]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: track the refcount when unmap the page
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452}
453
8672b721
XG
454static bool spte_has_volatile_bits(u64 spte)
455{
c7ba5b48
XG
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
8672b721
XG
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
4132779b
XG
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
473 return false;
474
475 return true;
476}
477
4132779b
XG
478static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479{
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481}
482
1df9f2dc
XG
483/* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489static void mmu_spte_set(u64 *sptep, u64 new_spte)
490{
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493}
494
495/* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
1df9f2dc 503 */
6e7d0354 504static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 505{
c7ba5b48 506 u64 old_spte = *sptep;
6e7d0354 507 bool ret = false;
4132779b
XG
508
509 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 510
6e7d0354
XG
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
1df9f2dc 515
c7ba5b48 516 if (!spte_has_volatile_bits(old_spte))
603e0651 517 __update_clear_spte_fast(sptep, new_spte);
4132779b 518 else
603e0651 519 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 520
c7ba5b48
XG
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
6e7d0354
XG
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
4132779b 529 if (!shadow_accessed_mask)
6e7d0354 530 return ret;
4132779b
XG
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
536
537 return ret;
b79b93f9
AK
538}
539
1df9f2dc
XG
540/*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545static int mmu_spte_clear_track_bits(u64 *sptep)
546{
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
86fde74c
XG
559
560 /*
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
564 */
565 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
1df9f2dc
XG
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568 kvm_set_pfn_accessed(pfn);
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570 kvm_set_pfn_dirty(pfn);
571 return 1;
572}
573
574/*
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
578 */
579static void mmu_spte_clear_no_track(u64 *sptep)
580{
603e0651 581 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
582}
583
c2a2ac2b
XG
584static u64 mmu_spte_get_lockless(u64 *sptep)
585{
586 return __get_spte_lockless(sptep);
587}
588
589static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590{
c142786c
AK
591 /*
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
594 */
595 local_irq_disable();
596 vcpu->mode = READING_SHADOW_PAGE_TABLES;
597 /*
598 * Make sure a following spte read is not reordered ahead of the write
599 * to vcpu->mode.
600 */
601 smp_mb();
c2a2ac2b
XG
602}
603
604static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605{
c142786c
AK
606 /*
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610 */
611 smp_mb();
612 vcpu->mode = OUTSIDE_GUEST_MODE;
613 local_irq_enable();
c2a2ac2b
XG
614}
615
e2dec939 616static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 617 struct kmem_cache *base_cache, int min)
714b93da
AK
618{
619 void *obj;
620
621 if (cache->nobjs >= min)
e2dec939 622 return 0;
714b93da 623 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 624 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 625 if (!obj)
e2dec939 626 return -ENOMEM;
714b93da
AK
627 cache->objects[cache->nobjs++] = obj;
628 }
e2dec939 629 return 0;
714b93da
AK
630}
631
f759e2b4
XG
632static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633{
634 return cache->nobjs;
635}
636
e8ad9a70
XG
637static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638 struct kmem_cache *cache)
714b93da
AK
639{
640 while (mc->nobjs)
e8ad9a70 641 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
642}
643
c1158e63 644static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 645 int min)
c1158e63 646{
842f22ed 647 void *page;
c1158e63
AK
648
649 if (cache->nobjs >= min)
650 return 0;
651 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 652 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
653 if (!page)
654 return -ENOMEM;
842f22ed 655 cache->objects[cache->nobjs++] = page;
c1158e63
AK
656 }
657 return 0;
658}
659
660static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661{
662 while (mc->nobjs)
c4d198d5 663 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
664}
665
2e3e5882 666static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 667{
e2dec939
AK
668 int r;
669
53c07b18 670 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 671 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
672 if (r)
673 goto out;
ad312c7c 674 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
675 if (r)
676 goto out;
ad312c7c 677 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 678 mmu_page_header_cache, 4);
e2dec939
AK
679out:
680 return r;
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
53c07b18
XG
685 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
ad312c7c 687 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
688 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689 mmu_page_header_cache);
714b93da
AK
690}
691
80feb89a 692static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
693{
694 void *p;
695
696 BUG_ON(!mc->nobjs);
697 p = mc->objects[--mc->nobjs];
714b93da
AK
698 return p;
699}
700
53c07b18 701static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 702{
80feb89a 703 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
704}
705
53c07b18 706static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 707{
53c07b18 708 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
709}
710
2032a93d
LJ
711static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712{
713 if (!sp->role.direct)
714 return sp->gfns[index];
715
716 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717}
718
719static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720{
721 if (sp->role.direct)
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723 else
724 sp->gfns[index] = gfn;
725}
726
05da4558 727/*
d4dbf470
TY
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
05da4558 730 */
d4dbf470
TY
731static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732 struct kvm_memory_slot *slot,
733 int level)
05da4558
MT
734{
735 unsigned long idx;
736
fb03cb6f 737 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 738 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
739}
740
741static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742{
d25797b2 743 struct kvm_memory_slot *slot;
d4dbf470 744 struct kvm_lpage_info *linfo;
d25797b2 745 int i;
05da4558 746
a1f4d395 747 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
748 for (i = PT_DIRECTORY_LEVEL;
749 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
750 linfo = lpage_info_slot(gfn, slot, i);
751 linfo->write_count += 1;
d25797b2 752 }
332b207d 753 kvm->arch.indirect_shadow_pages++;
05da4558
MT
754}
755
756static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757{
d25797b2 758 struct kvm_memory_slot *slot;
d4dbf470 759 struct kvm_lpage_info *linfo;
d25797b2 760 int i;
05da4558 761
a1f4d395 762 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
763 for (i = PT_DIRECTORY_LEVEL;
764 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
765 linfo = lpage_info_slot(gfn, slot, i);
766 linfo->write_count -= 1;
767 WARN_ON(linfo->write_count < 0);
d25797b2 768 }
332b207d 769 kvm->arch.indirect_shadow_pages--;
05da4558
MT
770}
771
d25797b2
JR
772static int has_wrprotected_page(struct kvm *kvm,
773 gfn_t gfn,
774 int level)
05da4558 775{
2843099f 776 struct kvm_memory_slot *slot;
d4dbf470 777 struct kvm_lpage_info *linfo;
05da4558 778
a1f4d395 779 slot = gfn_to_memslot(kvm, gfn);
05da4558 780 if (slot) {
d4dbf470
TY
781 linfo = lpage_info_slot(gfn, slot, level);
782 return linfo->write_count;
05da4558
MT
783 }
784
785 return 1;
786}
787
d25797b2 788static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 789{
8f0b1ab6 790 unsigned long page_size;
d25797b2 791 int i, ret = 0;
05da4558 792
8f0b1ab6 793 page_size = kvm_host_page_size(kvm, gfn);
05da4558 794
d25797b2
JR
795 for (i = PT_PAGE_TABLE_LEVEL;
796 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797 if (page_size >= KVM_HPAGE_SIZE(i))
798 ret = i;
799 else
800 break;
801 }
802
4c2155ce 803 return ret;
05da4558
MT
804}
805
5d163b1c
XG
806static struct kvm_memory_slot *
807gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808 bool no_dirty_log)
05da4558
MT
809{
810 struct kvm_memory_slot *slot;
5d163b1c
XG
811
812 slot = gfn_to_memslot(vcpu->kvm, gfn);
813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814 (no_dirty_log && slot->dirty_bitmap))
815 slot = NULL;
816
817 return slot;
818}
819
820static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821{
a0a8eaba 822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
823}
824
825static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826{
827 int host_level, level, max_level;
05da4558 828
d25797b2
JR
829 host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831 if (host_level == PT_PAGE_TABLE_LEVEL)
832 return host_level;
833
878403b7
SY
834 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835 kvm_x86_ops->get_lpage_level() : host_level;
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
d25797b2
JR
840
841 return level - 1;
05da4558
MT
842}
843
290fc38d 844/*
53c07b18 845 * Pte mapping structures:
cd4a4e53 846 *
53c07b18 847 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 848 *
53c07b18
XG
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
53a27b39 851 *
53c07b18 852 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
853 * the spte was not added.
854 *
cd4a4e53 855 */
53c07b18
XG
856static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
cd4a4e53 858{
53c07b18 859 struct pte_list_desc *desc;
53a27b39 860 int i, count = 0;
cd4a4e53 861
53c07b18
XG
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
d555c333 869 desc->sptes[1] = spte;
53c07b18 870 *pte_list = (unsigned long)desc | 1;
cb16a7b3 871 ++count;
cd4a4e53 872 } else {
53c07b18
XG
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 876 desc = desc->more;
53c07b18 877 count += PTE_LIST_EXT;
53a27b39 878 }
53c07b18
XG
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
881 desc = desc->more;
882 }
d555c333 883 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 884 ++count;
d555c333 885 desc->sptes[i] = spte;
cd4a4e53 886 }
53a27b39 887 return count;
cd4a4e53
AK
888}
889
53c07b18
XG
890static void
891pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
893{
894 int j;
895
53c07b18 896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 897 ;
d555c333
AK
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
cd4a4e53
AK
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
53c07b18 903 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
53c07b18
XG
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
910}
911
53c07b18 912static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 913{
53c07b18
XG
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
cd4a4e53
AK
916 int i;
917
53c07b18
XG
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 920 BUG();
53c07b18
XG
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
925 BUG();
926 }
53c07b18 927 *pte_list = 0;
cd4a4e53 928 } else {
53c07b18
XG
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
931 prev_desc = NULL;
932 while (desc) {
53c07b18 933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 934 if (desc->sptes[i] == spte) {
53c07b18 935 pte_list_desc_remove_entry(pte_list,
714b93da 936 desc, i,
cd4a4e53
AK
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
53c07b18 943 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
944 BUG();
945 }
946}
947
67052b35
XG
948typedef void (*pte_list_walk_fn) (u64 *spte);
949static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950{
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966}
967
9373e2c0 968static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 969 struct kvm_memory_slot *slot)
53c07b18 970{
77d11309 971 unsigned long idx;
53c07b18 972
53c07b18
XG
973 if (likely(level == PT_PAGE_TABLE_LEVEL))
974 return &slot->rmap[gfn - slot->base_gfn];
975
77d11309
TY
976 idx = gfn_to_index(gfn, slot->base_gfn, level);
977 return &slot->arch.rmap_pde[level - PT_DIRECTORY_LEVEL][idx];
53c07b18
XG
978}
979
9b9b1492
TY
980/*
981 * Take gfn and return the reverse mapping to it.
982 */
983static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984{
985 struct kvm_memory_slot *slot;
986
987 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 988 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
989}
990
f759e2b4
XG
991static bool rmap_can_add(struct kvm_vcpu *vcpu)
992{
993 struct kvm_mmu_memory_cache *cache;
994
995 cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 return mmu_memory_cache_free_objects(cache);
997}
998
53c07b18
XG
999static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000{
1001 struct kvm_mmu_page *sp;
1002 unsigned long *rmapp;
1003
53c07b18
XG
1004 sp = page_header(__pa(spte));
1005 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 return pte_list_add(vcpu, spte, rmapp);
1008}
1009
53c07b18
XG
1010static void rmap_remove(struct kvm *kvm, u64 *spte)
1011{
1012 struct kvm_mmu_page *sp;
1013 gfn_t gfn;
1014 unsigned long *rmapp;
1015
1016 sp = page_header(__pa(spte));
1017 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 pte_list_remove(spte, rmapp);
1020}
1021
1e3f42f0
TY
1022/*
1023 * Used by the following functions to iterate through the sptes linked by a
1024 * rmap. All fields are private and not assumed to be used outside.
1025 */
1026struct rmap_iterator {
1027 /* private fields */
1028 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1029 int pos; /* index of the sptep */
1030};
1031
1032/*
1033 * Iteration must be started by this function. This should also be used after
1034 * removing/dropping sptes from the rmap link because in such cases the
1035 * information in the itererator may not be valid.
1036 *
1037 * Returns sptep if found, NULL otherwise.
1038 */
1039static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040{
1041 if (!rmap)
1042 return NULL;
1043
1044 if (!(rmap & 1)) {
1045 iter->desc = NULL;
1046 return (u64 *)rmap;
1047 }
1048
1049 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 iter->pos = 0;
1051 return iter->desc->sptes[iter->pos];
1052}
1053
1054/*
1055 * Must be used with a valid iterator: e.g. after rmap_get_first().
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
1059static u64 *rmap_get_next(struct rmap_iterator *iter)
1060{
1061 if (iter->desc) {
1062 if (iter->pos < PTE_LIST_EXT - 1) {
1063 u64 *sptep;
1064
1065 ++iter->pos;
1066 sptep = iter->desc->sptes[iter->pos];
1067 if (sptep)
1068 return sptep;
1069 }
1070
1071 iter->desc = iter->desc->more;
1072
1073 if (iter->desc) {
1074 iter->pos = 0;
1075 /* desc->sptes[0] cannot be NULL */
1076 return iter->desc->sptes[iter->pos];
1077 }
1078 }
1079
1080 return NULL;
1081}
1082
c3707958 1083static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1084{
1df9f2dc 1085 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1086 rmap_remove(kvm, sptep);
be38d276
AK
1087}
1088
8e22f955
XG
1089
1090static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091{
1092 if (is_large_pte(*sptep)) {
1093 WARN_ON(page_header(__pa(sptep))->role.level ==
1094 PT_PAGE_TABLE_LEVEL);
1095 drop_spte(kvm, sptep);
1096 --kvm->stat.lpages;
1097 return true;
1098 }
1099
1100 return false;
1101}
1102
1103static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104{
1105 if (__drop_large_spte(vcpu->kvm, sptep))
1106 kvm_flush_remote_tlbs(vcpu->kvm);
1107}
1108
1109/*
49fde340
XG
1110 * Write-protect on the specified @sptep, @pt_protect indicates whether
1111 * spte writ-protection is caused by protecting shadow page table.
1112 * @flush indicates whether tlb need be flushed.
1113 *
1114 * Note: write protection is difference between drity logging and spte
1115 * protection:
1116 * - for dirty logging, the spte can be set to writable at anytime if
1117 * its dirty bitmap is properly set.
1118 * - for spte protection, the spte can be writable only after unsync-ing
1119 * shadow page.
8e22f955
XG
1120 *
1121 * Return true if the spte is dropped.
1122 */
49fde340
XG
1123static bool
1124spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1125{
1126 u64 spte = *sptep;
1127
49fde340
XG
1128 if (!is_writable_pte(spte) &&
1129 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1130 return false;
1131
1132 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
49fde340
XG
1134 if (__drop_large_spte(kvm, sptep)) {
1135 *flush |= true;
d13bc5b5 1136 return true;
49fde340 1137 }
d13bc5b5 1138
49fde340
XG
1139 if (pt_protect)
1140 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1141 spte = spte & ~PT_WRITABLE_MASK;
49fde340
XG
1142
1143 *flush |= mmu_spte_update(sptep, spte);
d13bc5b5
XG
1144 return false;
1145}
1146
49fde340
XG
1147static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148 int level, bool pt_protect)
98348e95 1149{
1e3f42f0
TY
1150 u64 *sptep;
1151 struct rmap_iterator iter;
d13bc5b5 1152 bool flush = false;
374cbac0 1153
1e3f42f0
TY
1154 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 BUG_ON(!(*sptep & PT_PRESENT_MASK));
49fde340 1156 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1e3f42f0 1157 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1158 continue;
caa5b8a5 1159 }
a0ed4607 1160
d13bc5b5 1161 sptep = rmap_get_next(&iter);
374cbac0 1162 }
855149aa 1163
d13bc5b5 1164 return flush;
a0ed4607
TY
1165}
1166
5dc99b23
TY
1167/**
1168 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169 * @kvm: kvm instance
1170 * @slot: slot to protect
1171 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172 * @mask: indicates which pages we should protect
1173 *
1174 * Used when we do not need to care about huge page mappings: e.g. during dirty
1175 * logging we do not have any such mappings.
1176 */
1177void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1180{
1181 unsigned long *rmapp;
a0ed4607 1182
5dc99b23
TY
1183 while (mask) {
1184 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
49fde340 1185 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
05da4558 1186
5dc99b23
TY
1187 /* clear the first set bit */
1188 mask &= mask - 1;
1189 }
374cbac0
AK
1190}
1191
2f84569f 1192static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1193{
1194 struct kvm_memory_slot *slot;
5dc99b23
TY
1195 unsigned long *rmapp;
1196 int i;
2f84569f 1197 bool write_protected = false;
95d4c16c
TY
1198
1199 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1200
1201 for (i = PT_PAGE_TABLE_LEVEL;
1202 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1203 rmapp = __gfn_to_rmap(gfn, i, slot);
49fde340 1204 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
5dc99b23
TY
1205 }
1206
1207 return write_protected;
95d4c16c
TY
1208}
1209
8a8365c5 1210static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1211 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1212{
1e3f42f0
TY
1213 u64 *sptep;
1214 struct rmap_iterator iter;
e930bffe
AA
1215 int need_tlb_flush = 0;
1216
1e3f42f0
TY
1217 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1218 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1219 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1220
1221 drop_spte(kvm, sptep);
e930bffe
AA
1222 need_tlb_flush = 1;
1223 }
1e3f42f0 1224
e930bffe
AA
1225 return need_tlb_flush;
1226}
1227
8a8365c5 1228static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1229 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1230{
1e3f42f0
TY
1231 u64 *sptep;
1232 struct rmap_iterator iter;
3da0dd43 1233 int need_flush = 0;
1e3f42f0 1234 u64 new_spte;
3da0dd43
IE
1235 pte_t *ptep = (pte_t *)data;
1236 pfn_t new_pfn;
1237
1238 WARN_ON(pte_huge(*ptep));
1239 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1240
1241 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1242 BUG_ON(!is_shadow_present_pte(*sptep));
1243 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1244
3da0dd43 1245 need_flush = 1;
1e3f42f0 1246
3da0dd43 1247 if (pte_write(*ptep)) {
1e3f42f0
TY
1248 drop_spte(kvm, sptep);
1249 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1250 } else {
1e3f42f0 1251 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1252 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1253
1254 new_spte &= ~PT_WRITABLE_MASK;
1255 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1256 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1257
1258 mmu_spte_clear_track_bits(sptep);
1259 mmu_spte_set(sptep, new_spte);
1260 sptep = rmap_get_next(&iter);
3da0dd43
IE
1261 }
1262 }
1e3f42f0 1263
3da0dd43
IE
1264 if (need_flush)
1265 kvm_flush_remote_tlbs(kvm);
1266
1267 return 0;
1268}
1269
84504ef3
TY
1270static int kvm_handle_hva_range(struct kvm *kvm,
1271 unsigned long start,
1272 unsigned long end,
1273 unsigned long data,
1274 int (*handler)(struct kvm *kvm,
1275 unsigned long *rmapp,
048212d0 1276 struct kvm_memory_slot *slot,
84504ef3 1277 unsigned long data))
e930bffe 1278{
be6ba0f0 1279 int j;
f395302e 1280 int ret = 0;
bc6678a3 1281 struct kvm_memslots *slots;
be6ba0f0 1282 struct kvm_memory_slot *memslot;
bc6678a3 1283
90d83dc3 1284 slots = kvm_memslots(kvm);
e930bffe 1285
be6ba0f0 1286 kvm_for_each_memslot(memslot, slots) {
84504ef3 1287 unsigned long hva_start, hva_end;
bcd3ef58 1288 gfn_t gfn_start, gfn_end;
852e3c19 1289
84504ef3
TY
1290 hva_start = max(start, memslot->userspace_addr);
1291 hva_end = min(end, memslot->userspace_addr +
1292 (memslot->npages << PAGE_SHIFT));
1293 if (hva_start >= hva_end)
1294 continue;
1295 /*
1296 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1297 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1298 */
bcd3ef58 1299 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3
TY
1300 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1301
bcd3ef58
TY
1302 for (j = PT_PAGE_TABLE_LEVEL;
1303 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1304 unsigned long idx, idx_end;
1305 unsigned long *rmapp;
d4dbf470 1306
bcd3ef58
TY
1307 /*
1308 * {idx(page_j) | page_j intersects with
1309 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1310 */
1311 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1312 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1313
1314 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1315
1316 for (; idx <= idx_end; ++idx)
1317 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1318 }
1319 }
1320
f395302e 1321 return ret;
e930bffe
AA
1322}
1323
84504ef3
TY
1324static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1325 unsigned long data,
1326 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1327 struct kvm_memory_slot *slot,
84504ef3
TY
1328 unsigned long data))
1329{
1330 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1331}
1332
e930bffe
AA
1333int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1334{
3da0dd43
IE
1335 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1336}
1337
b3ae2096
TY
1338int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1339{
1340 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1341}
1342
3da0dd43
IE
1343void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1344{
8a8365c5 1345 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1346}
1347
8a8365c5 1348static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1349 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1350{
1e3f42f0 1351 u64 *sptep;
79f702a6 1352 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1353 int young = 0;
1354
6316e1c8 1355 /*
3f6d8c8a
XH
1356 * In case of absence of EPT Access and Dirty Bits supports,
1357 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1358 * an EPT mapping, and clearing it if it does. On the next access,
1359 * a new EPT mapping will be established.
1360 * This has some overhead, but not as much as the cost of swapping
1361 * out actively used pages or breaking up actively used hugepages.
1362 */
f395302e
TY
1363 if (!shadow_accessed_mask) {
1364 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1365 goto out;
1366 }
534e38b4 1367
1e3f42f0
TY
1368 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1369 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1370 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1371
3f6d8c8a 1372 if (*sptep & shadow_accessed_mask) {
e930bffe 1373 young = 1;
3f6d8c8a
XH
1374 clear_bit((ffs(shadow_accessed_mask) - 1),
1375 (unsigned long *)sptep);
e930bffe 1376 }
e930bffe 1377 }
f395302e
TY
1378out:
1379 /* @data has hva passed to kvm_age_hva(). */
1380 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1381 return young;
1382}
1383
8ee53820 1384static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1385 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1386{
1e3f42f0
TY
1387 u64 *sptep;
1388 struct rmap_iterator iter;
8ee53820
AA
1389 int young = 0;
1390
1391 /*
1392 * If there's no access bit in the secondary pte set by the
1393 * hardware it's up to gup-fast/gup to set the access bit in
1394 * the primary pte or in the page structure.
1395 */
1396 if (!shadow_accessed_mask)
1397 goto out;
1398
1e3f42f0
TY
1399 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1400 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1401 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1402
3f6d8c8a 1403 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1404 young = 1;
1405 break;
1406 }
8ee53820
AA
1407 }
1408out:
1409 return young;
1410}
1411
53a27b39
MT
1412#define RMAP_RECYCLE_THRESHOLD 1000
1413
852e3c19 1414static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1415{
1416 unsigned long *rmapp;
852e3c19
JR
1417 struct kvm_mmu_page *sp;
1418
1419 sp = page_header(__pa(spte));
53a27b39 1420
852e3c19 1421 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1422
048212d0 1423 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1424 kvm_flush_remote_tlbs(vcpu->kvm);
1425}
1426
e930bffe
AA
1427int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1428{
f395302e 1429 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1430}
1431
8ee53820
AA
1432int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1433{
1434 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1435}
1436
d6c69ee9 1437#ifdef MMU_DEBUG
47ad8e68 1438static int is_empty_shadow_page(u64 *spt)
6aa8b732 1439{
139bdb2d
AK
1440 u64 *pos;
1441 u64 *end;
1442
47ad8e68 1443 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1444 if (is_shadow_present_pte(*pos)) {
b8688d51 1445 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1446 pos, *pos);
6aa8b732 1447 return 0;
139bdb2d 1448 }
6aa8b732
AK
1449 return 1;
1450}
d6c69ee9 1451#endif
6aa8b732 1452
45221ab6
DH
1453/*
1454 * This value is the sum of all of the kvm instances's
1455 * kvm->arch.n_used_mmu_pages values. We need a global,
1456 * aggregate version in order to make the slab shrinker
1457 * faster
1458 */
1459static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1460{
1461 kvm->arch.n_used_mmu_pages += nr;
1462 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1463}
1464
bd4c86ea
XG
1465/*
1466 * Remove the sp from shadow page cache, after call it,
1467 * we can not find this sp from the cache, and the shadow
1468 * page table is still valid.
1469 * It should be under the protection of mmu lock.
1470 */
1471static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1472{
4db35314 1473 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1474 hlist_del(&sp->hash_link);
2032a93d 1475 if (!sp->role.direct)
842f22ed 1476 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1477}
1478
1479/*
1480 * Free the shadow page table and the sp, we can do it
1481 * out of the protection of mmu lock.
1482 */
1483static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1484{
1485 list_del(&sp->link);
1486 free_page((unsigned long)sp->spt);
e8ad9a70 1487 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1488}
1489
cea0f0e7
AK
1490static unsigned kvm_page_table_hashfn(gfn_t gfn)
1491{
1ae0a13d 1492 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1493}
1494
714b93da 1495static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1496 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1497{
cea0f0e7
AK
1498 if (!parent_pte)
1499 return;
cea0f0e7 1500
67052b35 1501 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1502}
1503
4db35314 1504static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1505 u64 *parent_pte)
1506{
67052b35 1507 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1508}
1509
bcdd9a93
XG
1510static void drop_parent_pte(struct kvm_mmu_page *sp,
1511 u64 *parent_pte)
1512{
1513 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1514 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1515}
1516
67052b35
XG
1517static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1518 u64 *parent_pte, int direct)
ad8cfbe3 1519{
67052b35 1520 struct kvm_mmu_page *sp;
80feb89a
TY
1521 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1522 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1523 if (!direct)
80feb89a 1524 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1525 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1526 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1527 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1528 sp->parent_ptes = 0;
1529 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1530 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1531 return sp;
ad8cfbe3
MT
1532}
1533
67052b35 1534static void mark_unsync(u64 *spte);
1047df1f 1535static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1536{
67052b35 1537 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1538}
1539
67052b35 1540static void mark_unsync(u64 *spte)
0074ff63 1541{
67052b35 1542 struct kvm_mmu_page *sp;
1047df1f 1543 unsigned int index;
0074ff63 1544
67052b35 1545 sp = page_header(__pa(spte));
1047df1f
XG
1546 index = spte - sp->spt;
1547 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1548 return;
1047df1f 1549 if (sp->unsync_children++)
0074ff63 1550 return;
1047df1f 1551 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1552}
1553
e8bc217a 1554static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1555 struct kvm_mmu_page *sp)
e8bc217a
MT
1556{
1557 return 1;
1558}
1559
a7052897
MT
1560static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1561{
1562}
1563
0f53b5b1
XG
1564static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1565 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1566 const void *pte)
0f53b5b1
XG
1567{
1568 WARN_ON(1);
1569}
1570
60c8aec6
MT
1571#define KVM_PAGE_ARRAY_NR 16
1572
1573struct kvm_mmu_pages {
1574 struct mmu_page_and_offset {
1575 struct kvm_mmu_page *sp;
1576 unsigned int idx;
1577 } page[KVM_PAGE_ARRAY_NR];
1578 unsigned int nr;
1579};
1580
cded19f3
HE
1581static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1582 int idx)
4731d4c7 1583{
60c8aec6 1584 int i;
4731d4c7 1585
60c8aec6
MT
1586 if (sp->unsync)
1587 for (i=0; i < pvec->nr; i++)
1588 if (pvec->page[i].sp == sp)
1589 return 0;
1590
1591 pvec->page[pvec->nr].sp = sp;
1592 pvec->page[pvec->nr].idx = idx;
1593 pvec->nr++;
1594 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1595}
1596
1597static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1598 struct kvm_mmu_pages *pvec)
1599{
1600 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1601
37178b8b 1602 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1603 struct kvm_mmu_page *child;
4731d4c7
MT
1604 u64 ent = sp->spt[i];
1605
7a8f1a74
XG
1606 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1607 goto clear_child_bitmap;
1608
1609 child = page_header(ent & PT64_BASE_ADDR_MASK);
1610
1611 if (child->unsync_children) {
1612 if (mmu_pages_add(pvec, child, i))
1613 return -ENOSPC;
1614
1615 ret = __mmu_unsync_walk(child, pvec);
1616 if (!ret)
1617 goto clear_child_bitmap;
1618 else if (ret > 0)
1619 nr_unsync_leaf += ret;
1620 else
1621 return ret;
1622 } else if (child->unsync) {
1623 nr_unsync_leaf++;
1624 if (mmu_pages_add(pvec, child, i))
1625 return -ENOSPC;
1626 } else
1627 goto clear_child_bitmap;
1628
1629 continue;
1630
1631clear_child_bitmap:
1632 __clear_bit(i, sp->unsync_child_bitmap);
1633 sp->unsync_children--;
1634 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1635 }
1636
4731d4c7 1637
60c8aec6
MT
1638 return nr_unsync_leaf;
1639}
1640
1641static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1642 struct kvm_mmu_pages *pvec)
1643{
1644 if (!sp->unsync_children)
1645 return 0;
1646
1647 mmu_pages_add(pvec, sp, 0);
1648 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1649}
1650
4731d4c7
MT
1651static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1652{
1653 WARN_ON(!sp->unsync);
5e1b3ddb 1654 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1655 sp->unsync = 0;
1656 --kvm->stat.mmu_unsync;
1657}
1658
7775834a
XG
1659static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1660 struct list_head *invalid_list);
1661static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1662 struct list_head *invalid_list);
4731d4c7 1663
f41d335a
XG
1664#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1665 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1666 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1667 if ((sp)->gfn != (gfn)) {} else
1668
f41d335a
XG
1669#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1670 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1671 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1672 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1673 (sp)->role.invalid) {} else
1674
f918b443 1675/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1676static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1677 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1678{
5b7e0102 1679 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1680 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1681 return 1;
1682 }
1683
f918b443 1684 if (clear_unsync)
1d9dc7e0 1685 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1686
a4a8e6f7 1687 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1688 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1689 return 1;
1690 }
1691
1692 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1693 return 0;
1694}
1695
1d9dc7e0
XG
1696static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1697 struct kvm_mmu_page *sp)
1698{
d98ba053 1699 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1700 int ret;
1701
d98ba053 1702 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1703 if (ret)
d98ba053
XG
1704 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1705
1d9dc7e0
XG
1706 return ret;
1707}
1708
e37fa785
XG
1709#ifdef CONFIG_KVM_MMU_AUDIT
1710#include "mmu_audit.c"
1711#else
1712static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1713static void mmu_audit_disable(void) { }
1714#endif
1715
d98ba053
XG
1716static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1717 struct list_head *invalid_list)
1d9dc7e0 1718{
d98ba053 1719 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1720}
1721
9f1a122f
XG
1722/* @gfn should be write-protected at the call site */
1723static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1724{
9f1a122f 1725 struct kvm_mmu_page *s;
f41d335a 1726 struct hlist_node *node;
d98ba053 1727 LIST_HEAD(invalid_list);
9f1a122f
XG
1728 bool flush = false;
1729
f41d335a 1730 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1731 if (!s->unsync)
9f1a122f
XG
1732 continue;
1733
1734 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1735 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1736 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1737 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1738 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1739 continue;
1740 }
9f1a122f
XG
1741 flush = true;
1742 }
1743
d98ba053 1744 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1745 if (flush)
1746 kvm_mmu_flush_tlb(vcpu);
1747}
1748
60c8aec6
MT
1749struct mmu_page_path {
1750 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1751 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1752};
1753
60c8aec6
MT
1754#define for_each_sp(pvec, sp, parents, i) \
1755 for (i = mmu_pages_next(&pvec, &parents, -1), \
1756 sp = pvec.page[i].sp; \
1757 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1758 i = mmu_pages_next(&pvec, &parents, i))
1759
cded19f3
HE
1760static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1761 struct mmu_page_path *parents,
1762 int i)
60c8aec6
MT
1763{
1764 int n;
1765
1766 for (n = i+1; n < pvec->nr; n++) {
1767 struct kvm_mmu_page *sp = pvec->page[n].sp;
1768
1769 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1770 parents->idx[0] = pvec->page[n].idx;
1771 return n;
1772 }
1773
1774 parents->parent[sp->role.level-2] = sp;
1775 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1776 }
1777
1778 return n;
1779}
1780
cded19f3 1781static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1782{
60c8aec6
MT
1783 struct kvm_mmu_page *sp;
1784 unsigned int level = 0;
1785
1786 do {
1787 unsigned int idx = parents->idx[level];
4731d4c7 1788
60c8aec6
MT
1789 sp = parents->parent[level];
1790 if (!sp)
1791 return;
1792
1793 --sp->unsync_children;
1794 WARN_ON((int)sp->unsync_children < 0);
1795 __clear_bit(idx, sp->unsync_child_bitmap);
1796 level++;
1797 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1798}
1799
60c8aec6
MT
1800static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1801 struct mmu_page_path *parents,
1802 struct kvm_mmu_pages *pvec)
4731d4c7 1803{
60c8aec6
MT
1804 parents->parent[parent->role.level-1] = NULL;
1805 pvec->nr = 0;
1806}
4731d4c7 1807
60c8aec6
MT
1808static void mmu_sync_children(struct kvm_vcpu *vcpu,
1809 struct kvm_mmu_page *parent)
1810{
1811 int i;
1812 struct kvm_mmu_page *sp;
1813 struct mmu_page_path parents;
1814 struct kvm_mmu_pages pages;
d98ba053 1815 LIST_HEAD(invalid_list);
60c8aec6
MT
1816
1817 kvm_mmu_pages_init(parent, &parents, &pages);
1818 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1819 bool protected = false;
b1a36821
MT
1820
1821 for_each_sp(pages, sp, parents, i)
1822 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1823
1824 if (protected)
1825 kvm_flush_remote_tlbs(vcpu->kvm);
1826
60c8aec6 1827 for_each_sp(pages, sp, parents, i) {
d98ba053 1828 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1829 mmu_pages_clear_parents(&parents);
1830 }
d98ba053 1831 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1832 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1833 kvm_mmu_pages_init(parent, &parents, &pages);
1834 }
4731d4c7
MT
1835}
1836
c3707958
XG
1837static void init_shadow_page_table(struct kvm_mmu_page *sp)
1838{
1839 int i;
1840
1841 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1842 sp->spt[i] = 0ull;
1843}
1844
a30f47cb
XG
1845static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1846{
1847 sp->write_flooding_count = 0;
1848}
1849
1850static void clear_sp_write_flooding_count(u64 *spte)
1851{
1852 struct kvm_mmu_page *sp = page_header(__pa(spte));
1853
1854 __clear_sp_write_flooding_count(sp);
1855}
1856
cea0f0e7
AK
1857static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1858 gfn_t gfn,
1859 gva_t gaddr,
1860 unsigned level,
f6e2c02b 1861 int direct,
41074d07 1862 unsigned access,
f7d9c7b7 1863 u64 *parent_pte)
cea0f0e7
AK
1864{
1865 union kvm_mmu_page_role role;
cea0f0e7 1866 unsigned quadrant;
9f1a122f 1867 struct kvm_mmu_page *sp;
f41d335a 1868 struct hlist_node *node;
9f1a122f 1869 bool need_sync = false;
cea0f0e7 1870
a770f6f2 1871 role = vcpu->arch.mmu.base_role;
cea0f0e7 1872 role.level = level;
f6e2c02b 1873 role.direct = direct;
84b0c8c6 1874 if (role.direct)
5b7e0102 1875 role.cr4_pae = 0;
41074d07 1876 role.access = access;
c5a78f2b
JR
1877 if (!vcpu->arch.mmu.direct_map
1878 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1879 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1880 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1881 role.quadrant = quadrant;
1882 }
f41d335a 1883 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1884 if (!need_sync && sp->unsync)
1885 need_sync = true;
4731d4c7 1886
7ae680eb
XG
1887 if (sp->role.word != role.word)
1888 continue;
4731d4c7 1889
7ae680eb
XG
1890 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1891 break;
e02aa901 1892
7ae680eb
XG
1893 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1894 if (sp->unsync_children) {
a8eeb04a 1895 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1896 kvm_mmu_mark_parents_unsync(sp);
1897 } else if (sp->unsync)
1898 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1899
a30f47cb 1900 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1901 trace_kvm_mmu_get_page(sp, false);
1902 return sp;
1903 }
dfc5aa00 1904 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1905 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1906 if (!sp)
1907 return sp;
4db35314
AK
1908 sp->gfn = gfn;
1909 sp->role = role;
7ae680eb
XG
1910 hlist_add_head(&sp->hash_link,
1911 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1912 if (!direct) {
b1a36821
MT
1913 if (rmap_write_protect(vcpu->kvm, gfn))
1914 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1915 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1916 kvm_sync_pages(vcpu, gfn);
1917
4731d4c7
MT
1918 account_shadowed(vcpu->kvm, gfn);
1919 }
c3707958 1920 init_shadow_page_table(sp);
f691fe1d 1921 trace_kvm_mmu_get_page(sp, true);
4db35314 1922 return sp;
cea0f0e7
AK
1923}
1924
2d11123a
AK
1925static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1926 struct kvm_vcpu *vcpu, u64 addr)
1927{
1928 iterator->addr = addr;
1929 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1930 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1931
1932 if (iterator->level == PT64_ROOT_LEVEL &&
1933 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1934 !vcpu->arch.mmu.direct_map)
1935 --iterator->level;
1936
2d11123a
AK
1937 if (iterator->level == PT32E_ROOT_LEVEL) {
1938 iterator->shadow_addr
1939 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1940 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1941 --iterator->level;
1942 if (!iterator->shadow_addr)
1943 iterator->level = 0;
1944 }
1945}
1946
1947static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1948{
1949 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1950 return false;
4d88954d 1951
2d11123a
AK
1952 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1953 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1954 return true;
1955}
1956
c2a2ac2b
XG
1957static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1958 u64 spte)
2d11123a 1959{
c2a2ac2b 1960 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1961 iterator->level = 0;
1962 return;
1963 }
1964
c2a2ac2b 1965 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1966 --iterator->level;
1967}
1968
c2a2ac2b
XG
1969static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1970{
1971 return __shadow_walk_next(iterator, *iterator->sptep);
1972}
1973
32ef26a3
AK
1974static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1975{
1976 u64 spte;
1977
1978 spte = __pa(sp->spt)
1979 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1980 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1981 mmu_spte_set(sptep, spte);
32ef26a3
AK
1982}
1983
a357bd22
AK
1984static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1985 unsigned direct_access)
1986{
1987 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1988 struct kvm_mmu_page *child;
1989
1990 /*
1991 * For the direct sp, if the guest pte's dirty bit
1992 * changed form clean to dirty, it will corrupt the
1993 * sp's access: allow writable in the read-only sp,
1994 * so we should update the spte at this point to get
1995 * a new sp with the correct access.
1996 */
1997 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1998 if (child->role.access == direct_access)
1999 return;
2000
bcdd9a93 2001 drop_parent_pte(child, sptep);
a357bd22
AK
2002 kvm_flush_remote_tlbs(vcpu->kvm);
2003 }
2004}
2005
505aef8f 2006static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2007 u64 *spte)
2008{
2009 u64 pte;
2010 struct kvm_mmu_page *child;
2011
2012 pte = *spte;
2013 if (is_shadow_present_pte(pte)) {
505aef8f 2014 if (is_last_spte(pte, sp->role.level)) {
c3707958 2015 drop_spte(kvm, spte);
505aef8f
XG
2016 if (is_large_pte(pte))
2017 --kvm->stat.lpages;
2018 } else {
38e3b2b2 2019 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2020 drop_parent_pte(child, spte);
38e3b2b2 2021 }
505aef8f
XG
2022 return true;
2023 }
2024
2025 if (is_mmio_spte(pte))
ce88decf 2026 mmu_spte_clear_no_track(spte);
c3707958 2027
505aef8f 2028 return false;
38e3b2b2
XG
2029}
2030
90cb0529 2031static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2032 struct kvm_mmu_page *sp)
a436036b 2033{
697fe2e2 2034 unsigned i;
697fe2e2 2035
38e3b2b2
XG
2036 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2037 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2038}
2039
4db35314 2040static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2041{
4db35314 2042 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2043}
2044
31aa2b44 2045static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2046{
1e3f42f0
TY
2047 u64 *sptep;
2048 struct rmap_iterator iter;
a436036b 2049
1e3f42f0
TY
2050 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2051 drop_parent_pte(sp, sptep);
31aa2b44
AK
2052}
2053
60c8aec6 2054static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2055 struct kvm_mmu_page *parent,
2056 struct list_head *invalid_list)
4731d4c7 2057{
60c8aec6
MT
2058 int i, zapped = 0;
2059 struct mmu_page_path parents;
2060 struct kvm_mmu_pages pages;
4731d4c7 2061
60c8aec6 2062 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2063 return 0;
60c8aec6
MT
2064
2065 kvm_mmu_pages_init(parent, &parents, &pages);
2066 while (mmu_unsync_walk(parent, &pages)) {
2067 struct kvm_mmu_page *sp;
2068
2069 for_each_sp(pages, sp, parents, i) {
7775834a 2070 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2071 mmu_pages_clear_parents(&parents);
77662e00 2072 zapped++;
60c8aec6 2073 }
60c8aec6
MT
2074 kvm_mmu_pages_init(parent, &parents, &pages);
2075 }
2076
2077 return zapped;
4731d4c7
MT
2078}
2079
7775834a
XG
2080static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2081 struct list_head *invalid_list)
31aa2b44 2082{
4731d4c7 2083 int ret;
f691fe1d 2084
7775834a 2085 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2086 ++kvm->stat.mmu_shadow_zapped;
7775834a 2087 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2088 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2089 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2090 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2091 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2092 if (sp->unsync)
2093 kvm_unlink_unsync_page(kvm, sp);
4db35314 2094 if (!sp->root_count) {
54a4f023
GJ
2095 /* Count self */
2096 ret++;
7775834a 2097 list_move(&sp->link, invalid_list);
aa6bd187 2098 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2099 } else {
5b5c6a5a 2100 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2101 kvm_reload_remote_mmus(kvm);
2102 }
7775834a
XG
2103
2104 sp->role.invalid = 1;
4731d4c7 2105 return ret;
a436036b
AK
2106}
2107
7775834a
XG
2108static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2109 struct list_head *invalid_list)
2110{
2111 struct kvm_mmu_page *sp;
2112
2113 if (list_empty(invalid_list))
2114 return;
2115
c142786c
AK
2116 /*
2117 * wmb: make sure everyone sees our modifications to the page tables
2118 * rmb: make sure we see changes to vcpu->mode
2119 */
2120 smp_mb();
4f022648 2121
c142786c
AK
2122 /*
2123 * Wait for all vcpus to exit guest mode and/or lockless shadow
2124 * page table walks.
2125 */
2126 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2127
7775834a
XG
2128 do {
2129 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2130 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2131 kvm_mmu_isolate_page(sp);
aa6bd187 2132 kvm_mmu_free_page(sp);
7775834a 2133 } while (!list_empty(invalid_list));
7775834a
XG
2134}
2135
82ce2c96
IE
2136/*
2137 * Changing the number of mmu pages allocated to the vm
49d5ca26 2138 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2139 */
49d5ca26 2140void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2141{
d98ba053 2142 LIST_HEAD(invalid_list);
82ce2c96
IE
2143 /*
2144 * If we set the number of mmu pages to be smaller be than the
2145 * number of actived pages , we must to free some mmu pages before we
2146 * change the value
2147 */
2148
49d5ca26
DH
2149 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2150 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2151 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2152 struct kvm_mmu_page *page;
2153
f05e70ac 2154 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2155 struct kvm_mmu_page, link);
80b63faf 2156 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2157 }
aa6bd187 2158 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2159 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2160 }
82ce2c96 2161
49d5ca26 2162 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2163}
2164
1cb3f3ae 2165int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2166{
4db35314 2167 struct kvm_mmu_page *sp;
f41d335a 2168 struct hlist_node *node;
d98ba053 2169 LIST_HEAD(invalid_list);
a436036b
AK
2170 int r;
2171
9ad17b10 2172 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2173 r = 0;
1cb3f3ae 2174 spin_lock(&kvm->mmu_lock);
f41d335a 2175 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2176 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2177 sp->role.word);
2178 r = 1;
f41d335a 2179 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2180 }
d98ba053 2181 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2182 spin_unlock(&kvm->mmu_lock);
2183
a436036b 2184 return r;
cea0f0e7 2185}
1cb3f3ae 2186EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2187
38c335f1 2188static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2189{
bc6678a3 2190 int slot = memslot_id(kvm, gfn);
4db35314 2191 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2192
291f26bc 2193 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2194}
2195
74be52e3
SY
2196/*
2197 * The function is based on mtrr_type_lookup() in
2198 * arch/x86/kernel/cpu/mtrr/generic.c
2199 */
2200static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2201 u64 start, u64 end)
2202{
2203 int i;
2204 u64 base, mask;
2205 u8 prev_match, curr_match;
2206 int num_var_ranges = KVM_NR_VAR_MTRR;
2207
2208 if (!mtrr_state->enabled)
2209 return 0xFF;
2210
2211 /* Make end inclusive end, instead of exclusive */
2212 end--;
2213
2214 /* Look in fixed ranges. Just return the type as per start */
2215 if (mtrr_state->have_fixed && (start < 0x100000)) {
2216 int idx;
2217
2218 if (start < 0x80000) {
2219 idx = 0;
2220 idx += (start >> 16);
2221 return mtrr_state->fixed_ranges[idx];
2222 } else if (start < 0xC0000) {
2223 idx = 1 * 8;
2224 idx += ((start - 0x80000) >> 14);
2225 return mtrr_state->fixed_ranges[idx];
2226 } else if (start < 0x1000000) {
2227 idx = 3 * 8;
2228 idx += ((start - 0xC0000) >> 12);
2229 return mtrr_state->fixed_ranges[idx];
2230 }
2231 }
2232
2233 /*
2234 * Look in variable ranges
2235 * Look of multiple ranges matching this address and pick type
2236 * as per MTRR precedence
2237 */
2238 if (!(mtrr_state->enabled & 2))
2239 return mtrr_state->def_type;
2240
2241 prev_match = 0xFF;
2242 for (i = 0; i < num_var_ranges; ++i) {
2243 unsigned short start_state, end_state;
2244
2245 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2246 continue;
2247
2248 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2249 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2250 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2251 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2252
2253 start_state = ((start & mask) == (base & mask));
2254 end_state = ((end & mask) == (base & mask));
2255 if (start_state != end_state)
2256 return 0xFE;
2257
2258 if ((start & mask) != (base & mask))
2259 continue;
2260
2261 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2262 if (prev_match == 0xFF) {
2263 prev_match = curr_match;
2264 continue;
2265 }
2266
2267 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2268 curr_match == MTRR_TYPE_UNCACHABLE)
2269 return MTRR_TYPE_UNCACHABLE;
2270
2271 if ((prev_match == MTRR_TYPE_WRBACK &&
2272 curr_match == MTRR_TYPE_WRTHROUGH) ||
2273 (prev_match == MTRR_TYPE_WRTHROUGH &&
2274 curr_match == MTRR_TYPE_WRBACK)) {
2275 prev_match = MTRR_TYPE_WRTHROUGH;
2276 curr_match = MTRR_TYPE_WRTHROUGH;
2277 }
2278
2279 if (prev_match != curr_match)
2280 return MTRR_TYPE_UNCACHABLE;
2281 }
2282
2283 if (prev_match != 0xFF)
2284 return prev_match;
2285
2286 return mtrr_state->def_type;
2287}
2288
4b12f0de 2289u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2290{
2291 u8 mtrr;
2292
2293 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2294 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2295 if (mtrr == 0xfe || mtrr == 0xff)
2296 mtrr = MTRR_TYPE_WRBACK;
2297 return mtrr;
2298}
4b12f0de 2299EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2300
9cf5cf5a
XG
2301static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2302{
2303 trace_kvm_mmu_unsync_page(sp);
2304 ++vcpu->kvm->stat.mmu_unsync;
2305 sp->unsync = 1;
2306
2307 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2308}
2309
2310static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2311{
4731d4c7 2312 struct kvm_mmu_page *s;
f41d335a 2313 struct hlist_node *node;
9cf5cf5a 2314
f41d335a 2315 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2316 if (s->unsync)
4731d4c7 2317 continue;
9cf5cf5a
XG
2318 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2319 __kvm_unsync_page(vcpu, s);
4731d4c7 2320 }
4731d4c7
MT
2321}
2322
2323static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2324 bool can_unsync)
2325{
9cf5cf5a 2326 struct kvm_mmu_page *s;
f41d335a 2327 struct hlist_node *node;
9cf5cf5a
XG
2328 bool need_unsync = false;
2329
f41d335a 2330 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2331 if (!can_unsync)
2332 return 1;
2333
9cf5cf5a 2334 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2335 return 1;
9cf5cf5a
XG
2336
2337 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2338 need_unsync = true;
2339 }
4731d4c7 2340 }
9cf5cf5a
XG
2341 if (need_unsync)
2342 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2343 return 0;
2344}
2345
d555c333 2346static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2347 unsigned pte_access, int user_fault,
640d9b0d 2348 int write_fault, int level,
c2d0ee46 2349 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2350 bool can_unsync, bool host_writable)
1c4f1fd6 2351{
6e7d0354 2352 u64 spte;
1e73f9dd 2353 int ret = 0;
64d4d521 2354
ce88decf
XG
2355 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2356 return 0;
2357
982c2565 2358 spte = PT_PRESENT_MASK;
947da538 2359 if (!speculative)
3201b5d9 2360 spte |= shadow_accessed_mask;
640d9b0d 2361
7b52345e
SY
2362 if (pte_access & ACC_EXEC_MASK)
2363 spte |= shadow_x_mask;
2364 else
2365 spte |= shadow_nx_mask;
49fde340 2366
1c4f1fd6 2367 if (pte_access & ACC_USER_MASK)
7b52345e 2368 spte |= shadow_user_mask;
49fde340 2369
852e3c19 2370 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2371 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2372 if (tdp_enabled)
4b12f0de
SY
2373 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2374 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2375
9bdbba13 2376 if (host_writable)
1403283a 2377 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2378 else
2379 pte_access &= ~ACC_WRITE_MASK;
1403283a 2380
35149e21 2381 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2382
2383 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2384 || (!vcpu->arch.mmu.direct_map && write_fault
2385 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2386
852e3c19
JR
2387 if (level > PT_PAGE_TABLE_LEVEL &&
2388 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2389 ret = 1;
c3707958 2390 drop_spte(vcpu->kvm, sptep);
be38d276 2391 goto done;
38187c83
MT
2392 }
2393
49fde340 2394 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2395
c5a78f2b 2396 if (!vcpu->arch.mmu.direct_map
411c588d 2397 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2398 spte &= ~PT_USER_MASK;
411c588d
AK
2399 /*
2400 * If we converted a user page to a kernel page,
2401 * so that the kernel can write to it when cr0.wp=0,
2402 * then we should prevent the kernel from executing it
2403 * if SMEP is enabled.
2404 */
2405 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2406 spte |= PT64_NX_MASK;
2407 }
69325a12 2408
ecc5589f
MT
2409 /*
2410 * Optimization: for pte sync, if spte was writable the hash
2411 * lookup is unnecessary (and expensive). Write protection
2412 * is responsibility of mmu_get_page / kvm_sync_page.
2413 * Same reasoning can be applied to dirty page accounting.
2414 */
8dae4445 2415 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2416 goto set_pte;
2417
4731d4c7 2418 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2419 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2420 __func__, gfn);
1e73f9dd 2421 ret = 1;
1c4f1fd6 2422 pte_access &= ~ACC_WRITE_MASK;
49fde340 2423 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2424 }
2425 }
2426
1c4f1fd6
AK
2427 if (pte_access & ACC_WRITE_MASK)
2428 mark_page_dirty(vcpu->kvm, gfn);
2429
38187c83 2430set_pte:
6e7d0354 2431 if (mmu_spte_update(sptep, spte))
b330aa0c 2432 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2433done:
1e73f9dd
MT
2434 return ret;
2435}
2436
d555c333 2437static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2438 unsigned pt_access, unsigned pte_access,
640d9b0d 2439 int user_fault, int write_fault,
b90a0e6c 2440 int *emulate, int level, gfn_t gfn,
1403283a 2441 pfn_t pfn, bool speculative,
9bdbba13 2442 bool host_writable)
1e73f9dd
MT
2443{
2444 int was_rmapped = 0;
53a27b39 2445 int rmap_count;
1e73f9dd
MT
2446
2447 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2448 " user_fault %d gfn %llx\n",
d555c333 2449 __func__, *sptep, pt_access,
1e73f9dd
MT
2450 write_fault, user_fault, gfn);
2451
d555c333 2452 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2453 /*
2454 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2455 * the parent of the now unreachable PTE.
2456 */
852e3c19
JR
2457 if (level > PT_PAGE_TABLE_LEVEL &&
2458 !is_large_pte(*sptep)) {
1e73f9dd 2459 struct kvm_mmu_page *child;
d555c333 2460 u64 pte = *sptep;
1e73f9dd
MT
2461
2462 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2463 drop_parent_pte(child, sptep);
3be2264b 2464 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2465 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2466 pgprintk("hfn old %llx new %llx\n",
d555c333 2467 spte_to_pfn(*sptep), pfn);
c3707958 2468 drop_spte(vcpu->kvm, sptep);
91546356 2469 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2470 } else
2471 was_rmapped = 1;
1e73f9dd 2472 }
852e3c19 2473
d555c333 2474 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2475 level, gfn, pfn, speculative, true,
9bdbba13 2476 host_writable)) {
1e73f9dd 2477 if (write_fault)
b90a0e6c 2478 *emulate = 1;
5304efde 2479 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2480 }
1e73f9dd 2481
ce88decf
XG
2482 if (unlikely(is_mmio_spte(*sptep) && emulate))
2483 *emulate = 1;
2484
d555c333 2485 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2486 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2487 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2488 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2489 *sptep, sptep);
d555c333 2490 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2491 ++vcpu->kvm->stat.lpages;
2492
ffb61bb3
XG
2493 if (is_shadow_present_pte(*sptep)) {
2494 page_header_update_slot(vcpu->kvm, sptep, gfn);
2495 if (!was_rmapped) {
2496 rmap_count = rmap_add(vcpu, sptep, gfn);
2497 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2498 rmap_recycle(vcpu, sptep, gfn);
2499 }
1c4f1fd6 2500 }
9ed5520d 2501 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2502}
2503
6aa8b732
AK
2504static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2505{
e676505a 2506 mmu_free_roots(vcpu);
6aa8b732
AK
2507}
2508
957ed9ef
XG
2509static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2510 bool no_dirty_log)
2511{
2512 struct kvm_memory_slot *slot;
2513 unsigned long hva;
2514
5d163b1c 2515 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2516 if (!slot) {
fce92dce
XG
2517 get_page(fault_page);
2518 return page_to_pfn(fault_page);
957ed9ef
XG
2519 }
2520
2521 hva = gfn_to_hva_memslot(slot, gfn);
2522
2523 return hva_to_pfn_atomic(vcpu->kvm, hva);
2524}
2525
2526static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2527 struct kvm_mmu_page *sp,
2528 u64 *start, u64 *end)
2529{
2530 struct page *pages[PTE_PREFETCH_NUM];
2531 unsigned access = sp->role.access;
2532 int i, ret;
2533 gfn_t gfn;
2534
2535 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2536 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2537 return -1;
2538
2539 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2540 if (ret <= 0)
2541 return -1;
2542
2543 for (i = 0; i < ret; i++, gfn++, start++)
2544 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2545 access, 0, 0, NULL,
957ed9ef
XG
2546 sp->role.level, gfn,
2547 page_to_pfn(pages[i]), true, true);
2548
2549 return 0;
2550}
2551
2552static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2553 struct kvm_mmu_page *sp, u64 *sptep)
2554{
2555 u64 *spte, *start = NULL;
2556 int i;
2557
2558 WARN_ON(!sp->role.direct);
2559
2560 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2561 spte = sp->spt + i;
2562
2563 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2564 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2565 if (!start)
2566 continue;
2567 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2568 break;
2569 start = NULL;
2570 } else if (!start)
2571 start = spte;
2572 }
2573}
2574
2575static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2576{
2577 struct kvm_mmu_page *sp;
2578
2579 /*
2580 * Since it's no accessed bit on EPT, it's no way to
2581 * distinguish between actually accessed translations
2582 * and prefetched, so disable pte prefetch if EPT is
2583 * enabled.
2584 */
2585 if (!shadow_accessed_mask)
2586 return;
2587
2588 sp = page_header(__pa(sptep));
2589 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2590 return;
2591
2592 __direct_pte_prefetch(vcpu, sp, sptep);
2593}
2594
9f652d21 2595static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2596 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2597 bool prefault)
140754bc 2598{
9f652d21 2599 struct kvm_shadow_walk_iterator iterator;
140754bc 2600 struct kvm_mmu_page *sp;
b90a0e6c 2601 int emulate = 0;
140754bc 2602 gfn_t pseudo_gfn;
6aa8b732 2603
9f652d21 2604 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2605 if (iterator.level == level) {
612819c3
MT
2606 unsigned pte_access = ACC_ALL;
2607
612819c3 2608 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2609 0, write, &emulate,
2ec4739d 2610 level, gfn, pfn, prefault, map_writable);
957ed9ef 2611 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2612 ++vcpu->stat.pf_fixed;
2613 break;
6aa8b732
AK
2614 }
2615
c3707958 2616 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2617 u64 base_addr = iterator.addr;
2618
2619 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2620 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2621 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2622 iterator.level - 1,
2623 1, ACC_ALL, iterator.sptep);
2624 if (!sp) {
2625 pgprintk("nonpaging_map: ENOMEM\n");
2626 kvm_release_pfn_clean(pfn);
2627 return -ENOMEM;
2628 }
140754bc 2629
1df9f2dc
XG
2630 mmu_spte_set(iterator.sptep,
2631 __pa(sp->spt)
2632 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2633 | shadow_user_mask | shadow_x_mask
2634 | shadow_accessed_mask);
9f652d21
AK
2635 }
2636 }
b90a0e6c 2637 return emulate;
6aa8b732
AK
2638}
2639
77db5cbd 2640static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2641{
77db5cbd
HY
2642 siginfo_t info;
2643
2644 info.si_signo = SIGBUS;
2645 info.si_errno = 0;
2646 info.si_code = BUS_MCEERR_AR;
2647 info.si_addr = (void __user *)address;
2648 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2649
77db5cbd 2650 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2651}
2652
d7c55201 2653static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2654{
2655 kvm_release_pfn_clean(pfn);
2656 if (is_hwpoison_pfn(pfn)) {
bebb106a 2657 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2658 return 0;
d7c55201 2659 }
edba23e5 2660
d7c55201 2661 return -EFAULT;
bf998156
HY
2662}
2663
936a5fe6
AA
2664static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2665 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2666{
2667 pfn_t pfn = *pfnp;
2668 gfn_t gfn = *gfnp;
2669 int level = *levelp;
2670
2671 /*
2672 * Check if it's a transparent hugepage. If this would be an
2673 * hugetlbfs page, level wouldn't be set to
2674 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2675 * here.
2676 */
2677 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2678 level == PT_PAGE_TABLE_LEVEL &&
2679 PageTransCompound(pfn_to_page(pfn)) &&
2680 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2681 unsigned long mask;
2682 /*
2683 * mmu_notifier_retry was successful and we hold the
2684 * mmu_lock here, so the pmd can't become splitting
2685 * from under us, and in turn
2686 * __split_huge_page_refcount() can't run from under
2687 * us and we can safely transfer the refcount from
2688 * PG_tail to PG_head as we switch the pfn to tail to
2689 * head.
2690 */
2691 *levelp = level = PT_DIRECTORY_LEVEL;
2692 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2693 VM_BUG_ON((gfn & mask) != (pfn & mask));
2694 if (pfn & mask) {
2695 gfn &= ~mask;
2696 *gfnp = gfn;
2697 kvm_release_pfn_clean(pfn);
2698 pfn &= ~mask;
c3586667 2699 kvm_get_pfn(pfn);
936a5fe6
AA
2700 *pfnp = pfn;
2701 }
2702 }
2703}
2704
d7c55201
XG
2705static bool mmu_invalid_pfn(pfn_t pfn)
2706{
ce88decf 2707 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2708}
2709
2710static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2711 pfn_t pfn, unsigned access, int *ret_val)
2712{
2713 bool ret = true;
2714
2715 /* The pfn is invalid, report the error! */
2716 if (unlikely(is_invalid_pfn(pfn))) {
2717 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2718 goto exit;
2719 }
2720
ce88decf 2721 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2722 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2723
2724 ret = false;
2725exit:
2726 return ret;
2727}
2728
c7ba5b48
XG
2729static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2730{
2731 /*
2732 * #PF can be fast only if the shadow page table is present and it
2733 * is caused by write-protect, that means we just need change the
2734 * W bit of the spte which can be done out of mmu-lock.
2735 */
2736 if (!(error_code & PFERR_PRESENT_MASK) ||
2737 !(error_code & PFERR_WRITE_MASK))
2738 return false;
2739
2740 return true;
2741}
2742
2743static bool
2744fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2745{
2746 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2747 gfn_t gfn;
2748
2749 WARN_ON(!sp->role.direct);
2750
2751 /*
2752 * The gfn of direct spte is stable since it is calculated
2753 * by sp->gfn.
2754 */
2755 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2756
2757 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2758 mark_page_dirty(vcpu->kvm, gfn);
2759
2760 return true;
2761}
2762
2763/*
2764 * Return value:
2765 * - true: let the vcpu to access on the same address again.
2766 * - false: let the real page fault path to fix it.
2767 */
2768static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2769 u32 error_code)
2770{
2771 struct kvm_shadow_walk_iterator iterator;
2772 bool ret = false;
2773 u64 spte = 0ull;
2774
2775 if (!page_fault_can_be_fast(vcpu, error_code))
2776 return false;
2777
2778 walk_shadow_page_lockless_begin(vcpu);
2779 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2780 if (!is_shadow_present_pte(spte) || iterator.level < level)
2781 break;
2782
2783 /*
2784 * If the mapping has been changed, let the vcpu fault on the
2785 * same address again.
2786 */
2787 if (!is_rmap_spte(spte)) {
2788 ret = true;
2789 goto exit;
2790 }
2791
2792 if (!is_last_spte(spte, level))
2793 goto exit;
2794
2795 /*
2796 * Check if it is a spurious fault caused by TLB lazily flushed.
2797 *
2798 * Need not check the access of upper level table entries since
2799 * they are always ACC_ALL.
2800 */
2801 if (is_writable_pte(spte)) {
2802 ret = true;
2803 goto exit;
2804 }
2805
2806 /*
2807 * Currently, to simplify the code, only the spte write-protected
2808 * by dirty-log can be fast fixed.
2809 */
2810 if (!spte_is_locklessly_modifiable(spte))
2811 goto exit;
2812
2813 /*
2814 * Currently, fast page fault only works for direct mapping since
2815 * the gfn is not stable for indirect shadow page.
2816 * See Documentation/virtual/kvm/locking.txt to get more detail.
2817 */
2818 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2819exit:
a72faf25
XG
2820 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2821 spte, ret);
c7ba5b48
XG
2822 walk_shadow_page_lockless_end(vcpu);
2823
2824 return ret;
2825}
2826
78b2c54a 2827static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2828 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2829
c7ba5b48
XG
2830static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2831 gfn_t gfn, bool prefault)
10589a46
MT
2832{
2833 int r;
852e3c19 2834 int level;
936a5fe6 2835 int force_pt_level;
35149e21 2836 pfn_t pfn;
e930bffe 2837 unsigned long mmu_seq;
c7ba5b48 2838 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2839
936a5fe6
AA
2840 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2841 if (likely(!force_pt_level)) {
2842 level = mapping_level(vcpu, gfn);
2843 /*
2844 * This path builds a PAE pagetable - so we can map
2845 * 2mb pages at maximum. Therefore check if the level
2846 * is larger than that.
2847 */
2848 if (level > PT_DIRECTORY_LEVEL)
2849 level = PT_DIRECTORY_LEVEL;
852e3c19 2850
936a5fe6
AA
2851 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2852 } else
2853 level = PT_PAGE_TABLE_LEVEL;
05da4558 2854
c7ba5b48
XG
2855 if (fast_page_fault(vcpu, v, level, error_code))
2856 return 0;
2857
e930bffe 2858 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2859 smp_rmb();
060c2abe 2860
78b2c54a 2861 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2862 return 0;
aaee2c94 2863
d7c55201
XG
2864 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2865 return r;
d196e343 2866
aaee2c94 2867 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2868 if (mmu_notifier_retry(vcpu, mmu_seq))
2869 goto out_unlock;
eb787d10 2870 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2871 if (likely(!force_pt_level))
2872 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2873 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2874 prefault);
aaee2c94
MT
2875 spin_unlock(&vcpu->kvm->mmu_lock);
2876
aaee2c94 2877
10589a46 2878 return r;
e930bffe
AA
2879
2880out_unlock:
2881 spin_unlock(&vcpu->kvm->mmu_lock);
2882 kvm_release_pfn_clean(pfn);
2883 return 0;
10589a46
MT
2884}
2885
2886
17ac10ad
AK
2887static void mmu_free_roots(struct kvm_vcpu *vcpu)
2888{
2889 int i;
4db35314 2890 struct kvm_mmu_page *sp;
d98ba053 2891 LIST_HEAD(invalid_list);
17ac10ad 2892
ad312c7c 2893 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2894 return;
aaee2c94 2895 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2896 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2897 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2898 vcpu->arch.mmu.direct_map)) {
ad312c7c 2899 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2900
4db35314
AK
2901 sp = page_header(root);
2902 --sp->root_count;
d98ba053
XG
2903 if (!sp->root_count && sp->role.invalid) {
2904 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2905 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2906 }
ad312c7c 2907 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2908 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2909 return;
2910 }
17ac10ad 2911 for (i = 0; i < 4; ++i) {
ad312c7c 2912 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2913
417726a3 2914 if (root) {
417726a3 2915 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2916 sp = page_header(root);
2917 --sp->root_count;
2e53d63a 2918 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2919 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2920 &invalid_list);
417726a3 2921 }
ad312c7c 2922 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2923 }
d98ba053 2924 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2925 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2926 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2927}
2928
8986ecc0
MT
2929static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2930{
2931 int ret = 0;
2932
2933 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2934 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2935 ret = 1;
2936 }
2937
2938 return ret;
2939}
2940
651dd37a
JR
2941static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2942{
2943 struct kvm_mmu_page *sp;
7ebaf15e 2944 unsigned i;
651dd37a
JR
2945
2946 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2947 spin_lock(&vcpu->kvm->mmu_lock);
2948 kvm_mmu_free_some_pages(vcpu);
2949 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2950 1, ACC_ALL, NULL);
2951 ++sp->root_count;
2952 spin_unlock(&vcpu->kvm->mmu_lock);
2953 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2954 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2955 for (i = 0; i < 4; ++i) {
2956 hpa_t root = vcpu->arch.mmu.pae_root[i];
2957
2958 ASSERT(!VALID_PAGE(root));
2959 spin_lock(&vcpu->kvm->mmu_lock);
2960 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2961 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2962 i << 30,
651dd37a
JR
2963 PT32_ROOT_LEVEL, 1, ACC_ALL,
2964 NULL);
2965 root = __pa(sp->spt);
2966 ++sp->root_count;
2967 spin_unlock(&vcpu->kvm->mmu_lock);
2968 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2969 }
6292757f 2970 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2971 } else
2972 BUG();
2973
2974 return 0;
2975}
2976
2977static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2978{
4db35314 2979 struct kvm_mmu_page *sp;
81407ca5
JR
2980 u64 pdptr, pm_mask;
2981 gfn_t root_gfn;
2982 int i;
3bb65a22 2983
5777ed34 2984 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2985
651dd37a
JR
2986 if (mmu_check_root(vcpu, root_gfn))
2987 return 1;
2988
2989 /*
2990 * Do we shadow a long mode page table? If so we need to
2991 * write-protect the guests page table root.
2992 */
2993 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2994 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2995
2996 ASSERT(!VALID_PAGE(root));
651dd37a 2997
8facbbff 2998 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2999 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
3000 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3001 0, ACC_ALL, NULL);
4db35314
AK
3002 root = __pa(sp->spt);
3003 ++sp->root_count;
8facbbff 3004 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3005 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3006 return 0;
17ac10ad 3007 }
f87f9288 3008
651dd37a
JR
3009 /*
3010 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3011 * or a PAE 3-level page table. In either case we need to be aware that
3012 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3013 */
81407ca5
JR
3014 pm_mask = PT_PRESENT_MASK;
3015 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3016 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3017
17ac10ad 3018 for (i = 0; i < 4; ++i) {
ad312c7c 3019 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3020
3021 ASSERT(!VALID_PAGE(root));
ad312c7c 3022 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3023 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3024 if (!is_present_gpte(pdptr)) {
ad312c7c 3025 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3026 continue;
3027 }
6de4f3ad 3028 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3029 if (mmu_check_root(vcpu, root_gfn))
3030 return 1;
5a7388c2 3031 }
8facbbff 3032 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3033 kvm_mmu_free_some_pages(vcpu);
4db35314 3034 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3035 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3036 ACC_ALL, NULL);
4db35314
AK
3037 root = __pa(sp->spt);
3038 ++sp->root_count;
8facbbff
AK
3039 spin_unlock(&vcpu->kvm->mmu_lock);
3040
81407ca5 3041 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3042 }
6292757f 3043 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3044
3045 /*
3046 * If we shadow a 32 bit page table with a long mode page
3047 * table we enter this path.
3048 */
3049 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3050 if (vcpu->arch.mmu.lm_root == NULL) {
3051 /*
3052 * The additional page necessary for this is only
3053 * allocated on demand.
3054 */
3055
3056 u64 *lm_root;
3057
3058 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3059 if (lm_root == NULL)
3060 return 1;
3061
3062 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3063
3064 vcpu->arch.mmu.lm_root = lm_root;
3065 }
3066
3067 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3068 }
3069
8986ecc0 3070 return 0;
17ac10ad
AK
3071}
3072
651dd37a
JR
3073static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3074{
3075 if (vcpu->arch.mmu.direct_map)
3076 return mmu_alloc_direct_roots(vcpu);
3077 else
3078 return mmu_alloc_shadow_roots(vcpu);
3079}
3080
0ba73cda
MT
3081static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3082{
3083 int i;
3084 struct kvm_mmu_page *sp;
3085
81407ca5
JR
3086 if (vcpu->arch.mmu.direct_map)
3087 return;
3088
0ba73cda
MT
3089 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3090 return;
6903074c 3091
bebb106a 3092 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3093 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3094 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3095 hpa_t root = vcpu->arch.mmu.root_hpa;
3096 sp = page_header(root);
3097 mmu_sync_children(vcpu, sp);
0375f7fa 3098 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3099 return;
3100 }
3101 for (i = 0; i < 4; ++i) {
3102 hpa_t root = vcpu->arch.mmu.pae_root[i];
3103
8986ecc0 3104 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3105 root &= PT64_BASE_ADDR_MASK;
3106 sp = page_header(root);
3107 mmu_sync_children(vcpu, sp);
3108 }
3109 }
0375f7fa 3110 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3111}
3112
3113void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3114{
3115 spin_lock(&vcpu->kvm->mmu_lock);
3116 mmu_sync_roots(vcpu);
6cffe8ca 3117 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3118}
3119
1871c602 3120static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3121 u32 access, struct x86_exception *exception)
6aa8b732 3122{
ab9ae313
AK
3123 if (exception)
3124 exception->error_code = 0;
6aa8b732
AK
3125 return vaddr;
3126}
3127
6539e738 3128static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3129 u32 access,
3130 struct x86_exception *exception)
6539e738 3131{
ab9ae313
AK
3132 if (exception)
3133 exception->error_code = 0;
6539e738
JR
3134 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3135}
3136
ce88decf
XG
3137static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3138{
3139 if (direct)
3140 return vcpu_match_mmio_gpa(vcpu, addr);
3141
3142 return vcpu_match_mmio_gva(vcpu, addr);
3143}
3144
3145
3146/*
3147 * On direct hosts, the last spte is only allows two states
3148 * for mmio page fault:
3149 * - It is the mmio spte
3150 * - It is zapped or it is being zapped.
3151 *
3152 * This function completely checks the spte when the last spte
3153 * is not the mmio spte.
3154 */
3155static bool check_direct_spte_mmio_pf(u64 spte)
3156{
3157 return __check_direct_spte_mmio_pf(spte);
3158}
3159
3160static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3161{
3162 struct kvm_shadow_walk_iterator iterator;
3163 u64 spte = 0ull;
3164
3165 walk_shadow_page_lockless_begin(vcpu);
3166 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3167 if (!is_shadow_present_pte(spte))
3168 break;
3169 walk_shadow_page_lockless_end(vcpu);
3170
3171 return spte;
3172}
3173
3174/*
3175 * If it is a real mmio page fault, return 1 and emulat the instruction
3176 * directly, return 0 to let CPU fault again on the address, -1 is
3177 * returned if bug is detected.
3178 */
3179int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3180{
3181 u64 spte;
3182
3183 if (quickly_check_mmio_pf(vcpu, addr, direct))
3184 return 1;
3185
3186 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3187
3188 if (is_mmio_spte(spte)) {
3189 gfn_t gfn = get_mmio_spte_gfn(spte);
3190 unsigned access = get_mmio_spte_access(spte);
3191
3192 if (direct)
3193 addr = 0;
4f022648
XG
3194
3195 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3196 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3197 return 1;
3198 }
3199
3200 /*
3201 * It's ok if the gva is remapped by other cpus on shadow guest,
3202 * it's a BUG if the gfn is not a mmio page.
3203 */
3204 if (direct && !check_direct_spte_mmio_pf(spte))
3205 return -1;
3206
3207 /*
3208 * If the page table is zapped by other cpus, let CPU fault again on
3209 * the address.
3210 */
3211 return 0;
3212}
3213EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3214
3215static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3216 u32 error_code, bool direct)
3217{
3218 int ret;
3219
3220 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3221 WARN_ON(ret < 0);
3222 return ret;
3223}
3224
6aa8b732 3225static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3226 u32 error_code, bool prefault)
6aa8b732 3227{
e833240f 3228 gfn_t gfn;
e2dec939 3229 int r;
6aa8b732 3230
b8688d51 3231 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3232
3233 if (unlikely(error_code & PFERR_RSVD_MASK))
3234 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3235
e2dec939
AK
3236 r = mmu_topup_memory_caches(vcpu);
3237 if (r)
3238 return r;
714b93da 3239
6aa8b732 3240 ASSERT(vcpu);
ad312c7c 3241 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3242
e833240f 3243 gfn = gva >> PAGE_SHIFT;
6aa8b732 3244
e833240f 3245 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3246 error_code, gfn, prefault);
6aa8b732
AK
3247}
3248
7e1fbeac 3249static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3250{
3251 struct kvm_arch_async_pf arch;
fb67e14f 3252
7c90705b 3253 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3254 arch.gfn = gfn;
c4806acd 3255 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3256 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3257
3258 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3259}
3260
3261static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3262{
3263 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3264 kvm_event_needs_reinjection(vcpu)))
3265 return false;
3266
3267 return kvm_x86_ops->interrupt_allowed(vcpu);
3268}
3269
78b2c54a 3270static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3271 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3272{
3273 bool async;
3274
612819c3 3275 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3276
3277 if (!async)
3278 return false; /* *pfn has correct page already */
3279
3280 put_page(pfn_to_page(*pfn));
3281
78b2c54a 3282 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3283 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3284 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3285 trace_kvm_async_pf_doublefault(gva, gfn);
3286 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3287 return true;
3288 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3289 return true;
3290 }
3291
612819c3 3292 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3293
3294 return false;
3295}
3296
56028d08 3297static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3298 bool prefault)
fb72d167 3299{
35149e21 3300 pfn_t pfn;
fb72d167 3301 int r;
852e3c19 3302 int level;
936a5fe6 3303 int force_pt_level;
05da4558 3304 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3305 unsigned long mmu_seq;
612819c3
MT
3306 int write = error_code & PFERR_WRITE_MASK;
3307 bool map_writable;
fb72d167
JR
3308
3309 ASSERT(vcpu);
3310 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3311
ce88decf
XG
3312 if (unlikely(error_code & PFERR_RSVD_MASK))
3313 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3314
fb72d167
JR
3315 r = mmu_topup_memory_caches(vcpu);
3316 if (r)
3317 return r;
3318
936a5fe6
AA
3319 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3320 if (likely(!force_pt_level)) {
3321 level = mapping_level(vcpu, gfn);
3322 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3323 } else
3324 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3325
c7ba5b48
XG
3326 if (fast_page_fault(vcpu, gpa, level, error_code))
3327 return 0;
3328
e930bffe 3329 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3330 smp_rmb();
af585b92 3331
78b2c54a 3332 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3333 return 0;
3334
d7c55201
XG
3335 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3336 return r;
3337
fb72d167 3338 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3339 if (mmu_notifier_retry(vcpu, mmu_seq))
3340 goto out_unlock;
fb72d167 3341 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3342 if (likely(!force_pt_level))
3343 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3344 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3345 level, gfn, pfn, prefault);
fb72d167 3346 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3347
3348 return r;
e930bffe
AA
3349
3350out_unlock:
3351 spin_unlock(&vcpu->kvm->mmu_lock);
3352 kvm_release_pfn_clean(pfn);
3353 return 0;
fb72d167
JR
3354}
3355
6aa8b732
AK
3356static void nonpaging_free(struct kvm_vcpu *vcpu)
3357{
17ac10ad 3358 mmu_free_roots(vcpu);
6aa8b732
AK
3359}
3360
52fde8df
JR
3361static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3362 struct kvm_mmu *context)
6aa8b732 3363{
6aa8b732
AK
3364 context->new_cr3 = nonpaging_new_cr3;
3365 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3366 context->gva_to_gpa = nonpaging_gva_to_gpa;
3367 context->free = nonpaging_free;
e8bc217a 3368 context->sync_page = nonpaging_sync_page;
a7052897 3369 context->invlpg = nonpaging_invlpg;
0f53b5b1 3370 context->update_pte = nonpaging_update_pte;
cea0f0e7 3371 context->root_level = 0;
6aa8b732 3372 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3373 context->root_hpa = INVALID_PAGE;
c5a78f2b 3374 context->direct_map = true;
2d48a985 3375 context->nx = false;
6aa8b732
AK
3376 return 0;
3377}
3378
d835dfec 3379void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3380{
1165f5fe 3381 ++vcpu->stat.tlb_flush;
a8eeb04a 3382 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3383}
3384
3385static void paging_new_cr3(struct kvm_vcpu *vcpu)
3386{
9f8fe504 3387 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3388 mmu_free_roots(vcpu);
6aa8b732
AK
3389}
3390
5777ed34
JR
3391static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3392{
9f8fe504 3393 return kvm_read_cr3(vcpu);
5777ed34
JR
3394}
3395
6389ee94
AK
3396static void inject_page_fault(struct kvm_vcpu *vcpu,
3397 struct x86_exception *fault)
6aa8b732 3398{
6389ee94 3399 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3400}
3401
6aa8b732
AK
3402static void paging_free(struct kvm_vcpu *vcpu)
3403{
3404 nonpaging_free(vcpu);
3405}
3406
3241f22d 3407static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3408{
3409 int bit7;
3410
3411 bit7 = (gpte >> 7) & 1;
3241f22d 3412 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3413}
3414
ce88decf
XG
3415static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3416 int *nr_present)
3417{
3418 if (unlikely(is_mmio_spte(*sptep))) {
3419 if (gfn != get_mmio_spte_gfn(*sptep)) {
3420 mmu_spte_clear_no_track(sptep);
3421 return true;
3422 }
3423
3424 (*nr_present)++;
3425 mark_mmio_spte(sptep, gfn, access);
3426 return true;
3427 }
3428
3429 return false;
3430}
3431
6aa8b732
AK
3432#define PTTYPE 64
3433#include "paging_tmpl.h"
3434#undef PTTYPE
3435
3436#define PTTYPE 32
3437#include "paging_tmpl.h"
3438#undef PTTYPE
3439
52fde8df 3440static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3441 struct kvm_mmu *context)
82725b20 3442{
82725b20
DE
3443 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3444 u64 exb_bit_rsvd = 0;
3445
2d48a985 3446 if (!context->nx)
82725b20 3447 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3448 switch (context->root_level) {
82725b20
DE
3449 case PT32_ROOT_LEVEL:
3450 /* no rsvd bits for 2 level 4K page table entries */
3451 context->rsvd_bits_mask[0][1] = 0;
3452 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3453 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3454
3455 if (!is_pse(vcpu)) {
3456 context->rsvd_bits_mask[1][1] = 0;
3457 break;
3458 }
3459
82725b20
DE
3460 if (is_cpuid_PSE36())
3461 /* 36bits PSE 4MB page */
3462 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3463 else
3464 /* 32 bits PSE 4MB page */
3465 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3466 break;
3467 case PT32E_ROOT_LEVEL:
20c466b5
DE
3468 context->rsvd_bits_mask[0][2] =
3469 rsvd_bits(maxphyaddr, 63) |
3470 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3471 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3472 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3473 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3474 rsvd_bits(maxphyaddr, 62); /* PTE */
3475 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3476 rsvd_bits(maxphyaddr, 62) |
3477 rsvd_bits(13, 20); /* large page */
f815bce8 3478 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3479 break;
3480 case PT64_ROOT_LEVEL:
3481 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3482 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3483 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3484 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3485 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3486 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3487 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3488 rsvd_bits(maxphyaddr, 51);
3489 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3490 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3491 rsvd_bits(maxphyaddr, 51) |
3492 rsvd_bits(13, 29);
82725b20 3493 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3494 rsvd_bits(maxphyaddr, 51) |
3495 rsvd_bits(13, 20); /* large page */
f815bce8 3496 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3497 break;
3498 }
3499}
3500
52fde8df
JR
3501static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3502 struct kvm_mmu *context,
3503 int level)
6aa8b732 3504{
2d48a985 3505 context->nx = is_nx(vcpu);
4d6931c3 3506 context->root_level = level;
2d48a985 3507
4d6931c3 3508 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3509
3510 ASSERT(is_pae(vcpu));
3511 context->new_cr3 = paging_new_cr3;
3512 context->page_fault = paging64_page_fault;
6aa8b732 3513 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3514 context->sync_page = paging64_sync_page;
a7052897 3515 context->invlpg = paging64_invlpg;
0f53b5b1 3516 context->update_pte = paging64_update_pte;
6aa8b732 3517 context->free = paging_free;
17ac10ad 3518 context->shadow_root_level = level;
17c3ba9d 3519 context->root_hpa = INVALID_PAGE;
c5a78f2b 3520 context->direct_map = false;
6aa8b732
AK
3521 return 0;
3522}
3523
52fde8df
JR
3524static int paging64_init_context(struct kvm_vcpu *vcpu,
3525 struct kvm_mmu *context)
17ac10ad 3526{
52fde8df 3527 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3528}
3529
52fde8df
JR
3530static int paging32_init_context(struct kvm_vcpu *vcpu,
3531 struct kvm_mmu *context)
6aa8b732 3532{
2d48a985 3533 context->nx = false;
4d6931c3 3534 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3535
4d6931c3 3536 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3537
3538 context->new_cr3 = paging_new_cr3;
3539 context->page_fault = paging32_page_fault;
6aa8b732
AK
3540 context->gva_to_gpa = paging32_gva_to_gpa;
3541 context->free = paging_free;
e8bc217a 3542 context->sync_page = paging32_sync_page;
a7052897 3543 context->invlpg = paging32_invlpg;
0f53b5b1 3544 context->update_pte = paging32_update_pte;
6aa8b732 3545 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3546 context->root_hpa = INVALID_PAGE;
c5a78f2b 3547 context->direct_map = false;
6aa8b732
AK
3548 return 0;
3549}
3550
52fde8df
JR
3551static int paging32E_init_context(struct kvm_vcpu *vcpu,
3552 struct kvm_mmu *context)
6aa8b732 3553{
52fde8df 3554 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3555}
3556
fb72d167
JR
3557static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3558{
14dfe855 3559 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3560
c445f8ef 3561 context->base_role.word = 0;
fb72d167
JR
3562 context->new_cr3 = nonpaging_new_cr3;
3563 context->page_fault = tdp_page_fault;
3564 context->free = nonpaging_free;
e8bc217a 3565 context->sync_page = nonpaging_sync_page;
a7052897 3566 context->invlpg = nonpaging_invlpg;
0f53b5b1 3567 context->update_pte = nonpaging_update_pte;
67253af5 3568 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3569 context->root_hpa = INVALID_PAGE;
c5a78f2b 3570 context->direct_map = true;
1c97f0a0 3571 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3572 context->get_cr3 = get_cr3;
e4e517b4 3573 context->get_pdptr = kvm_pdptr_read;
cb659db8 3574 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3575
3576 if (!is_paging(vcpu)) {
2d48a985 3577 context->nx = false;
fb72d167
JR
3578 context->gva_to_gpa = nonpaging_gva_to_gpa;
3579 context->root_level = 0;
3580 } else if (is_long_mode(vcpu)) {
2d48a985 3581 context->nx = is_nx(vcpu);
fb72d167 3582 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3583 reset_rsvds_bits_mask(vcpu, context);
3584 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3585 } else if (is_pae(vcpu)) {
2d48a985 3586 context->nx = is_nx(vcpu);
fb72d167 3587 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3588 reset_rsvds_bits_mask(vcpu, context);
3589 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3590 } else {
2d48a985 3591 context->nx = false;
fb72d167 3592 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3593 reset_rsvds_bits_mask(vcpu, context);
3594 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3595 }
3596
3597 return 0;
3598}
3599
52fde8df 3600int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3601{
a770f6f2 3602 int r;
411c588d 3603 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3604 ASSERT(vcpu);
ad312c7c 3605 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3606
3607 if (!is_paging(vcpu))
52fde8df 3608 r = nonpaging_init_context(vcpu, context);
a9058ecd 3609 else if (is_long_mode(vcpu))
52fde8df 3610 r = paging64_init_context(vcpu, context);
6aa8b732 3611 else if (is_pae(vcpu))
52fde8df 3612 r = paging32E_init_context(vcpu, context);
6aa8b732 3613 else
52fde8df 3614 r = paging32_init_context(vcpu, context);
a770f6f2 3615
5b7e0102 3616 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3617 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3618 vcpu->arch.mmu.base_role.smep_andnot_wp
3619 = smep && !is_write_protection(vcpu);
52fde8df
JR
3620
3621 return r;
3622}
3623EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3624
3625static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3626{
14dfe855 3627 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3628
14dfe855
JR
3629 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3630 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3631 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3632 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3633
3634 return r;
6aa8b732
AK
3635}
3636
02f59dc9
JR
3637static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3638{
3639 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3640
3641 g_context->get_cr3 = get_cr3;
e4e517b4 3642 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3643 g_context->inject_page_fault = kvm_inject_page_fault;
3644
3645 /*
3646 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3647 * translation of l2_gpa to l1_gpa addresses is done using the
3648 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3649 * functions between mmu and nested_mmu are swapped.
3650 */
3651 if (!is_paging(vcpu)) {
2d48a985 3652 g_context->nx = false;
02f59dc9
JR
3653 g_context->root_level = 0;
3654 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3655 } else if (is_long_mode(vcpu)) {
2d48a985 3656 g_context->nx = is_nx(vcpu);
02f59dc9 3657 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3658 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3659 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3660 } else if (is_pae(vcpu)) {
2d48a985 3661 g_context->nx = is_nx(vcpu);
02f59dc9 3662 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3663 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3664 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3665 } else {
2d48a985 3666 g_context->nx = false;
02f59dc9 3667 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3668 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3669 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3670 }
3671
3672 return 0;
3673}
3674
fb72d167
JR
3675static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3676{
02f59dc9
JR
3677 if (mmu_is_nested(vcpu))
3678 return init_kvm_nested_mmu(vcpu);
3679 else if (tdp_enabled)
fb72d167
JR
3680 return init_kvm_tdp_mmu(vcpu);
3681 else
3682 return init_kvm_softmmu(vcpu);
3683}
3684
6aa8b732
AK
3685static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3686{
3687 ASSERT(vcpu);
62ad0755
SY
3688 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3689 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3690 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3691}
3692
3693int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3694{
3695 destroy_kvm_mmu(vcpu);
f8f7e5ee 3696 return init_kvm_mmu(vcpu);
17c3ba9d 3697}
8668a3c4 3698EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3699
3700int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3701{
714b93da
AK
3702 int r;
3703
e2dec939 3704 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3705 if (r)
3706 goto out;
8986ecc0 3707 r = mmu_alloc_roots(vcpu);
8facbbff 3708 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3709 mmu_sync_roots(vcpu);
aaee2c94 3710 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3711 if (r)
3712 goto out;
3662cb1c 3713 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3714 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3715out:
3716 return r;
6aa8b732 3717}
17c3ba9d
AK
3718EXPORT_SYMBOL_GPL(kvm_mmu_load);
3719
3720void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3721{
3722 mmu_free_roots(vcpu);
3723}
4b16184c 3724EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3725
0028425f 3726static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3727 struct kvm_mmu_page *sp, u64 *spte,
3728 const void *new)
0028425f 3729{
30945387 3730 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3731 ++vcpu->kvm->stat.mmu_pde_zapped;
3732 return;
30945387 3733 }
0028425f 3734
4cee5764 3735 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3736 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3737}
3738
79539cec
AK
3739static bool need_remote_flush(u64 old, u64 new)
3740{
3741 if (!is_shadow_present_pte(old))
3742 return false;
3743 if (!is_shadow_present_pte(new))
3744 return true;
3745 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3746 return true;
3747 old ^= PT64_NX_MASK;
3748 new ^= PT64_NX_MASK;
3749 return (old & ~new & PT64_PERM_MASK) != 0;
3750}
3751
0671a8e7
XG
3752static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3753 bool remote_flush, bool local_flush)
79539cec 3754{
0671a8e7
XG
3755 if (zap_page)
3756 return;
3757
3758 if (remote_flush)
79539cec 3759 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3760 else if (local_flush)
79539cec
AK
3761 kvm_mmu_flush_tlb(vcpu);
3762}
3763
889e5cbc
XG
3764static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3765 const u8 *new, int *bytes)
da4a00f0 3766{
889e5cbc
XG
3767 u64 gentry;
3768 int r;
72016f3a 3769
72016f3a
AK
3770 /*
3771 * Assume that the pte write on a page table of the same type
49b26e26
XG
3772 * as the current vcpu paging mode since we update the sptes only
3773 * when they have the same mode.
72016f3a 3774 */
889e5cbc 3775 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3776 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3777 *gpa &= ~(gpa_t)7;
3778 *bytes = 8;
3779 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3780 if (r)
3781 gentry = 0;
08e850c6
AK
3782 new = (const u8 *)&gentry;
3783 }
3784
889e5cbc 3785 switch (*bytes) {
08e850c6
AK
3786 case 4:
3787 gentry = *(const u32 *)new;
3788 break;
3789 case 8:
3790 gentry = *(const u64 *)new;
3791 break;
3792 default:
3793 gentry = 0;
3794 break;
72016f3a
AK
3795 }
3796
889e5cbc
XG
3797 return gentry;
3798}
3799
3800/*
3801 * If we're seeing too many writes to a page, it may no longer be a page table,
3802 * or we may be forking, in which case it is better to unmap the page.
3803 */
a138fe75 3804static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3805{
a30f47cb
XG
3806 /*
3807 * Skip write-flooding detected for the sp whose level is 1, because
3808 * it can become unsync, then the guest page is not write-protected.
3809 */
f71fa31f 3810 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3811 return false;
3246af0e 3812
a30f47cb 3813 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3814}
3815
3816/*
3817 * Misaligned accesses are too much trouble to fix up; also, they usually
3818 * indicate a page is not used as a page table.
3819 */
3820static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3821 int bytes)
3822{
3823 unsigned offset, pte_size, misaligned;
3824
3825 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3826 gpa, bytes, sp->role.word);
3827
3828 offset = offset_in_page(gpa);
3829 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3830
3831 /*
3832 * Sometimes, the OS only writes the last one bytes to update status
3833 * bits, for example, in linux, andb instruction is used in clear_bit().
3834 */
3835 if (!(offset & (pte_size - 1)) && bytes == 1)
3836 return false;
3837
889e5cbc
XG
3838 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3839 misaligned |= bytes < 4;
3840
3841 return misaligned;
3842}
3843
3844static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3845{
3846 unsigned page_offset, quadrant;
3847 u64 *spte;
3848 int level;
3849
3850 page_offset = offset_in_page(gpa);
3851 level = sp->role.level;
3852 *nspte = 1;
3853 if (!sp->role.cr4_pae) {
3854 page_offset <<= 1; /* 32->64 */
3855 /*
3856 * A 32-bit pde maps 4MB while the shadow pdes map
3857 * only 2MB. So we need to double the offset again
3858 * and zap two pdes instead of one.
3859 */
3860 if (level == PT32_ROOT_LEVEL) {
3861 page_offset &= ~7; /* kill rounding error */
3862 page_offset <<= 1;
3863 *nspte = 2;
3864 }
3865 quadrant = page_offset >> PAGE_SHIFT;
3866 page_offset &= ~PAGE_MASK;
3867 if (quadrant != sp->role.quadrant)
3868 return NULL;
3869 }
3870
3871 spte = &sp->spt[page_offset / sizeof(*spte)];
3872 return spte;
3873}
3874
3875void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3876 const u8 *new, int bytes)
3877{
3878 gfn_t gfn = gpa >> PAGE_SHIFT;
3879 union kvm_mmu_page_role mask = { .word = 0 };
3880 struct kvm_mmu_page *sp;
3881 struct hlist_node *node;
3882 LIST_HEAD(invalid_list);
3883 u64 entry, gentry, *spte;
3884 int npte;
a30f47cb 3885 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3886
3887 /*
3888 * If we don't have indirect shadow pages, it means no page is
3889 * write-protected, so we can exit simply.
3890 */
3891 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3892 return;
3893
3894 zap_page = remote_flush = local_flush = false;
3895
3896 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3897
3898 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3899
3900 /*
3901 * No need to care whether allocation memory is successful
3902 * or not since pte prefetch is skiped if it does not have
3903 * enough objects in the cache.
3904 */
3905 mmu_topup_memory_caches(vcpu);
3906
3907 spin_lock(&vcpu->kvm->mmu_lock);
3908 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3909 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3910
fa1de2bf 3911 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3912 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3913 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3914 detect_write_flooding(sp)) {
0671a8e7 3915 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3916 &invalid_list);
4cee5764 3917 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3918 continue;
3919 }
889e5cbc
XG
3920
3921 spte = get_written_sptes(sp, gpa, &npte);
3922 if (!spte)
3923 continue;
3924
0671a8e7 3925 local_flush = true;
ac1b714e 3926 while (npte--) {
79539cec 3927 entry = *spte;
38e3b2b2 3928 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3929 if (gentry &&
3930 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3931 & mask.word) && rmap_can_add(vcpu))
7c562522 3932 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3933 if (!remote_flush && need_remote_flush(entry, *spte))
3934 remote_flush = true;
ac1b714e 3935 ++spte;
9b7a0325 3936 }
9b7a0325 3937 }
0671a8e7 3938 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3939 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3940 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3941 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3942}
3943
a436036b
AK
3944int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3945{
10589a46
MT
3946 gpa_t gpa;
3947 int r;
a436036b 3948
c5a78f2b 3949 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3950 return 0;
3951
1871c602 3952 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3953
10589a46 3954 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3955
10589a46 3956 return r;
a436036b 3957}
577bdc49 3958EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3959
22d95b12 3960void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3961{
d98ba053 3962 LIST_HEAD(invalid_list);
103ad25a 3963
e0df7b9f 3964 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3965 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3966 struct kvm_mmu_page *sp;
ebeace86 3967
f05e70ac 3968 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3969 struct kvm_mmu_page, link);
e0df7b9f 3970 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3971 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3972 }
aa6bd187 3973 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3974}
ebeace86 3975
1cb3f3ae
XG
3976static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3977{
3978 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3979 return vcpu_match_mmio_gpa(vcpu, addr);
3980
3981 return vcpu_match_mmio_gva(vcpu, addr);
3982}
3983
dc25e89e
AP
3984int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3985 void *insn, int insn_len)
3067714c 3986{
1cb3f3ae 3987 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3988 enum emulation_result er;
3989
56028d08 3990 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3991 if (r < 0)
3992 goto out;
3993
3994 if (!r) {
3995 r = 1;
3996 goto out;
3997 }
3998
1cb3f3ae
XG
3999 if (is_mmio_page_fault(vcpu, cr2))
4000 emulation_type = 0;
4001
4002 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4003
4004 switch (er) {
4005 case EMULATE_DONE:
4006 return 1;
4007 case EMULATE_DO_MMIO:
4008 ++vcpu->stat.mmio_exits;
6d77dbfc 4009 /* fall through */
3067714c 4010 case EMULATE_FAIL:
3f5d18a9 4011 return 0;
3067714c
AK
4012 default:
4013 BUG();
4014 }
4015out:
3067714c
AK
4016 return r;
4017}
4018EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4019
a7052897
MT
4020void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4021{
a7052897 4022 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4023 kvm_mmu_flush_tlb(vcpu);
4024 ++vcpu->stat.invlpg;
4025}
4026EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4027
18552672
JR
4028void kvm_enable_tdp(void)
4029{
4030 tdp_enabled = true;
4031}
4032EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4033
5f4cb662
JR
4034void kvm_disable_tdp(void)
4035{
4036 tdp_enabled = false;
4037}
4038EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4039
6aa8b732
AK
4040static void free_mmu_pages(struct kvm_vcpu *vcpu)
4041{
ad312c7c 4042 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4043 if (vcpu->arch.mmu.lm_root != NULL)
4044 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4045}
4046
4047static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4048{
17ac10ad 4049 struct page *page;
6aa8b732
AK
4050 int i;
4051
4052 ASSERT(vcpu);
4053
17ac10ad
AK
4054 /*
4055 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4056 * Therefore we need to allocate shadow page tables in the first
4057 * 4GB of memory, which happens to fit the DMA32 zone.
4058 */
4059 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4060 if (!page)
d7fa6ab2
WY
4061 return -ENOMEM;
4062
ad312c7c 4063 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4064 for (i = 0; i < 4; ++i)
ad312c7c 4065 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4066
6aa8b732 4067 return 0;
6aa8b732
AK
4068}
4069
8018c27b 4070int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4071{
6aa8b732 4072 ASSERT(vcpu);
e459e322
XG
4073
4074 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4075 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4076 vcpu->arch.mmu.translate_gpa = translate_gpa;
4077 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4078
8018c27b
IM
4079 return alloc_mmu_pages(vcpu);
4080}
6aa8b732 4081
8018c27b
IM
4082int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4083{
4084 ASSERT(vcpu);
ad312c7c 4085 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4086
8018c27b 4087 return init_kvm_mmu(vcpu);
6aa8b732
AK
4088}
4089
90cb0529 4090void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4091{
4db35314 4092 struct kvm_mmu_page *sp;
d13bc5b5 4093 bool flush = false;
6aa8b732 4094
f05e70ac 4095 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
4096 int i;
4097 u64 *pt;
4098
291f26bc 4099 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
4100 continue;
4101
4db35314 4102 pt = sp->spt;
8234b22e 4103 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
4104 if (!is_shadow_present_pte(pt[i]) ||
4105 !is_last_spte(pt[i], sp->role.level))
4106 continue;
4107
49fde340 4108 spte_write_protect(kvm, &pt[i], &flush, false);
8234b22e 4109 }
6aa8b732 4110 }
171d595d 4111 kvm_flush_remote_tlbs(kvm);
6aa8b732 4112}
37a7d8b0 4113
90cb0529 4114void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4115{
4db35314 4116 struct kvm_mmu_page *sp, *node;
d98ba053 4117 LIST_HEAD(invalid_list);
e0fa826f 4118
aaee2c94 4119 spin_lock(&kvm->mmu_lock);
3246af0e 4120restart:
f05e70ac 4121 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4122 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4123 goto restart;
4124
d98ba053 4125 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4126 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4127}
4128
3d56cbdf
JK
4129static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4130 struct list_head *invalid_list)
3ee16c81
IE
4131{
4132 struct kvm_mmu_page *page;
4133
4134 page = container_of(kvm->arch.active_mmu_pages.prev,
4135 struct kvm_mmu_page, link);
3d56cbdf 4136 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4137}
4138
1495f230 4139static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4140{
4141 struct kvm *kvm;
1495f230 4142 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4143
4144 if (nr_to_scan == 0)
4145 goto out;
3ee16c81 4146
e935b837 4147 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4148
4149 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4150 int idx;
d98ba053 4151 LIST_HEAD(invalid_list);
3ee16c81 4152
19526396
GN
4153 /*
4154 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4155 * here. We may skip a VM instance errorneosly, but we do not
4156 * want to shrink a VM that only started to populate its MMU
4157 * anyway.
4158 */
4159 if (kvm->arch.n_used_mmu_pages > 0) {
4160 if (!nr_to_scan--)
4161 break;
4162 continue;
4163 }
4164
f656ce01 4165 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4166 spin_lock(&kvm->mmu_lock);
3ee16c81 4167
19526396 4168 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4169 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4170
3ee16c81 4171 spin_unlock(&kvm->mmu_lock);
f656ce01 4172 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4173
4174 list_move_tail(&kvm->vm_list, &vm_list);
4175 break;
3ee16c81 4176 }
3ee16c81 4177
e935b837 4178 raw_spin_unlock(&kvm_lock);
3ee16c81 4179
45221ab6
DH
4180out:
4181 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4182}
4183
4184static struct shrinker mmu_shrinker = {
4185 .shrink = mmu_shrink,
4186 .seeks = DEFAULT_SEEKS * 10,
4187};
4188
2ddfd20e 4189static void mmu_destroy_caches(void)
b5a33a75 4190{
53c07b18
XG
4191 if (pte_list_desc_cache)
4192 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4193 if (mmu_page_header_cache)
4194 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4195}
4196
4197int kvm_mmu_module_init(void)
4198{
53c07b18
XG
4199 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4200 sizeof(struct pte_list_desc),
20c2df83 4201 0, 0, NULL);
53c07b18 4202 if (!pte_list_desc_cache)
b5a33a75
AK
4203 goto nomem;
4204
d3d25b04
AK
4205 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4206 sizeof(struct kvm_mmu_page),
20c2df83 4207 0, 0, NULL);
d3d25b04
AK
4208 if (!mmu_page_header_cache)
4209 goto nomem;
4210
45bf21a8
WY
4211 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4212 goto nomem;
4213
3ee16c81
IE
4214 register_shrinker(&mmu_shrinker);
4215
b5a33a75
AK
4216 return 0;
4217
4218nomem:
3ee16c81 4219 mmu_destroy_caches();
b5a33a75
AK
4220 return -ENOMEM;
4221}
4222
3ad82a7e
ZX
4223/*
4224 * Caculate mmu pages needed for kvm.
4225 */
4226unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4227{
3ad82a7e
ZX
4228 unsigned int nr_mmu_pages;
4229 unsigned int nr_pages = 0;
bc6678a3 4230 struct kvm_memslots *slots;
be6ba0f0 4231 struct kvm_memory_slot *memslot;
3ad82a7e 4232
90d83dc3
LJ
4233 slots = kvm_memslots(kvm);
4234
be6ba0f0
XG
4235 kvm_for_each_memslot(memslot, slots)
4236 nr_pages += memslot->npages;
3ad82a7e
ZX
4237
4238 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4239 nr_mmu_pages = max(nr_mmu_pages,
4240 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4241
4242 return nr_mmu_pages;
4243}
4244
94d8b056
MT
4245int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4246{
4247 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4248 u64 spte;
94d8b056
MT
4249 int nr_sptes = 0;
4250
c2a2ac2b
XG
4251 walk_shadow_page_lockless_begin(vcpu);
4252 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4253 sptes[iterator.level-1] = spte;
94d8b056 4254 nr_sptes++;
c2a2ac2b 4255 if (!is_shadow_present_pte(spte))
94d8b056
MT
4256 break;
4257 }
c2a2ac2b 4258 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4259
4260 return nr_sptes;
4261}
4262EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4263
c42fffe3
XG
4264void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4265{
4266 ASSERT(vcpu);
4267
4268 destroy_kvm_mmu(vcpu);
4269 free_mmu_pages(vcpu);
4270 mmu_free_memory_caches(vcpu);
b034cf01
XG
4271}
4272
b034cf01
XG
4273void kvm_mmu_module_exit(void)
4274{
4275 mmu_destroy_caches();
4276 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4277 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4278 mmu_audit_disable();
4279}