm_mmu_page *sp)
e8bc217a 1724{
1f50f1b3 1725 return 0;
e8bc217a
MT
1726}
1727
60c8aec6
MT
1728#define KVM_PAGE_ARRAY_NR 16
1729
1730struct kvm_mmu_pages {
1731 struct mmu_page_and_offset {
1732 struct kvm_mmu_page *sp;
1733 unsigned int idx;
1734 } page[KVM_PAGE_ARRAY_NR];
1735 unsigned int nr;
1736};
1737
cded19f3
HE
1738static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1739 int idx)
4731d4c7 1740{
60c8aec6 1741 int i;
4731d4c7 1742
60c8aec6
MT
1743 if (sp->unsync)
1744 for (i=0; i < pvec->nr; i++)
1745 if (pvec->page[i].sp == sp)
1746 return 0;
1747
1748 pvec->page[pvec->nr].sp = sp;
1749 pvec->page[pvec->nr].idx = idx;
1750 pvec->nr++;
1751 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1752}
1753
fd951457
TY
1754static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1755{
1756 --sp->unsync_children;
1757 WARN_ON((int)sp->unsync_children < 0);
1758 __clear_bit(idx, sp->unsync_child_bitmap);
1759}
1760
60c8aec6
MT
1761static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1762 struct kvm_mmu_pages *pvec)
1763{
1764 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1765
37178b8b 1766 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1767 struct kvm_mmu_page *child;
4731d4c7
MT
1768 u64 ent = sp->spt[i];
1769
fd951457
TY
1770 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1771 clear_unsync_child_bit(sp, i);
1772 continue;
1773 }
7a8f1a74 1774
e47c4aee 1775 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1776
1777 if (child->unsync_children) {
1778 if (mmu_pages_add(pvec, child, i))
1779 return -ENOSPC;
1780
1781 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1782 if (!ret) {
1783 clear_unsync_child_bit(sp, i);
1784 continue;
1785 } else if (ret > 0) {
7a8f1a74 1786 nr_unsync_leaf += ret;
fd951457 1787 } else
7a8f1a74
XG
1788 return ret;
1789 } else if (child->unsync) {
1790 nr_unsync_leaf++;
1791 if (mmu_pages_add(pvec, child, i))
1792 return -ENOSPC;
1793 } else
fd951457 1794 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1795 }
1796
60c8aec6
MT
1797 return nr_unsync_leaf;
1798}
1799
e23d3fef
XG
1800#define INVALID_INDEX (-1)
1801
60c8aec6
MT
1802static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1803 struct kvm_mmu_pages *pvec)
1804{
0a47cd85 1805 pvec->nr = 0;
60c8aec6
MT
1806 if (!sp->unsync_children)
1807 return 0;
1808
e23d3fef 1809 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1810 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1811}
1812
4731d4c7
MT
1813static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1814{
1815 WARN_ON(!sp->unsync);
5e1b3ddb 1816 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1817 sp->unsync = 0;
1818 --kvm->stat.mmu_unsync;
1819}
1820
83cdb568
SC
1821static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1822 struct list_head *invalid_list);
7775834a
XG
1823static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1824 struct list_head *invalid_list);
4731d4c7 1825
ac101b7c
SC
1826#define for_each_valid_sp(_kvm, _sp, _list) \
1827 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1828 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1829 } else
1044b030
TY
1830
1831#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1832 for_each_valid_sp(_kvm, _sp, \
1833 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1834 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1835
47c42e6b
SC
1836static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1837{
1838 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1839}
1840
f918b443 1841/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1842static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1843 struct list_head *invalid_list)
4731d4c7 1844{
47c42e6b
SC
1845 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1846 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1847 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1848 return false;
4731d4c7
MT
1849 }
1850
1f50f1b3 1851 return true;
4731d4c7
MT
1852}
1853
a2113634
SC
1854static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1855 struct list_head *invalid_list,
1856 bool remote_flush)
1857{
cfd32acf 1858 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1859 return false;
1860
1861 if (!list_empty(invalid_list))
1862 kvm_mmu_commit_zap_page(kvm, invalid_list);
1863 else
1864 kvm_flush_remote_tlbs(kvm);
1865 return true;
1866}
1867
35a70510
PB
1868static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1869 struct list_head *invalid_list,
1870 bool remote_flush, bool local_flush)
1d9dc7e0 1871{
a2113634 1872 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1873 return;
d98ba053 1874
a2113634 1875 if (local_flush)
8c8560b8 1876 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1877}
1878
e37fa785
XG
1879#ifdef CONFIG_KVM_MMU_AUDIT
1880#include "mmu_audit.c"
1881#else
1882static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1883static void mmu_audit_disable(void) { }
1884#endif
1885
002c5f73
SC
1886static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1887{
fac026da
SC
1888 return sp->role.invalid ||
1889 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1890}
1891
1f50f1b3 1892static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1893 struct list_head *invalid_list)
1d9dc7e0 1894{
9a43c5d9
PB
1895 kvm_unlink_unsync_page(vcpu->kvm, sp);
1896 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1897}
1898
9f1a122f 1899/* @gfn should be write-protected at the call site */
2a74003a
PB
1900static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1901 struct list_head *invalid_list)
9f1a122f 1902{
9f1a122f 1903 struct kvm_mmu_page *s;
2a74003a 1904 bool ret = false;
9f1a122f 1905
b67bfe0d 1906 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1907 if (!s->unsync)
9f1a122f
XG
1908 continue;
1909
3bae0459 1910 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1911 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1912 }
1913
2a74003a 1914 return ret;
9f1a122f
XG
1915}
1916
60c8aec6 1917struct mmu_page_path {
2a7266a8
YZ
1918 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1919 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1920};
1921
60c8aec6 1922#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1923 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1924 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1925 i = mmu_pages_next(&pvec, &parents, i))
1926
cded19f3
HE
1927static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1928 struct mmu_page_path *parents,
1929 int i)
60c8aec6
MT
1930{
1931 int n;
1932
1933 for (n = i+1; n < pvec->nr; n++) {
1934 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1935 unsigned idx = pvec->page[n].idx;
1936 int level = sp->role.level;
60c8aec6 1937
0a47cd85 1938 parents->idx[level-1] = idx;
3bae0459 1939 if (level == PG_LEVEL_4K)
0a47cd85 1940 break;
60c8aec6 1941
0a47cd85 1942 parents->parent[level-2] = sp;
60c8aec6
MT
1943 }
1944
1945 return n;
1946}
1947
0a47cd85
PB
1948static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1949 struct mmu_page_path *parents)
1950{
1951 struct kvm_mmu_page *sp;
1952 int level;
1953
1954 if (pvec->nr == 0)
1955 return 0;
1956
e23d3fef
XG
1957 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1958
0a47cd85
PB
1959 sp = pvec->page[0].sp;
1960 level = sp->role.level;
3bae0459 1961 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1962
1963 parents->parent[level-2] = sp;
1964
1965 /* Also set up a sentinel. Further entries in pvec are all
1966 * children of sp, so this element is never overwritten.
1967 */
1968 parents->parent[level-1] = NULL;
1969 return mmu_pages_next(pvec, parents, 0);
1970}
1971
cded19f3 1972static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1973{
60c8aec6
MT
1974 struct kvm_mmu_page *sp;
1975 unsigned int level = 0;
1976
1977 do {
1978 unsigned int idx = parents->idx[level];
60c8aec6
MT
1979 sp = parents->parent[level];
1980 if (!sp)
1981 return;
1982
e23d3fef 1983 WARN_ON(idx == INVALID_INDEX);
fd951457 1984 clear_unsync_child_bit(sp, idx);
60c8aec6 1985 level++;
0a47cd85 1986 } while (!sp->unsync_children);
60c8aec6 1987}
4731d4c7 1988
60c8aec6
MT
1989static void mmu_sync_children(struct kvm_vcpu *vcpu,
1990 struct kvm_mmu_page *parent)
1991{
1992 int i;
1993 struct kvm_mmu_page *sp;
1994 struct mmu_page_path parents;
1995 struct kvm_mmu_pages pages;
d98ba053 1996 LIST_HEAD(invalid_list);
50c9e6f3 1997 bool flush = false;
60c8aec6 1998
60c8aec6 1999 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2000 bool protected = false;
b1a36821
MT
2001
2002 for_each_sp(pages, sp, parents, i)
54bf36aa 2003 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2004
50c9e6f3 2005 if (protected) {
b1a36821 2006 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2007 flush = false;
2008 }
b1a36821 2009
60c8aec6 2010 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2011 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2012 mmu_pages_clear_parents(&parents);
2013 }
531810ca 2014 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
50c9e6f3 2015 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
531810ca 2016 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
50c9e6f3
PB
2017 flush = false;
2018 }
60c8aec6 2019 }
50c9e6f3
PB
2020
2021 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2022}
2023
a30f47cb
XG
2024static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2025{
e5691a81 2026 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2027}
2028
2029static void clear_sp_write_flooding_count(u64 *spte)
2030{
57354682 2031 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2032}
2033
cea0f0e7
AK
2034static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2035 gfn_t gfn,
2036 gva_t gaddr,
2037 unsigned level,
f6e2c02b 2038 int direct,
0a2b64c5 2039 unsigned int access)
cea0f0e7 2040{
fb58a9c3 2041 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2042 union kvm_mmu_page_role role;
ac101b7c 2043 struct hlist_head *sp_list;
cea0f0e7 2044 unsigned quadrant;
9f1a122f 2045 struct kvm_mmu_page *sp;
9f1a122f 2046 bool need_sync = false;
2a74003a 2047 bool flush = false;
f3414bc7 2048 int collisions = 0;
2a74003a 2049 LIST_HEAD(invalid_list);
cea0f0e7 2050
36d9594d 2051 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2052 role.level = level;
f6e2c02b 2053 role.direct = direct;
84b0c8c6 2054 if (role.direct)
47c42e6b 2055 role.gpte_is_8_bytes = true;
41074d07 2056 role.access = access;
fb58a9c3 2057 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2058 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2059 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2060 role.quadrant = quadrant;
2061 }
ac101b7c
SC
2062
2063 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2064 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2065 if (sp->gfn != gfn) {
2066 collisions++;
2067 continue;
2068 }
2069
7ae680eb
XG
2070 if (!need_sync && sp->unsync)
2071 need_sync = true;
4731d4c7 2072
7ae680eb
XG
2073 if (sp->role.word != role.word)
2074 continue;
4731d4c7 2075
fb58a9c3
SC
2076 if (direct_mmu)
2077 goto trace_get_page;
2078
2a74003a
PB
2079 if (sp->unsync) {
2080 /* The page is good, but __kvm_sync_page might still end
2081 * up zapping it. If so, break in order to rebuild it.
2082 */
2083 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2084 break;
2085
2086 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2087 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2088 }
e02aa901 2089
98bba238 2090 if (sp->unsync_children)
f6f6195b 2091 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2092
a30f47cb 2093 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2094
2095trace_get_page:
7ae680eb 2096 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2097 goto out;
7ae680eb 2098 }
47005792 2099
dfc5aa00 2100 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2101
2102 sp = kvm_mmu_alloc_page(vcpu, direct);
2103
4db35314
AK
2104 sp->gfn = gfn;
2105 sp->role = role;
ac101b7c 2106 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2107 if (!direct) {
56ca57f9
XG
2108 /*
2109 * we should do write protection before syncing pages
2110 * otherwise the content of the synced shadow page may
2111 * be inconsistent with guest page table.
2112 */
2113 account_shadowed(vcpu->kvm, sp);
3bae0459 2114 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2115 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2116
3bae0459 2117 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2118 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2119 }
f691fe1d 2120 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2121
2122 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2123out:
2124 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2125 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2126 return sp;
cea0f0e7
AK
2127}
2128
7eb77e9f
JS
2129static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2130 struct kvm_vcpu *vcpu, hpa_t root,
2131 u64 addr)
2d11123a
AK
2132{
2133 iterator->addr = addr;
7eb77e9f 2134 iterator->shadow_addr = root;
44dd3ffa 2135 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2136
2a7266a8 2137 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2138 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2139 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2140 --iterator->level;
2141
2d11123a 2142 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2143 /*
2144 * prev_root is currently only used for 64-bit hosts. So only
2145 * the active root_hpa is valid here.
2146 */
44dd3ffa 2147 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2148
2d11123a 2149 iterator->shadow_addr
44dd3ffa 2150 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2151 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2152 --iterator->level;
2153 if (!iterator->shadow_addr)
2154 iterator->level = 0;
2155 }
2156}
2157
7eb77e9f
JS
2158static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2159 struct kvm_vcpu *vcpu, u64 addr)
2160{
44dd3ffa 2161 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2162 addr);
2163}
2164
2d11123a
AK
2165static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2166{
3bae0459 2167 if (iterator->level < PG_LEVEL_4K)
2d11123a 2168 return false;
4d88954d 2169
2d11123a
AK
2170 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2171 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2172 return true;
2173}
2174
c2a2ac2b
XG
2175static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2176 u64 spte)
2d11123a 2177{
c2a2ac2b 2178 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2179 iterator->level = 0;
2180 return;
2181 }
2182
c2a2ac2b 2183 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2184 --iterator->level;
2185}
2186
c2a2ac2b
XG
2187static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2188{
bb606a9b 2189 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2190}
2191
cc4674d0
BG
2192static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2193 struct kvm_mmu_page *sp)
2194{
2195 u64 spte;
2196
2197 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2198
2199 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2200
1df9f2dc 2201 mmu_spte_set(sptep, spte);
98bba238
TY
2202
2203 mmu_page_add_parent_pte(vcpu, sp, sptep);
2204
2205 if (sp->unsync_children || sp->unsync)
2206 mark_unsync(sptep);
32ef26a3
AK
2207}
2208
a357bd22
AK
2209static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2210 unsigned direct_access)
2211{
2212 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2213 struct kvm_mmu_page *child;
2214
2215 /*
2216 * For the direct sp, if the guest pte's dirty bit
2217 * changed form clean to dirty, it will corrupt the
2218 * sp's access: allow writable in the read-only sp,
2219 * so we should update the spte at this point to get
2220 * a new sp with the correct access.
2221 */
e47c4aee 2222 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2223 if (child->role.access == direct_access)
2224 return;
2225
bcdd9a93 2226 drop_parent_pte(child, sptep);
c3134ce2 2227 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2228 }
2229}
2230
2de4085c
BG
2231/* Returns the number of zapped non-leaf child shadow pages. */
2232static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2233 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2234{
2235 u64 pte;
2236 struct kvm_mmu_page *child;
2237
2238 pte = *spte;
2239 if (is_shadow_present_pte(pte)) {
505aef8f 2240 if (is_last_spte(pte, sp->role.level)) {
c3707958 2241 drop_spte(kvm, spte);
505aef8f
XG
2242 if (is_large_pte(pte))
2243 --kvm->stat.lpages;
2244 } else {
e47c4aee 2245 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2246 drop_parent_pte(child, spte);
2de4085c
BG
2247
2248 /*
2249 * Recursively zap nested TDP SPs, parentless SPs are
2250 * unlikely to be used again in the near future. This
2251 * avoids retaining a large number of stale nested SPs.
2252 */
2253 if (tdp_enabled && invalid_list &&
2254 child->role.guest_mode && !child->parent_ptes.val)
2255 return kvm_mmu_prepare_zap_page(kvm, child,
2256 invalid_list);
38e3b2b2 2257 }
ace569e0 2258 } else if (is_mmio_spte(pte)) {
ce88decf 2259 mmu_spte_clear_no_track(spte);
ace569e0 2260 }
2de4085c 2261 return 0;
38e3b2b2
XG
2262}
2263
2de4085c
BG
2264static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2265 struct kvm_mmu_page *sp,
2266 struct list_head *invalid_list)
a436036b 2267{
2de4085c 2268 int zapped = 0;
697fe2e2 2269 unsigned i;
697fe2e2 2270
38e3b2b2 2271 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2272 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2273
2274 return zapped;
a436036b
AK
2275}
2276
31aa2b44 2277static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2278{
1e3f42f0
TY
2279 u64 *sptep;
2280 struct rmap_iterator iter;
a436036b 2281
018aabb5 2282 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2283 drop_parent_pte(sp, sptep);
31aa2b44
AK
2284}
2285
60c8aec6 2286static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2287 struct kvm_mmu_page *parent,
2288 struct list_head *invalid_list)
4731d4c7 2289{
60c8aec6
MT
2290 int i, zapped = 0;
2291 struct mmu_page_path parents;
2292 struct kvm_mmu_pages pages;
4731d4c7 2293
3bae0459 2294 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2295 return 0;
60c8aec6 2296
60c8aec6
MT
2297 while (mmu_unsync_walk(parent, &pages)) {
2298 struct kvm_mmu_page *sp;
2299
2300 for_each_sp(pages, sp, parents, i) {
7775834a 2301 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2302 mmu_pages_clear_parents(&parents);
77662e00 2303 zapped++;
60c8aec6 2304 }
60c8aec6
MT
2305 }
2306
2307 return zapped;
4731d4c7
MT
2308}
2309
83cdb568
SC
2310static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2311 struct kvm_mmu_page *sp,
2312 struct list_head *invalid_list,
2313 int *nr_zapped)
31aa2b44 2314{
83cdb568 2315 bool list_unstable;
f691fe1d 2316
7775834a 2317 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2318 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2319 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2320 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2321 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2322
83cdb568
SC
2323 /* Zapping children means active_mmu_pages has become unstable. */
2324 list_unstable = *nr_zapped;
2325
f6e2c02b 2326 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2327 unaccount_shadowed(kvm, sp);
5304b8d3 2328
4731d4c7
MT
2329 if (sp->unsync)
2330 kvm_unlink_unsync_page(kvm, sp);
4db35314 2331 if (!sp->root_count) {
54a4f023 2332 /* Count self */
83cdb568 2333 (*nr_zapped)++;
f95eec9b
SC
2334
2335 /*
2336 * Already invalid pages (previously active roots) are not on
2337 * the active page list. See list_del() in the "else" case of
2338 * !sp->root_count.
2339 */
2340 if (sp->role.invalid)
2341 list_add(&sp->link, invalid_list);
2342 else
2343 list_move(&sp->link, invalid_list);
aa6bd187 2344 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2345 } else {
f95eec9b
SC
2346 /*
2347 * Remove the active root from the active page list, the root
2348 * will be explicitly freed when the root_count hits zero.
2349 */
2350 list_del(&sp->link);
05988d72 2351
10605204
SC
2352 /*
2353 * Obsolete pages cannot be used on any vCPUs, see the comment
2354 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2355 * treats invalid shadow pages as being obsolete.
2356 */
2357 if (!is_obsolete_sp(kvm, sp))
05988d72 2358 kvm_reload_remote_mmus(kvm);
2e53d63a 2359 }
7775834a 2360
b8e8c830
PB
2361 if (sp->lpage_disallowed)
2362 unaccount_huge_nx_page(kvm, sp);
2363
7775834a 2364 sp->role.invalid = 1;
83cdb568
SC
2365 return list_unstable;
2366}
2367
2368static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2369 struct list_head *invalid_list)
2370{
2371 int nr_zapped;
2372
2373 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2374 return nr_zapped;
a436036b
AK
2375}
2376
7775834a
XG
2377static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2378 struct list_head *invalid_list)
2379{
945315b9 2380 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2381
2382 if (list_empty(invalid_list))
2383 return;
2384
c142786c 2385 /*
9753f529
LT
2386 * We need to make sure everyone sees our modifications to
2387 * the page tables and see changes to vcpu->mode here. The barrier
2388 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2389 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2390 *
2391 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2392 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2393 */
2394 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2395
945315b9 2396 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2397 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2398 kvm_mmu_free_page(sp);
945315b9 2399 }
7775834a
XG
2400}
2401
6b82ef2c
SC
2402static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2403 unsigned long nr_to_zap)
5da59607 2404{
6b82ef2c
SC
2405 unsigned long total_zapped = 0;
2406 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2407 LIST_HEAD(invalid_list);
6b82ef2c
SC
2408 bool unstable;
2409 int nr_zapped;
5da59607
TY
2410
2411 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2412 return 0;
2413
6b82ef2c 2414restart:
8fc51726 2415 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
6b82ef2c
SC
2416 /*
2417 * Don't zap active root pages, the page itself can't be freed
2418 * and zapping it will just force vCPUs to realloc and reload.
2419 */
2420 if (sp->root_count)
2421 continue;
2422
2423 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2424 &nr_zapped);
2425 total_zapped += nr_zapped;
2426 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2427 break;
2428
6b82ef2c
SC
2429 if (unstable)
2430 goto restart;
ba7888dd 2431 }
5da59607 2432
6b82ef2c
SC
2433 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2434
2435 kvm->stat.mmu_recycled += total_zapped;
2436 return total_zapped;
2437}
2438
afe8d7e6
SC
2439static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2440{
2441 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2442 return kvm->arch.n_max_mmu_pages -
2443 kvm->arch.n_used_mmu_pages;
2444
2445 return 0;
5da59607
TY
2446}
2447
ba7888dd
SC
2448static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2449{
6b82ef2c 2450 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2451
6b82ef2c 2452 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2453 return 0;
2454
6b82ef2c 2455 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2456
2457 if (!kvm_mmu_available_pages(vcpu->kvm))
2458 return -ENOSPC;
2459 return 0;
2460}
2461
82ce2c96
IE
2462/*
2463 * Changing the number of mmu pages allocated to the vm
49d5ca26 2464 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2465 */
bc8a3d89 2466void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2467{
531810ca 2468 write_lock(&kvm->mmu_lock);
b34cb590 2469
49d5ca26 2470 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2471 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2472 goal_nr_mmu_pages);
82ce2c96 2473
49d5ca26 2474 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2475 }
82ce2c96 2476
49d5ca26 2477 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590 2478
531810ca 2479 write_unlock(&kvm->mmu_lock);
82ce2c96
IE
2480}
2481
1cb3f3ae 2482int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2483{
4db35314 2484 struct kvm_mmu_page *sp;
d98ba053 2485 LIST_HEAD(invalid_list);
a436036b
AK
2486 int r;
2487
9ad17b10 2488 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2489 r = 0;
531810ca 2490 write_lock(&kvm->mmu_lock);
b67bfe0d 2491 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2492 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2493 sp->role.word);
2494 r = 1;
f41d335a 2495 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2496 }
d98ba053 2497 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 2498 write_unlock(&kvm->mmu_lock);
1cb3f3ae 2499
a436036b 2500 return r;
cea0f0e7 2501}
1cb3f3ae 2502EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2503
5c520e90 2504static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2505{
2506 trace_kvm_mmu_unsync_page(sp);
2507 ++vcpu->kvm->stat.mmu_unsync;
2508 sp->unsync = 1;
2509
2510 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2511}
2512
5a9624af
PB
2513bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2514 bool can_unsync)
4731d4c7 2515{
5c520e90 2516 struct kvm_mmu_page *sp;
4731d4c7 2517
3d0c27ad
XG
2518 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2519 return true;
9cf5cf5a 2520
5c520e90 2521 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2522 if (!can_unsync)
3d0c27ad 2523 return true;
36a2e677 2524
5c520e90
XG
2525 if (sp->unsync)
2526 continue;
9cf5cf5a 2527
3bae0459 2528 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2529 kvm_unsync_page(vcpu, sp);
4731d4c7 2530 }
3d0c27ad 2531
578e1c4d
JS
2532 /*
2533 * We need to ensure that the marking of unsync pages is visible
2534 * before the SPTE is updated to allow writes because
2535 * kvm_mmu_sync_roots() checks the unsync flags without holding
2536 * the MMU lock and so can race with this. If the SPTE was updated
2537 * before the page had been marked as unsync-ed, something like the
2538 * following could happen:
2539 *
2540 * CPU 1 CPU 2
2541 * ---------------------------------------------------------------------
2542 * 1.2 Host updates SPTE
2543 * to be writable
2544 * 2.1 Guest writes a GPTE for GVA X.
2545 * (GPTE being in the guest page table shadowed
2546 * by the SP from CPU 1.)
2547 * This reads SPTE during the page table walk.
2548 * Since SPTE.W is read as 1, there is no
2549 * fault.
2550 *
2551 * 2.2 Guest issues TLB flush.
2552 * That causes a VM Exit.
2553 *
2554 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2555 * Since it is false, so it just returns.
2556 *
2557 * 2.4 Guest accesses GVA X.
2558 * Since the mapping in the SP was not updated,
2559 * so the old mapping for GVA X incorrectly
2560 * gets used.
2561 * 1.1 Host marks SP
2562 * as unsync
2563 * (sp->unsync = true)
2564 *
2565 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2566 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2567 * pairs with this write barrier.
2568 */
2569 smp_wmb();
2570
3d0c27ad 2571 return false;
4731d4c7
MT
2572}
2573
799a4190
BG
2574static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2575 unsigned int pte_access, int level,
2576 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2577 bool can_unsync, bool host_writable)
2578{
2579 u64 spte;
2580 struct kvm_mmu_page *sp;
2581 int ret;
2582
2583 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2584 return 0;
2585
2586 sp = sptep_to_sp(sptep);
2587
2588 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2589 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2590
2591 if (spte & PT_WRITABLE_MASK)
2592 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2593
12703759
SC
2594 if (*sptep == spte)
2595 ret |= SET_SPTE_SPURIOUS;
2596 else if (mmu_spte_update(sptep, spte))
5ce4786f 2597 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2598 return ret;
2599}
2600
0a2b64c5 2601static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2602 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2603 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2604 bool host_writable)
1e73f9dd
MT
2605{
2606 int was_rmapped = 0;
53a27b39 2607 int rmap_count;
5ce4786f 2608 int set_spte_ret;
c4371c2a 2609 int ret = RET_PF_FIXED;
c2a4eadf 2610 bool flush = false;
1e73f9dd 2611
f7616203
XG
2612 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2613 *sptep, write_fault, gfn);
1e73f9dd 2614
afd28fe1 2615 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2616 /*
2617 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2618 * the parent of the now unreachable PTE.
2619 */
3bae0459 2620 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2621 struct kvm_mmu_page *child;
d555c333 2622 u64 pte = *sptep;
1e73f9dd 2623
e47c4aee 2624 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2625 drop_parent_pte(child, sptep);
c2a4eadf 2626 flush = true;
d555c333 2627 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2628 pgprintk("hfn old %llx new %llx\n",
d555c333 2629 spte_to_pfn(*sptep), pfn);
c3707958 2630 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2631 flush = true;
6bed6b9e
JR
2632 } else
2633 was_rmapped = 1;
1e73f9dd 2634 }
852e3c19 2635
5ce4786f
JS
2636 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2637 speculative, true, host_writable);
2638 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2639 if (write_fault)
9b8ebbdb 2640 ret = RET_PF_EMULATE;
8c8560b8 2641 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2642 }
c3134ce2 2643
c2a4eadf 2644 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2645 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2646 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2647
029499b4 2648 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2649 ret = RET_PF_EMULATE;
ce88decf 2650
12703759
SC
2651 /*
2652 * The fault is fully spurious if and only if the new SPTE and old SPTE
2653 * are identical, and emulation is not required.
2654 */
2655 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2656 WARN_ON_ONCE(!was_rmapped);
2657 return RET_PF_SPURIOUS;
2658 }
2659
d555c333 2660 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2661 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2662 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2663 ++vcpu->kvm->stat.lpages;
2664
ffb61bb3 2665 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2666 if (!was_rmapped) {
2667 rmap_count = rmap_add(vcpu, sptep, gfn);
2668 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2669 rmap_recycle(vcpu, sptep, gfn);
2670 }
1c4f1fd6 2671 }
cb9aaa30 2672
9b8ebbdb 2673 return ret;
1c4f1fd6
AK
2674}
2675
ba049e93 2676static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2677 bool no_dirty_log)
2678{
2679 struct kvm_memory_slot *slot;
957ed9ef 2680
5d163b1c 2681 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2682 if (!slot)
6c8ee57b 2683 return KVM_PFN_ERR_FAULT;
957ed9ef 2684
037d92dc 2685 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2686}
2687
2688static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2689 struct kvm_mmu_page *sp,
2690 u64 *start, u64 *end)
2691{
2692 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2693 struct kvm_memory_slot *slot;
0a2b64c5 2694 unsigned int access = sp->role.access;
957ed9ef
XG
2695 int i, ret;
2696 gfn_t gfn;
2697
2698 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2699 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2700 if (!slot)
957ed9ef
XG
2701 return -1;
2702
d9ef13c2 2703 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2704 if (ret <= 0)
2705 return -1;
2706
43fdcda9 2707 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2708 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2709 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2710 put_page(pages[i]);
2711 }
957ed9ef
XG
2712
2713 return 0;
2714}
2715
2716static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2717 struct kvm_mmu_page *sp, u64 *sptep)
2718{
2719 u64 *spte, *start = NULL;
2720 int i;
2721
2722 WARN_ON(!sp->role.direct);
2723
2724 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2725 spte = sp->spt + i;
2726
2727 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2728 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2729 if (!start)
2730 continue;
2731 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2732 break;
2733 start = NULL;
2734 } else if (!start)
2735 start = spte;
2736 }
2737}
2738
2739static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2740{
2741 struct kvm_mmu_page *sp;
2742
57354682 2743 sp = sptep_to_sp(sptep);
ac8d57e5 2744
957ed9ef 2745 /*
ac8d57e5
PF
2746 * Without accessed bits, there's no way to distinguish between
2747 * actually accessed translations and prefetched, so disable pte
2748 * prefetch if accessed bits aren't available.
957ed9ef 2749 */
ac8d57e5 2750 if (sp_ad_disabled(sp))
957ed9ef
XG
2751 return;
2752
3bae0459 2753 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2754 return;
2755
2756 __direct_pte_prefetch(vcpu, sp, sptep);
2757}
2758
db543216 2759static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 2760 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 2761{
db543216
SC
2762 unsigned long hva;
2763 pte_t *pte;
2764 int level;
2765
e851265a 2766 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2767 return PG_LEVEL_4K;
db543216 2768
293e306e
SC
2769 /*
2770 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2771 * is not solely for performance, it's also necessary to avoid the
2772 * "writable" check in __gfn_to_hva_many(), which will always fail on
2773 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2774 * page fault steps have already verified the guest isn't writing a
2775 * read-only memslot.
2776 */
db543216
SC
2777 hva = __gfn_to_hva_memslot(slot, gfn);
2778
2779 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2780 if (unlikely(!pte))
3bae0459 2781 return PG_LEVEL_4K;
db543216
SC
2782
2783 return level;
2784}
2785
bb18842e
BG
2786int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2787 int max_level, kvm_pfn_t *pfnp,
2788 bool huge_page_disallowed, int *req_level)
0885904d 2789{
293e306e 2790 struct kvm_memory_slot *slot;
2c0629f4 2791 struct kvm_lpage_info *linfo;
0885904d 2792 kvm_pfn_t pfn = *pfnp;
17eff019 2793 kvm_pfn_t mask;
83f06fa7 2794 int level;
17eff019 2795
3cf06612
SC
2796 *req_level = PG_LEVEL_4K;
2797
3bae0459
SC
2798 if (unlikely(max_level == PG_LEVEL_4K))
2799 return PG_LEVEL_4K;
17eff019 2800
e851265a 2801 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2802 return PG_LEVEL_4K;
17eff019 2803
293e306e
SC
2804 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2805 if (!slot)
3bae0459 2806 return PG_LEVEL_4K;
293e306e 2807
1d92d2e8 2808 max_level = min(max_level, max_huge_page_level);
3bae0459 2809 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2c0629f4
SC
2810 linfo = lpage_info_slot(gfn, slot, max_level);
2811 if (!linfo->disallow_lpage)
293e306e
SC
2812 break;
2813 }
2814
3bae0459
SC
2815 if (max_level == PG_LEVEL_4K)
2816 return PG_LEVEL_4K;
293e306e
SC
2817
2818 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3bae0459 2819 if (level == PG_LEVEL_4K)
83f06fa7 2820 return level;
17eff019 2821
3cf06612
SC
2822 *req_level = level = min(level, max_level);
2823
2824 /*
2825 * Enforce the iTLB multihit workaround after capturing the requested
2826 * level, which will be used to do precise, accurate accounting.
2827 */
2828 if (huge_page_disallowed)
2829 return PG_LEVEL_4K;
0885904d
SC
2830
2831 /*
17eff019
SC
2832 * mmu_notifier_retry() was successful and mmu_lock is held, so
2833 * the pmd can't be split from under us.
0885904d 2834 */
17eff019
SC
2835 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2836 VM_BUG_ON((gfn & mask) != (pfn & mask));
2837 *pfnp = pfn & ~mask;
83f06fa7
SC
2838
2839 return level;
0885904d
SC
2840}
2841
bb18842e
BG
2842void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2843 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2844{
bb18842e 2845 int level = *goal_levelp;
b8e8c830 2846
7d945312 2847 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2848 is_shadow_present_pte(spte) &&
2849 !is_large_pte(spte)) {
2850 /*
2851 * A small SPTE exists for this pfn, but FNAME(fetch)
2852 * and __direct_map would like to create a large PTE
2853 * instead: just force them to go down another level,
2854 * patching back for them into pfn the next 9 bits of
2855 * the address.
2856 */
7d945312
BG
2857 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2858 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2859 *pfnp |= gfn & page_mask;
bb18842e 2860 (*goal_levelp)--;
b8e8c830
PB
2861 }
2862}
2863
6c2fd34f 2864static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2865 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2866 bool prefault, bool is_tdp)
140754bc 2867{
6c2fd34f
SC
2868 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2869 bool write = error_code & PFERR_WRITE_MASK;
2870 bool exec = error_code & PFERR_FETCH_MASK;
2871 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2872 struct kvm_shadow_walk_iterator it;
140754bc 2873 struct kvm_mmu_page *sp;
3cf06612 2874 int level, req_level, ret;
3fcf2d1b
PB
2875 gfn_t gfn = gpa >> PAGE_SHIFT;
2876 gfn_t base_gfn = gfn;
6aa8b732 2877
0c7a98e3 2878 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2879 return RET_PF_RETRY;
989c6b34 2880
3cf06612
SC
2881 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2882 huge_page_disallowed, &req_level);
4cd071d1 2883
335e192a 2884 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2885 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2886 /*
2887 * We cannot overwrite existing page tables with an NX
2888 * large page, as the leaf could be executable.
2889 */
dcc70651 2890 if (nx_huge_page_workaround_enabled)
7d945312
BG
2891 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2892 &pfn, &level);
b8e8c830 2893
3fcf2d1b
PB
2894 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2895 if (it.level == level)
9f652d21 2896 break;
6aa8b732 2897
3fcf2d1b
PB
2898 drop_large_spte(vcpu, it.sptep);
2899 if (!is_shadow_present_pte(*it.sptep)) {
2900 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2901 it.level - 1, true, ACC_ALL);
c9fa0b3b 2902
3fcf2d1b 2903 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2904 if (is_tdp && huge_page_disallowed &&
2905 req_level >= it.level)
b8e8c830 2906 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2907 }
2908 }
3fcf2d1b
PB
2909
2910 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2911 write, level, base_gfn, pfn, prefault,
2912 map_writable);
12703759
SC
2913 if (ret == RET_PF_SPURIOUS)
2914 return ret;
2915
3fcf2d1b
PB
2916 direct_pte_prefetch(vcpu, it.sptep);
2917 ++vcpu->stat.pf_fixed;
2918 return ret;
6aa8b732
AK
2919}
2920
77db5cbd 2921static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2922{
585a8b9b 2923 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2924}
2925
ba049e93 2926static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2927{
4d8b81ab
XG
2928 /*
2929 * Do not cache the mmio info caused by writing the readonly gfn
2930 * into the spte otherwise read access on readonly gfn also can
2931 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2932 */
2933 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2934 return RET_PF_EMULATE;
4d8b81ab 2935
e6c1502b 2936 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2937 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2938 return RET_PF_RETRY;
d7c55201 2939 }
edba23e5 2940
2c151b25 2941 return -EFAULT;
bf998156
HY
2942}
2943
d7c55201 2944static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2945 kvm_pfn_t pfn, unsigned int access,
2946 int *ret_val)
d7c55201 2947{
d7c55201 2948 /* The pfn is invalid, report the error! */
81c52c56 2949 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2950 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2951 return true;
d7c55201
XG
2952 }
2953
ce88decf 2954 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
2955 vcpu_cache_mmio_info(vcpu, gva, gfn,
2956 access & shadow_mmio_access_mask);
d7c55201 2957
798e88b3 2958 return false;
d7c55201
XG
2959}
2960
e5552fd2 2961static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2962{
1c118b82
XG
2963 /*
2964 * Do not fix the mmio spte with invalid generation number which
2965 * need to be updated by slow page fault path.
2966 */
2967 if (unlikely(error_code & PFERR_RSVD_MASK))
2968 return false;
2969
f160c7b7
JS
2970 /* See if the page fault is due to an NX violation */
2971 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2972 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2973 return false;
2974
c7ba5b48 2975 /*
f160c7b7
JS
2976 * #PF can be fast if:
2977 * 1. The shadow page table entry is not present, which could mean that
2978 * the fault is potentially caused by access tracking (if enabled).
2979 * 2. The shadow page table entry is present and the fault
2980 * is caused by write-protect, that means we just need change the W
2981 * bit of the spte which can be done out of mmu-lock.
2982 *
2983 * However, if access tracking is disabled we know that a non-present
2984 * page must be a genuine page fault where we have to create a new SPTE.
2985 * So, if access tracking is disabled, we return true only for write
2986 * accesses to a present page.
c7ba5b48 2987 */
c7ba5b48 2988
f160c7b7
JS
2989 return shadow_acc_track_mask != 0 ||
2990 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2991 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2992}
2993
97dceba2
JS
2994/*
2995 * Returns true if the SPTE was fixed successfully. Otherwise,
2996 * someone else modified the SPTE from its original value.
2997 */
c7ba5b48 2998static bool
92a476cb 2999fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3000 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3001{
c7ba5b48
XG
3002 gfn_t gfn;
3003
3004 WARN_ON(!sp->role.direct);
3005
9b51a630
KH
3006 /*
3007 * Theoretically we could also set dirty bit (and flush TLB) here in
3008 * order to eliminate unnecessary PML logging. See comments in
3009 * set_spte. But fast_page_fault is very unlikely to happen with PML
3010 * enabled, so we do not do this. This might result in the same GPA
3011 * to be logged in PML buffer again when the write really happens, and
3012 * eventually to be called by mark_page_dirty twice. But it's also no
3013 * harm. This also avoids the TLB flush needed after setting dirty bit
3014 * so non-PML cases won't be impacted.
3015 *
3016 * Compare with set_spte where instead shadow_dirty_mask is set.
3017 */
f160c7b7 3018 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3019 return false;
3020
d3e328f2 3021 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3022 /*
3023 * The gfn of direct spte is stable since it is
3024 * calculated by sp->gfn.
3025 */
3026 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3027 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3028 }
c7ba5b48
XG
3029
3030 return true;
3031}
3032
d3e328f2
JS
3033static bool is_access_allowed(u32 fault_err_code, u64 spte)
3034{
3035 if (fault_err_code & PFERR_FETCH_MASK)
3036 return is_executable_pte(spte);
3037
3038 if (fault_err_code & PFERR_WRITE_MASK)
3039 return is_writable_pte(spte);
3040
3041 /* Fault was on Read access */
3042 return spte & PT_PRESENT_MASK;
3043}
3044
c7ba5b48 3045/*
c4371c2a 3046 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3047 */
c4371c2a
SC
3048static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3049 u32 error_code)
c7ba5b48
XG
3050{
3051 struct kvm_shadow_walk_iterator iterator;
92a476cb 3052 struct kvm_mmu_page *sp;
c4371c2a 3053 int ret = RET_PF_INVALID;
c7ba5b48 3054 u64 spte = 0ull;
97dceba2 3055 uint retry_count = 0;
c7ba5b48 3056
e5552fd2 3057 if (!page_fault_can_be_fast(error_code))
c4371c2a 3058 return ret;
c7ba5b48
XG
3059
3060 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3061
97dceba2 3062 do {
d3e328f2 3063 u64 new_spte;
c7ba5b48 3064
736c291c 3065 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3066 if (!is_shadow_present_pte(spte))
d162f30a
JS
3067 break;
3068
57354682 3069 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3070 if (!is_last_spte(spte, sp->role.level))
3071 break;
c7ba5b48 3072
97dceba2 3073 /*
f160c7b7
JS
3074 * Check whether the memory access that caused the fault would
3075 * still cause it if it were to be performed right now. If not,
3076 * then this is a spurious fault caused by TLB lazily flushed,
3077 * or some other CPU has already fixed the PTE after the
3078 * current CPU took the fault.
97dceba2
JS
3079 *
3080 * Need not check the access of upper level table entries since
3081 * they are always ACC_ALL.
3082 */
d3e328f2 3083 if (is_access_allowed(error_code, spte)) {
c4371c2a 3084 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3085 break;
3086 }
f160c7b7 3087
d3e328f2
JS
3088 new_spte = spte;
3089
3090 if (is_access_track_spte(spte))
3091 new_spte = restore_acc_track_spte(new_spte);
3092
3093 /*
3094 * Currently, to simplify the code, write-protection can
3095 * be removed in the fast path only if the SPTE was
3096 * write-protected for dirty-logging or access tracking.
3097 */
3098 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3099 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3100 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3101
3102 /*
d3e328f2
JS
3103 * Do not fix write-permission on the large spte. Since
3104 * we only dirty the first page into the dirty-bitmap in
3105 * fast_pf_fix_direct_spte(), other pages are missed
3106 * if its slot has dirty logging enabled.
3107 *
3108 * Instead, we let the slow page fault path create a
3109 * normal spte to fix the access.
3110 *
3111 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3112 */
3bae0459 3113 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3114 break;
97dceba2 3115 }
c7ba5b48 3116
f160c7b7 3117 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3118 if (new_spte == spte ||
3119 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3120 break;
3121
3122 /*
3123 * Currently, fast page fault only works for direct mapping
3124 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3125 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3126 */
c4371c2a
SC
3127 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3128 new_spte)) {
3129 ret = RET_PF_FIXED;
97dceba2 3130 break;
c4371c2a 3131 }
97dceba2
JS
3132
3133 if (++retry_count > 4) {
3134 printk_once(KERN_WARNING
3135 "kvm: Fast #PF retrying more than 4 times.\n");
3136 break;
3137 }
3138
97dceba2 3139 } while (true);
c126d94f 3140
736c291c 3141 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3142 spte, ret);
c7ba5b48
XG
3143 walk_shadow_page_lockless_end(vcpu);
3144
c4371c2a 3145 return ret;
c7ba5b48
XG
3146}
3147
74b566e6
JS
3148static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3149 struct list_head *invalid_list)
17ac10ad 3150{
4db35314 3151 struct kvm_mmu_page *sp;
17ac10ad 3152
74b566e6 3153 if (!VALID_PAGE(*root_hpa))
7b53aa56 3154 return;
35af577a 3155
e47c4aee 3156 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a
BG
3157
3158 if (kvm_mmu_put_root(kvm, sp)) {
897218ff 3159 if (is_tdp_mmu_page(sp))
02c00b3a
BG
3160 kvm_tdp_mmu_free_root(kvm, sp);
3161 else if (sp->role.invalid)
3162 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3163 }
17ac10ad 3164
74b566e6
JS
3165 *root_hpa = INVALID_PAGE;
3166}
3167
08fb59d8 3168/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3169void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3170 ulong roots_to_free)
74b566e6 3171{
4d710de9 3172 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3173 int i;
3174 LIST_HEAD(invalid_list);
08fb59d8 3175 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3176
b94742c9 3177 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3178
08fb59d8 3179 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3180 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3181 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3182 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3183 VALID_PAGE(mmu->prev_roots[i].hpa))
3184 break;
3185
3186 if (i == KVM_MMU_NUM_PREV_ROOTS)
3187 return;
3188 }
35af577a 3189
531810ca 3190 write_lock(&kvm->mmu_lock);
17ac10ad 3191
b94742c9
JS
3192 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3193 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3194 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3195 &invalid_list);
7c390d35 3196
08fb59d8
JS
3197 if (free_active_root) {
3198 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3199 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3200 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
08fb59d8
JS
3201 } else {
3202 for (i = 0; i < 4; ++i)
3203 if (mmu->pae_root[i] != 0)
4d710de9 3204 mmu_free_root_page(kvm,
08fb59d8
JS
3205 &mmu->pae_root[i],
3206 &invalid_list);
3207 mmu->root_hpa = INVALID_PAGE;
3208 }
be01e8e2 3209 mmu->root_pgd = 0;
17ac10ad 3210 }
74b566e6 3211
4d710de9 3212 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 3213 write_unlock(&kvm->mmu_lock);
17ac10ad 3214}
74b566e6 3215EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3216
8986ecc0
MT
3217static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3218{
3219 int ret = 0;
3220
995decb6 3221 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3222 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3223 ret = 1;
3224 }
3225
3226 return ret;
3227}
3228
8123f265
SC
3229static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3230 u8 level, bool direct)
651dd37a
JR
3231{
3232 struct kvm_mmu_page *sp;
8123f265 3233
531810ca 3234 write_lock(&vcpu->kvm->mmu_lock);
8123f265
SC
3235
3236 if (make_mmu_pages_available(vcpu)) {
531810ca 3237 write_unlock(&vcpu->kvm->mmu_lock);
8123f265
SC
3238 return INVALID_PAGE;
3239 }
3240 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3241 ++sp->root_count;
3242
531810ca 3243 write_unlock(&vcpu->kvm->mmu_lock);
8123f265
SC
3244 return __pa(sp->spt);
3245}
3246
3247static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3248{
3249 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3250 hpa_t root;
7ebaf15e 3251 unsigned i;
651dd37a 3252
897218ff 3253 if (is_tdp_mmu_enabled(vcpu->kvm)) {
02c00b3a
BG
3254 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3255
3256 if (!VALID_PAGE(root))
3257 return -ENOSPC;
3258 vcpu->arch.mmu->root_hpa = root;
3259 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3260 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3261 true);
3262
8123f265 3263 if (!VALID_PAGE(root))
ed52870f 3264 return -ENOSPC;
8123f265
SC
3265 vcpu->arch.mmu->root_hpa = root;
3266 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3267 for (i = 0; i < 4; ++i) {
8123f265 3268 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3269
8123f265
SC
3270 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3271 i << 30, PT32_ROOT_LEVEL, true);
3272 if (!VALID_PAGE(root))
ed52870f 3273 return -ENOSPC;
44dd3ffa 3274 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3275 }
44dd3ffa 3276 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3277 } else
3278 BUG();
3651c7fc 3279
be01e8e2
SC
3280 /* root_pgd is ignored for direct MMUs. */
3281 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3282
3283 return 0;
3284}
3285
3286static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3287{
81407ca5 3288 u64 pdptr, pm_mask;
be01e8e2 3289 gfn_t root_gfn, root_pgd;
8123f265 3290 hpa_t root;
81407ca5 3291 int i;
3bb65a22 3292
be01e8e2
SC
3293 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3294 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3295
651dd37a
JR
3296 if (mmu_check_root(vcpu, root_gfn))
3297 return 1;
3298
3299 /*
3300 * Do we shadow a long mode page table? If so we need to
3301 * write-protect the guests page table root.
3302 */
44dd3ffa 3303 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3304 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3305
8123f265
SC
3306 root = mmu_alloc_root(vcpu, root_gfn, 0,
3307 vcpu->arch.mmu->shadow_root_level, false);
3308 if (!VALID_PAGE(root))
ed52870f 3309 return -ENOSPC;
44dd3ffa 3310 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3311 goto set_root_pgd;
17ac10ad 3312 }
f87f9288 3313
651dd37a
JR
3314 /*
3315 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3316 * or a PAE 3-level page table. In either case we need to be aware that
3317 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3318 */
81407ca5 3319 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3320 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3321 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3322
17ac10ad 3323 for (i = 0; i < 4; ++i) {
8123f265 3324 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3325 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3326 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3327 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3328 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3329 continue;
3330 }
6de4f3ad 3331 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3332 if (mmu_check_root(vcpu, root_gfn))
3333 return 1;
5a7388c2 3334 }
8facbbff 3335
8123f265
SC
3336 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3337 PT32_ROOT_LEVEL, false);
3338 if (!VALID_PAGE(root))
3339 return -ENOSPC;
44dd3ffa 3340 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3341 }
44dd3ffa 3342 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3343
3344 /*
3345 * If we shadow a 32 bit page table with a long mode page
3346 * table we enter this path.
3347 */
44dd3ffa
VK
3348 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3349 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3350 /*
3351 * The additional page necessary for this is only
3352 * allocated on demand.
3353 */
3354
3355 u64 *lm_root;
3356
254272ce 3357 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3358 if (lm_root == NULL)
3359 return 1;
3360
44dd3ffa 3361 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3362
44dd3ffa 3363 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3364 }
3365
44dd3ffa 3366 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3367 }
3368
be01e8e2
SC
3369set_root_pgd:
3370 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3371
8986ecc0 3372 return 0;
17ac10ad
AK
3373}
3374
651dd37a
JR
3375static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3376{
44dd3ffa 3377 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3378 return mmu_alloc_direct_roots(vcpu);
3379 else
3380 return mmu_alloc_shadow_roots(vcpu);
3381}
3382
578e1c4d 3383void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3384{
3385 int i;
3386 struct kvm_mmu_page *sp;
3387
44dd3ffa 3388 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3389 return;
3390
44dd3ffa 3391 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3392 return;
6903074c 3393
56f17dd3 3394 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3395
44dd3ffa
VK
3396 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3397 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3398 sp = to_shadow_page(root);
578e1c4d
JS
3399
3400 /*
3401 * Even if another CPU was marking the SP as unsync-ed
3402 * simultaneously, any guest page table changes are not
3403 * guaranteed to be visible anyway until this VCPU issues a TLB
3404 * flush strictly after those changes are made. We only need to
3405 * ensure that the other CPU sets these flags before any actual
3406 * changes to the page tables are made. The comments in
3407 * mmu_need_write_protect() describe what could go wrong if this
3408 * requirement isn't satisfied.
3409 */
3410 if (!smp_load_acquire(&sp->unsync) &&
3411 !smp_load_acquire(&sp->unsync_children))
3412 return;
3413
531810ca 3414 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3415 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3416
0ba73cda 3417 mmu_sync_children(vcpu, sp);
578e1c4d 3418
0375f7fa 3419 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3420 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3421 return;
3422 }
578e1c4d 3423
531810ca 3424 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3425 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3426
0ba73cda 3427 for (i = 0; i < 4; ++i) {
44dd3ffa 3428 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3429
8986ecc0 3430 if (root && VALID_PAGE(root)) {
0ba73cda 3431 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3432 sp = to_shadow_page(root);
0ba73cda
MT
3433 mmu_sync_children(vcpu, sp);
3434 }
3435 }
0ba73cda 3436
578e1c4d 3437 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3438 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3439}
bfd0a56b 3440EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3441
736c291c 3442static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3443 u32 access, struct x86_exception *exception)
6aa8b732 3444{
ab9ae313
AK
3445 if (exception)
3446 exception->error_code = 0;
6aa8b732
AK
3447 return vaddr;
3448}
3449
736c291c 3450static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3451 u32 access,
3452 struct x86_exception *exception)
6539e738 3453{
ab9ae313
AK
3454 if (exception)
3455 exception->error_code = 0;
54987b7a 3456 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3457}
3458
d625b155
XG
3459static bool
3460__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3461{
b5c3c1b3 3462 int bit7 = (pte >> 7) & 1;
d625b155 3463
b5c3c1b3 3464 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3465}
3466
b5c3c1b3 3467static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3468{
b5c3c1b3 3469 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3470}
3471
ded58749 3472static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3473{
9034e6e8
PB
3474 /*
3475 * A nested guest cannot use the MMIO cache if it is using nested
3476 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3477 */
3478 if (mmu_is_nested(vcpu))
3479 return false;
3480
ce88decf
XG
3481 if (direct)
3482 return vcpu_match_mmio_gpa(vcpu, addr);
3483
3484 return vcpu_match_mmio_gva(vcpu, addr);
3485}
3486
95fb5b02
BG
3487/*
3488 * Return the level of the lowest level SPTE added to sptes.
3489 * That SPTE may be non-present.
3490 */
39b4d43e 3491static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
ce88decf
XG
3492{
3493 struct kvm_shadow_walk_iterator iterator;
2aa07893 3494 int leaf = -1;
95fb5b02 3495 u64 spte;
ce88decf
XG
3496
3497 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3498
39b4d43e
SC
3499 for (shadow_walk_init(&iterator, vcpu, addr),
3500 *root_level = iterator.level;
47ab8751
XG
3501 shadow_walk_okay(&iterator);
3502 __shadow_walk_next(&iterator, spte)) {
95fb5b02 3503 leaf = iterator.level;
47ab8751
XG
3504 spte = mmu_spte_get_lockless(iterator.sptep);
3505
dde81f94 3506 sptes[leaf] = spte;
47ab8751 3507
ce88decf
XG
3508 if (!is_shadow_present_pte(spte))
3509 break;
95fb5b02
BG
3510 }
3511
3512 walk_shadow_page_lockless_end(vcpu);
3513
3514 return leaf;
3515}
3516
9aa41879 3517/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
95fb5b02
BG
3518static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3519{
dde81f94 3520 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
95fb5b02 3521 struct rsvd_bits_validate *rsvd_check;
39b4d43e 3522 int root, leaf, level;
95fb5b02
BG
3523 bool reserved = false;
3524
3525 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3526 *sptep = 0ull;
3527 return reserved;
3528 }
3529
3530 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
39b4d43e 3531 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
95fb5b02 3532 else
39b4d43e 3533 leaf = get_walk(vcpu, addr, sptes, &root);
95fb5b02 3534
2aa07893
SC
3535 if (unlikely(leaf < 0)) {
3536 *sptep = 0ull;
3537 return reserved;
3538 }
3539
9aa41879
SC
3540 *sptep = sptes[leaf];
3541
3542 /*
3543 * Skip reserved bits checks on the terminal leaf if it's not a valid
3544 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3545 * design, always have reserved bits set. The purpose of the checks is
3546 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3547 */
3548 if (!is_shadow_present_pte(sptes[leaf]))
3549 leaf++;
95fb5b02
BG
3550
3551 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3552
9aa41879 3553 for (level = root; level >= leaf; level--)
b5c3c1b3
SC
3554 /*
3555 * Use a bitwise-OR instead of a logical-OR to aggregate the
3556 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3557 * adding a Jcc in the loop.
3558 */
dde81f94
SC
3559 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3560 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
47ab8751 3561
47ab8751
XG
3562 if (reserved) {
3563 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3564 __func__, addr);
95fb5b02 3565 for (level = root; level >= leaf; level--)
47ab8751 3566 pr_err("------ spte 0x%llx level %d.\n",
dde81f94 3567 sptes[level], level);
47ab8751 3568 }
ddce6208 3569
47ab8751 3570 return reserved;
ce88decf
XG
3571}
3572
e08d26f0 3573static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3574{
3575 u64 spte;
47ab8751 3576 bool reserved;
ce88decf 3577
ded58749 3578 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3579 return RET_PF_EMULATE;
ce88decf 3580
95fb5b02 3581 reserved = get_mmio_spte(vcpu, addr, &spte);
450869d6 3582 if (WARN_ON(reserved))
9b8ebbdb 3583 return -EINVAL;
ce88decf
XG
3584
3585 if (is_mmio_spte(spte)) {
3586 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3587 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3588
54bf36aa 3589 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3590 return RET_PF_INVALID;
f8f55942 3591
ce88decf
XG
3592 if (direct)
3593 addr = 0;
4f022648
XG
3594
3595 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3596 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3597 return RET_PF_EMULATE;
ce88decf
XG
3598 }
3599
ce88decf
XG
3600 /*
3601 * If the page table is zapped by other cpus, let CPU fault again on
3602 * the address.
3603 */
9b8ebbdb 3604 return RET_PF_RETRY;
ce88decf 3605}
ce88decf 3606
3d0c27ad
XG
3607static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3608 u32 error_code, gfn_t gfn)
3609{
3610 if (unlikely(error_code & PFERR_RSVD_MASK))
3611 return false;
3612
3613 if (!(error_code & PFERR_PRESENT_MASK) ||
3614 !(error_code & PFERR_WRITE_MASK))
3615 return false;
3616
3617 /*
3618 * guest is writing the page which is write tracked which can
3619 * not be fixed by page fault handler.
3620 */
3621 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3622 return true;
3623
3624 return false;
3625}
3626
e5691a81
XG
3627static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3628{
3629 struct kvm_shadow_walk_iterator iterator;
3630 u64 spte;
3631
e5691a81
XG
3632 walk_shadow_page_lockless_begin(vcpu);
3633 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3634 clear_sp_write_flooding_count(iterator.sptep);
3635 if (!is_shadow_present_pte(spte))
3636 break;
3637 }
3638 walk_shadow_page_lockless_end(vcpu);
3639}
3640
e8c22266
VK
3641static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3642 gfn_t gfn)
af585b92
GN
3643{
3644 struct kvm_arch_async_pf arch;
fb67e14f 3645
7c90705b 3646 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3647 arch.gfn = gfn;
44dd3ffa 3648 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3649 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3650
9f1a8526
SC
3651 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3652 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3653}
3654
78b2c54a 3655static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
3656 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3657 bool *writable)
af585b92 3658{
c36b7150 3659 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3660 bool async;
3661
c36b7150
PB
3662 /* Don't expose private memslots to L2. */
3663 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3664 *pfn = KVM_PFN_NOSLOT;
c583eed6 3665 *writable = false;
3a2936de
JM
3666 return false;
3667 }
3668
3520469d
PB
3669 async = false;
3670 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3671 if (!async)
3672 return false; /* *pfn has correct page already */
3673
9bc1f09f 3674 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3675 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3676 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3677 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3678 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3679 return true;
9f1a8526 3680 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3681 return true;
3682 }
3683
3520469d 3684 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3685 return false;
3686}
3687
0f90e1c1
SC
3688static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3689 bool prefault, int max_level, bool is_tdp)
6aa8b732 3690{
367fd790 3691 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3692 bool map_writable;
6aa8b732 3693
0f90e1c1
SC
3694 gfn_t gfn = gpa >> PAGE_SHIFT;
3695 unsigned long mmu_seq;
3696 kvm_pfn_t pfn;
83f06fa7 3697 int r;
ce88decf 3698
3d0c27ad 3699 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3700 return RET_PF_EMULATE;
ce88decf 3701
bb18842e
BG
3702 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3703 r = fast_page_fault(vcpu, gpa, error_code);
3704 if (r != RET_PF_INVALID)
3705 return r;
3706 }
83291445 3707
378f5cd6 3708 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3709 if (r)
3710 return r;
714b93da 3711
367fd790
SC
3712 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3713 smp_rmb();
3714
3715 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3716 return RET_PF_RETRY;
3717
0f90e1c1 3718 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3719 return r;
6aa8b732 3720
367fd790 3721 r = RET_PF_RETRY;
a2855afc
BG
3722
3723 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3724 read_lock(&vcpu->kvm->mmu_lock);
3725 else
3726 write_lock(&vcpu->kvm->mmu_lock);
3727
367fd790
SC
3728 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3729 goto out_unlock;
7bd7ded6
SC
3730 r = make_mmu_pages_available(vcpu);
3731 if (r)
367fd790 3732 goto out_unlock;
bb18842e
BG
3733
3734 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3735 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3736 pfn, prefault);
3737 else
3738 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3739 prefault, is_tdp);
0f90e1c1 3740
367fd790 3741out_unlock:
a2855afc
BG
3742 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3743 read_unlock(&vcpu->kvm->mmu_lock);
3744 else
3745 write_unlock(&vcpu->kvm->mmu_lock);
367fd790
SC
3746 kvm_release_pfn_clean(pfn);
3747 return r;
6aa8b732
AK
3748}
3749
0f90e1c1
SC
3750static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3751 u32 error_code, bool prefault)
3752{
3753 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3754
3755 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3756 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3757 PG_LEVEL_2M, false);
0f90e1c1
SC
3758}
3759
1261bfa3 3760int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3761 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3762{
3763 int r = 1;
9ce372b3 3764 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3765
736c291c
SC
3766#ifndef CONFIG_X86_64
3767 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3768 if (WARN_ON_ONCE(fault_address >> 32))
3769 return -EFAULT;
3770#endif
3771
c595ceee 3772 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3773 if (!flags) {
1261bfa3
WL
3774 trace_kvm_page_fault(fault_address, error_code);
3775
d0006530 3776 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3777 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3778 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3779 insn_len);
9ce372b3 3780 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3781 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3782 local_irq_disable();
6bca69ad 3783 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3784 local_irq_enable();
9ce372b3
VK
3785 } else {
3786 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3787 }
9ce372b3 3788
1261bfa3
WL
3789 return r;
3790}
3791EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3792
7a02674d
SC
3793int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3794 bool prefault)
fb72d167 3795{
cb9b88c6 3796 int max_level;
fb72d167 3797
e662ec3e 3798 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3799 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3800 max_level--) {
3801 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3802 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3803
cb9b88c6
SC
3804 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3805 break;
fd136902 3806 }
852e3c19 3807
0f90e1c1
SC
3808 return direct_page_fault(vcpu, gpa, error_code, prefault,
3809 max_level, true);
fb72d167
JR
3810}
3811
8a3c1a33
PB
3812static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3813 struct kvm_mmu *context)
6aa8b732 3814{
6aa8b732 3815 context->page_fault = nonpaging_page_fault;
6aa8b732 3816 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3817 context->sync_page = nonpaging_sync_page;
5efac074 3818 context->invlpg = NULL;
cea0f0e7 3819 context->root_level = 0;
6aa8b732 3820 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3821 context->direct_map = true;
2d48a985 3822 context->nx = false;
6aa8b732
AK
3823}
3824
be01e8e2 3825static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3826 union kvm_mmu_page_role role)
3827{
be01e8e2 3828 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3829 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3830 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3831}
3832
b94742c9 3833/*
be01e8e2 3834 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3835 * The current root is also inserted into the cache.
3836 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3837 * returned.
3838 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3839 * false is returned. This root should now be freed by the caller.
3840 */
be01e8e2 3841static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3842 union kvm_mmu_page_role new_role)
3843{
3844 uint i;
3845 struct kvm_mmu_root_info root;
44dd3ffa 3846 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3847
be01e8e2 3848 root.pgd = mmu->root_pgd;
b94742c9
JS
3849 root.hpa = mmu->root_hpa;
3850
be01e8e2 3851 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3852 return true;
3853
b94742c9
JS
3854 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3855 swap(root, mmu->prev_roots[i]);
3856
be01e8e2 3857 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3858 break;
3859 }
3860
3861 mmu->root_hpa = root.hpa;
be01e8e2 3862 mmu->root_pgd = root.pgd;
b94742c9
JS
3863
3864 return i < KVM_MMU_NUM_PREV_ROOTS;
3865}
3866
be01e8e2 3867static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3868 union kvm_mmu_page_role new_role)
6aa8b732 3869{
44dd3ffa 3870 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3871
3872 /*
3873 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3874 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3875 * later if necessary.
3876 */
3877 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3878 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3879 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3880
3881 return false;
6aa8b732
AK
3882}
3883
be01e8e2 3884static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3885 union kvm_mmu_page_role new_role,
4a632ac6 3886 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3887{
be01e8e2 3888 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3889 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3890 return;
3891 }
3892
3893 /*
3894 * It's possible that the cached previous root page is obsolete because
3895 * of a change in the MMU generation number. However, changing the
3896 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3897 * free the root set here and allocate a new one.
3898 */
3899 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3900
71fe7013 3901 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3902 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3903 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3904 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3905
3906 /*
3907 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3908 * switching to a new CR3, that GVA->GPA mapping may no longer be
3909 * valid. So clear any cached MMIO info even when we don't need to sync
3910 * the shadow page tables.
3911 */
3912 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3913
daa5b6c1
BG
3914 /*
3915 * If this is a direct root page, it doesn't have a write flooding
3916 * count. Otherwise, clear the write flooding count.
3917 */
3918 if (!new_role.direct)
3919 __clear_sp_write_flooding_count(
3920 to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3921}
3922
be01e8e2 3923void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3924 bool skip_mmu_sync)
0aab33e4 3925{
be01e8e2 3926 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3927 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3928}
be01e8e2 3929EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3930
5777ed34
JR
3931static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3932{
9f8fe504 3933 return kvm_read_cr3(vcpu);
5777ed34
JR
3934}
3935
54bf36aa 3936static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3937 unsigned int access, int *nr_present)
ce88decf
XG
3938{
3939 if (unlikely(is_mmio_spte(*sptep))) {
3940 if (gfn != get_mmio_spte_gfn(*sptep)) {
3941 mmu_spte_clear_no_track(sptep);
3942 return true;
3943 }
3944
3945 (*nr_present)++;
54bf36aa 3946 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3947 return true;
3948 }
3949
3950 return false;
3951}
3952
6bb69c9b
PB
3953static inline bool is_last_gpte(struct kvm_mmu *mmu,
3954 unsigned level, unsigned gpte)
6fd01b71 3955{
6bb69c9b
PB
3956 /*
3957 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3958 * If it is clear, there are no large pages at this level, so clear
3959 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3960 */
3961 gpte &= level - mmu->last_nonleaf_level;
3962
829ee279 3963 /*
3bae0459
SC
3964 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3965 * iff level <= PG_LEVEL_4K, which for our purpose means
3966 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 3967 */
3bae0459 3968 gpte |= level - PG_LEVEL_4K - 1;
829ee279 3969
6bb69c9b 3970 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3971}
3972
37406aaa
NHE
3973#define PTTYPE_EPT 18 /* arbitrary */
3974#define PTTYPE PTTYPE_EPT
3975#include "paging_tmpl.h"
3976#undef PTTYPE
3977
6aa8b732
AK
3978#define PTTYPE 64
3979#include "paging_tmpl.h"
3980#undef PTTYPE
3981
3982#define PTTYPE 32
3983#include "paging_tmpl.h"
3984#undef PTTYPE
3985
6dc98b86
XG
3986static void
3987__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3988 struct rsvd_bits_validate *rsvd_check,
5b7f575c 3989 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
6fec2144 3990 bool pse, bool amd)
82725b20 3991{
5f7dde7b 3992 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3993 u64 nonleaf_bit8_rsvd = 0;
5b7f575c 3994 u64 high_bits_rsvd;
82725b20 3995
a0a64f50 3996 rsvd_check->bad_mt_xwr = 0;
25d92081 3997
6dc98b86 3998 if (!gbpages)
5f7dde7b 3999 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5 4000
5b7f575c
SC
4001 if (level == PT32E_ROOT_LEVEL)
4002 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4003 else
4004 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4005
4006 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4007 if (!nx)
4008 high_bits_rsvd |= rsvd_bits(63, 63);
4009
a0c0feb5
PB
4010 /*
4011 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4012 * leaf entries) on AMD CPUs only.
4013 */
6fec2144 4014 if (amd)
a0c0feb5
PB
4015 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4016
6dc98b86 4017 switch (level) {
82725b20
DE
4018 case PT32_ROOT_LEVEL:
4019 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4020 rsvd_check->rsvd_bits_mask[0][1] = 0;
4021 rsvd_check->rsvd_bits_mask[0][0] = 0;
4022 rsvd_check->rsvd_bits_mask[1][0] =
4023 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4024
6dc98b86 4025 if (!pse) {
a0a64f50 4026 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4027 break;
4028 }
4029
82725b20
DE
4030 if (is_cpuid_PSE36())
4031 /* 36bits PSE 4MB page */
a0a64f50 4032 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4033 else
4034 /* 32 bits PSE 4MB page */
a0a64f50 4035 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4036 break;
4037 case PT32E_ROOT_LEVEL:
5b7f575c
SC
4038 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4039 high_bits_rsvd |
4040 rsvd_bits(5, 8) |
4041 rsvd_bits(1, 2); /* PDPTE */
4042 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4043 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4044 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4045 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4046 rsvd_check->rsvd_bits_mask[1][0] =
4047 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4048 break;
855feb67 4049 case PT64_ROOT_5LEVEL:
5b7f575c
SC
4050 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4051 nonleaf_bit8_rsvd |
4052 rsvd_bits(7, 7);
855feb67
YZ
4053 rsvd_check->rsvd_bits_mask[1][4] =
4054 rsvd_check->rsvd_bits_mask[0][4];
df561f66 4055 fallthrough;
2a7266a8 4056 case PT64_ROOT_4LEVEL:
5b7f575c
SC
4057 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4058 nonleaf_bit8_rsvd |
4059 rsvd_bits(7, 7);
4060 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4061 gbpages_bit_rsvd;
4062 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4063 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
a0a64f50
XG
4064 rsvd_check->rsvd_bits_mask[1][3] =
4065 rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4066 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4067 gbpages_bit_rsvd |
4068 rsvd_bits(13, 29);
4069 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4070 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4071 rsvd_check->rsvd_bits_mask[1][0] =
4072 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4073 break;
4074 }
4075}
4076
6dc98b86
XG
4077static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4078 struct kvm_mmu *context)
4079{
4080 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
5b7f575c
SC
4081 vcpu->arch.reserved_gpa_bits,
4082 context->root_level, context->nx,
d6321d49 4083 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4084 is_pse(vcpu),
4085 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4086}
4087
81b8eebb
XG
4088static void
4089__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5b7f575c 4090 u64 pa_bits_rsvd, bool execonly)
25d92081 4091{
5b7f575c 4092 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
951f9fd7 4093 u64 bad_mt_xwr;
25d92081 4094
5b7f575c
SC
4095 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4096 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4097 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4098 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4099 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
25d92081
YZ
4100
4101 /* large page */
855feb67 4102 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50 4103 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4104 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4105 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
a0a64f50 4106 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4107
951f9fd7
PB
4108 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4109 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4110 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4111 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4112 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4113 if (!execonly) {
4114 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4115 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4116 }
951f9fd7 4117 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4118}
4119
81b8eebb
XG
4120static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4121 struct kvm_mmu *context, bool execonly)
4122{
4123 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5b7f575c 4124 vcpu->arch.reserved_gpa_bits, execonly);
81b8eebb
XG
4125}
4126
6f8e65a6
SC
4127static inline u64 reserved_hpa_bits(void)
4128{
4129 return rsvd_bits(shadow_phys_bits, 63);
4130}
4131
c258b62b
XG
4132/*
4133 * the page table on host is the shadow page table for the page
4134 * table in guest or amd nested guest, its mmu features completely
4135 * follow the features in guest.
4136 */
4137void
4138reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4139{
36d9594d
VK
4140 bool uses_nx = context->nx ||
4141 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4142 struct rsvd_bits_validate *shadow_zero_check;
4143 int i;
5f0b8199 4144
6fec2144
PB
4145 /*
4146 * Passing "true" to the last argument is okay; it adds a check
4147 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4148 */
ea2800dd
BS
4149 shadow_zero_check = &context->shadow_zero_check;
4150 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4151 reserved_hpa_bits(),
5f0b8199 4152 context->shadow_root_level, uses_nx,
d6321d49
RK
4153 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4154 is_pse(vcpu), true);
ea2800dd
BS
4155
4156 if (!shadow_me_mask)
4157 return;
4158
4159 for (i = context->shadow_root_level; --i >= 0;) {
4160 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4161 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4162 }
4163
c258b62b
XG
4164}
4165EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4166
6fec2144
PB
4167static inline bool boot_cpu_is_amd(void)
4168{
4169 WARN_ON_ONCE(!tdp_enabled);
4170 return shadow_x_mask == 0;
4171}
4172
c258b62b
XG
4173/*
4174 * the direct page table on host, use as much mmu features as
4175 * possible, however, kvm currently does not do execution-protection.
4176 */
4177static void
4178reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4179 struct kvm_mmu *context)
4180{
ea2800dd
BS
4181 struct rsvd_bits_validate *shadow_zero_check;
4182 int i;
4183
4184 shadow_zero_check = &context->shadow_zero_check;
4185
6fec2144 4186 if (boot_cpu_is_amd())
ea2800dd 4187 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4188 reserved_hpa_bits(),
c258b62b 4189 context->shadow_root_level, false,
b8291adc
BP
4190 boot_cpu_has(X86_FEATURE_GBPAGES),
4191 true, true);
c258b62b 4192 else
ea2800dd 4193 __reset_rsvds_bits_mask_ept(shadow_zero_check,
6f8e65a6 4194 reserved_hpa_bits(), false);
c258b62b 4195
ea2800dd
BS
4196 if (!shadow_me_mask)
4197 return;
4198
4199 for (i = context->shadow_root_level; --i >= 0;) {
4200 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4201 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4202 }
c258b62b
XG
4203}
4204
4205/*
4206 * as the comments in reset_shadow_zero_bits_mask() except it
4207 * is the shadow page table for intel nested guest.
4208 */
4209static void
4210reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4211 struct kvm_mmu *context, bool execonly)
4212{
4213 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
6f8e65a6 4214 reserved_hpa_bits(), execonly);
c258b62b
XG
4215}
4216
09f037aa
PB
4217#define BYTE_MASK(access) \
4218 ((1 & (access) ? 2 : 0) | \
4219 (2 & (access) ? 4 : 0) | \
4220 (3 & (access) ? 8 : 0) | \
4221 (4 & (access) ? 16 : 0) | \
4222 (5 & (access) ? 32 : 0) | \
4223 (6 & (access) ? 64 : 0) | \
4224 (7 & (access) ? 128 : 0))
4225
4226
edc90b7d
XG
4227static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4228 struct kvm_mmu *mmu, bool ept)
97d64b78 4229{
09f037aa
PB
4230 unsigned byte;
4231
4232 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4233 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4234 const u8 u = BYTE_MASK(ACC_USER_MASK);
4235
4236 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4237 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4238 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4239
97d64b78 4240 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4241 unsigned pfec = byte << 1;
4242
97ec8c06 4243 /*
09f037aa
PB
4244 * Each "*f" variable has a 1 bit for each UWX value
4245 * that causes a fault with the given PFEC.
97ec8c06 4246 */
97d64b78 4247
09f037aa 4248 /* Faults from writes to non-writable pages */
a6a6d3b1 4249 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4250 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4251 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4252 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4253 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4254 /* Faults from kernel mode fetches of user pages */
4255 u8 smepf = 0;
4256 /* Faults from kernel mode accesses of user pages */
4257 u8 smapf = 0;
4258
4259 if (!ept) {
4260 /* Faults from kernel mode accesses to user pages */
4261 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4262
4263 /* Not really needed: !nx will cause pte.nx to fault */
4264 if (!mmu->nx)
4265 ff = 0;
4266
4267 /* Allow supervisor writes if !cr0.wp */
4268 if (!cr0_wp)
4269 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4270
4271 /* Disallow supervisor fetches of user code if cr4.smep */
4272 if (cr4_smep)
4273 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4274
4275 /*
4276 * SMAP:kernel-mode data accesses from user-mode
4277 * mappings should fault. A fault is considered
4278 * as a SMAP violation if all of the following
39337ad1 4279 * conditions are true:
09f037aa
PB
4280 * - X86_CR4_SMAP is set in CR4
4281 * - A user page is accessed
4282 * - The access is not a fetch
4283 * - Page fault in kernel mode
4284 * - if CPL = 3 or X86_EFLAGS_AC is clear
4285 *
4286 * Here, we cover the first three conditions.
4287 * The fourth is computed dynamically in permission_fault();
4288 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4289 * *not* subject to SMAP restrictions.
4290 */
4291 if (cr4_smap)
4292 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4293 }
09f037aa
PB
4294
4295 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4296 }
4297}
4298
2d344105
HH
4299/*
4300* PKU is an additional mechanism by which the paging controls access to
4301* user-mode addresses based on the value in the PKRU register. Protection
4302* key violations are reported through a bit in the page fault error code.
4303* Unlike other bits of the error code, the PK bit is not known at the
4304* call site of e.g. gva_to_gpa; it must be computed directly in
4305* permission_fault based on two bits of PKRU, on some machine state (CR4,
4306* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4307*
4308* In particular the following conditions come from the error code, the
4309* page tables and the machine state:
4310* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4311* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4312* - PK is always zero if U=0 in the page tables
4313* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4314*
4315* The PKRU bitmask caches the result of these four conditions. The error
4316* code (minus the P bit) and the page table's U bit form an index into the
4317* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4318* with the two bits of the PKRU register corresponding to the protection key.
4319* For the first three conditions above the bits will be 00, thus masking
4320* away both AD and WD. For all reads or if the last condition holds, WD
4321* only will be masked away.
4322*/
4323static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4324 bool ept)
4325{
4326 unsigned bit;
4327 bool wp;
4328
4329 if (ept) {
4330 mmu->pkru_mask = 0;
4331 return;
4332 }
4333
4334 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4335 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4336 mmu->pkru_mask = 0;
4337 return;
4338 }
4339
4340 wp = is_write_protection(vcpu);
4341
4342 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4343 unsigned pfec, pkey_bits;
4344 bool check_pkey, check_write, ff, uf, wf, pte_user;
4345
4346 pfec = bit << 1;
4347 ff = pfec & PFERR_FETCH_MASK;
4348 uf = pfec & PFERR_USER_MASK;
4349 wf = pfec & PFERR_WRITE_MASK;
4350
4351 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4352 pte_user = pfec & PFERR_RSVD_MASK;
4353
4354 /*
4355 * Only need to check the access which is not an
4356 * instruction fetch and is to a user page.
4357 */
4358 check_pkey = (!ff && pte_user);
4359 /*
4360 * write access is controlled by PKRU if it is a
4361 * user access or CR0.WP = 1.
4362 */
4363 check_write = check_pkey && wf && (uf || wp);
4364
4365 /* PKRU.AD stops both read and write access. */
4366 pkey_bits = !!check_pkey;
4367 /* PKRU.WD stops write access. */
4368 pkey_bits |= (!!check_write) << 1;
4369
4370 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4371 }
4372}
4373
6bb69c9b 4374static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4375{
6bb69c9b
PB
4376 unsigned root_level = mmu->root_level;
4377
4378 mmu->last_nonleaf_level = root_level;
4379 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4380 mmu->last_nonleaf_level++;
6fd01b71
AK
4381}
4382
8a3c1a33
PB
4383static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4384 struct kvm_mmu *context,
4385 int level)
6aa8b732 4386{
2d48a985 4387 context->nx = is_nx(vcpu);
4d6931c3 4388 context->root_level = level;
2d48a985 4389
4d6931c3 4390 reset_rsvds_bits_mask(vcpu, context);
25d92081 4391 update_permission_bitmask(vcpu, context, false);
2d344105 4392 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4393 update_last_nonleaf_level(vcpu, context);
6aa8b732 4394
fa4a2c08 4395 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4396 context->page_fault = paging64_page_fault;
6aa8b732 4397 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4398 context->sync_page = paging64_sync_page;
a7052897 4399 context->invlpg = paging64_invlpg;
17ac10ad 4400 context->shadow_root_level = level;
c5a78f2b 4401 context->direct_map = false;
6aa8b732
AK
4402}
4403
8a3c1a33
PB
4404static void paging64_init_context(struct kvm_vcpu *vcpu,
4405 struct kvm_mmu *context)
17ac10ad 4406{
855feb67
YZ
4407 int root_level = is_la57_mode(vcpu) ?
4408 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4409
4410 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4411}
4412
8a3c1a33
PB
4413static void paging32_init_context(struct kvm_vcpu *vcpu,
4414 struct kvm_mmu *context)
6aa8b732 4415{
2d48a985 4416 context->nx = false;
4d6931c3 4417 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4418
4d6931c3 4419 reset_rsvds_bits_mask(vcpu, context);
25d92081 4420 update_permission_bitmask(vcpu, context, false);
2d344105 4421 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4422 update_last_nonleaf_level(vcpu, context);
6aa8b732 4423
6aa8b732 4424 context->page_fault = paging32_page_fault;
6aa8b732 4425 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4426 context->sync_page = paging32_sync_page;
a7052897 4427 context->invlpg = paging32_invlpg;
6aa8b732 4428 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4429 context->direct_map = false;
6aa8b732
AK
4430}
4431
8a3c1a33
PB
4432static void paging32E_init_context(struct kvm_vcpu *vcpu,
4433 struct kvm_mmu *context)
6aa8b732 4434{
8a3c1a33 4435 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4436}
4437
a336282d
VK
4438static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4439{
4440 union kvm_mmu_extended_role ext = {0};
4441
7dcd5755 4442 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4443 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4444 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4445 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4446 ext.cr4_pse = !!is_pse(vcpu);
4447 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4448 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4449
4450 ext.valid = 1;
4451
4452 return ext;
4453}
4454
7dcd5755
VK
4455static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4456 bool base_only)
4457{
4458 union kvm_mmu_role role = {0};
4459
4460 role.base.access = ACC_ALL;
4461 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4462 role.base.cr0_wp = is_write_protection(vcpu);
4463 role.base.smm = is_smm(vcpu);
4464 role.base.guest_mode = is_guest_mode(vcpu);
4465
4466 if (base_only)
4467 return role;
4468
4469 role.ext = kvm_calc_mmu_role_ext(vcpu);
4470
4471 return role;
4472}
4473
d468d94b
SC
4474static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4475{
4476 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4477 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4478 return 4;
4479
83013059 4480 return max_tdp_level;
d468d94b
SC
4481}
4482
7dcd5755
VK
4483static union kvm_mmu_role
4484kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4485{
7dcd5755 4486 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4487
7dcd5755 4488 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4489 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4490 role.base.direct = true;
47c42e6b 4491 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4492
4493 return role;
4494}
4495
8a3c1a33 4496static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4497{
8c008659 4498 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4499 union kvm_mmu_role new_role =
4500 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4501
7dcd5755
VK
4502 if (new_role.as_u64 == context->mmu_role.as_u64)
4503 return;
4504
4505 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4506 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4507 context->sync_page = nonpaging_sync_page;
5efac074 4508 context->invlpg = NULL;
d468d94b 4509 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4510 context->direct_map = true;
d8dd54e0 4511 context->get_guest_pgd = get_cr3;
e4e517b4 4512 context->get_pdptr = kvm_pdptr_read;
cb659db8 4513 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4514
4515 if (!is_paging(vcpu)) {
2d48a985 4516 context->nx = false;
fb72d167
JR
4517 context->gva_to_gpa = nonpaging_gva_to_gpa;
4518 context->root_level = 0;
4519 } else if (is_long_mode(vcpu)) {
2d48a985 4520 context->nx = is_nx(vcpu);
855feb67
YZ
4521 context->root_level = is_la57_mode(vcpu) ?
4522 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4523 reset_rsvds_bits_mask(vcpu, context);
4524 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4525 } else if (is_pae(vcpu)) {
2d48a985 4526 context->nx = is_nx(vcpu);
fb72d167 4527 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4528 reset_rsvds_bits_mask(vcpu, context);
4529 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4530 } else {
2d48a985 4531 context->nx = false;
fb72d167 4532 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4533 reset_rsvds_bits_mask(vcpu, context);
4534 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4535 }
4536
25d92081 4537 update_permission_bitmask(vcpu, context, false);
2d344105 4538 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4539 update_last_nonleaf_level(vcpu, context);
c258b62b 4540 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4541}
4542
7dcd5755 4543static union kvm_mmu_role
59505b55 4544kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4545{
4546 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4547
4548 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4549 !is_write_protection(vcpu);
4550 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4551 !is_write_protection(vcpu);
47c42e6b 4552 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4553
59505b55
SC
4554 return role;
4555}
4556
4557static union kvm_mmu_role
4558kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4559{
4560 union kvm_mmu_role role =
4561 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4562
4563 role.base.direct = !is_paging(vcpu);
4564
9fa72119 4565 if (!is_long_mode(vcpu))
7dcd5755 4566 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4567 else if (is_la57_mode(vcpu))
7dcd5755 4568 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4569 else
7dcd5755 4570 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4571
4572 return role;
4573}
4574
8c008659
PB
4575static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4576 u32 cr0, u32 cr4, u32 efer,
4577 union kvm_mmu_role new_role)
9fa72119 4578{
929d1cfa 4579 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4580 nonpaging_init_context(vcpu, context);
929d1cfa 4581 else if (efer & EFER_LMA)
8a3c1a33 4582 paging64_init_context(vcpu, context);
929d1cfa 4583 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4584 paging32E_init_context(vcpu, context);
6aa8b732 4585 else
8a3c1a33 4586 paging32_init_context(vcpu, context);
a770f6f2 4587
7dcd5755 4588 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4589 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4590}
0f04a2ac
VK
4591
4592static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4593{
8c008659 4594 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4595 union kvm_mmu_role new_role =
4596 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4597
4598 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4599 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4600}
4601
59505b55
SC
4602static union kvm_mmu_role
4603kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4604{
4605 union kvm_mmu_role role =
4606 kvm_calc_shadow_root_page_role_common(vcpu, false);
4607
4608 role.base.direct = false;
d468d94b 4609 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4610
4611 return role;
4612}
4613
0f04a2ac
VK
4614void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4615 gpa_t nested_cr3)
4616{
8c008659 4617 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4618 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4619
096586fd
SC
4620 context->shadow_root_level = new_role.base.level;
4621
a506fdd2
VK
4622 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4623
0f04a2ac 4624 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4625 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4626}
4627EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4628
a336282d
VK
4629static union kvm_mmu_role
4630kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4631 bool execonly, u8 level)
9fa72119 4632{
552c69b1 4633 union kvm_mmu_role role = {0};
14c07ad8 4634
47c42e6b
SC
4635 /* SMM flag is inherited from root_mmu */
4636 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4637
bb1fcc70 4638 role.base.level = level;
47c42e6b 4639 role.base.gpte_is_8_bytes = true;
a336282d
VK
4640 role.base.direct = false;
4641 role.base.ad_disabled = !accessed_dirty;
4642 role.base.guest_mode = true;
4643 role.base.access = ACC_ALL;
9fa72119 4644
47c42e6b
SC
4645 /*
4646 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4647 * SMAP variation to denote shadow EPT entries.
4648 */
4649 role.base.cr0_wp = true;
4650 role.base.smap_andnot_wp = true;
4651
552c69b1 4652 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4653 role.ext.execonly = execonly;
9fa72119
JS
4654
4655 return role;
4656}
4657
ae1e2d10 4658void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4659 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4660{
8c008659 4661 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4662 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4663 union kvm_mmu_role new_role =
4664 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4665 execonly, level);
a336282d 4666
be01e8e2 4667 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4668
a336282d
VK
4669 if (new_role.as_u64 == context->mmu_role.as_u64)
4670 return;
ad896af0 4671
bb1fcc70 4672 context->shadow_root_level = level;
155a97a3
NHE
4673
4674 context->nx = true;
ae1e2d10 4675 context->ept_ad = accessed_dirty;
155a97a3
NHE
4676 context->page_fault = ept_page_fault;
4677 context->gva_to_gpa = ept_gva_to_gpa;
4678 context->sync_page = ept_sync_page;
4679 context->invlpg = ept_invlpg;
bb1fcc70 4680 context->root_level = level;
155a97a3 4681 context->direct_map = false;
a336282d 4682 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4683
155a97a3 4684 update_permission_bitmask(vcpu, context, true);
2d344105 4685 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4686 update_last_nonleaf_level(vcpu, context);
155a97a3 4687 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4688 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4689}
4690EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4691
8a3c1a33 4692static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4693{
8c008659 4694 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4695
929d1cfa
PB
4696 kvm_init_shadow_mmu(vcpu,
4697 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4698 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4699 vcpu->arch.efer);
4700
d8dd54e0 4701 context->get_guest_pgd = get_cr3;
ad896af0
PB
4702 context->get_pdptr = kvm_pdptr_read;
4703 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4704}
4705
8a3c1a33 4706static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4707{
bf627a92 4708 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4709 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4710
bf627a92
VK
4711 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4712 return;
4713
4714 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4715 g_context->get_guest_pgd = get_cr3;
e4e517b4 4716 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4717 g_context->inject_page_fault = kvm_inject_page_fault;
4718
5efac074
PB
4719 /*
4720 * L2 page tables are never shadowed, so there is no need to sync
4721 * SPTEs.
4722 */
4723 g_context->invlpg = NULL;
4724
02f59dc9 4725 /*
44dd3ffa 4726 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4727 * L1's nested page tables (e.g. EPT12). The nested translation
4728 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4729 * L2's page tables as the first level of translation and L1's
4730 * nested page tables as the second level of translation. Basically
4731 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4732 */
4733 if (!is_paging(vcpu)) {
2d48a985 4734 g_context->nx = false;
02f59dc9
JR
4735 g_context->root_level = 0;
4736 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4737 } else if (is_long_mode(vcpu)) {
2d48a985 4738 g_context->nx = is_nx(vcpu);
855feb67
YZ
4739 g_context->root_level = is_la57_mode(vcpu) ?
4740 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4741 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4742 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4743 } else if (is_pae(vcpu)) {
2d48a985 4744 g_context->nx = is_nx(vcpu);
02f59dc9 4745 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4746 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4747 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4748 } else {
2d48a985 4749 g_context->nx = false;
02f59dc9 4750 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4751 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4752 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4753 }
4754
25d92081 4755 update_permission_bitmask(vcpu, g_context, false);
2d344105 4756 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4757 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4758}
4759
1c53da3f 4760void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4761{
1c53da3f 4762 if (reset_roots) {
b94742c9
JS
4763 uint i;
4764
44dd3ffa 4765 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4766
4767 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4768 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4769 }
4770
02f59dc9 4771 if (mmu_is_nested(vcpu))
e0c6db3e 4772 init_kvm_nested_mmu(vcpu);
02f59dc9 4773 else if (tdp_enabled)
e0c6db3e 4774 init_kvm_tdp_mmu(vcpu);
fb72d167 4775 else
e0c6db3e 4776 init_kvm_softmmu(vcpu);
fb72d167 4777}
1c53da3f 4778EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4779
9fa72119
JS
4780static union kvm_mmu_page_role
4781kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4782{
7dcd5755
VK
4783 union kvm_mmu_role role;
4784
9fa72119 4785 if (tdp_enabled)
7dcd5755 4786 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4787 else
7dcd5755
VK
4788 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4789
4790 return role.base;
9fa72119 4791}
fb72d167 4792
8a3c1a33 4793void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4794{
95f93af4 4795 kvm_mmu_unload(vcpu);
1c53da3f 4796 kvm_init_mmu(vcpu, true);
17c3ba9d 4797}
8668a3c4 4798EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4799
4800int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4801{
714b93da
AK
4802 int r;
4803
378f5cd6 4804 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
4805 if (r)
4806 goto out;
8986ecc0 4807 r = mmu_alloc_roots(vcpu);
e2858b4a 4808 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4809 if (r)
4810 goto out;
727a7e27 4811 kvm_mmu_load_pgd(vcpu);
b3646477 4812 static_call(kvm_x86_tlb_flush_current)(vcpu);
714b93da
AK
4813out:
4814 return r;
6aa8b732 4815}
17c3ba9d
AK
4816EXPORT_SYMBOL_GPL(kvm_mmu_load);
4817
4818void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4819{
14c07ad8
VK
4820 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4821 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4822 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4823 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4824}
4b16184c 4825EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4826
79539cec
AK
4827static bool need_remote_flush(u64 old, u64 new)
4828{
4829 if (!is_shadow_present_pte(old))
4830 return false;
4831 if (!is_shadow_present_pte(new))
4832 return true;
4833 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4834 return true;
53166229
GN
4835 old ^= shadow_nx_mask;
4836 new ^= shadow_nx_mask;
79539cec
AK
4837 return (old & ~new & PT64_PERM_MASK) != 0;
4838}
4839
889e5cbc 4840static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4841 int *bytes)
da4a00f0 4842{
0e0fee5c 4843 u64 gentry = 0;
889e5cbc 4844 int r;
72016f3a 4845
72016f3a
AK
4846 /*
4847 * Assume that the pte write on a page table of the same type
49b26e26
XG
4848 * as the current vcpu paging mode since we update the sptes only
4849 * when they have the same mode.
72016f3a 4850 */
889e5cbc 4851 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4852 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4853 *gpa &= ~(gpa_t)7;
4854 *bytes = 8;
08e850c6
AK
4855 }
4856
0e0fee5c
JS
4857 if (*bytes == 4 || *bytes == 8) {
4858 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4859 if (r)
4860 gentry = 0;
72016f3a
AK
4861 }
4862
889e5cbc
XG
4863 return gentry;
4864}
4865
4866/*
4867 * If we're seeing too many writes to a page, it may no longer be a page table,
4868 * or we may be forking, in which case it is better to unmap the page.
4869 */
a138fe75 4870static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4871{
a30f47cb
XG
4872 /*
4873 * Skip write-flooding detected for the sp whose level is 1, because
4874 * it can become unsync, then the guest page is not write-protected.
4875 */
3bae0459 4876 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4877 return false;
3246af0e 4878
e5691a81
XG
4879 atomic_inc(&sp->write_flooding_count);
4880 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4881}
4882
4883/*
4884 * Misaligned accesses are too much trouble to fix up; also, they usually
4885 * indicate a page is not used as a page table.
4886 */
4887static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4888 int bytes)
4889{
4890 unsigned offset, pte_size, misaligned;
4891
4892 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4893 gpa, bytes, sp->role.word);
4894
4895 offset = offset_in_page(gpa);
47c42e6b 4896 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4897
4898 /*
4899 * Sometimes, the OS only writes the last one bytes to update status
4900 * bits, for example, in linux, andb instruction is used in clear_bit().
4901 */
4902 if (!(offset & (pte_size - 1)) && bytes == 1)
4903 return false;
4904
889e5cbc
XG
4905 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4906 misaligned |= bytes < 4;
4907
4908 return misaligned;
4909}
4910
4911static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4912{
4913 unsigned page_offset, quadrant;
4914 u64 *spte;
4915 int level;
4916
4917 page_offset = offset_in_page(gpa);
4918 level = sp->role.level;
4919 *nspte = 1;
47c42e6b 4920 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4921 page_offset <<= 1; /* 32->64 */
4922 /*
4923 * A 32-bit pde maps 4MB while the shadow pdes map
4924 * only 2MB. So we need to double the offset again
4925 * and zap two pdes instead of one.
4926 */
4927 if (level == PT32_ROOT_LEVEL) {
4928 page_offset &= ~7; /* kill rounding error */
4929 page_offset <<= 1;
4930 *nspte = 2;
4931 }
4932 quadrant = page_offset >> PAGE_SHIFT;
4933 page_offset &= ~PAGE_MASK;
4934 if (quadrant != sp->role.quadrant)
4935 return NULL;
4936 }
4937
4938 spte = &sp->spt[page_offset / sizeof(*spte)];
4939 return spte;
4940}
4941
13d268ca 4942static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4943 const u8 *new, int bytes,
4944 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4945{
4946 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4947 struct kvm_mmu_page *sp;
889e5cbc
XG
4948 LIST_HEAD(invalid_list);
4949 u64 entry, gentry, *spte;
4950 int npte;
b8c67b7a 4951 bool remote_flush, local_flush;
889e5cbc
XG
4952
4953 /*
4954 * If we don't have indirect shadow pages, it means no page is
4955 * write-protected, so we can exit simply.
4956 */
6aa7de05 4957 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4958 return;
4959
b8c67b7a 4960 remote_flush = local_flush = false;
889e5cbc
XG
4961
4962 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4963
889e5cbc
XG
4964 /*
4965 * No need to care whether allocation memory is successful
4966 * or not since pte prefetch is skiped if it does not have
4967 * enough objects in the cache.
4968 */
378f5cd6 4969 mmu_topup_memory_caches(vcpu, true);
889e5cbc 4970
531810ca 4971 write_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
4972
4973 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4974
889e5cbc 4975 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4976 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4977
b67bfe0d 4978 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4979 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4980 detect_write_flooding(sp)) {
b8c67b7a 4981 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4982 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4983 continue;
4984 }
889e5cbc
XG
4985
4986 spte = get_written_sptes(sp, gpa, &npte);
4987 if (!spte)
4988 continue;
4989
0671a8e7 4990 local_flush = true;
ac1b714e 4991 while (npte--) {
79539cec 4992 entry = *spte;
2de4085c 4993 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
c5e2184d
SC
4994 if (gentry && sp->role.level != PG_LEVEL_4K)
4995 ++vcpu->kvm->stat.mmu_pde_zapped;
9bb4f6b1 4996 if (need_remote_flush(entry, *spte))
0671a8e7 4997 remote_flush = true;
ac1b714e 4998 ++spte;
9b7a0325 4999 }
9b7a0325 5000 }
b8c67b7a 5001 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5002 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
531810ca 5003 write_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5004}
5005
a436036b
AK
5006int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5007{
10589a46
MT
5008 gpa_t gpa;
5009 int r;
a436036b 5010
44dd3ffa 5011 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5012 return 0;
5013
1871c602 5014 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5015
10589a46 5016 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5017
10589a46 5018 return r;
a436036b 5019}
577bdc49 5020EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5021
736c291c 5022int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5023 void *insn, int insn_len)
3067714c 5024{
92daa48b 5025 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5026 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5027
6948199a 5028 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5029 return RET_PF_RETRY;
5030
9b8ebbdb 5031 r = RET_PF_INVALID;
e9ee956e 5032 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5033 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5034 if (r == RET_PF_EMULATE)
e9ee956e 5035 goto emulate;
e9ee956e 5036 }
3067714c 5037
9b8ebbdb 5038 if (r == RET_PF_INVALID) {
7a02674d
SC
5039 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5040 lower_32_bits(error_code), false);
7b367bc9
SC
5041 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5042 return -EIO;
9b8ebbdb
PB
5043 }
5044
3067714c 5045 if (r < 0)
e9ee956e 5046 return r;
83a2ba4c
SC
5047 if (r != RET_PF_EMULATE)
5048 return 1;
3067714c 5049
14727754
TL
5050 /*
5051 * Before emulating the instruction, check if the error code
5052 * was due to a RO violation while translating the guest page.
5053 * This can occur when using nested virtualization with nested
5054 * paging in both guests. If true, we simply unprotect the page
5055 * and resume the guest.
14727754 5056 */
44dd3ffa 5057 if (vcpu->arch.mmu->direct_map &&
eebed243 5058 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5059 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5060 return 1;
5061 }
5062
472faffa
SC
5063 /*
5064 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5065 * optimistically try to just unprotect the page and let the processor
5066 * re-execute the instruction that caused the page fault. Do not allow
5067 * retrying MMIO emulation, as it's not only pointless but could also
5068 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5069 * faulting on the non-existent MMIO address. Retrying an instruction
5070 * from a nested guest is also pointless and dangerous as we are only
5071 * explicitly shadowing L1's page tables, i.e. unprotecting something
5072 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5073 */
736c291c 5074 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5075 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5076emulate:
736c291c 5077 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5078 insn_len);
3067714c
AK
5079}
5080EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5081
5efac074
PB
5082void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5083 gva_t gva, hpa_t root_hpa)
a7052897 5084{
b94742c9 5085 int i;
7eb77e9f 5086
5efac074
PB
5087 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5088 if (mmu != &vcpu->arch.guest_mmu) {
5089 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5090 if (is_noncanonical_address(gva, vcpu))
5091 return;
5092
b3646477 5093 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5efac074
PB
5094 }
5095
5096 if (!mmu->invlpg)
faff8758
JS
5097 return;
5098
5efac074
PB
5099 if (root_hpa == INVALID_PAGE) {
5100 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5101
5efac074
PB
5102 /*
5103 * INVLPG is required to invalidate any global mappings for the VA,
5104 * irrespective of PCID. Since it would take us roughly similar amount
5105 * of work to determine whether any of the prev_root mappings of the VA
5106 * is marked global, or to just sync it blindly, so we might as well
5107 * just always sync it.
5108 *
5109 * Mappings not reachable via the current cr3 or the prev_roots will be
5110 * synced when switching to that cr3, so nothing needs to be done here
5111 * for them.
5112 */
5113 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5114 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5115 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5116 } else {
5117 mmu->invlpg(vcpu, gva, root_hpa);
5118 }
5119}
5120EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5121
5efac074
PB
5122void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5123{
5124 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5125 ++vcpu->stat.invlpg;
5126}
5127EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5128
5efac074 5129
eb4b248e
JS
5130void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5131{
44dd3ffa 5132 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5133 bool tlb_flush = false;
b94742c9 5134 uint i;
eb4b248e
JS
5135
5136 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5137 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5138 tlb_flush = true;
eb4b248e
JS
5139 }
5140
b94742c9
JS
5141 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5142 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5143 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5144 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5145 tlb_flush = true;
5146 }
956bf353 5147 }
ade61e28 5148
faff8758 5149 if (tlb_flush)
b3646477 5150 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
faff8758 5151
eb4b248e
JS
5152 ++vcpu->stat.invlpg;
5153
5154 /*
b94742c9
JS
5155 * Mappings not reachable via the current cr3 or the prev_roots will be
5156 * synced when switching to that cr3, so nothing needs to be done here
5157 * for them.
eb4b248e
JS
5158 */
5159}
5160EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5161
83013059
SC
5162void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5163 int tdp_huge_page_level)
18552672 5164{
bde77235 5165 tdp_enabled = enable_tdp;
83013059 5166 max_tdp_level = tdp_max_root_level;
703c335d
SC
5167
5168 /*
1d92d2e8 5169 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5170 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5171 * the kernel is not. But, KVM never creates a page size greater than
5172 * what is used by the kernel for any given HVA, i.e. the kernel's
5173 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5174 */
5175 if (tdp_enabled)
1d92d2e8 5176 max_huge_page_level = tdp_huge_page_level;
703c335d 5177 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5178 max_huge_page_level = PG_LEVEL_1G;
703c335d 5179 else
1d92d2e8 5180 max_huge_page_level = PG_LEVEL_2M;
18552672 5181}
bde77235 5182EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5183
5184/* The return value indicates if tlb flush on all vcpus is needed. */
5185typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5186
5187/* The caller should hold mmu-lock before calling this function. */
5188static __always_inline bool
5189slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5190 slot_level_handler fn, int start_level, int end_level,
5191 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5192{
5193 struct slot_rmap_walk_iterator iterator;
5194 bool flush = false;
5195
5196 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5197 end_gfn, &iterator) {
5198 if (iterator.rmap)
5199 flush |= fn(kvm, iterator.rmap);
5200
531810ca 5201 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
85875a13 5202 if (flush && lock_flush_tlb) {
f285c633
BG
5203 kvm_flush_remote_tlbs_with_address(kvm,
5204 start_gfn,
5205 iterator.gfn - start_gfn + 1);
85875a13
SC
5206 flush = false;
5207 }
531810ca 5208 cond_resched_rwlock_write(&kvm->mmu_lock);
85875a13
SC
5209 }
5210 }
5211
5212 if (flush && lock_flush_tlb) {
f285c633
BG
5213 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5214 end_gfn - start_gfn + 1);
85875a13
SC
5215 flush = false;
5216 }
5217
5218 return flush;
5219}
5220
5221static __always_inline bool
5222slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5223 slot_level_handler fn, int start_level, int end_level,
5224 bool lock_flush_tlb)
5225{
5226 return slot_handle_level_range(kvm, memslot, fn, start_level,
5227 end_level, memslot->base_gfn,
5228 memslot->base_gfn + memslot->npages - 1,
5229 lock_flush_tlb);
5230}
5231
5232static __always_inline bool
5233slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5234 slot_level_handler fn, bool lock_flush_tlb)
5235{
3bae0459 5236 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5237 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5238}
5239
5240static __always_inline bool
5241slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5242 slot_level_handler fn, bool lock_flush_tlb)
5243{
3bae0459 5244 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5245 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5246}
5247
5248static __always_inline bool
5249slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5250 slot_level_handler fn, bool lock_flush_tlb)
5251{
3bae0459
SC
5252 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5253 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5254}
5255
1cfff4d9 5256static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5257{
1cfff4d9
JP
5258 free_page((unsigned long)mmu->pae_root);
5259 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5260}
5261
04d28e37 5262static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5263{
17ac10ad 5264 struct page *page;
6aa8b732
AK
5265 int i;
5266
04d28e37
SC
5267 mmu->root_hpa = INVALID_PAGE;
5268 mmu->root_pgd = 0;
5269 mmu->translate_gpa = translate_gpa;
5270 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5271 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5272
17ac10ad 5273 /*
b6b80c78
SC
5274 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5275 * while the PDP table is a per-vCPU construct that's allocated at MMU
5276 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5277 * x86_64. Therefore we need to allocate the PDP table in the first
5278 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5279 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5280 * skip allocating the PDP table.
17ac10ad 5281 */
d468d94b 5282 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5283 return 0;
5284
254272ce 5285 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5286 if (!page)
d7fa6ab2
WY
5287 return -ENOMEM;
5288
1cfff4d9 5289 mmu->pae_root = page_address(page);
17ac10ad 5290 for (i = 0; i < 4; ++i)
1cfff4d9 5291 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5292
6aa8b732 5293 return 0;
6aa8b732
AK
5294}
5295
8018c27b 5296int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5297{
1cfff4d9 5298 int ret;
b94742c9 5299
5962bfb7 5300 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5301 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5302
5962bfb7 5303 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5304 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5305
96880883
SC
5306 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5307
44dd3ffa
VK
5308 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5309 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5310
14c07ad8 5311 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5312
04d28e37 5313 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5314 if (ret)
5315 return ret;
5316
04d28e37 5317 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5318 if (ret)
5319 goto fail_allocate_root;
5320
5321 return ret;
5322 fail_allocate_root:
5323 free_mmu_pages(&vcpu->arch.guest_mmu);
5324 return ret;
6aa8b732
AK
5325}
5326
fbb158cb 5327#define BATCH_ZAP_PAGES 10
002c5f73
SC
5328static void kvm_zap_obsolete_pages(struct kvm *kvm)
5329{
5330 struct kvm_mmu_page *sp, *node;
fbb158cb 5331 int nr_zapped, batch = 0;
002c5f73
SC
5332
5333restart:
5334 list_for_each_entry_safe_reverse(sp, node,
5335 &kvm->arch.active_mmu_pages, link) {
5336 /*
5337 * No obsolete valid page exists before a newly created page
5338 * since active_mmu_pages is a FIFO list.
5339 */
5340 if (!is_obsolete_sp(kvm, sp))
5341 break;
5342
5343 /*
f95eec9b
SC
5344 * Invalid pages should never land back on the list of active
5345 * pages. Skip the bogus page, otherwise we'll get stuck in an
5346 * infinite loop if the page gets put back on the list (again).
002c5f73 5347 */
f95eec9b 5348 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5349 continue;
5350
4506ecf4
SC
5351 /*
5352 * No need to flush the TLB since we're only zapping shadow
5353 * pages with an obsolete generation number and all vCPUS have
5354 * loaded a new root, i.e. the shadow pages being zapped cannot
5355 * be in active use by the guest.
5356 */
fbb158cb 5357 if (batch >= BATCH_ZAP_PAGES &&
531810ca 5358 cond_resched_rwlock_write(&kvm->mmu_lock)) {
fbb158cb 5359 batch = 0;
002c5f73
SC
5360 goto restart;
5361 }
5362
10605204
SC
5363 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5364 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5365 batch += nr_zapped;
002c5f73 5366 goto restart;
fbb158cb 5367 }
002c5f73
SC
5368 }
5369
4506ecf4
SC
5370 /*
5371 * Trigger a remote TLB flush before freeing the page tables to ensure
5372 * KVM is not in the middle of a lockless shadow page table walk, which
5373 * may reference the pages.
5374 */
10605204 5375 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5376}
5377
5378/*
5379 * Fast invalidate all shadow pages and use lock-break technique
5380 * to zap obsolete pages.
5381 *
5382 * It's required when memslot is being deleted or VM is being
5383 * destroyed, in these cases, we should ensure that KVM MMU does
5384 * not use any resource of the being-deleted slot or all slots
5385 * after calling the function.
5386 */
5387static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5388{
ca333add
SC
5389 lockdep_assert_held(&kvm->slots_lock);
5390
531810ca 5391 write_lock(&kvm->mmu_lock);
14a3c4f4 5392 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5393
5394 /*
5395 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5396 * held for the entire duration of zapping obsolete pages, it's
5397 * impossible for there to be multiple invalid generations associated
5398 * with *valid* shadow pages at any given time, i.e. there is exactly
5399 * one valid generation and (at most) one invalid generation.
5400 */
5401 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5402
4506ecf4
SC
5403 /*
5404 * Notify all vcpus to reload its shadow page table and flush TLB.
5405 * Then all vcpus will switch to new shadow page table with the new
5406 * mmu_valid_gen.
5407 *
5408 * Note: we need to do this under the protection of mmu_lock,
5409 * otherwise, vcpu would purge shadow page but miss tlb flush.
5410 */
5411 kvm_reload_remote_mmus(kvm);
5412
002c5f73 5413 kvm_zap_obsolete_pages(kvm);
faaf05b0 5414
897218ff 5415 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5416 kvm_tdp_mmu_zap_all(kvm);
5417
531810ca 5418 write_unlock(&kvm->mmu_lock);
002c5f73
SC
5419}
5420
10605204
SC
5421static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5422{
5423 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5424}
5425
b5f5fdca 5426static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5427 struct kvm_memory_slot *slot,
5428 struct kvm_page_track_notifier_node *node)
b5f5fdca 5429{
002c5f73 5430 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5431}
5432
13d268ca 5433void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5434{
13d268ca 5435 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5436
fe5db27d
BG
5437 kvm_mmu_init_tdp_mmu(kvm);
5438
13d268ca 5439 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5440 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5441 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5442}
5443
13d268ca 5444void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5445{
13d268ca 5446 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5447
13d268ca 5448 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5449
5450 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5451}
5452
efdfe536
XG
5453void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5454{
5455 struct kvm_memslots *slots;
5456 struct kvm_memory_slot *memslot;
9da0e4d5 5457 int i;
faaf05b0 5458 bool flush;
efdfe536 5459
531810ca 5460 write_lock(&kvm->mmu_lock);
9da0e4d5
PB
5461 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5462 slots = __kvm_memslots(kvm, i);
5463 kvm_for_each_memslot(memslot, slots) {
5464 gfn_t start, end;
5465
5466 start = max(gfn_start, memslot->base_gfn);
5467 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5468 if (start >= end)
5469 continue;
efdfe536 5470
92da008f 5471 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5472 PG_LEVEL_4K,
e662ec3e 5473 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5474 start, end - 1, true);
9da0e4d5 5475 }
efdfe536
XG
5476 }
5477
897218ff 5478 if (is_tdp_mmu_enabled(kvm)) {
faaf05b0
BG
5479 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5480 if (flush)
5481 kvm_flush_remote_tlbs(kvm);
5482 }
5483
531810ca 5484 write_unlock(&kvm->mmu_lock);
efdfe536
XG
5485}
5486
018aabb5
TY
5487static bool slot_rmap_write_protect(struct kvm *kvm,
5488 struct kvm_rmap_head *rmap_head)
d77aa73c 5489{
018aabb5 5490 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5491}
5492
1c91cad4 5493void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5494 struct kvm_memory_slot *memslot,
5495 int start_level)
6aa8b732 5496{
d77aa73c 5497 bool flush;
6aa8b732 5498
531810ca 5499 write_lock(&kvm->mmu_lock);
3c9bd400 5500 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5501 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
897218ff 5502 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5503 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
531810ca 5504 write_unlock(&kvm->mmu_lock);
198c74f4 5505
198c74f4
XG
5506 /*
5507 * We can flush all the TLBs out of the mmu lock without TLB
5508 * corruption since we just change the spte from writable to
5509 * readonly so that we only need to care the case of changing
5510 * spte from present to present (changing the spte from present
5511 * to nonpresent will flush all the TLBs immediately), in other
5512 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5513 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5514 * instead of PT_WRITABLE_MASK, that means it does not depend
5515 * on PT_WRITABLE_MASK anymore.
5516 */
d91ffee9 5517 if (flush)
7f42aa76 5518 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5519}
37a7d8b0 5520
3ea3b7fa 5521static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5522 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5523{
5524 u64 *sptep;
5525 struct rmap_iterator iter;
5526 int need_tlb_flush = 0;
ba049e93 5527 kvm_pfn_t pfn;
3ea3b7fa
WL
5528 struct kvm_mmu_page *sp;
5529
0d536790 5530restart:
018aabb5 5531 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5532 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5533 pfn = spte_to_pfn(*sptep);
5534
5535 /*
decf6333
XG
5536 * We cannot do huge page mapping for indirect shadow pages,
5537 * which are found on the last rmap (level = 1) when not using
5538 * tdp; such shadow pages are synced with the page table in
5539 * the guest, and the guest page table is using 4K page size
5540 * mapping if the indirect sp has level = 1.
3ea3b7fa 5541 */
a78986aa 5542 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5543 (kvm_is_zone_device_pfn(pfn) ||
5544 PageCompound(pfn_to_page(pfn)))) {
e7912386 5545 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5546
5547 if (kvm_available_flush_tlb_with_range())
5548 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5549 KVM_PAGES_PER_HPAGE(sp->role.level));
5550 else
5551 need_tlb_flush = 1;
5552
0d536790
XG
5553 goto restart;
5554 }
3ea3b7fa
WL
5555 }
5556
5557 return need_tlb_flush;
5558}
5559
5560void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5561 const struct kvm_memory_slot *memslot)
3ea3b7fa 5562{
f36f3f28 5563 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
531810ca 5564 write_lock(&kvm->mmu_lock);
f36f3f28
PB
5565 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5566 kvm_mmu_zap_collapsible_spte, true);
14881998 5567
897218ff 5568 if (is_tdp_mmu_enabled(kvm))
14881998 5569 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
531810ca 5570 write_unlock(&kvm->mmu_lock);
3ea3b7fa
WL
5571}
5572
b3594ffb
SC
5573void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5574 struct kvm_memory_slot *memslot)
5575{
5576 /*
7f42aa76
SC
5577 * All current use cases for flushing the TLBs for a specific memslot
5578 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5579 * The interaction between the various operations on memslot must be
5580 * serialized by slots_locks to ensure the TLB flush from one operation
5581 * is observed by any other operation on the same memslot.
b3594ffb
SC
5582 */
5583 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5584 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5585 memslot->npages);
b3594ffb
SC
5586}
5587
f4b4b180
KH
5588void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5589 struct kvm_memory_slot *memslot)
5590{
d77aa73c 5591 bool flush;
f4b4b180 5592
531810ca 5593 write_lock(&kvm->mmu_lock);
d77aa73c 5594 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
897218ff 5595 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5596 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
531810ca 5597 write_unlock(&kvm->mmu_lock);
f4b4b180 5598
f4b4b180
KH
5599 /*
5600 * It's also safe to flush TLBs out of mmu lock here as currently this
5601 * function is only used for dirty logging, in which case flushing TLB
5602 * out of mmu lock also guarantees no dirty pages will be lost in
5603 * dirty_bitmap.
5604 */
5605 if (flush)
7f42aa76 5606 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5607}
5608EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5609
5610void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5611 struct kvm_memory_slot *memslot)
5612{
d77aa73c 5613 bool flush;
f4b4b180 5614
531810ca 5615 write_lock(&kvm->mmu_lock);
d77aa73c
XG
5616 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5617 false);
897218ff 5618 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5619 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
531810ca 5620 write_unlock(&kvm->mmu_lock);
f4b4b180 5621
f4b4b180 5622 if (flush)
7f42aa76 5623 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5624}
5625EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5626
5627void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5628 struct kvm_memory_slot *memslot)
5629{
d77aa73c 5630 bool flush;
f4b4b180 5631
531810ca 5632 write_lock(&kvm->mmu_lock);
d77aa73c 5633 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
897218ff 5634 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5635 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
531810ca 5636 write_unlock(&kvm->mmu_lock);
f4b4b180 5637
f4b4b180 5638 if (flush)
7f42aa76 5639 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5640}
5641EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5642
92f58b5c 5643void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5644{
5645 struct kvm_mmu_page *sp, *node;
7390de1e 5646 LIST_HEAD(invalid_list);
83cdb568 5647 int ign;
5304b8d3 5648
531810ca 5649 write_lock(&kvm->mmu_lock);
5304b8d3 5650restart:
8a674adc 5651 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5652 if (WARN_ON(sp->role.invalid))
4771450c 5653 continue;
92f58b5c 5654 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5655 goto restart;
531810ca 5656 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5304b8d3
XG
5657 goto restart;
5658 }
5659
4771450c 5660 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0 5661
897218ff 5662 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5663 kvm_tdp_mmu_zap_all(kvm);
5664
531810ca 5665 write_unlock(&kvm->mmu_lock);
5304b8d3
XG
5666}
5667
15248258 5668void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5669{
164bf7e5 5670 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5671
164bf7e5 5672 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5673
f8f55942 5674 /*
e1359e2b
SC
5675 * Generation numbers are incremented in multiples of the number of
5676 * address spaces in order to provide unique generations across all
5677 * address spaces. Strip what is effectively the address space
5678 * modifier prior to checking for a wrap of the MMIO generation so
5679 * that a wrap in any address space is detected.
5680 */
5681 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5682
f8f55942 5683 /*
e1359e2b 5684 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5685 * zap all shadow pages.
f8f55942 5686 */
e1359e2b 5687 if (unlikely(gen == 0)) {
ae0f5499 5688 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5689 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5690 }
f8f55942
XG
5691}
5692
70534a73
DC
5693static unsigned long
5694mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5695{
5696 struct kvm *kvm;
1495f230 5697 int nr_to_scan = sc->nr_to_scan;
70534a73 5698 unsigned long freed = 0;
3ee16c81 5699
0d9ce162 5700 mutex_lock(&kvm_lock);
3ee16c81
IE
5701
5702 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5703 int idx;
d98ba053 5704 LIST_HEAD(invalid_list);
3ee16c81 5705
35f2d16b
TY
5706 /*
5707 * Never scan more than sc->nr_to_scan VM instances.
5708 * Will not hit this condition practically since we do not try
5709 * to shrink more than one VM and it is very unlikely to see
5710 * !n_used_mmu_pages so many times.
5711 */
5712 if (!nr_to_scan--)
5713 break;
19526396
GN
5714 /*
5715 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5716 * here. We may skip a VM instance errorneosly, but we do not
5717 * want to shrink a VM that only started to populate its MMU
5718 * anyway.
5719 */
10605204
SC
5720 if (!kvm->arch.n_used_mmu_pages &&
5721 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5722 continue;
19526396 5723
f656ce01 5724 idx = srcu_read_lock(&kvm->srcu);
531810ca 5725 write_lock(&kvm->mmu_lock);
3ee16c81 5726
10605204
SC
5727 if (kvm_has_zapped_obsolete_pages(kvm)) {
5728 kvm_mmu_commit_zap_page(kvm,
5729 &kvm->arch.zapped_obsolete_pages);
5730 goto unlock;
5731 }
5732
ebdb292d 5733 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5734
10605204 5735unlock:
531810ca 5736 write_unlock(&kvm->mmu_lock);
f656ce01 5737 srcu_read_unlock(&kvm->srcu, idx);
19526396 5738
70534a73
DC
5739 /*
5740 * unfair on small ones
5741 * per-vm shrinkers cry out
5742 * sadness comes quickly
5743 */
19526396
GN
5744 list_move_tail(&kvm->vm_list, &vm_list);
5745 break;
3ee16c81 5746 }
3ee16c81 5747
0d9ce162 5748 mutex_unlock(&kvm_lock);
70534a73 5749 return freed;
70534a73
DC
5750}
5751
5752static unsigned long
5753mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5754{
45221ab6 5755 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5756}
5757
5758static struct shrinker mmu_shrinker = {
70534a73
DC
5759 .count_objects = mmu_shrink_count,
5760 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5761 .seeks = DEFAULT_SEEKS * 10,
5762};
5763
2ddfd20e 5764static void mmu_destroy_caches(void)
b5a33a75 5765{
c1bd743e
TH
5766 kmem_cache_destroy(pte_list_desc_cache);
5767 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5768}
5769
7b6f8a06
KH
5770static void kvm_set_mmio_spte_mask(void)
5771{
5772 u64 mask;
7b6f8a06
KH
5773
5774 /*
6129ed87
SC
5775 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5776 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5777 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5778 * 52-bit physical addresses then there are no reserved PA bits in the
5779 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 5780 */
6129ed87
SC
5781 if (shadow_phys_bits < 52)
5782 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5783 else
5784 mask = 0;
7b6f8a06 5785
e7581cac 5786 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
5787}
5788
b8e8c830
PB
5789static bool get_nx_auto_mode(void)
5790{
5791 /* Return true when CPU has the bug, and mitigations are ON */
5792 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5793}
5794
5795static void __set_nx_huge_pages(bool val)
5796{
5797 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5798}
5799
5800static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5801{
5802 bool old_val = nx_huge_pages;
5803 bool new_val;
5804
5805 /* In "auto" mode deploy workaround only if CPU has the bug. */
5806 if (sysfs_streq(val, "off"))
5807 new_val = 0;
5808 else if (sysfs_streq(val, "force"))
5809 new_val = 1;
5810 else if (sysfs_streq(val, "auto"))
5811 new_val = get_nx_auto_mode();
5812 else if (strtobool(val, &new_val) < 0)
5813 return -EINVAL;
5814
5815 __set_nx_huge_pages(new_val);
5816
5817 if (new_val != old_val) {
5818 struct kvm *kvm;
b8e8c830
PB
5819
5820 mutex_lock(&kvm_lock);
5821
5822 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5823 mutex_lock(&kvm->slots_lock);
b8e8c830 5824 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5825 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5826
5827 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5828 }
5829 mutex_unlock(&kvm_lock);
5830 }
5831
5832 return 0;
5833}
5834
b5a33a75
AK
5835int kvm_mmu_module_init(void)
5836{
ab271bd4
AB
5837 int ret = -ENOMEM;
5838
b8e8c830
PB
5839 if (nx_huge_pages == -1)
5840 __set_nx_huge_pages(get_nx_auto_mode());
5841
36d9594d
VK
5842 /*
5843 * MMU roles use union aliasing which is, generally speaking, an
5844 * undefined behavior. However, we supposedly know how compilers behave
5845 * and the current status quo is unlikely to change. Guardians below are
5846 * supposed to let us know if the assumption becomes false.
5847 */
5848 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5849 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5850 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5851
28a1f3ac 5852 kvm_mmu_reset_all_pte_masks();
f160c7b7 5853
7b6f8a06
KH
5854 kvm_set_mmio_spte_mask();
5855
53c07b18
XG
5856 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5857 sizeof(struct pte_list_desc),
46bea48a 5858 0, SLAB_ACCOUNT, NULL);
53c07b18 5859 if (!pte_list_desc_cache)
ab271bd4 5860 goto out;
b5a33a75 5861
d3d25b04
AK
5862 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5863 sizeof(struct kvm_mmu_page),
46bea48a 5864 0, SLAB_ACCOUNT, NULL);
d3d25b04 5865 if (!mmu_page_header_cache)
ab271bd4 5866 goto out;
d3d25b04 5867
908c7f19 5868 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5869 goto out;
45bf21a8 5870
ab271bd4
AB
5871 ret = register_shrinker(&mmu_shrinker);
5872 if (ret)
5873 goto out;
3ee16c81 5874
b5a33a75
AK
5875 return 0;
5876
ab271bd4 5877out:
3ee16c81 5878 mmu_destroy_caches();
ab271bd4 5879 return ret;
b5a33a75
AK
5880}
5881
3ad82a7e 5882/*
39337ad1 5883 * Calculate mmu pages needed for kvm.
3ad82a7e 5884 */
bc8a3d89 5885unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5886{
bc8a3d89
BG
5887 unsigned long nr_mmu_pages;
5888 unsigned long nr_pages = 0;
bc6678a3 5889 struct kvm_memslots *slots;
be6ba0f0 5890 struct kvm_memory_slot *memslot;
9da0e4d5 5891 int i;
3ad82a7e 5892
9da0e4d5
PB
5893 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5894 slots = __kvm_memslots(kvm, i);
90d83dc3 5895
9da0e4d5
PB
5896 kvm_for_each_memslot(memslot, slots)
5897 nr_pages += memslot->npages;
5898 }
3ad82a7e
ZX
5899
5900 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5901 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5902
5903 return nr_mmu_pages;
5904}
5905
c42fffe3
XG
5906void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5907{
95f93af4 5908 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5909 free_mmu_pages(&vcpu->arch.root_mmu);
5910 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5911 mmu_free_memory_caches(vcpu);
b034cf01
XG
5912}
5913
b034cf01
XG
5914void kvm_mmu_module_exit(void)
5915{
5916 mmu_destroy_caches();
5917 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5918 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5919 mmu_audit_disable();
5920}
1aa9b957
JS
5921
5922static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5923{
5924 unsigned int old_val;
5925 int err;
5926
5927 old_val = nx_huge_pages_recovery_ratio;
5928 err = param_set_uint(val, kp);
5929 if (err)
5930 return err;
5931
5932 if (READ_ONCE(nx_huge_pages) &&
5933 !old_val && nx_huge_pages_recovery_ratio) {
5934 struct kvm *kvm;
5935
5936 mutex_lock(&kvm_lock);
5937
5938 list_for_each_entry(kvm, &vm_list, vm_list)
5939 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5940
5941 mutex_unlock(&kvm_lock);
5942 }
5943
5944 return err;
5945}
5946
5947static void kvm_recover_nx_lpages(struct kvm *kvm)
5948{
5949 int rcu_idx;
5950 struct kvm_mmu_page *sp;
5951 unsigned int ratio;
5952 LIST_HEAD(invalid_list);
5953 ulong to_zap;
5954
5955 rcu_idx = srcu_read_lock(&kvm->srcu);
531810ca 5956 write_lock(&kvm->mmu_lock);
1aa9b957
JS
5957
5958 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5959 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5960 for ( ; to_zap; --to_zap) {
5961 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5962 break;
5963
1aa9b957
JS
5964 /*
5965 * We use a separate list instead of just using active_mmu_pages
5966 * because the number of lpage_disallowed pages is expected to
5967 * be relatively small compared to the total.
5968 */
5969 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5970 struct kvm_mmu_page,
5971 lpage_disallowed_link);
5972 WARN_ON_ONCE(!sp->lpage_disallowed);
897218ff 5973 if (is_tdp_mmu_page(sp)) {
29cf0f50
BG
5974 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5975 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
8d1a182e 5976 } else {
29cf0f50
BG
5977 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5978 WARN_ON_ONCE(sp->lpage_disallowed);
5979 }
1aa9b957 5980
531810ca 5981 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1aa9b957 5982 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 5983 cond_resched_rwlock_write(&kvm->mmu_lock);
1aa9b957
JS
5984 }
5985 }
e8950569 5986 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1aa9b957 5987
531810ca 5988 write_unlock(&kvm->mmu_lock);
1aa9b957
JS
5989 srcu_read_unlock(&kvm->srcu, rcu_idx);
5990}
5991
5992static long get_nx_lpage_recovery_timeout(u64 start_time)
5993{
5994 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5995 ? start_time + 60 * HZ - get_jiffies_64()
5996 : MAX_SCHEDULE_TIMEOUT;
5997}
5998
5999static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6000{
6001 u64 start_time;
6002 long remaining_time;
6003
6004 while (true) {
6005 start_time = get_jiffies_64();
6006 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6007
6008 set_current_state(TASK_INTERRUPTIBLE);
6009 while (!kthread_should_stop() && remaining_time > 0) {
6010 schedule_timeout(remaining_time);
6011 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6012 set_current_state(TASK_INTERRUPTIBLE);
6013 }
6014
6015 set_current_state(TASK_RUNNING);
6016
6017 if (kthread_should_stop())
6018 return 0;
6019
6020 kvm_recover_nx_lpages(kvm);
6021 }
6022}
6023
6024int kvm_mmu_post_init_vm(struct kvm *kvm)
6025{
6026 int err;
6027
6028 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6029 "kvm-nx-lpage-recovery",
6030 &kvm->arch.nx_lpage_recovery_thread);
6031 if (!err)
6032 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6033
6034 return err;
6035}
6036
6037void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6038{
6039 if (kvm->arch.nx_lpage_recovery_thread)
6040 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6041}