]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: abstract spte write-protect
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
1403283a
IE
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
135f8c2b
AK
150#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
220f773a
TY
152/* make pte_list_desc fit well in cache line */
153#define PTE_LIST_EXT 3
154
53c07b18
XG
155struct pte_list_desc {
156 u64 *sptes[PTE_LIST_EXT];
157 struct pte_list_desc *more;
cd4a4e53
AK
158};
159
2d11123a
AK
160struct kvm_shadow_walk_iterator {
161 u64 addr;
162 hpa_t shadow_addr;
2d11123a 163 u64 *sptep;
dd3bfd59 164 int level;
2d11123a
AK
165 unsigned index;
166};
167
168#define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
c2a2ac2b
XG
173#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
178
53c07b18 179static struct kmem_cache *pte_list_desc_cache;
d3d25b04 180static struct kmem_cache *mmu_page_header_cache;
45221ab6 181static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 182
7b52345e
SY
183static u64 __read_mostly shadow_nx_mask;
184static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185static u64 __read_mostly shadow_user_mask;
186static u64 __read_mostly shadow_accessed_mask;
187static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
188static u64 __read_mostly shadow_mmio_mask;
189
190static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 191static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
192
193void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
194{
195 shadow_mmio_mask = mmio_mask;
196}
197EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
198
199static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
200{
201 access &= ACC_WRITE_MASK | ACC_USER_MASK;
202
4f022648 203 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
204 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
205}
206
207static bool is_mmio_spte(u64 spte)
208{
209 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
210}
211
212static gfn_t get_mmio_spte_gfn(u64 spte)
213{
214 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
215}
216
217static unsigned get_mmio_spte_access(u64 spte)
218{
219 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
220}
221
222static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
223{
224 if (unlikely(is_noslot_pfn(pfn))) {
225 mark_mmio_spte(sptep, gfn, access);
226 return true;
227 }
228
229 return false;
230}
c7addb90 231
82725b20
DE
232static inline u64 rsvd_bits(int s, int e)
233{
234 return ((1ULL << (e - s + 1)) - 1) << s;
235}
236
7b52345e 237void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 238 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
239{
240 shadow_user_mask = user_mask;
241 shadow_accessed_mask = accessed_mask;
242 shadow_dirty_mask = dirty_mask;
243 shadow_nx_mask = nx_mask;
244 shadow_x_mask = x_mask;
245}
246EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
247
6aa8b732
AK
248static int is_cpuid_PSE36(void)
249{
250 return 1;
251}
252
73b1087e
AK
253static int is_nx(struct kvm_vcpu *vcpu)
254{
f6801dff 255 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
256}
257
c7addb90
AK
258static int is_shadow_present_pte(u64 pte)
259{
ce88decf 260 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
261}
262
05da4558
MT
263static int is_large_pte(u64 pte)
264{
265 return pte & PT_PAGE_SIZE_MASK;
266}
267
43a3795a 268static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 269{
439e218a 270 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
271}
272
43a3795a 273static int is_rmap_spte(u64 pte)
cd4a4e53 274{
4b1a80fa 275 return is_shadow_present_pte(pte);
cd4a4e53
AK
276}
277
776e6633
MT
278static int is_last_spte(u64 pte, int level)
279{
280 if (level == PT_PAGE_TABLE_LEVEL)
281 return 1;
852e3c19 282 if (is_large_pte(pte))
776e6633
MT
283 return 1;
284 return 0;
285}
286
35149e21 287static pfn_t spte_to_pfn(u64 pte)
0b49ea86 288{
35149e21 289 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
290}
291
da928521
AK
292static gfn_t pse36_gfn_delta(u32 gpte)
293{
294 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
295
296 return (gpte & PT32_DIR_PSE36_MASK) << shift;
297}
298
603e0651 299#ifdef CONFIG_X86_64
d555c333 300static void __set_spte(u64 *sptep, u64 spte)
e663ee64 301{
603e0651 302 *sptep = spte;
e663ee64
AK
303}
304
603e0651 305static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 306{
603e0651
XG
307 *sptep = spte;
308}
309
310static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
311{
312 return xchg(sptep, spte);
313}
c2a2ac2b
XG
314
315static u64 __get_spte_lockless(u64 *sptep)
316{
317 return ACCESS_ONCE(*sptep);
318}
ce88decf
XG
319
320static bool __check_direct_spte_mmio_pf(u64 spte)
321{
322 /* It is valid if the spte is zapped. */
323 return spte == 0ull;
324}
a9221dd5 325#else
603e0651
XG
326union split_spte {
327 struct {
328 u32 spte_low;
329 u32 spte_high;
330 };
331 u64 spte;
332};
a9221dd5 333
c2a2ac2b
XG
334static void count_spte_clear(u64 *sptep, u64 spte)
335{
336 struct kvm_mmu_page *sp = page_header(__pa(sptep));
337
338 if (is_shadow_present_pte(spte))
339 return;
340
341 /* Ensure the spte is completely set before we increase the count */
342 smp_wmb();
343 sp->clear_spte_count++;
344}
345
603e0651
XG
346static void __set_spte(u64 *sptep, u64 spte)
347{
348 union split_spte *ssptep, sspte;
a9221dd5 349
603e0651
XG
350 ssptep = (union split_spte *)sptep;
351 sspte = (union split_spte)spte;
352
353 ssptep->spte_high = sspte.spte_high;
354
355 /*
356 * If we map the spte from nonpresent to present, We should store
357 * the high bits firstly, then set present bit, so cpu can not
358 * fetch this spte while we are setting the spte.
359 */
360 smp_wmb();
361
362 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
363}
364
603e0651
XG
365static void __update_clear_spte_fast(u64 *sptep, u64 spte)
366{
367 union split_spte *ssptep, sspte;
368
369 ssptep = (union split_spte *)sptep;
370 sspte = (union split_spte)spte;
371
372 ssptep->spte_low = sspte.spte_low;
373
374 /*
375 * If we map the spte from present to nonpresent, we should clear
376 * present bit firstly to avoid vcpu fetch the old high bits.
377 */
378 smp_wmb();
379
380 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 381 count_spte_clear(sptep, spte);
603e0651
XG
382}
383
384static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
385{
386 union split_spte *ssptep, sspte, orig;
387
388 ssptep = (union split_spte *)sptep;
389 sspte = (union split_spte)spte;
390
391 /* xchg acts as a barrier before the setting of the high bits */
392 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
393 orig.spte_high = ssptep->spte_high;
394 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 395 count_spte_clear(sptep, spte);
603e0651
XG
396
397 return orig.spte;
398}
c2a2ac2b
XG
399
400/*
401 * The idea using the light way get the spte on x86_32 guest is from
402 * gup_get_pte(arch/x86/mm/gup.c).
403 * The difference is we can not catch the spte tlb flush if we leave
404 * guest mode, so we emulate it by increase clear_spte_count when spte
405 * is cleared.
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
409 struct kvm_mmu_page *sp = page_header(__pa(sptep));
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
ce88decf
XG
429
430static bool __check_direct_spte_mmio_pf(u64 spte)
431{
432 union split_spte sspte = (union split_spte)spte;
433 u32 high_mmio_mask = shadow_mmio_mask >> 32;
434
435 /* It is valid if the spte is zapped. */
436 if (spte == 0ull)
437 return true;
438
439 /* It is valid if the spte is being zapped. */
440 if (sspte.spte_low == 0ull &&
441 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
442 return true;
443
444 return false;
445}
603e0651
XG
446#endif
447
8672b721
XG
448static bool spte_has_volatile_bits(u64 spte)
449{
450 if (!shadow_accessed_mask)
451 return false;
452
453 if (!is_shadow_present_pte(spte))
454 return false;
455
4132779b
XG
456 if ((spte & shadow_accessed_mask) &&
457 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
458 return false;
459
460 return true;
461}
462
4132779b
XG
463static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
464{
465 return (old_spte & bit_mask) && !(new_spte & bit_mask);
466}
467
1df9f2dc
XG
468/* Rules for using mmu_spte_set:
469 * Set the sptep from nonpresent to present.
470 * Note: the sptep being assigned *must* be either not present
471 * or in a state where the hardware will not attempt to update
472 * the spte.
473 */
474static void mmu_spte_set(u64 *sptep, u64 new_spte)
475{
476 WARN_ON(is_shadow_present_pte(*sptep));
477 __set_spte(sptep, new_spte);
478}
479
480/* Rules for using mmu_spte_update:
481 * Update the state bits, it means the mapped pfn is not changged.
482 */
483static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 484{
4132779b
XG
485 u64 mask, old_spte = *sptep;
486
487 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 488
1df9f2dc
XG
489 if (!is_shadow_present_pte(old_spte))
490 return mmu_spte_set(sptep, new_spte);
491
4132779b
XG
492 new_spte |= old_spte & shadow_dirty_mask;
493
494 mask = shadow_accessed_mask;
495 if (is_writable_pte(old_spte))
496 mask |= shadow_dirty_mask;
497
498 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 499 __update_clear_spte_fast(sptep, new_spte);
4132779b 500 else
603e0651 501 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
502
503 if (!shadow_accessed_mask)
504 return;
505
506 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
507 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
508 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
509 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
510}
511
1df9f2dc
XG
512/*
513 * Rules for using mmu_spte_clear_track_bits:
514 * It sets the sptep from present to nonpresent, and track the
515 * state bits, it is used to clear the last level sptep.
516 */
517static int mmu_spte_clear_track_bits(u64 *sptep)
518{
519 pfn_t pfn;
520 u64 old_spte = *sptep;
521
522 if (!spte_has_volatile_bits(old_spte))
603e0651 523 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 524 else
603e0651 525 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
526
527 if (!is_rmap_spte(old_spte))
528 return 0;
529
530 pfn = spte_to_pfn(old_spte);
531 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
532 kvm_set_pfn_accessed(pfn);
533 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
534 kvm_set_pfn_dirty(pfn);
535 return 1;
536}
537
538/*
539 * Rules for using mmu_spte_clear_no_track:
540 * Directly clear spte without caring the state bits of sptep,
541 * it is used to set the upper level spte.
542 */
543static void mmu_spte_clear_no_track(u64 *sptep)
544{
603e0651 545 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
546}
547
c2a2ac2b
XG
548static u64 mmu_spte_get_lockless(u64 *sptep)
549{
550 return __get_spte_lockless(sptep);
551}
552
553static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
554{
c142786c
AK
555 /*
556 * Prevent page table teardown by making any free-er wait during
557 * kvm_flush_remote_tlbs() IPI to all active vcpus.
558 */
559 local_irq_disable();
560 vcpu->mode = READING_SHADOW_PAGE_TABLES;
561 /*
562 * Make sure a following spte read is not reordered ahead of the write
563 * to vcpu->mode.
564 */
565 smp_mb();
c2a2ac2b
XG
566}
567
568static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
569{
c142786c
AK
570 /*
571 * Make sure the write to vcpu->mode is not reordered in front of
572 * reads to sptes. If it does, kvm_commit_zap_page() can see us
573 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
574 */
575 smp_mb();
576 vcpu->mode = OUTSIDE_GUEST_MODE;
577 local_irq_enable();
c2a2ac2b
XG
578}
579
e2dec939 580static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 581 struct kmem_cache *base_cache, int min)
714b93da
AK
582{
583 void *obj;
584
585 if (cache->nobjs >= min)
e2dec939 586 return 0;
714b93da 587 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 588 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 589 if (!obj)
e2dec939 590 return -ENOMEM;
714b93da
AK
591 cache->objects[cache->nobjs++] = obj;
592 }
e2dec939 593 return 0;
714b93da
AK
594}
595
f759e2b4
XG
596static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
597{
598 return cache->nobjs;
599}
600
e8ad9a70
XG
601static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
602 struct kmem_cache *cache)
714b93da
AK
603{
604 while (mc->nobjs)
e8ad9a70 605 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
606}
607
c1158e63 608static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 609 int min)
c1158e63 610{
842f22ed 611 void *page;
c1158e63
AK
612
613 if (cache->nobjs >= min)
614 return 0;
615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 616 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
617 if (!page)
618 return -ENOMEM;
842f22ed 619 cache->objects[cache->nobjs++] = page;
c1158e63
AK
620 }
621 return 0;
622}
623
624static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
625{
626 while (mc->nobjs)
c4d198d5 627 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
628}
629
2e3e5882 630static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 631{
e2dec939
AK
632 int r;
633
53c07b18 634 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 635 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
636 if (r)
637 goto out;
ad312c7c 638 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
639 if (r)
640 goto out;
ad312c7c 641 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 642 mmu_page_header_cache, 4);
e2dec939
AK
643out:
644 return r;
714b93da
AK
645}
646
647static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
648{
53c07b18
XG
649 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
650 pte_list_desc_cache);
ad312c7c 651 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
652 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
653 mmu_page_header_cache);
714b93da
AK
654}
655
80feb89a 656static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
657{
658 void *p;
659
660 BUG_ON(!mc->nobjs);
661 p = mc->objects[--mc->nobjs];
714b93da
AK
662 return p;
663}
664
53c07b18 665static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 666{
80feb89a 667 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
668}
669
53c07b18 670static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 671{
53c07b18 672 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
673}
674
2032a93d
LJ
675static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
676{
677 if (!sp->role.direct)
678 return sp->gfns[index];
679
680 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
681}
682
683static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
684{
685 if (sp->role.direct)
686 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
687 else
688 sp->gfns[index] = gfn;
689}
690
05da4558 691/*
d4dbf470
TY
692 * Return the pointer to the large page information for a given gfn,
693 * handling slots that are not large page aligned.
05da4558 694 */
d4dbf470
TY
695static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
696 struct kvm_memory_slot *slot,
697 int level)
05da4558
MT
698{
699 unsigned long idx;
700
fb03cb6f 701 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 702 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
703}
704
705static void account_shadowed(struct kvm *kvm, gfn_t gfn)
706{
d25797b2 707 struct kvm_memory_slot *slot;
d4dbf470 708 struct kvm_lpage_info *linfo;
d25797b2 709 int i;
05da4558 710
a1f4d395 711 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
712 for (i = PT_DIRECTORY_LEVEL;
713 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
714 linfo = lpage_info_slot(gfn, slot, i);
715 linfo->write_count += 1;
d25797b2 716 }
332b207d 717 kvm->arch.indirect_shadow_pages++;
05da4558
MT
718}
719
720static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
721{
d25797b2 722 struct kvm_memory_slot *slot;
d4dbf470 723 struct kvm_lpage_info *linfo;
d25797b2 724 int i;
05da4558 725
a1f4d395 726 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
727 for (i = PT_DIRECTORY_LEVEL;
728 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
729 linfo = lpage_info_slot(gfn, slot, i);
730 linfo->write_count -= 1;
731 WARN_ON(linfo->write_count < 0);
d25797b2 732 }
332b207d 733 kvm->arch.indirect_shadow_pages--;
05da4558
MT
734}
735
d25797b2
JR
736static int has_wrprotected_page(struct kvm *kvm,
737 gfn_t gfn,
738 int level)
05da4558 739{
2843099f 740 struct kvm_memory_slot *slot;
d4dbf470 741 struct kvm_lpage_info *linfo;
05da4558 742
a1f4d395 743 slot = gfn_to_memslot(kvm, gfn);
05da4558 744 if (slot) {
d4dbf470
TY
745 linfo = lpage_info_slot(gfn, slot, level);
746 return linfo->write_count;
05da4558
MT
747 }
748
749 return 1;
750}
751
d25797b2 752static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 753{
8f0b1ab6 754 unsigned long page_size;
d25797b2 755 int i, ret = 0;
05da4558 756
8f0b1ab6 757 page_size = kvm_host_page_size(kvm, gfn);
05da4558 758
d25797b2
JR
759 for (i = PT_PAGE_TABLE_LEVEL;
760 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
761 if (page_size >= KVM_HPAGE_SIZE(i))
762 ret = i;
763 else
764 break;
765 }
766
4c2155ce 767 return ret;
05da4558
MT
768}
769
5d163b1c
XG
770static struct kvm_memory_slot *
771gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
772 bool no_dirty_log)
05da4558
MT
773{
774 struct kvm_memory_slot *slot;
5d163b1c
XG
775
776 slot = gfn_to_memslot(vcpu->kvm, gfn);
777 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
778 (no_dirty_log && slot->dirty_bitmap))
779 slot = NULL;
780
781 return slot;
782}
783
784static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
785{
a0a8eaba 786 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
787}
788
789static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
790{
791 int host_level, level, max_level;
05da4558 792
d25797b2
JR
793 host_level = host_mapping_level(vcpu->kvm, large_gfn);
794
795 if (host_level == PT_PAGE_TABLE_LEVEL)
796 return host_level;
797
878403b7
SY
798 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
799 kvm_x86_ops->get_lpage_level() : host_level;
800
801 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
802 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
803 break;
d25797b2
JR
804
805 return level - 1;
05da4558
MT
806}
807
290fc38d 808/*
53c07b18 809 * Pte mapping structures:
cd4a4e53 810 *
53c07b18 811 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 812 *
53c07b18
XG
813 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
814 * pte_list_desc containing more mappings.
53a27b39 815 *
53c07b18 816 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
817 * the spte was not added.
818 *
cd4a4e53 819 */
53c07b18
XG
820static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
821 unsigned long *pte_list)
cd4a4e53 822{
53c07b18 823 struct pte_list_desc *desc;
53a27b39 824 int i, count = 0;
cd4a4e53 825
53c07b18
XG
826 if (!*pte_list) {
827 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
828 *pte_list = (unsigned long)spte;
829 } else if (!(*pte_list & 1)) {
830 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
831 desc = mmu_alloc_pte_list_desc(vcpu);
832 desc->sptes[0] = (u64 *)*pte_list;
d555c333 833 desc->sptes[1] = spte;
53c07b18 834 *pte_list = (unsigned long)desc | 1;
cb16a7b3 835 ++count;
cd4a4e53 836 } else {
53c07b18
XG
837 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
838 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
839 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 840 desc = desc->more;
53c07b18 841 count += PTE_LIST_EXT;
53a27b39 842 }
53c07b18
XG
843 if (desc->sptes[PTE_LIST_EXT-1]) {
844 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
845 desc = desc->more;
846 }
d555c333 847 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 848 ++count;
d555c333 849 desc->sptes[i] = spte;
cd4a4e53 850 }
53a27b39 851 return count;
cd4a4e53
AK
852}
853
53c07b18
XG
854static void
855pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
856 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
857{
858 int j;
859
53c07b18 860 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 861 ;
d555c333
AK
862 desc->sptes[i] = desc->sptes[j];
863 desc->sptes[j] = NULL;
cd4a4e53
AK
864 if (j != 0)
865 return;
866 if (!prev_desc && !desc->more)
53c07b18 867 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
868 else
869 if (prev_desc)
870 prev_desc->more = desc->more;
871 else
53c07b18
XG
872 *pte_list = (unsigned long)desc->more | 1;
873 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
874}
875
53c07b18 876static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 877{
53c07b18
XG
878 struct pte_list_desc *desc;
879 struct pte_list_desc *prev_desc;
cd4a4e53
AK
880 int i;
881
53c07b18
XG
882 if (!*pte_list) {
883 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 884 BUG();
53c07b18
XG
885 } else if (!(*pte_list & 1)) {
886 rmap_printk("pte_list_remove: %p 1->0\n", spte);
887 if ((u64 *)*pte_list != spte) {
888 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
889 BUG();
890 }
53c07b18 891 *pte_list = 0;
cd4a4e53 892 } else {
53c07b18
XG
893 rmap_printk("pte_list_remove: %p many->many\n", spte);
894 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
895 prev_desc = NULL;
896 while (desc) {
53c07b18 897 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 898 if (desc->sptes[i] == spte) {
53c07b18 899 pte_list_desc_remove_entry(pte_list,
714b93da 900 desc, i,
cd4a4e53
AK
901 prev_desc);
902 return;
903 }
904 prev_desc = desc;
905 desc = desc->more;
906 }
53c07b18 907 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
908 BUG();
909 }
910}
911
67052b35
XG
912typedef void (*pte_list_walk_fn) (u64 *spte);
913static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
914{
915 struct pte_list_desc *desc;
916 int i;
917
918 if (!*pte_list)
919 return;
920
921 if (!(*pte_list & 1))
922 return fn((u64 *)*pte_list);
923
924 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
925 while (desc) {
926 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
927 fn(desc->sptes[i]);
928 desc = desc->more;
929 }
930}
931
9373e2c0 932static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 933 struct kvm_memory_slot *slot)
53c07b18 934{
53c07b18
XG
935 struct kvm_lpage_info *linfo;
936
53c07b18
XG
937 if (likely(level == PT_PAGE_TABLE_LEVEL))
938 return &slot->rmap[gfn - slot->base_gfn];
939
940 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
941 return &linfo->rmap_pde;
942}
943
9b9b1492
TY
944/*
945 * Take gfn and return the reverse mapping to it.
946 */
947static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
948{
949 struct kvm_memory_slot *slot;
950
951 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 952 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
953}
954
f759e2b4
XG
955static bool rmap_can_add(struct kvm_vcpu *vcpu)
956{
957 struct kvm_mmu_memory_cache *cache;
958
959 cache = &vcpu->arch.mmu_pte_list_desc_cache;
960 return mmu_memory_cache_free_objects(cache);
961}
962
53c07b18
XG
963static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
964{
965 struct kvm_mmu_page *sp;
966 unsigned long *rmapp;
967
53c07b18
XG
968 sp = page_header(__pa(spte));
969 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
970 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
971 return pte_list_add(vcpu, spte, rmapp);
972}
973
53c07b18
XG
974static void rmap_remove(struct kvm *kvm, u64 *spte)
975{
976 struct kvm_mmu_page *sp;
977 gfn_t gfn;
978 unsigned long *rmapp;
979
980 sp = page_header(__pa(spte));
981 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
982 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
983 pte_list_remove(spte, rmapp);
984}
985
1e3f42f0
TY
986/*
987 * Used by the following functions to iterate through the sptes linked by a
988 * rmap. All fields are private and not assumed to be used outside.
989 */
990struct rmap_iterator {
991 /* private fields */
992 struct pte_list_desc *desc; /* holds the sptep if not NULL */
993 int pos; /* index of the sptep */
994};
995
996/*
997 * Iteration must be started by this function. This should also be used after
998 * removing/dropping sptes from the rmap link because in such cases the
999 * information in the itererator may not be valid.
1000 *
1001 * Returns sptep if found, NULL otherwise.
1002 */
1003static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1004{
1005 if (!rmap)
1006 return NULL;
1007
1008 if (!(rmap & 1)) {
1009 iter->desc = NULL;
1010 return (u64 *)rmap;
1011 }
1012
1013 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1014 iter->pos = 0;
1015 return iter->desc->sptes[iter->pos];
1016}
1017
1018/*
1019 * Must be used with a valid iterator: e.g. after rmap_get_first().
1020 *
1021 * Returns sptep if found, NULL otherwise.
1022 */
1023static u64 *rmap_get_next(struct rmap_iterator *iter)
1024{
1025 if (iter->desc) {
1026 if (iter->pos < PTE_LIST_EXT - 1) {
1027 u64 *sptep;
1028
1029 ++iter->pos;
1030 sptep = iter->desc->sptes[iter->pos];
1031 if (sptep)
1032 return sptep;
1033 }
1034
1035 iter->desc = iter->desc->more;
1036
1037 if (iter->desc) {
1038 iter->pos = 0;
1039 /* desc->sptes[0] cannot be NULL */
1040 return iter->desc->sptes[iter->pos];
1041 }
1042 }
1043
1044 return NULL;
1045}
1046
c3707958 1047static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1048{
1df9f2dc 1049 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1050 rmap_remove(kvm, sptep);
be38d276
AK
1051}
1052
d13bc5b5
XG
1053/* Return true if the spte is dropped. */
1054static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush)
1055{
1056 u64 spte = *sptep;
1057
1058 if (!is_writable_pte(spte))
1059 return false;
1060
1061 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1062
1063 *flush |= true;
1064 if (is_large_pte(spte)) {
1065 WARN_ON(page_header(__pa(sptep))->role.level ==
1066 PT_PAGE_TABLE_LEVEL);
1067 drop_spte(kvm, sptep);
1068 --kvm->stat.lpages;
1069 return true;
1070 }
1071
1072 spte = spte & ~PT_WRITABLE_MASK;
1073 mmu_spte_update(sptep, spte);
1074 return false;
1075}
1076
2f84569f
XG
1077static bool
1078__rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
98348e95 1079{
1e3f42f0
TY
1080 u64 *sptep;
1081 struct rmap_iterator iter;
d13bc5b5 1082 bool flush = false;
374cbac0 1083
1e3f42f0
TY
1084 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1085 BUG_ON(!(*sptep & PT_PRESENT_MASK));
d13bc5b5 1086 if (spte_write_protect(kvm, sptep, &flush)) {
1e3f42f0 1087 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1088 continue;
caa5b8a5 1089 }
a0ed4607 1090
d13bc5b5 1091 sptep = rmap_get_next(&iter);
374cbac0 1092 }
855149aa 1093
d13bc5b5 1094 return flush;
a0ed4607
TY
1095}
1096
5dc99b23
TY
1097/**
1098 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1099 * @kvm: kvm instance
1100 * @slot: slot to protect
1101 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1102 * @mask: indicates which pages we should protect
1103 *
1104 * Used when we do not need to care about huge page mappings: e.g. during dirty
1105 * logging we do not have any such mappings.
1106 */
1107void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1108 struct kvm_memory_slot *slot,
1109 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1110{
1111 unsigned long *rmapp;
a0ed4607 1112
5dc99b23
TY
1113 while (mask) {
1114 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1115 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
05da4558 1116
5dc99b23
TY
1117 /* clear the first set bit */
1118 mask &= mask - 1;
1119 }
374cbac0
AK
1120}
1121
2f84569f 1122static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1123{
1124 struct kvm_memory_slot *slot;
5dc99b23
TY
1125 unsigned long *rmapp;
1126 int i;
2f84569f 1127 bool write_protected = false;
95d4c16c
TY
1128
1129 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1130
1131 for (i = PT_PAGE_TABLE_LEVEL;
1132 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1133 rmapp = __gfn_to_rmap(gfn, i, slot);
1134 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1135 }
1136
1137 return write_protected;
95d4c16c
TY
1138}
1139
8a8365c5
FD
1140static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1141 unsigned long data)
e930bffe 1142{
1e3f42f0
TY
1143 u64 *sptep;
1144 struct rmap_iterator iter;
e930bffe
AA
1145 int need_tlb_flush = 0;
1146
1e3f42f0
TY
1147 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1148 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1149 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1150
1151 drop_spte(kvm, sptep);
e930bffe
AA
1152 need_tlb_flush = 1;
1153 }
1e3f42f0 1154
e930bffe
AA
1155 return need_tlb_flush;
1156}
1157
8a8365c5
FD
1158static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1159 unsigned long data)
3da0dd43 1160{
1e3f42f0
TY
1161 u64 *sptep;
1162 struct rmap_iterator iter;
3da0dd43 1163 int need_flush = 0;
1e3f42f0 1164 u64 new_spte;
3da0dd43
IE
1165 pte_t *ptep = (pte_t *)data;
1166 pfn_t new_pfn;
1167
1168 WARN_ON(pte_huge(*ptep));
1169 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1170
1171 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1172 BUG_ON(!is_shadow_present_pte(*sptep));
1173 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1174
3da0dd43 1175 need_flush = 1;
1e3f42f0 1176
3da0dd43 1177 if (pte_write(*ptep)) {
1e3f42f0
TY
1178 drop_spte(kvm, sptep);
1179 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1180 } else {
1e3f42f0 1181 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1182 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1183
1184 new_spte &= ~PT_WRITABLE_MASK;
1185 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1186 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1187
1188 mmu_spte_clear_track_bits(sptep);
1189 mmu_spte_set(sptep, new_spte);
1190 sptep = rmap_get_next(&iter);
3da0dd43
IE
1191 }
1192 }
1e3f42f0 1193
3da0dd43
IE
1194 if (need_flush)
1195 kvm_flush_remote_tlbs(kvm);
1196
1197 return 0;
1198}
1199
8a8365c5
FD
1200static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1201 unsigned long data,
3da0dd43 1202 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1203 unsigned long data))
e930bffe 1204{
be6ba0f0 1205 int j;
90bb6fc5 1206 int ret;
e930bffe 1207 int retval = 0;
bc6678a3 1208 struct kvm_memslots *slots;
be6ba0f0 1209 struct kvm_memory_slot *memslot;
bc6678a3 1210
90d83dc3 1211 slots = kvm_memslots(kvm);
e930bffe 1212
be6ba0f0 1213 kvm_for_each_memslot(memslot, slots) {
e930bffe
AA
1214 unsigned long start = memslot->userspace_addr;
1215 unsigned long end;
1216
e930bffe
AA
1217 end = start + (memslot->npages << PAGE_SHIFT);
1218 if (hva >= start && hva < end) {
1219 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1220 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1221
90bb6fc5 1222 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1223
1224 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1225 struct kvm_lpage_info *linfo;
1226
1227 linfo = lpage_info_slot(gfn, memslot,
1228 PT_DIRECTORY_LEVEL + j);
1229 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1230 }
90bb6fc5
AK
1231 trace_kvm_age_page(hva, memslot, ret);
1232 retval |= ret;
e930bffe
AA
1233 }
1234 }
1235
1236 return retval;
1237}
1238
1239int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1240{
3da0dd43
IE
1241 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1242}
1243
1244void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1245{
8a8365c5 1246 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1247}
1248
8a8365c5
FD
1249static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1250 unsigned long data)
e930bffe 1251{
1e3f42f0 1252 u64 *sptep;
79f702a6 1253 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1254 int young = 0;
1255
6316e1c8 1256 /*
3f6d8c8a
XH
1257 * In case of absence of EPT Access and Dirty Bits supports,
1258 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1259 * an EPT mapping, and clearing it if it does. On the next access,
1260 * a new EPT mapping will be established.
1261 * This has some overhead, but not as much as the cost of swapping
1262 * out actively used pages or breaking up actively used hugepages.
1263 */
534e38b4 1264 if (!shadow_accessed_mask)
6316e1c8 1265 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1266
1e3f42f0
TY
1267 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1268 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1269 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1270
3f6d8c8a 1271 if (*sptep & shadow_accessed_mask) {
e930bffe 1272 young = 1;
3f6d8c8a
XH
1273 clear_bit((ffs(shadow_accessed_mask) - 1),
1274 (unsigned long *)sptep);
e930bffe 1275 }
e930bffe 1276 }
1e3f42f0 1277
e930bffe
AA
1278 return young;
1279}
1280
8ee53820
AA
1281static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1282 unsigned long data)
1283{
1e3f42f0
TY
1284 u64 *sptep;
1285 struct rmap_iterator iter;
8ee53820
AA
1286 int young = 0;
1287
1288 /*
1289 * If there's no access bit in the secondary pte set by the
1290 * hardware it's up to gup-fast/gup to set the access bit in
1291 * the primary pte or in the page structure.
1292 */
1293 if (!shadow_accessed_mask)
1294 goto out;
1295
1e3f42f0
TY
1296 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1297 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1298 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1299
3f6d8c8a 1300 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1301 young = 1;
1302 break;
1303 }
8ee53820
AA
1304 }
1305out:
1306 return young;
1307}
1308
53a27b39
MT
1309#define RMAP_RECYCLE_THRESHOLD 1000
1310
852e3c19 1311static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1312{
1313 unsigned long *rmapp;
852e3c19
JR
1314 struct kvm_mmu_page *sp;
1315
1316 sp = page_header(__pa(spte));
53a27b39 1317
852e3c19 1318 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1319
3da0dd43 1320 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1321 kvm_flush_remote_tlbs(vcpu->kvm);
1322}
1323
e930bffe
AA
1324int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1325{
3da0dd43 1326 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1327}
1328
8ee53820
AA
1329int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1330{
1331 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1332}
1333
d6c69ee9 1334#ifdef MMU_DEBUG
47ad8e68 1335static int is_empty_shadow_page(u64 *spt)
6aa8b732 1336{
139bdb2d
AK
1337 u64 *pos;
1338 u64 *end;
1339
47ad8e68 1340 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1341 if (is_shadow_present_pte(*pos)) {
b8688d51 1342 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1343 pos, *pos);
6aa8b732 1344 return 0;
139bdb2d 1345 }
6aa8b732
AK
1346 return 1;
1347}
d6c69ee9 1348#endif
6aa8b732 1349
45221ab6
DH
1350/*
1351 * This value is the sum of all of the kvm instances's
1352 * kvm->arch.n_used_mmu_pages values. We need a global,
1353 * aggregate version in order to make the slab shrinker
1354 * faster
1355 */
1356static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1357{
1358 kvm->arch.n_used_mmu_pages += nr;
1359 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1360}
1361
bd4c86ea
XG
1362/*
1363 * Remove the sp from shadow page cache, after call it,
1364 * we can not find this sp from the cache, and the shadow
1365 * page table is still valid.
1366 * It should be under the protection of mmu lock.
1367 */
1368static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1369{
4db35314 1370 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1371 hlist_del(&sp->hash_link);
2032a93d 1372 if (!sp->role.direct)
842f22ed 1373 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1374}
1375
1376/*
1377 * Free the shadow page table and the sp, we can do it
1378 * out of the protection of mmu lock.
1379 */
1380static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1381{
1382 list_del(&sp->link);
1383 free_page((unsigned long)sp->spt);
e8ad9a70 1384 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1385}
1386
cea0f0e7
AK
1387static unsigned kvm_page_table_hashfn(gfn_t gfn)
1388{
1ae0a13d 1389 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1390}
1391
714b93da 1392static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1393 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1394{
cea0f0e7
AK
1395 if (!parent_pte)
1396 return;
cea0f0e7 1397
67052b35 1398 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1399}
1400
4db35314 1401static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1402 u64 *parent_pte)
1403{
67052b35 1404 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1405}
1406
bcdd9a93
XG
1407static void drop_parent_pte(struct kvm_mmu_page *sp,
1408 u64 *parent_pte)
1409{
1410 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1411 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1412}
1413
67052b35
XG
1414static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1415 u64 *parent_pte, int direct)
ad8cfbe3 1416{
67052b35 1417 struct kvm_mmu_page *sp;
80feb89a
TY
1418 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1419 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1420 if (!direct)
80feb89a 1421 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1422 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1423 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1424 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1425 sp->parent_ptes = 0;
1426 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1427 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1428 return sp;
ad8cfbe3
MT
1429}
1430
67052b35 1431static void mark_unsync(u64 *spte);
1047df1f 1432static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1433{
67052b35 1434 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1435}
1436
67052b35 1437static void mark_unsync(u64 *spte)
0074ff63 1438{
67052b35 1439 struct kvm_mmu_page *sp;
1047df1f 1440 unsigned int index;
0074ff63 1441
67052b35 1442 sp = page_header(__pa(spte));
1047df1f
XG
1443 index = spte - sp->spt;
1444 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1445 return;
1047df1f 1446 if (sp->unsync_children++)
0074ff63 1447 return;
1047df1f 1448 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1449}
1450
e8bc217a 1451static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1452 struct kvm_mmu_page *sp)
e8bc217a
MT
1453{
1454 return 1;
1455}
1456
a7052897
MT
1457static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1458{
1459}
1460
0f53b5b1
XG
1461static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1462 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1463 const void *pte)
0f53b5b1
XG
1464{
1465 WARN_ON(1);
1466}
1467
60c8aec6
MT
1468#define KVM_PAGE_ARRAY_NR 16
1469
1470struct kvm_mmu_pages {
1471 struct mmu_page_and_offset {
1472 struct kvm_mmu_page *sp;
1473 unsigned int idx;
1474 } page[KVM_PAGE_ARRAY_NR];
1475 unsigned int nr;
1476};
1477
cded19f3
HE
1478static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1479 int idx)
4731d4c7 1480{
60c8aec6 1481 int i;
4731d4c7 1482
60c8aec6
MT
1483 if (sp->unsync)
1484 for (i=0; i < pvec->nr; i++)
1485 if (pvec->page[i].sp == sp)
1486 return 0;
1487
1488 pvec->page[pvec->nr].sp = sp;
1489 pvec->page[pvec->nr].idx = idx;
1490 pvec->nr++;
1491 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1492}
1493
1494static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1495 struct kvm_mmu_pages *pvec)
1496{
1497 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1498
37178b8b 1499 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1500 struct kvm_mmu_page *child;
4731d4c7
MT
1501 u64 ent = sp->spt[i];
1502
7a8f1a74
XG
1503 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1504 goto clear_child_bitmap;
1505
1506 child = page_header(ent & PT64_BASE_ADDR_MASK);
1507
1508 if (child->unsync_children) {
1509 if (mmu_pages_add(pvec, child, i))
1510 return -ENOSPC;
1511
1512 ret = __mmu_unsync_walk(child, pvec);
1513 if (!ret)
1514 goto clear_child_bitmap;
1515 else if (ret > 0)
1516 nr_unsync_leaf += ret;
1517 else
1518 return ret;
1519 } else if (child->unsync) {
1520 nr_unsync_leaf++;
1521 if (mmu_pages_add(pvec, child, i))
1522 return -ENOSPC;
1523 } else
1524 goto clear_child_bitmap;
1525
1526 continue;
1527
1528clear_child_bitmap:
1529 __clear_bit(i, sp->unsync_child_bitmap);
1530 sp->unsync_children--;
1531 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1532 }
1533
4731d4c7 1534
60c8aec6
MT
1535 return nr_unsync_leaf;
1536}
1537
1538static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1539 struct kvm_mmu_pages *pvec)
1540{
1541 if (!sp->unsync_children)
1542 return 0;
1543
1544 mmu_pages_add(pvec, sp, 0);
1545 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1546}
1547
4731d4c7
MT
1548static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1549{
1550 WARN_ON(!sp->unsync);
5e1b3ddb 1551 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1552 sp->unsync = 0;
1553 --kvm->stat.mmu_unsync;
1554}
1555
7775834a
XG
1556static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1557 struct list_head *invalid_list);
1558static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1559 struct list_head *invalid_list);
4731d4c7 1560
f41d335a
XG
1561#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1562 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1563 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1564 if ((sp)->gfn != (gfn)) {} else
1565
f41d335a
XG
1566#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1567 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1568 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1569 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1570 (sp)->role.invalid) {} else
1571
f918b443 1572/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1573static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1574 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1575{
5b7e0102 1576 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1577 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1578 return 1;
1579 }
1580
f918b443 1581 if (clear_unsync)
1d9dc7e0 1582 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1583
a4a8e6f7 1584 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1585 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1586 return 1;
1587 }
1588
1589 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1590 return 0;
1591}
1592
1d9dc7e0
XG
1593static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1594 struct kvm_mmu_page *sp)
1595{
d98ba053 1596 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1597 int ret;
1598
d98ba053 1599 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1600 if (ret)
d98ba053
XG
1601 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1602
1d9dc7e0
XG
1603 return ret;
1604}
1605
e37fa785
XG
1606#ifdef CONFIG_KVM_MMU_AUDIT
1607#include "mmu_audit.c"
1608#else
1609static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1610static void mmu_audit_disable(void) { }
1611#endif
1612
d98ba053
XG
1613static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1614 struct list_head *invalid_list)
1d9dc7e0 1615{
d98ba053 1616 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1617}
1618
9f1a122f
XG
1619/* @gfn should be write-protected at the call site */
1620static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1621{
9f1a122f 1622 struct kvm_mmu_page *s;
f41d335a 1623 struct hlist_node *node;
d98ba053 1624 LIST_HEAD(invalid_list);
9f1a122f
XG
1625 bool flush = false;
1626
f41d335a 1627 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1628 if (!s->unsync)
9f1a122f
XG
1629 continue;
1630
1631 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1632 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1633 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1634 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1635 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1636 continue;
1637 }
9f1a122f
XG
1638 flush = true;
1639 }
1640
d98ba053 1641 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1642 if (flush)
1643 kvm_mmu_flush_tlb(vcpu);
1644}
1645
60c8aec6
MT
1646struct mmu_page_path {
1647 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1648 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1649};
1650
60c8aec6
MT
1651#define for_each_sp(pvec, sp, parents, i) \
1652 for (i = mmu_pages_next(&pvec, &parents, -1), \
1653 sp = pvec.page[i].sp; \
1654 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1655 i = mmu_pages_next(&pvec, &parents, i))
1656
cded19f3
HE
1657static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1658 struct mmu_page_path *parents,
1659 int i)
60c8aec6
MT
1660{
1661 int n;
1662
1663 for (n = i+1; n < pvec->nr; n++) {
1664 struct kvm_mmu_page *sp = pvec->page[n].sp;
1665
1666 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1667 parents->idx[0] = pvec->page[n].idx;
1668 return n;
1669 }
1670
1671 parents->parent[sp->role.level-2] = sp;
1672 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1673 }
1674
1675 return n;
1676}
1677
cded19f3 1678static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1679{
60c8aec6
MT
1680 struct kvm_mmu_page *sp;
1681 unsigned int level = 0;
1682
1683 do {
1684 unsigned int idx = parents->idx[level];
4731d4c7 1685
60c8aec6
MT
1686 sp = parents->parent[level];
1687 if (!sp)
1688 return;
1689
1690 --sp->unsync_children;
1691 WARN_ON((int)sp->unsync_children < 0);
1692 __clear_bit(idx, sp->unsync_child_bitmap);
1693 level++;
1694 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1695}
1696
60c8aec6
MT
1697static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1698 struct mmu_page_path *parents,
1699 struct kvm_mmu_pages *pvec)
4731d4c7 1700{
60c8aec6
MT
1701 parents->parent[parent->role.level-1] = NULL;
1702 pvec->nr = 0;
1703}
4731d4c7 1704
60c8aec6
MT
1705static void mmu_sync_children(struct kvm_vcpu *vcpu,
1706 struct kvm_mmu_page *parent)
1707{
1708 int i;
1709 struct kvm_mmu_page *sp;
1710 struct mmu_page_path parents;
1711 struct kvm_mmu_pages pages;
d98ba053 1712 LIST_HEAD(invalid_list);
60c8aec6
MT
1713
1714 kvm_mmu_pages_init(parent, &parents, &pages);
1715 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1716 bool protected = false;
b1a36821
MT
1717
1718 for_each_sp(pages, sp, parents, i)
1719 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1720
1721 if (protected)
1722 kvm_flush_remote_tlbs(vcpu->kvm);
1723
60c8aec6 1724 for_each_sp(pages, sp, parents, i) {
d98ba053 1725 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1726 mmu_pages_clear_parents(&parents);
1727 }
d98ba053 1728 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1729 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1730 kvm_mmu_pages_init(parent, &parents, &pages);
1731 }
4731d4c7
MT
1732}
1733
c3707958
XG
1734static void init_shadow_page_table(struct kvm_mmu_page *sp)
1735{
1736 int i;
1737
1738 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1739 sp->spt[i] = 0ull;
1740}
1741
a30f47cb
XG
1742static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1743{
1744 sp->write_flooding_count = 0;
1745}
1746
1747static void clear_sp_write_flooding_count(u64 *spte)
1748{
1749 struct kvm_mmu_page *sp = page_header(__pa(spte));
1750
1751 __clear_sp_write_flooding_count(sp);
1752}
1753
cea0f0e7
AK
1754static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1755 gfn_t gfn,
1756 gva_t gaddr,
1757 unsigned level,
f6e2c02b 1758 int direct,
41074d07 1759 unsigned access,
f7d9c7b7 1760 u64 *parent_pte)
cea0f0e7
AK
1761{
1762 union kvm_mmu_page_role role;
cea0f0e7 1763 unsigned quadrant;
9f1a122f 1764 struct kvm_mmu_page *sp;
f41d335a 1765 struct hlist_node *node;
9f1a122f 1766 bool need_sync = false;
cea0f0e7 1767
a770f6f2 1768 role = vcpu->arch.mmu.base_role;
cea0f0e7 1769 role.level = level;
f6e2c02b 1770 role.direct = direct;
84b0c8c6 1771 if (role.direct)
5b7e0102 1772 role.cr4_pae = 0;
41074d07 1773 role.access = access;
c5a78f2b
JR
1774 if (!vcpu->arch.mmu.direct_map
1775 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1776 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1777 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1778 role.quadrant = quadrant;
1779 }
f41d335a 1780 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1781 if (!need_sync && sp->unsync)
1782 need_sync = true;
4731d4c7 1783
7ae680eb
XG
1784 if (sp->role.word != role.word)
1785 continue;
4731d4c7 1786
7ae680eb
XG
1787 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1788 break;
e02aa901 1789
7ae680eb
XG
1790 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1791 if (sp->unsync_children) {
a8eeb04a 1792 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1793 kvm_mmu_mark_parents_unsync(sp);
1794 } else if (sp->unsync)
1795 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1796
a30f47cb 1797 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1798 trace_kvm_mmu_get_page(sp, false);
1799 return sp;
1800 }
dfc5aa00 1801 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1802 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1803 if (!sp)
1804 return sp;
4db35314
AK
1805 sp->gfn = gfn;
1806 sp->role = role;
7ae680eb
XG
1807 hlist_add_head(&sp->hash_link,
1808 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1809 if (!direct) {
b1a36821
MT
1810 if (rmap_write_protect(vcpu->kvm, gfn))
1811 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1812 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1813 kvm_sync_pages(vcpu, gfn);
1814
4731d4c7
MT
1815 account_shadowed(vcpu->kvm, gfn);
1816 }
c3707958 1817 init_shadow_page_table(sp);
f691fe1d 1818 trace_kvm_mmu_get_page(sp, true);
4db35314 1819 return sp;
cea0f0e7
AK
1820}
1821
2d11123a
AK
1822static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1823 struct kvm_vcpu *vcpu, u64 addr)
1824{
1825 iterator->addr = addr;
1826 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1827 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1828
1829 if (iterator->level == PT64_ROOT_LEVEL &&
1830 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1831 !vcpu->arch.mmu.direct_map)
1832 --iterator->level;
1833
2d11123a
AK
1834 if (iterator->level == PT32E_ROOT_LEVEL) {
1835 iterator->shadow_addr
1836 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1837 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1838 --iterator->level;
1839 if (!iterator->shadow_addr)
1840 iterator->level = 0;
1841 }
1842}
1843
1844static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1845{
1846 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1847 return false;
4d88954d 1848
2d11123a
AK
1849 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1850 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1851 return true;
1852}
1853
c2a2ac2b
XG
1854static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1855 u64 spte)
2d11123a 1856{
c2a2ac2b 1857 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1858 iterator->level = 0;
1859 return;
1860 }
1861
c2a2ac2b 1862 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1863 --iterator->level;
1864}
1865
c2a2ac2b
XG
1866static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1867{
1868 return __shadow_walk_next(iterator, *iterator->sptep);
1869}
1870
32ef26a3
AK
1871static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1872{
1873 u64 spte;
1874
1875 spte = __pa(sp->spt)
1876 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1877 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1878 mmu_spte_set(sptep, spte);
32ef26a3
AK
1879}
1880
a3aa51cf
AK
1881static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1882{
1883 if (is_large_pte(*sptep)) {
c3707958 1884 drop_spte(vcpu->kvm, sptep);
6addd1aa 1885 --vcpu->kvm->stat.lpages;
a3aa51cf
AK
1886 kvm_flush_remote_tlbs(vcpu->kvm);
1887 }
1888}
1889
a357bd22
AK
1890static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1891 unsigned direct_access)
1892{
1893 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1894 struct kvm_mmu_page *child;
1895
1896 /*
1897 * For the direct sp, if the guest pte's dirty bit
1898 * changed form clean to dirty, it will corrupt the
1899 * sp's access: allow writable in the read-only sp,
1900 * so we should update the spte at this point to get
1901 * a new sp with the correct access.
1902 */
1903 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1904 if (child->role.access == direct_access)
1905 return;
1906
bcdd9a93 1907 drop_parent_pte(child, sptep);
a357bd22
AK
1908 kvm_flush_remote_tlbs(vcpu->kvm);
1909 }
1910}
1911
505aef8f 1912static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1913 u64 *spte)
1914{
1915 u64 pte;
1916 struct kvm_mmu_page *child;
1917
1918 pte = *spte;
1919 if (is_shadow_present_pte(pte)) {
505aef8f 1920 if (is_last_spte(pte, sp->role.level)) {
c3707958 1921 drop_spte(kvm, spte);
505aef8f
XG
1922 if (is_large_pte(pte))
1923 --kvm->stat.lpages;
1924 } else {
38e3b2b2 1925 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1926 drop_parent_pte(child, spte);
38e3b2b2 1927 }
505aef8f
XG
1928 return true;
1929 }
1930
1931 if (is_mmio_spte(pte))
ce88decf 1932 mmu_spte_clear_no_track(spte);
c3707958 1933
505aef8f 1934 return false;
38e3b2b2
XG
1935}
1936
90cb0529 1937static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1938 struct kvm_mmu_page *sp)
a436036b 1939{
697fe2e2 1940 unsigned i;
697fe2e2 1941
38e3b2b2
XG
1942 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1943 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1944}
1945
4db35314 1946static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1947{
4db35314 1948 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1949}
1950
31aa2b44 1951static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 1952{
1e3f42f0
TY
1953 u64 *sptep;
1954 struct rmap_iterator iter;
a436036b 1955
1e3f42f0
TY
1956 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1957 drop_parent_pte(sp, sptep);
31aa2b44
AK
1958}
1959
60c8aec6 1960static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1961 struct kvm_mmu_page *parent,
1962 struct list_head *invalid_list)
4731d4c7 1963{
60c8aec6
MT
1964 int i, zapped = 0;
1965 struct mmu_page_path parents;
1966 struct kvm_mmu_pages pages;
4731d4c7 1967
60c8aec6 1968 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1969 return 0;
60c8aec6
MT
1970
1971 kvm_mmu_pages_init(parent, &parents, &pages);
1972 while (mmu_unsync_walk(parent, &pages)) {
1973 struct kvm_mmu_page *sp;
1974
1975 for_each_sp(pages, sp, parents, i) {
7775834a 1976 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1977 mmu_pages_clear_parents(&parents);
77662e00 1978 zapped++;
60c8aec6 1979 }
60c8aec6
MT
1980 kvm_mmu_pages_init(parent, &parents, &pages);
1981 }
1982
1983 return zapped;
4731d4c7
MT
1984}
1985
7775834a
XG
1986static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1987 struct list_head *invalid_list)
31aa2b44 1988{
4731d4c7 1989 int ret;
f691fe1d 1990
7775834a 1991 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1992 ++kvm->stat.mmu_shadow_zapped;
7775834a 1993 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1994 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1995 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1996 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1997 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1998 if (sp->unsync)
1999 kvm_unlink_unsync_page(kvm, sp);
4db35314 2000 if (!sp->root_count) {
54a4f023
GJ
2001 /* Count self */
2002 ret++;
7775834a 2003 list_move(&sp->link, invalid_list);
aa6bd187 2004 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2005 } else {
5b5c6a5a 2006 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2007 kvm_reload_remote_mmus(kvm);
2008 }
7775834a
XG
2009
2010 sp->role.invalid = 1;
4731d4c7 2011 return ret;
a436036b
AK
2012}
2013
7775834a
XG
2014static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2015 struct list_head *invalid_list)
2016{
2017 struct kvm_mmu_page *sp;
2018
2019 if (list_empty(invalid_list))
2020 return;
2021
c142786c
AK
2022 /*
2023 * wmb: make sure everyone sees our modifications to the page tables
2024 * rmb: make sure we see changes to vcpu->mode
2025 */
2026 smp_mb();
4f022648 2027
c142786c
AK
2028 /*
2029 * Wait for all vcpus to exit guest mode and/or lockless shadow
2030 * page table walks.
2031 */
2032 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2033
7775834a
XG
2034 do {
2035 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2036 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2037 kvm_mmu_isolate_page(sp);
aa6bd187 2038 kvm_mmu_free_page(sp);
7775834a 2039 } while (!list_empty(invalid_list));
7775834a
XG
2040}
2041
82ce2c96
IE
2042/*
2043 * Changing the number of mmu pages allocated to the vm
49d5ca26 2044 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2045 */
49d5ca26 2046void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2047{
d98ba053 2048 LIST_HEAD(invalid_list);
82ce2c96
IE
2049 /*
2050 * If we set the number of mmu pages to be smaller be than the
2051 * number of actived pages , we must to free some mmu pages before we
2052 * change the value
2053 */
2054
49d5ca26
DH
2055 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2056 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2057 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2058 struct kvm_mmu_page *page;
2059
f05e70ac 2060 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2061 struct kvm_mmu_page, link);
80b63faf 2062 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2063 }
aa6bd187 2064 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2065 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2066 }
82ce2c96 2067
49d5ca26 2068 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2069}
2070
1cb3f3ae 2071int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2072{
4db35314 2073 struct kvm_mmu_page *sp;
f41d335a 2074 struct hlist_node *node;
d98ba053 2075 LIST_HEAD(invalid_list);
a436036b
AK
2076 int r;
2077
9ad17b10 2078 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2079 r = 0;
1cb3f3ae 2080 spin_lock(&kvm->mmu_lock);
f41d335a 2081 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2082 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2083 sp->role.word);
2084 r = 1;
f41d335a 2085 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2086 }
d98ba053 2087 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2088 spin_unlock(&kvm->mmu_lock);
2089
a436036b 2090 return r;
cea0f0e7 2091}
1cb3f3ae 2092EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2093
38c335f1 2094static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2095{
bc6678a3 2096 int slot = memslot_id(kvm, gfn);
4db35314 2097 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2098
291f26bc 2099 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2100}
2101
74be52e3
SY
2102/*
2103 * The function is based on mtrr_type_lookup() in
2104 * arch/x86/kernel/cpu/mtrr/generic.c
2105 */
2106static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2107 u64 start, u64 end)
2108{
2109 int i;
2110 u64 base, mask;
2111 u8 prev_match, curr_match;
2112 int num_var_ranges = KVM_NR_VAR_MTRR;
2113
2114 if (!mtrr_state->enabled)
2115 return 0xFF;
2116
2117 /* Make end inclusive end, instead of exclusive */
2118 end--;
2119
2120 /* Look in fixed ranges. Just return the type as per start */
2121 if (mtrr_state->have_fixed && (start < 0x100000)) {
2122 int idx;
2123
2124 if (start < 0x80000) {
2125 idx = 0;
2126 idx += (start >> 16);
2127 return mtrr_state->fixed_ranges[idx];
2128 } else if (start < 0xC0000) {
2129 idx = 1 * 8;
2130 idx += ((start - 0x80000) >> 14);
2131 return mtrr_state->fixed_ranges[idx];
2132 } else if (start < 0x1000000) {
2133 idx = 3 * 8;
2134 idx += ((start - 0xC0000) >> 12);
2135 return mtrr_state->fixed_ranges[idx];
2136 }
2137 }
2138
2139 /*
2140 * Look in variable ranges
2141 * Look of multiple ranges matching this address and pick type
2142 * as per MTRR precedence
2143 */
2144 if (!(mtrr_state->enabled & 2))
2145 return mtrr_state->def_type;
2146
2147 prev_match = 0xFF;
2148 for (i = 0; i < num_var_ranges; ++i) {
2149 unsigned short start_state, end_state;
2150
2151 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2152 continue;
2153
2154 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2155 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2156 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2157 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2158
2159 start_state = ((start & mask) == (base & mask));
2160 end_state = ((end & mask) == (base & mask));
2161 if (start_state != end_state)
2162 return 0xFE;
2163
2164 if ((start & mask) != (base & mask))
2165 continue;
2166
2167 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2168 if (prev_match == 0xFF) {
2169 prev_match = curr_match;
2170 continue;
2171 }
2172
2173 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2174 curr_match == MTRR_TYPE_UNCACHABLE)
2175 return MTRR_TYPE_UNCACHABLE;
2176
2177 if ((prev_match == MTRR_TYPE_WRBACK &&
2178 curr_match == MTRR_TYPE_WRTHROUGH) ||
2179 (prev_match == MTRR_TYPE_WRTHROUGH &&
2180 curr_match == MTRR_TYPE_WRBACK)) {
2181 prev_match = MTRR_TYPE_WRTHROUGH;
2182 curr_match = MTRR_TYPE_WRTHROUGH;
2183 }
2184
2185 if (prev_match != curr_match)
2186 return MTRR_TYPE_UNCACHABLE;
2187 }
2188
2189 if (prev_match != 0xFF)
2190 return prev_match;
2191
2192 return mtrr_state->def_type;
2193}
2194
4b12f0de 2195u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2196{
2197 u8 mtrr;
2198
2199 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2200 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2201 if (mtrr == 0xfe || mtrr == 0xff)
2202 mtrr = MTRR_TYPE_WRBACK;
2203 return mtrr;
2204}
4b12f0de 2205EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2206
9cf5cf5a
XG
2207static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2208{
2209 trace_kvm_mmu_unsync_page(sp);
2210 ++vcpu->kvm->stat.mmu_unsync;
2211 sp->unsync = 1;
2212
2213 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2214}
2215
2216static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2217{
4731d4c7 2218 struct kvm_mmu_page *s;
f41d335a 2219 struct hlist_node *node;
9cf5cf5a 2220
f41d335a 2221 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2222 if (s->unsync)
4731d4c7 2223 continue;
9cf5cf5a
XG
2224 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2225 __kvm_unsync_page(vcpu, s);
4731d4c7 2226 }
4731d4c7
MT
2227}
2228
2229static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2230 bool can_unsync)
2231{
9cf5cf5a 2232 struct kvm_mmu_page *s;
f41d335a 2233 struct hlist_node *node;
9cf5cf5a
XG
2234 bool need_unsync = false;
2235
f41d335a 2236 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2237 if (!can_unsync)
2238 return 1;
2239
9cf5cf5a 2240 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2241 return 1;
9cf5cf5a
XG
2242
2243 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2244 need_unsync = true;
2245 }
4731d4c7 2246 }
9cf5cf5a
XG
2247 if (need_unsync)
2248 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2249 return 0;
2250}
2251
d555c333 2252static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2253 unsigned pte_access, int user_fault,
640d9b0d 2254 int write_fault, int level,
c2d0ee46 2255 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2256 bool can_unsync, bool host_writable)
1c4f1fd6 2257{
b330aa0c 2258 u64 spte, entry = *sptep;
1e73f9dd 2259 int ret = 0;
64d4d521 2260
ce88decf
XG
2261 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2262 return 0;
2263
982c2565 2264 spte = PT_PRESENT_MASK;
947da538 2265 if (!speculative)
3201b5d9 2266 spte |= shadow_accessed_mask;
640d9b0d 2267
7b52345e
SY
2268 if (pte_access & ACC_EXEC_MASK)
2269 spte |= shadow_x_mask;
2270 else
2271 spte |= shadow_nx_mask;
1c4f1fd6 2272 if (pte_access & ACC_USER_MASK)
7b52345e 2273 spte |= shadow_user_mask;
852e3c19 2274 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2275 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2276 if (tdp_enabled)
4b12f0de
SY
2277 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2278 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2279
9bdbba13 2280 if (host_writable)
1403283a 2281 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2282 else
2283 pte_access &= ~ACC_WRITE_MASK;
1403283a 2284
35149e21 2285 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2286
2287 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2288 || (!vcpu->arch.mmu.direct_map && write_fault
2289 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2290
852e3c19
JR
2291 if (level > PT_PAGE_TABLE_LEVEL &&
2292 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2293 ret = 1;
c3707958 2294 drop_spte(vcpu->kvm, sptep);
be38d276 2295 goto done;
38187c83
MT
2296 }
2297
1c4f1fd6 2298 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2299
c5a78f2b 2300 if (!vcpu->arch.mmu.direct_map
411c588d 2301 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2302 spte &= ~PT_USER_MASK;
411c588d
AK
2303 /*
2304 * If we converted a user page to a kernel page,
2305 * so that the kernel can write to it when cr0.wp=0,
2306 * then we should prevent the kernel from executing it
2307 * if SMEP is enabled.
2308 */
2309 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2310 spte |= PT64_NX_MASK;
2311 }
69325a12 2312
ecc5589f
MT
2313 /*
2314 * Optimization: for pte sync, if spte was writable the hash
2315 * lookup is unnecessary (and expensive). Write protection
2316 * is responsibility of mmu_get_page / kvm_sync_page.
2317 * Same reasoning can be applied to dirty page accounting.
2318 */
8dae4445 2319 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2320 goto set_pte;
2321
4731d4c7 2322 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2323 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2324 __func__, gfn);
1e73f9dd 2325 ret = 1;
1c4f1fd6 2326 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2327 if (is_writable_pte(spte))
1c4f1fd6 2328 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2329 }
2330 }
2331
1c4f1fd6
AK
2332 if (pte_access & ACC_WRITE_MASK)
2333 mark_page_dirty(vcpu->kvm, gfn);
2334
38187c83 2335set_pte:
1df9f2dc 2336 mmu_spte_update(sptep, spte);
b330aa0c
XG
2337 /*
2338 * If we overwrite a writable spte with a read-only one we
2339 * should flush remote TLBs. Otherwise rmap_write_protect
2340 * will find a read-only spte, even though the writable spte
2341 * might be cached on a CPU's TLB.
2342 */
2343 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2344 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2345done:
1e73f9dd
MT
2346 return ret;
2347}
2348
d555c333 2349static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2350 unsigned pt_access, unsigned pte_access,
640d9b0d 2351 int user_fault, int write_fault,
b90a0e6c 2352 int *emulate, int level, gfn_t gfn,
1403283a 2353 pfn_t pfn, bool speculative,
9bdbba13 2354 bool host_writable)
1e73f9dd
MT
2355{
2356 int was_rmapped = 0;
53a27b39 2357 int rmap_count;
1e73f9dd
MT
2358
2359 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2360 " user_fault %d gfn %llx\n",
d555c333 2361 __func__, *sptep, pt_access,
1e73f9dd
MT
2362 write_fault, user_fault, gfn);
2363
d555c333 2364 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2365 /*
2366 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2367 * the parent of the now unreachable PTE.
2368 */
852e3c19
JR
2369 if (level > PT_PAGE_TABLE_LEVEL &&
2370 !is_large_pte(*sptep)) {
1e73f9dd 2371 struct kvm_mmu_page *child;
d555c333 2372 u64 pte = *sptep;
1e73f9dd
MT
2373
2374 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2375 drop_parent_pte(child, sptep);
3be2264b 2376 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2377 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2378 pgprintk("hfn old %llx new %llx\n",
d555c333 2379 spte_to_pfn(*sptep), pfn);
c3707958 2380 drop_spte(vcpu->kvm, sptep);
91546356 2381 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2382 } else
2383 was_rmapped = 1;
1e73f9dd 2384 }
852e3c19 2385
d555c333 2386 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2387 level, gfn, pfn, speculative, true,
9bdbba13 2388 host_writable)) {
1e73f9dd 2389 if (write_fault)
b90a0e6c 2390 *emulate = 1;
5304efde 2391 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2392 }
1e73f9dd 2393
ce88decf
XG
2394 if (unlikely(is_mmio_spte(*sptep) && emulate))
2395 *emulate = 1;
2396
d555c333 2397 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2398 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2399 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2400 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2401 *sptep, sptep);
d555c333 2402 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2403 ++vcpu->kvm->stat.lpages;
2404
ffb61bb3
XG
2405 if (is_shadow_present_pte(*sptep)) {
2406 page_header_update_slot(vcpu->kvm, sptep, gfn);
2407 if (!was_rmapped) {
2408 rmap_count = rmap_add(vcpu, sptep, gfn);
2409 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2410 rmap_recycle(vcpu, sptep, gfn);
2411 }
1c4f1fd6 2412 }
9ed5520d 2413 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2414}
2415
6aa8b732
AK
2416static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2417{
e676505a 2418 mmu_free_roots(vcpu);
6aa8b732
AK
2419}
2420
957ed9ef
XG
2421static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2422 bool no_dirty_log)
2423{
2424 struct kvm_memory_slot *slot;
2425 unsigned long hva;
2426
5d163b1c 2427 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2428 if (!slot) {
fce92dce
XG
2429 get_page(fault_page);
2430 return page_to_pfn(fault_page);
957ed9ef
XG
2431 }
2432
2433 hva = gfn_to_hva_memslot(slot, gfn);
2434
2435 return hva_to_pfn_atomic(vcpu->kvm, hva);
2436}
2437
2438static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2439 struct kvm_mmu_page *sp,
2440 u64 *start, u64 *end)
2441{
2442 struct page *pages[PTE_PREFETCH_NUM];
2443 unsigned access = sp->role.access;
2444 int i, ret;
2445 gfn_t gfn;
2446
2447 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2448 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2449 return -1;
2450
2451 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2452 if (ret <= 0)
2453 return -1;
2454
2455 for (i = 0; i < ret; i++, gfn++, start++)
2456 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2457 access, 0, 0, NULL,
957ed9ef
XG
2458 sp->role.level, gfn,
2459 page_to_pfn(pages[i]), true, true);
2460
2461 return 0;
2462}
2463
2464static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2465 struct kvm_mmu_page *sp, u64 *sptep)
2466{
2467 u64 *spte, *start = NULL;
2468 int i;
2469
2470 WARN_ON(!sp->role.direct);
2471
2472 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2473 spte = sp->spt + i;
2474
2475 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2476 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2477 if (!start)
2478 continue;
2479 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2480 break;
2481 start = NULL;
2482 } else if (!start)
2483 start = spte;
2484 }
2485}
2486
2487static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2488{
2489 struct kvm_mmu_page *sp;
2490
2491 /*
2492 * Since it's no accessed bit on EPT, it's no way to
2493 * distinguish between actually accessed translations
2494 * and prefetched, so disable pte prefetch if EPT is
2495 * enabled.
2496 */
2497 if (!shadow_accessed_mask)
2498 return;
2499
2500 sp = page_header(__pa(sptep));
2501 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2502 return;
2503
2504 __direct_pte_prefetch(vcpu, sp, sptep);
2505}
2506
9f652d21 2507static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2508 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2509 bool prefault)
140754bc 2510{
9f652d21 2511 struct kvm_shadow_walk_iterator iterator;
140754bc 2512 struct kvm_mmu_page *sp;
b90a0e6c 2513 int emulate = 0;
140754bc 2514 gfn_t pseudo_gfn;
6aa8b732 2515
9f652d21 2516 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2517 if (iterator.level == level) {
612819c3
MT
2518 unsigned pte_access = ACC_ALL;
2519
612819c3 2520 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2521 0, write, &emulate,
2ec4739d 2522 level, gfn, pfn, prefault, map_writable);
957ed9ef 2523 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2524 ++vcpu->stat.pf_fixed;
2525 break;
6aa8b732
AK
2526 }
2527
c3707958 2528 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2529 u64 base_addr = iterator.addr;
2530
2531 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2532 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2533 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2534 iterator.level - 1,
2535 1, ACC_ALL, iterator.sptep);
2536 if (!sp) {
2537 pgprintk("nonpaging_map: ENOMEM\n");
2538 kvm_release_pfn_clean(pfn);
2539 return -ENOMEM;
2540 }
140754bc 2541
1df9f2dc
XG
2542 mmu_spte_set(iterator.sptep,
2543 __pa(sp->spt)
2544 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2545 | shadow_user_mask | shadow_x_mask
2546 | shadow_accessed_mask);
9f652d21
AK
2547 }
2548 }
b90a0e6c 2549 return emulate;
6aa8b732
AK
2550}
2551
77db5cbd 2552static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2553{
77db5cbd
HY
2554 siginfo_t info;
2555
2556 info.si_signo = SIGBUS;
2557 info.si_errno = 0;
2558 info.si_code = BUS_MCEERR_AR;
2559 info.si_addr = (void __user *)address;
2560 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2561
77db5cbd 2562 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2563}
2564
d7c55201 2565static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2566{
2567 kvm_release_pfn_clean(pfn);
2568 if (is_hwpoison_pfn(pfn)) {
bebb106a 2569 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2570 return 0;
d7c55201 2571 }
edba23e5 2572
d7c55201 2573 return -EFAULT;
bf998156
HY
2574}
2575
936a5fe6
AA
2576static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2577 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2578{
2579 pfn_t pfn = *pfnp;
2580 gfn_t gfn = *gfnp;
2581 int level = *levelp;
2582
2583 /*
2584 * Check if it's a transparent hugepage. If this would be an
2585 * hugetlbfs page, level wouldn't be set to
2586 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2587 * here.
2588 */
2589 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2590 level == PT_PAGE_TABLE_LEVEL &&
2591 PageTransCompound(pfn_to_page(pfn)) &&
2592 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2593 unsigned long mask;
2594 /*
2595 * mmu_notifier_retry was successful and we hold the
2596 * mmu_lock here, so the pmd can't become splitting
2597 * from under us, and in turn
2598 * __split_huge_page_refcount() can't run from under
2599 * us and we can safely transfer the refcount from
2600 * PG_tail to PG_head as we switch the pfn to tail to
2601 * head.
2602 */
2603 *levelp = level = PT_DIRECTORY_LEVEL;
2604 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2605 VM_BUG_ON((gfn & mask) != (pfn & mask));
2606 if (pfn & mask) {
2607 gfn &= ~mask;
2608 *gfnp = gfn;
2609 kvm_release_pfn_clean(pfn);
2610 pfn &= ~mask;
c3586667 2611 kvm_get_pfn(pfn);
936a5fe6
AA
2612 *pfnp = pfn;
2613 }
2614 }
2615}
2616
d7c55201
XG
2617static bool mmu_invalid_pfn(pfn_t pfn)
2618{
ce88decf 2619 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2620}
2621
2622static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2623 pfn_t pfn, unsigned access, int *ret_val)
2624{
2625 bool ret = true;
2626
2627 /* The pfn is invalid, report the error! */
2628 if (unlikely(is_invalid_pfn(pfn))) {
2629 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2630 goto exit;
2631 }
2632
ce88decf 2633 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2634 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2635
2636 ret = false;
2637exit:
2638 return ret;
2639}
2640
78b2c54a 2641static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2642 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2643
2644static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2645 bool prefault)
10589a46
MT
2646{
2647 int r;
852e3c19 2648 int level;
936a5fe6 2649 int force_pt_level;
35149e21 2650 pfn_t pfn;
e930bffe 2651 unsigned long mmu_seq;
612819c3 2652 bool map_writable;
aaee2c94 2653
936a5fe6
AA
2654 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2655 if (likely(!force_pt_level)) {
2656 level = mapping_level(vcpu, gfn);
2657 /*
2658 * This path builds a PAE pagetable - so we can map
2659 * 2mb pages at maximum. Therefore check if the level
2660 * is larger than that.
2661 */
2662 if (level > PT_DIRECTORY_LEVEL)
2663 level = PT_DIRECTORY_LEVEL;
852e3c19 2664
936a5fe6
AA
2665 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2666 } else
2667 level = PT_PAGE_TABLE_LEVEL;
05da4558 2668
e930bffe 2669 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2670 smp_rmb();
060c2abe 2671
78b2c54a 2672 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2673 return 0;
aaee2c94 2674
d7c55201
XG
2675 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2676 return r;
d196e343 2677
aaee2c94 2678 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2679 if (mmu_notifier_retry(vcpu, mmu_seq))
2680 goto out_unlock;
eb787d10 2681 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2682 if (likely(!force_pt_level))
2683 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2684 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2685 prefault);
aaee2c94
MT
2686 spin_unlock(&vcpu->kvm->mmu_lock);
2687
aaee2c94 2688
10589a46 2689 return r;
e930bffe
AA
2690
2691out_unlock:
2692 spin_unlock(&vcpu->kvm->mmu_lock);
2693 kvm_release_pfn_clean(pfn);
2694 return 0;
10589a46
MT
2695}
2696
2697
17ac10ad
AK
2698static void mmu_free_roots(struct kvm_vcpu *vcpu)
2699{
2700 int i;
4db35314 2701 struct kvm_mmu_page *sp;
d98ba053 2702 LIST_HEAD(invalid_list);
17ac10ad 2703
ad312c7c 2704 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2705 return;
aaee2c94 2706 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2707 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2708 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2709 vcpu->arch.mmu.direct_map)) {
ad312c7c 2710 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2711
4db35314
AK
2712 sp = page_header(root);
2713 --sp->root_count;
d98ba053
XG
2714 if (!sp->root_count && sp->role.invalid) {
2715 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2716 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2717 }
ad312c7c 2718 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2719 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2720 return;
2721 }
17ac10ad 2722 for (i = 0; i < 4; ++i) {
ad312c7c 2723 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2724
417726a3 2725 if (root) {
417726a3 2726 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2727 sp = page_header(root);
2728 --sp->root_count;
2e53d63a 2729 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2730 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2731 &invalid_list);
417726a3 2732 }
ad312c7c 2733 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2734 }
d98ba053 2735 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2736 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2737 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2738}
2739
8986ecc0
MT
2740static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2741{
2742 int ret = 0;
2743
2744 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2745 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2746 ret = 1;
2747 }
2748
2749 return ret;
2750}
2751
651dd37a
JR
2752static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2753{
2754 struct kvm_mmu_page *sp;
7ebaf15e 2755 unsigned i;
651dd37a
JR
2756
2757 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2758 spin_lock(&vcpu->kvm->mmu_lock);
2759 kvm_mmu_free_some_pages(vcpu);
2760 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2761 1, ACC_ALL, NULL);
2762 ++sp->root_count;
2763 spin_unlock(&vcpu->kvm->mmu_lock);
2764 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2765 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2766 for (i = 0; i < 4; ++i) {
2767 hpa_t root = vcpu->arch.mmu.pae_root[i];
2768
2769 ASSERT(!VALID_PAGE(root));
2770 spin_lock(&vcpu->kvm->mmu_lock);
2771 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2772 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2773 i << 30,
651dd37a
JR
2774 PT32_ROOT_LEVEL, 1, ACC_ALL,
2775 NULL);
2776 root = __pa(sp->spt);
2777 ++sp->root_count;
2778 spin_unlock(&vcpu->kvm->mmu_lock);
2779 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2780 }
6292757f 2781 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2782 } else
2783 BUG();
2784
2785 return 0;
2786}
2787
2788static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2789{
4db35314 2790 struct kvm_mmu_page *sp;
81407ca5
JR
2791 u64 pdptr, pm_mask;
2792 gfn_t root_gfn;
2793 int i;
3bb65a22 2794
5777ed34 2795 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2796
651dd37a
JR
2797 if (mmu_check_root(vcpu, root_gfn))
2798 return 1;
2799
2800 /*
2801 * Do we shadow a long mode page table? If so we need to
2802 * write-protect the guests page table root.
2803 */
2804 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2805 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2806
2807 ASSERT(!VALID_PAGE(root));
651dd37a 2808
8facbbff 2809 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2810 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2811 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2812 0, ACC_ALL, NULL);
4db35314
AK
2813 root = __pa(sp->spt);
2814 ++sp->root_count;
8facbbff 2815 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2816 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2817 return 0;
17ac10ad 2818 }
f87f9288 2819
651dd37a
JR
2820 /*
2821 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2822 * or a PAE 3-level page table. In either case we need to be aware that
2823 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2824 */
81407ca5
JR
2825 pm_mask = PT_PRESENT_MASK;
2826 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2827 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2828
17ac10ad 2829 for (i = 0; i < 4; ++i) {
ad312c7c 2830 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2831
2832 ASSERT(!VALID_PAGE(root));
ad312c7c 2833 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2834 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2835 if (!is_present_gpte(pdptr)) {
ad312c7c 2836 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2837 continue;
2838 }
6de4f3ad 2839 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2840 if (mmu_check_root(vcpu, root_gfn))
2841 return 1;
5a7388c2 2842 }
8facbbff 2843 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2844 kvm_mmu_free_some_pages(vcpu);
4db35314 2845 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2846 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2847 ACC_ALL, NULL);
4db35314
AK
2848 root = __pa(sp->spt);
2849 ++sp->root_count;
8facbbff
AK
2850 spin_unlock(&vcpu->kvm->mmu_lock);
2851
81407ca5 2852 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2853 }
6292757f 2854 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2855
2856 /*
2857 * If we shadow a 32 bit page table with a long mode page
2858 * table we enter this path.
2859 */
2860 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2861 if (vcpu->arch.mmu.lm_root == NULL) {
2862 /*
2863 * The additional page necessary for this is only
2864 * allocated on demand.
2865 */
2866
2867 u64 *lm_root;
2868
2869 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2870 if (lm_root == NULL)
2871 return 1;
2872
2873 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2874
2875 vcpu->arch.mmu.lm_root = lm_root;
2876 }
2877
2878 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2879 }
2880
8986ecc0 2881 return 0;
17ac10ad
AK
2882}
2883
651dd37a
JR
2884static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2885{
2886 if (vcpu->arch.mmu.direct_map)
2887 return mmu_alloc_direct_roots(vcpu);
2888 else
2889 return mmu_alloc_shadow_roots(vcpu);
2890}
2891
0ba73cda
MT
2892static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2893{
2894 int i;
2895 struct kvm_mmu_page *sp;
2896
81407ca5
JR
2897 if (vcpu->arch.mmu.direct_map)
2898 return;
2899
0ba73cda
MT
2900 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2901 return;
6903074c 2902
bebb106a 2903 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 2904 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2905 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2906 hpa_t root = vcpu->arch.mmu.root_hpa;
2907 sp = page_header(root);
2908 mmu_sync_children(vcpu, sp);
0375f7fa 2909 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2910 return;
2911 }
2912 for (i = 0; i < 4; ++i) {
2913 hpa_t root = vcpu->arch.mmu.pae_root[i];
2914
8986ecc0 2915 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2916 root &= PT64_BASE_ADDR_MASK;
2917 sp = page_header(root);
2918 mmu_sync_children(vcpu, sp);
2919 }
2920 }
0375f7fa 2921 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2922}
2923
2924void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2925{
2926 spin_lock(&vcpu->kvm->mmu_lock);
2927 mmu_sync_roots(vcpu);
6cffe8ca 2928 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2929}
2930
1871c602 2931static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2932 u32 access, struct x86_exception *exception)
6aa8b732 2933{
ab9ae313
AK
2934 if (exception)
2935 exception->error_code = 0;
6aa8b732
AK
2936 return vaddr;
2937}
2938
6539e738 2939static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2940 u32 access,
2941 struct x86_exception *exception)
6539e738 2942{
ab9ae313
AK
2943 if (exception)
2944 exception->error_code = 0;
6539e738
JR
2945 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2946}
2947
ce88decf
XG
2948static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2949{
2950 if (direct)
2951 return vcpu_match_mmio_gpa(vcpu, addr);
2952
2953 return vcpu_match_mmio_gva(vcpu, addr);
2954}
2955
2956
2957/*
2958 * On direct hosts, the last spte is only allows two states
2959 * for mmio page fault:
2960 * - It is the mmio spte
2961 * - It is zapped or it is being zapped.
2962 *
2963 * This function completely checks the spte when the last spte
2964 * is not the mmio spte.
2965 */
2966static bool check_direct_spte_mmio_pf(u64 spte)
2967{
2968 return __check_direct_spte_mmio_pf(spte);
2969}
2970
2971static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2972{
2973 struct kvm_shadow_walk_iterator iterator;
2974 u64 spte = 0ull;
2975
2976 walk_shadow_page_lockless_begin(vcpu);
2977 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2978 if (!is_shadow_present_pte(spte))
2979 break;
2980 walk_shadow_page_lockless_end(vcpu);
2981
2982 return spte;
2983}
2984
2985/*
2986 * If it is a real mmio page fault, return 1 and emulat the instruction
2987 * directly, return 0 to let CPU fault again on the address, -1 is
2988 * returned if bug is detected.
2989 */
2990int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2991{
2992 u64 spte;
2993
2994 if (quickly_check_mmio_pf(vcpu, addr, direct))
2995 return 1;
2996
2997 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2998
2999 if (is_mmio_spte(spte)) {
3000 gfn_t gfn = get_mmio_spte_gfn(spte);
3001 unsigned access = get_mmio_spte_access(spte);
3002
3003 if (direct)
3004 addr = 0;
4f022648
XG
3005
3006 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3007 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3008 return 1;
3009 }
3010
3011 /*
3012 * It's ok if the gva is remapped by other cpus on shadow guest,
3013 * it's a BUG if the gfn is not a mmio page.
3014 */
3015 if (direct && !check_direct_spte_mmio_pf(spte))
3016 return -1;
3017
3018 /*
3019 * If the page table is zapped by other cpus, let CPU fault again on
3020 * the address.
3021 */
3022 return 0;
3023}
3024EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3025
3026static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3027 u32 error_code, bool direct)
3028{
3029 int ret;
3030
3031 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3032 WARN_ON(ret < 0);
3033 return ret;
3034}
3035
6aa8b732 3036static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3037 u32 error_code, bool prefault)
6aa8b732 3038{
e833240f 3039 gfn_t gfn;
e2dec939 3040 int r;
6aa8b732 3041
b8688d51 3042 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3043
3044 if (unlikely(error_code & PFERR_RSVD_MASK))
3045 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3046
e2dec939
AK
3047 r = mmu_topup_memory_caches(vcpu);
3048 if (r)
3049 return r;
714b93da 3050
6aa8b732 3051 ASSERT(vcpu);
ad312c7c 3052 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3053
e833240f 3054 gfn = gva >> PAGE_SHIFT;
6aa8b732 3055
e833240f 3056 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3057 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3058}
3059
7e1fbeac 3060static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3061{
3062 struct kvm_arch_async_pf arch;
fb67e14f 3063
7c90705b 3064 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3065 arch.gfn = gfn;
c4806acd 3066 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3067 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3068
3069 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3070}
3071
3072static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3073{
3074 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3075 kvm_event_needs_reinjection(vcpu)))
3076 return false;
3077
3078 return kvm_x86_ops->interrupt_allowed(vcpu);
3079}
3080
78b2c54a 3081static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3082 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3083{
3084 bool async;
3085
612819c3 3086 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3087
3088 if (!async)
3089 return false; /* *pfn has correct page already */
3090
3091 put_page(pfn_to_page(*pfn));
3092
78b2c54a 3093 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3094 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3095 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3096 trace_kvm_async_pf_doublefault(gva, gfn);
3097 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3098 return true;
3099 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3100 return true;
3101 }
3102
612819c3 3103 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3104
3105 return false;
3106}
3107
56028d08 3108static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3109 bool prefault)
fb72d167 3110{
35149e21 3111 pfn_t pfn;
fb72d167 3112 int r;
852e3c19 3113 int level;
936a5fe6 3114 int force_pt_level;
05da4558 3115 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3116 unsigned long mmu_seq;
612819c3
MT
3117 int write = error_code & PFERR_WRITE_MASK;
3118 bool map_writable;
fb72d167
JR
3119
3120 ASSERT(vcpu);
3121 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3122
ce88decf
XG
3123 if (unlikely(error_code & PFERR_RSVD_MASK))
3124 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3125
fb72d167
JR
3126 r = mmu_topup_memory_caches(vcpu);
3127 if (r)
3128 return r;
3129
936a5fe6
AA
3130 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3131 if (likely(!force_pt_level)) {
3132 level = mapping_level(vcpu, gfn);
3133 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3134 } else
3135 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3136
e930bffe 3137 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3138 smp_rmb();
af585b92 3139
78b2c54a 3140 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3141 return 0;
3142
d7c55201
XG
3143 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3144 return r;
3145
fb72d167 3146 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3147 if (mmu_notifier_retry(vcpu, mmu_seq))
3148 goto out_unlock;
fb72d167 3149 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3150 if (likely(!force_pt_level))
3151 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3152 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3153 level, gfn, pfn, prefault);
fb72d167 3154 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3155
3156 return r;
e930bffe
AA
3157
3158out_unlock:
3159 spin_unlock(&vcpu->kvm->mmu_lock);
3160 kvm_release_pfn_clean(pfn);
3161 return 0;
fb72d167
JR
3162}
3163
6aa8b732
AK
3164static void nonpaging_free(struct kvm_vcpu *vcpu)
3165{
17ac10ad 3166 mmu_free_roots(vcpu);
6aa8b732
AK
3167}
3168
52fde8df
JR
3169static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3170 struct kvm_mmu *context)
6aa8b732 3171{
6aa8b732
AK
3172 context->new_cr3 = nonpaging_new_cr3;
3173 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3174 context->gva_to_gpa = nonpaging_gva_to_gpa;
3175 context->free = nonpaging_free;
e8bc217a 3176 context->sync_page = nonpaging_sync_page;
a7052897 3177 context->invlpg = nonpaging_invlpg;
0f53b5b1 3178 context->update_pte = nonpaging_update_pte;
cea0f0e7 3179 context->root_level = 0;
6aa8b732 3180 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3181 context->root_hpa = INVALID_PAGE;
c5a78f2b 3182 context->direct_map = true;
2d48a985 3183 context->nx = false;
6aa8b732
AK
3184 return 0;
3185}
3186
d835dfec 3187void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3188{
1165f5fe 3189 ++vcpu->stat.tlb_flush;
a8eeb04a 3190 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3191}
3192
3193static void paging_new_cr3(struct kvm_vcpu *vcpu)
3194{
9f8fe504 3195 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3196 mmu_free_roots(vcpu);
6aa8b732
AK
3197}
3198
5777ed34
JR
3199static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3200{
9f8fe504 3201 return kvm_read_cr3(vcpu);
5777ed34
JR
3202}
3203
6389ee94
AK
3204static void inject_page_fault(struct kvm_vcpu *vcpu,
3205 struct x86_exception *fault)
6aa8b732 3206{
6389ee94 3207 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3208}
3209
6aa8b732
AK
3210static void paging_free(struct kvm_vcpu *vcpu)
3211{
3212 nonpaging_free(vcpu);
3213}
3214
3241f22d 3215static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3216{
3217 int bit7;
3218
3219 bit7 = (gpte >> 7) & 1;
3241f22d 3220 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3221}
3222
ce88decf
XG
3223static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3224 int *nr_present)
3225{
3226 if (unlikely(is_mmio_spte(*sptep))) {
3227 if (gfn != get_mmio_spte_gfn(*sptep)) {
3228 mmu_spte_clear_no_track(sptep);
3229 return true;
3230 }
3231
3232 (*nr_present)++;
3233 mark_mmio_spte(sptep, gfn, access);
3234 return true;
3235 }
3236
3237 return false;
3238}
3239
6aa8b732
AK
3240#define PTTYPE 64
3241#include "paging_tmpl.h"
3242#undef PTTYPE
3243
3244#define PTTYPE 32
3245#include "paging_tmpl.h"
3246#undef PTTYPE
3247
52fde8df 3248static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3249 struct kvm_mmu *context)
82725b20 3250{
82725b20
DE
3251 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3252 u64 exb_bit_rsvd = 0;
3253
2d48a985 3254 if (!context->nx)
82725b20 3255 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3256 switch (context->root_level) {
82725b20
DE
3257 case PT32_ROOT_LEVEL:
3258 /* no rsvd bits for 2 level 4K page table entries */
3259 context->rsvd_bits_mask[0][1] = 0;
3260 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3261 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3262
3263 if (!is_pse(vcpu)) {
3264 context->rsvd_bits_mask[1][1] = 0;
3265 break;
3266 }
3267
82725b20
DE
3268 if (is_cpuid_PSE36())
3269 /* 36bits PSE 4MB page */
3270 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3271 else
3272 /* 32 bits PSE 4MB page */
3273 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3274 break;
3275 case PT32E_ROOT_LEVEL:
20c466b5
DE
3276 context->rsvd_bits_mask[0][2] =
3277 rsvd_bits(maxphyaddr, 63) |
3278 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3279 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3280 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3281 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3282 rsvd_bits(maxphyaddr, 62); /* PTE */
3283 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3284 rsvd_bits(maxphyaddr, 62) |
3285 rsvd_bits(13, 20); /* large page */
f815bce8 3286 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3287 break;
3288 case PT64_ROOT_LEVEL:
3289 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3290 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3291 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3292 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3293 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3294 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3295 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3296 rsvd_bits(maxphyaddr, 51);
3297 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3298 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3299 rsvd_bits(maxphyaddr, 51) |
3300 rsvd_bits(13, 29);
82725b20 3301 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3302 rsvd_bits(maxphyaddr, 51) |
3303 rsvd_bits(13, 20); /* large page */
f815bce8 3304 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3305 break;
3306 }
3307}
3308
52fde8df
JR
3309static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3310 struct kvm_mmu *context,
3311 int level)
6aa8b732 3312{
2d48a985 3313 context->nx = is_nx(vcpu);
4d6931c3 3314 context->root_level = level;
2d48a985 3315
4d6931c3 3316 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3317
3318 ASSERT(is_pae(vcpu));
3319 context->new_cr3 = paging_new_cr3;
3320 context->page_fault = paging64_page_fault;
6aa8b732 3321 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3322 context->sync_page = paging64_sync_page;
a7052897 3323 context->invlpg = paging64_invlpg;
0f53b5b1 3324 context->update_pte = paging64_update_pte;
6aa8b732 3325 context->free = paging_free;
17ac10ad 3326 context->shadow_root_level = level;
17c3ba9d 3327 context->root_hpa = INVALID_PAGE;
c5a78f2b 3328 context->direct_map = false;
6aa8b732
AK
3329 return 0;
3330}
3331
52fde8df
JR
3332static int paging64_init_context(struct kvm_vcpu *vcpu,
3333 struct kvm_mmu *context)
17ac10ad 3334{
52fde8df 3335 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3336}
3337
52fde8df
JR
3338static int paging32_init_context(struct kvm_vcpu *vcpu,
3339 struct kvm_mmu *context)
6aa8b732 3340{
2d48a985 3341 context->nx = false;
4d6931c3 3342 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3343
4d6931c3 3344 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3345
3346 context->new_cr3 = paging_new_cr3;
3347 context->page_fault = paging32_page_fault;
6aa8b732
AK
3348 context->gva_to_gpa = paging32_gva_to_gpa;
3349 context->free = paging_free;
e8bc217a 3350 context->sync_page = paging32_sync_page;
a7052897 3351 context->invlpg = paging32_invlpg;
0f53b5b1 3352 context->update_pte = paging32_update_pte;
6aa8b732 3353 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3354 context->root_hpa = INVALID_PAGE;
c5a78f2b 3355 context->direct_map = false;
6aa8b732
AK
3356 return 0;
3357}
3358
52fde8df
JR
3359static int paging32E_init_context(struct kvm_vcpu *vcpu,
3360 struct kvm_mmu *context)
6aa8b732 3361{
52fde8df 3362 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3363}
3364
fb72d167
JR
3365static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3366{
14dfe855 3367 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3368
c445f8ef 3369 context->base_role.word = 0;
fb72d167
JR
3370 context->new_cr3 = nonpaging_new_cr3;
3371 context->page_fault = tdp_page_fault;
3372 context->free = nonpaging_free;
e8bc217a 3373 context->sync_page = nonpaging_sync_page;
a7052897 3374 context->invlpg = nonpaging_invlpg;
0f53b5b1 3375 context->update_pte = nonpaging_update_pte;
67253af5 3376 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3377 context->root_hpa = INVALID_PAGE;
c5a78f2b 3378 context->direct_map = true;
1c97f0a0 3379 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3380 context->get_cr3 = get_cr3;
e4e517b4 3381 context->get_pdptr = kvm_pdptr_read;
cb659db8 3382 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3383
3384 if (!is_paging(vcpu)) {
2d48a985 3385 context->nx = false;
fb72d167
JR
3386 context->gva_to_gpa = nonpaging_gva_to_gpa;
3387 context->root_level = 0;
3388 } else if (is_long_mode(vcpu)) {
2d48a985 3389 context->nx = is_nx(vcpu);
fb72d167 3390 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3391 reset_rsvds_bits_mask(vcpu, context);
3392 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3393 } else if (is_pae(vcpu)) {
2d48a985 3394 context->nx = is_nx(vcpu);
fb72d167 3395 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3396 reset_rsvds_bits_mask(vcpu, context);
3397 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3398 } else {
2d48a985 3399 context->nx = false;
fb72d167 3400 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3401 reset_rsvds_bits_mask(vcpu, context);
3402 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3403 }
3404
3405 return 0;
3406}
3407
52fde8df 3408int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3409{
a770f6f2 3410 int r;
411c588d 3411 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3412 ASSERT(vcpu);
ad312c7c 3413 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3414
3415 if (!is_paging(vcpu))
52fde8df 3416 r = nonpaging_init_context(vcpu, context);
a9058ecd 3417 else if (is_long_mode(vcpu))
52fde8df 3418 r = paging64_init_context(vcpu, context);
6aa8b732 3419 else if (is_pae(vcpu))
52fde8df 3420 r = paging32E_init_context(vcpu, context);
6aa8b732 3421 else
52fde8df 3422 r = paging32_init_context(vcpu, context);
a770f6f2 3423
5b7e0102 3424 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3425 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3426 vcpu->arch.mmu.base_role.smep_andnot_wp
3427 = smep && !is_write_protection(vcpu);
52fde8df
JR
3428
3429 return r;
3430}
3431EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3432
3433static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3434{
14dfe855 3435 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3436
14dfe855
JR
3437 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3438 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3439 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3440 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3441
3442 return r;
6aa8b732
AK
3443}
3444
02f59dc9
JR
3445static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3446{
3447 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3448
3449 g_context->get_cr3 = get_cr3;
e4e517b4 3450 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3451 g_context->inject_page_fault = kvm_inject_page_fault;
3452
3453 /*
3454 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3455 * translation of l2_gpa to l1_gpa addresses is done using the
3456 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3457 * functions between mmu and nested_mmu are swapped.
3458 */
3459 if (!is_paging(vcpu)) {
2d48a985 3460 g_context->nx = false;
02f59dc9
JR
3461 g_context->root_level = 0;
3462 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3463 } else if (is_long_mode(vcpu)) {
2d48a985 3464 g_context->nx = is_nx(vcpu);
02f59dc9 3465 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3466 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3467 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3468 } else if (is_pae(vcpu)) {
2d48a985 3469 g_context->nx = is_nx(vcpu);
02f59dc9 3470 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3471 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3472 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3473 } else {
2d48a985 3474 g_context->nx = false;
02f59dc9 3475 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3476 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3477 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3478 }
3479
3480 return 0;
3481}
3482
fb72d167
JR
3483static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3484{
02f59dc9
JR
3485 if (mmu_is_nested(vcpu))
3486 return init_kvm_nested_mmu(vcpu);
3487 else if (tdp_enabled)
fb72d167
JR
3488 return init_kvm_tdp_mmu(vcpu);
3489 else
3490 return init_kvm_softmmu(vcpu);
3491}
3492
6aa8b732
AK
3493static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3494{
3495 ASSERT(vcpu);
62ad0755
SY
3496 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3497 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3498 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3499}
3500
3501int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3502{
3503 destroy_kvm_mmu(vcpu);
f8f7e5ee 3504 return init_kvm_mmu(vcpu);
17c3ba9d 3505}
8668a3c4 3506EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3507
3508int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3509{
714b93da
AK
3510 int r;
3511
e2dec939 3512 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3513 if (r)
3514 goto out;
8986ecc0 3515 r = mmu_alloc_roots(vcpu);
8facbbff 3516 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3517 mmu_sync_roots(vcpu);
aaee2c94 3518 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3519 if (r)
3520 goto out;
3662cb1c 3521 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3522 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3523out:
3524 return r;
6aa8b732 3525}
17c3ba9d
AK
3526EXPORT_SYMBOL_GPL(kvm_mmu_load);
3527
3528void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3529{
3530 mmu_free_roots(vcpu);
3531}
4b16184c 3532EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3533
0028425f 3534static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3535 struct kvm_mmu_page *sp, u64 *spte,
3536 const void *new)
0028425f 3537{
30945387 3538 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3539 ++vcpu->kvm->stat.mmu_pde_zapped;
3540 return;
30945387 3541 }
0028425f 3542
4cee5764 3543 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3544 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3545}
3546
79539cec
AK
3547static bool need_remote_flush(u64 old, u64 new)
3548{
3549 if (!is_shadow_present_pte(old))
3550 return false;
3551 if (!is_shadow_present_pte(new))
3552 return true;
3553 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3554 return true;
3555 old ^= PT64_NX_MASK;
3556 new ^= PT64_NX_MASK;
3557 return (old & ~new & PT64_PERM_MASK) != 0;
3558}
3559
0671a8e7
XG
3560static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3561 bool remote_flush, bool local_flush)
79539cec 3562{
0671a8e7
XG
3563 if (zap_page)
3564 return;
3565
3566 if (remote_flush)
79539cec 3567 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3568 else if (local_flush)
79539cec
AK
3569 kvm_mmu_flush_tlb(vcpu);
3570}
3571
889e5cbc
XG
3572static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3573 const u8 *new, int *bytes)
da4a00f0 3574{
889e5cbc
XG
3575 u64 gentry;
3576 int r;
72016f3a 3577
72016f3a
AK
3578 /*
3579 * Assume that the pte write on a page table of the same type
49b26e26
XG
3580 * as the current vcpu paging mode since we update the sptes only
3581 * when they have the same mode.
72016f3a 3582 */
889e5cbc 3583 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3584 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3585 *gpa &= ~(gpa_t)7;
3586 *bytes = 8;
3587 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3588 if (r)
3589 gentry = 0;
08e850c6
AK
3590 new = (const u8 *)&gentry;
3591 }
3592
889e5cbc 3593 switch (*bytes) {
08e850c6
AK
3594 case 4:
3595 gentry = *(const u32 *)new;
3596 break;
3597 case 8:
3598 gentry = *(const u64 *)new;
3599 break;
3600 default:
3601 gentry = 0;
3602 break;
72016f3a
AK
3603 }
3604
889e5cbc
XG
3605 return gentry;
3606}
3607
3608/*
3609 * If we're seeing too many writes to a page, it may no longer be a page table,
3610 * or we may be forking, in which case it is better to unmap the page.
3611 */
a138fe75 3612static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3613{
a30f47cb
XG
3614 /*
3615 * Skip write-flooding detected for the sp whose level is 1, because
3616 * it can become unsync, then the guest page is not write-protected.
3617 */
f71fa31f 3618 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3619 return false;
3246af0e 3620
a30f47cb 3621 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3622}
3623
3624/*
3625 * Misaligned accesses are too much trouble to fix up; also, they usually
3626 * indicate a page is not used as a page table.
3627 */
3628static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3629 int bytes)
3630{
3631 unsigned offset, pte_size, misaligned;
3632
3633 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3634 gpa, bytes, sp->role.word);
3635
3636 offset = offset_in_page(gpa);
3637 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3638
3639 /*
3640 * Sometimes, the OS only writes the last one bytes to update status
3641 * bits, for example, in linux, andb instruction is used in clear_bit().
3642 */
3643 if (!(offset & (pte_size - 1)) && bytes == 1)
3644 return false;
3645
889e5cbc
XG
3646 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3647 misaligned |= bytes < 4;
3648
3649 return misaligned;
3650}
3651
3652static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3653{
3654 unsigned page_offset, quadrant;
3655 u64 *spte;
3656 int level;
3657
3658 page_offset = offset_in_page(gpa);
3659 level = sp->role.level;
3660 *nspte = 1;
3661 if (!sp->role.cr4_pae) {
3662 page_offset <<= 1; /* 32->64 */
3663 /*
3664 * A 32-bit pde maps 4MB while the shadow pdes map
3665 * only 2MB. So we need to double the offset again
3666 * and zap two pdes instead of one.
3667 */
3668 if (level == PT32_ROOT_LEVEL) {
3669 page_offset &= ~7; /* kill rounding error */
3670 page_offset <<= 1;
3671 *nspte = 2;
3672 }
3673 quadrant = page_offset >> PAGE_SHIFT;
3674 page_offset &= ~PAGE_MASK;
3675 if (quadrant != sp->role.quadrant)
3676 return NULL;
3677 }
3678
3679 spte = &sp->spt[page_offset / sizeof(*spte)];
3680 return spte;
3681}
3682
3683void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3684 const u8 *new, int bytes)
3685{
3686 gfn_t gfn = gpa >> PAGE_SHIFT;
3687 union kvm_mmu_page_role mask = { .word = 0 };
3688 struct kvm_mmu_page *sp;
3689 struct hlist_node *node;
3690 LIST_HEAD(invalid_list);
3691 u64 entry, gentry, *spte;
3692 int npte;
a30f47cb 3693 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3694
3695 /*
3696 * If we don't have indirect shadow pages, it means no page is
3697 * write-protected, so we can exit simply.
3698 */
3699 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3700 return;
3701
3702 zap_page = remote_flush = local_flush = false;
3703
3704 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3705
3706 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3707
3708 /*
3709 * No need to care whether allocation memory is successful
3710 * or not since pte prefetch is skiped if it does not have
3711 * enough objects in the cache.
3712 */
3713 mmu_topup_memory_caches(vcpu);
3714
3715 spin_lock(&vcpu->kvm->mmu_lock);
3716 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3717 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3718
fa1de2bf 3719 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3720 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3721 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3722 detect_write_flooding(sp)) {
0671a8e7 3723 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3724 &invalid_list);
4cee5764 3725 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3726 continue;
3727 }
889e5cbc
XG
3728
3729 spte = get_written_sptes(sp, gpa, &npte);
3730 if (!spte)
3731 continue;
3732
0671a8e7 3733 local_flush = true;
ac1b714e 3734 while (npte--) {
79539cec 3735 entry = *spte;
38e3b2b2 3736 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3737 if (gentry &&
3738 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3739 & mask.word) && rmap_can_add(vcpu))
7c562522 3740 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3741 if (!remote_flush && need_remote_flush(entry, *spte))
3742 remote_flush = true;
ac1b714e 3743 ++spte;
9b7a0325 3744 }
9b7a0325 3745 }
0671a8e7 3746 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3747 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3748 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3749 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3750}
3751
a436036b
AK
3752int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3753{
10589a46
MT
3754 gpa_t gpa;
3755 int r;
a436036b 3756
c5a78f2b 3757 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3758 return 0;
3759
1871c602 3760 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3761
10589a46 3762 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3763
10589a46 3764 return r;
a436036b 3765}
577bdc49 3766EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3767
22d95b12 3768void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3769{
d98ba053 3770 LIST_HEAD(invalid_list);
103ad25a 3771
e0df7b9f 3772 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3773 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3774 struct kvm_mmu_page *sp;
ebeace86 3775
f05e70ac 3776 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3777 struct kvm_mmu_page, link);
e0df7b9f 3778 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3779 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3780 }
aa6bd187 3781 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3782}
ebeace86 3783
1cb3f3ae
XG
3784static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3785{
3786 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3787 return vcpu_match_mmio_gpa(vcpu, addr);
3788
3789 return vcpu_match_mmio_gva(vcpu, addr);
3790}
3791
dc25e89e
AP
3792int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3793 void *insn, int insn_len)
3067714c 3794{
1cb3f3ae 3795 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3796 enum emulation_result er;
3797
56028d08 3798 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3799 if (r < 0)
3800 goto out;
3801
3802 if (!r) {
3803 r = 1;
3804 goto out;
3805 }
3806
1cb3f3ae
XG
3807 if (is_mmio_page_fault(vcpu, cr2))
3808 emulation_type = 0;
3809
3810 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3811
3812 switch (er) {
3813 case EMULATE_DONE:
3814 return 1;
3815 case EMULATE_DO_MMIO:
3816 ++vcpu->stat.mmio_exits;
6d77dbfc 3817 /* fall through */
3067714c 3818 case EMULATE_FAIL:
3f5d18a9 3819 return 0;
3067714c
AK
3820 default:
3821 BUG();
3822 }
3823out:
3067714c
AK
3824 return r;
3825}
3826EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3827
a7052897
MT
3828void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3829{
a7052897 3830 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3831 kvm_mmu_flush_tlb(vcpu);
3832 ++vcpu->stat.invlpg;
3833}
3834EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3835
18552672
JR
3836void kvm_enable_tdp(void)
3837{
3838 tdp_enabled = true;
3839}
3840EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3841
5f4cb662
JR
3842void kvm_disable_tdp(void)
3843{
3844 tdp_enabled = false;
3845}
3846EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3847
6aa8b732
AK
3848static void free_mmu_pages(struct kvm_vcpu *vcpu)
3849{
ad312c7c 3850 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3851 if (vcpu->arch.mmu.lm_root != NULL)
3852 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3853}
3854
3855static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3856{
17ac10ad 3857 struct page *page;
6aa8b732
AK
3858 int i;
3859
3860 ASSERT(vcpu);
3861
17ac10ad
AK
3862 /*
3863 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3864 * Therefore we need to allocate shadow page tables in the first
3865 * 4GB of memory, which happens to fit the DMA32 zone.
3866 */
3867 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3868 if (!page)
d7fa6ab2
WY
3869 return -ENOMEM;
3870
ad312c7c 3871 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3872 for (i = 0; i < 4; ++i)
ad312c7c 3873 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3874
6aa8b732 3875 return 0;
6aa8b732
AK
3876}
3877
8018c27b 3878int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3879{
6aa8b732 3880 ASSERT(vcpu);
e459e322
XG
3881
3882 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3883 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3884 vcpu->arch.mmu.translate_gpa = translate_gpa;
3885 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 3886
8018c27b
IM
3887 return alloc_mmu_pages(vcpu);
3888}
6aa8b732 3889
8018c27b
IM
3890int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3891{
3892 ASSERT(vcpu);
ad312c7c 3893 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3894
8018c27b 3895 return init_kvm_mmu(vcpu);
6aa8b732
AK
3896}
3897
90cb0529 3898void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3899{
4db35314 3900 struct kvm_mmu_page *sp;
d13bc5b5 3901 bool flush = false;
6aa8b732 3902
f05e70ac 3903 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3904 int i;
3905 u64 *pt;
3906
291f26bc 3907 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3908 continue;
3909
4db35314 3910 pt = sp->spt;
8234b22e 3911 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3912 if (!is_shadow_present_pte(pt[i]) ||
3913 !is_last_spte(pt[i], sp->role.level))
3914 continue;
3915
d13bc5b5 3916 spte_write_protect(kvm, &pt[i], &flush);
8234b22e 3917 }
6aa8b732 3918 }
171d595d 3919 kvm_flush_remote_tlbs(kvm);
6aa8b732 3920}
37a7d8b0 3921
90cb0529 3922void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3923{
4db35314 3924 struct kvm_mmu_page *sp, *node;
d98ba053 3925 LIST_HEAD(invalid_list);
e0fa826f 3926
aaee2c94 3927 spin_lock(&kvm->mmu_lock);
3246af0e 3928restart:
f05e70ac 3929 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3930 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3931 goto restart;
3932
d98ba053 3933 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3934 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3935}
3936
3d56cbdf
JK
3937static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3938 struct list_head *invalid_list)
3ee16c81
IE
3939{
3940 struct kvm_mmu_page *page;
3941
3942 page = container_of(kvm->arch.active_mmu_pages.prev,
3943 struct kvm_mmu_page, link);
3d56cbdf 3944 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3945}
3946
1495f230 3947static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3948{
3949 struct kvm *kvm;
1495f230 3950 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3951
3952 if (nr_to_scan == 0)
3953 goto out;
3ee16c81 3954
e935b837 3955 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3956
3957 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 3958 int idx;
d98ba053 3959 LIST_HEAD(invalid_list);
3ee16c81 3960
19526396
GN
3961 /*
3962 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
3963 * here. We may skip a VM instance errorneosly, but we do not
3964 * want to shrink a VM that only started to populate its MMU
3965 * anyway.
3966 */
3967 if (kvm->arch.n_used_mmu_pages > 0) {
3968 if (!nr_to_scan--)
3969 break;
3970 continue;
3971 }
3972
f656ce01 3973 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3974 spin_lock(&kvm->mmu_lock);
3ee16c81 3975
19526396 3976 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 3977 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 3978
3ee16c81 3979 spin_unlock(&kvm->mmu_lock);
f656ce01 3980 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
3981
3982 list_move_tail(&kvm->vm_list, &vm_list);
3983 break;
3ee16c81 3984 }
3ee16c81 3985
e935b837 3986 raw_spin_unlock(&kvm_lock);
3ee16c81 3987
45221ab6
DH
3988out:
3989 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3990}
3991
3992static struct shrinker mmu_shrinker = {
3993 .shrink = mmu_shrink,
3994 .seeks = DEFAULT_SEEKS * 10,
3995};
3996
2ddfd20e 3997static void mmu_destroy_caches(void)
b5a33a75 3998{
53c07b18
XG
3999 if (pte_list_desc_cache)
4000 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4001 if (mmu_page_header_cache)
4002 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4003}
4004
4005int kvm_mmu_module_init(void)
4006{
53c07b18
XG
4007 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4008 sizeof(struct pte_list_desc),
20c2df83 4009 0, 0, NULL);
53c07b18 4010 if (!pte_list_desc_cache)
b5a33a75
AK
4011 goto nomem;
4012
d3d25b04
AK
4013 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4014 sizeof(struct kvm_mmu_page),
20c2df83 4015 0, 0, NULL);
d3d25b04
AK
4016 if (!mmu_page_header_cache)
4017 goto nomem;
4018
45bf21a8
WY
4019 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4020 goto nomem;
4021
3ee16c81
IE
4022 register_shrinker(&mmu_shrinker);
4023
b5a33a75
AK
4024 return 0;
4025
4026nomem:
3ee16c81 4027 mmu_destroy_caches();
b5a33a75
AK
4028 return -ENOMEM;
4029}
4030
3ad82a7e
ZX
4031/*
4032 * Caculate mmu pages needed for kvm.
4033 */
4034unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4035{
3ad82a7e
ZX
4036 unsigned int nr_mmu_pages;
4037 unsigned int nr_pages = 0;
bc6678a3 4038 struct kvm_memslots *slots;
be6ba0f0 4039 struct kvm_memory_slot *memslot;
3ad82a7e 4040
90d83dc3
LJ
4041 slots = kvm_memslots(kvm);
4042
be6ba0f0
XG
4043 kvm_for_each_memslot(memslot, slots)
4044 nr_pages += memslot->npages;
3ad82a7e
ZX
4045
4046 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4047 nr_mmu_pages = max(nr_mmu_pages,
4048 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4049
4050 return nr_mmu_pages;
4051}
4052
94d8b056
MT
4053int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4054{
4055 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4056 u64 spte;
94d8b056
MT
4057 int nr_sptes = 0;
4058
c2a2ac2b
XG
4059 walk_shadow_page_lockless_begin(vcpu);
4060 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4061 sptes[iterator.level-1] = spte;
94d8b056 4062 nr_sptes++;
c2a2ac2b 4063 if (!is_shadow_present_pte(spte))
94d8b056
MT
4064 break;
4065 }
c2a2ac2b 4066 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4067
4068 return nr_sptes;
4069}
4070EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4071
c42fffe3
XG
4072void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4073{
4074 ASSERT(vcpu);
4075
4076 destroy_kvm_mmu(vcpu);
4077 free_mmu_pages(vcpu);
4078 mmu_free_memory_caches(vcpu);
b034cf01
XG
4079}
4080
b034cf01
XG
4081void kvm_mmu_module_exit(void)
4082{
4083 mmu_destroy_caches();
4084 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4085 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4086 mmu_audit_disable();
4087}