]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
x86/kvm: Handle async page faults directly through do_page_fault()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
1d737c8a 19#include "mmu.h"
836a1b3c 20#include "x86.h"
6de4f3ad 21#include "kvm_cache_regs.h"
2f728d66 22#include "kvm_emulate.h"
5f7dde7b 23#include "cpuid.h"
e495606d 24
edf88417 25#include <linux/kvm_host.h>
6aa8b732
AK
26#include <linux/types.h>
27#include <linux/string.h>
6aa8b732
AK
28#include <linux/mm.h>
29#include <linux/highmem.h>
1767e931
PG
30#include <linux/moduleparam.h>
31#include <linux/export.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
3f07c014 37#include <linux/sched/signal.h>
bf998156 38#include <linux/uaccess.h>
114df303 39#include <linux/hash.h>
f160c7b7 40#include <linux/kern_levels.h>
1aa9b957 41#include <linux/kthread.h>
6aa8b732 42
e495606d 43#include <asm/page.h>
eb243d1d 44#include <asm/memtype.h>
e495606d 45#include <asm/cmpxchg.h>
0c55671f 46#include <asm/e820/api.h>
4e542370 47#include <asm/io.h>
13673a90 48#include <asm/vmx.h>
3d0c27ad 49#include <asm/kvm_page_track.h>
1261bfa3 50#include "trace.h"
6aa8b732 51
b8e8c830
PB
52extern bool itlb_multihit_kvm_mitigation;
53
54static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
55#ifdef CONFIG_PREEMPT_RT
56/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
57static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
58#else
1aa9b957 59static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 60#endif
b8e8c830
PB
61
62static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 63static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830
PB
64
65static struct kernel_param_ops nx_huge_pages_ops = {
66 .set = set_nx_huge_pages,
67 .get = param_get_bool,
68};
69
1aa9b957
JS
70static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
71 .set = set_nx_huge_pages_recovery_ratio,
72 .get = param_get_uint,
73};
74
b8e8c830
PB
75module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
76__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
77module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
78 &nx_huge_pages_recovery_ratio, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 80
18552672
JR
81/*
82 * When setting this variable to true it enables Two-Dimensional-Paging
83 * where the hardware walks 2 page tables:
84 * 1. the guest-virtual to guest-physical
85 * 2. while doing 1. it walks guest-physical to host-physical
86 * If the hardware supports that we don't need to do shadow paging.
87 */
2f333bcb 88bool tdp_enabled = false;
18552672 89
703c335d
SC
90static int max_page_level __read_mostly;
91
8b1fe17c
XG
92enum {
93 AUDIT_PRE_PAGE_FAULT,
94 AUDIT_POST_PAGE_FAULT,
95 AUDIT_PRE_PTE_WRITE,
6903074c
XG
96 AUDIT_POST_PTE_WRITE,
97 AUDIT_PRE_SYNC,
98 AUDIT_POST_SYNC
8b1fe17c 99};
37a7d8b0 100
8b1fe17c 101#undef MMU_DEBUG
37a7d8b0
AK
102
103#ifdef MMU_DEBUG
fa4a2c08
PB
104static bool dbg = 0;
105module_param(dbg, bool, 0644);
37a7d8b0
AK
106
107#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
108#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 109#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 110#else
37a7d8b0
AK
111#define pgprintk(x...) do { } while (0)
112#define rmap_printk(x...) do { } while (0)
fa4a2c08 113#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 114#endif
6aa8b732 115
957ed9ef
XG
116#define PTE_PREFETCH_NUM 8
117
00763e41 118#define PT_FIRST_AVAIL_BITS_SHIFT 10
6eeb4ef0
PB
119#define PT64_SECOND_AVAIL_BITS_SHIFT 54
120
121/*
122 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
123 * Access Tracking SPTEs.
124 */
125#define SPTE_SPECIAL_MASK (3ULL << 52)
126#define SPTE_AD_ENABLED_MASK (0ULL << 52)
127#define SPTE_AD_DISABLED_MASK (1ULL << 52)
1f4e5fc8 128#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
6eeb4ef0 129#define SPTE_MMIO_MASK (3ULL << 52)
6aa8b732 130
6aa8b732
AK
131#define PT64_LEVEL_BITS 9
132
133#define PT64_LEVEL_SHIFT(level) \
d77c26fc 134 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 135
6aa8b732
AK
136#define PT64_INDEX(address, level)\
137 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
138
139
140#define PT32_LEVEL_BITS 10
141
142#define PT32_LEVEL_SHIFT(level) \
d77c26fc 143 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 144
e04da980
JR
145#define PT32_LVL_OFFSET_MASK(level) \
146 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
147 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
148
149#define PT32_INDEX(address, level)\
150 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
151
152
8acc0993
KH
153#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
154#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
155#else
156#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
157#endif
e04da980
JR
158#define PT64_LVL_ADDR_MASK(level) \
159 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 * PT64_LEVEL_BITS))) - 1))
161#define PT64_LVL_OFFSET_MASK(level) \
162 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
163 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
164
165#define PT32_BASE_ADDR_MASK PAGE_MASK
166#define PT32_DIR_BASE_ADDR_MASK \
167 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
168#define PT32_LVL_ADDR_MASK(level) \
169 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
170 * PT32_LEVEL_BITS))) - 1))
6aa8b732 171
53166229 172#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 173 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 174
fe135d2c
AK
175#define ACC_EXEC_MASK 1
176#define ACC_WRITE_MASK PT_WRITABLE_MASK
177#define ACC_USER_MASK PT_USER_MASK
178#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
179
f160c7b7
JS
180/* The mask for the R/X bits in EPT PTEs */
181#define PT64_EPT_READABLE_MASK 0x1ull
182#define PT64_EPT_EXECUTABLE_MASK 0x4ull
183
90bb6fc5
AK
184#include <trace/events/kvm.h>
185
49fde340
XG
186#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
187#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 188
135f8c2b
AK
189#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
190
220f773a
TY
191/* make pte_list_desc fit well in cache line */
192#define PTE_LIST_EXT 3
193
9b8ebbdb
PB
194/*
195 * Return values of handle_mmio_page_fault and mmu.page_fault:
196 * RET_PF_RETRY: let CPU fault again on the address.
197 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
198 *
199 * For handle_mmio_page_fault only:
200 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
201 */
202enum {
203 RET_PF_RETRY = 0,
204 RET_PF_EMULATE = 1,
205 RET_PF_INVALID = 2,
206};
207
53c07b18
XG
208struct pte_list_desc {
209 u64 *sptes[PTE_LIST_EXT];
210 struct pte_list_desc *more;
cd4a4e53
AK
211};
212
2d11123a
AK
213struct kvm_shadow_walk_iterator {
214 u64 addr;
215 hpa_t shadow_addr;
2d11123a 216 u64 *sptep;
dd3bfd59 217 int level;
2d11123a
AK
218 unsigned index;
219};
220
7eb77e9f
JS
221#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
222 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
223 (_root), (_addr)); \
224 shadow_walk_okay(&(_walker)); \
225 shadow_walk_next(&(_walker)))
226
227#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
228 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
229 shadow_walk_okay(&(_walker)); \
230 shadow_walk_next(&(_walker)))
231
c2a2ac2b
XG
232#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
233 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
234 shadow_walk_okay(&(_walker)) && \
235 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
236 __shadow_walk_next(&(_walker), spte))
237
53c07b18 238static struct kmem_cache *pte_list_desc_cache;
d3d25b04 239static struct kmem_cache *mmu_page_header_cache;
45221ab6 240static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 241
7b52345e
SY
242static u64 __read_mostly shadow_nx_mask;
243static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
244static u64 __read_mostly shadow_user_mask;
245static u64 __read_mostly shadow_accessed_mask;
246static u64 __read_mostly shadow_dirty_mask;
ce88decf 247static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 248static u64 __read_mostly shadow_mmio_value;
4af77151 249static u64 __read_mostly shadow_mmio_access_mask;
ffb128c8 250static u64 __read_mostly shadow_present_mask;
d0ec49d4 251static u64 __read_mostly shadow_me_mask;
ce88decf 252
f160c7b7 253/*
6eeb4ef0
PB
254 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
255 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
256 * pages.
f160c7b7
JS
257 */
258static u64 __read_mostly shadow_acc_track_mask;
f160c7b7
JS
259
260/*
261 * The mask/shift to use for saving the original R/X bits when marking the PTE
262 * as not-present for access tracking purposes. We do not save the W bit as the
263 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
264 * restored only when a write is attempted to the page.
265 */
266static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
267 PT64_EPT_EXECUTABLE_MASK;
268static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
269
28a1f3ac
JS
270/*
271 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
272 * to guard against L1TF attacks.
273 */
274static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
275
276/*
277 * The number of high-order 1 bits to use in the mask above.
278 */
279static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
280
daa07cbc
SC
281/*
282 * In some cases, we need to preserve the GFN of a non-present or reserved
283 * SPTE when we usurp the upper five bits of the physical address space to
284 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
285 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
286 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
287 * high and low parts. This mask covers the lower bits of the GFN.
288 */
289static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
290
f3ecb59d
KH
291/*
292 * The number of non-reserved physical address bits irrespective of features
293 * that repurpose legal bits, e.g. MKTME.
294 */
295static u8 __read_mostly shadow_phys_bits;
daa07cbc 296
ce88decf 297static void mmu_spte_set(u64 *sptep, u64 spte);
335e192a 298static bool is_executable_pte(u64 spte);
9fa72119
JS
299static union kvm_mmu_page_role
300kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 301
335e192a
PB
302#define CREATE_TRACE_POINTS
303#include "mmutrace.h"
304
40ef75a7
LT
305
306static inline bool kvm_available_flush_tlb_with_range(void)
307{
afaf0b2f 308 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
309}
310
311static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
312 struct kvm_tlb_range *range)
313{
314 int ret = -ENOTSUPP;
315
afaf0b2f
SC
316 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
317 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
40ef75a7
LT
318
319 if (ret)
320 kvm_flush_remote_tlbs(kvm);
321}
322
323static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
324 u64 start_gfn, u64 pages)
325{
326 struct kvm_tlb_range range;
327
328 range.start_gfn = start_gfn;
329 range.pages = pages;
330
331 kvm_flush_remote_tlbs_with_range(kvm, &range);
332}
333
4af77151 334void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
ce88decf 335{
4af77151 336 BUG_ON((u64)(unsigned)access_mask != access_mask);
dcdca5fe 337 BUG_ON((mmio_mask & mmio_value) != mmio_value);
6eeb4ef0 338 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
312b616b 339 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
4af77151 340 shadow_mmio_access_mask = access_mask;
ce88decf
XG
341}
342EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
343
26c44a63
SC
344static bool is_mmio_spte(u64 spte)
345{
346 return (spte & shadow_mmio_mask) == shadow_mmio_value;
347}
348
ac8d57e5
PF
349static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
350{
351 return sp->role.ad_disabled;
352}
353
1f4e5fc8
PB
354static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
355{
356 /*
357 * When using the EPT page-modification log, the GPAs in the log
358 * would come from L2 rather than L1. Therefore, we need to rely
359 * on write protection to record dirty pages. This also bypasses
360 * PML, since writes now result in a vmexit.
361 */
362 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
363}
364
ac8d57e5
PF
365static inline bool spte_ad_enabled(u64 spte)
366{
26c44a63 367 MMU_WARN_ON(is_mmio_spte(spte));
1f4e5fc8
PB
368 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
369}
370
371static inline bool spte_ad_need_write_protect(u64 spte)
372{
373 MMU_WARN_ON(is_mmio_spte(spte));
374 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
ac8d57e5
PF
375}
376
b8e8c830
PB
377static bool is_nx_huge_page_enabled(void)
378{
379 return READ_ONCE(nx_huge_pages);
380}
381
ac8d57e5
PF
382static inline u64 spte_shadow_accessed_mask(u64 spte)
383{
26c44a63 384 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
385 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
386}
387
388static inline u64 spte_shadow_dirty_mask(u64 spte)
389{
26c44a63 390 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
391 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
392}
393
f160c7b7
JS
394static inline bool is_access_track_spte(u64 spte)
395{
ac8d57e5 396 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
397}
398
f2fd125d 399/*
cae7ed3c
SC
400 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
401 * the memslots generation and is derived as follows:
ee3d1570 402 *
164bf7e5
SC
403 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
404 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 405 *
164bf7e5
SC
406 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
407 * the MMIO generation number, as doing so would require stealing a bit from
408 * the "real" generation number and thus effectively halve the maximum number
409 * of MMIO generations that can be handled before encountering a wrap (which
410 * requires a full MMU zap). The flag is instead explicitly queried when
411 * checking for MMIO spte cache hits.
f2fd125d 412 */
56871d44 413#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
f2fd125d 414
cae7ed3c
SC
415#define MMIO_SPTE_GEN_LOW_START 3
416#define MMIO_SPTE_GEN_LOW_END 11
417#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
418 MMIO_SPTE_GEN_LOW_START)
f2fd125d 419
56871d44
PB
420#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
421#define MMIO_SPTE_GEN_HIGH_END 62
cae7ed3c
SC
422#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
423 MMIO_SPTE_GEN_HIGH_START)
56871d44 424
5192f9b9 425static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
426{
427 u64 mask;
428
cae7ed3c 429 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
56871d44 430 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
f2fd125d 431
cae7ed3c
SC
432 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
433 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
434 return mask;
435}
436
5192f9b9 437static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 438{
5192f9b9 439 u64 gen;
f2fd125d 440
cae7ed3c
SC
441 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
442 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
443 return gen;
444}
445
8f79b064 446static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
ce88decf 447{
8f79b064 448
cae7ed3c 449 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 450 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 451 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 452
4af77151 453 access &= shadow_mmio_access_mask;
28a1f3ac
JS
454 mask |= shadow_mmio_value | access;
455 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
456 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
457 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 458
8f79b064
BG
459 return mask;
460}
461
462static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
463 unsigned int access)
464{
465 u64 mask = make_mmio_spte(vcpu, gfn, access);
466 unsigned int gen = get_mmio_spte_generation(mask);
467
468 access = mask & ACC_ALL;
469
f8f55942 470 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 471 mmu_spte_set(sptep, mask);
ce88decf
XG
472}
473
ce88decf
XG
474static gfn_t get_mmio_spte_gfn(u64 spte)
475{
daa07cbc 476 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
477
478 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
479 & shadow_nonpresent_or_rsvd_mask;
480
481 return gpa >> PAGE_SHIFT;
ce88decf
XG
482}
483
484static unsigned get_mmio_spte_access(u64 spte)
485{
4af77151 486 return spte & shadow_mmio_access_mask;
ce88decf
XG
487}
488
54bf36aa 489static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 490 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
491{
492 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 493 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
494 return true;
495 }
496
497 return false;
498}
c7addb90 499
54bf36aa 500static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 501{
cae7ed3c 502 u64 kvm_gen, spte_gen, gen;
089504c0 503
cae7ed3c
SC
504 gen = kvm_vcpu_memslots(vcpu)->generation;
505 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
506 return false;
089504c0 507
cae7ed3c 508 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
509 spte_gen = get_mmio_spte_generation(spte);
510
511 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
512 return likely(kvm_gen == spte_gen);
f8f55942
XG
513}
514
ce00053b
PF
515/*
516 * Sets the shadow PTE masks used by the MMU.
517 *
518 * Assumptions:
519 * - Setting either @accessed_mask or @dirty_mask requires setting both
520 * - At least one of @accessed_mask or @acc_track_mask must be set
521 */
7b52345e 522void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 523 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 524 u64 acc_track_mask, u64 me_mask)
7b52345e 525{
ce00053b
PF
526 BUG_ON(!dirty_mask != !accessed_mask);
527 BUG_ON(!accessed_mask && !acc_track_mask);
6eeb4ef0 528 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
312b616b 529
7b52345e
SY
530 shadow_user_mask = user_mask;
531 shadow_accessed_mask = accessed_mask;
532 shadow_dirty_mask = dirty_mask;
533 shadow_nx_mask = nx_mask;
534 shadow_x_mask = x_mask;
ffb128c8 535 shadow_present_mask = p_mask;
f160c7b7 536 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 537 shadow_me_mask = me_mask;
7b52345e
SY
538}
539EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
540
f3ecb59d
KH
541static u8 kvm_get_shadow_phys_bits(void)
542{
543 /*
7adacf5e
PB
544 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
545 * in CPU detection code, but the processor treats those reduced bits as
546 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
547 * the physical address bits reported by CPUID.
f3ecb59d 548 */
7adacf5e
PB
549 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
550 return cpuid_eax(0x80000008) & 0xff;
f3ecb59d 551
7adacf5e
PB
552 /*
553 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
554 * custom CPUID. Proceed with whatever the kernel found since these features
555 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
556 */
557 return boot_cpu_data.x86_phys_bits;
f3ecb59d
KH
558}
559
28a1f3ac 560static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 561{
daa07cbc
SC
562 u8 low_phys_bits;
563
f160c7b7
JS
564 shadow_user_mask = 0;
565 shadow_accessed_mask = 0;
566 shadow_dirty_mask = 0;
567 shadow_nx_mask = 0;
568 shadow_x_mask = 0;
569 shadow_mmio_mask = 0;
570 shadow_present_mask = 0;
571 shadow_acc_track_mask = 0;
28a1f3ac 572
f3ecb59d
KH
573 shadow_phys_bits = kvm_get_shadow_phys_bits();
574
28a1f3ac
JS
575 /*
576 * If the CPU has 46 or less physical address bits, then set an
577 * appropriate mask to guard against L1TF attacks. Otherwise, it is
578 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
579 *
580 * Some Intel CPUs address the L1 cache using more PA bits than are
581 * reported by CPUID. Use the PA width of the L1 cache when possible
582 * to achieve more effective mitigation, e.g. if system RAM overlaps
583 * the most significant bits of legal physical address space.
28a1f3ac 584 */
61455bf2
KH
585 shadow_nonpresent_or_rsvd_mask = 0;
586 low_phys_bits = boot_cpu_data.x86_cache_bits;
587 if (boot_cpu_data.x86_cache_bits <
daa07cbc 588 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac 589 shadow_nonpresent_or_rsvd_mask =
61455bf2 590 rsvd_bits(boot_cpu_data.x86_cache_bits -
28a1f3ac 591 shadow_nonpresent_or_rsvd_mask_len,
61455bf2 592 boot_cpu_data.x86_cache_bits - 1);
daa07cbc 593 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
61455bf2
KH
594 } else
595 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
596
daa07cbc
SC
597 shadow_nonpresent_or_rsvd_lower_gfn_mask =
598 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
599}
600
6aa8b732
AK
601static int is_cpuid_PSE36(void)
602{
603 return 1;
604}
605
73b1087e
AK
606static int is_nx(struct kvm_vcpu *vcpu)
607{
f6801dff 608 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
609}
610
c7addb90
AK
611static int is_shadow_present_pte(u64 pte)
612{
f160c7b7 613 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
614}
615
05da4558
MT
616static int is_large_pte(u64 pte)
617{
618 return pte & PT_PAGE_SIZE_MASK;
619}
620
776e6633
MT
621static int is_last_spte(u64 pte, int level)
622{
623 if (level == PT_PAGE_TABLE_LEVEL)
624 return 1;
852e3c19 625 if (is_large_pte(pte))
776e6633
MT
626 return 1;
627 return 0;
628}
629
d3e328f2
JS
630static bool is_executable_pte(u64 spte)
631{
632 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
633}
634
ba049e93 635static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 636{
35149e21 637 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
638}
639
da928521
AK
640static gfn_t pse36_gfn_delta(u32 gpte)
641{
642 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
643
644 return (gpte & PT32_DIR_PSE36_MASK) << shift;
645}
646
603e0651 647#ifdef CONFIG_X86_64
d555c333 648static void __set_spte(u64 *sptep, u64 spte)
e663ee64 649{
b19ee2ff 650 WRITE_ONCE(*sptep, spte);
e663ee64
AK
651}
652
603e0651 653static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 654{
b19ee2ff 655 WRITE_ONCE(*sptep, spte);
603e0651
XG
656}
657
658static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
659{
660 return xchg(sptep, spte);
661}
c2a2ac2b
XG
662
663static u64 __get_spte_lockless(u64 *sptep)
664{
6aa7de05 665 return READ_ONCE(*sptep);
c2a2ac2b 666}
a9221dd5 667#else
603e0651
XG
668union split_spte {
669 struct {
670 u32 spte_low;
671 u32 spte_high;
672 };
673 u64 spte;
674};
a9221dd5 675
c2a2ac2b
XG
676static void count_spte_clear(u64 *sptep, u64 spte)
677{
678 struct kvm_mmu_page *sp = page_header(__pa(sptep));
679
680 if (is_shadow_present_pte(spte))
681 return;
682
683 /* Ensure the spte is completely set before we increase the count */
684 smp_wmb();
685 sp->clear_spte_count++;
686}
687
603e0651
XG
688static void __set_spte(u64 *sptep, u64 spte)
689{
690 union split_spte *ssptep, sspte;
a9221dd5 691
603e0651
XG
692 ssptep = (union split_spte *)sptep;
693 sspte = (union split_spte)spte;
694
695 ssptep->spte_high = sspte.spte_high;
696
697 /*
698 * If we map the spte from nonpresent to present, We should store
699 * the high bits firstly, then set present bit, so cpu can not
700 * fetch this spte while we are setting the spte.
701 */
702 smp_wmb();
703
b19ee2ff 704 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
705}
706
603e0651
XG
707static void __update_clear_spte_fast(u64 *sptep, u64 spte)
708{
709 union split_spte *ssptep, sspte;
710
711 ssptep = (union split_spte *)sptep;
712 sspte = (union split_spte)spte;
713
b19ee2ff 714 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
715
716 /*
717 * If we map the spte from present to nonpresent, we should clear
718 * present bit firstly to avoid vcpu fetch the old high bits.
719 */
720 smp_wmb();
721
722 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 723 count_spte_clear(sptep, spte);
603e0651
XG
724}
725
726static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
727{
728 union split_spte *ssptep, sspte, orig;
729
730 ssptep = (union split_spte *)sptep;
731 sspte = (union split_spte)spte;
732
733 /* xchg acts as a barrier before the setting of the high bits */
734 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
735 orig.spte_high = ssptep->spte_high;
736 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 737 count_spte_clear(sptep, spte);
603e0651
XG
738
739 return orig.spte;
740}
c2a2ac2b
XG
741
742/*
743 * The idea using the light way get the spte on x86_32 guest is from
39656e83 744 * gup_get_pte (mm/gup.c).
accaefe0
XG
745 *
746 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
747 * coalesces them and we are running out of the MMU lock. Therefore
748 * we need to protect against in-progress updates of the spte.
749 *
750 * Reading the spte while an update is in progress may get the old value
751 * for the high part of the spte. The race is fine for a present->non-present
752 * change (because the high part of the spte is ignored for non-present spte),
753 * but for a present->present change we must reread the spte.
754 *
755 * All such changes are done in two steps (present->non-present and
756 * non-present->present), hence it is enough to count the number of
757 * present->non-present updates: if it changed while reading the spte,
758 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
759 */
760static u64 __get_spte_lockless(u64 *sptep)
761{
762 struct kvm_mmu_page *sp = page_header(__pa(sptep));
763 union split_spte spte, *orig = (union split_spte *)sptep;
764 int count;
765
766retry:
767 count = sp->clear_spte_count;
768 smp_rmb();
769
770 spte.spte_low = orig->spte_low;
771 smp_rmb();
772
773 spte.spte_high = orig->spte_high;
774 smp_rmb();
775
776 if (unlikely(spte.spte_low != orig->spte_low ||
777 count != sp->clear_spte_count))
778 goto retry;
779
780 return spte.spte;
781}
603e0651
XG
782#endif
783
ea4114bc 784static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 785{
feb3eb70
GN
786 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
787 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
788}
789
8672b721
XG
790static bool spte_has_volatile_bits(u64 spte)
791{
f160c7b7
JS
792 if (!is_shadow_present_pte(spte))
793 return false;
794
c7ba5b48 795 /*
6a6256f9 796 * Always atomically update spte if it can be updated
c7ba5b48
XG
797 * out of mmu-lock, it can ensure dirty bit is not lost,
798 * also, it can help us to get a stable is_writable_pte()
799 * to ensure tlb flush is not missed.
800 */
f160c7b7
JS
801 if (spte_can_locklessly_be_made_writable(spte) ||
802 is_access_track_spte(spte))
c7ba5b48
XG
803 return true;
804
ac8d57e5 805 if (spte_ad_enabled(spte)) {
f160c7b7
JS
806 if ((spte & shadow_accessed_mask) == 0 ||
807 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
808 return true;
809 }
8672b721 810
f160c7b7 811 return false;
8672b721
XG
812}
813
83ef6c81 814static bool is_accessed_spte(u64 spte)
4132779b 815{
ac8d57e5
PF
816 u64 accessed_mask = spte_shadow_accessed_mask(spte);
817
818 return accessed_mask ? spte & accessed_mask
819 : !is_access_track_spte(spte);
4132779b
XG
820}
821
83ef6c81 822static bool is_dirty_spte(u64 spte)
7e71a59b 823{
ac8d57e5
PF
824 u64 dirty_mask = spte_shadow_dirty_mask(spte);
825
826 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
827}
828
1df9f2dc
XG
829/* Rules for using mmu_spte_set:
830 * Set the sptep from nonpresent to present.
831 * Note: the sptep being assigned *must* be either not present
832 * or in a state where the hardware will not attempt to update
833 * the spte.
834 */
835static void mmu_spte_set(u64 *sptep, u64 new_spte)
836{
837 WARN_ON(is_shadow_present_pte(*sptep));
838 __set_spte(sptep, new_spte);
839}
840
f39a058d
JS
841/*
842 * Update the SPTE (excluding the PFN), but do not track changes in its
843 * accessed/dirty status.
1df9f2dc 844 */
f39a058d 845static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 846{
c7ba5b48 847 u64 old_spte = *sptep;
4132779b 848
afd28fe1 849 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 850
6e7d0354
XG
851 if (!is_shadow_present_pte(old_spte)) {
852 mmu_spte_set(sptep, new_spte);
f39a058d 853 return old_spte;
6e7d0354 854 }
4132779b 855
c7ba5b48 856 if (!spte_has_volatile_bits(old_spte))
603e0651 857 __update_clear_spte_fast(sptep, new_spte);
4132779b 858 else
603e0651 859 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 860
83ef6c81
JS
861 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
862
f39a058d
JS
863 return old_spte;
864}
865
866/* Rules for using mmu_spte_update:
867 * Update the state bits, it means the mapped pfn is not changed.
868 *
869 * Whenever we overwrite a writable spte with a read-only one we
870 * should flush remote TLBs. Otherwise rmap_write_protect
871 * will find a read-only spte, even though the writable spte
872 * might be cached on a CPU's TLB, the return value indicates this
873 * case.
874 *
875 * Returns true if the TLB needs to be flushed
876 */
877static bool mmu_spte_update(u64 *sptep, u64 new_spte)
878{
879 bool flush = false;
880 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
881
882 if (!is_shadow_present_pte(old_spte))
883 return false;
884
c7ba5b48
XG
885 /*
886 * For the spte updated out of mmu-lock is safe, since
6a6256f9 887 * we always atomically update it, see the comments in
c7ba5b48
XG
888 * spte_has_volatile_bits().
889 */
ea4114bc 890 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 891 !is_writable_pte(new_spte))
83ef6c81 892 flush = true;
4132779b 893
7e71a59b 894 /*
83ef6c81 895 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
896 * to guarantee consistency between TLB and page tables.
897 */
7e71a59b 898
83ef6c81
JS
899 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
900 flush = true;
4132779b 901 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
902 }
903
904 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
905 flush = true;
4132779b 906 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 907 }
6e7d0354 908
83ef6c81 909 return flush;
b79b93f9
AK
910}
911
1df9f2dc
XG
912/*
913 * Rules for using mmu_spte_clear_track_bits:
914 * It sets the sptep from present to nonpresent, and track the
915 * state bits, it is used to clear the last level sptep.
83ef6c81 916 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
917 */
918static int mmu_spte_clear_track_bits(u64 *sptep)
919{
ba049e93 920 kvm_pfn_t pfn;
1df9f2dc
XG
921 u64 old_spte = *sptep;
922
923 if (!spte_has_volatile_bits(old_spte))
603e0651 924 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 925 else
603e0651 926 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 927
afd28fe1 928 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
929 return 0;
930
931 pfn = spte_to_pfn(old_spte);
86fde74c
XG
932
933 /*
934 * KVM does not hold the refcount of the page used by
935 * kvm mmu, before reclaiming the page, we should
936 * unmap it from mmu first.
937 */
bf4bea8e 938 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 939
83ef6c81 940 if (is_accessed_spte(old_spte))
1df9f2dc 941 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
942
943 if (is_dirty_spte(old_spte))
1df9f2dc 944 kvm_set_pfn_dirty(pfn);
83ef6c81 945
1df9f2dc
XG
946 return 1;
947}
948
949/*
950 * Rules for using mmu_spte_clear_no_track:
951 * Directly clear spte without caring the state bits of sptep,
952 * it is used to set the upper level spte.
953 */
954static void mmu_spte_clear_no_track(u64 *sptep)
955{
603e0651 956 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
957}
958
c2a2ac2b
XG
959static u64 mmu_spte_get_lockless(u64 *sptep)
960{
961 return __get_spte_lockless(sptep);
962}
963
f160c7b7
JS
964static u64 mark_spte_for_access_track(u64 spte)
965{
ac8d57e5 966 if (spte_ad_enabled(spte))
f160c7b7
JS
967 return spte & ~shadow_accessed_mask;
968
ac8d57e5 969 if (is_access_track_spte(spte))
f160c7b7
JS
970 return spte;
971
972 /*
20d65236
JS
973 * Making an Access Tracking PTE will result in removal of write access
974 * from the PTE. So, verify that we will be able to restore the write
975 * access in the fast page fault path later on.
f160c7b7
JS
976 */
977 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
978 !spte_can_locklessly_be_made_writable(spte),
979 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
980
981 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
982 shadow_acc_track_saved_bits_shift),
983 "kvm: Access Tracking saved bit locations are not zero\n");
984
985 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
986 shadow_acc_track_saved_bits_shift;
987 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
988
989 return spte;
990}
991
d3e328f2
JS
992/* Restore an acc-track PTE back to a regular PTE */
993static u64 restore_acc_track_spte(u64 spte)
994{
995 u64 new_spte = spte;
996 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
997 & shadow_acc_track_saved_bits_mask;
998
ac8d57e5 999 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
1000 WARN_ON_ONCE(!is_access_track_spte(spte));
1001
1002 new_spte &= ~shadow_acc_track_mask;
1003 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1004 shadow_acc_track_saved_bits_shift);
1005 new_spte |= saved_bits;
1006
1007 return new_spte;
1008}
1009
f160c7b7
JS
1010/* Returns the Accessed status of the PTE and resets it at the same time. */
1011static bool mmu_spte_age(u64 *sptep)
1012{
1013 u64 spte = mmu_spte_get_lockless(sptep);
1014
1015 if (!is_accessed_spte(spte))
1016 return false;
1017
ac8d57e5 1018 if (spte_ad_enabled(spte)) {
f160c7b7
JS
1019 clear_bit((ffs(shadow_accessed_mask) - 1),
1020 (unsigned long *)sptep);
1021 } else {
1022 /*
1023 * Capture the dirty status of the page, so that it doesn't get
1024 * lost when the SPTE is marked for access tracking.
1025 */
1026 if (is_writable_pte(spte))
1027 kvm_set_pfn_dirty(spte_to_pfn(spte));
1028
1029 spte = mark_spte_for_access_track(spte);
1030 mmu_spte_update_no_track(sptep, spte);
1031 }
1032
1033 return true;
1034}
1035
c2a2ac2b
XG
1036static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1037{
c142786c
AK
1038 /*
1039 * Prevent page table teardown by making any free-er wait during
1040 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1041 */
1042 local_irq_disable();
36ca7e0a 1043
c142786c
AK
1044 /*
1045 * Make sure a following spte read is not reordered ahead of the write
1046 * to vcpu->mode.
1047 */
36ca7e0a 1048 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
1049}
1050
1051static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1052{
c142786c
AK
1053 /*
1054 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 1055 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
1056 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1057 */
36ca7e0a 1058 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 1059 local_irq_enable();
c2a2ac2b
XG
1060}
1061
e2dec939 1062static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 1063 struct kmem_cache *base_cache, int min)
714b93da
AK
1064{
1065 void *obj;
1066
1067 if (cache->nobjs >= min)
e2dec939 1068 return 0;
714b93da 1069 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 1070 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 1071 if (!obj)
daefb794 1072 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
1073 cache->objects[cache->nobjs++] = obj;
1074 }
e2dec939 1075 return 0;
714b93da
AK
1076}
1077
f759e2b4
XG
1078static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1079{
1080 return cache->nobjs;
1081}
1082
e8ad9a70
XG
1083static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1084 struct kmem_cache *cache)
714b93da
AK
1085{
1086 while (mc->nobjs)
e8ad9a70 1087 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
1088}
1089
c1158e63 1090static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 1091 int min)
c1158e63 1092{
842f22ed 1093 void *page;
c1158e63
AK
1094
1095 if (cache->nobjs >= min)
1096 return 0;
1097 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1098 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1099 if (!page)
daefb794 1100 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1101 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1102 }
1103 return 0;
1104}
1105
1106static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1107{
1108 while (mc->nobjs)
c4d198d5 1109 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1110}
1111
2e3e5882 1112static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1113{
e2dec939
AK
1114 int r;
1115
53c07b18 1116 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1117 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1118 if (r)
1119 goto out;
ad312c7c 1120 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1121 if (r)
1122 goto out;
ad312c7c 1123 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1124 mmu_page_header_cache, 4);
e2dec939
AK
1125out:
1126 return r;
714b93da
AK
1127}
1128
1129static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1130{
53c07b18
XG
1131 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1132 pte_list_desc_cache);
ad312c7c 1133 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1134 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1135 mmu_page_header_cache);
714b93da
AK
1136}
1137
80feb89a 1138static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1139{
1140 void *p;
1141
1142 BUG_ON(!mc->nobjs);
1143 p = mc->objects[--mc->nobjs];
714b93da
AK
1144 return p;
1145}
1146
53c07b18 1147static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1148{
80feb89a 1149 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1150}
1151
53c07b18 1152static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1153{
53c07b18 1154 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1155}
1156
2032a93d
LJ
1157static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1158{
1159 if (!sp->role.direct)
1160 return sp->gfns[index];
1161
1162 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1163}
1164
1165static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1166{
e9f2a760 1167 if (!sp->role.direct) {
2032a93d 1168 sp->gfns[index] = gfn;
e9f2a760
PB
1169 return;
1170 }
1171
1172 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1173 pr_err_ratelimited("gfn mismatch under direct page %llx "
1174 "(expected %llx, got %llx)\n",
1175 sp->gfn,
1176 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
1177}
1178
05da4558 1179/*
d4dbf470
TY
1180 * Return the pointer to the large page information for a given gfn,
1181 * handling slots that are not large page aligned.
05da4558 1182 */
d4dbf470
TY
1183static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1184 struct kvm_memory_slot *slot,
1185 int level)
05da4558
MT
1186{
1187 unsigned long idx;
1188
fb03cb6f 1189 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1190 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1191}
1192
547ffaed
XG
1193static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1194 gfn_t gfn, int count)
1195{
1196 struct kvm_lpage_info *linfo;
1197 int i;
1198
1199 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1200 linfo = lpage_info_slot(gfn, slot, i);
1201 linfo->disallow_lpage += count;
1202 WARN_ON(linfo->disallow_lpage < 0);
1203 }
1204}
1205
1206void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1207{
1208 update_gfn_disallow_lpage_count(slot, gfn, 1);
1209}
1210
1211void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1212{
1213 update_gfn_disallow_lpage_count(slot, gfn, -1);
1214}
1215
3ed1a478 1216static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1217{
699023e2 1218 struct kvm_memslots *slots;
d25797b2 1219 struct kvm_memory_slot *slot;
3ed1a478 1220 gfn_t gfn;
05da4558 1221
56ca57f9 1222 kvm->arch.indirect_shadow_pages++;
3ed1a478 1223 gfn = sp->gfn;
699023e2
PB
1224 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1225 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1226
1227 /* the non-leaf shadow pages are keeping readonly. */
1228 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1229 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1230 KVM_PAGE_TRACK_WRITE);
1231
547ffaed 1232 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1233}
1234
b8e8c830
PB
1235static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1236{
1237 if (sp->lpage_disallowed)
1238 return;
1239
1240 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
1241 list_add_tail(&sp->lpage_disallowed_link,
1242 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
1243 sp->lpage_disallowed = true;
1244}
1245
3ed1a478 1246static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1247{
699023e2 1248 struct kvm_memslots *slots;
d25797b2 1249 struct kvm_memory_slot *slot;
3ed1a478 1250 gfn_t gfn;
05da4558 1251
56ca57f9 1252 kvm->arch.indirect_shadow_pages--;
3ed1a478 1253 gfn = sp->gfn;
699023e2
PB
1254 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1255 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1256 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1257 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1258 KVM_PAGE_TRACK_WRITE);
1259
547ffaed 1260 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1261}
1262
b8e8c830
PB
1263static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1264{
1265 --kvm->stat.nx_lpage_splits;
1266 sp->lpage_disallowed = false;
1aa9b957 1267 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
1268}
1269
5d163b1c
XG
1270static struct kvm_memory_slot *
1271gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1272 bool no_dirty_log)
05da4558
MT
1273{
1274 struct kvm_memory_slot *slot;
5d163b1c 1275
54bf36aa 1276 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
1277 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1278 return NULL;
1279 if (no_dirty_log && slot->dirty_bitmap)
1280 return NULL;
5d163b1c
XG
1281
1282 return slot;
1283}
1284
290fc38d 1285/*
018aabb5 1286 * About rmap_head encoding:
cd4a4e53 1287 *
018aabb5
TY
1288 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1289 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1290 * pte_list_desc containing more mappings.
018aabb5
TY
1291 */
1292
1293/*
1294 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1295 */
53c07b18 1296static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1297 struct kvm_rmap_head *rmap_head)
cd4a4e53 1298{
53c07b18 1299 struct pte_list_desc *desc;
53a27b39 1300 int i, count = 0;
cd4a4e53 1301
018aabb5 1302 if (!rmap_head->val) {
53c07b18 1303 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1304 rmap_head->val = (unsigned long)spte;
1305 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1306 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1307 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1308 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1309 desc->sptes[1] = spte;
018aabb5 1310 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1311 ++count;
cd4a4e53 1312 } else {
53c07b18 1313 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1314 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1315 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1316 desc = desc->more;
53c07b18 1317 count += PTE_LIST_EXT;
53a27b39 1318 }
53c07b18
XG
1319 if (desc->sptes[PTE_LIST_EXT-1]) {
1320 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1321 desc = desc->more;
1322 }
d555c333 1323 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1324 ++count;
d555c333 1325 desc->sptes[i] = spte;
cd4a4e53 1326 }
53a27b39 1327 return count;
cd4a4e53
AK
1328}
1329
53c07b18 1330static void
018aabb5
TY
1331pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1332 struct pte_list_desc *desc, int i,
1333 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1334{
1335 int j;
1336
53c07b18 1337 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1338 ;
d555c333
AK
1339 desc->sptes[i] = desc->sptes[j];
1340 desc->sptes[j] = NULL;
cd4a4e53
AK
1341 if (j != 0)
1342 return;
1343 if (!prev_desc && !desc->more)
fe3c2b4c 1344 rmap_head->val = 0;
cd4a4e53
AK
1345 else
1346 if (prev_desc)
1347 prev_desc->more = desc->more;
1348 else
018aabb5 1349 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1350 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1351}
1352
8daf3462 1353static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1354{
53c07b18
XG
1355 struct pte_list_desc *desc;
1356 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1357 int i;
1358
018aabb5 1359 if (!rmap_head->val) {
8daf3462 1360 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1361 BUG();
018aabb5 1362 } else if (!(rmap_head->val & 1)) {
8daf3462 1363 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1364 if ((u64 *)rmap_head->val != spte) {
8daf3462 1365 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1366 BUG();
1367 }
018aabb5 1368 rmap_head->val = 0;
cd4a4e53 1369 } else {
8daf3462 1370 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1371 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1372 prev_desc = NULL;
1373 while (desc) {
018aabb5 1374 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1375 if (desc->sptes[i] == spte) {
018aabb5
TY
1376 pte_list_desc_remove_entry(rmap_head,
1377 desc, i, prev_desc);
cd4a4e53
AK
1378 return;
1379 }
018aabb5 1380 }
cd4a4e53
AK
1381 prev_desc = desc;
1382 desc = desc->more;
1383 }
8daf3462 1384 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1385 BUG();
1386 }
1387}
1388
e7912386
WY
1389static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1390{
1391 mmu_spte_clear_track_bits(sptep);
1392 __pte_list_remove(sptep, rmap_head);
1393}
1394
018aabb5
TY
1395static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1396 struct kvm_memory_slot *slot)
53c07b18 1397{
77d11309 1398 unsigned long idx;
53c07b18 1399
77d11309 1400 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1401 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1402}
1403
018aabb5
TY
1404static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1405 struct kvm_mmu_page *sp)
9b9b1492 1406{
699023e2 1407 struct kvm_memslots *slots;
9b9b1492
TY
1408 struct kvm_memory_slot *slot;
1409
699023e2
PB
1410 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1411 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1412 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1413}
1414
f759e2b4
XG
1415static bool rmap_can_add(struct kvm_vcpu *vcpu)
1416{
1417 struct kvm_mmu_memory_cache *cache;
1418
1419 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1420 return mmu_memory_cache_free_objects(cache);
1421}
1422
53c07b18
XG
1423static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1424{
1425 struct kvm_mmu_page *sp;
018aabb5 1426 struct kvm_rmap_head *rmap_head;
53c07b18 1427
53c07b18
XG
1428 sp = page_header(__pa(spte));
1429 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1430 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1431 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1432}
1433
53c07b18
XG
1434static void rmap_remove(struct kvm *kvm, u64 *spte)
1435{
1436 struct kvm_mmu_page *sp;
1437 gfn_t gfn;
018aabb5 1438 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1439
1440 sp = page_header(__pa(spte));
1441 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1442 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1443 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1444}
1445
1e3f42f0
TY
1446/*
1447 * Used by the following functions to iterate through the sptes linked by a
1448 * rmap. All fields are private and not assumed to be used outside.
1449 */
1450struct rmap_iterator {
1451 /* private fields */
1452 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1453 int pos; /* index of the sptep */
1454};
1455
1456/*
1457 * Iteration must be started by this function. This should also be used after
1458 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1459 * information in the iterator may not be valid.
1e3f42f0
TY
1460 *
1461 * Returns sptep if found, NULL otherwise.
1462 */
018aabb5
TY
1463static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1464 struct rmap_iterator *iter)
1e3f42f0 1465{
77fbbbd2
TY
1466 u64 *sptep;
1467
018aabb5 1468 if (!rmap_head->val)
1e3f42f0
TY
1469 return NULL;
1470
018aabb5 1471 if (!(rmap_head->val & 1)) {
1e3f42f0 1472 iter->desc = NULL;
77fbbbd2
TY
1473 sptep = (u64 *)rmap_head->val;
1474 goto out;
1e3f42f0
TY
1475 }
1476
018aabb5 1477 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1478 iter->pos = 0;
77fbbbd2
TY
1479 sptep = iter->desc->sptes[iter->pos];
1480out:
1481 BUG_ON(!is_shadow_present_pte(*sptep));
1482 return sptep;
1e3f42f0
TY
1483}
1484
1485/*
1486 * Must be used with a valid iterator: e.g. after rmap_get_first().
1487 *
1488 * Returns sptep if found, NULL otherwise.
1489 */
1490static u64 *rmap_get_next(struct rmap_iterator *iter)
1491{
77fbbbd2
TY
1492 u64 *sptep;
1493
1e3f42f0
TY
1494 if (iter->desc) {
1495 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1496 ++iter->pos;
1497 sptep = iter->desc->sptes[iter->pos];
1498 if (sptep)
77fbbbd2 1499 goto out;
1e3f42f0
TY
1500 }
1501
1502 iter->desc = iter->desc->more;
1503
1504 if (iter->desc) {
1505 iter->pos = 0;
1506 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1507 sptep = iter->desc->sptes[iter->pos];
1508 goto out;
1e3f42f0
TY
1509 }
1510 }
1511
1512 return NULL;
77fbbbd2
TY
1513out:
1514 BUG_ON(!is_shadow_present_pte(*sptep));
1515 return sptep;
1e3f42f0
TY
1516}
1517
018aabb5
TY
1518#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1519 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1520 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1521
c3707958 1522static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1523{
1df9f2dc 1524 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1525 rmap_remove(kvm, sptep);
be38d276
AK
1526}
1527
8e22f955
XG
1528
1529static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1530{
1531 if (is_large_pte(*sptep)) {
1532 WARN_ON(page_header(__pa(sptep))->role.level ==
1533 PT_PAGE_TABLE_LEVEL);
1534 drop_spte(kvm, sptep);
1535 --kvm->stat.lpages;
1536 return true;
1537 }
1538
1539 return false;
1540}
1541
1542static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543{
c3134ce2
LT
1544 if (__drop_large_spte(vcpu->kvm, sptep)) {
1545 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546
1547 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548 KVM_PAGES_PER_HPAGE(sp->role.level));
1549 }
8e22f955
XG
1550}
1551
1552/*
49fde340 1553 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1554 * spte write-protection is caused by protecting shadow page table.
49fde340 1555 *
b4619660 1556 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1557 * protection:
1558 * - for dirty logging, the spte can be set to writable at anytime if
1559 * its dirty bitmap is properly set.
1560 * - for spte protection, the spte can be writable only after unsync-ing
1561 * shadow page.
8e22f955 1562 *
c126d94f 1563 * Return true if tlb need be flushed.
8e22f955 1564 */
c4f138b4 1565static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1566{
1567 u64 spte = *sptep;
1568
49fde340 1569 if (!is_writable_pte(spte) &&
ea4114bc 1570 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1571 return false;
1572
1573 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574
49fde340
XG
1575 if (pt_protect)
1576 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1577 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1578
c126d94f 1579 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1580}
1581
018aabb5
TY
1582static bool __rmap_write_protect(struct kvm *kvm,
1583 struct kvm_rmap_head *rmap_head,
245c3912 1584 bool pt_protect)
98348e95 1585{
1e3f42f0
TY
1586 u64 *sptep;
1587 struct rmap_iterator iter;
d13bc5b5 1588 bool flush = false;
374cbac0 1589
018aabb5 1590 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1591 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1592
d13bc5b5 1593 return flush;
a0ed4607
TY
1594}
1595
c4f138b4 1596static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1597{
1598 u64 spte = *sptep;
1599
1600 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601
1f4e5fc8 1602 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1603 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1604 return mmu_spte_update(sptep, spte);
1605}
1606
1f4e5fc8 1607static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1608{
1609 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610 (unsigned long *)sptep);
1f4e5fc8 1611 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1612 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613
1614 return was_writable;
1615}
1616
1617/*
1618 * Gets the GFN ready for another round of dirty logging by clearing the
1619 * - D bit on ad-enabled SPTEs, and
1620 * - W bit on ad-disabled SPTEs.
1621 * Returns true iff any D or W bits were cleared.
1622 */
018aabb5 1623static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1624{
1625 u64 *sptep;
1626 struct rmap_iterator iter;
1627 bool flush = false;
1628
018aabb5 1629 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1630 if (spte_ad_need_write_protect(*sptep))
1631 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1632 else
1f4e5fc8 1633 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1634
1635 return flush;
1636}
1637
c4f138b4 1638static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1639{
1640 u64 spte = *sptep;
1641
1642 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643
1f4e5fc8 1644 /*
afaf0b2f 1645 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1646 * do not bother adding back write access to pages marked
1647 * SPTE_AD_WRPROT_ONLY_MASK.
1648 */
f4b4b180
KH
1649 spte |= shadow_dirty_mask;
1650
1651 return mmu_spte_update(sptep, spte);
1652}
1653
018aabb5 1654static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1655{
1656 u64 *sptep;
1657 struct rmap_iterator iter;
1658 bool flush = false;
1659
018aabb5 1660 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1661 if (spte_ad_enabled(*sptep))
1662 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1663
1664 return flush;
1665}
1666
5dc99b23 1667/**
3b0f1d01 1668 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1669 * @kvm: kvm instance
1670 * @slot: slot to protect
1671 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672 * @mask: indicates which pages we should protect
1673 *
1674 * Used when we do not need to care about huge page mappings: e.g. during dirty
1675 * logging we do not have any such mappings.
1676 */
3b0f1d01 1677static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1678 struct kvm_memory_slot *slot,
1679 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1680{
018aabb5 1681 struct kvm_rmap_head *rmap_head;
a0ed4607 1682
5dc99b23 1683 while (mask) {
018aabb5
TY
1684 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685 PT_PAGE_TABLE_LEVEL, slot);
1686 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1687
5dc99b23
TY
1688 /* clear the first set bit */
1689 mask &= mask - 1;
1690 }
374cbac0
AK
1691}
1692
f4b4b180 1693/**
ac8d57e5
PF
1694 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1696 * @kvm: kvm instance
1697 * @slot: slot to clear D-bit
1698 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699 * @mask: indicates which pages we should clear D-bit
1700 *
1701 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702 */
1703void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704 struct kvm_memory_slot *slot,
1705 gfn_t gfn_offset, unsigned long mask)
1706{
018aabb5 1707 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1708
1709 while (mask) {
018aabb5
TY
1710 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711 PT_PAGE_TABLE_LEVEL, slot);
1712 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1713
1714 /* clear the first set bit */
1715 mask &= mask - 1;
1716 }
1717}
1718EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719
3b0f1d01
KH
1720/**
1721 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722 * PT level pages.
1723 *
1724 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725 * enable dirty logging for them.
1726 *
1727 * Used when we do not need to care about huge page mappings: e.g. during dirty
1728 * logging we do not have any such mappings.
1729 */
1730void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731 struct kvm_memory_slot *slot,
1732 gfn_t gfn_offset, unsigned long mask)
1733{
afaf0b2f
SC
1734 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
88178fd4
KH
1736 mask);
1737 else
1738 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1739}
1740
bab4165e
BD
1741/**
1742 * kvm_arch_write_log_dirty - emulate dirty page logging
1743 * @vcpu: Guest mode vcpu
1744 *
1745 * Emulate arch specific page modification logging for the
1746 * nested hypervisor
1747 */
1748int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1749{
afaf0b2f
SC
1750 if (kvm_x86_ops.write_log_dirty)
1751 return kvm_x86_ops.write_log_dirty(vcpu);
bab4165e
BD
1752
1753 return 0;
1754}
1755
aeecee2e
XG
1756bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1757 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1758{
018aabb5 1759 struct kvm_rmap_head *rmap_head;
5dc99b23 1760 int i;
2f84569f 1761 bool write_protected = false;
95d4c16c 1762
8a3d08f1 1763 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1764 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1765 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1766 }
1767
1768 return write_protected;
95d4c16c
TY
1769}
1770
aeecee2e
XG
1771static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1772{
1773 struct kvm_memory_slot *slot;
1774
1775 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1777}
1778
018aabb5 1779static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1780{
1e3f42f0
TY
1781 u64 *sptep;
1782 struct rmap_iterator iter;
6a49f85c 1783 bool flush = false;
e930bffe 1784
018aabb5 1785 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1786 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1787
e7912386 1788 pte_list_remove(rmap_head, sptep);
6a49f85c 1789 flush = true;
e930bffe 1790 }
1e3f42f0 1791
6a49f85c
XG
1792 return flush;
1793}
1794
018aabb5 1795static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1796 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1797 unsigned long data)
1798{
018aabb5 1799 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1800}
1801
018aabb5 1802static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1803 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804 unsigned long data)
3da0dd43 1805{
1e3f42f0
TY
1806 u64 *sptep;
1807 struct rmap_iterator iter;
3da0dd43 1808 int need_flush = 0;
1e3f42f0 1809 u64 new_spte;
3da0dd43 1810 pte_t *ptep = (pte_t *)data;
ba049e93 1811 kvm_pfn_t new_pfn;
3da0dd43
IE
1812
1813 WARN_ON(pte_huge(*ptep));
1814 new_pfn = pte_pfn(*ptep);
1e3f42f0 1815
0d536790 1816restart:
018aabb5 1817 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1818 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1819 sptep, *sptep, gfn, level);
1e3f42f0 1820
3da0dd43 1821 need_flush = 1;
1e3f42f0 1822
3da0dd43 1823 if (pte_write(*ptep)) {
e7912386 1824 pte_list_remove(rmap_head, sptep);
0d536790 1825 goto restart;
3da0dd43 1826 } else {
1e3f42f0 1827 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1828 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1829
1830 new_spte &= ~PT_WRITABLE_MASK;
1831 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1832
1833 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1834
1835 mmu_spte_clear_track_bits(sptep);
1836 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1837 }
1838 }
1e3f42f0 1839
3cc5ea94
LT
1840 if (need_flush && kvm_available_flush_tlb_with_range()) {
1841 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1842 return 0;
1843 }
1844
0cf853c5 1845 return need_flush;
3da0dd43
IE
1846}
1847
6ce1f4e2
XG
1848struct slot_rmap_walk_iterator {
1849 /* input fields. */
1850 struct kvm_memory_slot *slot;
1851 gfn_t start_gfn;
1852 gfn_t end_gfn;
1853 int start_level;
1854 int end_level;
1855
1856 /* output fields. */
1857 gfn_t gfn;
018aabb5 1858 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1859 int level;
1860
1861 /* private field. */
018aabb5 1862 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1863};
1864
1865static void
1866rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1867{
1868 iterator->level = level;
1869 iterator->gfn = iterator->start_gfn;
1870 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1871 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1872 iterator->slot);
1873}
1874
1875static void
1876slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1877 struct kvm_memory_slot *slot, int start_level,
1878 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1879{
1880 iterator->slot = slot;
1881 iterator->start_level = start_level;
1882 iterator->end_level = end_level;
1883 iterator->start_gfn = start_gfn;
1884 iterator->end_gfn = end_gfn;
1885
1886 rmap_walk_init_level(iterator, iterator->start_level);
1887}
1888
1889static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1890{
1891 return !!iterator->rmap;
1892}
1893
1894static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1895{
1896 if (++iterator->rmap <= iterator->end_rmap) {
1897 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1898 return;
1899 }
1900
1901 if (++iterator->level > iterator->end_level) {
1902 iterator->rmap = NULL;
1903 return;
1904 }
1905
1906 rmap_walk_init_level(iterator, iterator->level);
1907}
1908
1909#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1910 _start_gfn, _end_gfn, _iter_) \
1911 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1912 _end_level_, _start_gfn, _end_gfn); \
1913 slot_rmap_walk_okay(_iter_); \
1914 slot_rmap_walk_next(_iter_))
1915
84504ef3
TY
1916static int kvm_handle_hva_range(struct kvm *kvm,
1917 unsigned long start,
1918 unsigned long end,
1919 unsigned long data,
1920 int (*handler)(struct kvm *kvm,
018aabb5 1921 struct kvm_rmap_head *rmap_head,
048212d0 1922 struct kvm_memory_slot *slot,
8a9522d2
ALC
1923 gfn_t gfn,
1924 int level,
84504ef3 1925 unsigned long data))
e930bffe 1926{
bc6678a3 1927 struct kvm_memslots *slots;
be6ba0f0 1928 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1929 struct slot_rmap_walk_iterator iterator;
1930 int ret = 0;
9da0e4d5 1931 int i;
bc6678a3 1932
9da0e4d5
PB
1933 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1934 slots = __kvm_memslots(kvm, i);
1935 kvm_for_each_memslot(memslot, slots) {
1936 unsigned long hva_start, hva_end;
1937 gfn_t gfn_start, gfn_end;
e930bffe 1938
9da0e4d5
PB
1939 hva_start = max(start, memslot->userspace_addr);
1940 hva_end = min(end, memslot->userspace_addr +
1941 (memslot->npages << PAGE_SHIFT));
1942 if (hva_start >= hva_end)
1943 continue;
1944 /*
1945 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1946 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1947 */
1948 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1949 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1950
1951 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1952 PT_MAX_HUGEPAGE_LEVEL,
1953 gfn_start, gfn_end - 1,
1954 &iterator)
1955 ret |= handler(kvm, iterator.rmap, memslot,
1956 iterator.gfn, iterator.level, data);
1957 }
e930bffe
AA
1958 }
1959
f395302e 1960 return ret;
e930bffe
AA
1961}
1962
84504ef3
TY
1963static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1964 unsigned long data,
018aabb5
TY
1965 int (*handler)(struct kvm *kvm,
1966 struct kvm_rmap_head *rmap_head,
048212d0 1967 struct kvm_memory_slot *slot,
8a9522d2 1968 gfn_t gfn, int level,
84504ef3
TY
1969 unsigned long data))
1970{
1971 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1972}
1973
b3ae2096
TY
1974int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1975{
1976 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1977}
1978
748c0e31 1979int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1980{
0cf853c5 1981 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1982}
1983
018aabb5 1984static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1985 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1986 unsigned long data)
e930bffe 1987{
1e3f42f0 1988 u64 *sptep;
79f702a6 1989 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1990 int young = 0;
1991
f160c7b7
JS
1992 for_each_rmap_spte(rmap_head, &iter, sptep)
1993 young |= mmu_spte_age(sptep);
0d536790 1994
8a9522d2 1995 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1996 return young;
1997}
1998
018aabb5 1999static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
2000 struct kvm_memory_slot *slot, gfn_t gfn,
2001 int level, unsigned long data)
8ee53820 2002{
1e3f42f0
TY
2003 u64 *sptep;
2004 struct rmap_iterator iter;
8ee53820 2005
83ef6c81
JS
2006 for_each_rmap_spte(rmap_head, &iter, sptep)
2007 if (is_accessed_spte(*sptep))
2008 return 1;
83ef6c81 2009 return 0;
8ee53820
AA
2010}
2011
53a27b39
MT
2012#define RMAP_RECYCLE_THRESHOLD 1000
2013
852e3c19 2014static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 2015{
018aabb5 2016 struct kvm_rmap_head *rmap_head;
852e3c19
JR
2017 struct kvm_mmu_page *sp;
2018
2019 sp = page_header(__pa(spte));
53a27b39 2020
018aabb5 2021 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 2022
018aabb5 2023 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
2024 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2025 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
2026}
2027
57128468 2028int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 2029{
57128468 2030 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
2031}
2032
8ee53820
AA
2033int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2034{
2035 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2036}
2037
d6c69ee9 2038#ifdef MMU_DEBUG
47ad8e68 2039static int is_empty_shadow_page(u64 *spt)
6aa8b732 2040{
139bdb2d
AK
2041 u64 *pos;
2042 u64 *end;
2043
47ad8e68 2044 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2045 if (is_shadow_present_pte(*pos)) {
b8688d51 2046 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2047 pos, *pos);
6aa8b732 2048 return 0;
139bdb2d 2049 }
6aa8b732
AK
2050 return 1;
2051}
d6c69ee9 2052#endif
6aa8b732 2053
45221ab6
DH
2054/*
2055 * This value is the sum of all of the kvm instances's
2056 * kvm->arch.n_used_mmu_pages values. We need a global,
2057 * aggregate version in order to make the slab shrinker
2058 * faster
2059 */
bc8a3d89 2060static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2061{
2062 kvm->arch.n_used_mmu_pages += nr;
2063 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2064}
2065
834be0d8 2066static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2067{
fa4a2c08 2068 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2069 hlist_del(&sp->hash_link);
bd4c86ea
XG
2070 list_del(&sp->link);
2071 free_page((unsigned long)sp->spt);
834be0d8
GN
2072 if (!sp->role.direct)
2073 free_page((unsigned long)sp->gfns);
e8ad9a70 2074 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2075}
2076
cea0f0e7
AK
2077static unsigned kvm_page_table_hashfn(gfn_t gfn)
2078{
114df303 2079 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2080}
2081
714b93da 2082static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2083 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2084{
cea0f0e7
AK
2085 if (!parent_pte)
2086 return;
cea0f0e7 2087
67052b35 2088 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2089}
2090
4db35314 2091static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2092 u64 *parent_pte)
2093{
8daf3462 2094 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2095}
2096
bcdd9a93
XG
2097static void drop_parent_pte(struct kvm_mmu_page *sp,
2098 u64 *parent_pte)
2099{
2100 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2101 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2102}
2103
47005792 2104static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2105{
67052b35 2106 struct kvm_mmu_page *sp;
7ddca7e4 2107
80feb89a
TY
2108 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2109 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2110 if (!direct)
80feb89a 2111 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2112 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
2113
2114 /*
2115 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2116 * depends on valid pages being added to the head of the list. See
2117 * comments in kvm_zap_obsolete_pages().
2118 */
ca333add 2119 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 2120 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2121 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2122 return sp;
ad8cfbe3
MT
2123}
2124
67052b35 2125static void mark_unsync(u64 *spte);
1047df1f 2126static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2127{
74c4e63a
TY
2128 u64 *sptep;
2129 struct rmap_iterator iter;
2130
2131 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2132 mark_unsync(sptep);
2133 }
0074ff63
MT
2134}
2135
67052b35 2136static void mark_unsync(u64 *spte)
0074ff63 2137{
67052b35 2138 struct kvm_mmu_page *sp;
1047df1f 2139 unsigned int index;
0074ff63 2140
67052b35 2141 sp = page_header(__pa(spte));
1047df1f
XG
2142 index = spte - sp->spt;
2143 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2144 return;
1047df1f 2145 if (sp->unsync_children++)
0074ff63 2146 return;
1047df1f 2147 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2148}
2149
e8bc217a 2150static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2151 struct kvm_mmu_page *sp)
e8bc217a 2152{
1f50f1b3 2153 return 0;
e8bc217a
MT
2154}
2155
7eb77e9f 2156static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2157{
2158}
2159
0f53b5b1
XG
2160static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2161 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2162 const void *pte)
0f53b5b1
XG
2163{
2164 WARN_ON(1);
2165}
2166
60c8aec6
MT
2167#define KVM_PAGE_ARRAY_NR 16
2168
2169struct kvm_mmu_pages {
2170 struct mmu_page_and_offset {
2171 struct kvm_mmu_page *sp;
2172 unsigned int idx;
2173 } page[KVM_PAGE_ARRAY_NR];
2174 unsigned int nr;
2175};
2176
cded19f3
HE
2177static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2178 int idx)
4731d4c7 2179{
60c8aec6 2180 int i;
4731d4c7 2181
60c8aec6
MT
2182 if (sp->unsync)
2183 for (i=0; i < pvec->nr; i++)
2184 if (pvec->page[i].sp == sp)
2185 return 0;
2186
2187 pvec->page[pvec->nr].sp = sp;
2188 pvec->page[pvec->nr].idx = idx;
2189 pvec->nr++;
2190 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2191}
2192
fd951457
TY
2193static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2194{
2195 --sp->unsync_children;
2196 WARN_ON((int)sp->unsync_children < 0);
2197 __clear_bit(idx, sp->unsync_child_bitmap);
2198}
2199
60c8aec6
MT
2200static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2201 struct kvm_mmu_pages *pvec)
2202{
2203 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2204
37178b8b 2205 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2206 struct kvm_mmu_page *child;
4731d4c7
MT
2207 u64 ent = sp->spt[i];
2208
fd951457
TY
2209 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2210 clear_unsync_child_bit(sp, i);
2211 continue;
2212 }
7a8f1a74
XG
2213
2214 child = page_header(ent & PT64_BASE_ADDR_MASK);
2215
2216 if (child->unsync_children) {
2217 if (mmu_pages_add(pvec, child, i))
2218 return -ENOSPC;
2219
2220 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2221 if (!ret) {
2222 clear_unsync_child_bit(sp, i);
2223 continue;
2224 } else if (ret > 0) {
7a8f1a74 2225 nr_unsync_leaf += ret;
fd951457 2226 } else
7a8f1a74
XG
2227 return ret;
2228 } else if (child->unsync) {
2229 nr_unsync_leaf++;
2230 if (mmu_pages_add(pvec, child, i))
2231 return -ENOSPC;
2232 } else
fd951457 2233 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2234 }
2235
60c8aec6
MT
2236 return nr_unsync_leaf;
2237}
2238
e23d3fef
XG
2239#define INVALID_INDEX (-1)
2240
60c8aec6
MT
2241static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2242 struct kvm_mmu_pages *pvec)
2243{
0a47cd85 2244 pvec->nr = 0;
60c8aec6
MT
2245 if (!sp->unsync_children)
2246 return 0;
2247
e23d3fef 2248 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2249 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2250}
2251
4731d4c7
MT
2252static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2253{
2254 WARN_ON(!sp->unsync);
5e1b3ddb 2255 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2256 sp->unsync = 0;
2257 --kvm->stat.mmu_unsync;
2258}
2259
83cdb568
SC
2260static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2261 struct list_head *invalid_list);
7775834a
XG
2262static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2263 struct list_head *invalid_list);
4731d4c7 2264
47c42e6b 2265
f3414bc7 2266#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2267 hlist_for_each_entry(_sp, \
2268 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
fac026da 2269 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 2270 } else
1044b030
TY
2271
2272#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2273 for_each_valid_sp(_kvm, _sp, _gfn) \
2274 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2275
47c42e6b
SC
2276static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2277{
2278 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2279}
2280
f918b443 2281/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2282static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2283 struct list_head *invalid_list)
4731d4c7 2284{
47c42e6b
SC
2285 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2286 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2287 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2288 return false;
4731d4c7
MT
2289 }
2290
1f50f1b3 2291 return true;
4731d4c7
MT
2292}
2293
a2113634
SC
2294static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2295 struct list_head *invalid_list,
2296 bool remote_flush)
2297{
cfd32acf 2298 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2299 return false;
2300
2301 if (!list_empty(invalid_list))
2302 kvm_mmu_commit_zap_page(kvm, invalid_list);
2303 else
2304 kvm_flush_remote_tlbs(kvm);
2305 return true;
2306}
2307
35a70510
PB
2308static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2309 struct list_head *invalid_list,
2310 bool remote_flush, bool local_flush)
1d9dc7e0 2311{
a2113634 2312 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2313 return;
d98ba053 2314
a2113634 2315 if (local_flush)
35a70510 2316 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2317}
2318
e37fa785
XG
2319#ifdef CONFIG_KVM_MMU_AUDIT
2320#include "mmu_audit.c"
2321#else
2322static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2323static void mmu_audit_disable(void) { }
2324#endif
2325
002c5f73
SC
2326static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2327{
fac026da
SC
2328 return sp->role.invalid ||
2329 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
2330}
2331
1f50f1b3 2332static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2333 struct list_head *invalid_list)
1d9dc7e0 2334{
9a43c5d9
PB
2335 kvm_unlink_unsync_page(vcpu->kvm, sp);
2336 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2337}
2338
9f1a122f 2339/* @gfn should be write-protected at the call site */
2a74003a
PB
2340static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2341 struct list_head *invalid_list)
9f1a122f 2342{
9f1a122f 2343 struct kvm_mmu_page *s;
2a74003a 2344 bool ret = false;
9f1a122f 2345
b67bfe0d 2346 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2347 if (!s->unsync)
9f1a122f
XG
2348 continue;
2349
2350 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2351 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2352 }
2353
2a74003a 2354 return ret;
9f1a122f
XG
2355}
2356
60c8aec6 2357struct mmu_page_path {
2a7266a8
YZ
2358 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2359 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2360};
2361
60c8aec6 2362#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2363 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2364 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2365 i = mmu_pages_next(&pvec, &parents, i))
2366
cded19f3
HE
2367static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2368 struct mmu_page_path *parents,
2369 int i)
60c8aec6
MT
2370{
2371 int n;
2372
2373 for (n = i+1; n < pvec->nr; n++) {
2374 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2375 unsigned idx = pvec->page[n].idx;
2376 int level = sp->role.level;
60c8aec6 2377
0a47cd85
PB
2378 parents->idx[level-1] = idx;
2379 if (level == PT_PAGE_TABLE_LEVEL)
2380 break;
60c8aec6 2381
0a47cd85 2382 parents->parent[level-2] = sp;
60c8aec6
MT
2383 }
2384
2385 return n;
2386}
2387
0a47cd85
PB
2388static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2389 struct mmu_page_path *parents)
2390{
2391 struct kvm_mmu_page *sp;
2392 int level;
2393
2394 if (pvec->nr == 0)
2395 return 0;
2396
e23d3fef
XG
2397 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2398
0a47cd85
PB
2399 sp = pvec->page[0].sp;
2400 level = sp->role.level;
2401 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2402
2403 parents->parent[level-2] = sp;
2404
2405 /* Also set up a sentinel. Further entries in pvec are all
2406 * children of sp, so this element is never overwritten.
2407 */
2408 parents->parent[level-1] = NULL;
2409 return mmu_pages_next(pvec, parents, 0);
2410}
2411
cded19f3 2412static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2413{
60c8aec6
MT
2414 struct kvm_mmu_page *sp;
2415 unsigned int level = 0;
2416
2417 do {
2418 unsigned int idx = parents->idx[level];
60c8aec6
MT
2419 sp = parents->parent[level];
2420 if (!sp)
2421 return;
2422
e23d3fef 2423 WARN_ON(idx == INVALID_INDEX);
fd951457 2424 clear_unsync_child_bit(sp, idx);
60c8aec6 2425 level++;
0a47cd85 2426 } while (!sp->unsync_children);
60c8aec6 2427}
4731d4c7 2428
60c8aec6
MT
2429static void mmu_sync_children(struct kvm_vcpu *vcpu,
2430 struct kvm_mmu_page *parent)
2431{
2432 int i;
2433 struct kvm_mmu_page *sp;
2434 struct mmu_page_path parents;
2435 struct kvm_mmu_pages pages;
d98ba053 2436 LIST_HEAD(invalid_list);
50c9e6f3 2437 bool flush = false;
60c8aec6 2438
60c8aec6 2439 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2440 bool protected = false;
b1a36821
MT
2441
2442 for_each_sp(pages, sp, parents, i)
54bf36aa 2443 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2444
50c9e6f3 2445 if (protected) {
b1a36821 2446 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2447 flush = false;
2448 }
b1a36821 2449
60c8aec6 2450 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2451 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2452 mmu_pages_clear_parents(&parents);
2453 }
50c9e6f3
PB
2454 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2455 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2456 cond_resched_lock(&vcpu->kvm->mmu_lock);
2457 flush = false;
2458 }
60c8aec6 2459 }
50c9e6f3
PB
2460
2461 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2462}
2463
a30f47cb
XG
2464static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2465{
e5691a81 2466 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2467}
2468
2469static void clear_sp_write_flooding_count(u64 *spte)
2470{
2471 struct kvm_mmu_page *sp = page_header(__pa(spte));
2472
2473 __clear_sp_write_flooding_count(sp);
2474}
2475
cea0f0e7
AK
2476static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2477 gfn_t gfn,
2478 gva_t gaddr,
2479 unsigned level,
f6e2c02b 2480 int direct,
0a2b64c5 2481 unsigned int access)
cea0f0e7
AK
2482{
2483 union kvm_mmu_page_role role;
cea0f0e7 2484 unsigned quadrant;
9f1a122f 2485 struct kvm_mmu_page *sp;
9f1a122f 2486 bool need_sync = false;
2a74003a 2487 bool flush = false;
f3414bc7 2488 int collisions = 0;
2a74003a 2489 LIST_HEAD(invalid_list);
cea0f0e7 2490
36d9594d 2491 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2492 role.level = level;
f6e2c02b 2493 role.direct = direct;
84b0c8c6 2494 if (role.direct)
47c42e6b 2495 role.gpte_is_8_bytes = true;
41074d07 2496 role.access = access;
44dd3ffa
VK
2497 if (!vcpu->arch.mmu->direct_map
2498 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2499 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2500 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2501 role.quadrant = quadrant;
2502 }
f3414bc7
DM
2503 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2504 if (sp->gfn != gfn) {
2505 collisions++;
2506 continue;
2507 }
2508
7ae680eb
XG
2509 if (!need_sync && sp->unsync)
2510 need_sync = true;
4731d4c7 2511
7ae680eb
XG
2512 if (sp->role.word != role.word)
2513 continue;
4731d4c7 2514
2a74003a
PB
2515 if (sp->unsync) {
2516 /* The page is good, but __kvm_sync_page might still end
2517 * up zapping it. If so, break in order to rebuild it.
2518 */
2519 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2520 break;
2521
2522 WARN_ON(!list_empty(&invalid_list));
2523 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2524 }
e02aa901 2525
98bba238 2526 if (sp->unsync_children)
a8eeb04a 2527 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2528
a30f47cb 2529 __clear_sp_write_flooding_count(sp);
7ae680eb 2530 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2531 goto out;
7ae680eb 2532 }
47005792 2533
dfc5aa00 2534 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2535
2536 sp = kvm_mmu_alloc_page(vcpu, direct);
2537
4db35314
AK
2538 sp->gfn = gfn;
2539 sp->role = role;
7ae680eb
XG
2540 hlist_add_head(&sp->hash_link,
2541 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2542 if (!direct) {
56ca57f9
XG
2543 /*
2544 * we should do write protection before syncing pages
2545 * otherwise the content of the synced shadow page may
2546 * be inconsistent with guest page table.
2547 */
2548 account_shadowed(vcpu->kvm, sp);
2549 if (level == PT_PAGE_TABLE_LEVEL &&
2550 rmap_write_protect(vcpu, gfn))
c3134ce2 2551 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2552
9f1a122f 2553 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2554 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2555 }
77492664 2556 clear_page(sp->spt);
f691fe1d 2557 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2558
2559 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2560out:
2561 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2562 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2563 return sp;
cea0f0e7
AK
2564}
2565
7eb77e9f
JS
2566static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2567 struct kvm_vcpu *vcpu, hpa_t root,
2568 u64 addr)
2d11123a
AK
2569{
2570 iterator->addr = addr;
7eb77e9f 2571 iterator->shadow_addr = root;
44dd3ffa 2572 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2573
2a7266a8 2574 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2575 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2576 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2577 --iterator->level;
2578
2d11123a 2579 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2580 /*
2581 * prev_root is currently only used for 64-bit hosts. So only
2582 * the active root_hpa is valid here.
2583 */
44dd3ffa 2584 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2585
2d11123a 2586 iterator->shadow_addr
44dd3ffa 2587 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2588 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2589 --iterator->level;
2590 if (!iterator->shadow_addr)
2591 iterator->level = 0;
2592 }
2593}
2594
7eb77e9f
JS
2595static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2596 struct kvm_vcpu *vcpu, u64 addr)
2597{
44dd3ffa 2598 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2599 addr);
2600}
2601
2d11123a
AK
2602static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2603{
2604 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2605 return false;
4d88954d 2606
2d11123a
AK
2607 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2608 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2609 return true;
2610}
2611
c2a2ac2b
XG
2612static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2613 u64 spte)
2d11123a 2614{
c2a2ac2b 2615 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2616 iterator->level = 0;
2617 return;
2618 }
2619
c2a2ac2b 2620 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2621 --iterator->level;
2622}
2623
c2a2ac2b
XG
2624static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2625{
bb606a9b 2626 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2627}
2628
98bba238
TY
2629static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2630 struct kvm_mmu_page *sp)
32ef26a3
AK
2631{
2632 u64 spte;
2633
ffb128c8 2634 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2635
ffb128c8 2636 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2637 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2638
2639 if (sp_ad_disabled(sp))
6eeb4ef0 2640 spte |= SPTE_AD_DISABLED_MASK;
ac8d57e5
PF
2641 else
2642 spte |= shadow_accessed_mask;
24db2734 2643
1df9f2dc 2644 mmu_spte_set(sptep, spte);
98bba238
TY
2645
2646 mmu_page_add_parent_pte(vcpu, sp, sptep);
2647
2648 if (sp->unsync_children || sp->unsync)
2649 mark_unsync(sptep);
32ef26a3
AK
2650}
2651
a357bd22
AK
2652static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2653 unsigned direct_access)
2654{
2655 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2656 struct kvm_mmu_page *child;
2657
2658 /*
2659 * For the direct sp, if the guest pte's dirty bit
2660 * changed form clean to dirty, it will corrupt the
2661 * sp's access: allow writable in the read-only sp,
2662 * so we should update the spte at this point to get
2663 * a new sp with the correct access.
2664 */
2665 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2666 if (child->role.access == direct_access)
2667 return;
2668
bcdd9a93 2669 drop_parent_pte(child, sptep);
c3134ce2 2670 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2671 }
2672}
2673
505aef8f 2674static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2675 u64 *spte)
2676{
2677 u64 pte;
2678 struct kvm_mmu_page *child;
2679
2680 pte = *spte;
2681 if (is_shadow_present_pte(pte)) {
505aef8f 2682 if (is_last_spte(pte, sp->role.level)) {
c3707958 2683 drop_spte(kvm, spte);
505aef8f
XG
2684 if (is_large_pte(pte))
2685 --kvm->stat.lpages;
2686 } else {
38e3b2b2 2687 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2688 drop_parent_pte(child, spte);
38e3b2b2 2689 }
505aef8f
XG
2690 return true;
2691 }
2692
2693 if (is_mmio_spte(pte))
ce88decf 2694 mmu_spte_clear_no_track(spte);
c3707958 2695
505aef8f 2696 return false;
38e3b2b2
XG
2697}
2698
90cb0529 2699static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2700 struct kvm_mmu_page *sp)
a436036b 2701{
697fe2e2 2702 unsigned i;
697fe2e2 2703
38e3b2b2
XG
2704 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2705 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2706}
2707
31aa2b44 2708static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2709{
1e3f42f0
TY
2710 u64 *sptep;
2711 struct rmap_iterator iter;
a436036b 2712
018aabb5 2713 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2714 drop_parent_pte(sp, sptep);
31aa2b44
AK
2715}
2716
60c8aec6 2717static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2718 struct kvm_mmu_page *parent,
2719 struct list_head *invalid_list)
4731d4c7 2720{
60c8aec6
MT
2721 int i, zapped = 0;
2722 struct mmu_page_path parents;
2723 struct kvm_mmu_pages pages;
4731d4c7 2724
60c8aec6 2725 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2726 return 0;
60c8aec6 2727
60c8aec6
MT
2728 while (mmu_unsync_walk(parent, &pages)) {
2729 struct kvm_mmu_page *sp;
2730
2731 for_each_sp(pages, sp, parents, i) {
7775834a 2732 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2733 mmu_pages_clear_parents(&parents);
77662e00 2734 zapped++;
60c8aec6 2735 }
60c8aec6
MT
2736 }
2737
2738 return zapped;
4731d4c7
MT
2739}
2740
83cdb568
SC
2741static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2742 struct kvm_mmu_page *sp,
2743 struct list_head *invalid_list,
2744 int *nr_zapped)
31aa2b44 2745{
83cdb568 2746 bool list_unstable;
f691fe1d 2747
7775834a 2748 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2749 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2750 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2751 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2752 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2753
83cdb568
SC
2754 /* Zapping children means active_mmu_pages has become unstable. */
2755 list_unstable = *nr_zapped;
2756
f6e2c02b 2757 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2758 unaccount_shadowed(kvm, sp);
5304b8d3 2759
4731d4c7
MT
2760 if (sp->unsync)
2761 kvm_unlink_unsync_page(kvm, sp);
4db35314 2762 if (!sp->root_count) {
54a4f023 2763 /* Count self */
83cdb568 2764 (*nr_zapped)++;
7775834a 2765 list_move(&sp->link, invalid_list);
aa6bd187 2766 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2767 } else {
5b5c6a5a 2768 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72 2769
10605204
SC
2770 /*
2771 * Obsolete pages cannot be used on any vCPUs, see the comment
2772 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2773 * treats invalid shadow pages as being obsolete.
2774 */
2775 if (!is_obsolete_sp(kvm, sp))
05988d72 2776 kvm_reload_remote_mmus(kvm);
2e53d63a 2777 }
7775834a 2778
b8e8c830
PB
2779 if (sp->lpage_disallowed)
2780 unaccount_huge_nx_page(kvm, sp);
2781
7775834a 2782 sp->role.invalid = 1;
83cdb568
SC
2783 return list_unstable;
2784}
2785
2786static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2787 struct list_head *invalid_list)
2788{
2789 int nr_zapped;
2790
2791 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2792 return nr_zapped;
a436036b
AK
2793}
2794
7775834a
XG
2795static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2796 struct list_head *invalid_list)
2797{
945315b9 2798 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2799
2800 if (list_empty(invalid_list))
2801 return;
2802
c142786c 2803 /*
9753f529
LT
2804 * We need to make sure everyone sees our modifications to
2805 * the page tables and see changes to vcpu->mode here. The barrier
2806 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2807 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2808 *
2809 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2810 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2811 */
2812 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2813
945315b9 2814 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2815 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2816 kvm_mmu_free_page(sp);
945315b9 2817 }
7775834a
XG
2818}
2819
5da59607
TY
2820static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2821 struct list_head *invalid_list)
2822{
2823 struct kvm_mmu_page *sp;
2824
2825 if (list_empty(&kvm->arch.active_mmu_pages))
2826 return false;
2827
d74c0e6b
GT
2828 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2829 struct kvm_mmu_page, link);
42bcbebf 2830 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2831}
2832
ba7888dd
SC
2833static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2834{
2835 LIST_HEAD(invalid_list);
2836
2837 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2838 return 0;
2839
2840 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2841 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2842 break;
2843
2844 ++vcpu->kvm->stat.mmu_recycled;
2845 }
2846 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2847
2848 if (!kvm_mmu_available_pages(vcpu->kvm))
2849 return -ENOSPC;
2850 return 0;
2851}
2852
82ce2c96
IE
2853/*
2854 * Changing the number of mmu pages allocated to the vm
49d5ca26 2855 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2856 */
bc8a3d89 2857void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2858{
d98ba053 2859 LIST_HEAD(invalid_list);
82ce2c96 2860
b34cb590
TY
2861 spin_lock(&kvm->mmu_lock);
2862
49d5ca26 2863 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2864 /* Need to free some mmu pages to achieve the goal. */
2865 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2866 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2867 break;
82ce2c96 2868
aa6bd187 2869 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2870 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2871 }
82ce2c96 2872
49d5ca26 2873 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2874
2875 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2876}
2877
1cb3f3ae 2878int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2879{
4db35314 2880 struct kvm_mmu_page *sp;
d98ba053 2881 LIST_HEAD(invalid_list);
a436036b
AK
2882 int r;
2883
9ad17b10 2884 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2885 r = 0;
1cb3f3ae 2886 spin_lock(&kvm->mmu_lock);
b67bfe0d 2887 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2888 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2889 sp->role.word);
2890 r = 1;
f41d335a 2891 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2892 }
d98ba053 2893 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2894 spin_unlock(&kvm->mmu_lock);
2895
a436036b 2896 return r;
cea0f0e7 2897}
1cb3f3ae 2898EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2899
5c520e90 2900static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2901{
2902 trace_kvm_mmu_unsync_page(sp);
2903 ++vcpu->kvm->stat.mmu_unsync;
2904 sp->unsync = 1;
2905
2906 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2907}
2908
3d0c27ad
XG
2909static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2910 bool can_unsync)
4731d4c7 2911{
5c520e90 2912 struct kvm_mmu_page *sp;
4731d4c7 2913
3d0c27ad
XG
2914 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2915 return true;
9cf5cf5a 2916
5c520e90 2917 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2918 if (!can_unsync)
3d0c27ad 2919 return true;
36a2e677 2920
5c520e90
XG
2921 if (sp->unsync)
2922 continue;
9cf5cf5a 2923
5c520e90
XG
2924 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2925 kvm_unsync_page(vcpu, sp);
4731d4c7 2926 }
3d0c27ad 2927
578e1c4d
JS
2928 /*
2929 * We need to ensure that the marking of unsync pages is visible
2930 * before the SPTE is updated to allow writes because
2931 * kvm_mmu_sync_roots() checks the unsync flags without holding
2932 * the MMU lock and so can race with this. If the SPTE was updated
2933 * before the page had been marked as unsync-ed, something like the
2934 * following could happen:
2935 *
2936 * CPU 1 CPU 2
2937 * ---------------------------------------------------------------------
2938 * 1.2 Host updates SPTE
2939 * to be writable
2940 * 2.1 Guest writes a GPTE for GVA X.
2941 * (GPTE being in the guest page table shadowed
2942 * by the SP from CPU 1.)
2943 * This reads SPTE during the page table walk.
2944 * Since SPTE.W is read as 1, there is no
2945 * fault.
2946 *
2947 * 2.2 Guest issues TLB flush.
2948 * That causes a VM Exit.
2949 *
2950 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2951 * Since it is false, so it just returns.
2952 *
2953 * 2.4 Guest accesses GVA X.
2954 * Since the mapping in the SP was not updated,
2955 * so the old mapping for GVA X incorrectly
2956 * gets used.
2957 * 1.1 Host marks SP
2958 * as unsync
2959 * (sp->unsync = true)
2960 *
2961 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2962 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2963 * pairs with this write barrier.
2964 */
2965 smp_wmb();
2966
3d0c27ad 2967 return false;
4731d4c7
MT
2968}
2969
ba049e93 2970static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2971{
2972 if (pfn_valid(pfn))
aa2e063a
HZ
2973 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2974 /*
2975 * Some reserved pages, such as those from NVDIMM
2976 * DAX devices, are not for MMIO, and can be mapped
2977 * with cached memory type for better performance.
2978 * However, the above check misconceives those pages
2979 * as MMIO, and results in KVM mapping them with UC
2980 * memory type, which would hurt the performance.
2981 * Therefore, we check the host memory type in addition
2982 * and only treat UC/UC-/WC pages as MMIO.
2983 */
2984 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 2985
0c55671f
KA
2986 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2987 pfn_to_hpa(pfn + 1) - 1,
2988 E820_TYPE_RAM);
d1fe9219
PB
2989}
2990
5ce4786f
JS
2991/* Bits which may be returned by set_spte() */
2992#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2993#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2994
d555c333 2995static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
0a2b64c5 2996 unsigned int pte_access, int level,
ba049e93 2997 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2998 bool can_unsync, bool host_writable)
1c4f1fd6 2999{
ffb128c8 3000 u64 spte = 0;
1e73f9dd 3001 int ret = 0;
ac8d57e5 3002 struct kvm_mmu_page *sp;
64d4d521 3003
54bf36aa 3004 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
3005 return 0;
3006
ac8d57e5
PF
3007 sp = page_header(__pa(sptep));
3008 if (sp_ad_disabled(sp))
6eeb4ef0 3009 spte |= SPTE_AD_DISABLED_MASK;
1f4e5fc8
PB
3010 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3011 spte |= SPTE_AD_WRPROT_ONLY_MASK;
ac8d57e5 3012
d95c5568
BD
3013 /*
3014 * For the EPT case, shadow_present_mask is 0 if hardware
3015 * supports exec-only page table entries. In that case,
3016 * ACC_USER_MASK and shadow_user_mask are used to represent
3017 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3018 */
ffb128c8 3019 spte |= shadow_present_mask;
947da538 3020 if (!speculative)
ac8d57e5 3021 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 3022
b8e8c830
PB
3023 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3024 is_nx_huge_page_enabled()) {
3025 pte_access &= ~ACC_EXEC_MASK;
3026 }
3027
7b52345e
SY
3028 if (pte_access & ACC_EXEC_MASK)
3029 spte |= shadow_x_mask;
3030 else
3031 spte |= shadow_nx_mask;
49fde340 3032
1c4f1fd6 3033 if (pte_access & ACC_USER_MASK)
7b52345e 3034 spte |= shadow_user_mask;
49fde340 3035
852e3c19 3036 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 3037 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 3038 if (tdp_enabled)
afaf0b2f 3039 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
d1fe9219 3040 kvm_is_mmio_pfn(pfn));
1c4f1fd6 3041
9bdbba13 3042 if (host_writable)
1403283a 3043 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
3044 else
3045 pte_access &= ~ACC_WRITE_MASK;
1403283a 3046
daaf216c
TL
3047 if (!kvm_is_mmio_pfn(pfn))
3048 spte |= shadow_me_mask;
3049
35149e21 3050 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 3051
c2288505 3052 if (pte_access & ACC_WRITE_MASK) {
49fde340 3053 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 3054
ecc5589f
MT
3055 /*
3056 * Optimization: for pte sync, if spte was writable the hash
3057 * lookup is unnecessary (and expensive). Write protection
3058 * is responsibility of mmu_get_page / kvm_sync_page.
3059 * Same reasoning can be applied to dirty page accounting.
3060 */
8dae4445 3061 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3062 goto set_pte;
3063
4731d4c7 3064 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3065 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3066 __func__, gfn);
5ce4786f 3067 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3068 pte_access &= ~ACC_WRITE_MASK;
49fde340 3069 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3070 }
3071 }
3072
9b51a630 3073 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3074 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3075 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3076 }
1c4f1fd6 3077
f160c7b7
JS
3078 if (speculative)
3079 spte = mark_spte_for_access_track(spte);
3080
38187c83 3081set_pte:
6e7d0354 3082 if (mmu_spte_update(sptep, spte))
5ce4786f 3083 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
3084 return ret;
3085}
3086
0a2b64c5
BG
3087static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3088 unsigned int pte_access, int write_fault, int level,
3089 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3090 bool host_writable)
1e73f9dd
MT
3091{
3092 int was_rmapped = 0;
53a27b39 3093 int rmap_count;
5ce4786f 3094 int set_spte_ret;
9b8ebbdb 3095 int ret = RET_PF_RETRY;
c2a4eadf 3096 bool flush = false;
1e73f9dd 3097
f7616203
XG
3098 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3099 *sptep, write_fault, gfn);
1e73f9dd 3100
afd28fe1 3101 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3102 /*
3103 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3104 * the parent of the now unreachable PTE.
3105 */
852e3c19
JR
3106 if (level > PT_PAGE_TABLE_LEVEL &&
3107 !is_large_pte(*sptep)) {
1e73f9dd 3108 struct kvm_mmu_page *child;
d555c333 3109 u64 pte = *sptep;
1e73f9dd
MT
3110
3111 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3112 drop_parent_pte(child, sptep);
c2a4eadf 3113 flush = true;
d555c333 3114 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3115 pgprintk("hfn old %llx new %llx\n",
d555c333 3116 spte_to_pfn(*sptep), pfn);
c3707958 3117 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3118 flush = true;
6bed6b9e
JR
3119 } else
3120 was_rmapped = 1;
1e73f9dd 3121 }
852e3c19 3122
5ce4786f
JS
3123 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3124 speculative, true, host_writable);
3125 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3126 if (write_fault)
9b8ebbdb 3127 ret = RET_PF_EMULATE;
77c3913b 3128 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3129 }
c3134ce2 3130
c2a4eadf 3131 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3132 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3133 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3134
029499b4 3135 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3136 ret = RET_PF_EMULATE;
ce88decf 3137
d555c333 3138 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 3139 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 3140 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3141 ++vcpu->kvm->stat.lpages;
3142
ffb61bb3 3143 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3144 if (!was_rmapped) {
3145 rmap_count = rmap_add(vcpu, sptep, gfn);
3146 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3147 rmap_recycle(vcpu, sptep, gfn);
3148 }
1c4f1fd6 3149 }
cb9aaa30 3150
9b8ebbdb 3151 return ret;
1c4f1fd6
AK
3152}
3153
ba049e93 3154static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3155 bool no_dirty_log)
3156{
3157 struct kvm_memory_slot *slot;
957ed9ef 3158
5d163b1c 3159 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3160 if (!slot)
6c8ee57b 3161 return KVM_PFN_ERR_FAULT;
957ed9ef 3162
037d92dc 3163 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3164}
3165
3166static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3167 struct kvm_mmu_page *sp,
3168 u64 *start, u64 *end)
3169{
3170 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3171 struct kvm_memory_slot *slot;
0a2b64c5 3172 unsigned int access = sp->role.access;
957ed9ef
XG
3173 int i, ret;
3174 gfn_t gfn;
3175
3176 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3177 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3178 if (!slot)
957ed9ef
XG
3179 return -1;
3180
d9ef13c2 3181 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3182 if (ret <= 0)
3183 return -1;
3184
43fdcda9 3185 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3186 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3187 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3188 put_page(pages[i]);
3189 }
957ed9ef
XG
3190
3191 return 0;
3192}
3193
3194static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3195 struct kvm_mmu_page *sp, u64 *sptep)
3196{
3197 u64 *spte, *start = NULL;
3198 int i;
3199
3200 WARN_ON(!sp->role.direct);
3201
3202 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3203 spte = sp->spt + i;
3204
3205 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3206 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3207 if (!start)
3208 continue;
3209 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3210 break;
3211 start = NULL;
3212 } else if (!start)
3213 start = spte;
3214 }
3215}
3216
3217static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3218{
3219 struct kvm_mmu_page *sp;
3220
ac8d57e5
PF
3221 sp = page_header(__pa(sptep));
3222
957ed9ef 3223 /*
ac8d57e5
PF
3224 * Without accessed bits, there's no way to distinguish between
3225 * actually accessed translations and prefetched, so disable pte
3226 * prefetch if accessed bits aren't available.
957ed9ef 3227 */
ac8d57e5 3228 if (sp_ad_disabled(sp))
957ed9ef
XG
3229 return;
3230
957ed9ef
XG
3231 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3232 return;
3233
3234 __direct_pte_prefetch(vcpu, sp, sptep);
3235}
3236
db543216 3237static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 3238 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 3239{
db543216
SC
3240 unsigned long hva;
3241 pte_t *pte;
3242 int level;
3243
3244 BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
3245 PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
3246 PT_PDPE_LEVEL != (int)PG_LEVEL_1G);
3247
e851265a 3248 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
db543216
SC
3249 return PT_PAGE_TABLE_LEVEL;
3250
293e306e
SC
3251 /*
3252 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3253 * is not solely for performance, it's also necessary to avoid the
3254 * "writable" check in __gfn_to_hva_many(), which will always fail on
3255 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3256 * page fault steps have already verified the guest isn't writing a
3257 * read-only memslot.
3258 */
db543216
SC
3259 hva = __gfn_to_hva_memslot(slot, gfn);
3260
3261 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3262 if (unlikely(!pte))
3263 return PT_PAGE_TABLE_LEVEL;
3264
3265 return level;
3266}
3267
83f06fa7
SC
3268static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3269 int max_level, kvm_pfn_t *pfnp)
0885904d 3270{
293e306e 3271 struct kvm_memory_slot *slot;
2c0629f4 3272 struct kvm_lpage_info *linfo;
0885904d 3273 kvm_pfn_t pfn = *pfnp;
17eff019 3274 kvm_pfn_t mask;
83f06fa7 3275 int level;
17eff019 3276
293e306e 3277 if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
83f06fa7 3278 return PT_PAGE_TABLE_LEVEL;
17eff019 3279
e851265a 3280 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
83f06fa7 3281 return PT_PAGE_TABLE_LEVEL;
17eff019 3282
293e306e
SC
3283 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3284 if (!slot)
3285 return PT_PAGE_TABLE_LEVEL;
3286
703c335d 3287 max_level = min(max_level, max_page_level);
293e306e 3288 for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
2c0629f4
SC
3289 linfo = lpage_info_slot(gfn, slot, max_level);
3290 if (!linfo->disallow_lpage)
293e306e
SC
3291 break;
3292 }
3293
3294 if (max_level == PT_PAGE_TABLE_LEVEL)
3295 return PT_PAGE_TABLE_LEVEL;
3296
3297 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
db543216 3298 if (level == PT_PAGE_TABLE_LEVEL)
83f06fa7 3299 return level;
17eff019 3300
db543216 3301 level = min(level, max_level);
0885904d
SC
3302
3303 /*
17eff019
SC
3304 * mmu_notifier_retry() was successful and mmu_lock is held, so
3305 * the pmd can't be split from under us.
0885904d 3306 */
17eff019
SC
3307 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3308 VM_BUG_ON((gfn & mask) != (pfn & mask));
3309 *pfnp = pfn & ~mask;
83f06fa7
SC
3310
3311 return level;
0885904d
SC
3312}
3313
b8e8c830
PB
3314static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3315 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3316{
3317 int level = *levelp;
3318 u64 spte = *it.sptep;
3319
3320 if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3321 is_nx_huge_page_enabled() &&
3322 is_shadow_present_pte(spte) &&
3323 !is_large_pte(spte)) {
3324 /*
3325 * A small SPTE exists for this pfn, but FNAME(fetch)
3326 * and __direct_map would like to create a large PTE
3327 * instead: just force them to go down another level,
3328 * patching back for them into pfn the next 9 bits of
3329 * the address.
3330 */
3331 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3332 *pfnp |= gfn & page_mask;
3333 (*levelp)--;
3334 }
3335}
3336
3fcf2d1b 3337static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
83f06fa7
SC
3338 int map_writable, int max_level, kvm_pfn_t pfn,
3339 bool prefault, bool account_disallowed_nx_lpage)
140754bc 3340{
3fcf2d1b 3341 struct kvm_shadow_walk_iterator it;
140754bc 3342 struct kvm_mmu_page *sp;
83f06fa7 3343 int level, ret;
3fcf2d1b
PB
3344 gfn_t gfn = gpa >> PAGE_SHIFT;
3345 gfn_t base_gfn = gfn;
6aa8b732 3346
0c7a98e3 3347 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 3348 return RET_PF_RETRY;
989c6b34 3349
83f06fa7 3350 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
4cd071d1 3351
335e192a 3352 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 3353 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
3354 /*
3355 * We cannot overwrite existing page tables with an NX
3356 * large page, as the leaf could be executable.
3357 */
3358 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3359
3fcf2d1b
PB
3360 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3361 if (it.level == level)
9f652d21 3362 break;
6aa8b732 3363
3fcf2d1b
PB
3364 drop_large_spte(vcpu, it.sptep);
3365 if (!is_shadow_present_pte(*it.sptep)) {
3366 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3367 it.level - 1, true, ACC_ALL);
c9fa0b3b 3368
3fcf2d1b 3369 link_shadow_page(vcpu, it.sptep, sp);
2cb70fd4 3370 if (account_disallowed_nx_lpage)
b8e8c830 3371 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
3372 }
3373 }
3fcf2d1b
PB
3374
3375 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3376 write, level, base_gfn, pfn, prefault,
3377 map_writable);
3378 direct_pte_prefetch(vcpu, it.sptep);
3379 ++vcpu->stat.pf_fixed;
3380 return ret;
6aa8b732
AK
3381}
3382
77db5cbd 3383static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3384{
585a8b9b 3385 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3386}
3387
ba049e93 3388static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3389{
4d8b81ab
XG
3390 /*
3391 * Do not cache the mmio info caused by writing the readonly gfn
3392 * into the spte otherwise read access on readonly gfn also can
3393 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3394 */
3395 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3396 return RET_PF_EMULATE;
4d8b81ab 3397
e6c1502b 3398 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3399 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3400 return RET_PF_RETRY;
d7c55201 3401 }
edba23e5 3402
2c151b25 3403 return -EFAULT;
bf998156
HY
3404}
3405
d7c55201 3406static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
3407 kvm_pfn_t pfn, unsigned int access,
3408 int *ret_val)
d7c55201 3409{
d7c55201 3410 /* The pfn is invalid, report the error! */
81c52c56 3411 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3412 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3413 return true;
d7c55201
XG
3414 }
3415
ce88decf 3416 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
3417 vcpu_cache_mmio_info(vcpu, gva, gfn,
3418 access & shadow_mmio_access_mask);
d7c55201 3419
798e88b3 3420 return false;
d7c55201
XG
3421}
3422
e5552fd2 3423static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3424{
1c118b82
XG
3425 /*
3426 * Do not fix the mmio spte with invalid generation number which
3427 * need to be updated by slow page fault path.
3428 */
3429 if (unlikely(error_code & PFERR_RSVD_MASK))
3430 return false;
3431
f160c7b7
JS
3432 /* See if the page fault is due to an NX violation */
3433 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3434 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3435 return false;
3436
c7ba5b48 3437 /*
f160c7b7
JS
3438 * #PF can be fast if:
3439 * 1. The shadow page table entry is not present, which could mean that
3440 * the fault is potentially caused by access tracking (if enabled).
3441 * 2. The shadow page table entry is present and the fault
3442 * is caused by write-protect, that means we just need change the W
3443 * bit of the spte which can be done out of mmu-lock.
3444 *
3445 * However, if access tracking is disabled we know that a non-present
3446 * page must be a genuine page fault where we have to create a new SPTE.
3447 * So, if access tracking is disabled, we return true only for write
3448 * accesses to a present page.
c7ba5b48 3449 */
c7ba5b48 3450
f160c7b7
JS
3451 return shadow_acc_track_mask != 0 ||
3452 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3453 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3454}
3455
97dceba2
JS
3456/*
3457 * Returns true if the SPTE was fixed successfully. Otherwise,
3458 * someone else modified the SPTE from its original value.
3459 */
c7ba5b48 3460static bool
92a476cb 3461fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3462 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3463{
c7ba5b48
XG
3464 gfn_t gfn;
3465
3466 WARN_ON(!sp->role.direct);
3467
9b51a630
KH
3468 /*
3469 * Theoretically we could also set dirty bit (and flush TLB) here in
3470 * order to eliminate unnecessary PML logging. See comments in
3471 * set_spte. But fast_page_fault is very unlikely to happen with PML
3472 * enabled, so we do not do this. This might result in the same GPA
3473 * to be logged in PML buffer again when the write really happens, and
3474 * eventually to be called by mark_page_dirty twice. But it's also no
3475 * harm. This also avoids the TLB flush needed after setting dirty bit
3476 * so non-PML cases won't be impacted.
3477 *
3478 * Compare with set_spte where instead shadow_dirty_mask is set.
3479 */
f160c7b7 3480 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3481 return false;
3482
d3e328f2 3483 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3484 /*
3485 * The gfn of direct spte is stable since it is
3486 * calculated by sp->gfn.
3487 */
3488 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3489 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3490 }
c7ba5b48
XG
3491
3492 return true;
3493}
3494
d3e328f2
JS
3495static bool is_access_allowed(u32 fault_err_code, u64 spte)
3496{
3497 if (fault_err_code & PFERR_FETCH_MASK)
3498 return is_executable_pte(spte);
3499
3500 if (fault_err_code & PFERR_WRITE_MASK)
3501 return is_writable_pte(spte);
3502
3503 /* Fault was on Read access */
3504 return spte & PT_PRESENT_MASK;
3505}
3506
c7ba5b48
XG
3507/*
3508 * Return value:
3509 * - true: let the vcpu to access on the same address again.
3510 * - false: let the real page fault path to fix it.
3511 */
f9fa2509 3512static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
c7ba5b48
XG
3513 u32 error_code)
3514{
3515 struct kvm_shadow_walk_iterator iterator;
92a476cb 3516 struct kvm_mmu_page *sp;
97dceba2 3517 bool fault_handled = false;
c7ba5b48 3518 u64 spte = 0ull;
97dceba2 3519 uint retry_count = 0;
c7ba5b48 3520
e5552fd2 3521 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3522 return false;
3523
3524 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3525
97dceba2 3526 do {
d3e328f2 3527 u64 new_spte;
c7ba5b48 3528
736c291c 3529 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3530 if (!is_shadow_present_pte(spte))
d162f30a
JS
3531 break;
3532
97dceba2
JS
3533 sp = page_header(__pa(iterator.sptep));
3534 if (!is_last_spte(spte, sp->role.level))
3535 break;
c7ba5b48 3536
97dceba2 3537 /*
f160c7b7
JS
3538 * Check whether the memory access that caused the fault would
3539 * still cause it if it were to be performed right now. If not,
3540 * then this is a spurious fault caused by TLB lazily flushed,
3541 * or some other CPU has already fixed the PTE after the
3542 * current CPU took the fault.
97dceba2
JS
3543 *
3544 * Need not check the access of upper level table entries since
3545 * they are always ACC_ALL.
3546 */
d3e328f2
JS
3547 if (is_access_allowed(error_code, spte)) {
3548 fault_handled = true;
3549 break;
3550 }
f160c7b7 3551
d3e328f2
JS
3552 new_spte = spte;
3553
3554 if (is_access_track_spte(spte))
3555 new_spte = restore_acc_track_spte(new_spte);
3556
3557 /*
3558 * Currently, to simplify the code, write-protection can
3559 * be removed in the fast path only if the SPTE was
3560 * write-protected for dirty-logging or access tracking.
3561 */
3562 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3563 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3564 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3565
3566 /*
d3e328f2
JS
3567 * Do not fix write-permission on the large spte. Since
3568 * we only dirty the first page into the dirty-bitmap in
3569 * fast_pf_fix_direct_spte(), other pages are missed
3570 * if its slot has dirty logging enabled.
3571 *
3572 * Instead, we let the slow page fault path create a
3573 * normal spte to fix the access.
3574 *
3575 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3576 */
d3e328f2 3577 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3578 break;
97dceba2 3579 }
c7ba5b48 3580
f160c7b7 3581 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3582 if (new_spte == spte ||
3583 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3584 break;
3585
3586 /*
3587 * Currently, fast page fault only works for direct mapping
3588 * since the gfn is not stable for indirect shadow page. See
2f5947df 3589 * Documentation/virt/kvm/locking.txt to get more detail.
97dceba2
JS
3590 */
3591 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3592 iterator.sptep, spte,
d3e328f2 3593 new_spte);
97dceba2
JS
3594 if (fault_handled)
3595 break;
3596
3597 if (++retry_count > 4) {
3598 printk_once(KERN_WARNING
3599 "kvm: Fast #PF retrying more than 4 times.\n");
3600 break;
3601 }
3602
97dceba2 3603 } while (true);
c126d94f 3604
736c291c 3605 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
97dceba2 3606 spte, fault_handled);
c7ba5b48
XG
3607 walk_shadow_page_lockless_end(vcpu);
3608
97dceba2 3609 return fault_handled;
c7ba5b48
XG
3610}
3611
74b566e6
JS
3612static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3613 struct list_head *invalid_list)
17ac10ad 3614{
4db35314 3615 struct kvm_mmu_page *sp;
17ac10ad 3616
74b566e6 3617 if (!VALID_PAGE(*root_hpa))
7b53aa56 3618 return;
35af577a 3619
74b566e6
JS
3620 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3621 --sp->root_count;
3622 if (!sp->root_count && sp->role.invalid)
3623 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3624
74b566e6
JS
3625 *root_hpa = INVALID_PAGE;
3626}
3627
08fb59d8 3628/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3629void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3630 ulong roots_to_free)
74b566e6
JS
3631{
3632 int i;
3633 LIST_HEAD(invalid_list);
08fb59d8 3634 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3635
b94742c9 3636 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3637
08fb59d8 3638 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3639 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3640 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3641 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3642 VALID_PAGE(mmu->prev_roots[i].hpa))
3643 break;
3644
3645 if (i == KVM_MMU_NUM_PREV_ROOTS)
3646 return;
3647 }
35af577a
GN
3648
3649 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3650
b94742c9
JS
3651 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3652 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3653 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3654 &invalid_list);
7c390d35 3655
08fb59d8
JS
3656 if (free_active_root) {
3657 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3658 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3659 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3660 &invalid_list);
3661 } else {
3662 for (i = 0; i < 4; ++i)
3663 if (mmu->pae_root[i] != 0)
3664 mmu_free_root_page(vcpu->kvm,
3665 &mmu->pae_root[i],
3666 &invalid_list);
3667 mmu->root_hpa = INVALID_PAGE;
3668 }
ad7dc69a 3669 mmu->root_cr3 = 0;
17ac10ad 3670 }
74b566e6 3671
d98ba053 3672 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3673 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3674}
74b566e6 3675EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3676
8986ecc0
MT
3677static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3678{
3679 int ret = 0;
3680
3681 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3682 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3683 ret = 1;
3684 }
3685
3686 return ret;
3687}
3688
651dd37a
JR
3689static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3690{
3691 struct kvm_mmu_page *sp;
7ebaf15e 3692 unsigned i;
651dd37a 3693
44dd3ffa 3694 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3695 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3696 if(make_mmu_pages_available(vcpu) < 0) {
3697 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3698 return -ENOSPC;
26eeb53c 3699 }
855feb67 3700 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3701 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3702 ++sp->root_count;
3703 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3704 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3705 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3706 for (i = 0; i < 4; ++i) {
44dd3ffa 3707 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3708
fa4a2c08 3709 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3710 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3711 if (make_mmu_pages_available(vcpu) < 0) {
3712 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3713 return -ENOSPC;
26eeb53c 3714 }
649497d1 3715 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3716 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3717 root = __pa(sp->spt);
3718 ++sp->root_count;
3719 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3720 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3721 }
44dd3ffa 3722 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3723 } else
3724 BUG();
3651c7fc
SC
3725
3726 /* root_cr3 is ignored for direct MMUs. */
3727 vcpu->arch.mmu->root_cr3 = 0;
651dd37a
JR
3728
3729 return 0;
3730}
3731
3732static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3733{
4db35314 3734 struct kvm_mmu_page *sp;
81407ca5 3735 u64 pdptr, pm_mask;
ad7dc69a 3736 gfn_t root_gfn, root_cr3;
81407ca5 3737 int i;
3bb65a22 3738
d8dd54e0 3739 root_cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
ad7dc69a 3740 root_gfn = root_cr3 >> PAGE_SHIFT;
17ac10ad 3741
651dd37a
JR
3742 if (mmu_check_root(vcpu, root_gfn))
3743 return 1;
3744
3745 /*
3746 * Do we shadow a long mode page table? If so we need to
3747 * write-protect the guests page table root.
3748 */
44dd3ffa
VK
3749 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3750 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3751
fa4a2c08 3752 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3753
8facbbff 3754 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3755 if (make_mmu_pages_available(vcpu) < 0) {
3756 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3757 return -ENOSPC;
26eeb53c 3758 }
855feb67 3759 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3760 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3761 root = __pa(sp->spt);
3762 ++sp->root_count;
8facbbff 3763 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3764 vcpu->arch.mmu->root_hpa = root;
ad7dc69a 3765 goto set_root_cr3;
17ac10ad 3766 }
f87f9288 3767
651dd37a
JR
3768 /*
3769 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3770 * or a PAE 3-level page table. In either case we need to be aware that
3771 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3772 */
81407ca5 3773 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3774 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3775 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3776
17ac10ad 3777 for (i = 0; i < 4; ++i) {
44dd3ffa 3778 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3779
fa4a2c08 3780 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3781 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3782 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3783 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3784 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3785 continue;
3786 }
6de4f3ad 3787 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3788 if (mmu_check_root(vcpu, root_gfn))
3789 return 1;
5a7388c2 3790 }
8facbbff 3791 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3792 if (make_mmu_pages_available(vcpu) < 0) {
3793 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3794 return -ENOSPC;
26eeb53c 3795 }
bb11c6c9
TY
3796 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3797 0, ACC_ALL);
4db35314
AK
3798 root = __pa(sp->spt);
3799 ++sp->root_count;
8facbbff
AK
3800 spin_unlock(&vcpu->kvm->mmu_lock);
3801
44dd3ffa 3802 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3803 }
44dd3ffa 3804 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3805
3806 /*
3807 * If we shadow a 32 bit page table with a long mode page
3808 * table we enter this path.
3809 */
44dd3ffa
VK
3810 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3811 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3812 /*
3813 * The additional page necessary for this is only
3814 * allocated on demand.
3815 */
3816
3817 u64 *lm_root;
3818
254272ce 3819 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3820 if (lm_root == NULL)
3821 return 1;
3822
44dd3ffa 3823 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3824
44dd3ffa 3825 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3826 }
3827
44dd3ffa 3828 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3829 }
3830
ad7dc69a
VK
3831set_root_cr3:
3832 vcpu->arch.mmu->root_cr3 = root_cr3;
3833
8986ecc0 3834 return 0;
17ac10ad
AK
3835}
3836
651dd37a
JR
3837static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3838{
44dd3ffa 3839 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3840 return mmu_alloc_direct_roots(vcpu);
3841 else
3842 return mmu_alloc_shadow_roots(vcpu);
3843}
3844
578e1c4d 3845void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3846{
3847 int i;
3848 struct kvm_mmu_page *sp;
3849
44dd3ffa 3850 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3851 return;
3852
44dd3ffa 3853 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3854 return;
6903074c 3855
56f17dd3 3856 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3857
44dd3ffa
VK
3858 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3859 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3860 sp = page_header(root);
578e1c4d
JS
3861
3862 /*
3863 * Even if another CPU was marking the SP as unsync-ed
3864 * simultaneously, any guest page table changes are not
3865 * guaranteed to be visible anyway until this VCPU issues a TLB
3866 * flush strictly after those changes are made. We only need to
3867 * ensure that the other CPU sets these flags before any actual
3868 * changes to the page tables are made. The comments in
3869 * mmu_need_write_protect() describe what could go wrong if this
3870 * requirement isn't satisfied.
3871 */
3872 if (!smp_load_acquire(&sp->unsync) &&
3873 !smp_load_acquire(&sp->unsync_children))
3874 return;
3875
3876 spin_lock(&vcpu->kvm->mmu_lock);
3877 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3878
0ba73cda 3879 mmu_sync_children(vcpu, sp);
578e1c4d 3880
0375f7fa 3881 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3882 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3883 return;
3884 }
578e1c4d
JS
3885
3886 spin_lock(&vcpu->kvm->mmu_lock);
3887 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3888
0ba73cda 3889 for (i = 0; i < 4; ++i) {
44dd3ffa 3890 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3891
8986ecc0 3892 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3893 root &= PT64_BASE_ADDR_MASK;
3894 sp = page_header(root);
3895 mmu_sync_children(vcpu, sp);
3896 }
3897 }
0ba73cda 3898
578e1c4d 3899 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3900 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3901}
bfd0a56b 3902EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3903
736c291c 3904static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3905 u32 access, struct x86_exception *exception)
6aa8b732 3906{
ab9ae313
AK
3907 if (exception)
3908 exception->error_code = 0;
6aa8b732
AK
3909 return vaddr;
3910}
3911
736c291c 3912static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3913 u32 access,
3914 struct x86_exception *exception)
6539e738 3915{
ab9ae313
AK
3916 if (exception)
3917 exception->error_code = 0;
54987b7a 3918 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3919}
3920
d625b155
XG
3921static bool
3922__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3923{
b5c3c1b3 3924 int bit7 = (pte >> 7) & 1;
d625b155 3925
b5c3c1b3 3926 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3927}
3928
b5c3c1b3 3929static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3930{
b5c3c1b3 3931 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3932}
3933
ded58749 3934static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3935{
9034e6e8
PB
3936 /*
3937 * A nested guest cannot use the MMIO cache if it is using nested
3938 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3939 */
3940 if (mmu_is_nested(vcpu))
3941 return false;
3942
ce88decf
XG
3943 if (direct)
3944 return vcpu_match_mmio_gpa(vcpu, addr);
3945
3946 return vcpu_match_mmio_gva(vcpu, addr);
3947}
3948
47ab8751
XG
3949/* return true if reserved bit is detected on spte. */
3950static bool
3951walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3952{
3953 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3954 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
b5c3c1b3 3955 struct rsvd_bits_validate *rsvd_check;
47ab8751
XG
3956 int root, leaf;
3957 bool reserved = false;
ce88decf 3958
b5c3c1b3 3959 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
37f6a4e2 3960
ce88decf 3961 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3962
29ecd660
PB
3963 for (shadow_walk_init(&iterator, vcpu, addr),
3964 leaf = root = iterator.level;
47ab8751
XG
3965 shadow_walk_okay(&iterator);
3966 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3967 spte = mmu_spte_get_lockless(iterator.sptep);
3968
3969 sptes[leaf - 1] = spte;
29ecd660 3970 leaf--;
47ab8751 3971
ce88decf
XG
3972 if (!is_shadow_present_pte(spte))
3973 break;
47ab8751 3974
b5c3c1b3
SC
3975 /*
3976 * Use a bitwise-OR instead of a logical-OR to aggregate the
3977 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3978 * adding a Jcc in the loop.
3979 */
3980 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3981 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
47ab8751
XG
3982 }
3983
ce88decf
XG
3984 walk_shadow_page_lockless_end(vcpu);
3985
47ab8751
XG
3986 if (reserved) {
3987 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3988 __func__, addr);
29ecd660 3989 while (root > leaf) {
47ab8751
XG
3990 pr_err("------ spte 0x%llx level %d.\n",
3991 sptes[root - 1], root);
3992 root--;
3993 }
3994 }
ddce6208 3995
47ab8751
XG
3996 *sptep = spte;
3997 return reserved;
ce88decf
XG
3998}
3999
e08d26f0 4000static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
4001{
4002 u64 spte;
47ab8751 4003 bool reserved;
ce88decf 4004
ded58749 4005 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 4006 return RET_PF_EMULATE;
ce88decf 4007
47ab8751 4008 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 4009 if (WARN_ON(reserved))
9b8ebbdb 4010 return -EINVAL;
ce88decf
XG
4011
4012 if (is_mmio_spte(spte)) {
4013 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 4014 unsigned int access = get_mmio_spte_access(spte);
ce88decf 4015
54bf36aa 4016 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 4017 return RET_PF_INVALID;
f8f55942 4018
ce88decf
XG
4019 if (direct)
4020 addr = 0;
4f022648
XG
4021
4022 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 4023 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 4024 return RET_PF_EMULATE;
ce88decf
XG
4025 }
4026
ce88decf
XG
4027 /*
4028 * If the page table is zapped by other cpus, let CPU fault again on
4029 * the address.
4030 */
9b8ebbdb 4031 return RET_PF_RETRY;
ce88decf 4032}
ce88decf 4033
3d0c27ad
XG
4034static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4035 u32 error_code, gfn_t gfn)
4036{
4037 if (unlikely(error_code & PFERR_RSVD_MASK))
4038 return false;
4039
4040 if (!(error_code & PFERR_PRESENT_MASK) ||
4041 !(error_code & PFERR_WRITE_MASK))
4042 return false;
4043
4044 /*
4045 * guest is writing the page which is write tracked which can
4046 * not be fixed by page fault handler.
4047 */
4048 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4049 return true;
4050
4051 return false;
4052}
4053
e5691a81
XG
4054static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4055{
4056 struct kvm_shadow_walk_iterator iterator;
4057 u64 spte;
4058
e5691a81
XG
4059 walk_shadow_page_lockless_begin(vcpu);
4060 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4061 clear_sp_write_flooding_count(iterator.sptep);
4062 if (!is_shadow_present_pte(spte))
4063 break;
4064 }
4065 walk_shadow_page_lockless_end(vcpu);
4066}
4067
9f1a8526
SC
4068static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4069 gfn_t gfn)
af585b92
GN
4070{
4071 struct kvm_arch_async_pf arch;
fb67e14f 4072
7c90705b 4073 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4074 arch.gfn = gfn;
44dd3ffa 4075 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 4076 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 4077
9f1a8526
SC
4078 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4079 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4080}
4081
78b2c54a 4082static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
4083 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4084 bool *writable)
af585b92 4085{
3520469d 4086 struct kvm_memory_slot *slot;
af585b92
GN
4087 bool async;
4088
3a2936de
JM
4089 /*
4090 * Don't expose private memslots to L2.
4091 */
4092 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4093 *pfn = KVM_PFN_NOSLOT;
4094 return false;
4095 }
4096
54bf36aa 4097 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4098 async = false;
4099 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4100 if (!async)
4101 return false; /* *pfn has correct page already */
4102
9bc1f09f 4103 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 4104 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 4105 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 4106 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
4107 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4108 return true;
9f1a8526 4109 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
4110 return true;
4111 }
4112
3520469d 4113 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4114 return false;
4115}
4116
0f90e1c1
SC
4117static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4118 bool prefault, int max_level, bool is_tdp)
6aa8b732 4119{
367fd790 4120 bool write = error_code & PFERR_WRITE_MASK;
367fd790
SC
4121 bool exec = error_code & PFERR_FETCH_MASK;
4122 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
0f90e1c1 4123 bool map_writable;
6aa8b732 4124
0f90e1c1
SC
4125 gfn_t gfn = gpa >> PAGE_SHIFT;
4126 unsigned long mmu_seq;
4127 kvm_pfn_t pfn;
83f06fa7 4128 int r;
ce88decf 4129
3d0c27ad 4130 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4131 return RET_PF_EMULATE;
ce88decf 4132
e2dec939
AK
4133 r = mmu_topup_memory_caches(vcpu);
4134 if (r)
4135 return r;
714b93da 4136
0f90e1c1
SC
4137 if (lpage_disallowed)
4138 max_level = PT_PAGE_TABLE_LEVEL;
367fd790 4139
f9fa2509 4140 if (fast_page_fault(vcpu, gpa, error_code))
367fd790
SC
4141 return RET_PF_RETRY;
4142
4143 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4144 smp_rmb();
4145
4146 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4147 return RET_PF_RETRY;
4148
0f90e1c1 4149 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 4150 return r;
6aa8b732 4151
367fd790
SC
4152 r = RET_PF_RETRY;
4153 spin_lock(&vcpu->kvm->mmu_lock);
4154 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4155 goto out_unlock;
4156 if (make_mmu_pages_available(vcpu) < 0)
4157 goto out_unlock;
83f06fa7 4158 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4cd071d1 4159 prefault, is_tdp && lpage_disallowed);
0f90e1c1 4160
367fd790
SC
4161out_unlock:
4162 spin_unlock(&vcpu->kvm->mmu_lock);
4163 kvm_release_pfn_clean(pfn);
4164 return r;
6aa8b732
AK
4165}
4166
0f90e1c1
SC
4167static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4168 u32 error_code, bool prefault)
4169{
4170 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4171
4172 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4173 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4174 PT_DIRECTORY_LEVEL, false);
4175}
4176
1261bfa3 4177int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4178 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4179{
4180 int r = 1;
4181
736c291c
SC
4182#ifndef CONFIG_X86_64
4183 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4184 if (WARN_ON_ONCE(fault_address >> 32))
4185 return -EFAULT;
4186#endif
4187
c595ceee 4188 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4189 switch (vcpu->arch.apf.host_apf_reason) {
4190 default:
4191 trace_kvm_page_fault(fault_address, error_code);
4192
d0006530 4193 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4194 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4195 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4196 insn_len);
4197 break;
4198 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4199 vcpu->arch.apf.host_apf_reason = 0;
4200 local_irq_disable();
a2b7861b 4201 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4202 local_irq_enable();
4203 break;
4204 case KVM_PV_REASON_PAGE_READY:
4205 vcpu->arch.apf.host_apf_reason = 0;
4206 local_irq_disable();
4207 kvm_async_pf_task_wake(fault_address);
4208 local_irq_enable();
4209 break;
4210 }
4211 return r;
4212}
4213EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4214
7a02674d
SC
4215int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4216 bool prefault)
fb72d167 4217{
cb9b88c6 4218 int max_level;
fb72d167 4219
cb9b88c6
SC
4220 for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4221 max_level > PT_PAGE_TABLE_LEVEL;
4222 max_level--) {
4223 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 4224 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 4225
cb9b88c6
SC
4226 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4227 break;
fd136902 4228 }
852e3c19 4229
0f90e1c1
SC
4230 return direct_page_fault(vcpu, gpa, error_code, prefault,
4231 max_level, true);
fb72d167
JR
4232}
4233
8a3c1a33
PB
4234static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4235 struct kvm_mmu *context)
6aa8b732 4236{
6aa8b732 4237 context->page_fault = nonpaging_page_fault;
6aa8b732 4238 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4239 context->sync_page = nonpaging_sync_page;
a7052897 4240 context->invlpg = nonpaging_invlpg;
0f53b5b1 4241 context->update_pte = nonpaging_update_pte;
cea0f0e7 4242 context->root_level = 0;
6aa8b732 4243 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4244 context->direct_map = true;
2d48a985 4245 context->nx = false;
6aa8b732
AK
4246}
4247
0be44352
SC
4248static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t cr3,
4249 union kvm_mmu_page_role role)
4250{
4251 return (role.direct || cr3 == root->cr3) &&
4252 VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4253 role.word == page_header(root->hpa)->role.word;
4254}
4255
b94742c9
JS
4256/*
4257 * Find out if a previously cached root matching the new CR3/role is available.
4258 * The current root is also inserted into the cache.
4259 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4260 * returned.
4261 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4262 * false is returned. This root should now be freed by the caller.
4263 */
4264static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4265 union kvm_mmu_page_role new_role)
4266{
4267 uint i;
4268 struct kvm_mmu_root_info root;
44dd3ffa 4269 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4270
ad7dc69a 4271 root.cr3 = mmu->root_cr3;
b94742c9
JS
4272 root.hpa = mmu->root_hpa;
4273
0be44352
SC
4274 if (is_root_usable(&root, new_cr3, new_role))
4275 return true;
4276
b94742c9
JS
4277 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4278 swap(root, mmu->prev_roots[i]);
4279
0be44352 4280 if (is_root_usable(&root, new_cr3, new_role))
b94742c9
JS
4281 break;
4282 }
4283
4284 mmu->root_hpa = root.hpa;
ad7dc69a 4285 mmu->root_cr3 = root.cr3;
b94742c9
JS
4286
4287 return i < KVM_MMU_NUM_PREV_ROOTS;
4288}
4289
0aab33e4 4290static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4291 union kvm_mmu_page_role new_role,
4292 bool skip_tlb_flush)
6aa8b732 4293{
44dd3ffa 4294 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4295
4296 /*
4297 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4298 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4299 * later if necessary.
4300 */
4301 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4302 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4303 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4304 return false;
4305
b94742c9 4306 if (cached_root_available(vcpu, new_cr3, new_role)) {
002c5f73
SC
4307 /*
4308 * It is possible that the cached previous root page is
4309 * obsolete because of a change in the MMU generation
4310 * number. However, changing the generation number is
4311 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4312 * the root set here and allocate a new one.
4313 */
727a7e27 4314 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
956bf353
JS
4315 if (!skip_tlb_flush) {
4316 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1924242b 4317 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
956bf353
JS
4318 }
4319
4320 /*
4321 * The last MMIO access's GVA and GPA are cached in the
4322 * VCPU. When switching to a new CR3, that GVA->GPA
4323 * mapping may no longer be valid. So clear any cached
4324 * MMIO info even when we don't need to sync the shadow
4325 * page tables.
4326 */
4327 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4328
7c390d35
JS
4329 __clear_sp_write_flooding_count(
4330 page_header(mmu->root_hpa));
4331
7c390d35
JS
4332 return true;
4333 }
4334 }
4335
4336 return false;
6aa8b732
AK
4337}
4338
0aab33e4 4339static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4340 union kvm_mmu_page_role new_role,
4341 bool skip_tlb_flush)
6aa8b732 4342{
ade61e28 4343 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4344 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4345 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4346}
4347
ade61e28 4348void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4349{
ade61e28
JS
4350 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4351 skip_tlb_flush);
0aab33e4 4352}
50c28f21 4353EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4354
5777ed34
JR
4355static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4356{
9f8fe504 4357 return kvm_read_cr3(vcpu);
5777ed34
JR
4358}
4359
6389ee94
AK
4360static void inject_page_fault(struct kvm_vcpu *vcpu,
4361 struct x86_exception *fault)
6aa8b732 4362{
44dd3ffa 4363 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4364}
4365
54bf36aa 4366static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 4367 unsigned int access, int *nr_present)
ce88decf
XG
4368{
4369 if (unlikely(is_mmio_spte(*sptep))) {
4370 if (gfn != get_mmio_spte_gfn(*sptep)) {
4371 mmu_spte_clear_no_track(sptep);
4372 return true;
4373 }
4374
4375 (*nr_present)++;
54bf36aa 4376 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4377 return true;
4378 }
4379
4380 return false;
4381}
4382
6bb69c9b
PB
4383static inline bool is_last_gpte(struct kvm_mmu *mmu,
4384 unsigned level, unsigned gpte)
6fd01b71 4385{
6bb69c9b
PB
4386 /*
4387 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4388 * If it is clear, there are no large pages at this level, so clear
4389 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4390 */
4391 gpte &= level - mmu->last_nonleaf_level;
4392
829ee279
LP
4393 /*
4394 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4395 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4396 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4397 */
4398 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4399
6bb69c9b 4400 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4401}
4402
37406aaa
NHE
4403#define PTTYPE_EPT 18 /* arbitrary */
4404#define PTTYPE PTTYPE_EPT
4405#include "paging_tmpl.h"
4406#undef PTTYPE
4407
6aa8b732
AK
4408#define PTTYPE 64
4409#include "paging_tmpl.h"
4410#undef PTTYPE
4411
4412#define PTTYPE 32
4413#include "paging_tmpl.h"
4414#undef PTTYPE
4415
6dc98b86
XG
4416static void
4417__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4418 struct rsvd_bits_validate *rsvd_check,
4419 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4420 bool pse, bool amd)
82725b20 4421{
82725b20 4422 u64 exb_bit_rsvd = 0;
5f7dde7b 4423 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4424 u64 nonleaf_bit8_rsvd = 0;
82725b20 4425
a0a64f50 4426 rsvd_check->bad_mt_xwr = 0;
25d92081 4427
6dc98b86 4428 if (!nx)
82725b20 4429 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4430 if (!gbpages)
5f7dde7b 4431 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4432
4433 /*
4434 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4435 * leaf entries) on AMD CPUs only.
4436 */
6fec2144 4437 if (amd)
a0c0feb5
PB
4438 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4439
6dc98b86 4440 switch (level) {
82725b20
DE
4441 case PT32_ROOT_LEVEL:
4442 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4443 rsvd_check->rsvd_bits_mask[0][1] = 0;
4444 rsvd_check->rsvd_bits_mask[0][0] = 0;
4445 rsvd_check->rsvd_bits_mask[1][0] =
4446 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4447
6dc98b86 4448 if (!pse) {
a0a64f50 4449 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4450 break;
4451 }
4452
82725b20
DE
4453 if (is_cpuid_PSE36())
4454 /* 36bits PSE 4MB page */
a0a64f50 4455 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4456 else
4457 /* 32 bits PSE 4MB page */
a0a64f50 4458 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4459 break;
4460 case PT32E_ROOT_LEVEL:
a0a64f50 4461 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4462 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4463 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4464 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4465 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4466 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4467 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4468 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4469 rsvd_bits(maxphyaddr, 62) |
4470 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4471 rsvd_check->rsvd_bits_mask[1][0] =
4472 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4473 break;
855feb67
YZ
4474 case PT64_ROOT_5LEVEL:
4475 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4476 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4477 rsvd_bits(maxphyaddr, 51);
4478 rsvd_check->rsvd_bits_mask[1][4] =
4479 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4480 /* fall through */
2a7266a8 4481 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4482 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4483 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4484 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4485 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4486 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4487 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4488 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4489 rsvd_bits(maxphyaddr, 51);
4490 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4491 rsvd_bits(maxphyaddr, 51);
4492 rsvd_check->rsvd_bits_mask[1][3] =
4493 rsvd_check->rsvd_bits_mask[0][3];
4494 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4495 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4496 rsvd_bits(13, 29);
a0a64f50 4497 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4498 rsvd_bits(maxphyaddr, 51) |
4499 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4500 rsvd_check->rsvd_bits_mask[1][0] =
4501 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4502 break;
4503 }
4504}
4505
6dc98b86
XG
4506static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4507 struct kvm_mmu *context)
4508{
4509 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4510 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4511 context->nx,
4512 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4513 is_pse(vcpu),
4514 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4515}
4516
81b8eebb
XG
4517static void
4518__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4519 int maxphyaddr, bool execonly)
25d92081 4520{
951f9fd7 4521 u64 bad_mt_xwr;
25d92081 4522
855feb67
YZ
4523 rsvd_check->rsvd_bits_mask[0][4] =
4524 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4525 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4526 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4527 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4528 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4529 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4530 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4531 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4532
4533 /* large page */
855feb67 4534 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4535 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4536 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4537 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4538 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4539 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4540 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4541
951f9fd7
PB
4542 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4543 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4544 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4545 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4546 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4547 if (!execonly) {
4548 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4549 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4550 }
951f9fd7 4551 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4552}
4553
81b8eebb
XG
4554static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4555 struct kvm_mmu *context, bool execonly)
4556{
4557 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4558 cpuid_maxphyaddr(vcpu), execonly);
4559}
4560
c258b62b
XG
4561/*
4562 * the page table on host is the shadow page table for the page
4563 * table in guest or amd nested guest, its mmu features completely
4564 * follow the features in guest.
4565 */
4566void
4567reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4568{
36d9594d
VK
4569 bool uses_nx = context->nx ||
4570 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4571 struct rsvd_bits_validate *shadow_zero_check;
4572 int i;
5f0b8199 4573
6fec2144
PB
4574 /*
4575 * Passing "true" to the last argument is okay; it adds a check
4576 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4577 */
ea2800dd
BS
4578 shadow_zero_check = &context->shadow_zero_check;
4579 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4580 shadow_phys_bits,
5f0b8199 4581 context->shadow_root_level, uses_nx,
d6321d49
RK
4582 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4583 is_pse(vcpu), true);
ea2800dd
BS
4584
4585 if (!shadow_me_mask)
4586 return;
4587
4588 for (i = context->shadow_root_level; --i >= 0;) {
4589 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4590 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4591 }
4592
c258b62b
XG
4593}
4594EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4595
6fec2144
PB
4596static inline bool boot_cpu_is_amd(void)
4597{
4598 WARN_ON_ONCE(!tdp_enabled);
4599 return shadow_x_mask == 0;
4600}
4601
c258b62b
XG
4602/*
4603 * the direct page table on host, use as much mmu features as
4604 * possible, however, kvm currently does not do execution-protection.
4605 */
4606static void
4607reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4608 struct kvm_mmu *context)
4609{
ea2800dd
BS
4610 struct rsvd_bits_validate *shadow_zero_check;
4611 int i;
4612
4613 shadow_zero_check = &context->shadow_zero_check;
4614
6fec2144 4615 if (boot_cpu_is_amd())
ea2800dd 4616 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4617 shadow_phys_bits,
c258b62b 4618 context->shadow_root_level, false,
b8291adc
BP
4619 boot_cpu_has(X86_FEATURE_GBPAGES),
4620 true, true);
c258b62b 4621 else
ea2800dd 4622 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4623 shadow_phys_bits,
c258b62b
XG
4624 false);
4625
ea2800dd
BS
4626 if (!shadow_me_mask)
4627 return;
4628
4629 for (i = context->shadow_root_level; --i >= 0;) {
4630 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4631 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4632 }
c258b62b
XG
4633}
4634
4635/*
4636 * as the comments in reset_shadow_zero_bits_mask() except it
4637 * is the shadow page table for intel nested guest.
4638 */
4639static void
4640reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4641 struct kvm_mmu *context, bool execonly)
4642{
4643 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4644 shadow_phys_bits, execonly);
c258b62b
XG
4645}
4646
09f037aa
PB
4647#define BYTE_MASK(access) \
4648 ((1 & (access) ? 2 : 0) | \
4649 (2 & (access) ? 4 : 0) | \
4650 (3 & (access) ? 8 : 0) | \
4651 (4 & (access) ? 16 : 0) | \
4652 (5 & (access) ? 32 : 0) | \
4653 (6 & (access) ? 64 : 0) | \
4654 (7 & (access) ? 128 : 0))
4655
4656
edc90b7d
XG
4657static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4658 struct kvm_mmu *mmu, bool ept)
97d64b78 4659{
09f037aa
PB
4660 unsigned byte;
4661
4662 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4663 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4664 const u8 u = BYTE_MASK(ACC_USER_MASK);
4665
4666 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4667 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4668 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4669
97d64b78 4670 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4671 unsigned pfec = byte << 1;
4672
97ec8c06 4673 /*
09f037aa
PB
4674 * Each "*f" variable has a 1 bit for each UWX value
4675 * that causes a fault with the given PFEC.
97ec8c06 4676 */
97d64b78 4677
09f037aa 4678 /* Faults from writes to non-writable pages */
a6a6d3b1 4679 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4680 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4681 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4682 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4683 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4684 /* Faults from kernel mode fetches of user pages */
4685 u8 smepf = 0;
4686 /* Faults from kernel mode accesses of user pages */
4687 u8 smapf = 0;
4688
4689 if (!ept) {
4690 /* Faults from kernel mode accesses to user pages */
4691 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4692
4693 /* Not really needed: !nx will cause pte.nx to fault */
4694 if (!mmu->nx)
4695 ff = 0;
4696
4697 /* Allow supervisor writes if !cr0.wp */
4698 if (!cr0_wp)
4699 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4700
4701 /* Disallow supervisor fetches of user code if cr4.smep */
4702 if (cr4_smep)
4703 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4704
4705 /*
4706 * SMAP:kernel-mode data accesses from user-mode
4707 * mappings should fault. A fault is considered
4708 * as a SMAP violation if all of the following
39337ad1 4709 * conditions are true:
09f037aa
PB
4710 * - X86_CR4_SMAP is set in CR4
4711 * - A user page is accessed
4712 * - The access is not a fetch
4713 * - Page fault in kernel mode
4714 * - if CPL = 3 or X86_EFLAGS_AC is clear
4715 *
4716 * Here, we cover the first three conditions.
4717 * The fourth is computed dynamically in permission_fault();
4718 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4719 * *not* subject to SMAP restrictions.
4720 */
4721 if (cr4_smap)
4722 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4723 }
09f037aa
PB
4724
4725 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4726 }
4727}
4728
2d344105
HH
4729/*
4730* PKU is an additional mechanism by which the paging controls access to
4731* user-mode addresses based on the value in the PKRU register. Protection
4732* key violations are reported through a bit in the page fault error code.
4733* Unlike other bits of the error code, the PK bit is not known at the
4734* call site of e.g. gva_to_gpa; it must be computed directly in
4735* permission_fault based on two bits of PKRU, on some machine state (CR4,
4736* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4737*
4738* In particular the following conditions come from the error code, the
4739* page tables and the machine state:
4740* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4741* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4742* - PK is always zero if U=0 in the page tables
4743* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4744*
4745* The PKRU bitmask caches the result of these four conditions. The error
4746* code (minus the P bit) and the page table's U bit form an index into the
4747* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4748* with the two bits of the PKRU register corresponding to the protection key.
4749* For the first three conditions above the bits will be 00, thus masking
4750* away both AD and WD. For all reads or if the last condition holds, WD
4751* only will be masked away.
4752*/
4753static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4754 bool ept)
4755{
4756 unsigned bit;
4757 bool wp;
4758
4759 if (ept) {
4760 mmu->pkru_mask = 0;
4761 return;
4762 }
4763
4764 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4765 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4766 mmu->pkru_mask = 0;
4767 return;
4768 }
4769
4770 wp = is_write_protection(vcpu);
4771
4772 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4773 unsigned pfec, pkey_bits;
4774 bool check_pkey, check_write, ff, uf, wf, pte_user;
4775
4776 pfec = bit << 1;
4777 ff = pfec & PFERR_FETCH_MASK;
4778 uf = pfec & PFERR_USER_MASK;
4779 wf = pfec & PFERR_WRITE_MASK;
4780
4781 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4782 pte_user = pfec & PFERR_RSVD_MASK;
4783
4784 /*
4785 * Only need to check the access which is not an
4786 * instruction fetch and is to a user page.
4787 */
4788 check_pkey = (!ff && pte_user);
4789 /*
4790 * write access is controlled by PKRU if it is a
4791 * user access or CR0.WP = 1.
4792 */
4793 check_write = check_pkey && wf && (uf || wp);
4794
4795 /* PKRU.AD stops both read and write access. */
4796 pkey_bits = !!check_pkey;
4797 /* PKRU.WD stops write access. */
4798 pkey_bits |= (!!check_write) << 1;
4799
4800 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4801 }
4802}
4803
6bb69c9b 4804static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4805{
6bb69c9b
PB
4806 unsigned root_level = mmu->root_level;
4807
4808 mmu->last_nonleaf_level = root_level;
4809 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4810 mmu->last_nonleaf_level++;
6fd01b71
AK
4811}
4812
8a3c1a33
PB
4813static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4814 struct kvm_mmu *context,
4815 int level)
6aa8b732 4816{
2d48a985 4817 context->nx = is_nx(vcpu);
4d6931c3 4818 context->root_level = level;
2d48a985 4819
4d6931c3 4820 reset_rsvds_bits_mask(vcpu, context);
25d92081 4821 update_permission_bitmask(vcpu, context, false);
2d344105 4822 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4823 update_last_nonleaf_level(vcpu, context);
6aa8b732 4824
fa4a2c08 4825 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4826 context->page_fault = paging64_page_fault;
6aa8b732 4827 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4828 context->sync_page = paging64_sync_page;
a7052897 4829 context->invlpg = paging64_invlpg;
0f53b5b1 4830 context->update_pte = paging64_update_pte;
17ac10ad 4831 context->shadow_root_level = level;
c5a78f2b 4832 context->direct_map = false;
6aa8b732
AK
4833}
4834
8a3c1a33
PB
4835static void paging64_init_context(struct kvm_vcpu *vcpu,
4836 struct kvm_mmu *context)
17ac10ad 4837{
855feb67
YZ
4838 int root_level = is_la57_mode(vcpu) ?
4839 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4840
4841 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4842}
4843
8a3c1a33
PB
4844static void paging32_init_context(struct kvm_vcpu *vcpu,
4845 struct kvm_mmu *context)
6aa8b732 4846{
2d48a985 4847 context->nx = false;
4d6931c3 4848 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4849
4d6931c3 4850 reset_rsvds_bits_mask(vcpu, context);
25d92081 4851 update_permission_bitmask(vcpu, context, false);
2d344105 4852 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4853 update_last_nonleaf_level(vcpu, context);
6aa8b732 4854
6aa8b732 4855 context->page_fault = paging32_page_fault;
6aa8b732 4856 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4857 context->sync_page = paging32_sync_page;
a7052897 4858 context->invlpg = paging32_invlpg;
0f53b5b1 4859 context->update_pte = paging32_update_pte;
6aa8b732 4860 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4861 context->direct_map = false;
6aa8b732
AK
4862}
4863
8a3c1a33
PB
4864static void paging32E_init_context(struct kvm_vcpu *vcpu,
4865 struct kvm_mmu *context)
6aa8b732 4866{
8a3c1a33 4867 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4868}
4869
a336282d
VK
4870static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4871{
4872 union kvm_mmu_extended_role ext = {0};
4873
7dcd5755 4874 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4875 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4876 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4877 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4878 ext.cr4_pse = !!is_pse(vcpu);
4879 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4880 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4881
4882 ext.valid = 1;
4883
4884 return ext;
4885}
4886
7dcd5755
VK
4887static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4888 bool base_only)
4889{
4890 union kvm_mmu_role role = {0};
4891
4892 role.base.access = ACC_ALL;
4893 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4894 role.base.cr0_wp = is_write_protection(vcpu);
4895 role.base.smm = is_smm(vcpu);
4896 role.base.guest_mode = is_guest_mode(vcpu);
4897
4898 if (base_only)
4899 return role;
4900
4901 role.ext = kvm_calc_mmu_role_ext(vcpu);
4902
4903 return role;
4904}
4905
4906static union kvm_mmu_role
4907kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4908{
7dcd5755 4909 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4910
7dcd5755 4911 role.base.ad_disabled = (shadow_accessed_mask == 0);
afaf0b2f 4912 role.base.level = kvm_x86_ops.get_tdp_level(vcpu);
7dcd5755 4913 role.base.direct = true;
47c42e6b 4914 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4915
4916 return role;
4917}
4918
8a3c1a33 4919static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4920{
44dd3ffa 4921 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4922 union kvm_mmu_role new_role =
4923 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4924
7dcd5755
VK
4925 if (new_role.as_u64 == context->mmu_role.as_u64)
4926 return;
4927
4928 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4929 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4930 context->sync_page = nonpaging_sync_page;
a7052897 4931 context->invlpg = nonpaging_invlpg;
0f53b5b1 4932 context->update_pte = nonpaging_update_pte;
afaf0b2f 4933 context->shadow_root_level = kvm_x86_ops.get_tdp_level(vcpu);
c5a78f2b 4934 context->direct_map = true;
d8dd54e0 4935 context->get_guest_pgd = get_cr3;
e4e517b4 4936 context->get_pdptr = kvm_pdptr_read;
cb659db8 4937 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4938
4939 if (!is_paging(vcpu)) {
2d48a985 4940 context->nx = false;
fb72d167
JR
4941 context->gva_to_gpa = nonpaging_gva_to_gpa;
4942 context->root_level = 0;
4943 } else if (is_long_mode(vcpu)) {
2d48a985 4944 context->nx = is_nx(vcpu);
855feb67
YZ
4945 context->root_level = is_la57_mode(vcpu) ?
4946 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4947 reset_rsvds_bits_mask(vcpu, context);
4948 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4949 } else if (is_pae(vcpu)) {
2d48a985 4950 context->nx = is_nx(vcpu);
fb72d167 4951 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4952 reset_rsvds_bits_mask(vcpu, context);
4953 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4954 } else {
2d48a985 4955 context->nx = false;
fb72d167 4956 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4957 reset_rsvds_bits_mask(vcpu, context);
4958 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4959 }
4960
25d92081 4961 update_permission_bitmask(vcpu, context, false);
2d344105 4962 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4963 update_last_nonleaf_level(vcpu, context);
c258b62b 4964 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4965}
4966
7dcd5755
VK
4967static union kvm_mmu_role
4968kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4969{
4970 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4971
4972 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4973 !is_write_protection(vcpu);
4974 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4975 !is_write_protection(vcpu);
4976 role.base.direct = !is_paging(vcpu);
47c42e6b 4977 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
4978
4979 if (!is_long_mode(vcpu))
7dcd5755 4980 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4981 else if (is_la57_mode(vcpu))
7dcd5755 4982 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4983 else
7dcd5755 4984 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4985
4986 return role;
4987}
4988
4989void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4990{
44dd3ffa 4991 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4992 union kvm_mmu_role new_role =
4993 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4994
7dcd5755
VK
4995 if (new_role.as_u64 == context->mmu_role.as_u64)
4996 return;
6aa8b732
AK
4997
4998 if (!is_paging(vcpu))
8a3c1a33 4999 nonpaging_init_context(vcpu, context);
a9058ecd 5000 else if (is_long_mode(vcpu))
8a3c1a33 5001 paging64_init_context(vcpu, context);
6aa8b732 5002 else if (is_pae(vcpu))
8a3c1a33 5003 paging32E_init_context(vcpu, context);
6aa8b732 5004 else
8a3c1a33 5005 paging32_init_context(vcpu, context);
a770f6f2 5006
7dcd5755 5007 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 5008 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
5009}
5010EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5011
a336282d
VK
5012static union kvm_mmu_role
5013kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 5014 bool execonly, u8 level)
9fa72119 5015{
552c69b1 5016 union kvm_mmu_role role = {0};
14c07ad8 5017
47c42e6b
SC
5018 /* SMM flag is inherited from root_mmu */
5019 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 5020
bb1fcc70 5021 role.base.level = level;
47c42e6b 5022 role.base.gpte_is_8_bytes = true;
a336282d
VK
5023 role.base.direct = false;
5024 role.base.ad_disabled = !accessed_dirty;
5025 role.base.guest_mode = true;
5026 role.base.access = ACC_ALL;
9fa72119 5027
47c42e6b
SC
5028 /*
5029 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5030 * SMAP variation to denote shadow EPT entries.
5031 */
5032 role.base.cr0_wp = true;
5033 role.base.smap_andnot_wp = true;
5034
552c69b1 5035 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 5036 role.ext.execonly = execonly;
9fa72119
JS
5037
5038 return role;
5039}
5040
ae1e2d10 5041void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 5042 bool accessed_dirty, gpa_t new_eptp)
155a97a3 5043{
44dd3ffa 5044 struct kvm_mmu *context = vcpu->arch.mmu;
bb1fcc70 5045 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
5046 union kvm_mmu_role new_role =
5047 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 5048 execonly, level);
a336282d
VK
5049
5050 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5051
a336282d
VK
5052 if (new_role.as_u64 == context->mmu_role.as_u64)
5053 return;
ad896af0 5054
bb1fcc70 5055 context->shadow_root_level = level;
155a97a3
NHE
5056
5057 context->nx = true;
ae1e2d10 5058 context->ept_ad = accessed_dirty;
155a97a3
NHE
5059 context->page_fault = ept_page_fault;
5060 context->gva_to_gpa = ept_gva_to_gpa;
5061 context->sync_page = ept_sync_page;
5062 context->invlpg = ept_invlpg;
5063 context->update_pte = ept_update_pte;
bb1fcc70 5064 context->root_level = level;
155a97a3 5065 context->direct_map = false;
a336282d 5066 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 5067
155a97a3 5068 update_permission_bitmask(vcpu, context, true);
2d344105 5069 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 5070 update_last_nonleaf_level(vcpu, context);
155a97a3 5071 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 5072 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
5073}
5074EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5075
8a3c1a33 5076static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5077{
44dd3ffa 5078 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
5079
5080 kvm_init_shadow_mmu(vcpu);
d8dd54e0 5081 context->get_guest_pgd = get_cr3;
ad896af0
PB
5082 context->get_pdptr = kvm_pdptr_read;
5083 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5084}
5085
8a3c1a33 5086static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5087{
bf627a92 5088 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5089 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5090
bf627a92
VK
5091 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5092 return;
5093
5094 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 5095 g_context->get_guest_pgd = get_cr3;
e4e517b4 5096 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5097 g_context->inject_page_fault = kvm_inject_page_fault;
5098
5099 /*
44dd3ffa 5100 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5101 * L1's nested page tables (e.g. EPT12). The nested translation
5102 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5103 * L2's page tables as the first level of translation and L1's
5104 * nested page tables as the second level of translation. Basically
5105 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5106 */
5107 if (!is_paging(vcpu)) {
2d48a985 5108 g_context->nx = false;
02f59dc9
JR
5109 g_context->root_level = 0;
5110 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5111 } else if (is_long_mode(vcpu)) {
2d48a985 5112 g_context->nx = is_nx(vcpu);
855feb67
YZ
5113 g_context->root_level = is_la57_mode(vcpu) ?
5114 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5115 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5116 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5117 } else if (is_pae(vcpu)) {
2d48a985 5118 g_context->nx = is_nx(vcpu);
02f59dc9 5119 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5120 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5121 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5122 } else {
2d48a985 5123 g_context->nx = false;
02f59dc9 5124 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5125 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5126 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5127 }
5128
25d92081 5129 update_permission_bitmask(vcpu, g_context, false);
2d344105 5130 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5131 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5132}
5133
1c53da3f 5134void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5135{
1c53da3f 5136 if (reset_roots) {
b94742c9
JS
5137 uint i;
5138
44dd3ffa 5139 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5140
5141 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5142 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5143 }
5144
02f59dc9 5145 if (mmu_is_nested(vcpu))
e0c6db3e 5146 init_kvm_nested_mmu(vcpu);
02f59dc9 5147 else if (tdp_enabled)
e0c6db3e 5148 init_kvm_tdp_mmu(vcpu);
fb72d167 5149 else
e0c6db3e 5150 init_kvm_softmmu(vcpu);
fb72d167 5151}
1c53da3f 5152EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5153
9fa72119
JS
5154static union kvm_mmu_page_role
5155kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5156{
7dcd5755
VK
5157 union kvm_mmu_role role;
5158
9fa72119 5159 if (tdp_enabled)
7dcd5755 5160 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5161 else
7dcd5755
VK
5162 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5163
5164 return role.base;
9fa72119 5165}
fb72d167 5166
8a3c1a33 5167void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5168{
95f93af4 5169 kvm_mmu_unload(vcpu);
1c53da3f 5170 kvm_init_mmu(vcpu, true);
17c3ba9d 5171}
8668a3c4 5172EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5173
5174int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5175{
714b93da
AK
5176 int r;
5177
e2dec939 5178 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5179 if (r)
5180 goto out;
8986ecc0 5181 r = mmu_alloc_roots(vcpu);
e2858b4a 5182 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5183 if (r)
5184 goto out;
727a7e27 5185 kvm_mmu_load_pgd(vcpu);
afaf0b2f 5186 kvm_x86_ops.tlb_flush(vcpu, true);
714b93da
AK
5187out:
5188 return r;
6aa8b732 5189}
17c3ba9d
AK
5190EXPORT_SYMBOL_GPL(kvm_mmu_load);
5191
5192void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5193{
14c07ad8
VK
5194 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5195 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5196 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5197 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5198}
4b16184c 5199EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5200
0028425f 5201static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5202 struct kvm_mmu_page *sp, u64 *spte,
5203 const void *new)
0028425f 5204{
30945387 5205 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5206 ++vcpu->kvm->stat.mmu_pde_zapped;
5207 return;
30945387 5208 }
0028425f 5209
4cee5764 5210 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5211 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5212}
5213
79539cec
AK
5214static bool need_remote_flush(u64 old, u64 new)
5215{
5216 if (!is_shadow_present_pte(old))
5217 return false;
5218 if (!is_shadow_present_pte(new))
5219 return true;
5220 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5221 return true;
53166229
GN
5222 old ^= shadow_nx_mask;
5223 new ^= shadow_nx_mask;
79539cec
AK
5224 return (old & ~new & PT64_PERM_MASK) != 0;
5225}
5226
889e5cbc 5227static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5228 int *bytes)
da4a00f0 5229{
0e0fee5c 5230 u64 gentry = 0;
889e5cbc 5231 int r;
72016f3a 5232
72016f3a
AK
5233 /*
5234 * Assume that the pte write on a page table of the same type
49b26e26
XG
5235 * as the current vcpu paging mode since we update the sptes only
5236 * when they have the same mode.
72016f3a 5237 */
889e5cbc 5238 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5239 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5240 *gpa &= ~(gpa_t)7;
5241 *bytes = 8;
08e850c6
AK
5242 }
5243
0e0fee5c
JS
5244 if (*bytes == 4 || *bytes == 8) {
5245 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5246 if (r)
5247 gentry = 0;
72016f3a
AK
5248 }
5249
889e5cbc
XG
5250 return gentry;
5251}
5252
5253/*
5254 * If we're seeing too many writes to a page, it may no longer be a page table,
5255 * or we may be forking, in which case it is better to unmap the page.
5256 */
a138fe75 5257static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5258{
a30f47cb
XG
5259 /*
5260 * Skip write-flooding detected for the sp whose level is 1, because
5261 * it can become unsync, then the guest page is not write-protected.
5262 */
f71fa31f 5263 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5264 return false;
3246af0e 5265
e5691a81
XG
5266 atomic_inc(&sp->write_flooding_count);
5267 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5268}
5269
5270/*
5271 * Misaligned accesses are too much trouble to fix up; also, they usually
5272 * indicate a page is not used as a page table.
5273 */
5274static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5275 int bytes)
5276{
5277 unsigned offset, pte_size, misaligned;
5278
5279 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5280 gpa, bytes, sp->role.word);
5281
5282 offset = offset_in_page(gpa);
47c42e6b 5283 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5284
5285 /*
5286 * Sometimes, the OS only writes the last one bytes to update status
5287 * bits, for example, in linux, andb instruction is used in clear_bit().
5288 */
5289 if (!(offset & (pte_size - 1)) && bytes == 1)
5290 return false;
5291
889e5cbc
XG
5292 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5293 misaligned |= bytes < 4;
5294
5295 return misaligned;
5296}
5297
5298static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5299{
5300 unsigned page_offset, quadrant;
5301 u64 *spte;
5302 int level;
5303
5304 page_offset = offset_in_page(gpa);
5305 level = sp->role.level;
5306 *nspte = 1;
47c42e6b 5307 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5308 page_offset <<= 1; /* 32->64 */
5309 /*
5310 * A 32-bit pde maps 4MB while the shadow pdes map
5311 * only 2MB. So we need to double the offset again
5312 * and zap two pdes instead of one.
5313 */
5314 if (level == PT32_ROOT_LEVEL) {
5315 page_offset &= ~7; /* kill rounding error */
5316 page_offset <<= 1;
5317 *nspte = 2;
5318 }
5319 quadrant = page_offset >> PAGE_SHIFT;
5320 page_offset &= ~PAGE_MASK;
5321 if (quadrant != sp->role.quadrant)
5322 return NULL;
5323 }
5324
5325 spte = &sp->spt[page_offset / sizeof(*spte)];
5326 return spte;
5327}
5328
a102a674
SC
5329/*
5330 * Ignore various flags when determining if a SPTE can be immediately
5331 * overwritten for the current MMU.
5332 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5333 * match the current MMU role, as MMU's level tracks the root level.
5334 * - access: updated based on the new guest PTE
5335 * - quadrant: handled by get_written_sptes()
5336 * - invalid: always false (loop only walks valid shadow pages)
5337 */
5338static const union kvm_mmu_page_role role_ign = {
5339 .level = 0xf,
5340 .access = 0x7,
5341 .quadrant = 0x3,
5342 .invalid = 0x1,
5343};
5344
13d268ca 5345static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5346 const u8 *new, int bytes,
5347 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5348{
5349 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5350 struct kvm_mmu_page *sp;
889e5cbc
XG
5351 LIST_HEAD(invalid_list);
5352 u64 entry, gentry, *spte;
5353 int npte;
b8c67b7a 5354 bool remote_flush, local_flush;
889e5cbc
XG
5355
5356 /*
5357 * If we don't have indirect shadow pages, it means no page is
5358 * write-protected, so we can exit simply.
5359 */
6aa7de05 5360 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5361 return;
5362
b8c67b7a 5363 remote_flush = local_flush = false;
889e5cbc
XG
5364
5365 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5366
889e5cbc
XG
5367 /*
5368 * No need to care whether allocation memory is successful
5369 * or not since pte prefetch is skiped if it does not have
5370 * enough objects in the cache.
5371 */
5372 mmu_topup_memory_caches(vcpu);
5373
5374 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5375
5376 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5377
889e5cbc 5378 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5379 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5380
b67bfe0d 5381 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5382 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5383 detect_write_flooding(sp)) {
b8c67b7a 5384 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5385 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5386 continue;
5387 }
889e5cbc
XG
5388
5389 spte = get_written_sptes(sp, gpa, &npte);
5390 if (!spte)
5391 continue;
5392
0671a8e7 5393 local_flush = true;
ac1b714e 5394 while (npte--) {
36d9594d
VK
5395 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5396
79539cec 5397 entry = *spte;
38e3b2b2 5398 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5399 if (gentry &&
a102a674
SC
5400 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5401 rmap_can_add(vcpu))
7c562522 5402 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5403 if (need_remote_flush(entry, *spte))
0671a8e7 5404 remote_flush = true;
ac1b714e 5405 ++spte;
9b7a0325 5406 }
9b7a0325 5407 }
b8c67b7a 5408 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5409 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5410 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5411}
5412
a436036b
AK
5413int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5414{
10589a46
MT
5415 gpa_t gpa;
5416 int r;
a436036b 5417
44dd3ffa 5418 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5419 return 0;
5420
1871c602 5421 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5422
10589a46 5423 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5424
10589a46 5425 return r;
a436036b 5426}
577bdc49 5427EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5428
736c291c 5429int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5430 void *insn, int insn_len)
3067714c 5431{
92daa48b 5432 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5433 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5434
6948199a 5435 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5436 return RET_PF_RETRY;
5437
9b8ebbdb 5438 r = RET_PF_INVALID;
e9ee956e 5439 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5440 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5441 if (r == RET_PF_EMULATE)
e9ee956e 5442 goto emulate;
e9ee956e 5443 }
3067714c 5444
9b8ebbdb 5445 if (r == RET_PF_INVALID) {
7a02674d
SC
5446 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5447 lower_32_bits(error_code), false);
9b8ebbdb
PB
5448 WARN_ON(r == RET_PF_INVALID);
5449 }
5450
5451 if (r == RET_PF_RETRY)
5452 return 1;
3067714c 5453 if (r < 0)
e9ee956e 5454 return r;
3067714c 5455
14727754
TL
5456 /*
5457 * Before emulating the instruction, check if the error code
5458 * was due to a RO violation while translating the guest page.
5459 * This can occur when using nested virtualization with nested
5460 * paging in both guests. If true, we simply unprotect the page
5461 * and resume the guest.
14727754 5462 */
44dd3ffa 5463 if (vcpu->arch.mmu->direct_map &&
eebed243 5464 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5465 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5466 return 1;
5467 }
5468
472faffa
SC
5469 /*
5470 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5471 * optimistically try to just unprotect the page and let the processor
5472 * re-execute the instruction that caused the page fault. Do not allow
5473 * retrying MMIO emulation, as it's not only pointless but could also
5474 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5475 * faulting on the non-existent MMIO address. Retrying an instruction
5476 * from a nested guest is also pointless and dangerous as we are only
5477 * explicitly shadowing L1's page tables, i.e. unprotecting something
5478 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5479 */
736c291c 5480 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5481 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5482emulate:
00b10fe1
BS
5483 /*
5484 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5485 * This can happen if a guest gets a page-fault on data access but the HW
5486 * table walker is not able to read the instruction page (e.g instruction
5487 * page is not present in memory). In those cases we simply restart the
05d5a486 5488 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5489 */
05d5a486 5490 if (unlikely(insn && !insn_len)) {
afaf0b2f 5491 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
05d5a486
SB
5492 return 1;
5493 }
00b10fe1 5494
736c291c 5495 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5496 insn_len);
3067714c
AK
5497}
5498EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5499
a7052897
MT
5500void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5501{
44dd3ffa 5502 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5503 int i;
7eb77e9f 5504
faff8758
JS
5505 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5506 if (is_noncanonical_address(gva, vcpu))
5507 return;
5508
7eb77e9f 5509 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5510
5511 /*
5512 * INVLPG is required to invalidate any global mappings for the VA,
5513 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5514 * of work to determine whether any of the prev_root mappings of the VA
5515 * is marked global, or to just sync it blindly, so we might as well
5516 * just always sync it.
956bf353 5517 *
b94742c9
JS
5518 * Mappings not reachable via the current cr3 or the prev_roots will be
5519 * synced when switching to that cr3, so nothing needs to be done here
5520 * for them.
956bf353 5521 */
b94742c9
JS
5522 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5523 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5524 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5525
afaf0b2f 5526 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
a7052897
MT
5527 ++vcpu->stat.invlpg;
5528}
5529EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5530
eb4b248e
JS
5531void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5532{
44dd3ffa 5533 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5534 bool tlb_flush = false;
b94742c9 5535 uint i;
eb4b248e
JS
5536
5537 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5538 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5539 tlb_flush = true;
eb4b248e
JS
5540 }
5541
b94742c9
JS
5542 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5543 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5544 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5545 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5546 tlb_flush = true;
5547 }
956bf353 5548 }
ade61e28 5549
faff8758 5550 if (tlb_flush)
afaf0b2f 5551 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
faff8758 5552
eb4b248e
JS
5553 ++vcpu->stat.invlpg;
5554
5555 /*
b94742c9
JS
5556 * Mappings not reachable via the current cr3 or the prev_roots will be
5557 * synced when switching to that cr3, so nothing needs to be done here
5558 * for them.
eb4b248e
JS
5559 */
5560}
5561EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5562
703c335d 5563void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
18552672 5564{
bde77235 5565 tdp_enabled = enable_tdp;
703c335d
SC
5566
5567 /*
5568 * max_page_level reflects the capabilities of KVM's MMU irrespective
5569 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5570 * the kernel is not. But, KVM never creates a page size greater than
5571 * what is used by the kernel for any given HVA, i.e. the kernel's
5572 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5573 */
5574 if (tdp_enabled)
5575 max_page_level = tdp_page_level;
5576 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5577 max_page_level = PT_PDPE_LEVEL;
5578 else
5579 max_page_level = PT_DIRECTORY_LEVEL;
18552672 5580}
bde77235 5581EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5582
5583/* The return value indicates if tlb flush on all vcpus is needed. */
5584typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5585
5586/* The caller should hold mmu-lock before calling this function. */
5587static __always_inline bool
5588slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5589 slot_level_handler fn, int start_level, int end_level,
5590 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5591{
5592 struct slot_rmap_walk_iterator iterator;
5593 bool flush = false;
5594
5595 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5596 end_gfn, &iterator) {
5597 if (iterator.rmap)
5598 flush |= fn(kvm, iterator.rmap);
5599
5600 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5601 if (flush && lock_flush_tlb) {
f285c633
BG
5602 kvm_flush_remote_tlbs_with_address(kvm,
5603 start_gfn,
5604 iterator.gfn - start_gfn + 1);
85875a13
SC
5605 flush = false;
5606 }
5607 cond_resched_lock(&kvm->mmu_lock);
5608 }
5609 }
5610
5611 if (flush && lock_flush_tlb) {
f285c633
BG
5612 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5613 end_gfn - start_gfn + 1);
85875a13
SC
5614 flush = false;
5615 }
5616
5617 return flush;
5618}
5619
5620static __always_inline bool
5621slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5622 slot_level_handler fn, int start_level, int end_level,
5623 bool lock_flush_tlb)
5624{
5625 return slot_handle_level_range(kvm, memslot, fn, start_level,
5626 end_level, memslot->base_gfn,
5627 memslot->base_gfn + memslot->npages - 1,
5628 lock_flush_tlb);
5629}
5630
5631static __always_inline bool
5632slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5633 slot_level_handler fn, bool lock_flush_tlb)
5634{
5635 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5636 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5637}
5638
5639static __always_inline bool
5640slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5641 slot_level_handler fn, bool lock_flush_tlb)
5642{
5643 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5644 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5645}
5646
5647static __always_inline bool
5648slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5649 slot_level_handler fn, bool lock_flush_tlb)
5650{
5651 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5652 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5653}
5654
1cfff4d9 5655static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5656{
1cfff4d9
JP
5657 free_page((unsigned long)mmu->pae_root);
5658 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5659}
5660
1cfff4d9 5661static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5662{
17ac10ad 5663 struct page *page;
6aa8b732
AK
5664 int i;
5665
17ac10ad 5666 /*
b6b80c78
SC
5667 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5668 * while the PDP table is a per-vCPU construct that's allocated at MMU
5669 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5670 * x86_64. Therefore we need to allocate the PDP table in the first
5671 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5672 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5673 * skip allocating the PDP table.
17ac10ad 5674 */
afaf0b2f 5675 if (tdp_enabled && kvm_x86_ops.get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5676 return 0;
5677
254272ce 5678 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5679 if (!page)
d7fa6ab2
WY
5680 return -ENOMEM;
5681
1cfff4d9 5682 mmu->pae_root = page_address(page);
17ac10ad 5683 for (i = 0; i < 4; ++i)
1cfff4d9 5684 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5685
6aa8b732 5686 return 0;
6aa8b732
AK
5687}
5688
8018c27b 5689int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5690{
b94742c9 5691 uint i;
1cfff4d9 5692 int ret;
b94742c9 5693
44dd3ffa
VK
5694 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5695 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5696
44dd3ffa 5697 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5698 vcpu->arch.root_mmu.root_cr3 = 0;
44dd3ffa 5699 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5700 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5701 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5702
14c07ad8 5703 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5704 vcpu->arch.guest_mmu.root_cr3 = 0;
14c07ad8
VK
5705 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5706 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5707 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5708
14c07ad8 5709 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9
JP
5710
5711 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5712 if (ret)
5713 return ret;
5714
5715 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5716 if (ret)
5717 goto fail_allocate_root;
5718
5719 return ret;
5720 fail_allocate_root:
5721 free_mmu_pages(&vcpu->arch.guest_mmu);
5722 return ret;
6aa8b732
AK
5723}
5724
fbb158cb 5725#define BATCH_ZAP_PAGES 10
002c5f73
SC
5726static void kvm_zap_obsolete_pages(struct kvm *kvm)
5727{
5728 struct kvm_mmu_page *sp, *node;
fbb158cb 5729 int nr_zapped, batch = 0;
002c5f73
SC
5730
5731restart:
5732 list_for_each_entry_safe_reverse(sp, node,
5733 &kvm->arch.active_mmu_pages, link) {
5734 /*
5735 * No obsolete valid page exists before a newly created page
5736 * since active_mmu_pages is a FIFO list.
5737 */
5738 if (!is_obsolete_sp(kvm, sp))
5739 break;
5740
5741 /*
9a5c034c
SC
5742 * Skip invalid pages with a non-zero root count, zapping pages
5743 * with a non-zero root count will never succeed, i.e. the page
5744 * will get thrown back on active_mmu_pages and we'll get stuck
5745 * in an infinite loop.
002c5f73 5746 */
9a5c034c 5747 if (sp->role.invalid && sp->root_count)
002c5f73
SC
5748 continue;
5749
4506ecf4
SC
5750 /*
5751 * No need to flush the TLB since we're only zapping shadow
5752 * pages with an obsolete generation number and all vCPUS have
5753 * loaded a new root, i.e. the shadow pages being zapped cannot
5754 * be in active use by the guest.
5755 */
fbb158cb 5756 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5757 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5758 batch = 0;
002c5f73
SC
5759 goto restart;
5760 }
5761
10605204
SC
5762 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5763 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5764 batch += nr_zapped;
002c5f73 5765 goto restart;
fbb158cb 5766 }
002c5f73
SC
5767 }
5768
4506ecf4
SC
5769 /*
5770 * Trigger a remote TLB flush before freeing the page tables to ensure
5771 * KVM is not in the middle of a lockless shadow page table walk, which
5772 * may reference the pages.
5773 */
10605204 5774 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5775}
5776
5777/*
5778 * Fast invalidate all shadow pages and use lock-break technique
5779 * to zap obsolete pages.
5780 *
5781 * It's required when memslot is being deleted or VM is being
5782 * destroyed, in these cases, we should ensure that KVM MMU does
5783 * not use any resource of the being-deleted slot or all slots
5784 * after calling the function.
5785 */
5786static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5787{
ca333add
SC
5788 lockdep_assert_held(&kvm->slots_lock);
5789
002c5f73 5790 spin_lock(&kvm->mmu_lock);
14a3c4f4 5791 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5792
5793 /*
5794 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5795 * held for the entire duration of zapping obsolete pages, it's
5796 * impossible for there to be multiple invalid generations associated
5797 * with *valid* shadow pages at any given time, i.e. there is exactly
5798 * one valid generation and (at most) one invalid generation.
5799 */
5800 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5801
4506ecf4
SC
5802 /*
5803 * Notify all vcpus to reload its shadow page table and flush TLB.
5804 * Then all vcpus will switch to new shadow page table with the new
5805 * mmu_valid_gen.
5806 *
5807 * Note: we need to do this under the protection of mmu_lock,
5808 * otherwise, vcpu would purge shadow page but miss tlb flush.
5809 */
5810 kvm_reload_remote_mmus(kvm);
5811
002c5f73
SC
5812 kvm_zap_obsolete_pages(kvm);
5813 spin_unlock(&kvm->mmu_lock);
5814}
5815
10605204
SC
5816static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5817{
5818 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5819}
5820
b5f5fdca 5821static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5822 struct kvm_memory_slot *slot,
5823 struct kvm_page_track_notifier_node *node)
b5f5fdca 5824{
002c5f73 5825 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5826}
5827
13d268ca 5828void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5829{
13d268ca 5830 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5831
13d268ca 5832 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5833 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5834 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5835}
5836
13d268ca 5837void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5838{
13d268ca 5839 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5840
13d268ca 5841 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5842}
5843
efdfe536
XG
5844void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5845{
5846 struct kvm_memslots *slots;
5847 struct kvm_memory_slot *memslot;
9da0e4d5 5848 int i;
efdfe536
XG
5849
5850 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5851 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5852 slots = __kvm_memslots(kvm, i);
5853 kvm_for_each_memslot(memslot, slots) {
5854 gfn_t start, end;
5855
5856 start = max(gfn_start, memslot->base_gfn);
5857 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5858 if (start >= end)
5859 continue;
efdfe536 5860
92da008f
BG
5861 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5862 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5863 start, end - 1, true);
9da0e4d5 5864 }
efdfe536
XG
5865 }
5866
5867 spin_unlock(&kvm->mmu_lock);
5868}
5869
018aabb5
TY
5870static bool slot_rmap_write_protect(struct kvm *kvm,
5871 struct kvm_rmap_head *rmap_head)
d77aa73c 5872{
018aabb5 5873 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5874}
5875
1c91cad4 5876void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5877 struct kvm_memory_slot *memslot,
5878 int start_level)
6aa8b732 5879{
d77aa73c 5880 bool flush;
6aa8b732 5881
9d1beefb 5882 spin_lock(&kvm->mmu_lock);
3c9bd400
JZ
5883 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5884 start_level, PT_MAX_HUGEPAGE_LEVEL, false);
9d1beefb 5885 spin_unlock(&kvm->mmu_lock);
198c74f4 5886
198c74f4
XG
5887 /*
5888 * We can flush all the TLBs out of the mmu lock without TLB
5889 * corruption since we just change the spte from writable to
5890 * readonly so that we only need to care the case of changing
5891 * spte from present to present (changing the spte from present
5892 * to nonpresent will flush all the TLBs immediately), in other
5893 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5894 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5895 * instead of PT_WRITABLE_MASK, that means it does not depend
5896 * on PT_WRITABLE_MASK anymore.
5897 */
d91ffee9 5898 if (flush)
7f42aa76 5899 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5900}
37a7d8b0 5901
3ea3b7fa 5902static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5903 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5904{
5905 u64 *sptep;
5906 struct rmap_iterator iter;
5907 int need_tlb_flush = 0;
ba049e93 5908 kvm_pfn_t pfn;
3ea3b7fa
WL
5909 struct kvm_mmu_page *sp;
5910
0d536790 5911restart:
018aabb5 5912 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5913 sp = page_header(__pa(sptep));
5914 pfn = spte_to_pfn(*sptep);
5915
5916 /*
decf6333
XG
5917 * We cannot do huge page mapping for indirect shadow pages,
5918 * which are found on the last rmap (level = 1) when not using
5919 * tdp; such shadow pages are synced with the page table in
5920 * the guest, and the guest page table is using 4K page size
5921 * mapping if the indirect sp has level = 1.
3ea3b7fa 5922 */
a78986aa 5923 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5924 (kvm_is_zone_device_pfn(pfn) ||
5925 PageCompound(pfn_to_page(pfn)))) {
e7912386 5926 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5927
5928 if (kvm_available_flush_tlb_with_range())
5929 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5930 KVM_PAGES_PER_HPAGE(sp->role.level));
5931 else
5932 need_tlb_flush = 1;
5933
0d536790
XG
5934 goto restart;
5935 }
3ea3b7fa
WL
5936 }
5937
5938 return need_tlb_flush;
5939}
5940
5941void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5942 const struct kvm_memory_slot *memslot)
3ea3b7fa 5943{
f36f3f28 5944 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5945 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5946 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5947 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5948 spin_unlock(&kvm->mmu_lock);
5949}
5950
b3594ffb
SC
5951void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5952 struct kvm_memory_slot *memslot)
5953{
5954 /*
7f42aa76
SC
5955 * All current use cases for flushing the TLBs for a specific memslot
5956 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5957 * The interaction between the various operations on memslot must be
5958 * serialized by slots_locks to ensure the TLB flush from one operation
5959 * is observed by any other operation on the same memslot.
b3594ffb
SC
5960 */
5961 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5962 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5963 memslot->npages);
b3594ffb
SC
5964}
5965
f4b4b180
KH
5966void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5967 struct kvm_memory_slot *memslot)
5968{
d77aa73c 5969 bool flush;
f4b4b180
KH
5970
5971 spin_lock(&kvm->mmu_lock);
d77aa73c 5972 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5973 spin_unlock(&kvm->mmu_lock);
5974
f4b4b180
KH
5975 /*
5976 * It's also safe to flush TLBs out of mmu lock here as currently this
5977 * function is only used for dirty logging, in which case flushing TLB
5978 * out of mmu lock also guarantees no dirty pages will be lost in
5979 * dirty_bitmap.
5980 */
5981 if (flush)
7f42aa76 5982 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5983}
5984EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5985
5986void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5987 struct kvm_memory_slot *memslot)
5988{
d77aa73c 5989 bool flush;
f4b4b180
KH
5990
5991 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5992 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5993 false);
f4b4b180
KH
5994 spin_unlock(&kvm->mmu_lock);
5995
f4b4b180 5996 if (flush)
7f42aa76 5997 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5998}
5999EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6000
6001void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6002 struct kvm_memory_slot *memslot)
6003{
d77aa73c 6004 bool flush;
f4b4b180
KH
6005
6006 spin_lock(&kvm->mmu_lock);
d77aa73c 6007 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
6008 spin_unlock(&kvm->mmu_lock);
6009
f4b4b180 6010 if (flush)
7f42aa76 6011 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
6012}
6013EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6014
92f58b5c 6015void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
6016{
6017 struct kvm_mmu_page *sp, *node;
7390de1e 6018 LIST_HEAD(invalid_list);
83cdb568 6019 int ign;
5304b8d3 6020
7390de1e 6021 spin_lock(&kvm->mmu_lock);
5304b8d3 6022restart:
8a674adc 6023 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
8ab3c471 6024 if (sp->role.invalid && sp->root_count)
4771450c 6025 continue;
92f58b5c 6026 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 6027 goto restart;
24efe61f 6028 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
6029 goto restart;
6030 }
6031
4771450c 6032 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
6033 spin_unlock(&kvm->mmu_lock);
6034}
6035
15248258 6036void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 6037{
164bf7e5 6038 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 6039
164bf7e5 6040 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 6041
f8f55942 6042 /*
e1359e2b
SC
6043 * Generation numbers are incremented in multiples of the number of
6044 * address spaces in order to provide unique generations across all
6045 * address spaces. Strip what is effectively the address space
6046 * modifier prior to checking for a wrap of the MMIO generation so
6047 * that a wrap in any address space is detected.
6048 */
6049 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6050
f8f55942 6051 /*
e1359e2b 6052 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 6053 * zap all shadow pages.
f8f55942 6054 */
e1359e2b 6055 if (unlikely(gen == 0)) {
ae0f5499 6056 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 6057 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 6058 }
f8f55942
XG
6059}
6060
70534a73
DC
6061static unsigned long
6062mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
6063{
6064 struct kvm *kvm;
1495f230 6065 int nr_to_scan = sc->nr_to_scan;
70534a73 6066 unsigned long freed = 0;
3ee16c81 6067
0d9ce162 6068 mutex_lock(&kvm_lock);
3ee16c81
IE
6069
6070 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 6071 int idx;
d98ba053 6072 LIST_HEAD(invalid_list);
3ee16c81 6073
35f2d16b
TY
6074 /*
6075 * Never scan more than sc->nr_to_scan VM instances.
6076 * Will not hit this condition practically since we do not try
6077 * to shrink more than one VM and it is very unlikely to see
6078 * !n_used_mmu_pages so many times.
6079 */
6080 if (!nr_to_scan--)
6081 break;
19526396
GN
6082 /*
6083 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6084 * here. We may skip a VM instance errorneosly, but we do not
6085 * want to shrink a VM that only started to populate its MMU
6086 * anyway.
6087 */
10605204
SC
6088 if (!kvm->arch.n_used_mmu_pages &&
6089 !kvm_has_zapped_obsolete_pages(kvm))
19526396 6090 continue;
19526396 6091
f656ce01 6092 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 6093 spin_lock(&kvm->mmu_lock);
3ee16c81 6094
10605204
SC
6095 if (kvm_has_zapped_obsolete_pages(kvm)) {
6096 kvm_mmu_commit_zap_page(kvm,
6097 &kvm->arch.zapped_obsolete_pages);
6098 goto unlock;
6099 }
6100
70534a73
DC
6101 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6102 freed++;
d98ba053 6103 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 6104
10605204 6105unlock:
3ee16c81 6106 spin_unlock(&kvm->mmu_lock);
f656ce01 6107 srcu_read_unlock(&kvm->srcu, idx);
19526396 6108
70534a73
DC
6109 /*
6110 * unfair on small ones
6111 * per-vm shrinkers cry out
6112 * sadness comes quickly
6113 */
19526396
GN
6114 list_move_tail(&kvm->vm_list, &vm_list);
6115 break;
3ee16c81 6116 }
3ee16c81 6117
0d9ce162 6118 mutex_unlock(&kvm_lock);
70534a73 6119 return freed;
70534a73
DC
6120}
6121
6122static unsigned long
6123mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6124{
45221ab6 6125 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
6126}
6127
6128static struct shrinker mmu_shrinker = {
70534a73
DC
6129 .count_objects = mmu_shrink_count,
6130 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
6131 .seeks = DEFAULT_SEEKS * 10,
6132};
6133
2ddfd20e 6134static void mmu_destroy_caches(void)
b5a33a75 6135{
c1bd743e
TH
6136 kmem_cache_destroy(pte_list_desc_cache);
6137 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
6138}
6139
7b6f8a06
KH
6140static void kvm_set_mmio_spte_mask(void)
6141{
6142 u64 mask;
7b6f8a06
KH
6143
6144 /*
6145 * Set the reserved bits and the present bit of an paging-structure
6146 * entry to generate page fault with PFER.RSV = 1.
6147 */
6148
6149 /*
6150 * Mask the uppermost physical address bit, which would be reserved as
6151 * long as the supported physical address width is less than 52.
6152 */
6153 mask = 1ull << 51;
6154
6155 /* Set the present bit. */
6156 mask |= 1ull;
6157
6158 /*
6159 * If reserved bit is not supported, clear the present bit to disable
6160 * mmio page fault.
6161 */
e30a7d62 6162 if (shadow_phys_bits == 52)
7b6f8a06
KH
6163 mask &= ~1ull;
6164
4af77151 6165 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
6166}
6167
b8e8c830
PB
6168static bool get_nx_auto_mode(void)
6169{
6170 /* Return true when CPU has the bug, and mitigations are ON */
6171 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6172}
6173
6174static void __set_nx_huge_pages(bool val)
6175{
6176 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6177}
6178
6179static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6180{
6181 bool old_val = nx_huge_pages;
6182 bool new_val;
6183
6184 /* In "auto" mode deploy workaround only if CPU has the bug. */
6185 if (sysfs_streq(val, "off"))
6186 new_val = 0;
6187 else if (sysfs_streq(val, "force"))
6188 new_val = 1;
6189 else if (sysfs_streq(val, "auto"))
6190 new_val = get_nx_auto_mode();
6191 else if (strtobool(val, &new_val) < 0)
6192 return -EINVAL;
6193
6194 __set_nx_huge_pages(new_val);
6195
6196 if (new_val != old_val) {
6197 struct kvm *kvm;
b8e8c830
PB
6198
6199 mutex_lock(&kvm_lock);
6200
6201 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 6202 mutex_lock(&kvm->slots_lock);
b8e8c830 6203 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 6204 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
6205
6206 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
6207 }
6208 mutex_unlock(&kvm_lock);
6209 }
6210
6211 return 0;
6212}
6213
b5a33a75
AK
6214int kvm_mmu_module_init(void)
6215{
ab271bd4
AB
6216 int ret = -ENOMEM;
6217
b8e8c830
PB
6218 if (nx_huge_pages == -1)
6219 __set_nx_huge_pages(get_nx_auto_mode());
6220
36d9594d
VK
6221 /*
6222 * MMU roles use union aliasing which is, generally speaking, an
6223 * undefined behavior. However, we supposedly know how compilers behave
6224 * and the current status quo is unlikely to change. Guardians below are
6225 * supposed to let us know if the assumption becomes false.
6226 */
6227 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6228 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6229 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6230
28a1f3ac 6231 kvm_mmu_reset_all_pte_masks();
f160c7b7 6232
7b6f8a06
KH
6233 kvm_set_mmio_spte_mask();
6234
53c07b18
XG
6235 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6236 sizeof(struct pte_list_desc),
46bea48a 6237 0, SLAB_ACCOUNT, NULL);
53c07b18 6238 if (!pte_list_desc_cache)
ab271bd4 6239 goto out;
b5a33a75 6240
d3d25b04
AK
6241 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6242 sizeof(struct kvm_mmu_page),
46bea48a 6243 0, SLAB_ACCOUNT, NULL);
d3d25b04 6244 if (!mmu_page_header_cache)
ab271bd4 6245 goto out;
d3d25b04 6246
908c7f19 6247 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6248 goto out;
45bf21a8 6249
ab271bd4
AB
6250 ret = register_shrinker(&mmu_shrinker);
6251 if (ret)
6252 goto out;
3ee16c81 6253
b5a33a75
AK
6254 return 0;
6255
ab271bd4 6256out:
3ee16c81 6257 mmu_destroy_caches();
ab271bd4 6258 return ret;
b5a33a75
AK
6259}
6260
3ad82a7e 6261/*
39337ad1 6262 * Calculate mmu pages needed for kvm.
3ad82a7e 6263 */
bc8a3d89 6264unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6265{
bc8a3d89
BG
6266 unsigned long nr_mmu_pages;
6267 unsigned long nr_pages = 0;
bc6678a3 6268 struct kvm_memslots *slots;
be6ba0f0 6269 struct kvm_memory_slot *memslot;
9da0e4d5 6270 int i;
3ad82a7e 6271
9da0e4d5
PB
6272 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6273 slots = __kvm_memslots(kvm, i);
90d83dc3 6274
9da0e4d5
PB
6275 kvm_for_each_memslot(memslot, slots)
6276 nr_pages += memslot->npages;
6277 }
3ad82a7e
ZX
6278
6279 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6280 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6281
6282 return nr_mmu_pages;
6283}
6284
c42fffe3
XG
6285void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6286{
95f93af4 6287 kvm_mmu_unload(vcpu);
1cfff4d9
JP
6288 free_mmu_pages(&vcpu->arch.root_mmu);
6289 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 6290 mmu_free_memory_caches(vcpu);
b034cf01
XG
6291}
6292
b034cf01
XG
6293void kvm_mmu_module_exit(void)
6294{
6295 mmu_destroy_caches();
6296 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6297 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6298 mmu_audit_disable();
6299}
1aa9b957
JS
6300
6301static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6302{
6303 unsigned int old_val;
6304 int err;
6305
6306 old_val = nx_huge_pages_recovery_ratio;
6307 err = param_set_uint(val, kp);
6308 if (err)
6309 return err;
6310
6311 if (READ_ONCE(nx_huge_pages) &&
6312 !old_val && nx_huge_pages_recovery_ratio) {
6313 struct kvm *kvm;
6314
6315 mutex_lock(&kvm_lock);
6316
6317 list_for_each_entry(kvm, &vm_list, vm_list)
6318 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6319
6320 mutex_unlock(&kvm_lock);
6321 }
6322
6323 return err;
6324}
6325
6326static void kvm_recover_nx_lpages(struct kvm *kvm)
6327{
6328 int rcu_idx;
6329 struct kvm_mmu_page *sp;
6330 unsigned int ratio;
6331 LIST_HEAD(invalid_list);
6332 ulong to_zap;
6333
6334 rcu_idx = srcu_read_lock(&kvm->srcu);
6335 spin_lock(&kvm->mmu_lock);
6336
6337 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6338 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6339 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6340 /*
6341 * We use a separate list instead of just using active_mmu_pages
6342 * because the number of lpage_disallowed pages is expected to
6343 * be relatively small compared to the total.
6344 */
6345 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6346 struct kvm_mmu_page,
6347 lpage_disallowed_link);
6348 WARN_ON_ONCE(!sp->lpage_disallowed);
6349 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6350 WARN_ON_ONCE(sp->lpage_disallowed);
6351
6352 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6353 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6354 if (to_zap)
6355 cond_resched_lock(&kvm->mmu_lock);
6356 }
6357 }
6358
6359 spin_unlock(&kvm->mmu_lock);
6360 srcu_read_unlock(&kvm->srcu, rcu_idx);
6361}
6362
6363static long get_nx_lpage_recovery_timeout(u64 start_time)
6364{
6365 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6366 ? start_time + 60 * HZ - get_jiffies_64()
6367 : MAX_SCHEDULE_TIMEOUT;
6368}
6369
6370static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6371{
6372 u64 start_time;
6373 long remaining_time;
6374
6375 while (true) {
6376 start_time = get_jiffies_64();
6377 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6378
6379 set_current_state(TASK_INTERRUPTIBLE);
6380 while (!kthread_should_stop() && remaining_time > 0) {
6381 schedule_timeout(remaining_time);
6382 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6383 set_current_state(TASK_INTERRUPTIBLE);
6384 }
6385
6386 set_current_state(TASK_RUNNING);
6387
6388 if (kthread_should_stop())
6389 return 0;
6390
6391 kvm_recover_nx_lpages(kvm);
6392 }
6393}
6394
6395int kvm_mmu_post_init_vm(struct kvm *kvm)
6396{
6397 int err;
6398
6399 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6400 "kvm-nx-lpage-recovery",
6401 &kvm->arch.nx_lpage_recovery_thread);
6402 if (!err)
6403 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6404
6405 return err;
6406}
6407
6408void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6409{
6410 if (kvm->arch.nx_lpage_recovery_thread)
6411 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6412}