]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
Merge remote-tracking branches 'asoc/topic/dwc', 'asoc/topic/fallthrough', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d
AK
44#include <asm/page.h>
45#include <asm/cmpxchg.h>
4e542370 46#include <asm/io.h>
13673a90 47#include <asm/vmx.h>
3d0c27ad 48#include <asm/kvm_page_track.h>
1261bfa3 49#include "trace.h"
6aa8b732 50
18552672
JR
51/*
52 * When setting this variable to true it enables Two-Dimensional-Paging
53 * where the hardware walks 2 page tables:
54 * 1. the guest-virtual to guest-physical
55 * 2. while doing 1. it walks guest-physical to host-physical
56 * If the hardware supports that we don't need to do shadow paging.
57 */
2f333bcb 58bool tdp_enabled = false;
18552672 59
8b1fe17c
XG
60enum {
61 AUDIT_PRE_PAGE_FAULT,
62 AUDIT_POST_PAGE_FAULT,
63 AUDIT_PRE_PTE_WRITE,
6903074c
XG
64 AUDIT_POST_PTE_WRITE,
65 AUDIT_PRE_SYNC,
66 AUDIT_POST_SYNC
8b1fe17c 67};
37a7d8b0 68
8b1fe17c 69#undef MMU_DEBUG
37a7d8b0
AK
70
71#ifdef MMU_DEBUG
fa4a2c08
PB
72static bool dbg = 0;
73module_param(dbg, bool, 0644);
37a7d8b0
AK
74
75#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 77#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 78#else
37a7d8b0
AK
79#define pgprintk(x...) do { } while (0)
80#define rmap_printk(x...) do { } while (0)
fa4a2c08 81#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 82#endif
6aa8b732 83
957ed9ef
XG
84#define PTE_PREFETCH_NUM 8
85
00763e41 86#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
87#define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
6aa8b732
AK
89#define PT64_LEVEL_BITS 9
90
91#define PT64_LEVEL_SHIFT(level) \
d77c26fc 92 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 93
6aa8b732
AK
94#define PT64_INDEX(address, level)\
95 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
96
97
98#define PT32_LEVEL_BITS 10
99
100#define PT32_LEVEL_SHIFT(level) \
d77c26fc 101 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 102
e04da980
JR
103#define PT32_LVL_OFFSET_MASK(level) \
104 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
105 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
106
107#define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
d0ec49d4 111#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
6aa8b732
AK
112#define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
114#define PT64_LVL_ADDR_MASK(level) \
115 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT64_LEVEL_BITS))) - 1))
117#define PT64_LVL_OFFSET_MASK(level) \
118 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
119 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
120
121#define PT32_BASE_ADDR_MASK PAGE_MASK
122#define PT32_DIR_BASE_ADDR_MASK \
123 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
124#define PT32_LVL_ADDR_MASK(level) \
125 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT32_LEVEL_BITS))) - 1))
6aa8b732 127
53166229 128#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 129 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 130
fe135d2c
AK
131#define ACC_EXEC_MASK 1
132#define ACC_WRITE_MASK PT_WRITABLE_MASK
133#define ACC_USER_MASK PT_USER_MASK
134#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
135
f160c7b7
JS
136/* The mask for the R/X bits in EPT PTEs */
137#define PT64_EPT_READABLE_MASK 0x1ull
138#define PT64_EPT_EXECUTABLE_MASK 0x4ull
139
90bb6fc5
AK
140#include <trace/events/kvm.h>
141
07420171
AK
142#define CREATE_TRACE_POINTS
143#include "mmutrace.h"
144
49fde340
XG
145#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
146#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 147
135f8c2b
AK
148#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
149
220f773a
TY
150/* make pte_list_desc fit well in cache line */
151#define PTE_LIST_EXT 3
152
53c07b18
XG
153struct pte_list_desc {
154 u64 *sptes[PTE_LIST_EXT];
155 struct pte_list_desc *more;
cd4a4e53
AK
156};
157
2d11123a
AK
158struct kvm_shadow_walk_iterator {
159 u64 addr;
160 hpa_t shadow_addr;
2d11123a 161 u64 *sptep;
dd3bfd59 162 int level;
2d11123a
AK
163 unsigned index;
164};
165
166#define for_each_shadow_entry(_vcpu, _addr, _walker) \
167 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
168 shadow_walk_okay(&(_walker)); \
169 shadow_walk_next(&(_walker)))
170
c2a2ac2b
XG
171#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
172 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
173 shadow_walk_okay(&(_walker)) && \
174 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
175 __shadow_walk_next(&(_walker), spte))
176
53c07b18 177static struct kmem_cache *pte_list_desc_cache;
d3d25b04 178static struct kmem_cache *mmu_page_header_cache;
45221ab6 179static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 180
7b52345e
SY
181static u64 __read_mostly shadow_nx_mask;
182static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
183static u64 __read_mostly shadow_user_mask;
184static u64 __read_mostly shadow_accessed_mask;
185static u64 __read_mostly shadow_dirty_mask;
ce88decf 186static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 187static u64 __read_mostly shadow_mmio_value;
ffb128c8 188static u64 __read_mostly shadow_present_mask;
d0ec49d4 189static u64 __read_mostly shadow_me_mask;
ce88decf 190
f160c7b7 191/*
ac8d57e5
PF
192 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
193 * Non-present SPTEs with shadow_acc_track_value set are in place for access
194 * tracking.
f160c7b7
JS
195 */
196static u64 __read_mostly shadow_acc_track_mask;
197static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
198
199/*
200 * The mask/shift to use for saving the original R/X bits when marking the PTE
201 * as not-present for access tracking purposes. We do not save the W bit as the
202 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
203 * restored only when a write is attempted to the page.
204 */
205static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
206 PT64_EPT_EXECUTABLE_MASK;
207static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
208
ce88decf 209static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 210static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf 211
dcdca5fe 212void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 213{
dcdca5fe
PF
214 BUG_ON((mmio_mask & mmio_value) != mmio_value);
215 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 216 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
217}
218EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
219
ac8d57e5
PF
220static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
221{
222 return sp->role.ad_disabled;
223}
224
225static inline bool spte_ad_enabled(u64 spte)
226{
227 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
228 return !(spte & shadow_acc_track_value);
229}
230
231static inline u64 spte_shadow_accessed_mask(u64 spte)
232{
233 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
234 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
235}
236
237static inline u64 spte_shadow_dirty_mask(u64 spte)
238{
239 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
240 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
241}
242
f160c7b7
JS
243static inline bool is_access_track_spte(u64 spte)
244{
ac8d57e5 245 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
246}
247
f2fd125d 248/*
ee3d1570
DM
249 * the low bit of the generation number is always presumed to be zero.
250 * This disables mmio caching during memslot updates. The concept is
251 * similar to a seqcount but instead of retrying the access we just punt
252 * and ignore the cache.
253 *
254 * spte bits 3-11 are used as bits 1-9 of the generation number,
255 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 256 */
ee3d1570 257#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
258#define MMIO_SPTE_GEN_HIGH_SHIFT 52
259
ee3d1570
DM
260#define MMIO_GEN_SHIFT 20
261#define MMIO_GEN_LOW_SHIFT 10
262#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 263#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
264
265static u64 generation_mmio_spte_mask(unsigned int gen)
266{
267 u64 mask;
268
842bb26a 269 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
270
271 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
272 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
273 return mask;
274}
275
276static unsigned int get_mmio_spte_generation(u64 spte)
277{
278 unsigned int gen;
279
280 spte &= ~shadow_mmio_mask;
281
282 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
283 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
284 return gen;
285}
286
54bf36aa 287static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 288{
54bf36aa 289 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
290}
291
54bf36aa 292static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 293 unsigned access)
ce88decf 294{
54bf36aa 295 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 296 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 297
ce88decf 298 access &= ACC_WRITE_MASK | ACC_USER_MASK;
dcdca5fe 299 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
f2fd125d 300
f8f55942 301 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 302 mmu_spte_set(sptep, mask);
ce88decf
XG
303}
304
305static bool is_mmio_spte(u64 spte)
306{
dcdca5fe 307 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
308}
309
310static gfn_t get_mmio_spte_gfn(u64 spte)
311{
842bb26a 312 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 313 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
314}
315
316static unsigned get_mmio_spte_access(u64 spte)
317{
842bb26a 318 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 319 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
320}
321
54bf36aa 322static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 323 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
324{
325 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 326 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
327 return true;
328 }
329
330 return false;
331}
c7addb90 332
54bf36aa 333static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 334{
089504c0
XG
335 unsigned int kvm_gen, spte_gen;
336
54bf36aa 337 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
338 spte_gen = get_mmio_spte_generation(spte);
339
340 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
341 return likely(kvm_gen == spte_gen);
f8f55942
XG
342}
343
ce00053b
PF
344/*
345 * Sets the shadow PTE masks used by the MMU.
346 *
347 * Assumptions:
348 * - Setting either @accessed_mask or @dirty_mask requires setting both
349 * - At least one of @accessed_mask or @acc_track_mask must be set
350 */
7b52345e 351void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 352 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 353 u64 acc_track_mask, u64 me_mask)
7b52345e 354{
ce00053b
PF
355 BUG_ON(!dirty_mask != !accessed_mask);
356 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 357 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 358
7b52345e
SY
359 shadow_user_mask = user_mask;
360 shadow_accessed_mask = accessed_mask;
361 shadow_dirty_mask = dirty_mask;
362 shadow_nx_mask = nx_mask;
363 shadow_x_mask = x_mask;
ffb128c8 364 shadow_present_mask = p_mask;
f160c7b7 365 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 366 shadow_me_mask = me_mask;
7b52345e
SY
367}
368EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
369
f160c7b7
JS
370void kvm_mmu_clear_all_pte_masks(void)
371{
372 shadow_user_mask = 0;
373 shadow_accessed_mask = 0;
374 shadow_dirty_mask = 0;
375 shadow_nx_mask = 0;
376 shadow_x_mask = 0;
377 shadow_mmio_mask = 0;
378 shadow_present_mask = 0;
379 shadow_acc_track_mask = 0;
380}
381
6aa8b732
AK
382static int is_cpuid_PSE36(void)
383{
384 return 1;
385}
386
73b1087e
AK
387static int is_nx(struct kvm_vcpu *vcpu)
388{
f6801dff 389 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
390}
391
c7addb90
AK
392static int is_shadow_present_pte(u64 pte)
393{
f160c7b7 394 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
395}
396
05da4558
MT
397static int is_large_pte(u64 pte)
398{
399 return pte & PT_PAGE_SIZE_MASK;
400}
401
776e6633
MT
402static int is_last_spte(u64 pte, int level)
403{
404 if (level == PT_PAGE_TABLE_LEVEL)
405 return 1;
852e3c19 406 if (is_large_pte(pte))
776e6633
MT
407 return 1;
408 return 0;
409}
410
d3e328f2
JS
411static bool is_executable_pte(u64 spte)
412{
413 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
414}
415
ba049e93 416static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 417{
35149e21 418 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
419}
420
da928521
AK
421static gfn_t pse36_gfn_delta(u32 gpte)
422{
423 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
424
425 return (gpte & PT32_DIR_PSE36_MASK) << shift;
426}
427
603e0651 428#ifdef CONFIG_X86_64
d555c333 429static void __set_spte(u64 *sptep, u64 spte)
e663ee64 430{
b19ee2ff 431 WRITE_ONCE(*sptep, spte);
e663ee64
AK
432}
433
603e0651 434static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 435{
b19ee2ff 436 WRITE_ONCE(*sptep, spte);
603e0651
XG
437}
438
439static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
440{
441 return xchg(sptep, spte);
442}
c2a2ac2b
XG
443
444static u64 __get_spte_lockless(u64 *sptep)
445{
446 return ACCESS_ONCE(*sptep);
447}
a9221dd5 448#else
603e0651
XG
449union split_spte {
450 struct {
451 u32 spte_low;
452 u32 spte_high;
453 };
454 u64 spte;
455};
a9221dd5 456
c2a2ac2b
XG
457static void count_spte_clear(u64 *sptep, u64 spte)
458{
459 struct kvm_mmu_page *sp = page_header(__pa(sptep));
460
461 if (is_shadow_present_pte(spte))
462 return;
463
464 /* Ensure the spte is completely set before we increase the count */
465 smp_wmb();
466 sp->clear_spte_count++;
467}
468
603e0651
XG
469static void __set_spte(u64 *sptep, u64 spte)
470{
471 union split_spte *ssptep, sspte;
a9221dd5 472
603e0651
XG
473 ssptep = (union split_spte *)sptep;
474 sspte = (union split_spte)spte;
475
476 ssptep->spte_high = sspte.spte_high;
477
478 /*
479 * If we map the spte from nonpresent to present, We should store
480 * the high bits firstly, then set present bit, so cpu can not
481 * fetch this spte while we are setting the spte.
482 */
483 smp_wmb();
484
b19ee2ff 485 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
486}
487
603e0651
XG
488static void __update_clear_spte_fast(u64 *sptep, u64 spte)
489{
490 union split_spte *ssptep, sspte;
491
492 ssptep = (union split_spte *)sptep;
493 sspte = (union split_spte)spte;
494
b19ee2ff 495 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
496
497 /*
498 * If we map the spte from present to nonpresent, we should clear
499 * present bit firstly to avoid vcpu fetch the old high bits.
500 */
501 smp_wmb();
502
503 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 504 count_spte_clear(sptep, spte);
603e0651
XG
505}
506
507static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
508{
509 union split_spte *ssptep, sspte, orig;
510
511 ssptep = (union split_spte *)sptep;
512 sspte = (union split_spte)spte;
513
514 /* xchg acts as a barrier before the setting of the high bits */
515 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
516 orig.spte_high = ssptep->spte_high;
517 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 518 count_spte_clear(sptep, spte);
603e0651
XG
519
520 return orig.spte;
521}
c2a2ac2b
XG
522
523/*
524 * The idea using the light way get the spte on x86_32 guest is from
525 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
526 *
527 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
528 * coalesces them and we are running out of the MMU lock. Therefore
529 * we need to protect against in-progress updates of the spte.
530 *
531 * Reading the spte while an update is in progress may get the old value
532 * for the high part of the spte. The race is fine for a present->non-present
533 * change (because the high part of the spte is ignored for non-present spte),
534 * but for a present->present change we must reread the spte.
535 *
536 * All such changes are done in two steps (present->non-present and
537 * non-present->present), hence it is enough to count the number of
538 * present->non-present updates: if it changed while reading the spte,
539 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
540 */
541static u64 __get_spte_lockless(u64 *sptep)
542{
543 struct kvm_mmu_page *sp = page_header(__pa(sptep));
544 union split_spte spte, *orig = (union split_spte *)sptep;
545 int count;
546
547retry:
548 count = sp->clear_spte_count;
549 smp_rmb();
550
551 spte.spte_low = orig->spte_low;
552 smp_rmb();
553
554 spte.spte_high = orig->spte_high;
555 smp_rmb();
556
557 if (unlikely(spte.spte_low != orig->spte_low ||
558 count != sp->clear_spte_count))
559 goto retry;
560
561 return spte.spte;
562}
603e0651
XG
563#endif
564
ea4114bc 565static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 566{
feb3eb70
GN
567 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
568 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
569}
570
8672b721
XG
571static bool spte_has_volatile_bits(u64 spte)
572{
f160c7b7
JS
573 if (!is_shadow_present_pte(spte))
574 return false;
575
c7ba5b48 576 /*
6a6256f9 577 * Always atomically update spte if it can be updated
c7ba5b48
XG
578 * out of mmu-lock, it can ensure dirty bit is not lost,
579 * also, it can help us to get a stable is_writable_pte()
580 * to ensure tlb flush is not missed.
581 */
f160c7b7
JS
582 if (spte_can_locklessly_be_made_writable(spte) ||
583 is_access_track_spte(spte))
c7ba5b48
XG
584 return true;
585
ac8d57e5 586 if (spte_ad_enabled(spte)) {
f160c7b7
JS
587 if ((spte & shadow_accessed_mask) == 0 ||
588 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
589 return true;
590 }
8672b721 591
f160c7b7 592 return false;
8672b721
XG
593}
594
83ef6c81 595static bool is_accessed_spte(u64 spte)
4132779b 596{
ac8d57e5
PF
597 u64 accessed_mask = spte_shadow_accessed_mask(spte);
598
599 return accessed_mask ? spte & accessed_mask
600 : !is_access_track_spte(spte);
4132779b
XG
601}
602
83ef6c81 603static bool is_dirty_spte(u64 spte)
7e71a59b 604{
ac8d57e5
PF
605 u64 dirty_mask = spte_shadow_dirty_mask(spte);
606
607 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
608}
609
1df9f2dc
XG
610/* Rules for using mmu_spte_set:
611 * Set the sptep from nonpresent to present.
612 * Note: the sptep being assigned *must* be either not present
613 * or in a state where the hardware will not attempt to update
614 * the spte.
615 */
616static void mmu_spte_set(u64 *sptep, u64 new_spte)
617{
618 WARN_ON(is_shadow_present_pte(*sptep));
619 __set_spte(sptep, new_spte);
620}
621
f39a058d
JS
622/*
623 * Update the SPTE (excluding the PFN), but do not track changes in its
624 * accessed/dirty status.
1df9f2dc 625 */
f39a058d 626static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 627{
c7ba5b48 628 u64 old_spte = *sptep;
4132779b 629
afd28fe1 630 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 631
6e7d0354
XG
632 if (!is_shadow_present_pte(old_spte)) {
633 mmu_spte_set(sptep, new_spte);
f39a058d 634 return old_spte;
6e7d0354 635 }
4132779b 636
c7ba5b48 637 if (!spte_has_volatile_bits(old_spte))
603e0651 638 __update_clear_spte_fast(sptep, new_spte);
4132779b 639 else
603e0651 640 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 641
83ef6c81
JS
642 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
643
f39a058d
JS
644 return old_spte;
645}
646
647/* Rules for using mmu_spte_update:
648 * Update the state bits, it means the mapped pfn is not changed.
649 *
650 * Whenever we overwrite a writable spte with a read-only one we
651 * should flush remote TLBs. Otherwise rmap_write_protect
652 * will find a read-only spte, even though the writable spte
653 * might be cached on a CPU's TLB, the return value indicates this
654 * case.
655 *
656 * Returns true if the TLB needs to be flushed
657 */
658static bool mmu_spte_update(u64 *sptep, u64 new_spte)
659{
660 bool flush = false;
661 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
662
663 if (!is_shadow_present_pte(old_spte))
664 return false;
665
c7ba5b48
XG
666 /*
667 * For the spte updated out of mmu-lock is safe, since
6a6256f9 668 * we always atomically update it, see the comments in
c7ba5b48
XG
669 * spte_has_volatile_bits().
670 */
ea4114bc 671 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 672 !is_writable_pte(new_spte))
83ef6c81 673 flush = true;
4132779b 674
7e71a59b 675 /*
83ef6c81 676 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
677 * to guarantee consistency between TLB and page tables.
678 */
7e71a59b 679
83ef6c81
JS
680 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
681 flush = true;
4132779b 682 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
683 }
684
685 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
686 flush = true;
4132779b 687 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 688 }
6e7d0354 689
83ef6c81 690 return flush;
b79b93f9
AK
691}
692
1df9f2dc
XG
693/*
694 * Rules for using mmu_spte_clear_track_bits:
695 * It sets the sptep from present to nonpresent, and track the
696 * state bits, it is used to clear the last level sptep.
83ef6c81 697 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
698 */
699static int mmu_spte_clear_track_bits(u64 *sptep)
700{
ba049e93 701 kvm_pfn_t pfn;
1df9f2dc
XG
702 u64 old_spte = *sptep;
703
704 if (!spte_has_volatile_bits(old_spte))
603e0651 705 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 706 else
603e0651 707 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 708
afd28fe1 709 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
710 return 0;
711
712 pfn = spte_to_pfn(old_spte);
86fde74c
XG
713
714 /*
715 * KVM does not hold the refcount of the page used by
716 * kvm mmu, before reclaiming the page, we should
717 * unmap it from mmu first.
718 */
bf4bea8e 719 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 720
83ef6c81 721 if (is_accessed_spte(old_spte))
1df9f2dc 722 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
723
724 if (is_dirty_spte(old_spte))
1df9f2dc 725 kvm_set_pfn_dirty(pfn);
83ef6c81 726
1df9f2dc
XG
727 return 1;
728}
729
730/*
731 * Rules for using mmu_spte_clear_no_track:
732 * Directly clear spte without caring the state bits of sptep,
733 * it is used to set the upper level spte.
734 */
735static void mmu_spte_clear_no_track(u64 *sptep)
736{
603e0651 737 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
738}
739
c2a2ac2b
XG
740static u64 mmu_spte_get_lockless(u64 *sptep)
741{
742 return __get_spte_lockless(sptep);
743}
744
f160c7b7
JS
745static u64 mark_spte_for_access_track(u64 spte)
746{
ac8d57e5 747 if (spte_ad_enabled(spte))
f160c7b7
JS
748 return spte & ~shadow_accessed_mask;
749
ac8d57e5 750 if (is_access_track_spte(spte))
f160c7b7
JS
751 return spte;
752
753 /*
20d65236
JS
754 * Making an Access Tracking PTE will result in removal of write access
755 * from the PTE. So, verify that we will be able to restore the write
756 * access in the fast page fault path later on.
f160c7b7
JS
757 */
758 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
759 !spte_can_locklessly_be_made_writable(spte),
760 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
761
762 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
763 shadow_acc_track_saved_bits_shift),
764 "kvm: Access Tracking saved bit locations are not zero\n");
765
766 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
767 shadow_acc_track_saved_bits_shift;
768 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
769
770 return spte;
771}
772
d3e328f2
JS
773/* Restore an acc-track PTE back to a regular PTE */
774static u64 restore_acc_track_spte(u64 spte)
775{
776 u64 new_spte = spte;
777 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
778 & shadow_acc_track_saved_bits_mask;
779
ac8d57e5 780 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
781 WARN_ON_ONCE(!is_access_track_spte(spte));
782
783 new_spte &= ~shadow_acc_track_mask;
784 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
785 shadow_acc_track_saved_bits_shift);
786 new_spte |= saved_bits;
787
788 return new_spte;
789}
790
f160c7b7
JS
791/* Returns the Accessed status of the PTE and resets it at the same time. */
792static bool mmu_spte_age(u64 *sptep)
793{
794 u64 spte = mmu_spte_get_lockless(sptep);
795
796 if (!is_accessed_spte(spte))
797 return false;
798
ac8d57e5 799 if (spte_ad_enabled(spte)) {
f160c7b7
JS
800 clear_bit((ffs(shadow_accessed_mask) - 1),
801 (unsigned long *)sptep);
802 } else {
803 /*
804 * Capture the dirty status of the page, so that it doesn't get
805 * lost when the SPTE is marked for access tracking.
806 */
807 if (is_writable_pte(spte))
808 kvm_set_pfn_dirty(spte_to_pfn(spte));
809
810 spte = mark_spte_for_access_track(spte);
811 mmu_spte_update_no_track(sptep, spte);
812 }
813
814 return true;
815}
816
c2a2ac2b
XG
817static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
818{
c142786c
AK
819 /*
820 * Prevent page table teardown by making any free-er wait during
821 * kvm_flush_remote_tlbs() IPI to all active vcpus.
822 */
823 local_irq_disable();
36ca7e0a 824
c142786c
AK
825 /*
826 * Make sure a following spte read is not reordered ahead of the write
827 * to vcpu->mode.
828 */
36ca7e0a 829 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
830}
831
832static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
833{
c142786c
AK
834 /*
835 * Make sure the write to vcpu->mode is not reordered in front of
836 * reads to sptes. If it does, kvm_commit_zap_page() can see us
837 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
838 */
36ca7e0a 839 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 840 local_irq_enable();
c2a2ac2b
XG
841}
842
e2dec939 843static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 844 struct kmem_cache *base_cache, int min)
714b93da
AK
845{
846 void *obj;
847
848 if (cache->nobjs >= min)
e2dec939 849 return 0;
714b93da 850 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 851 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 852 if (!obj)
e2dec939 853 return -ENOMEM;
714b93da
AK
854 cache->objects[cache->nobjs++] = obj;
855 }
e2dec939 856 return 0;
714b93da
AK
857}
858
f759e2b4
XG
859static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
860{
861 return cache->nobjs;
862}
863
e8ad9a70
XG
864static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
865 struct kmem_cache *cache)
714b93da
AK
866{
867 while (mc->nobjs)
e8ad9a70 868 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
869}
870
c1158e63 871static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 872 int min)
c1158e63 873{
842f22ed 874 void *page;
c1158e63
AK
875
876 if (cache->nobjs >= min)
877 return 0;
878 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 879 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
880 if (!page)
881 return -ENOMEM;
842f22ed 882 cache->objects[cache->nobjs++] = page;
c1158e63
AK
883 }
884 return 0;
885}
886
887static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
888{
889 while (mc->nobjs)
c4d198d5 890 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
891}
892
2e3e5882 893static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 894{
e2dec939
AK
895 int r;
896
53c07b18 897 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 898 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
899 if (r)
900 goto out;
ad312c7c 901 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
902 if (r)
903 goto out;
ad312c7c 904 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 905 mmu_page_header_cache, 4);
e2dec939
AK
906out:
907 return r;
714b93da
AK
908}
909
910static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
911{
53c07b18
XG
912 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
913 pte_list_desc_cache);
ad312c7c 914 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
915 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
916 mmu_page_header_cache);
714b93da
AK
917}
918
80feb89a 919static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
920{
921 void *p;
922
923 BUG_ON(!mc->nobjs);
924 p = mc->objects[--mc->nobjs];
714b93da
AK
925 return p;
926}
927
53c07b18 928static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 929{
80feb89a 930 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
931}
932
53c07b18 933static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 934{
53c07b18 935 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
936}
937
2032a93d
LJ
938static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
939{
940 if (!sp->role.direct)
941 return sp->gfns[index];
942
943 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
944}
945
946static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
947{
948 if (sp->role.direct)
949 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
950 else
951 sp->gfns[index] = gfn;
952}
953
05da4558 954/*
d4dbf470
TY
955 * Return the pointer to the large page information for a given gfn,
956 * handling slots that are not large page aligned.
05da4558 957 */
d4dbf470
TY
958static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
959 struct kvm_memory_slot *slot,
960 int level)
05da4558
MT
961{
962 unsigned long idx;
963
fb03cb6f 964 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 965 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
966}
967
547ffaed
XG
968static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
969 gfn_t gfn, int count)
970{
971 struct kvm_lpage_info *linfo;
972 int i;
973
974 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
975 linfo = lpage_info_slot(gfn, slot, i);
976 linfo->disallow_lpage += count;
977 WARN_ON(linfo->disallow_lpage < 0);
978 }
979}
980
981void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
982{
983 update_gfn_disallow_lpage_count(slot, gfn, 1);
984}
985
986void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
987{
988 update_gfn_disallow_lpage_count(slot, gfn, -1);
989}
990
3ed1a478 991static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 992{
699023e2 993 struct kvm_memslots *slots;
d25797b2 994 struct kvm_memory_slot *slot;
3ed1a478 995 gfn_t gfn;
05da4558 996
56ca57f9 997 kvm->arch.indirect_shadow_pages++;
3ed1a478 998 gfn = sp->gfn;
699023e2
PB
999 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1000 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1001
1002 /* the non-leaf shadow pages are keeping readonly. */
1003 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1004 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1005 KVM_PAGE_TRACK_WRITE);
1006
547ffaed 1007 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1008}
1009
3ed1a478 1010static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1011{
699023e2 1012 struct kvm_memslots *slots;
d25797b2 1013 struct kvm_memory_slot *slot;
3ed1a478 1014 gfn_t gfn;
05da4558 1015
56ca57f9 1016 kvm->arch.indirect_shadow_pages--;
3ed1a478 1017 gfn = sp->gfn;
699023e2
PB
1018 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1019 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1020 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1021 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1022 KVM_PAGE_TRACK_WRITE);
1023
547ffaed 1024 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1025}
1026
92f94f1e
XG
1027static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1028 struct kvm_memory_slot *slot)
05da4558 1029{
d4dbf470 1030 struct kvm_lpage_info *linfo;
05da4558
MT
1031
1032 if (slot) {
d4dbf470 1033 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1034 return !!linfo->disallow_lpage;
05da4558
MT
1035 }
1036
92f94f1e 1037 return true;
05da4558
MT
1038}
1039
92f94f1e
XG
1040static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1041 int level)
5225fdf8
TY
1042{
1043 struct kvm_memory_slot *slot;
1044
1045 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1046 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1047}
1048
d25797b2 1049static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1050{
8f0b1ab6 1051 unsigned long page_size;
d25797b2 1052 int i, ret = 0;
05da4558 1053
8f0b1ab6 1054 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1055
8a3d08f1 1056 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1057 if (page_size >= KVM_HPAGE_SIZE(i))
1058 ret = i;
1059 else
1060 break;
1061 }
1062
4c2155ce 1063 return ret;
05da4558
MT
1064}
1065
d8aacf5d
TY
1066static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1067 bool no_dirty_log)
1068{
1069 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1070 return false;
1071 if (no_dirty_log && slot->dirty_bitmap)
1072 return false;
1073
1074 return true;
1075}
1076
5d163b1c
XG
1077static struct kvm_memory_slot *
1078gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1079 bool no_dirty_log)
05da4558
MT
1080{
1081 struct kvm_memory_slot *slot;
5d163b1c 1082
54bf36aa 1083 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1084 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1085 slot = NULL;
1086
1087 return slot;
1088}
1089
fd136902
TY
1090static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1091 bool *force_pt_level)
936a5fe6
AA
1092{
1093 int host_level, level, max_level;
d8aacf5d
TY
1094 struct kvm_memory_slot *slot;
1095
8c85ac1c
TY
1096 if (unlikely(*force_pt_level))
1097 return PT_PAGE_TABLE_LEVEL;
05da4558 1098
8c85ac1c
TY
1099 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1100 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1101 if (unlikely(*force_pt_level))
1102 return PT_PAGE_TABLE_LEVEL;
1103
d25797b2
JR
1104 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1105
1106 if (host_level == PT_PAGE_TABLE_LEVEL)
1107 return host_level;
1108
55dd98c3 1109 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1110
1111 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1112 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1113 break;
d25797b2
JR
1114
1115 return level - 1;
05da4558
MT
1116}
1117
290fc38d 1118/*
018aabb5 1119 * About rmap_head encoding:
cd4a4e53 1120 *
018aabb5
TY
1121 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1122 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1123 * pte_list_desc containing more mappings.
018aabb5
TY
1124 */
1125
1126/*
1127 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1128 */
53c07b18 1129static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1130 struct kvm_rmap_head *rmap_head)
cd4a4e53 1131{
53c07b18 1132 struct pte_list_desc *desc;
53a27b39 1133 int i, count = 0;
cd4a4e53 1134
018aabb5 1135 if (!rmap_head->val) {
53c07b18 1136 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1137 rmap_head->val = (unsigned long)spte;
1138 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1139 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1140 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1141 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1142 desc->sptes[1] = spte;
018aabb5 1143 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1144 ++count;
cd4a4e53 1145 } else {
53c07b18 1146 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1147 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1148 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1149 desc = desc->more;
53c07b18 1150 count += PTE_LIST_EXT;
53a27b39 1151 }
53c07b18
XG
1152 if (desc->sptes[PTE_LIST_EXT-1]) {
1153 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1154 desc = desc->more;
1155 }
d555c333 1156 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1157 ++count;
d555c333 1158 desc->sptes[i] = spte;
cd4a4e53 1159 }
53a27b39 1160 return count;
cd4a4e53
AK
1161}
1162
53c07b18 1163static void
018aabb5
TY
1164pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1165 struct pte_list_desc *desc, int i,
1166 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1167{
1168 int j;
1169
53c07b18 1170 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1171 ;
d555c333
AK
1172 desc->sptes[i] = desc->sptes[j];
1173 desc->sptes[j] = NULL;
cd4a4e53
AK
1174 if (j != 0)
1175 return;
1176 if (!prev_desc && !desc->more)
018aabb5 1177 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1178 else
1179 if (prev_desc)
1180 prev_desc->more = desc->more;
1181 else
018aabb5 1182 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1183 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1184}
1185
018aabb5 1186static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1187{
53c07b18
XG
1188 struct pte_list_desc *desc;
1189 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1190 int i;
1191
018aabb5 1192 if (!rmap_head->val) {
53c07b18 1193 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1194 BUG();
018aabb5 1195 } else if (!(rmap_head->val & 1)) {
53c07b18 1196 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1197 if ((u64 *)rmap_head->val != spte) {
53c07b18 1198 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1199 BUG();
1200 }
018aabb5 1201 rmap_head->val = 0;
cd4a4e53 1202 } else {
53c07b18 1203 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1204 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1205 prev_desc = NULL;
1206 while (desc) {
018aabb5 1207 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1208 if (desc->sptes[i] == spte) {
018aabb5
TY
1209 pte_list_desc_remove_entry(rmap_head,
1210 desc, i, prev_desc);
cd4a4e53
AK
1211 return;
1212 }
018aabb5 1213 }
cd4a4e53
AK
1214 prev_desc = desc;
1215 desc = desc->more;
1216 }
53c07b18 1217 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1218 BUG();
1219 }
1220}
1221
018aabb5
TY
1222static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1223 struct kvm_memory_slot *slot)
53c07b18 1224{
77d11309 1225 unsigned long idx;
53c07b18 1226
77d11309 1227 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1228 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1229}
1230
018aabb5
TY
1231static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1232 struct kvm_mmu_page *sp)
9b9b1492 1233{
699023e2 1234 struct kvm_memslots *slots;
9b9b1492
TY
1235 struct kvm_memory_slot *slot;
1236
699023e2
PB
1237 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1238 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1239 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1240}
1241
f759e2b4
XG
1242static bool rmap_can_add(struct kvm_vcpu *vcpu)
1243{
1244 struct kvm_mmu_memory_cache *cache;
1245
1246 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1247 return mmu_memory_cache_free_objects(cache);
1248}
1249
53c07b18
XG
1250static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1251{
1252 struct kvm_mmu_page *sp;
018aabb5 1253 struct kvm_rmap_head *rmap_head;
53c07b18 1254
53c07b18
XG
1255 sp = page_header(__pa(spte));
1256 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1257 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1258 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1259}
1260
53c07b18
XG
1261static void rmap_remove(struct kvm *kvm, u64 *spte)
1262{
1263 struct kvm_mmu_page *sp;
1264 gfn_t gfn;
018aabb5 1265 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1266
1267 sp = page_header(__pa(spte));
1268 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1269 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1270 pte_list_remove(spte, rmap_head);
53c07b18
XG
1271}
1272
1e3f42f0
TY
1273/*
1274 * Used by the following functions to iterate through the sptes linked by a
1275 * rmap. All fields are private and not assumed to be used outside.
1276 */
1277struct rmap_iterator {
1278 /* private fields */
1279 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1280 int pos; /* index of the sptep */
1281};
1282
1283/*
1284 * Iteration must be started by this function. This should also be used after
1285 * removing/dropping sptes from the rmap link because in such cases the
1286 * information in the itererator may not be valid.
1287 *
1288 * Returns sptep if found, NULL otherwise.
1289 */
018aabb5
TY
1290static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1291 struct rmap_iterator *iter)
1e3f42f0 1292{
77fbbbd2
TY
1293 u64 *sptep;
1294
018aabb5 1295 if (!rmap_head->val)
1e3f42f0
TY
1296 return NULL;
1297
018aabb5 1298 if (!(rmap_head->val & 1)) {
1e3f42f0 1299 iter->desc = NULL;
77fbbbd2
TY
1300 sptep = (u64 *)rmap_head->val;
1301 goto out;
1e3f42f0
TY
1302 }
1303
018aabb5 1304 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1305 iter->pos = 0;
77fbbbd2
TY
1306 sptep = iter->desc->sptes[iter->pos];
1307out:
1308 BUG_ON(!is_shadow_present_pte(*sptep));
1309 return sptep;
1e3f42f0
TY
1310}
1311
1312/*
1313 * Must be used with a valid iterator: e.g. after rmap_get_first().
1314 *
1315 * Returns sptep if found, NULL otherwise.
1316 */
1317static u64 *rmap_get_next(struct rmap_iterator *iter)
1318{
77fbbbd2
TY
1319 u64 *sptep;
1320
1e3f42f0
TY
1321 if (iter->desc) {
1322 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1323 ++iter->pos;
1324 sptep = iter->desc->sptes[iter->pos];
1325 if (sptep)
77fbbbd2 1326 goto out;
1e3f42f0
TY
1327 }
1328
1329 iter->desc = iter->desc->more;
1330
1331 if (iter->desc) {
1332 iter->pos = 0;
1333 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1334 sptep = iter->desc->sptes[iter->pos];
1335 goto out;
1e3f42f0
TY
1336 }
1337 }
1338
1339 return NULL;
77fbbbd2
TY
1340out:
1341 BUG_ON(!is_shadow_present_pte(*sptep));
1342 return sptep;
1e3f42f0
TY
1343}
1344
018aabb5
TY
1345#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1346 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1347 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1348
c3707958 1349static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1350{
1df9f2dc 1351 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1352 rmap_remove(kvm, sptep);
be38d276
AK
1353}
1354
8e22f955
XG
1355
1356static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1357{
1358 if (is_large_pte(*sptep)) {
1359 WARN_ON(page_header(__pa(sptep))->role.level ==
1360 PT_PAGE_TABLE_LEVEL);
1361 drop_spte(kvm, sptep);
1362 --kvm->stat.lpages;
1363 return true;
1364 }
1365
1366 return false;
1367}
1368
1369static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1370{
1371 if (__drop_large_spte(vcpu->kvm, sptep))
1372 kvm_flush_remote_tlbs(vcpu->kvm);
1373}
1374
1375/*
49fde340 1376 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1377 * spte write-protection is caused by protecting shadow page table.
49fde340 1378 *
b4619660 1379 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1380 * protection:
1381 * - for dirty logging, the spte can be set to writable at anytime if
1382 * its dirty bitmap is properly set.
1383 * - for spte protection, the spte can be writable only after unsync-ing
1384 * shadow page.
8e22f955 1385 *
c126d94f 1386 * Return true if tlb need be flushed.
8e22f955 1387 */
c4f138b4 1388static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1389{
1390 u64 spte = *sptep;
1391
49fde340 1392 if (!is_writable_pte(spte) &&
ea4114bc 1393 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1394 return false;
1395
1396 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1397
49fde340
XG
1398 if (pt_protect)
1399 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1400 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1401
c126d94f 1402 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1403}
1404
018aabb5
TY
1405static bool __rmap_write_protect(struct kvm *kvm,
1406 struct kvm_rmap_head *rmap_head,
245c3912 1407 bool pt_protect)
98348e95 1408{
1e3f42f0
TY
1409 u64 *sptep;
1410 struct rmap_iterator iter;
d13bc5b5 1411 bool flush = false;
374cbac0 1412
018aabb5 1413 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1414 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1415
d13bc5b5 1416 return flush;
a0ed4607
TY
1417}
1418
c4f138b4 1419static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1420{
1421 u64 spte = *sptep;
1422
1423 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1424
1425 spte &= ~shadow_dirty_mask;
1426
1427 return mmu_spte_update(sptep, spte);
1428}
1429
ac8d57e5
PF
1430static bool wrprot_ad_disabled_spte(u64 *sptep)
1431{
1432 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1433 (unsigned long *)sptep);
1434 if (was_writable)
1435 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1436
1437 return was_writable;
1438}
1439
1440/*
1441 * Gets the GFN ready for another round of dirty logging by clearing the
1442 * - D bit on ad-enabled SPTEs, and
1443 * - W bit on ad-disabled SPTEs.
1444 * Returns true iff any D or W bits were cleared.
1445 */
018aabb5 1446static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1447{
1448 u64 *sptep;
1449 struct rmap_iterator iter;
1450 bool flush = false;
1451
018aabb5 1452 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1453 if (spte_ad_enabled(*sptep))
1454 flush |= spte_clear_dirty(sptep);
1455 else
1456 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1457
1458 return flush;
1459}
1460
c4f138b4 1461static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1462{
1463 u64 spte = *sptep;
1464
1465 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1466
1467 spte |= shadow_dirty_mask;
1468
1469 return mmu_spte_update(sptep, spte);
1470}
1471
018aabb5 1472static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1473{
1474 u64 *sptep;
1475 struct rmap_iterator iter;
1476 bool flush = false;
1477
018aabb5 1478 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1479 if (spte_ad_enabled(*sptep))
1480 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1481
1482 return flush;
1483}
1484
5dc99b23 1485/**
3b0f1d01 1486 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1487 * @kvm: kvm instance
1488 * @slot: slot to protect
1489 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1490 * @mask: indicates which pages we should protect
1491 *
1492 * Used when we do not need to care about huge page mappings: e.g. during dirty
1493 * logging we do not have any such mappings.
1494 */
3b0f1d01 1495static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1496 struct kvm_memory_slot *slot,
1497 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1498{
018aabb5 1499 struct kvm_rmap_head *rmap_head;
a0ed4607 1500
5dc99b23 1501 while (mask) {
018aabb5
TY
1502 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1503 PT_PAGE_TABLE_LEVEL, slot);
1504 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1505
5dc99b23
TY
1506 /* clear the first set bit */
1507 mask &= mask - 1;
1508 }
374cbac0
AK
1509}
1510
f4b4b180 1511/**
ac8d57e5
PF
1512 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1513 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1514 * @kvm: kvm instance
1515 * @slot: slot to clear D-bit
1516 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1517 * @mask: indicates which pages we should clear D-bit
1518 *
1519 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1520 */
1521void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1522 struct kvm_memory_slot *slot,
1523 gfn_t gfn_offset, unsigned long mask)
1524{
018aabb5 1525 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1526
1527 while (mask) {
018aabb5
TY
1528 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1529 PT_PAGE_TABLE_LEVEL, slot);
1530 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1531
1532 /* clear the first set bit */
1533 mask &= mask - 1;
1534 }
1535}
1536EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1537
3b0f1d01
KH
1538/**
1539 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1540 * PT level pages.
1541 *
1542 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1543 * enable dirty logging for them.
1544 *
1545 * Used when we do not need to care about huge page mappings: e.g. during dirty
1546 * logging we do not have any such mappings.
1547 */
1548void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1549 struct kvm_memory_slot *slot,
1550 gfn_t gfn_offset, unsigned long mask)
1551{
88178fd4
KH
1552 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1553 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1554 mask);
1555 else
1556 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1557}
1558
bab4165e
BD
1559/**
1560 * kvm_arch_write_log_dirty - emulate dirty page logging
1561 * @vcpu: Guest mode vcpu
1562 *
1563 * Emulate arch specific page modification logging for the
1564 * nested hypervisor
1565 */
1566int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1567{
1568 if (kvm_x86_ops->write_log_dirty)
1569 return kvm_x86_ops->write_log_dirty(vcpu);
1570
1571 return 0;
1572}
1573
aeecee2e
XG
1574bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1575 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1576{
018aabb5 1577 struct kvm_rmap_head *rmap_head;
5dc99b23 1578 int i;
2f84569f 1579 bool write_protected = false;
95d4c16c 1580
8a3d08f1 1581 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1582 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1583 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1584 }
1585
1586 return write_protected;
95d4c16c
TY
1587}
1588
aeecee2e
XG
1589static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1590{
1591 struct kvm_memory_slot *slot;
1592
1593 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1594 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1595}
1596
018aabb5 1597static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1598{
1e3f42f0
TY
1599 u64 *sptep;
1600 struct rmap_iterator iter;
6a49f85c 1601 bool flush = false;
e930bffe 1602
018aabb5 1603 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1604 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1605
1606 drop_spte(kvm, sptep);
6a49f85c 1607 flush = true;
e930bffe 1608 }
1e3f42f0 1609
6a49f85c
XG
1610 return flush;
1611}
1612
018aabb5 1613static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1614 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1615 unsigned long data)
1616{
018aabb5 1617 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1618}
1619
018aabb5 1620static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1621 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1622 unsigned long data)
3da0dd43 1623{
1e3f42f0
TY
1624 u64 *sptep;
1625 struct rmap_iterator iter;
3da0dd43 1626 int need_flush = 0;
1e3f42f0 1627 u64 new_spte;
3da0dd43 1628 pte_t *ptep = (pte_t *)data;
ba049e93 1629 kvm_pfn_t new_pfn;
3da0dd43
IE
1630
1631 WARN_ON(pte_huge(*ptep));
1632 new_pfn = pte_pfn(*ptep);
1e3f42f0 1633
0d536790 1634restart:
018aabb5 1635 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1636 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1637 sptep, *sptep, gfn, level);
1e3f42f0 1638
3da0dd43 1639 need_flush = 1;
1e3f42f0 1640
3da0dd43 1641 if (pte_write(*ptep)) {
1e3f42f0 1642 drop_spte(kvm, sptep);
0d536790 1643 goto restart;
3da0dd43 1644 } else {
1e3f42f0 1645 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1646 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1647
1648 new_spte &= ~PT_WRITABLE_MASK;
1649 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1650
1651 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1652
1653 mmu_spte_clear_track_bits(sptep);
1654 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1655 }
1656 }
1e3f42f0 1657
3da0dd43
IE
1658 if (need_flush)
1659 kvm_flush_remote_tlbs(kvm);
1660
1661 return 0;
1662}
1663
6ce1f4e2
XG
1664struct slot_rmap_walk_iterator {
1665 /* input fields. */
1666 struct kvm_memory_slot *slot;
1667 gfn_t start_gfn;
1668 gfn_t end_gfn;
1669 int start_level;
1670 int end_level;
1671
1672 /* output fields. */
1673 gfn_t gfn;
018aabb5 1674 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1675 int level;
1676
1677 /* private field. */
018aabb5 1678 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1679};
1680
1681static void
1682rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1683{
1684 iterator->level = level;
1685 iterator->gfn = iterator->start_gfn;
1686 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1687 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1688 iterator->slot);
1689}
1690
1691static void
1692slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1693 struct kvm_memory_slot *slot, int start_level,
1694 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1695{
1696 iterator->slot = slot;
1697 iterator->start_level = start_level;
1698 iterator->end_level = end_level;
1699 iterator->start_gfn = start_gfn;
1700 iterator->end_gfn = end_gfn;
1701
1702 rmap_walk_init_level(iterator, iterator->start_level);
1703}
1704
1705static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1706{
1707 return !!iterator->rmap;
1708}
1709
1710static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1711{
1712 if (++iterator->rmap <= iterator->end_rmap) {
1713 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1714 return;
1715 }
1716
1717 if (++iterator->level > iterator->end_level) {
1718 iterator->rmap = NULL;
1719 return;
1720 }
1721
1722 rmap_walk_init_level(iterator, iterator->level);
1723}
1724
1725#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1726 _start_gfn, _end_gfn, _iter_) \
1727 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1728 _end_level_, _start_gfn, _end_gfn); \
1729 slot_rmap_walk_okay(_iter_); \
1730 slot_rmap_walk_next(_iter_))
1731
84504ef3
TY
1732static int kvm_handle_hva_range(struct kvm *kvm,
1733 unsigned long start,
1734 unsigned long end,
1735 unsigned long data,
1736 int (*handler)(struct kvm *kvm,
018aabb5 1737 struct kvm_rmap_head *rmap_head,
048212d0 1738 struct kvm_memory_slot *slot,
8a9522d2
ALC
1739 gfn_t gfn,
1740 int level,
84504ef3 1741 unsigned long data))
e930bffe 1742{
bc6678a3 1743 struct kvm_memslots *slots;
be6ba0f0 1744 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1745 struct slot_rmap_walk_iterator iterator;
1746 int ret = 0;
9da0e4d5 1747 int i;
bc6678a3 1748
9da0e4d5
PB
1749 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1750 slots = __kvm_memslots(kvm, i);
1751 kvm_for_each_memslot(memslot, slots) {
1752 unsigned long hva_start, hva_end;
1753 gfn_t gfn_start, gfn_end;
e930bffe 1754
9da0e4d5
PB
1755 hva_start = max(start, memslot->userspace_addr);
1756 hva_end = min(end, memslot->userspace_addr +
1757 (memslot->npages << PAGE_SHIFT));
1758 if (hva_start >= hva_end)
1759 continue;
1760 /*
1761 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1762 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1763 */
1764 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1765 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1766
1767 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1768 PT_MAX_HUGEPAGE_LEVEL,
1769 gfn_start, gfn_end - 1,
1770 &iterator)
1771 ret |= handler(kvm, iterator.rmap, memslot,
1772 iterator.gfn, iterator.level, data);
1773 }
e930bffe
AA
1774 }
1775
f395302e 1776 return ret;
e930bffe
AA
1777}
1778
84504ef3
TY
1779static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1780 unsigned long data,
018aabb5
TY
1781 int (*handler)(struct kvm *kvm,
1782 struct kvm_rmap_head *rmap_head,
048212d0 1783 struct kvm_memory_slot *slot,
8a9522d2 1784 gfn_t gfn, int level,
84504ef3
TY
1785 unsigned long data))
1786{
1787 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1788}
1789
1790int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1791{
3da0dd43
IE
1792 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1793}
1794
b3ae2096
TY
1795int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1796{
1797 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1798}
1799
3da0dd43
IE
1800void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1801{
8a8365c5 1802 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1803}
1804
018aabb5 1805static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1806 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1807 unsigned long data)
e930bffe 1808{
1e3f42f0 1809 u64 *sptep;
79f702a6 1810 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1811 int young = 0;
1812
f160c7b7
JS
1813 for_each_rmap_spte(rmap_head, &iter, sptep)
1814 young |= mmu_spte_age(sptep);
0d536790 1815
8a9522d2 1816 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1817 return young;
1818}
1819
018aabb5 1820static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1821 struct kvm_memory_slot *slot, gfn_t gfn,
1822 int level, unsigned long data)
8ee53820 1823{
1e3f42f0
TY
1824 u64 *sptep;
1825 struct rmap_iterator iter;
8ee53820 1826
83ef6c81
JS
1827 for_each_rmap_spte(rmap_head, &iter, sptep)
1828 if (is_accessed_spte(*sptep))
1829 return 1;
83ef6c81 1830 return 0;
8ee53820
AA
1831}
1832
53a27b39
MT
1833#define RMAP_RECYCLE_THRESHOLD 1000
1834
852e3c19 1835static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1836{
018aabb5 1837 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1838 struct kvm_mmu_page *sp;
1839
1840 sp = page_header(__pa(spte));
53a27b39 1841
018aabb5 1842 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1843
018aabb5 1844 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1845 kvm_flush_remote_tlbs(vcpu->kvm);
1846}
1847
57128468 1848int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1849{
57128468 1850 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1851}
1852
8ee53820
AA
1853int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1854{
1855 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1856}
1857
d6c69ee9 1858#ifdef MMU_DEBUG
47ad8e68 1859static int is_empty_shadow_page(u64 *spt)
6aa8b732 1860{
139bdb2d
AK
1861 u64 *pos;
1862 u64 *end;
1863
47ad8e68 1864 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1865 if (is_shadow_present_pte(*pos)) {
b8688d51 1866 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1867 pos, *pos);
6aa8b732 1868 return 0;
139bdb2d 1869 }
6aa8b732
AK
1870 return 1;
1871}
d6c69ee9 1872#endif
6aa8b732 1873
45221ab6
DH
1874/*
1875 * This value is the sum of all of the kvm instances's
1876 * kvm->arch.n_used_mmu_pages values. We need a global,
1877 * aggregate version in order to make the slab shrinker
1878 * faster
1879 */
1880static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1881{
1882 kvm->arch.n_used_mmu_pages += nr;
1883 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1884}
1885
834be0d8 1886static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1887{
fa4a2c08 1888 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1889 hlist_del(&sp->hash_link);
bd4c86ea
XG
1890 list_del(&sp->link);
1891 free_page((unsigned long)sp->spt);
834be0d8
GN
1892 if (!sp->role.direct)
1893 free_page((unsigned long)sp->gfns);
e8ad9a70 1894 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1895}
1896
cea0f0e7
AK
1897static unsigned kvm_page_table_hashfn(gfn_t gfn)
1898{
114df303 1899 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1900}
1901
714b93da 1902static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1903 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1904{
cea0f0e7
AK
1905 if (!parent_pte)
1906 return;
cea0f0e7 1907
67052b35 1908 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1909}
1910
4db35314 1911static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1912 u64 *parent_pte)
1913{
67052b35 1914 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1915}
1916
bcdd9a93
XG
1917static void drop_parent_pte(struct kvm_mmu_page *sp,
1918 u64 *parent_pte)
1919{
1920 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1921 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1922}
1923
47005792 1924static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1925{
67052b35 1926 struct kvm_mmu_page *sp;
7ddca7e4 1927
80feb89a
TY
1928 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1929 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1930 if (!direct)
80feb89a 1931 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1932 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1933
1934 /*
1935 * The active_mmu_pages list is the FIFO list, do not move the
1936 * page until it is zapped. kvm_zap_obsolete_pages depends on
1937 * this feature. See the comments in kvm_zap_obsolete_pages().
1938 */
67052b35 1939 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1940 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1941 return sp;
ad8cfbe3
MT
1942}
1943
67052b35 1944static void mark_unsync(u64 *spte);
1047df1f 1945static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1946{
74c4e63a
TY
1947 u64 *sptep;
1948 struct rmap_iterator iter;
1949
1950 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1951 mark_unsync(sptep);
1952 }
0074ff63
MT
1953}
1954
67052b35 1955static void mark_unsync(u64 *spte)
0074ff63 1956{
67052b35 1957 struct kvm_mmu_page *sp;
1047df1f 1958 unsigned int index;
0074ff63 1959
67052b35 1960 sp = page_header(__pa(spte));
1047df1f
XG
1961 index = spte - sp->spt;
1962 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1963 return;
1047df1f 1964 if (sp->unsync_children++)
0074ff63 1965 return;
1047df1f 1966 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1967}
1968
e8bc217a 1969static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1970 struct kvm_mmu_page *sp)
e8bc217a 1971{
1f50f1b3 1972 return 0;
e8bc217a
MT
1973}
1974
a7052897
MT
1975static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1976{
1977}
1978
0f53b5b1
XG
1979static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1980 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1981 const void *pte)
0f53b5b1
XG
1982{
1983 WARN_ON(1);
1984}
1985
60c8aec6
MT
1986#define KVM_PAGE_ARRAY_NR 16
1987
1988struct kvm_mmu_pages {
1989 struct mmu_page_and_offset {
1990 struct kvm_mmu_page *sp;
1991 unsigned int idx;
1992 } page[KVM_PAGE_ARRAY_NR];
1993 unsigned int nr;
1994};
1995
cded19f3
HE
1996static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1997 int idx)
4731d4c7 1998{
60c8aec6 1999 int i;
4731d4c7 2000
60c8aec6
MT
2001 if (sp->unsync)
2002 for (i=0; i < pvec->nr; i++)
2003 if (pvec->page[i].sp == sp)
2004 return 0;
2005
2006 pvec->page[pvec->nr].sp = sp;
2007 pvec->page[pvec->nr].idx = idx;
2008 pvec->nr++;
2009 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2010}
2011
fd951457
TY
2012static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2013{
2014 --sp->unsync_children;
2015 WARN_ON((int)sp->unsync_children < 0);
2016 __clear_bit(idx, sp->unsync_child_bitmap);
2017}
2018
60c8aec6
MT
2019static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2020 struct kvm_mmu_pages *pvec)
2021{
2022 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2023
37178b8b 2024 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2025 struct kvm_mmu_page *child;
4731d4c7
MT
2026 u64 ent = sp->spt[i];
2027
fd951457
TY
2028 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2029 clear_unsync_child_bit(sp, i);
2030 continue;
2031 }
7a8f1a74
XG
2032
2033 child = page_header(ent & PT64_BASE_ADDR_MASK);
2034
2035 if (child->unsync_children) {
2036 if (mmu_pages_add(pvec, child, i))
2037 return -ENOSPC;
2038
2039 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2040 if (!ret) {
2041 clear_unsync_child_bit(sp, i);
2042 continue;
2043 } else if (ret > 0) {
7a8f1a74 2044 nr_unsync_leaf += ret;
fd951457 2045 } else
7a8f1a74
XG
2046 return ret;
2047 } else if (child->unsync) {
2048 nr_unsync_leaf++;
2049 if (mmu_pages_add(pvec, child, i))
2050 return -ENOSPC;
2051 } else
fd951457 2052 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2053 }
2054
60c8aec6
MT
2055 return nr_unsync_leaf;
2056}
2057
e23d3fef
XG
2058#define INVALID_INDEX (-1)
2059
60c8aec6
MT
2060static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2061 struct kvm_mmu_pages *pvec)
2062{
0a47cd85 2063 pvec->nr = 0;
60c8aec6
MT
2064 if (!sp->unsync_children)
2065 return 0;
2066
e23d3fef 2067 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2068 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2069}
2070
4731d4c7
MT
2071static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2072{
2073 WARN_ON(!sp->unsync);
5e1b3ddb 2074 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2075 sp->unsync = 0;
2076 --kvm->stat.mmu_unsync;
2077}
2078
7775834a
XG
2079static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2080 struct list_head *invalid_list);
2081static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2082 struct list_head *invalid_list);
4731d4c7 2083
f34d251d
XG
2084/*
2085 * NOTE: we should pay more attention on the zapped-obsolete page
2086 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2087 * since it has been deleted from active_mmu_pages but still can be found
2088 * at hast list.
2089 *
f3414bc7 2090 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2091 */
f3414bc7 2092#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2093 hlist_for_each_entry(_sp, \
2094 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2095 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2096 } else
1044b030
TY
2097
2098#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2099 for_each_valid_sp(_kvm, _sp, _gfn) \
2100 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2101
f918b443 2102/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2103static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2104 struct list_head *invalid_list)
4731d4c7 2105{
5b7e0102 2106 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 2107 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2108 return false;
4731d4c7
MT
2109 }
2110
1f50f1b3 2111 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 2112 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2113 return false;
4731d4c7
MT
2114 }
2115
1f50f1b3 2116 return true;
4731d4c7
MT
2117}
2118
35a70510
PB
2119static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2120 struct list_head *invalid_list,
2121 bool remote_flush, bool local_flush)
1d9dc7e0 2122{
35a70510
PB
2123 if (!list_empty(invalid_list)) {
2124 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2125 return;
2126 }
d98ba053 2127
35a70510
PB
2128 if (remote_flush)
2129 kvm_flush_remote_tlbs(vcpu->kvm);
2130 else if (local_flush)
2131 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2132}
2133
e37fa785
XG
2134#ifdef CONFIG_KVM_MMU_AUDIT
2135#include "mmu_audit.c"
2136#else
2137static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2138static void mmu_audit_disable(void) { }
2139#endif
2140
46971a2f
XG
2141static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2142{
2143 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2144}
2145
1f50f1b3 2146static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2147 struct list_head *invalid_list)
1d9dc7e0 2148{
9a43c5d9
PB
2149 kvm_unlink_unsync_page(vcpu->kvm, sp);
2150 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2151}
2152
9f1a122f 2153/* @gfn should be write-protected at the call site */
2a74003a
PB
2154static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2155 struct list_head *invalid_list)
9f1a122f 2156{
9f1a122f 2157 struct kvm_mmu_page *s;
2a74003a 2158 bool ret = false;
9f1a122f 2159
b67bfe0d 2160 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2161 if (!s->unsync)
9f1a122f
XG
2162 continue;
2163
2164 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2165 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2166 }
2167
2a74003a 2168 return ret;
9f1a122f
XG
2169}
2170
60c8aec6 2171struct mmu_page_path {
2a7266a8
YZ
2172 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2173 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2174};
2175
60c8aec6 2176#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2177 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2178 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2179 i = mmu_pages_next(&pvec, &parents, i))
2180
cded19f3
HE
2181static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2182 struct mmu_page_path *parents,
2183 int i)
60c8aec6
MT
2184{
2185 int n;
2186
2187 for (n = i+1; n < pvec->nr; n++) {
2188 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2189 unsigned idx = pvec->page[n].idx;
2190 int level = sp->role.level;
60c8aec6 2191
0a47cd85
PB
2192 parents->idx[level-1] = idx;
2193 if (level == PT_PAGE_TABLE_LEVEL)
2194 break;
60c8aec6 2195
0a47cd85 2196 parents->parent[level-2] = sp;
60c8aec6
MT
2197 }
2198
2199 return n;
2200}
2201
0a47cd85
PB
2202static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2203 struct mmu_page_path *parents)
2204{
2205 struct kvm_mmu_page *sp;
2206 int level;
2207
2208 if (pvec->nr == 0)
2209 return 0;
2210
e23d3fef
XG
2211 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2212
0a47cd85
PB
2213 sp = pvec->page[0].sp;
2214 level = sp->role.level;
2215 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2216
2217 parents->parent[level-2] = sp;
2218
2219 /* Also set up a sentinel. Further entries in pvec are all
2220 * children of sp, so this element is never overwritten.
2221 */
2222 parents->parent[level-1] = NULL;
2223 return mmu_pages_next(pvec, parents, 0);
2224}
2225
cded19f3 2226static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2227{
60c8aec6
MT
2228 struct kvm_mmu_page *sp;
2229 unsigned int level = 0;
2230
2231 do {
2232 unsigned int idx = parents->idx[level];
60c8aec6
MT
2233 sp = parents->parent[level];
2234 if (!sp)
2235 return;
2236
e23d3fef 2237 WARN_ON(idx == INVALID_INDEX);
fd951457 2238 clear_unsync_child_bit(sp, idx);
60c8aec6 2239 level++;
0a47cd85 2240 } while (!sp->unsync_children);
60c8aec6 2241}
4731d4c7 2242
60c8aec6
MT
2243static void mmu_sync_children(struct kvm_vcpu *vcpu,
2244 struct kvm_mmu_page *parent)
2245{
2246 int i;
2247 struct kvm_mmu_page *sp;
2248 struct mmu_page_path parents;
2249 struct kvm_mmu_pages pages;
d98ba053 2250 LIST_HEAD(invalid_list);
50c9e6f3 2251 bool flush = false;
60c8aec6 2252
60c8aec6 2253 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2254 bool protected = false;
b1a36821
MT
2255
2256 for_each_sp(pages, sp, parents, i)
54bf36aa 2257 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2258
50c9e6f3 2259 if (protected) {
b1a36821 2260 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2261 flush = false;
2262 }
b1a36821 2263
60c8aec6 2264 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2265 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2266 mmu_pages_clear_parents(&parents);
2267 }
50c9e6f3
PB
2268 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2269 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2270 cond_resched_lock(&vcpu->kvm->mmu_lock);
2271 flush = false;
2272 }
60c8aec6 2273 }
50c9e6f3
PB
2274
2275 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2276}
2277
a30f47cb
XG
2278static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2279{
e5691a81 2280 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2281}
2282
2283static void clear_sp_write_flooding_count(u64 *spte)
2284{
2285 struct kvm_mmu_page *sp = page_header(__pa(spte));
2286
2287 __clear_sp_write_flooding_count(sp);
2288}
2289
cea0f0e7
AK
2290static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2291 gfn_t gfn,
2292 gva_t gaddr,
2293 unsigned level,
f6e2c02b 2294 int direct,
bb11c6c9 2295 unsigned access)
cea0f0e7
AK
2296{
2297 union kvm_mmu_page_role role;
cea0f0e7 2298 unsigned quadrant;
9f1a122f 2299 struct kvm_mmu_page *sp;
9f1a122f 2300 bool need_sync = false;
2a74003a 2301 bool flush = false;
f3414bc7 2302 int collisions = 0;
2a74003a 2303 LIST_HEAD(invalid_list);
cea0f0e7 2304
a770f6f2 2305 role = vcpu->arch.mmu.base_role;
cea0f0e7 2306 role.level = level;
f6e2c02b 2307 role.direct = direct;
84b0c8c6 2308 if (role.direct)
5b7e0102 2309 role.cr4_pae = 0;
41074d07 2310 role.access = access;
c5a78f2b
JR
2311 if (!vcpu->arch.mmu.direct_map
2312 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2313 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2314 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2315 role.quadrant = quadrant;
2316 }
f3414bc7
DM
2317 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2318 if (sp->gfn != gfn) {
2319 collisions++;
2320 continue;
2321 }
2322
7ae680eb
XG
2323 if (!need_sync && sp->unsync)
2324 need_sync = true;
4731d4c7 2325
7ae680eb
XG
2326 if (sp->role.word != role.word)
2327 continue;
4731d4c7 2328
2a74003a
PB
2329 if (sp->unsync) {
2330 /* The page is good, but __kvm_sync_page might still end
2331 * up zapping it. If so, break in order to rebuild it.
2332 */
2333 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2334 break;
2335
2336 WARN_ON(!list_empty(&invalid_list));
2337 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2338 }
e02aa901 2339
98bba238 2340 if (sp->unsync_children)
a8eeb04a 2341 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2342
a30f47cb 2343 __clear_sp_write_flooding_count(sp);
7ae680eb 2344 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2345 goto out;
7ae680eb 2346 }
47005792 2347
dfc5aa00 2348 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2349
2350 sp = kvm_mmu_alloc_page(vcpu, direct);
2351
4db35314
AK
2352 sp->gfn = gfn;
2353 sp->role = role;
7ae680eb
XG
2354 hlist_add_head(&sp->hash_link,
2355 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2356 if (!direct) {
56ca57f9
XG
2357 /*
2358 * we should do write protection before syncing pages
2359 * otherwise the content of the synced shadow page may
2360 * be inconsistent with guest page table.
2361 */
2362 account_shadowed(vcpu->kvm, sp);
2363 if (level == PT_PAGE_TABLE_LEVEL &&
2364 rmap_write_protect(vcpu, gfn))
b1a36821 2365 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2366
9f1a122f 2367 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2368 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2369 }
5304b8d3 2370 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2371 clear_page(sp->spt);
f691fe1d 2372 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2373
2374 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2375out:
2376 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2377 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2378 return sp;
cea0f0e7
AK
2379}
2380
2d11123a
AK
2381static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2382 struct kvm_vcpu *vcpu, u64 addr)
2383{
2384 iterator->addr = addr;
2385 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2386 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5 2387
2a7266a8
YZ
2388 if (iterator->level == PT64_ROOT_4LEVEL &&
2389 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
81407ca5
JR
2390 !vcpu->arch.mmu.direct_map)
2391 --iterator->level;
2392
2d11123a
AK
2393 if (iterator->level == PT32E_ROOT_LEVEL) {
2394 iterator->shadow_addr
2395 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2396 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2397 --iterator->level;
2398 if (!iterator->shadow_addr)
2399 iterator->level = 0;
2400 }
2401}
2402
2403static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2404{
2405 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2406 return false;
4d88954d 2407
2d11123a
AK
2408 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2409 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2410 return true;
2411}
2412
c2a2ac2b
XG
2413static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2414 u64 spte)
2d11123a 2415{
c2a2ac2b 2416 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2417 iterator->level = 0;
2418 return;
2419 }
2420
c2a2ac2b 2421 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2422 --iterator->level;
2423}
2424
c2a2ac2b
XG
2425static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2426{
2427 return __shadow_walk_next(iterator, *iterator->sptep);
2428}
2429
98bba238
TY
2430static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2431 struct kvm_mmu_page *sp)
32ef26a3
AK
2432{
2433 u64 spte;
2434
ffb128c8 2435 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2436
ffb128c8 2437 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2438 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2439
2440 if (sp_ad_disabled(sp))
2441 spte |= shadow_acc_track_value;
2442 else
2443 spte |= shadow_accessed_mask;
24db2734 2444
1df9f2dc 2445 mmu_spte_set(sptep, spte);
98bba238
TY
2446
2447 mmu_page_add_parent_pte(vcpu, sp, sptep);
2448
2449 if (sp->unsync_children || sp->unsync)
2450 mark_unsync(sptep);
32ef26a3
AK
2451}
2452
a357bd22
AK
2453static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2454 unsigned direct_access)
2455{
2456 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2457 struct kvm_mmu_page *child;
2458
2459 /*
2460 * For the direct sp, if the guest pte's dirty bit
2461 * changed form clean to dirty, it will corrupt the
2462 * sp's access: allow writable in the read-only sp,
2463 * so we should update the spte at this point to get
2464 * a new sp with the correct access.
2465 */
2466 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2467 if (child->role.access == direct_access)
2468 return;
2469
bcdd9a93 2470 drop_parent_pte(child, sptep);
a357bd22
AK
2471 kvm_flush_remote_tlbs(vcpu->kvm);
2472 }
2473}
2474
505aef8f 2475static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2476 u64 *spte)
2477{
2478 u64 pte;
2479 struct kvm_mmu_page *child;
2480
2481 pte = *spte;
2482 if (is_shadow_present_pte(pte)) {
505aef8f 2483 if (is_last_spte(pte, sp->role.level)) {
c3707958 2484 drop_spte(kvm, spte);
505aef8f
XG
2485 if (is_large_pte(pte))
2486 --kvm->stat.lpages;
2487 } else {
38e3b2b2 2488 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2489 drop_parent_pte(child, spte);
38e3b2b2 2490 }
505aef8f
XG
2491 return true;
2492 }
2493
2494 if (is_mmio_spte(pte))
ce88decf 2495 mmu_spte_clear_no_track(spte);
c3707958 2496
505aef8f 2497 return false;
38e3b2b2
XG
2498}
2499
90cb0529 2500static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2501 struct kvm_mmu_page *sp)
a436036b 2502{
697fe2e2 2503 unsigned i;
697fe2e2 2504
38e3b2b2
XG
2505 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2506 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2507}
2508
31aa2b44 2509static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2510{
1e3f42f0
TY
2511 u64 *sptep;
2512 struct rmap_iterator iter;
a436036b 2513
018aabb5 2514 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2515 drop_parent_pte(sp, sptep);
31aa2b44
AK
2516}
2517
60c8aec6 2518static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2519 struct kvm_mmu_page *parent,
2520 struct list_head *invalid_list)
4731d4c7 2521{
60c8aec6
MT
2522 int i, zapped = 0;
2523 struct mmu_page_path parents;
2524 struct kvm_mmu_pages pages;
4731d4c7 2525
60c8aec6 2526 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2527 return 0;
60c8aec6 2528
60c8aec6
MT
2529 while (mmu_unsync_walk(parent, &pages)) {
2530 struct kvm_mmu_page *sp;
2531
2532 for_each_sp(pages, sp, parents, i) {
7775834a 2533 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2534 mmu_pages_clear_parents(&parents);
77662e00 2535 zapped++;
60c8aec6 2536 }
60c8aec6
MT
2537 }
2538
2539 return zapped;
4731d4c7
MT
2540}
2541
7775834a
XG
2542static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2543 struct list_head *invalid_list)
31aa2b44 2544{
4731d4c7 2545 int ret;
f691fe1d 2546
7775834a 2547 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2548 ++kvm->stat.mmu_shadow_zapped;
7775834a 2549 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2550 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2551 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2552
f6e2c02b 2553 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2554 unaccount_shadowed(kvm, sp);
5304b8d3 2555
4731d4c7
MT
2556 if (sp->unsync)
2557 kvm_unlink_unsync_page(kvm, sp);
4db35314 2558 if (!sp->root_count) {
54a4f023
GJ
2559 /* Count self */
2560 ret++;
7775834a 2561 list_move(&sp->link, invalid_list);
aa6bd187 2562 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2563 } else {
5b5c6a5a 2564 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2565
2566 /*
2567 * The obsolete pages can not be used on any vcpus.
2568 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2569 */
2570 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2571 kvm_reload_remote_mmus(kvm);
2e53d63a 2572 }
7775834a
XG
2573
2574 sp->role.invalid = 1;
4731d4c7 2575 return ret;
a436036b
AK
2576}
2577
7775834a
XG
2578static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2579 struct list_head *invalid_list)
2580{
945315b9 2581 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2582
2583 if (list_empty(invalid_list))
2584 return;
2585
c142786c 2586 /*
9753f529
LT
2587 * We need to make sure everyone sees our modifications to
2588 * the page tables and see changes to vcpu->mode here. The barrier
2589 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2590 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2591 *
2592 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2593 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2594 */
2595 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2596
945315b9 2597 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2598 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2599 kvm_mmu_free_page(sp);
945315b9 2600 }
7775834a
XG
2601}
2602
5da59607
TY
2603static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2604 struct list_head *invalid_list)
2605{
2606 struct kvm_mmu_page *sp;
2607
2608 if (list_empty(&kvm->arch.active_mmu_pages))
2609 return false;
2610
d74c0e6b
GT
2611 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2612 struct kvm_mmu_page, link);
42bcbebf 2613 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2614}
2615
82ce2c96
IE
2616/*
2617 * Changing the number of mmu pages allocated to the vm
49d5ca26 2618 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2619 */
49d5ca26 2620void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2621{
d98ba053 2622 LIST_HEAD(invalid_list);
82ce2c96 2623
b34cb590
TY
2624 spin_lock(&kvm->mmu_lock);
2625
49d5ca26 2626 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2627 /* Need to free some mmu pages to achieve the goal. */
2628 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2629 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2630 break;
82ce2c96 2631
aa6bd187 2632 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2633 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2634 }
82ce2c96 2635
49d5ca26 2636 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2637
2638 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2639}
2640
1cb3f3ae 2641int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2642{
4db35314 2643 struct kvm_mmu_page *sp;
d98ba053 2644 LIST_HEAD(invalid_list);
a436036b
AK
2645 int r;
2646
9ad17b10 2647 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2648 r = 0;
1cb3f3ae 2649 spin_lock(&kvm->mmu_lock);
b67bfe0d 2650 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2651 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2652 sp->role.word);
2653 r = 1;
f41d335a 2654 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2655 }
d98ba053 2656 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2657 spin_unlock(&kvm->mmu_lock);
2658
a436036b 2659 return r;
cea0f0e7 2660}
1cb3f3ae 2661EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2662
5c520e90 2663static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2664{
2665 trace_kvm_mmu_unsync_page(sp);
2666 ++vcpu->kvm->stat.mmu_unsync;
2667 sp->unsync = 1;
2668
2669 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2670}
2671
3d0c27ad
XG
2672static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2673 bool can_unsync)
4731d4c7 2674{
5c520e90 2675 struct kvm_mmu_page *sp;
4731d4c7 2676
3d0c27ad
XG
2677 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2678 return true;
9cf5cf5a 2679
5c520e90 2680 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2681 if (!can_unsync)
3d0c27ad 2682 return true;
36a2e677 2683
5c520e90
XG
2684 if (sp->unsync)
2685 continue;
9cf5cf5a 2686
5c520e90
XG
2687 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2688 kvm_unsync_page(vcpu, sp);
4731d4c7 2689 }
3d0c27ad
XG
2690
2691 return false;
4731d4c7
MT
2692}
2693
ba049e93 2694static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2695{
2696 if (pfn_valid(pfn))
2697 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2698
2699 return true;
2700}
2701
d555c333 2702static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2703 unsigned pte_access, int level,
ba049e93 2704 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2705 bool can_unsync, bool host_writable)
1c4f1fd6 2706{
ffb128c8 2707 u64 spte = 0;
1e73f9dd 2708 int ret = 0;
ac8d57e5 2709 struct kvm_mmu_page *sp;
64d4d521 2710
54bf36aa 2711 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2712 return 0;
2713
ac8d57e5
PF
2714 sp = page_header(__pa(sptep));
2715 if (sp_ad_disabled(sp))
2716 spte |= shadow_acc_track_value;
2717
d95c5568
BD
2718 /*
2719 * For the EPT case, shadow_present_mask is 0 if hardware
2720 * supports exec-only page table entries. In that case,
2721 * ACC_USER_MASK and shadow_user_mask are used to represent
2722 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2723 */
ffb128c8 2724 spte |= shadow_present_mask;
947da538 2725 if (!speculative)
ac8d57e5 2726 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2727
7b52345e
SY
2728 if (pte_access & ACC_EXEC_MASK)
2729 spte |= shadow_x_mask;
2730 else
2731 spte |= shadow_nx_mask;
49fde340 2732
1c4f1fd6 2733 if (pte_access & ACC_USER_MASK)
7b52345e 2734 spte |= shadow_user_mask;
49fde340 2735
852e3c19 2736 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2737 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2738 if (tdp_enabled)
4b12f0de 2739 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2740 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2741
9bdbba13 2742 if (host_writable)
1403283a 2743 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2744 else
2745 pte_access &= ~ACC_WRITE_MASK;
1403283a 2746
35149e21 2747 spte |= (u64)pfn << PAGE_SHIFT;
d0ec49d4 2748 spte |= shadow_me_mask;
1c4f1fd6 2749
c2288505 2750 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2751
c2193463 2752 /*
7751babd
XG
2753 * Other vcpu creates new sp in the window between
2754 * mapping_level() and acquiring mmu-lock. We can
2755 * allow guest to retry the access, the mapping can
2756 * be fixed if guest refault.
c2193463 2757 */
852e3c19 2758 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2759 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2760 goto done;
38187c83 2761
49fde340 2762 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2763
ecc5589f
MT
2764 /*
2765 * Optimization: for pte sync, if spte was writable the hash
2766 * lookup is unnecessary (and expensive). Write protection
2767 * is responsibility of mmu_get_page / kvm_sync_page.
2768 * Same reasoning can be applied to dirty page accounting.
2769 */
8dae4445 2770 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2771 goto set_pte;
2772
4731d4c7 2773 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2774 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2775 __func__, gfn);
1e73f9dd 2776 ret = 1;
1c4f1fd6 2777 pte_access &= ~ACC_WRITE_MASK;
49fde340 2778 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2779 }
2780 }
2781
9b51a630 2782 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2783 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2784 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2785 }
1c4f1fd6 2786
f160c7b7
JS
2787 if (speculative)
2788 spte = mark_spte_for_access_track(spte);
2789
38187c83 2790set_pte:
6e7d0354 2791 if (mmu_spte_update(sptep, spte))
b330aa0c 2792 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2793done:
1e73f9dd
MT
2794 return ret;
2795}
2796
029499b4 2797static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2798 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2799 bool speculative, bool host_writable)
1e73f9dd
MT
2800{
2801 int was_rmapped = 0;
53a27b39 2802 int rmap_count;
029499b4 2803 bool emulate = false;
1e73f9dd 2804
f7616203
XG
2805 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2806 *sptep, write_fault, gfn);
1e73f9dd 2807
afd28fe1 2808 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2809 /*
2810 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2811 * the parent of the now unreachable PTE.
2812 */
852e3c19
JR
2813 if (level > PT_PAGE_TABLE_LEVEL &&
2814 !is_large_pte(*sptep)) {
1e73f9dd 2815 struct kvm_mmu_page *child;
d555c333 2816 u64 pte = *sptep;
1e73f9dd
MT
2817
2818 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2819 drop_parent_pte(child, sptep);
3be2264b 2820 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2821 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2822 pgprintk("hfn old %llx new %llx\n",
d555c333 2823 spte_to_pfn(*sptep), pfn);
c3707958 2824 drop_spte(vcpu->kvm, sptep);
91546356 2825 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2826 } else
2827 was_rmapped = 1;
1e73f9dd 2828 }
852e3c19 2829
c2288505
XG
2830 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2831 true, host_writable)) {
1e73f9dd 2832 if (write_fault)
029499b4 2833 emulate = true;
77c3913b 2834 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2835 }
1e73f9dd 2836
029499b4
TY
2837 if (unlikely(is_mmio_spte(*sptep)))
2838 emulate = true;
ce88decf 2839
d555c333 2840 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2841 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2842 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 2843 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 2844 *sptep, sptep);
d555c333 2845 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2846 ++vcpu->kvm->stat.lpages;
2847
ffb61bb3 2848 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2849 if (!was_rmapped) {
2850 rmap_count = rmap_add(vcpu, sptep, gfn);
2851 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2852 rmap_recycle(vcpu, sptep, gfn);
2853 }
1c4f1fd6 2854 }
cb9aaa30 2855
f3ac1a4b 2856 kvm_release_pfn_clean(pfn);
029499b4
TY
2857
2858 return emulate;
1c4f1fd6
AK
2859}
2860
ba049e93 2861static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2862 bool no_dirty_log)
2863{
2864 struct kvm_memory_slot *slot;
957ed9ef 2865
5d163b1c 2866 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2867 if (!slot)
6c8ee57b 2868 return KVM_PFN_ERR_FAULT;
957ed9ef 2869
037d92dc 2870 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2871}
2872
2873static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2874 struct kvm_mmu_page *sp,
2875 u64 *start, u64 *end)
2876{
2877 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2878 struct kvm_memory_slot *slot;
957ed9ef
XG
2879 unsigned access = sp->role.access;
2880 int i, ret;
2881 gfn_t gfn;
2882
2883 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2884 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2885 if (!slot)
957ed9ef
XG
2886 return -1;
2887
d9ef13c2 2888 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2889 if (ret <= 0)
2890 return -1;
2891
2892 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2893 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2894 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2895
2896 return 0;
2897}
2898
2899static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2900 struct kvm_mmu_page *sp, u64 *sptep)
2901{
2902 u64 *spte, *start = NULL;
2903 int i;
2904
2905 WARN_ON(!sp->role.direct);
2906
2907 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2908 spte = sp->spt + i;
2909
2910 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2911 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2912 if (!start)
2913 continue;
2914 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2915 break;
2916 start = NULL;
2917 } else if (!start)
2918 start = spte;
2919 }
2920}
2921
2922static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2923{
2924 struct kvm_mmu_page *sp;
2925
ac8d57e5
PF
2926 sp = page_header(__pa(sptep));
2927
957ed9ef 2928 /*
ac8d57e5
PF
2929 * Without accessed bits, there's no way to distinguish between
2930 * actually accessed translations and prefetched, so disable pte
2931 * prefetch if accessed bits aren't available.
957ed9ef 2932 */
ac8d57e5 2933 if (sp_ad_disabled(sp))
957ed9ef
XG
2934 return;
2935
957ed9ef
XG
2936 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2937 return;
2938
2939 __direct_pte_prefetch(vcpu, sp, sptep);
2940}
2941
7ee0e5b2 2942static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2943 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2944{
9f652d21 2945 struct kvm_shadow_walk_iterator iterator;
140754bc 2946 struct kvm_mmu_page *sp;
b90a0e6c 2947 int emulate = 0;
140754bc 2948 gfn_t pseudo_gfn;
6aa8b732 2949
989c6b34
MT
2950 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2951 return 0;
2952
9f652d21 2953 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2954 if (iterator.level == level) {
029499b4
TY
2955 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2956 write, level, gfn, pfn, prefault,
2957 map_writable);
957ed9ef 2958 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2959 ++vcpu->stat.pf_fixed;
2960 break;
6aa8b732
AK
2961 }
2962
404381c5 2963 drop_large_spte(vcpu, iterator.sptep);
c3707958 2964 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2965 u64 base_addr = iterator.addr;
2966
2967 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2968 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2969 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2970 iterator.level - 1, 1, ACC_ALL);
140754bc 2971
98bba238 2972 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2973 }
2974 }
b90a0e6c 2975 return emulate;
6aa8b732
AK
2976}
2977
77db5cbd 2978static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2979{
77db5cbd
HY
2980 siginfo_t info;
2981
2982 info.si_signo = SIGBUS;
2983 info.si_errno = 0;
2984 info.si_code = BUS_MCEERR_AR;
2985 info.si_addr = (void __user *)address;
2986 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2987
77db5cbd 2988 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2989}
2990
ba049e93 2991static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2992{
4d8b81ab
XG
2993 /*
2994 * Do not cache the mmio info caused by writing the readonly gfn
2995 * into the spte otherwise read access on readonly gfn also can
2996 * caused mmio page fault and treat it as mmio access.
2997 * Return 1 to tell kvm to emulate it.
2998 */
2999 if (pfn == KVM_PFN_ERR_RO_FAULT)
3000 return 1;
3001
e6c1502b 3002 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3003 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 3004 return 0;
d7c55201 3005 }
edba23e5 3006
d7c55201 3007 return -EFAULT;
bf998156
HY
3008}
3009
936a5fe6 3010static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3011 gfn_t *gfnp, kvm_pfn_t *pfnp,
3012 int *levelp)
936a5fe6 3013{
ba049e93 3014 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3015 gfn_t gfn = *gfnp;
3016 int level = *levelp;
3017
3018 /*
3019 * Check if it's a transparent hugepage. If this would be an
3020 * hugetlbfs page, level wouldn't be set to
3021 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3022 * here.
3023 */
bf4bea8e 3024 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3025 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3026 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3027 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3028 unsigned long mask;
3029 /*
3030 * mmu_notifier_retry was successful and we hold the
3031 * mmu_lock here, so the pmd can't become splitting
3032 * from under us, and in turn
3033 * __split_huge_page_refcount() can't run from under
3034 * us and we can safely transfer the refcount from
3035 * PG_tail to PG_head as we switch the pfn to tail to
3036 * head.
3037 */
3038 *levelp = level = PT_DIRECTORY_LEVEL;
3039 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3040 VM_BUG_ON((gfn & mask) != (pfn & mask));
3041 if (pfn & mask) {
3042 gfn &= ~mask;
3043 *gfnp = gfn;
3044 kvm_release_pfn_clean(pfn);
3045 pfn &= ~mask;
c3586667 3046 kvm_get_pfn(pfn);
936a5fe6
AA
3047 *pfnp = pfn;
3048 }
3049 }
3050}
3051
d7c55201 3052static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3053 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3054{
d7c55201 3055 /* The pfn is invalid, report the error! */
81c52c56 3056 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3057 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3058 return true;
d7c55201
XG
3059 }
3060
ce88decf 3061 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3062 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3063
798e88b3 3064 return false;
d7c55201
XG
3065}
3066
e5552fd2 3067static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3068{
1c118b82
XG
3069 /*
3070 * Do not fix the mmio spte with invalid generation number which
3071 * need to be updated by slow page fault path.
3072 */
3073 if (unlikely(error_code & PFERR_RSVD_MASK))
3074 return false;
3075
f160c7b7
JS
3076 /* See if the page fault is due to an NX violation */
3077 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3078 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3079 return false;
3080
c7ba5b48 3081 /*
f160c7b7
JS
3082 * #PF can be fast if:
3083 * 1. The shadow page table entry is not present, which could mean that
3084 * the fault is potentially caused by access tracking (if enabled).
3085 * 2. The shadow page table entry is present and the fault
3086 * is caused by write-protect, that means we just need change the W
3087 * bit of the spte which can be done out of mmu-lock.
3088 *
3089 * However, if access tracking is disabled we know that a non-present
3090 * page must be a genuine page fault where we have to create a new SPTE.
3091 * So, if access tracking is disabled, we return true only for write
3092 * accesses to a present page.
c7ba5b48 3093 */
c7ba5b48 3094
f160c7b7
JS
3095 return shadow_acc_track_mask != 0 ||
3096 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3097 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3098}
3099
97dceba2
JS
3100/*
3101 * Returns true if the SPTE was fixed successfully. Otherwise,
3102 * someone else modified the SPTE from its original value.
3103 */
c7ba5b48 3104static bool
92a476cb 3105fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3106 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3107{
c7ba5b48
XG
3108 gfn_t gfn;
3109
3110 WARN_ON(!sp->role.direct);
3111
9b51a630
KH
3112 /*
3113 * Theoretically we could also set dirty bit (and flush TLB) here in
3114 * order to eliminate unnecessary PML logging. See comments in
3115 * set_spte. But fast_page_fault is very unlikely to happen with PML
3116 * enabled, so we do not do this. This might result in the same GPA
3117 * to be logged in PML buffer again when the write really happens, and
3118 * eventually to be called by mark_page_dirty twice. But it's also no
3119 * harm. This also avoids the TLB flush needed after setting dirty bit
3120 * so non-PML cases won't be impacted.
3121 *
3122 * Compare with set_spte where instead shadow_dirty_mask is set.
3123 */
f160c7b7 3124 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3125 return false;
3126
d3e328f2 3127 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3128 /*
3129 * The gfn of direct spte is stable since it is
3130 * calculated by sp->gfn.
3131 */
3132 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3133 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3134 }
c7ba5b48
XG
3135
3136 return true;
3137}
3138
d3e328f2
JS
3139static bool is_access_allowed(u32 fault_err_code, u64 spte)
3140{
3141 if (fault_err_code & PFERR_FETCH_MASK)
3142 return is_executable_pte(spte);
3143
3144 if (fault_err_code & PFERR_WRITE_MASK)
3145 return is_writable_pte(spte);
3146
3147 /* Fault was on Read access */
3148 return spte & PT_PRESENT_MASK;
3149}
3150
c7ba5b48
XG
3151/*
3152 * Return value:
3153 * - true: let the vcpu to access on the same address again.
3154 * - false: let the real page fault path to fix it.
3155 */
3156static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3157 u32 error_code)
3158{
3159 struct kvm_shadow_walk_iterator iterator;
92a476cb 3160 struct kvm_mmu_page *sp;
97dceba2 3161 bool fault_handled = false;
c7ba5b48 3162 u64 spte = 0ull;
97dceba2 3163 uint retry_count = 0;
c7ba5b48 3164
37f6a4e2
MT
3165 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3166 return false;
3167
e5552fd2 3168 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3169 return false;
3170
3171 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3172
97dceba2 3173 do {
d3e328f2 3174 u64 new_spte;
c7ba5b48 3175
d162f30a
JS
3176 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3177 if (!is_shadow_present_pte(spte) ||
3178 iterator.level < level)
3179 break;
3180
97dceba2
JS
3181 sp = page_header(__pa(iterator.sptep));
3182 if (!is_last_spte(spte, sp->role.level))
3183 break;
c7ba5b48 3184
97dceba2 3185 /*
f160c7b7
JS
3186 * Check whether the memory access that caused the fault would
3187 * still cause it if it were to be performed right now. If not,
3188 * then this is a spurious fault caused by TLB lazily flushed,
3189 * or some other CPU has already fixed the PTE after the
3190 * current CPU took the fault.
97dceba2
JS
3191 *
3192 * Need not check the access of upper level table entries since
3193 * they are always ACC_ALL.
3194 */
d3e328f2
JS
3195 if (is_access_allowed(error_code, spte)) {
3196 fault_handled = true;
3197 break;
3198 }
f160c7b7 3199
d3e328f2
JS
3200 new_spte = spte;
3201
3202 if (is_access_track_spte(spte))
3203 new_spte = restore_acc_track_spte(new_spte);
3204
3205 /*
3206 * Currently, to simplify the code, write-protection can
3207 * be removed in the fast path only if the SPTE was
3208 * write-protected for dirty-logging or access tracking.
3209 */
3210 if ((error_code & PFERR_WRITE_MASK) &&
3211 spte_can_locklessly_be_made_writable(spte))
3212 {
3213 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3214
3215 /*
d3e328f2
JS
3216 * Do not fix write-permission on the large spte. Since
3217 * we only dirty the first page into the dirty-bitmap in
3218 * fast_pf_fix_direct_spte(), other pages are missed
3219 * if its slot has dirty logging enabled.
3220 *
3221 * Instead, we let the slow page fault path create a
3222 * normal spte to fix the access.
3223 *
3224 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3225 */
d3e328f2 3226 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3227 break;
97dceba2 3228 }
c7ba5b48 3229
f160c7b7 3230 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3231 if (new_spte == spte ||
3232 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3233 break;
3234
3235 /*
3236 * Currently, fast page fault only works for direct mapping
3237 * since the gfn is not stable for indirect shadow page. See
3238 * Documentation/virtual/kvm/locking.txt to get more detail.
3239 */
3240 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3241 iterator.sptep, spte,
d3e328f2 3242 new_spte);
97dceba2
JS
3243 if (fault_handled)
3244 break;
3245
3246 if (++retry_count > 4) {
3247 printk_once(KERN_WARNING
3248 "kvm: Fast #PF retrying more than 4 times.\n");
3249 break;
3250 }
3251
97dceba2 3252 } while (true);
c126d94f 3253
a72faf25 3254 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3255 spte, fault_handled);
c7ba5b48
XG
3256 walk_shadow_page_lockless_end(vcpu);
3257
97dceba2 3258 return fault_handled;
c7ba5b48
XG
3259}
3260
78b2c54a 3261static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3262 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3263static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3264
c7ba5b48
XG
3265static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3266 gfn_t gfn, bool prefault)
10589a46
MT
3267{
3268 int r;
852e3c19 3269 int level;
fd136902 3270 bool force_pt_level = false;
ba049e93 3271 kvm_pfn_t pfn;
e930bffe 3272 unsigned long mmu_seq;
c7ba5b48 3273 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3274
fd136902 3275 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3276 if (likely(!force_pt_level)) {
936a5fe6
AA
3277 /*
3278 * This path builds a PAE pagetable - so we can map
3279 * 2mb pages at maximum. Therefore check if the level
3280 * is larger than that.
3281 */
3282 if (level > PT_DIRECTORY_LEVEL)
3283 level = PT_DIRECTORY_LEVEL;
852e3c19 3284
936a5fe6 3285 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3286 }
05da4558 3287
c7ba5b48
XG
3288 if (fast_page_fault(vcpu, v, level, error_code))
3289 return 0;
3290
e930bffe 3291 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3292 smp_rmb();
060c2abe 3293
78b2c54a 3294 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3295 return 0;
aaee2c94 3296
d7c55201
XG
3297 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3298 return r;
d196e343 3299
aaee2c94 3300 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3301 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3302 goto out_unlock;
26eeb53c
WL
3303 if (make_mmu_pages_available(vcpu) < 0)
3304 goto out_unlock;
936a5fe6
AA
3305 if (likely(!force_pt_level))
3306 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3307 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3308 spin_unlock(&vcpu->kvm->mmu_lock);
3309
10589a46 3310 return r;
e930bffe
AA
3311
3312out_unlock:
3313 spin_unlock(&vcpu->kvm->mmu_lock);
3314 kvm_release_pfn_clean(pfn);
3315 return 0;
10589a46
MT
3316}
3317
3318
17ac10ad
AK
3319static void mmu_free_roots(struct kvm_vcpu *vcpu)
3320{
3321 int i;
4db35314 3322 struct kvm_mmu_page *sp;
d98ba053 3323 LIST_HEAD(invalid_list);
17ac10ad 3324
ad312c7c 3325 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3326 return;
35af577a 3327
855feb67
YZ
3328 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3329 (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
81407ca5 3330 vcpu->arch.mmu.direct_map)) {
ad312c7c 3331 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3332
35af577a 3333 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3334 sp = page_header(root);
3335 --sp->root_count;
d98ba053
XG
3336 if (!sp->root_count && sp->role.invalid) {
3337 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3338 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3339 }
aaee2c94 3340 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3341 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3342 return;
3343 }
35af577a
GN
3344
3345 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3346 for (i = 0; i < 4; ++i) {
ad312c7c 3347 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3348
417726a3 3349 if (root) {
417726a3 3350 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3351 sp = page_header(root);
3352 --sp->root_count;
2e53d63a 3353 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3354 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3355 &invalid_list);
417726a3 3356 }
ad312c7c 3357 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3358 }
d98ba053 3359 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3360 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3361 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3362}
3363
8986ecc0
MT
3364static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3365{
3366 int ret = 0;
3367
3368 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3369 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3370 ret = 1;
3371 }
3372
3373 return ret;
3374}
3375
651dd37a
JR
3376static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3377{
3378 struct kvm_mmu_page *sp;
7ebaf15e 3379 unsigned i;
651dd37a 3380
855feb67 3381 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3382 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3383 if(make_mmu_pages_available(vcpu) < 0) {
3384 spin_unlock(&vcpu->kvm->mmu_lock);
3385 return 1;
3386 }
855feb67
YZ
3387 sp = kvm_mmu_get_page(vcpu, 0, 0,
3388 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3389 ++sp->root_count;
3390 spin_unlock(&vcpu->kvm->mmu_lock);
3391 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3392 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3393 for (i = 0; i < 4; ++i) {
3394 hpa_t root = vcpu->arch.mmu.pae_root[i];
3395
fa4a2c08 3396 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3397 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3398 if (make_mmu_pages_available(vcpu) < 0) {
3399 spin_unlock(&vcpu->kvm->mmu_lock);
3400 return 1;
3401 }
649497d1 3402 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3403 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3404 root = __pa(sp->spt);
3405 ++sp->root_count;
3406 spin_unlock(&vcpu->kvm->mmu_lock);
3407 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3408 }
6292757f 3409 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3410 } else
3411 BUG();
3412
3413 return 0;
3414}
3415
3416static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3417{
4db35314 3418 struct kvm_mmu_page *sp;
81407ca5
JR
3419 u64 pdptr, pm_mask;
3420 gfn_t root_gfn;
3421 int i;
3bb65a22 3422
5777ed34 3423 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3424
651dd37a
JR
3425 if (mmu_check_root(vcpu, root_gfn))
3426 return 1;
3427
3428 /*
3429 * Do we shadow a long mode page table? If so we need to
3430 * write-protect the guests page table root.
3431 */
855feb67 3432 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
ad312c7c 3433 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3434
fa4a2c08 3435 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3436
8facbbff 3437 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3438 if (make_mmu_pages_available(vcpu) < 0) {
3439 spin_unlock(&vcpu->kvm->mmu_lock);
3440 return 1;
3441 }
855feb67
YZ
3442 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3443 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
4db35314
AK
3444 root = __pa(sp->spt);
3445 ++sp->root_count;
8facbbff 3446 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3447 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3448 return 0;
17ac10ad 3449 }
f87f9288 3450
651dd37a
JR
3451 /*
3452 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3453 * or a PAE 3-level page table. In either case we need to be aware that
3454 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3455 */
81407ca5 3456 pm_mask = PT_PRESENT_MASK;
2a7266a8 3457 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3458 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3459
17ac10ad 3460 for (i = 0; i < 4; ++i) {
ad312c7c 3461 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3462
fa4a2c08 3463 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3464 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3465 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
812f30b2 3466 if (!(pdptr & PT_PRESENT_MASK)) {
ad312c7c 3467 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3468 continue;
3469 }
6de4f3ad 3470 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3471 if (mmu_check_root(vcpu, root_gfn))
3472 return 1;
5a7388c2 3473 }
8facbbff 3474 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3475 if (make_mmu_pages_available(vcpu) < 0) {
3476 spin_unlock(&vcpu->kvm->mmu_lock);
3477 return 1;
3478 }
bb11c6c9
TY
3479 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3480 0, ACC_ALL);
4db35314
AK
3481 root = __pa(sp->spt);
3482 ++sp->root_count;
8facbbff
AK
3483 spin_unlock(&vcpu->kvm->mmu_lock);
3484
81407ca5 3485 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3486 }
6292757f 3487 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3488
3489 /*
3490 * If we shadow a 32 bit page table with a long mode page
3491 * table we enter this path.
3492 */
2a7266a8 3493 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
81407ca5
JR
3494 if (vcpu->arch.mmu.lm_root == NULL) {
3495 /*
3496 * The additional page necessary for this is only
3497 * allocated on demand.
3498 */
3499
3500 u64 *lm_root;
3501
3502 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3503 if (lm_root == NULL)
3504 return 1;
3505
3506 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3507
3508 vcpu->arch.mmu.lm_root = lm_root;
3509 }
3510
3511 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3512 }
3513
8986ecc0 3514 return 0;
17ac10ad
AK
3515}
3516
651dd37a
JR
3517static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3518{
3519 if (vcpu->arch.mmu.direct_map)
3520 return mmu_alloc_direct_roots(vcpu);
3521 else
3522 return mmu_alloc_shadow_roots(vcpu);
3523}
3524
0ba73cda
MT
3525static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3526{
3527 int i;
3528 struct kvm_mmu_page *sp;
3529
81407ca5
JR
3530 if (vcpu->arch.mmu.direct_map)
3531 return;
3532
0ba73cda
MT
3533 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3534 return;
6903074c 3535
56f17dd3 3536 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3537 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
855feb67 3538 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
0ba73cda
MT
3539 hpa_t root = vcpu->arch.mmu.root_hpa;
3540 sp = page_header(root);
3541 mmu_sync_children(vcpu, sp);
0375f7fa 3542 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3543 return;
3544 }
3545 for (i = 0; i < 4; ++i) {
3546 hpa_t root = vcpu->arch.mmu.pae_root[i];
3547
8986ecc0 3548 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3549 root &= PT64_BASE_ADDR_MASK;
3550 sp = page_header(root);
3551 mmu_sync_children(vcpu, sp);
3552 }
3553 }
0375f7fa 3554 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3555}
3556
3557void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3558{
3559 spin_lock(&vcpu->kvm->mmu_lock);
3560 mmu_sync_roots(vcpu);
6cffe8ca 3561 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3562}
bfd0a56b 3563EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3564
1871c602 3565static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3566 u32 access, struct x86_exception *exception)
6aa8b732 3567{
ab9ae313
AK
3568 if (exception)
3569 exception->error_code = 0;
6aa8b732
AK
3570 return vaddr;
3571}
3572
6539e738 3573static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3574 u32 access,
3575 struct x86_exception *exception)
6539e738 3576{
ab9ae313
AK
3577 if (exception)
3578 exception->error_code = 0;
54987b7a 3579 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3580}
3581
d625b155
XG
3582static bool
3583__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3584{
3585 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3586
3587 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3588 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3589}
3590
3591static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3592{
3593 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3594}
3595
3596static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3597{
3598 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3599}
3600
ded58749 3601static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3602{
9034e6e8
PB
3603 /*
3604 * A nested guest cannot use the MMIO cache if it is using nested
3605 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3606 */
3607 if (mmu_is_nested(vcpu))
3608 return false;
3609
ce88decf
XG
3610 if (direct)
3611 return vcpu_match_mmio_gpa(vcpu, addr);
3612
3613 return vcpu_match_mmio_gva(vcpu, addr);
3614}
3615
47ab8751
XG
3616/* return true if reserved bit is detected on spte. */
3617static bool
3618walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3619{
3620 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3621 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3622 int root, leaf;
3623 bool reserved = false;
ce88decf 3624
37f6a4e2 3625 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3626 goto exit;
37f6a4e2 3627
ce88decf 3628 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3629
29ecd660
PB
3630 for (shadow_walk_init(&iterator, vcpu, addr),
3631 leaf = root = iterator.level;
47ab8751
XG
3632 shadow_walk_okay(&iterator);
3633 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3634 spte = mmu_spte_get_lockless(iterator.sptep);
3635
3636 sptes[leaf - 1] = spte;
29ecd660 3637 leaf--;
47ab8751 3638
ce88decf
XG
3639 if (!is_shadow_present_pte(spte))
3640 break;
47ab8751
XG
3641
3642 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3643 iterator.level);
47ab8751
XG
3644 }
3645
ce88decf
XG
3646 walk_shadow_page_lockless_end(vcpu);
3647
47ab8751
XG
3648 if (reserved) {
3649 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3650 __func__, addr);
29ecd660 3651 while (root > leaf) {
47ab8751
XG
3652 pr_err("------ spte 0x%llx level %d.\n",
3653 sptes[root - 1], root);
3654 root--;
3655 }
3656 }
3657exit:
3658 *sptep = spte;
3659 return reserved;
ce88decf
XG
3660}
3661
e08d26f0
PB
3662/*
3663 * Return values of handle_mmio_page_fault:
3664 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
3665 * directly.
3666 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
3667 * fault path update the mmio spte.
3668 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
3669 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
3670 */
3671enum {
3672 RET_MMIO_PF_EMULATE = 1,
3673 RET_MMIO_PF_INVALID = 2,
3674 RET_MMIO_PF_RETRY = 0,
3675 RET_MMIO_PF_BUG = -1
3676};
3677
3678static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3679{
3680 u64 spte;
47ab8751 3681 bool reserved;
ce88decf 3682
ded58749 3683 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3684 return RET_MMIO_PF_EMULATE;
ce88decf 3685
47ab8751 3686 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3687 if (WARN_ON(reserved))
47ab8751 3688 return RET_MMIO_PF_BUG;
ce88decf
XG
3689
3690 if (is_mmio_spte(spte)) {
3691 gfn_t gfn = get_mmio_spte_gfn(spte);
3692 unsigned access = get_mmio_spte_access(spte);
3693
54bf36aa 3694 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3695 return RET_MMIO_PF_INVALID;
3696
ce88decf
XG
3697 if (direct)
3698 addr = 0;
4f022648
XG
3699
3700 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3701 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3702 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3703 }
3704
ce88decf
XG
3705 /*
3706 * If the page table is zapped by other cpus, let CPU fault again on
3707 * the address.
3708 */
b37fbea6 3709 return RET_MMIO_PF_RETRY;
ce88decf 3710}
450869d6 3711EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3712
3d0c27ad
XG
3713static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3714 u32 error_code, gfn_t gfn)
3715{
3716 if (unlikely(error_code & PFERR_RSVD_MASK))
3717 return false;
3718
3719 if (!(error_code & PFERR_PRESENT_MASK) ||
3720 !(error_code & PFERR_WRITE_MASK))
3721 return false;
3722
3723 /*
3724 * guest is writing the page which is write tracked which can
3725 * not be fixed by page fault handler.
3726 */
3727 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3728 return true;
3729
3730 return false;
3731}
3732
e5691a81
XG
3733static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3734{
3735 struct kvm_shadow_walk_iterator iterator;
3736 u64 spte;
3737
3738 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3739 return;
3740
3741 walk_shadow_page_lockless_begin(vcpu);
3742 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3743 clear_sp_write_flooding_count(iterator.sptep);
3744 if (!is_shadow_present_pte(spte))
3745 break;
3746 }
3747 walk_shadow_page_lockless_end(vcpu);
3748}
3749
6aa8b732 3750static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3751 u32 error_code, bool prefault)
6aa8b732 3752{
3d0c27ad 3753 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3754 int r;
6aa8b732 3755
b8688d51 3756 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3757
3d0c27ad
XG
3758 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3759 return 1;
ce88decf 3760
e2dec939
AK
3761 r = mmu_topup_memory_caches(vcpu);
3762 if (r)
3763 return r;
714b93da 3764
fa4a2c08 3765 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3766
6aa8b732 3767
e833240f 3768 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3769 error_code, gfn, prefault);
6aa8b732
AK
3770}
3771
7e1fbeac 3772static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3773{
3774 struct kvm_arch_async_pf arch;
fb67e14f 3775
7c90705b 3776 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3777 arch.gfn = gfn;
c4806acd 3778 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3779 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3780
54bf36aa 3781 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3782}
3783
9bc1f09f 3784bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 3785{
35754c98 3786 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3787 kvm_event_needs_reinjection(vcpu)))
3788 return false;
3789
52a5c155 3790 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
3791 return false;
3792
af585b92
GN
3793 return kvm_x86_ops->interrupt_allowed(vcpu);
3794}
3795
78b2c54a 3796static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3797 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3798{
3520469d 3799 struct kvm_memory_slot *slot;
af585b92
GN
3800 bool async;
3801
54bf36aa 3802 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3803 async = false;
3804 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3805 if (!async)
3806 return false; /* *pfn has correct page already */
3807
9bc1f09f 3808 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 3809 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3810 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3811 trace_kvm_async_pf_doublefault(gva, gfn);
3812 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3813 return true;
3814 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3815 return true;
3816 }
3817
3520469d 3818 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3819 return false;
3820}
3821
1261bfa3
WL
3822int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3823 u64 fault_address, char *insn, int insn_len,
3824 bool need_unprotect)
3825{
3826 int r = 1;
3827
3828 switch (vcpu->arch.apf.host_apf_reason) {
3829 default:
3830 trace_kvm_page_fault(fault_address, error_code);
3831
3832 if (need_unprotect && kvm_event_needs_reinjection(vcpu))
3833 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3834 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3835 insn_len);
3836 break;
3837 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3838 vcpu->arch.apf.host_apf_reason = 0;
3839 local_irq_disable();
a2b7861b 3840 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
3841 local_irq_enable();
3842 break;
3843 case KVM_PV_REASON_PAGE_READY:
3844 vcpu->arch.apf.host_apf_reason = 0;
3845 local_irq_disable();
3846 kvm_async_pf_task_wake(fault_address);
3847 local_irq_enable();
3848 break;
3849 }
3850 return r;
3851}
3852EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3853
6a39bbc5
XG
3854static bool
3855check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3856{
3857 int page_num = KVM_PAGES_PER_HPAGE(level);
3858
3859 gfn &= ~(page_num - 1);
3860
3861 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3862}
3863
56028d08 3864static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3865 bool prefault)
fb72d167 3866{
ba049e93 3867 kvm_pfn_t pfn;
fb72d167 3868 int r;
852e3c19 3869 int level;
cd1872f0 3870 bool force_pt_level;
05da4558 3871 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3872 unsigned long mmu_seq;
612819c3
MT
3873 int write = error_code & PFERR_WRITE_MASK;
3874 bool map_writable;
fb72d167 3875
fa4a2c08 3876 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3877
3d0c27ad
XG
3878 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3879 return 1;
ce88decf 3880
fb72d167
JR
3881 r = mmu_topup_memory_caches(vcpu);
3882 if (r)
3883 return r;
3884
fd136902
TY
3885 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3886 PT_DIRECTORY_LEVEL);
3887 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3888 if (likely(!force_pt_level)) {
6a39bbc5
XG
3889 if (level > PT_DIRECTORY_LEVEL &&
3890 !check_hugepage_cache_consistency(vcpu, gfn, level))
3891 level = PT_DIRECTORY_LEVEL;
936a5fe6 3892 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3893 }
852e3c19 3894
c7ba5b48
XG
3895 if (fast_page_fault(vcpu, gpa, level, error_code))
3896 return 0;
3897
e930bffe 3898 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3899 smp_rmb();
af585b92 3900
78b2c54a 3901 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3902 return 0;
3903
d7c55201
XG
3904 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3905 return r;
3906
fb72d167 3907 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3908 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3909 goto out_unlock;
26eeb53c
WL
3910 if (make_mmu_pages_available(vcpu) < 0)
3911 goto out_unlock;
936a5fe6
AA
3912 if (likely(!force_pt_level))
3913 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3914 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3915 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3916
3917 return r;
e930bffe
AA
3918
3919out_unlock:
3920 spin_unlock(&vcpu->kvm->mmu_lock);
3921 kvm_release_pfn_clean(pfn);
3922 return 0;
fb72d167
JR
3923}
3924
8a3c1a33
PB
3925static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3926 struct kvm_mmu *context)
6aa8b732 3927{
6aa8b732 3928 context->page_fault = nonpaging_page_fault;
6aa8b732 3929 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3930 context->sync_page = nonpaging_sync_page;
a7052897 3931 context->invlpg = nonpaging_invlpg;
0f53b5b1 3932 context->update_pte = nonpaging_update_pte;
cea0f0e7 3933 context->root_level = 0;
6aa8b732 3934 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3935 context->root_hpa = INVALID_PAGE;
c5a78f2b 3936 context->direct_map = true;
2d48a985 3937 context->nx = false;
6aa8b732
AK
3938}
3939
d8d173da 3940void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3941{
cea0f0e7 3942 mmu_free_roots(vcpu);
6aa8b732
AK
3943}
3944
5777ed34
JR
3945static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3946{
9f8fe504 3947 return kvm_read_cr3(vcpu);
5777ed34
JR
3948}
3949
6389ee94
AK
3950static void inject_page_fault(struct kvm_vcpu *vcpu,
3951 struct x86_exception *fault)
6aa8b732 3952{
6389ee94 3953 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3954}
3955
54bf36aa 3956static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3957 unsigned access, int *nr_present)
ce88decf
XG
3958{
3959 if (unlikely(is_mmio_spte(*sptep))) {
3960 if (gfn != get_mmio_spte_gfn(*sptep)) {
3961 mmu_spte_clear_no_track(sptep);
3962 return true;
3963 }
3964
3965 (*nr_present)++;
54bf36aa 3966 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3967 return true;
3968 }
3969
3970 return false;
3971}
3972
6bb69c9b
PB
3973static inline bool is_last_gpte(struct kvm_mmu *mmu,
3974 unsigned level, unsigned gpte)
6fd01b71 3975{
6bb69c9b
PB
3976 /*
3977 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3978 * If it is clear, there are no large pages at this level, so clear
3979 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3980 */
3981 gpte &= level - mmu->last_nonleaf_level;
3982
829ee279
LP
3983 /*
3984 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3985 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3986 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3987 */
3988 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3989
6bb69c9b 3990 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3991}
3992
37406aaa
NHE
3993#define PTTYPE_EPT 18 /* arbitrary */
3994#define PTTYPE PTTYPE_EPT
3995#include "paging_tmpl.h"
3996#undef PTTYPE
3997
6aa8b732
AK
3998#define PTTYPE 64
3999#include "paging_tmpl.h"
4000#undef PTTYPE
4001
4002#define PTTYPE 32
4003#include "paging_tmpl.h"
4004#undef PTTYPE
4005
6dc98b86
XG
4006static void
4007__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4008 struct rsvd_bits_validate *rsvd_check,
4009 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4010 bool pse, bool amd)
82725b20 4011{
82725b20 4012 u64 exb_bit_rsvd = 0;
5f7dde7b 4013 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4014 u64 nonleaf_bit8_rsvd = 0;
82725b20 4015
a0a64f50 4016 rsvd_check->bad_mt_xwr = 0;
25d92081 4017
6dc98b86 4018 if (!nx)
82725b20 4019 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4020 if (!gbpages)
5f7dde7b 4021 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4022
4023 /*
4024 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4025 * leaf entries) on AMD CPUs only.
4026 */
6fec2144 4027 if (amd)
a0c0feb5
PB
4028 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4029
6dc98b86 4030 switch (level) {
82725b20
DE
4031 case PT32_ROOT_LEVEL:
4032 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4033 rsvd_check->rsvd_bits_mask[0][1] = 0;
4034 rsvd_check->rsvd_bits_mask[0][0] = 0;
4035 rsvd_check->rsvd_bits_mask[1][0] =
4036 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4037
6dc98b86 4038 if (!pse) {
a0a64f50 4039 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4040 break;
4041 }
4042
82725b20
DE
4043 if (is_cpuid_PSE36())
4044 /* 36bits PSE 4MB page */
a0a64f50 4045 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4046 else
4047 /* 32 bits PSE 4MB page */
a0a64f50 4048 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4049 break;
4050 case PT32E_ROOT_LEVEL:
a0a64f50 4051 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4052 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4053 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4054 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4055 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4056 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4057 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4058 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4059 rsvd_bits(maxphyaddr, 62) |
4060 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4061 rsvd_check->rsvd_bits_mask[1][0] =
4062 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4063 break;
855feb67
YZ
4064 case PT64_ROOT_5LEVEL:
4065 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4066 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4067 rsvd_bits(maxphyaddr, 51);
4068 rsvd_check->rsvd_bits_mask[1][4] =
4069 rsvd_check->rsvd_bits_mask[0][4];
2a7266a8 4070 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4071 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4072 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4073 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4074 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4075 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4076 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4077 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4078 rsvd_bits(maxphyaddr, 51);
4079 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4080 rsvd_bits(maxphyaddr, 51);
4081 rsvd_check->rsvd_bits_mask[1][3] =
4082 rsvd_check->rsvd_bits_mask[0][3];
4083 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4084 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4085 rsvd_bits(13, 29);
a0a64f50 4086 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4087 rsvd_bits(maxphyaddr, 51) |
4088 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4089 rsvd_check->rsvd_bits_mask[1][0] =
4090 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4091 break;
4092 }
4093}
4094
6dc98b86
XG
4095static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4096 struct kvm_mmu *context)
4097{
4098 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4099 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4100 context->nx,
4101 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4102 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4103}
4104
81b8eebb
XG
4105static void
4106__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4107 int maxphyaddr, bool execonly)
25d92081 4108{
951f9fd7 4109 u64 bad_mt_xwr;
25d92081 4110
855feb67
YZ
4111 rsvd_check->rsvd_bits_mask[0][4] =
4112 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4113 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4114 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4115 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4116 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4117 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4118 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4119 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4120
4121 /* large page */
855feb67 4122 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4123 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4124 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4125 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4126 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4127 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4128 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4129
951f9fd7
PB
4130 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4131 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4132 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4133 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4134 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4135 if (!execonly) {
4136 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4137 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4138 }
951f9fd7 4139 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4140}
4141
81b8eebb
XG
4142static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4143 struct kvm_mmu *context, bool execonly)
4144{
4145 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4146 cpuid_maxphyaddr(vcpu), execonly);
4147}
4148
c258b62b
XG
4149/*
4150 * the page table on host is the shadow page table for the page
4151 * table in guest or amd nested guest, its mmu features completely
4152 * follow the features in guest.
4153 */
4154void
4155reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4156{
5f0b8199 4157 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
ea2800dd
BS
4158 struct rsvd_bits_validate *shadow_zero_check;
4159 int i;
5f0b8199 4160
6fec2144
PB
4161 /*
4162 * Passing "true" to the last argument is okay; it adds a check
4163 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4164 */
ea2800dd
BS
4165 shadow_zero_check = &context->shadow_zero_check;
4166 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b 4167 boot_cpu_data.x86_phys_bits,
5f0b8199 4168 context->shadow_root_level, uses_nx,
d6321d49
RK
4169 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4170 is_pse(vcpu), true);
ea2800dd
BS
4171
4172 if (!shadow_me_mask)
4173 return;
4174
4175 for (i = context->shadow_root_level; --i >= 0;) {
4176 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4177 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4178 }
4179
c258b62b
XG
4180}
4181EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4182
6fec2144
PB
4183static inline bool boot_cpu_is_amd(void)
4184{
4185 WARN_ON_ONCE(!tdp_enabled);
4186 return shadow_x_mask == 0;
4187}
4188
c258b62b
XG
4189/*
4190 * the direct page table on host, use as much mmu features as
4191 * possible, however, kvm currently does not do execution-protection.
4192 */
4193static void
4194reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4195 struct kvm_mmu *context)
4196{
ea2800dd
BS
4197 struct rsvd_bits_validate *shadow_zero_check;
4198 int i;
4199
4200 shadow_zero_check = &context->shadow_zero_check;
4201
6fec2144 4202 if (boot_cpu_is_amd())
ea2800dd 4203 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b
XG
4204 boot_cpu_data.x86_phys_bits,
4205 context->shadow_root_level, false,
b8291adc
BP
4206 boot_cpu_has(X86_FEATURE_GBPAGES),
4207 true, true);
c258b62b 4208 else
ea2800dd 4209 __reset_rsvds_bits_mask_ept(shadow_zero_check,
c258b62b
XG
4210 boot_cpu_data.x86_phys_bits,
4211 false);
4212
ea2800dd
BS
4213 if (!shadow_me_mask)
4214 return;
4215
4216 for (i = context->shadow_root_level; --i >= 0;) {
4217 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4218 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4219 }
c258b62b
XG
4220}
4221
4222/*
4223 * as the comments in reset_shadow_zero_bits_mask() except it
4224 * is the shadow page table for intel nested guest.
4225 */
4226static void
4227reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4228 struct kvm_mmu *context, bool execonly)
4229{
4230 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4231 boot_cpu_data.x86_phys_bits, execonly);
4232}
4233
09f037aa
PB
4234#define BYTE_MASK(access) \
4235 ((1 & (access) ? 2 : 0) | \
4236 (2 & (access) ? 4 : 0) | \
4237 (3 & (access) ? 8 : 0) | \
4238 (4 & (access) ? 16 : 0) | \
4239 (5 & (access) ? 32 : 0) | \
4240 (6 & (access) ? 64 : 0) | \
4241 (7 & (access) ? 128 : 0))
4242
4243
edc90b7d
XG
4244static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4245 struct kvm_mmu *mmu, bool ept)
97d64b78 4246{
09f037aa
PB
4247 unsigned byte;
4248
4249 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4250 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4251 const u8 u = BYTE_MASK(ACC_USER_MASK);
4252
4253 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4254 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4255 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4256
97d64b78 4257 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4258 unsigned pfec = byte << 1;
4259
97ec8c06 4260 /*
09f037aa
PB
4261 * Each "*f" variable has a 1 bit for each UWX value
4262 * that causes a fault with the given PFEC.
97ec8c06 4263 */
97d64b78 4264
09f037aa
PB
4265 /* Faults from writes to non-writable pages */
4266 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4267 /* Faults from user mode accesses to supervisor pages */
4268 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4269 /* Faults from fetches of non-executable pages*/
4270 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4271 /* Faults from kernel mode fetches of user pages */
4272 u8 smepf = 0;
4273 /* Faults from kernel mode accesses of user pages */
4274 u8 smapf = 0;
4275
4276 if (!ept) {
4277 /* Faults from kernel mode accesses to user pages */
4278 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4279
4280 /* Not really needed: !nx will cause pte.nx to fault */
4281 if (!mmu->nx)
4282 ff = 0;
4283
4284 /* Allow supervisor writes if !cr0.wp */
4285 if (!cr0_wp)
4286 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4287
4288 /* Disallow supervisor fetches of user code if cr4.smep */
4289 if (cr4_smep)
4290 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4291
4292 /*
4293 * SMAP:kernel-mode data accesses from user-mode
4294 * mappings should fault. A fault is considered
4295 * as a SMAP violation if all of the following
4296 * conditions are ture:
4297 * - X86_CR4_SMAP is set in CR4
4298 * - A user page is accessed
4299 * - The access is not a fetch
4300 * - Page fault in kernel mode
4301 * - if CPL = 3 or X86_EFLAGS_AC is clear
4302 *
4303 * Here, we cover the first three conditions.
4304 * The fourth is computed dynamically in permission_fault();
4305 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4306 * *not* subject to SMAP restrictions.
4307 */
4308 if (cr4_smap)
4309 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4310 }
09f037aa
PB
4311
4312 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4313 }
4314}
4315
2d344105
HH
4316/*
4317* PKU is an additional mechanism by which the paging controls access to
4318* user-mode addresses based on the value in the PKRU register. Protection
4319* key violations are reported through a bit in the page fault error code.
4320* Unlike other bits of the error code, the PK bit is not known at the
4321* call site of e.g. gva_to_gpa; it must be computed directly in
4322* permission_fault based on two bits of PKRU, on some machine state (CR4,
4323* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4324*
4325* In particular the following conditions come from the error code, the
4326* page tables and the machine state:
4327* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4328* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4329* - PK is always zero if U=0 in the page tables
4330* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4331*
4332* The PKRU bitmask caches the result of these four conditions. The error
4333* code (minus the P bit) and the page table's U bit form an index into the
4334* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4335* with the two bits of the PKRU register corresponding to the protection key.
4336* For the first three conditions above the bits will be 00, thus masking
4337* away both AD and WD. For all reads or if the last condition holds, WD
4338* only will be masked away.
4339*/
4340static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4341 bool ept)
4342{
4343 unsigned bit;
4344 bool wp;
4345
4346 if (ept) {
4347 mmu->pkru_mask = 0;
4348 return;
4349 }
4350
4351 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4352 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4353 mmu->pkru_mask = 0;
4354 return;
4355 }
4356
4357 wp = is_write_protection(vcpu);
4358
4359 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4360 unsigned pfec, pkey_bits;
4361 bool check_pkey, check_write, ff, uf, wf, pte_user;
4362
4363 pfec = bit << 1;
4364 ff = pfec & PFERR_FETCH_MASK;
4365 uf = pfec & PFERR_USER_MASK;
4366 wf = pfec & PFERR_WRITE_MASK;
4367
4368 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4369 pte_user = pfec & PFERR_RSVD_MASK;
4370
4371 /*
4372 * Only need to check the access which is not an
4373 * instruction fetch and is to a user page.
4374 */
4375 check_pkey = (!ff && pte_user);
4376 /*
4377 * write access is controlled by PKRU if it is a
4378 * user access or CR0.WP = 1.
4379 */
4380 check_write = check_pkey && wf && (uf || wp);
4381
4382 /* PKRU.AD stops both read and write access. */
4383 pkey_bits = !!check_pkey;
4384 /* PKRU.WD stops write access. */
4385 pkey_bits |= (!!check_write) << 1;
4386
4387 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4388 }
4389}
4390
6bb69c9b 4391static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4392{
6bb69c9b
PB
4393 unsigned root_level = mmu->root_level;
4394
4395 mmu->last_nonleaf_level = root_level;
4396 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4397 mmu->last_nonleaf_level++;
6fd01b71
AK
4398}
4399
8a3c1a33
PB
4400static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4401 struct kvm_mmu *context,
4402 int level)
6aa8b732 4403{
2d48a985 4404 context->nx = is_nx(vcpu);
4d6931c3 4405 context->root_level = level;
2d48a985 4406
4d6931c3 4407 reset_rsvds_bits_mask(vcpu, context);
25d92081 4408 update_permission_bitmask(vcpu, context, false);
2d344105 4409 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4410 update_last_nonleaf_level(vcpu, context);
6aa8b732 4411
fa4a2c08 4412 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4413 context->page_fault = paging64_page_fault;
6aa8b732 4414 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4415 context->sync_page = paging64_sync_page;
a7052897 4416 context->invlpg = paging64_invlpg;
0f53b5b1 4417 context->update_pte = paging64_update_pte;
17ac10ad 4418 context->shadow_root_level = level;
17c3ba9d 4419 context->root_hpa = INVALID_PAGE;
c5a78f2b 4420 context->direct_map = false;
6aa8b732
AK
4421}
4422
8a3c1a33
PB
4423static void paging64_init_context(struct kvm_vcpu *vcpu,
4424 struct kvm_mmu *context)
17ac10ad 4425{
855feb67
YZ
4426 int root_level = is_la57_mode(vcpu) ?
4427 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4428
4429 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4430}
4431
8a3c1a33
PB
4432static void paging32_init_context(struct kvm_vcpu *vcpu,
4433 struct kvm_mmu *context)
6aa8b732 4434{
2d48a985 4435 context->nx = false;
4d6931c3 4436 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4437
4d6931c3 4438 reset_rsvds_bits_mask(vcpu, context);
25d92081 4439 update_permission_bitmask(vcpu, context, false);
2d344105 4440 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4441 update_last_nonleaf_level(vcpu, context);
6aa8b732 4442
6aa8b732 4443 context->page_fault = paging32_page_fault;
6aa8b732 4444 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4445 context->sync_page = paging32_sync_page;
a7052897 4446 context->invlpg = paging32_invlpg;
0f53b5b1 4447 context->update_pte = paging32_update_pte;
6aa8b732 4448 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4449 context->root_hpa = INVALID_PAGE;
c5a78f2b 4450 context->direct_map = false;
6aa8b732
AK
4451}
4452
8a3c1a33
PB
4453static void paging32E_init_context(struct kvm_vcpu *vcpu,
4454 struct kvm_mmu *context)
6aa8b732 4455{
8a3c1a33 4456 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4457}
4458
8a3c1a33 4459static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4460{
ad896af0 4461 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4462
c445f8ef 4463 context->base_role.word = 0;
699023e2 4464 context->base_role.smm = is_smm(vcpu);
ac8d57e5 4465 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
fb72d167 4466 context->page_fault = tdp_page_fault;
e8bc217a 4467 context->sync_page = nonpaging_sync_page;
a7052897 4468 context->invlpg = nonpaging_invlpg;
0f53b5b1 4469 context->update_pte = nonpaging_update_pte;
855feb67 4470 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
fb72d167 4471 context->root_hpa = INVALID_PAGE;
c5a78f2b 4472 context->direct_map = true;
1c97f0a0 4473 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4474 context->get_cr3 = get_cr3;
e4e517b4 4475 context->get_pdptr = kvm_pdptr_read;
cb659db8 4476 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4477
4478 if (!is_paging(vcpu)) {
2d48a985 4479 context->nx = false;
fb72d167
JR
4480 context->gva_to_gpa = nonpaging_gva_to_gpa;
4481 context->root_level = 0;
4482 } else if (is_long_mode(vcpu)) {
2d48a985 4483 context->nx = is_nx(vcpu);
855feb67
YZ
4484 context->root_level = is_la57_mode(vcpu) ?
4485 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4486 reset_rsvds_bits_mask(vcpu, context);
4487 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4488 } else if (is_pae(vcpu)) {
2d48a985 4489 context->nx = is_nx(vcpu);
fb72d167 4490 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4491 reset_rsvds_bits_mask(vcpu, context);
4492 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4493 } else {
2d48a985 4494 context->nx = false;
fb72d167 4495 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4496 reset_rsvds_bits_mask(vcpu, context);
4497 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4498 }
4499
25d92081 4500 update_permission_bitmask(vcpu, context, false);
2d344105 4501 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4502 update_last_nonleaf_level(vcpu, context);
c258b62b 4503 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4504}
4505
ad896af0 4506void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4507{
411c588d 4508 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4509 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4510 struct kvm_mmu *context = &vcpu->arch.mmu;
4511
fa4a2c08 4512 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4513
4514 if (!is_paging(vcpu))
8a3c1a33 4515 nonpaging_init_context(vcpu, context);
a9058ecd 4516 else if (is_long_mode(vcpu))
8a3c1a33 4517 paging64_init_context(vcpu, context);
6aa8b732 4518 else if (is_pae(vcpu))
8a3c1a33 4519 paging32E_init_context(vcpu, context);
6aa8b732 4520 else
8a3c1a33 4521 paging32_init_context(vcpu, context);
a770f6f2 4522
ad896af0
PB
4523 context->base_role.nxe = is_nx(vcpu);
4524 context->base_role.cr4_pae = !!is_pae(vcpu);
4525 context->base_role.cr0_wp = is_write_protection(vcpu);
4526 context->base_role.smep_andnot_wp
411c588d 4527 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4528 context->base_role.smap_andnot_wp
4529 = smap && !is_write_protection(vcpu);
699023e2 4530 context->base_role.smm = is_smm(vcpu);
c258b62b 4531 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4532}
4533EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4534
ae1e2d10
PB
4535void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4536 bool accessed_dirty)
155a97a3 4537{
ad896af0
PB
4538 struct kvm_mmu *context = &vcpu->arch.mmu;
4539
fa4a2c08 4540 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3 4541
855feb67 4542 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4543
4544 context->nx = true;
ae1e2d10 4545 context->ept_ad = accessed_dirty;
155a97a3
NHE
4546 context->page_fault = ept_page_fault;
4547 context->gva_to_gpa = ept_gva_to_gpa;
4548 context->sync_page = ept_sync_page;
4549 context->invlpg = ept_invlpg;
4550 context->update_pte = ept_update_pte;
855feb67 4551 context->root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4552 context->root_hpa = INVALID_PAGE;
4553 context->direct_map = false;
995f00a6 4554 context->base_role.ad_disabled = !accessed_dirty;
155a97a3
NHE
4555
4556 update_permission_bitmask(vcpu, context, true);
2d344105 4557 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4558 update_last_nonleaf_level(vcpu, context);
155a97a3 4559 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4560 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4561}
4562EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4563
8a3c1a33 4564static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4565{
ad896af0
PB
4566 struct kvm_mmu *context = &vcpu->arch.mmu;
4567
4568 kvm_init_shadow_mmu(vcpu);
4569 context->set_cr3 = kvm_x86_ops->set_cr3;
4570 context->get_cr3 = get_cr3;
4571 context->get_pdptr = kvm_pdptr_read;
4572 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4573}
4574
8a3c1a33 4575static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4576{
4577 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4578
4579 g_context->get_cr3 = get_cr3;
e4e517b4 4580 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4581 g_context->inject_page_fault = kvm_inject_page_fault;
4582
4583 /*
0af2593b
DM
4584 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4585 * L1's nested page tables (e.g. EPT12). The nested translation
4586 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4587 * L2's page tables as the first level of translation and L1's
4588 * nested page tables as the second level of translation. Basically
4589 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4590 */
4591 if (!is_paging(vcpu)) {
2d48a985 4592 g_context->nx = false;
02f59dc9
JR
4593 g_context->root_level = 0;
4594 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4595 } else if (is_long_mode(vcpu)) {
2d48a985 4596 g_context->nx = is_nx(vcpu);
855feb67
YZ
4597 g_context->root_level = is_la57_mode(vcpu) ?
4598 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4599 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4600 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4601 } else if (is_pae(vcpu)) {
2d48a985 4602 g_context->nx = is_nx(vcpu);
02f59dc9 4603 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4604 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4605 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4606 } else {
2d48a985 4607 g_context->nx = false;
02f59dc9 4608 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4609 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4610 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4611 }
4612
25d92081 4613 update_permission_bitmask(vcpu, g_context, false);
2d344105 4614 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4615 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4616}
4617
8a3c1a33 4618static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4619{
02f59dc9 4620 if (mmu_is_nested(vcpu))
e0c6db3e 4621 init_kvm_nested_mmu(vcpu);
02f59dc9 4622 else if (tdp_enabled)
e0c6db3e 4623 init_kvm_tdp_mmu(vcpu);
fb72d167 4624 else
e0c6db3e 4625 init_kvm_softmmu(vcpu);
fb72d167
JR
4626}
4627
8a3c1a33 4628void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4629{
95f93af4 4630 kvm_mmu_unload(vcpu);
8a3c1a33 4631 init_kvm_mmu(vcpu);
17c3ba9d 4632}
8668a3c4 4633EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4634
4635int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4636{
714b93da
AK
4637 int r;
4638
e2dec939 4639 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4640 if (r)
4641 goto out;
8986ecc0 4642 r = mmu_alloc_roots(vcpu);
e2858b4a 4643 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4644 if (r)
4645 goto out;
3662cb1c 4646 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4647 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4648out:
4649 return r;
6aa8b732 4650}
17c3ba9d
AK
4651EXPORT_SYMBOL_GPL(kvm_mmu_load);
4652
4653void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4654{
4655 mmu_free_roots(vcpu);
95f93af4 4656 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4657}
4b16184c 4658EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4659
0028425f 4660static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4661 struct kvm_mmu_page *sp, u64 *spte,
4662 const void *new)
0028425f 4663{
30945387 4664 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4665 ++vcpu->kvm->stat.mmu_pde_zapped;
4666 return;
30945387 4667 }
0028425f 4668
4cee5764 4669 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4670 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4671}
4672
79539cec
AK
4673static bool need_remote_flush(u64 old, u64 new)
4674{
4675 if (!is_shadow_present_pte(old))
4676 return false;
4677 if (!is_shadow_present_pte(new))
4678 return true;
4679 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4680 return true;
53166229
GN
4681 old ^= shadow_nx_mask;
4682 new ^= shadow_nx_mask;
79539cec
AK
4683 return (old & ~new & PT64_PERM_MASK) != 0;
4684}
4685
889e5cbc
XG
4686static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4687 const u8 *new, int *bytes)
da4a00f0 4688{
889e5cbc
XG
4689 u64 gentry;
4690 int r;
72016f3a 4691
72016f3a
AK
4692 /*
4693 * Assume that the pte write on a page table of the same type
49b26e26
XG
4694 * as the current vcpu paging mode since we update the sptes only
4695 * when they have the same mode.
72016f3a 4696 */
889e5cbc 4697 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4698 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4699 *gpa &= ~(gpa_t)7;
4700 *bytes = 8;
54bf36aa 4701 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4702 if (r)
4703 gentry = 0;
08e850c6
AK
4704 new = (const u8 *)&gentry;
4705 }
4706
889e5cbc 4707 switch (*bytes) {
08e850c6
AK
4708 case 4:
4709 gentry = *(const u32 *)new;
4710 break;
4711 case 8:
4712 gentry = *(const u64 *)new;
4713 break;
4714 default:
4715 gentry = 0;
4716 break;
72016f3a
AK
4717 }
4718
889e5cbc
XG
4719 return gentry;
4720}
4721
4722/*
4723 * If we're seeing too many writes to a page, it may no longer be a page table,
4724 * or we may be forking, in which case it is better to unmap the page.
4725 */
a138fe75 4726static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4727{
a30f47cb
XG
4728 /*
4729 * Skip write-flooding detected for the sp whose level is 1, because
4730 * it can become unsync, then the guest page is not write-protected.
4731 */
f71fa31f 4732 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4733 return false;
3246af0e 4734
e5691a81
XG
4735 atomic_inc(&sp->write_flooding_count);
4736 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4737}
4738
4739/*
4740 * Misaligned accesses are too much trouble to fix up; also, they usually
4741 * indicate a page is not used as a page table.
4742 */
4743static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4744 int bytes)
4745{
4746 unsigned offset, pte_size, misaligned;
4747
4748 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4749 gpa, bytes, sp->role.word);
4750
4751 offset = offset_in_page(gpa);
4752 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4753
4754 /*
4755 * Sometimes, the OS only writes the last one bytes to update status
4756 * bits, for example, in linux, andb instruction is used in clear_bit().
4757 */
4758 if (!(offset & (pte_size - 1)) && bytes == 1)
4759 return false;
4760
889e5cbc
XG
4761 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4762 misaligned |= bytes < 4;
4763
4764 return misaligned;
4765}
4766
4767static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4768{
4769 unsigned page_offset, quadrant;
4770 u64 *spte;
4771 int level;
4772
4773 page_offset = offset_in_page(gpa);
4774 level = sp->role.level;
4775 *nspte = 1;
4776 if (!sp->role.cr4_pae) {
4777 page_offset <<= 1; /* 32->64 */
4778 /*
4779 * A 32-bit pde maps 4MB while the shadow pdes map
4780 * only 2MB. So we need to double the offset again
4781 * and zap two pdes instead of one.
4782 */
4783 if (level == PT32_ROOT_LEVEL) {
4784 page_offset &= ~7; /* kill rounding error */
4785 page_offset <<= 1;
4786 *nspte = 2;
4787 }
4788 quadrant = page_offset >> PAGE_SHIFT;
4789 page_offset &= ~PAGE_MASK;
4790 if (quadrant != sp->role.quadrant)
4791 return NULL;
4792 }
4793
4794 spte = &sp->spt[page_offset / sizeof(*spte)];
4795 return spte;
4796}
4797
13d268ca 4798static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4799 const u8 *new, int bytes,
4800 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4801{
4802 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4803 struct kvm_mmu_page *sp;
889e5cbc
XG
4804 LIST_HEAD(invalid_list);
4805 u64 entry, gentry, *spte;
4806 int npte;
b8c67b7a 4807 bool remote_flush, local_flush;
4141259b
AM
4808 union kvm_mmu_page_role mask = { };
4809
4810 mask.cr0_wp = 1;
4811 mask.cr4_pae = 1;
4812 mask.nxe = 1;
4813 mask.smep_andnot_wp = 1;
4814 mask.smap_andnot_wp = 1;
699023e2 4815 mask.smm = 1;
ac8d57e5 4816 mask.ad_disabled = 1;
889e5cbc
XG
4817
4818 /*
4819 * If we don't have indirect shadow pages, it means no page is
4820 * write-protected, so we can exit simply.
4821 */
4822 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4823 return;
4824
b8c67b7a 4825 remote_flush = local_flush = false;
889e5cbc
XG
4826
4827 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4828
4829 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4830
4831 /*
4832 * No need to care whether allocation memory is successful
4833 * or not since pte prefetch is skiped if it does not have
4834 * enough objects in the cache.
4835 */
4836 mmu_topup_memory_caches(vcpu);
4837
4838 spin_lock(&vcpu->kvm->mmu_lock);
4839 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4840 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4841
b67bfe0d 4842 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4843 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4844 detect_write_flooding(sp)) {
b8c67b7a 4845 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4846 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4847 continue;
4848 }
889e5cbc
XG
4849
4850 spte = get_written_sptes(sp, gpa, &npte);
4851 if (!spte)
4852 continue;
4853
0671a8e7 4854 local_flush = true;
ac1b714e 4855 while (npte--) {
79539cec 4856 entry = *spte;
38e3b2b2 4857 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4858 if (gentry &&
4859 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4860 & mask.word) && rmap_can_add(vcpu))
7c562522 4861 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4862 if (need_remote_flush(entry, *spte))
0671a8e7 4863 remote_flush = true;
ac1b714e 4864 ++spte;
9b7a0325 4865 }
9b7a0325 4866 }
b8c67b7a 4867 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4868 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4869 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4870}
4871
a436036b
AK
4872int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4873{
10589a46
MT
4874 gpa_t gpa;
4875 int r;
a436036b 4876
c5a78f2b 4877 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4878 return 0;
4879
1871c602 4880 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4881
10589a46 4882 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4883
10589a46 4884 return r;
a436036b 4885}
577bdc49 4886EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4887
26eeb53c 4888static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4889{
d98ba053 4890 LIST_HEAD(invalid_list);
103ad25a 4891
81f4f76b 4892 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 4893 return 0;
81f4f76b 4894
5da59607
TY
4895 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4896 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4897 break;
ebeace86 4898
4cee5764 4899 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4900 }
aa6bd187 4901 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
4902
4903 if (!kvm_mmu_available_pages(vcpu->kvm))
4904 return -ENOSPC;
4905 return 0;
ebeace86 4906}
ebeace86 4907
14727754 4908int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 4909 void *insn, int insn_len)
3067714c 4910{
1cb3f3ae 4911 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4912 enum emulation_result er;
9034e6e8 4913 bool direct = vcpu->arch.mmu.direct_map;
3067714c 4914
618232e2
BS
4915 /* With shadow page tables, fault_address contains a GVA or nGPA. */
4916 if (vcpu->arch.mmu.direct_map) {
4917 vcpu->arch.gpa_available = true;
4918 vcpu->arch.gpa_val = cr2;
4919 }
3067714c 4920
e9ee956e
TY
4921 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4922 r = handle_mmio_page_fault(vcpu, cr2, direct);
4923 if (r == RET_MMIO_PF_EMULATE) {
4924 emulation_type = 0;
4925 goto emulate;
4926 }
4927 if (r == RET_MMIO_PF_RETRY)
4928 return 1;
4929 if (r < 0)
4930 return r;
e08d26f0 4931 /* Must be RET_MMIO_PF_INVALID. */
e9ee956e 4932 }
3067714c 4933
14727754
TL
4934 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4935 false);
3067714c 4936 if (r < 0)
e9ee956e
TY
4937 return r;
4938 if (!r)
4939 return 1;
3067714c 4940
14727754
TL
4941 /*
4942 * Before emulating the instruction, check if the error code
4943 * was due to a RO violation while translating the guest page.
4944 * This can occur when using nested virtualization with nested
4945 * paging in both guests. If true, we simply unprotect the page
4946 * and resume the guest.
14727754 4947 */
64531a3b 4948 if (vcpu->arch.mmu.direct_map &&
eebed243 4949 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
4950 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4951 return 1;
4952 }
4953
ded58749 4954 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4955 emulation_type = 0;
e9ee956e 4956emulate:
1cb3f3ae 4957 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4958
4959 switch (er) {
4960 case EMULATE_DONE:
4961 return 1;
ac0a48c3 4962 case EMULATE_USER_EXIT:
3067714c 4963 ++vcpu->stat.mmio_exits;
6d77dbfc 4964 /* fall through */
3067714c 4965 case EMULATE_FAIL:
3f5d18a9 4966 return 0;
3067714c
AK
4967 default:
4968 BUG();
4969 }
3067714c
AK
4970}
4971EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4972
a7052897
MT
4973void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4974{
a7052897 4975 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4976 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4977 ++vcpu->stat.invlpg;
4978}
4979EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4980
18552672
JR
4981void kvm_enable_tdp(void)
4982{
4983 tdp_enabled = true;
4984}
4985EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4986
5f4cb662
JR
4987void kvm_disable_tdp(void)
4988{
4989 tdp_enabled = false;
4990}
4991EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4992
6aa8b732
AK
4993static void free_mmu_pages(struct kvm_vcpu *vcpu)
4994{
ad312c7c 4995 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4996 if (vcpu->arch.mmu.lm_root != NULL)
4997 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4998}
4999
5000static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5001{
17ac10ad 5002 struct page *page;
6aa8b732
AK
5003 int i;
5004
17ac10ad
AK
5005 /*
5006 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5007 * Therefore we need to allocate shadow page tables in the first
5008 * 4GB of memory, which happens to fit the DMA32 zone.
5009 */
5010 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5011 if (!page)
d7fa6ab2
WY
5012 return -ENOMEM;
5013
ad312c7c 5014 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 5015 for (i = 0; i < 4; ++i)
ad312c7c 5016 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 5017
6aa8b732 5018 return 0;
6aa8b732
AK
5019}
5020
8018c27b 5021int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5022{
e459e322
XG
5023 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5024 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5025 vcpu->arch.mmu.translate_gpa = translate_gpa;
5026 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 5027
8018c27b
IM
5028 return alloc_mmu_pages(vcpu);
5029}
6aa8b732 5030
8a3c1a33 5031void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 5032{
fa4a2c08 5033 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 5034
8a3c1a33 5035 init_kvm_mmu(vcpu);
6aa8b732
AK
5036}
5037
b5f5fdca 5038static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5039 struct kvm_memory_slot *slot,
5040 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
5041{
5042 kvm_mmu_invalidate_zap_all_pages(kvm);
5043}
5044
13d268ca
XG
5045void kvm_mmu_init_vm(struct kvm *kvm)
5046{
5047 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5048
5049 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5050 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
5051 kvm_page_track_register_notifier(kvm, node);
5052}
5053
5054void kvm_mmu_uninit_vm(struct kvm *kvm)
5055{
5056 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5057
5058 kvm_page_track_unregister_notifier(kvm, node);
5059}
5060
1bad2b2a 5061/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 5062typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
5063
5064/* The caller should hold mmu-lock before calling this function. */
5065static bool
5066slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5067 slot_level_handler fn, int start_level, int end_level,
5068 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5069{
5070 struct slot_rmap_walk_iterator iterator;
5071 bool flush = false;
5072
5073 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5074 end_gfn, &iterator) {
5075 if (iterator.rmap)
5076 flush |= fn(kvm, iterator.rmap);
5077
5078 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5079 if (flush && lock_flush_tlb) {
5080 kvm_flush_remote_tlbs(kvm);
5081 flush = false;
5082 }
5083 cond_resched_lock(&kvm->mmu_lock);
5084 }
5085 }
5086
5087 if (flush && lock_flush_tlb) {
5088 kvm_flush_remote_tlbs(kvm);
5089 flush = false;
5090 }
5091
5092 return flush;
5093}
5094
5095static bool
5096slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5097 slot_level_handler fn, int start_level, int end_level,
5098 bool lock_flush_tlb)
5099{
5100 return slot_handle_level_range(kvm, memslot, fn, start_level,
5101 end_level, memslot->base_gfn,
5102 memslot->base_gfn + memslot->npages - 1,
5103 lock_flush_tlb);
5104}
5105
5106static bool
5107slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5108 slot_level_handler fn, bool lock_flush_tlb)
5109{
5110 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5111 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5112}
5113
5114static bool
5115slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5116 slot_level_handler fn, bool lock_flush_tlb)
5117{
5118 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5119 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5120}
5121
5122static bool
5123slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5124 slot_level_handler fn, bool lock_flush_tlb)
5125{
5126 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5127 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5128}
5129
efdfe536
XG
5130void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5131{
5132 struct kvm_memslots *slots;
5133 struct kvm_memory_slot *memslot;
9da0e4d5 5134 int i;
efdfe536
XG
5135
5136 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5137 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5138 slots = __kvm_memslots(kvm, i);
5139 kvm_for_each_memslot(memslot, slots) {
5140 gfn_t start, end;
5141
5142 start = max(gfn_start, memslot->base_gfn);
5143 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5144 if (start >= end)
5145 continue;
efdfe536 5146
9da0e4d5
PB
5147 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5148 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5149 start, end - 1, true);
5150 }
efdfe536
XG
5151 }
5152
5153 spin_unlock(&kvm->mmu_lock);
5154}
5155
018aabb5
TY
5156static bool slot_rmap_write_protect(struct kvm *kvm,
5157 struct kvm_rmap_head *rmap_head)
d77aa73c 5158{
018aabb5 5159 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5160}
5161
1c91cad4
KH
5162void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5163 struct kvm_memory_slot *memslot)
6aa8b732 5164{
d77aa73c 5165 bool flush;
6aa8b732 5166
9d1beefb 5167 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5168 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5169 false);
9d1beefb 5170 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5171
5172 /*
5173 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5174 * which do tlb flush out of mmu-lock should be serialized by
5175 * kvm->slots_lock otherwise tlb flush would be missed.
5176 */
5177 lockdep_assert_held(&kvm->slots_lock);
5178
5179 /*
5180 * We can flush all the TLBs out of the mmu lock without TLB
5181 * corruption since we just change the spte from writable to
5182 * readonly so that we only need to care the case of changing
5183 * spte from present to present (changing the spte from present
5184 * to nonpresent will flush all the TLBs immediately), in other
5185 * words, the only case we care is mmu_spte_update() where we
5186 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5187 * instead of PT_WRITABLE_MASK, that means it does not depend
5188 * on PT_WRITABLE_MASK anymore.
5189 */
d91ffee9
KH
5190 if (flush)
5191 kvm_flush_remote_tlbs(kvm);
6aa8b732 5192}
37a7d8b0 5193
3ea3b7fa 5194static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5195 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5196{
5197 u64 *sptep;
5198 struct rmap_iterator iter;
5199 int need_tlb_flush = 0;
ba049e93 5200 kvm_pfn_t pfn;
3ea3b7fa
WL
5201 struct kvm_mmu_page *sp;
5202
0d536790 5203restart:
018aabb5 5204 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5205 sp = page_header(__pa(sptep));
5206 pfn = spte_to_pfn(*sptep);
5207
5208 /*
decf6333
XG
5209 * We cannot do huge page mapping for indirect shadow pages,
5210 * which are found on the last rmap (level = 1) when not using
5211 * tdp; such shadow pages are synced with the page table in
5212 * the guest, and the guest page table is using 4K page size
5213 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5214 */
5215 if (sp->role.direct &&
5216 !kvm_is_reserved_pfn(pfn) &&
127393fb 5217 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 5218 drop_spte(kvm, sptep);
3ea3b7fa 5219 need_tlb_flush = 1;
0d536790
XG
5220 goto restart;
5221 }
3ea3b7fa
WL
5222 }
5223
5224 return need_tlb_flush;
5225}
5226
5227void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5228 const struct kvm_memory_slot *memslot)
3ea3b7fa 5229{
f36f3f28 5230 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5231 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5232 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5233 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5234 spin_unlock(&kvm->mmu_lock);
5235}
5236
f4b4b180
KH
5237void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5238 struct kvm_memory_slot *memslot)
5239{
d77aa73c 5240 bool flush;
f4b4b180
KH
5241
5242 spin_lock(&kvm->mmu_lock);
d77aa73c 5243 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5244 spin_unlock(&kvm->mmu_lock);
5245
5246 lockdep_assert_held(&kvm->slots_lock);
5247
5248 /*
5249 * It's also safe to flush TLBs out of mmu lock here as currently this
5250 * function is only used for dirty logging, in which case flushing TLB
5251 * out of mmu lock also guarantees no dirty pages will be lost in
5252 * dirty_bitmap.
5253 */
5254 if (flush)
5255 kvm_flush_remote_tlbs(kvm);
5256}
5257EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5258
5259void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5260 struct kvm_memory_slot *memslot)
5261{
d77aa73c 5262 bool flush;
f4b4b180
KH
5263
5264 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5265 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5266 false);
f4b4b180
KH
5267 spin_unlock(&kvm->mmu_lock);
5268
5269 /* see kvm_mmu_slot_remove_write_access */
5270 lockdep_assert_held(&kvm->slots_lock);
5271
5272 if (flush)
5273 kvm_flush_remote_tlbs(kvm);
5274}
5275EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5276
5277void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5278 struct kvm_memory_slot *memslot)
5279{
d77aa73c 5280 bool flush;
f4b4b180
KH
5281
5282 spin_lock(&kvm->mmu_lock);
d77aa73c 5283 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5284 spin_unlock(&kvm->mmu_lock);
5285
5286 lockdep_assert_held(&kvm->slots_lock);
5287
5288 /* see kvm_mmu_slot_leaf_clear_dirty */
5289 if (flush)
5290 kvm_flush_remote_tlbs(kvm);
5291}
5292EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5293
e7d11c7a 5294#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5295static void kvm_zap_obsolete_pages(struct kvm *kvm)
5296{
5297 struct kvm_mmu_page *sp, *node;
e7d11c7a 5298 int batch = 0;
5304b8d3
XG
5299
5300restart:
5301 list_for_each_entry_safe_reverse(sp, node,
5302 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5303 int ret;
5304
5304b8d3
XG
5305 /*
5306 * No obsolete page exists before new created page since
5307 * active_mmu_pages is the FIFO list.
5308 */
5309 if (!is_obsolete_sp(kvm, sp))
5310 break;
5311
5312 /*
5304b8d3
XG
5313 * Since we are reversely walking the list and the invalid
5314 * list will be moved to the head, skip the invalid page
5315 * can help us to avoid the infinity list walking.
5316 */
5317 if (sp->role.invalid)
5318 continue;
5319
f34d251d
XG
5320 /*
5321 * Need not flush tlb since we only zap the sp with invalid
5322 * generation number.
5323 */
e7d11c7a 5324 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5325 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5326 batch = 0;
5304b8d3
XG
5327 goto restart;
5328 }
5329
365c8868
XG
5330 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5331 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5332 batch += ret;
5333
5334 if (ret)
5304b8d3
XG
5335 goto restart;
5336 }
5337
f34d251d
XG
5338 /*
5339 * Should flush tlb before free page tables since lockless-walking
5340 * may use the pages.
5341 */
365c8868 5342 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5343}
5344
5345/*
5346 * Fast invalidate all shadow pages and use lock-break technique
5347 * to zap obsolete pages.
5348 *
5349 * It's required when memslot is being deleted or VM is being
5350 * destroyed, in these cases, we should ensure that KVM MMU does
5351 * not use any resource of the being-deleted slot or all slots
5352 * after calling the function.
5353 */
5354void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5355{
5356 spin_lock(&kvm->mmu_lock);
35006126 5357 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5358 kvm->arch.mmu_valid_gen++;
5359
f34d251d
XG
5360 /*
5361 * Notify all vcpus to reload its shadow page table
5362 * and flush TLB. Then all vcpus will switch to new
5363 * shadow page table with the new mmu_valid_gen.
5364 *
5365 * Note: we should do this under the protection of
5366 * mmu-lock, otherwise, vcpu would purge shadow page
5367 * but miss tlb flush.
5368 */
5369 kvm_reload_remote_mmus(kvm);
5370
5304b8d3
XG
5371 kvm_zap_obsolete_pages(kvm);
5372 spin_unlock(&kvm->mmu_lock);
5373}
5374
365c8868
XG
5375static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5376{
5377 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5378}
5379
54bf36aa 5380void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5381{
5382 /*
5383 * The very rare case: if the generation-number is round,
5384 * zap all shadow pages.
f8f55942 5385 */
54bf36aa 5386 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5387 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5388 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5389 }
f8f55942
XG
5390}
5391
70534a73
DC
5392static unsigned long
5393mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5394{
5395 struct kvm *kvm;
1495f230 5396 int nr_to_scan = sc->nr_to_scan;
70534a73 5397 unsigned long freed = 0;
3ee16c81 5398
2f303b74 5399 spin_lock(&kvm_lock);
3ee16c81
IE
5400
5401 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5402 int idx;
d98ba053 5403 LIST_HEAD(invalid_list);
3ee16c81 5404
35f2d16b
TY
5405 /*
5406 * Never scan more than sc->nr_to_scan VM instances.
5407 * Will not hit this condition practically since we do not try
5408 * to shrink more than one VM and it is very unlikely to see
5409 * !n_used_mmu_pages so many times.
5410 */
5411 if (!nr_to_scan--)
5412 break;
19526396
GN
5413 /*
5414 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5415 * here. We may skip a VM instance errorneosly, but we do not
5416 * want to shrink a VM that only started to populate its MMU
5417 * anyway.
5418 */
365c8868
XG
5419 if (!kvm->arch.n_used_mmu_pages &&
5420 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5421 continue;
19526396 5422
f656ce01 5423 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5424 spin_lock(&kvm->mmu_lock);
3ee16c81 5425
365c8868
XG
5426 if (kvm_has_zapped_obsolete_pages(kvm)) {
5427 kvm_mmu_commit_zap_page(kvm,
5428 &kvm->arch.zapped_obsolete_pages);
5429 goto unlock;
5430 }
5431
70534a73
DC
5432 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5433 freed++;
d98ba053 5434 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5435
365c8868 5436unlock:
3ee16c81 5437 spin_unlock(&kvm->mmu_lock);
f656ce01 5438 srcu_read_unlock(&kvm->srcu, idx);
19526396 5439
70534a73
DC
5440 /*
5441 * unfair on small ones
5442 * per-vm shrinkers cry out
5443 * sadness comes quickly
5444 */
19526396
GN
5445 list_move_tail(&kvm->vm_list, &vm_list);
5446 break;
3ee16c81 5447 }
3ee16c81 5448
2f303b74 5449 spin_unlock(&kvm_lock);
70534a73 5450 return freed;
70534a73
DC
5451}
5452
5453static unsigned long
5454mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5455{
45221ab6 5456 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5457}
5458
5459static struct shrinker mmu_shrinker = {
70534a73
DC
5460 .count_objects = mmu_shrink_count,
5461 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5462 .seeks = DEFAULT_SEEKS * 10,
5463};
5464
2ddfd20e 5465static void mmu_destroy_caches(void)
b5a33a75 5466{
53c07b18
XG
5467 if (pte_list_desc_cache)
5468 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5469 if (mmu_page_header_cache)
5470 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5471}
5472
5473int kvm_mmu_module_init(void)
5474{
f160c7b7
JS
5475 kvm_mmu_clear_all_pte_masks();
5476
53c07b18
XG
5477 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5478 sizeof(struct pte_list_desc),
20c2df83 5479 0, 0, NULL);
53c07b18 5480 if (!pte_list_desc_cache)
b5a33a75
AK
5481 goto nomem;
5482
d3d25b04
AK
5483 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5484 sizeof(struct kvm_mmu_page),
20c2df83 5485 0, 0, NULL);
d3d25b04
AK
5486 if (!mmu_page_header_cache)
5487 goto nomem;
5488
908c7f19 5489 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5490 goto nomem;
5491
3ee16c81
IE
5492 register_shrinker(&mmu_shrinker);
5493
b5a33a75
AK
5494 return 0;
5495
5496nomem:
3ee16c81 5497 mmu_destroy_caches();
b5a33a75
AK
5498 return -ENOMEM;
5499}
5500
3ad82a7e
ZX
5501/*
5502 * Caculate mmu pages needed for kvm.
5503 */
5504unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5505{
3ad82a7e
ZX
5506 unsigned int nr_mmu_pages;
5507 unsigned int nr_pages = 0;
bc6678a3 5508 struct kvm_memslots *slots;
be6ba0f0 5509 struct kvm_memory_slot *memslot;
9da0e4d5 5510 int i;
3ad82a7e 5511
9da0e4d5
PB
5512 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5513 slots = __kvm_memslots(kvm, i);
90d83dc3 5514
9da0e4d5
PB
5515 kvm_for_each_memslot(memslot, slots)
5516 nr_pages += memslot->npages;
5517 }
3ad82a7e
ZX
5518
5519 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5520 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5521 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5522
5523 return nr_mmu_pages;
5524}
5525
c42fffe3
XG
5526void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5527{
95f93af4 5528 kvm_mmu_unload(vcpu);
c42fffe3
XG
5529 free_mmu_pages(vcpu);
5530 mmu_free_memory_caches(vcpu);
b034cf01
XG
5531}
5532
b034cf01
XG
5533void kvm_mmu_module_exit(void)
5534{
5535 mmu_destroy_caches();
5536 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5537 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5538 mmu_audit_disable();
5539}