]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: use kvm_sync_page in kvm_sync_pages
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
3d0c27ad 44#include <asm/kvm_page_track.h>
6aa8b732 45
18552672
JR
46/*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
2f333bcb 53bool tdp_enabled = false;
18552672 54
8b1fe17c
XG
55enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
6903074c
XG
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
8b1fe17c 62};
37a7d8b0 63
8b1fe17c 64#undef MMU_DEBUG
37a7d8b0
AK
65
66#ifdef MMU_DEBUG
fa4a2c08
PB
67static bool dbg = 0;
68module_param(dbg, bool, 0644);
37a7d8b0
AK
69
70#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 72#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 73#else
37a7d8b0
AK
74#define pgprintk(x...) do { } while (0)
75#define rmap_printk(x...) do { } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 77#endif
6aa8b732 78
957ed9ef
XG
79#define PTE_PREFETCH_NUM 8
80
00763e41 81#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
82#define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
6aa8b732
AK
84#define PT64_LEVEL_BITS 9
85
86#define PT64_LEVEL_SHIFT(level) \
d77c26fc 87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 88
6aa8b732
AK
89#define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93#define PT32_LEVEL_BITS 10
94
95#define PT32_LEVEL_SHIFT(level) \
d77c26fc 96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 97
e04da980
JR
98#define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
101
102#define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
27aba766 106#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
107#define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
109#define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112#define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
115
116#define PT32_BASE_ADDR_MASK PAGE_MASK
117#define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
119#define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
6aa8b732 122
53166229
GN
123#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
6aa8b732 125
fe135d2c
AK
126#define ACC_EXEC_MASK 1
127#define ACC_WRITE_MASK PT_WRITABLE_MASK
128#define ACC_USER_MASK PT_USER_MASK
129#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
90bb6fc5
AK
131#include <trace/events/kvm.h>
132
07420171
AK
133#define CREATE_TRACE_POINTS
134#include "mmutrace.h"
135
49fde340
XG
136#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 138
135f8c2b
AK
139#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
220f773a
TY
141/* make pte_list_desc fit well in cache line */
142#define PTE_LIST_EXT 3
143
53c07b18
XG
144struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
cd4a4e53
AK
147};
148
2d11123a
AK
149struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
2d11123a 152 u64 *sptep;
dd3bfd59 153 int level;
2d11123a
AK
154 unsigned index;
155};
156
157#define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
c2a2ac2b
XG
162#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
53c07b18 168static struct kmem_cache *pte_list_desc_cache;
d3d25b04 169static struct kmem_cache *mmu_page_header_cache;
45221ab6 170static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 171
7b52345e
SY
172static u64 __read_mostly shadow_nx_mask;
173static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174static u64 __read_mostly shadow_user_mask;
175static u64 __read_mostly shadow_accessed_mask;
176static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
177static u64 __read_mostly shadow_mmio_mask;
178
179static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 180static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
181
182void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183{
184 shadow_mmio_mask = mmio_mask;
185}
186EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
f2fd125d 188/*
ee3d1570
DM
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 196 */
ee3d1570 197#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
198#define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
ee3d1570
DM
200#define MMIO_GEN_SHIFT 20
201#define MMIO_GEN_LOW_SHIFT 10
202#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 203#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
204
205static u64 generation_mmio_spte_mask(unsigned int gen)
206{
207 u64 mask;
208
842bb26a 209 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214}
215
216static unsigned int get_mmio_spte_generation(u64 spte)
217{
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225}
226
54bf36aa 227static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 228{
54bf36aa 229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
230}
231
54bf36aa 232static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 233 unsigned access)
ce88decf 234{
54bf36aa 235 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 236 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 237
ce88decf 238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 240
f8f55942 241 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 242 mmu_spte_set(sptep, mask);
ce88decf
XG
243}
244
245static bool is_mmio_spte(u64 spte)
246{
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248}
249
250static gfn_t get_mmio_spte_gfn(u64 spte)
251{
842bb26a 252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 253 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
254}
255
256static unsigned get_mmio_spte_access(u64 spte)
257{
842bb26a 258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 259 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
260}
261
54bf36aa 262static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 263 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
264{
265 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 266 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
267 return true;
268 }
269
270 return false;
271}
c7addb90 272
54bf36aa 273static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 274{
089504c0
XG
275 unsigned int kvm_gen, spte_gen;
276
54bf36aa 277 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
f8f55942
XG
282}
283
7b52345e 284void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
286{
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292}
293EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
6aa8b732
AK
295static int is_cpuid_PSE36(void)
296{
297 return 1;
298}
299
73b1087e
AK
300static int is_nx(struct kvm_vcpu *vcpu)
301{
f6801dff 302 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
303}
304
c7addb90
AK
305static int is_shadow_present_pte(u64 pte)
306{
ce88decf 307 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
308}
309
05da4558
MT
310static int is_large_pte(u64 pte)
311{
312 return pte & PT_PAGE_SIZE_MASK;
313}
314
776e6633
MT
315static int is_last_spte(u64 pte, int level)
316{
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
852e3c19 319 if (is_large_pte(pte))
776e6633
MT
320 return 1;
321 return 0;
322}
323
ba049e93 324static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 325{
35149e21 326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
327}
328
da928521
AK
329static gfn_t pse36_gfn_delta(u32 gpte)
330{
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334}
335
603e0651 336#ifdef CONFIG_X86_64
d555c333 337static void __set_spte(u64 *sptep, u64 spte)
e663ee64 338{
603e0651 339 *sptep = spte;
e663ee64
AK
340}
341
603e0651 342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 343{
603e0651
XG
344 *sptep = spte;
345}
346
347static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348{
349 return xchg(sptep, spte);
350}
c2a2ac2b
XG
351
352static u64 __get_spte_lockless(u64 *sptep)
353{
354 return ACCESS_ONCE(*sptep);
355}
a9221dd5 356#else
603e0651
XG
357union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363};
a9221dd5 364
c2a2ac2b
XG
365static void count_spte_clear(u64 *sptep, u64 spte)
366{
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375}
376
603e0651
XG
377static void __set_spte(u64 *sptep, u64 spte)
378{
379 union split_spte *ssptep, sspte;
a9221dd5 380
603e0651
XG
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
394}
395
603e0651
XG
396static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397{
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 ssptep->spte_low = sspte.spte_low;
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 412 count_spte_clear(sptep, spte);
603e0651
XG
413}
414
415static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416{
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 426 count_spte_clear(sptep, spte);
603e0651
XG
427
428 return orig.spte;
429}
c2a2ac2b
XG
430
431/*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
448 */
449static u64 __get_spte_lockless(u64 *sptep)
450{
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470}
603e0651
XG
471#endif
472
c7ba5b48
XG
473static bool spte_is_locklessly_modifiable(u64 spte)
474{
feb3eb70
GN
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
477}
478
8672b721
XG
479static bool spte_has_volatile_bits(u64 spte)
480{
c7ba5b48
XG
481 /*
482 * Always atomicly update spte if it can be updated
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
8672b721
XG
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
4132779b
XG
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
498 return false;
499
500 return true;
501}
502
4132779b
XG
503static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504{
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506}
507
7e71a59b
KH
508static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509{
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511}
512
1df9f2dc
XG
513/* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519static void mmu_spte_set(u64 *sptep, u64 new_spte)
520{
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523}
524
525/* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
1df9f2dc 533 */
6e7d0354 534static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 535{
c7ba5b48 536 u64 old_spte = *sptep;
6e7d0354 537 bool ret = false;
4132779b 538
afd28fe1 539 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 540
6e7d0354
XG
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
4132779b 545
c7ba5b48 546 if (!spte_has_volatile_bits(old_spte))
603e0651 547 __update_clear_spte_fast(sptep, new_spte);
4132779b 548 else
603e0651 549 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 550
c7ba5b48
XG
551 /*
552 * For the spte updated out of mmu-lock is safe, since
553 * we always atomicly update it, see the comments in
554 * spte_has_volatile_bits().
555 */
7f31c959
XG
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
6e7d0354
XG
558 ret = true;
559
4132779b 560 if (!shadow_accessed_mask)
6e7d0354 561 return ret;
4132779b 562
7e71a59b
KH
563 /*
564 * Flush TLB when accessed/dirty bits are changed in the page tables,
565 * to guarantee consistency between TLB and page tables.
566 */
567 if (spte_is_bit_changed(old_spte, new_spte,
568 shadow_accessed_mask | shadow_dirty_mask))
569 ret = true;
570
4132779b
XG
571 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
575
576 return ret;
b79b93f9
AK
577}
578
1df9f2dc
XG
579/*
580 * Rules for using mmu_spte_clear_track_bits:
581 * It sets the sptep from present to nonpresent, and track the
582 * state bits, it is used to clear the last level sptep.
583 */
584static int mmu_spte_clear_track_bits(u64 *sptep)
585{
ba049e93 586 kvm_pfn_t pfn;
1df9f2dc
XG
587 u64 old_spte = *sptep;
588
589 if (!spte_has_volatile_bits(old_spte))
603e0651 590 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 591 else
603e0651 592 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 593
afd28fe1 594 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
595 return 0;
596
597 pfn = spte_to_pfn(old_spte);
86fde74c
XG
598
599 /*
600 * KVM does not hold the refcount of the page used by
601 * kvm mmu, before reclaiming the page, we should
602 * unmap it from mmu first.
603 */
bf4bea8e 604 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 605
1df9f2dc
XG
606 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607 kvm_set_pfn_accessed(pfn);
608 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609 kvm_set_pfn_dirty(pfn);
610 return 1;
611}
612
613/*
614 * Rules for using mmu_spte_clear_no_track:
615 * Directly clear spte without caring the state bits of sptep,
616 * it is used to set the upper level spte.
617 */
618static void mmu_spte_clear_no_track(u64 *sptep)
619{
603e0651 620 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
621}
622
c2a2ac2b
XG
623static u64 mmu_spte_get_lockless(u64 *sptep)
624{
625 return __get_spte_lockless(sptep);
626}
627
628static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629{
c142786c
AK
630 /*
631 * Prevent page table teardown by making any free-er wait during
632 * kvm_flush_remote_tlbs() IPI to all active vcpus.
633 */
634 local_irq_disable();
635 vcpu->mode = READING_SHADOW_PAGE_TABLES;
636 /*
637 * Make sure a following spte read is not reordered ahead of the write
638 * to vcpu->mode.
639 */
640 smp_mb();
c2a2ac2b
XG
641}
642
643static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644{
c142786c
AK
645 /*
646 * Make sure the write to vcpu->mode is not reordered in front of
647 * reads to sptes. If it does, kvm_commit_zap_page() can see us
648 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649 */
650 smp_mb();
651 vcpu->mode = OUTSIDE_GUEST_MODE;
652 local_irq_enable();
c2a2ac2b
XG
653}
654
e2dec939 655static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 656 struct kmem_cache *base_cache, int min)
714b93da
AK
657{
658 void *obj;
659
660 if (cache->nobjs >= min)
e2dec939 661 return 0;
714b93da 662 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 663 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 664 if (!obj)
e2dec939 665 return -ENOMEM;
714b93da
AK
666 cache->objects[cache->nobjs++] = obj;
667 }
e2dec939 668 return 0;
714b93da
AK
669}
670
f759e2b4
XG
671static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672{
673 return cache->nobjs;
674}
675
e8ad9a70
XG
676static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677 struct kmem_cache *cache)
714b93da
AK
678{
679 while (mc->nobjs)
e8ad9a70 680 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
681}
682
c1158e63 683static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 684 int min)
c1158e63 685{
842f22ed 686 void *page;
c1158e63
AK
687
688 if (cache->nobjs >= min)
689 return 0;
690 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 691 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
692 if (!page)
693 return -ENOMEM;
842f22ed 694 cache->objects[cache->nobjs++] = page;
c1158e63
AK
695 }
696 return 0;
697}
698
699static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700{
701 while (mc->nobjs)
c4d198d5 702 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
703}
704
2e3e5882 705static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 706{
e2dec939
AK
707 int r;
708
53c07b18 709 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 710 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
711 if (r)
712 goto out;
ad312c7c 713 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
714 if (r)
715 goto out;
ad312c7c 716 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 717 mmu_page_header_cache, 4);
e2dec939
AK
718out:
719 return r;
714b93da
AK
720}
721
722static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723{
53c07b18
XG
724 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725 pte_list_desc_cache);
ad312c7c 726 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
727 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728 mmu_page_header_cache);
714b93da
AK
729}
730
80feb89a 731static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
732{
733 void *p;
734
735 BUG_ON(!mc->nobjs);
736 p = mc->objects[--mc->nobjs];
714b93da
AK
737 return p;
738}
739
53c07b18 740static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 741{
80feb89a 742 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
743}
744
53c07b18 745static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 746{
53c07b18 747 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
748}
749
2032a93d
LJ
750static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751{
752 if (!sp->role.direct)
753 return sp->gfns[index];
754
755 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756}
757
758static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759{
760 if (sp->role.direct)
761 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762 else
763 sp->gfns[index] = gfn;
764}
765
05da4558 766/*
d4dbf470
TY
767 * Return the pointer to the large page information for a given gfn,
768 * handling slots that are not large page aligned.
05da4558 769 */
d4dbf470
TY
770static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771 struct kvm_memory_slot *slot,
772 int level)
05da4558
MT
773{
774 unsigned long idx;
775
fb03cb6f 776 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 777 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
778}
779
547ffaed
XG
780static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781 gfn_t gfn, int count)
782{
783 struct kvm_lpage_info *linfo;
784 int i;
785
786 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787 linfo = lpage_info_slot(gfn, slot, i);
788 linfo->disallow_lpage += count;
789 WARN_ON(linfo->disallow_lpage < 0);
790 }
791}
792
793void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794{
795 update_gfn_disallow_lpage_count(slot, gfn, 1);
796}
797
798void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799{
800 update_gfn_disallow_lpage_count(slot, gfn, -1);
801}
802
3ed1a478 803static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 804{
699023e2 805 struct kvm_memslots *slots;
d25797b2 806 struct kvm_memory_slot *slot;
3ed1a478 807 gfn_t gfn;
05da4558 808
56ca57f9 809 kvm->arch.indirect_shadow_pages++;
3ed1a478 810 gfn = sp->gfn;
699023e2
PB
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
813
814 /* the non-leaf shadow pages are keeping readonly. */
815 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
816 return kvm_slot_page_track_add_page(kvm, slot, gfn,
817 KVM_PAGE_TRACK_WRITE);
818
547ffaed 819 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
820}
821
3ed1a478 822static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 823{
699023e2 824 struct kvm_memslots *slots;
d25797b2 825 struct kvm_memory_slot *slot;
3ed1a478 826 gfn_t gfn;
05da4558 827
56ca57f9 828 kvm->arch.indirect_shadow_pages--;
3ed1a478 829 gfn = sp->gfn;
699023e2
PB
830 slots = kvm_memslots_for_spte_role(kvm, sp->role);
831 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
832 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
833 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
834 KVM_PAGE_TRACK_WRITE);
835
547ffaed 836 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
837}
838
92f94f1e
XG
839static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
840 struct kvm_memory_slot *slot)
05da4558 841{
d4dbf470 842 struct kvm_lpage_info *linfo;
05da4558
MT
843
844 if (slot) {
d4dbf470 845 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 846 return !!linfo->disallow_lpage;
05da4558
MT
847 }
848
92f94f1e 849 return true;
05da4558
MT
850}
851
92f94f1e
XG
852static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
853 int level)
5225fdf8
TY
854{
855 struct kvm_memory_slot *slot;
856
857 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 858 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
859}
860
d25797b2 861static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 862{
8f0b1ab6 863 unsigned long page_size;
d25797b2 864 int i, ret = 0;
05da4558 865
8f0b1ab6 866 page_size = kvm_host_page_size(kvm, gfn);
05da4558 867
8a3d08f1 868 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
869 if (page_size >= KVM_HPAGE_SIZE(i))
870 ret = i;
871 else
872 break;
873 }
874
4c2155ce 875 return ret;
05da4558
MT
876}
877
d8aacf5d
TY
878static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
879 bool no_dirty_log)
880{
881 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
882 return false;
883 if (no_dirty_log && slot->dirty_bitmap)
884 return false;
885
886 return true;
887}
888
5d163b1c
XG
889static struct kvm_memory_slot *
890gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
891 bool no_dirty_log)
05da4558
MT
892{
893 struct kvm_memory_slot *slot;
5d163b1c 894
54bf36aa 895 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 896 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
897 slot = NULL;
898
899 return slot;
900}
901
fd136902
TY
902static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
903 bool *force_pt_level)
936a5fe6
AA
904{
905 int host_level, level, max_level;
d8aacf5d
TY
906 struct kvm_memory_slot *slot;
907
8c85ac1c
TY
908 if (unlikely(*force_pt_level))
909 return PT_PAGE_TABLE_LEVEL;
05da4558 910
8c85ac1c
TY
911 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
912 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
913 if (unlikely(*force_pt_level))
914 return PT_PAGE_TABLE_LEVEL;
915
d25797b2
JR
916 host_level = host_mapping_level(vcpu->kvm, large_gfn);
917
918 if (host_level == PT_PAGE_TABLE_LEVEL)
919 return host_level;
920
55dd98c3 921 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
922
923 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 924 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 925 break;
d25797b2
JR
926
927 return level - 1;
05da4558
MT
928}
929
290fc38d 930/*
018aabb5 931 * About rmap_head encoding:
cd4a4e53 932 *
018aabb5
TY
933 * If the bit zero of rmap_head->val is clear, then it points to the only spte
934 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 935 * pte_list_desc containing more mappings.
018aabb5
TY
936 */
937
938/*
939 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 940 */
53c07b18 941static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 942 struct kvm_rmap_head *rmap_head)
cd4a4e53 943{
53c07b18 944 struct pte_list_desc *desc;
53a27b39 945 int i, count = 0;
cd4a4e53 946
018aabb5 947 if (!rmap_head->val) {
53c07b18 948 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
949 rmap_head->val = (unsigned long)spte;
950 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
951 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
952 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 953 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 954 desc->sptes[1] = spte;
018aabb5 955 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 956 ++count;
cd4a4e53 957 } else {
53c07b18 958 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 959 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 960 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 961 desc = desc->more;
53c07b18 962 count += PTE_LIST_EXT;
53a27b39 963 }
53c07b18
XG
964 if (desc->sptes[PTE_LIST_EXT-1]) {
965 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
966 desc = desc->more;
967 }
d555c333 968 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 969 ++count;
d555c333 970 desc->sptes[i] = spte;
cd4a4e53 971 }
53a27b39 972 return count;
cd4a4e53
AK
973}
974
53c07b18 975static void
018aabb5
TY
976pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
977 struct pte_list_desc *desc, int i,
978 struct pte_list_desc *prev_desc)
cd4a4e53
AK
979{
980 int j;
981
53c07b18 982 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 983 ;
d555c333
AK
984 desc->sptes[i] = desc->sptes[j];
985 desc->sptes[j] = NULL;
cd4a4e53
AK
986 if (j != 0)
987 return;
988 if (!prev_desc && !desc->more)
018aabb5 989 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
990 else
991 if (prev_desc)
992 prev_desc->more = desc->more;
993 else
018aabb5 994 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 995 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
996}
997
018aabb5 998static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 999{
53c07b18
XG
1000 struct pte_list_desc *desc;
1001 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1002 int i;
1003
018aabb5 1004 if (!rmap_head->val) {
53c07b18 1005 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1006 BUG();
018aabb5 1007 } else if (!(rmap_head->val & 1)) {
53c07b18 1008 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1009 if ((u64 *)rmap_head->val != spte) {
53c07b18 1010 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1011 BUG();
1012 }
018aabb5 1013 rmap_head->val = 0;
cd4a4e53 1014 } else {
53c07b18 1015 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1016 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1017 prev_desc = NULL;
1018 while (desc) {
018aabb5 1019 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1020 if (desc->sptes[i] == spte) {
018aabb5
TY
1021 pte_list_desc_remove_entry(rmap_head,
1022 desc, i, prev_desc);
cd4a4e53
AK
1023 return;
1024 }
018aabb5 1025 }
cd4a4e53
AK
1026 prev_desc = desc;
1027 desc = desc->more;
1028 }
53c07b18 1029 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1030 BUG();
1031 }
1032}
1033
018aabb5
TY
1034static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1035 struct kvm_memory_slot *slot)
53c07b18 1036{
77d11309 1037 unsigned long idx;
53c07b18 1038
77d11309 1039 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1040 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1041}
1042
018aabb5
TY
1043static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1044 struct kvm_mmu_page *sp)
9b9b1492 1045{
699023e2 1046 struct kvm_memslots *slots;
9b9b1492
TY
1047 struct kvm_memory_slot *slot;
1048
699023e2
PB
1049 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1051 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1052}
1053
f759e2b4
XG
1054static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055{
1056 struct kvm_mmu_memory_cache *cache;
1057
1058 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059 return mmu_memory_cache_free_objects(cache);
1060}
1061
53c07b18
XG
1062static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063{
1064 struct kvm_mmu_page *sp;
018aabb5 1065 struct kvm_rmap_head *rmap_head;
53c07b18 1066
53c07b18
XG
1067 sp = page_header(__pa(spte));
1068 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1069 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1070 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1071}
1072
53c07b18
XG
1073static void rmap_remove(struct kvm *kvm, u64 *spte)
1074{
1075 struct kvm_mmu_page *sp;
1076 gfn_t gfn;
018aabb5 1077 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1078
1079 sp = page_header(__pa(spte));
1080 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1081 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1082 pte_list_remove(spte, rmap_head);
53c07b18
XG
1083}
1084
1e3f42f0
TY
1085/*
1086 * Used by the following functions to iterate through the sptes linked by a
1087 * rmap. All fields are private and not assumed to be used outside.
1088 */
1089struct rmap_iterator {
1090 /* private fields */
1091 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1092 int pos; /* index of the sptep */
1093};
1094
1095/*
1096 * Iteration must be started by this function. This should also be used after
1097 * removing/dropping sptes from the rmap link because in such cases the
1098 * information in the itererator may not be valid.
1099 *
1100 * Returns sptep if found, NULL otherwise.
1101 */
018aabb5
TY
1102static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1103 struct rmap_iterator *iter)
1e3f42f0 1104{
77fbbbd2
TY
1105 u64 *sptep;
1106
018aabb5 1107 if (!rmap_head->val)
1e3f42f0
TY
1108 return NULL;
1109
018aabb5 1110 if (!(rmap_head->val & 1)) {
1e3f42f0 1111 iter->desc = NULL;
77fbbbd2
TY
1112 sptep = (u64 *)rmap_head->val;
1113 goto out;
1e3f42f0
TY
1114 }
1115
018aabb5 1116 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1117 iter->pos = 0;
77fbbbd2
TY
1118 sptep = iter->desc->sptes[iter->pos];
1119out:
1120 BUG_ON(!is_shadow_present_pte(*sptep));
1121 return sptep;
1e3f42f0
TY
1122}
1123
1124/*
1125 * Must be used with a valid iterator: e.g. after rmap_get_first().
1126 *
1127 * Returns sptep if found, NULL otherwise.
1128 */
1129static u64 *rmap_get_next(struct rmap_iterator *iter)
1130{
77fbbbd2
TY
1131 u64 *sptep;
1132
1e3f42f0
TY
1133 if (iter->desc) {
1134 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1135 ++iter->pos;
1136 sptep = iter->desc->sptes[iter->pos];
1137 if (sptep)
77fbbbd2 1138 goto out;
1e3f42f0
TY
1139 }
1140
1141 iter->desc = iter->desc->more;
1142
1143 if (iter->desc) {
1144 iter->pos = 0;
1145 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1146 sptep = iter->desc->sptes[iter->pos];
1147 goto out;
1e3f42f0
TY
1148 }
1149 }
1150
1151 return NULL;
77fbbbd2
TY
1152out:
1153 BUG_ON(!is_shadow_present_pte(*sptep));
1154 return sptep;
1e3f42f0
TY
1155}
1156
018aabb5
TY
1157#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1158 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1159 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1160
c3707958 1161static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1162{
1df9f2dc 1163 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1164 rmap_remove(kvm, sptep);
be38d276
AK
1165}
1166
8e22f955
XG
1167
1168static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1169{
1170 if (is_large_pte(*sptep)) {
1171 WARN_ON(page_header(__pa(sptep))->role.level ==
1172 PT_PAGE_TABLE_LEVEL);
1173 drop_spte(kvm, sptep);
1174 --kvm->stat.lpages;
1175 return true;
1176 }
1177
1178 return false;
1179}
1180
1181static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1182{
1183 if (__drop_large_spte(vcpu->kvm, sptep))
1184 kvm_flush_remote_tlbs(vcpu->kvm);
1185}
1186
1187/*
49fde340 1188 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1189 * spte write-protection is caused by protecting shadow page table.
49fde340 1190 *
b4619660 1191 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1192 * protection:
1193 * - for dirty logging, the spte can be set to writable at anytime if
1194 * its dirty bitmap is properly set.
1195 * - for spte protection, the spte can be writable only after unsync-ing
1196 * shadow page.
8e22f955 1197 *
c126d94f 1198 * Return true if tlb need be flushed.
8e22f955 1199 */
c126d94f 1200static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1201{
1202 u64 spte = *sptep;
1203
49fde340
XG
1204 if (!is_writable_pte(spte) &&
1205 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1206 return false;
1207
1208 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1209
49fde340
XG
1210 if (pt_protect)
1211 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1212 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1213
c126d94f 1214 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1215}
1216
018aabb5
TY
1217static bool __rmap_write_protect(struct kvm *kvm,
1218 struct kvm_rmap_head *rmap_head,
245c3912 1219 bool pt_protect)
98348e95 1220{
1e3f42f0
TY
1221 u64 *sptep;
1222 struct rmap_iterator iter;
d13bc5b5 1223 bool flush = false;
374cbac0 1224
018aabb5 1225 for_each_rmap_spte(rmap_head, &iter, sptep)
c126d94f 1226 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1227
d13bc5b5 1228 return flush;
a0ed4607
TY
1229}
1230
f4b4b180
KH
1231static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1232{
1233 u64 spte = *sptep;
1234
1235 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237 spte &= ~shadow_dirty_mask;
1238
1239 return mmu_spte_update(sptep, spte);
1240}
1241
018aabb5 1242static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1243{
1244 u64 *sptep;
1245 struct rmap_iterator iter;
1246 bool flush = false;
1247
018aabb5 1248 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1249 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1250
1251 return flush;
1252}
1253
1254static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1255{
1256 u64 spte = *sptep;
1257
1258 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1259
1260 spte |= shadow_dirty_mask;
1261
1262 return mmu_spte_update(sptep, spte);
1263}
1264
018aabb5 1265static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1266{
1267 u64 *sptep;
1268 struct rmap_iterator iter;
1269 bool flush = false;
1270
018aabb5 1271 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1272 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1273
1274 return flush;
1275}
1276
5dc99b23 1277/**
3b0f1d01 1278 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1279 * @kvm: kvm instance
1280 * @slot: slot to protect
1281 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1282 * @mask: indicates which pages we should protect
1283 *
1284 * Used when we do not need to care about huge page mappings: e.g. during dirty
1285 * logging we do not have any such mappings.
1286 */
3b0f1d01 1287static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1288 struct kvm_memory_slot *slot,
1289 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1290{
018aabb5 1291 struct kvm_rmap_head *rmap_head;
a0ed4607 1292
5dc99b23 1293 while (mask) {
018aabb5
TY
1294 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295 PT_PAGE_TABLE_LEVEL, slot);
1296 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1297
5dc99b23
TY
1298 /* clear the first set bit */
1299 mask &= mask - 1;
1300 }
374cbac0
AK
1301}
1302
f4b4b180
KH
1303/**
1304 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1305 * @kvm: kvm instance
1306 * @slot: slot to clear D-bit
1307 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1308 * @mask: indicates which pages we should clear D-bit
1309 *
1310 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1311 */
1312void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1313 struct kvm_memory_slot *slot,
1314 gfn_t gfn_offset, unsigned long mask)
1315{
018aabb5 1316 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1317
1318 while (mask) {
018aabb5
TY
1319 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1320 PT_PAGE_TABLE_LEVEL, slot);
1321 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1322
1323 /* clear the first set bit */
1324 mask &= mask - 1;
1325 }
1326}
1327EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1328
3b0f1d01
KH
1329/**
1330 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1331 * PT level pages.
1332 *
1333 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1334 * enable dirty logging for them.
1335 *
1336 * Used when we do not need to care about huge page mappings: e.g. during dirty
1337 * logging we do not have any such mappings.
1338 */
1339void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1340 struct kvm_memory_slot *slot,
1341 gfn_t gfn_offset, unsigned long mask)
1342{
88178fd4
KH
1343 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1344 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1345 mask);
1346 else
1347 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1348}
1349
aeecee2e
XG
1350bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1351 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1352{
018aabb5 1353 struct kvm_rmap_head *rmap_head;
5dc99b23 1354 int i;
2f84569f 1355 bool write_protected = false;
95d4c16c 1356
8a3d08f1 1357 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1358 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1359 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1360 }
1361
1362 return write_protected;
95d4c16c
TY
1363}
1364
aeecee2e
XG
1365static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1366{
1367 struct kvm_memory_slot *slot;
1368
1369 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1370 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1371}
1372
018aabb5 1373static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1374{
1e3f42f0
TY
1375 u64 *sptep;
1376 struct rmap_iterator iter;
6a49f85c 1377 bool flush = false;
e930bffe 1378
018aabb5 1379 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1380 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1381
1382 drop_spte(kvm, sptep);
6a49f85c 1383 flush = true;
e930bffe 1384 }
1e3f42f0 1385
6a49f85c
XG
1386 return flush;
1387}
1388
018aabb5 1389static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1390 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391 unsigned long data)
1392{
018aabb5 1393 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1394}
1395
018aabb5 1396static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1397 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 unsigned long data)
3da0dd43 1399{
1e3f42f0
TY
1400 u64 *sptep;
1401 struct rmap_iterator iter;
3da0dd43 1402 int need_flush = 0;
1e3f42f0 1403 u64 new_spte;
3da0dd43 1404 pte_t *ptep = (pte_t *)data;
ba049e93 1405 kvm_pfn_t new_pfn;
3da0dd43
IE
1406
1407 WARN_ON(pte_huge(*ptep));
1408 new_pfn = pte_pfn(*ptep);
1e3f42f0 1409
0d536790 1410restart:
018aabb5 1411 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1412 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1413 sptep, *sptep, gfn, level);
1e3f42f0 1414
3da0dd43 1415 need_flush = 1;
1e3f42f0 1416
3da0dd43 1417 if (pte_write(*ptep)) {
1e3f42f0 1418 drop_spte(kvm, sptep);
0d536790 1419 goto restart;
3da0dd43 1420 } else {
1e3f42f0 1421 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1422 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1423
1424 new_spte &= ~PT_WRITABLE_MASK;
1425 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1426 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1427
1428 mmu_spte_clear_track_bits(sptep);
1429 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1430 }
1431 }
1e3f42f0 1432
3da0dd43
IE
1433 if (need_flush)
1434 kvm_flush_remote_tlbs(kvm);
1435
1436 return 0;
1437}
1438
6ce1f4e2
XG
1439struct slot_rmap_walk_iterator {
1440 /* input fields. */
1441 struct kvm_memory_slot *slot;
1442 gfn_t start_gfn;
1443 gfn_t end_gfn;
1444 int start_level;
1445 int end_level;
1446
1447 /* output fields. */
1448 gfn_t gfn;
018aabb5 1449 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1450 int level;
1451
1452 /* private field. */
018aabb5 1453 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1454};
1455
1456static void
1457rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458{
1459 iterator->level = level;
1460 iterator->gfn = iterator->start_gfn;
1461 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1463 iterator->slot);
1464}
1465
1466static void
1467slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468 struct kvm_memory_slot *slot, int start_level,
1469 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470{
1471 iterator->slot = slot;
1472 iterator->start_level = start_level;
1473 iterator->end_level = end_level;
1474 iterator->start_gfn = start_gfn;
1475 iterator->end_gfn = end_gfn;
1476
1477 rmap_walk_init_level(iterator, iterator->start_level);
1478}
1479
1480static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481{
1482 return !!iterator->rmap;
1483}
1484
1485static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486{
1487 if (++iterator->rmap <= iterator->end_rmap) {
1488 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489 return;
1490 }
1491
1492 if (++iterator->level > iterator->end_level) {
1493 iterator->rmap = NULL;
1494 return;
1495 }
1496
1497 rmap_walk_init_level(iterator, iterator->level);
1498}
1499
1500#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1501 _start_gfn, _end_gfn, _iter_) \
1502 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1503 _end_level_, _start_gfn, _end_gfn); \
1504 slot_rmap_walk_okay(_iter_); \
1505 slot_rmap_walk_next(_iter_))
1506
84504ef3
TY
1507static int kvm_handle_hva_range(struct kvm *kvm,
1508 unsigned long start,
1509 unsigned long end,
1510 unsigned long data,
1511 int (*handler)(struct kvm *kvm,
018aabb5 1512 struct kvm_rmap_head *rmap_head,
048212d0 1513 struct kvm_memory_slot *slot,
8a9522d2
ALC
1514 gfn_t gfn,
1515 int level,
84504ef3 1516 unsigned long data))
e930bffe 1517{
bc6678a3 1518 struct kvm_memslots *slots;
be6ba0f0 1519 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1520 struct slot_rmap_walk_iterator iterator;
1521 int ret = 0;
9da0e4d5 1522 int i;
bc6678a3 1523
9da0e4d5
PB
1524 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1525 slots = __kvm_memslots(kvm, i);
1526 kvm_for_each_memslot(memslot, slots) {
1527 unsigned long hva_start, hva_end;
1528 gfn_t gfn_start, gfn_end;
e930bffe 1529
9da0e4d5
PB
1530 hva_start = max(start, memslot->userspace_addr);
1531 hva_end = min(end, memslot->userspace_addr +
1532 (memslot->npages << PAGE_SHIFT));
1533 if (hva_start >= hva_end)
1534 continue;
1535 /*
1536 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1537 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1538 */
1539 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1540 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1541
1542 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1543 PT_MAX_HUGEPAGE_LEVEL,
1544 gfn_start, gfn_end - 1,
1545 &iterator)
1546 ret |= handler(kvm, iterator.rmap, memslot,
1547 iterator.gfn, iterator.level, data);
1548 }
e930bffe
AA
1549 }
1550
f395302e 1551 return ret;
e930bffe
AA
1552}
1553
84504ef3
TY
1554static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1555 unsigned long data,
018aabb5
TY
1556 int (*handler)(struct kvm *kvm,
1557 struct kvm_rmap_head *rmap_head,
048212d0 1558 struct kvm_memory_slot *slot,
8a9522d2 1559 gfn_t gfn, int level,
84504ef3
TY
1560 unsigned long data))
1561{
1562 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1563}
1564
1565int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1566{
3da0dd43
IE
1567 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1568}
1569
b3ae2096
TY
1570int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1571{
1572 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1573}
1574
3da0dd43
IE
1575void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1576{
8a8365c5 1577 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1578}
1579
018aabb5 1580static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1581 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1582 unsigned long data)
e930bffe 1583{
1e3f42f0 1584 u64 *sptep;
79f702a6 1585 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1586 int young = 0;
1587
57128468 1588 BUG_ON(!shadow_accessed_mask);
534e38b4 1589
018aabb5 1590 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1591 if (*sptep & shadow_accessed_mask) {
e930bffe 1592 young = 1;
3f6d8c8a
XH
1593 clear_bit((ffs(shadow_accessed_mask) - 1),
1594 (unsigned long *)sptep);
e930bffe 1595 }
018aabb5 1596 }
0d536790 1597
8a9522d2 1598 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1599 return young;
1600}
1601
018aabb5 1602static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1603 struct kvm_memory_slot *slot, gfn_t gfn,
1604 int level, unsigned long data)
8ee53820 1605{
1e3f42f0
TY
1606 u64 *sptep;
1607 struct rmap_iterator iter;
8ee53820
AA
1608 int young = 0;
1609
1610 /*
1611 * If there's no access bit in the secondary pte set by the
1612 * hardware it's up to gup-fast/gup to set the access bit in
1613 * the primary pte or in the page structure.
1614 */
1615 if (!shadow_accessed_mask)
1616 goto out;
1617
018aabb5 1618 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1619 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1620 young = 1;
1621 break;
1622 }
018aabb5 1623 }
8ee53820
AA
1624out:
1625 return young;
1626}
1627
53a27b39
MT
1628#define RMAP_RECYCLE_THRESHOLD 1000
1629
852e3c19 1630static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1631{
018aabb5 1632 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1633 struct kvm_mmu_page *sp;
1634
1635 sp = page_header(__pa(spte));
53a27b39 1636
018aabb5 1637 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1638
018aabb5 1639 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1640 kvm_flush_remote_tlbs(vcpu->kvm);
1641}
1642
57128468 1643int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1644{
57128468
ALC
1645 /*
1646 * In case of absence of EPT Access and Dirty Bits supports,
1647 * emulate the accessed bit for EPT, by checking if this page has
1648 * an EPT mapping, and clearing it if it does. On the next access,
1649 * a new EPT mapping will be established.
1650 * This has some overhead, but not as much as the cost of swapping
1651 * out actively used pages or breaking up actively used hugepages.
1652 */
1653 if (!shadow_accessed_mask) {
1654 /*
1655 * We are holding the kvm->mmu_lock, and we are blowing up
1656 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1657 * This is correct as long as we don't decouple the mmu_lock
1658 * protected regions (like invalidate_range_start|end does).
1659 */
1660 kvm->mmu_notifier_seq++;
1661 return kvm_handle_hva_range(kvm, start, end, 0,
1662 kvm_unmap_rmapp);
1663 }
1664
1665 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1666}
1667
8ee53820
AA
1668int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1669{
1670 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1671}
1672
d6c69ee9 1673#ifdef MMU_DEBUG
47ad8e68 1674static int is_empty_shadow_page(u64 *spt)
6aa8b732 1675{
139bdb2d
AK
1676 u64 *pos;
1677 u64 *end;
1678
47ad8e68 1679 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1680 if (is_shadow_present_pte(*pos)) {
b8688d51 1681 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1682 pos, *pos);
6aa8b732 1683 return 0;
139bdb2d 1684 }
6aa8b732
AK
1685 return 1;
1686}
d6c69ee9 1687#endif
6aa8b732 1688
45221ab6
DH
1689/*
1690 * This value is the sum of all of the kvm instances's
1691 * kvm->arch.n_used_mmu_pages values. We need a global,
1692 * aggregate version in order to make the slab shrinker
1693 * faster
1694 */
1695static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1696{
1697 kvm->arch.n_used_mmu_pages += nr;
1698 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1699}
1700
834be0d8 1701static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1702{
fa4a2c08 1703 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1704 hlist_del(&sp->hash_link);
bd4c86ea
XG
1705 list_del(&sp->link);
1706 free_page((unsigned long)sp->spt);
834be0d8
GN
1707 if (!sp->role.direct)
1708 free_page((unsigned long)sp->gfns);
e8ad9a70 1709 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1710}
1711
cea0f0e7
AK
1712static unsigned kvm_page_table_hashfn(gfn_t gfn)
1713{
1ae0a13d 1714 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1715}
1716
714b93da 1717static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1718 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1719{
cea0f0e7
AK
1720 if (!parent_pte)
1721 return;
cea0f0e7 1722
67052b35 1723 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1724}
1725
4db35314 1726static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1727 u64 *parent_pte)
1728{
67052b35 1729 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1730}
1731
bcdd9a93
XG
1732static void drop_parent_pte(struct kvm_mmu_page *sp,
1733 u64 *parent_pte)
1734{
1735 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1736 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1737}
1738
47005792 1739static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1740{
67052b35 1741 struct kvm_mmu_page *sp;
7ddca7e4 1742
80feb89a
TY
1743 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1744 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1745 if (!direct)
80feb89a 1746 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1747 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1748
1749 /*
1750 * The active_mmu_pages list is the FIFO list, do not move the
1751 * page until it is zapped. kvm_zap_obsolete_pages depends on
1752 * this feature. See the comments in kvm_zap_obsolete_pages().
1753 */
67052b35 1754 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1755 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1756 return sp;
ad8cfbe3
MT
1757}
1758
67052b35 1759static void mark_unsync(u64 *spte);
1047df1f 1760static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1761{
74c4e63a
TY
1762 u64 *sptep;
1763 struct rmap_iterator iter;
1764
1765 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1766 mark_unsync(sptep);
1767 }
0074ff63
MT
1768}
1769
67052b35 1770static void mark_unsync(u64 *spte)
0074ff63 1771{
67052b35 1772 struct kvm_mmu_page *sp;
1047df1f 1773 unsigned int index;
0074ff63 1774
67052b35 1775 sp = page_header(__pa(spte));
1047df1f
XG
1776 index = spte - sp->spt;
1777 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1778 return;
1047df1f 1779 if (sp->unsync_children++)
0074ff63 1780 return;
1047df1f 1781 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1782}
1783
e8bc217a 1784static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1785 struct kvm_mmu_page *sp)
e8bc217a
MT
1786{
1787 return 1;
1788}
1789
a7052897
MT
1790static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1791{
1792}
1793
0f53b5b1
XG
1794static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1795 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1796 const void *pte)
0f53b5b1
XG
1797{
1798 WARN_ON(1);
1799}
1800
60c8aec6
MT
1801#define KVM_PAGE_ARRAY_NR 16
1802
1803struct kvm_mmu_pages {
1804 struct mmu_page_and_offset {
1805 struct kvm_mmu_page *sp;
1806 unsigned int idx;
1807 } page[KVM_PAGE_ARRAY_NR];
1808 unsigned int nr;
1809};
1810
cded19f3
HE
1811static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812 int idx)
4731d4c7 1813{
60c8aec6 1814 int i;
4731d4c7 1815
60c8aec6
MT
1816 if (sp->unsync)
1817 for (i=0; i < pvec->nr; i++)
1818 if (pvec->page[i].sp == sp)
1819 return 0;
1820
1821 pvec->page[pvec->nr].sp = sp;
1822 pvec->page[pvec->nr].idx = idx;
1823 pvec->nr++;
1824 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825}
1826
fd951457
TY
1827static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828{
1829 --sp->unsync_children;
1830 WARN_ON((int)sp->unsync_children < 0);
1831 __clear_bit(idx, sp->unsync_child_bitmap);
1832}
1833
60c8aec6
MT
1834static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835 struct kvm_mmu_pages *pvec)
1836{
1837 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1838
37178b8b 1839 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1840 struct kvm_mmu_page *child;
4731d4c7
MT
1841 u64 ent = sp->spt[i];
1842
fd951457
TY
1843 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844 clear_unsync_child_bit(sp, i);
1845 continue;
1846 }
7a8f1a74
XG
1847
1848 child = page_header(ent & PT64_BASE_ADDR_MASK);
1849
1850 if (child->unsync_children) {
1851 if (mmu_pages_add(pvec, child, i))
1852 return -ENOSPC;
1853
1854 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1855 if (!ret) {
1856 clear_unsync_child_bit(sp, i);
1857 continue;
1858 } else if (ret > 0) {
7a8f1a74 1859 nr_unsync_leaf += ret;
fd951457 1860 } else
7a8f1a74
XG
1861 return ret;
1862 } else if (child->unsync) {
1863 nr_unsync_leaf++;
1864 if (mmu_pages_add(pvec, child, i))
1865 return -ENOSPC;
1866 } else
fd951457 1867 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1868 }
1869
60c8aec6
MT
1870 return nr_unsync_leaf;
1871}
1872
e23d3fef
XG
1873#define INVALID_INDEX (-1)
1874
60c8aec6
MT
1875static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876 struct kvm_mmu_pages *pvec)
1877{
0a47cd85 1878 pvec->nr = 0;
60c8aec6
MT
1879 if (!sp->unsync_children)
1880 return 0;
1881
e23d3fef 1882 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1883 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1884}
1885
4731d4c7
MT
1886static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887{
1888 WARN_ON(!sp->unsync);
5e1b3ddb 1889 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1890 sp->unsync = 0;
1891 --kvm->stat.mmu_unsync;
1892}
1893
7775834a
XG
1894static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895 struct list_head *invalid_list);
1896static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897 struct list_head *invalid_list);
4731d4c7 1898
f34d251d
XG
1899/*
1900 * NOTE: we should pay more attention on the zapped-obsolete page
1901 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1902 * since it has been deleted from active_mmu_pages but still can be found
1903 * at hast list.
1904 *
1905 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1906 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1907 * all the obsolete pages.
1908 */
1044b030
TY
1909#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1910 hlist_for_each_entry(_sp, \
1911 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1912 if ((_sp)->gfn != (_gfn)) {} else
1913
1914#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1915 for_each_gfn_sp(_kvm, _sp, _gfn) \
1916 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1917
f918b443 1918/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1919static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1920 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1921{
5b7e0102 1922 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1923 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1924 return 1;
1925 }
1926
f918b443 1927 if (clear_unsync)
1d9dc7e0 1928 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1929
a4a8e6f7 1930 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1931 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1932 return 1;
1933 }
1934
4731d4c7
MT
1935 return 0;
1936}
1937
35a70510
PB
1938static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1939 struct list_head *invalid_list,
1940 bool remote_flush, bool local_flush)
1941{
1942 if (!list_empty(invalid_list)) {
1943 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1944 return;
1945 }
1946
1947 if (remote_flush)
1948 kvm_flush_remote_tlbs(vcpu->kvm);
1949 else if (local_flush)
1950 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1951}
1952
1d9dc7e0
XG
1953static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1954 struct kvm_mmu_page *sp)
1955{
d98ba053 1956 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1957 int ret;
1958
d98ba053 1959 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
35a70510 1960 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, !ret);
d98ba053 1961
1d9dc7e0
XG
1962 return ret;
1963}
1964
e37fa785
XG
1965#ifdef CONFIG_KVM_MMU_AUDIT
1966#include "mmu_audit.c"
1967#else
1968static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1969static void mmu_audit_disable(void) { }
1970#endif
1971
d98ba053
XG
1972static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1973 struct list_head *invalid_list)
1d9dc7e0 1974{
d98ba053 1975 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1976}
1977
9f1a122f
XG
1978/* @gfn should be write-protected at the call site */
1979static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1980{
9f1a122f 1981 struct kvm_mmu_page *s;
d98ba053 1982 LIST_HEAD(invalid_list);
9f1a122f
XG
1983 bool flush = false;
1984
b67bfe0d 1985 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1986 if (!s->unsync)
9f1a122f
XG
1987 continue;
1988
1989 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
df748f86 1990 if (!kvm_sync_page(vcpu, s, &invalid_list))
35a70510 1991 flush = true;
9f1a122f
XG
1992 }
1993
35a70510 1994 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
9f1a122f
XG
1995}
1996
60c8aec6 1997struct mmu_page_path {
0a47cd85
PB
1998 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1999 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
2000};
2001
60c8aec6 2002#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2003 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2004 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2005 i = mmu_pages_next(&pvec, &parents, i))
2006
cded19f3
HE
2007static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2008 struct mmu_page_path *parents,
2009 int i)
60c8aec6
MT
2010{
2011 int n;
2012
2013 for (n = i+1; n < pvec->nr; n++) {
2014 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2015 unsigned idx = pvec->page[n].idx;
2016 int level = sp->role.level;
60c8aec6 2017
0a47cd85
PB
2018 parents->idx[level-1] = idx;
2019 if (level == PT_PAGE_TABLE_LEVEL)
2020 break;
60c8aec6 2021
0a47cd85 2022 parents->parent[level-2] = sp;
60c8aec6
MT
2023 }
2024
2025 return n;
2026}
2027
0a47cd85
PB
2028static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2029 struct mmu_page_path *parents)
2030{
2031 struct kvm_mmu_page *sp;
2032 int level;
2033
2034 if (pvec->nr == 0)
2035 return 0;
2036
e23d3fef
XG
2037 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2038
0a47cd85
PB
2039 sp = pvec->page[0].sp;
2040 level = sp->role.level;
2041 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2042
2043 parents->parent[level-2] = sp;
2044
2045 /* Also set up a sentinel. Further entries in pvec are all
2046 * children of sp, so this element is never overwritten.
2047 */
2048 parents->parent[level-1] = NULL;
2049 return mmu_pages_next(pvec, parents, 0);
2050}
2051
cded19f3 2052static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2053{
60c8aec6
MT
2054 struct kvm_mmu_page *sp;
2055 unsigned int level = 0;
2056
2057 do {
2058 unsigned int idx = parents->idx[level];
60c8aec6
MT
2059 sp = parents->parent[level];
2060 if (!sp)
2061 return;
2062
e23d3fef 2063 WARN_ON(idx == INVALID_INDEX);
fd951457 2064 clear_unsync_child_bit(sp, idx);
60c8aec6 2065 level++;
0a47cd85 2066 } while (!sp->unsync_children);
60c8aec6 2067}
4731d4c7 2068
60c8aec6
MT
2069static void mmu_sync_children(struct kvm_vcpu *vcpu,
2070 struct kvm_mmu_page *parent)
2071{
2072 int i;
2073 struct kvm_mmu_page *sp;
2074 struct mmu_page_path parents;
2075 struct kvm_mmu_pages pages;
d98ba053 2076 LIST_HEAD(invalid_list);
60c8aec6 2077
60c8aec6 2078 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2079 bool protected = false;
35a70510 2080 bool flush = false;
b1a36821
MT
2081
2082 for_each_sp(pages, sp, parents, i)
54bf36aa 2083 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821
MT
2084
2085 if (protected)
2086 kvm_flush_remote_tlbs(vcpu->kvm);
2087
60c8aec6 2088 for_each_sp(pages, sp, parents, i) {
35a70510
PB
2089 if (!kvm_sync_page(vcpu, sp, &invalid_list))
2090 flush = true;
2091
60c8aec6
MT
2092 mmu_pages_clear_parents(&parents);
2093 }
35a70510 2094 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7 2095 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6 2096 }
4731d4c7
MT
2097}
2098
a30f47cb
XG
2099static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2100{
e5691a81 2101 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2102}
2103
2104static void clear_sp_write_flooding_count(u64 *spte)
2105{
2106 struct kvm_mmu_page *sp = page_header(__pa(spte));
2107
2108 __clear_sp_write_flooding_count(sp);
2109}
2110
5304b8d3
XG
2111static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2112{
2113 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2114}
2115
cea0f0e7
AK
2116static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2117 gfn_t gfn,
2118 gva_t gaddr,
2119 unsigned level,
f6e2c02b 2120 int direct,
bb11c6c9 2121 unsigned access)
cea0f0e7
AK
2122{
2123 union kvm_mmu_page_role role;
cea0f0e7 2124 unsigned quadrant;
9f1a122f 2125 struct kvm_mmu_page *sp;
9f1a122f 2126 bool need_sync = false;
cea0f0e7 2127
a770f6f2 2128 role = vcpu->arch.mmu.base_role;
cea0f0e7 2129 role.level = level;
f6e2c02b 2130 role.direct = direct;
84b0c8c6 2131 if (role.direct)
5b7e0102 2132 role.cr4_pae = 0;
41074d07 2133 role.access = access;
c5a78f2b
JR
2134 if (!vcpu->arch.mmu.direct_map
2135 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2136 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2137 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2138 role.quadrant = quadrant;
2139 }
b67bfe0d 2140 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2141 if (is_obsolete_sp(vcpu->kvm, sp))
2142 continue;
2143
7ae680eb
XG
2144 if (!need_sync && sp->unsync)
2145 need_sync = true;
4731d4c7 2146
7ae680eb
XG
2147 if (sp->role.word != role.word)
2148 continue;
4731d4c7 2149
7ae680eb
XG
2150 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2151 break;
e02aa901 2152
98bba238 2153 if (sp->unsync_children)
a8eeb04a 2154 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2155
a30f47cb 2156 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2157 trace_kvm_mmu_get_page(sp, false);
2158 return sp;
2159 }
47005792 2160
dfc5aa00 2161 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2162
2163 sp = kvm_mmu_alloc_page(vcpu, direct);
2164
4db35314
AK
2165 sp->gfn = gfn;
2166 sp->role = role;
7ae680eb
XG
2167 hlist_add_head(&sp->hash_link,
2168 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2169 if (!direct) {
56ca57f9
XG
2170 /*
2171 * we should do write protection before syncing pages
2172 * otherwise the content of the synced shadow page may
2173 * be inconsistent with guest page table.
2174 */
2175 account_shadowed(vcpu->kvm, sp);
2176 if (level == PT_PAGE_TABLE_LEVEL &&
2177 rmap_write_protect(vcpu, gfn))
b1a36821 2178 kvm_flush_remote_tlbs(vcpu->kvm);
56ca57f9 2179
9f1a122f
XG
2180 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2181 kvm_sync_pages(vcpu, gfn);
4731d4c7 2182 }
5304b8d3 2183 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2184 clear_page(sp->spt);
f691fe1d 2185 trace_kvm_mmu_get_page(sp, true);
4db35314 2186 return sp;
cea0f0e7
AK
2187}
2188
2d11123a
AK
2189static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2190 struct kvm_vcpu *vcpu, u64 addr)
2191{
2192 iterator->addr = addr;
2193 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2194 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2195
2196 if (iterator->level == PT64_ROOT_LEVEL &&
2197 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2198 !vcpu->arch.mmu.direct_map)
2199 --iterator->level;
2200
2d11123a
AK
2201 if (iterator->level == PT32E_ROOT_LEVEL) {
2202 iterator->shadow_addr
2203 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2204 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2205 --iterator->level;
2206 if (!iterator->shadow_addr)
2207 iterator->level = 0;
2208 }
2209}
2210
2211static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2212{
2213 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2214 return false;
4d88954d 2215
2d11123a
AK
2216 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2217 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2218 return true;
2219}
2220
c2a2ac2b
XG
2221static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2222 u64 spte)
2d11123a 2223{
c2a2ac2b 2224 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2225 iterator->level = 0;
2226 return;
2227 }
2228
c2a2ac2b 2229 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2230 --iterator->level;
2231}
2232
c2a2ac2b
XG
2233static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2234{
2235 return __shadow_walk_next(iterator, *iterator->sptep);
2236}
2237
98bba238
TY
2238static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2239 struct kvm_mmu_page *sp)
32ef26a3
AK
2240{
2241 u64 spte;
2242
7a1638ce
YZ
2243 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2244 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2245
24db2734 2246 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
0e3d0648 2247 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2248
1df9f2dc 2249 mmu_spte_set(sptep, spte);
98bba238
TY
2250
2251 mmu_page_add_parent_pte(vcpu, sp, sptep);
2252
2253 if (sp->unsync_children || sp->unsync)
2254 mark_unsync(sptep);
32ef26a3
AK
2255}
2256
a357bd22
AK
2257static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2258 unsigned direct_access)
2259{
2260 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2261 struct kvm_mmu_page *child;
2262
2263 /*
2264 * For the direct sp, if the guest pte's dirty bit
2265 * changed form clean to dirty, it will corrupt the
2266 * sp's access: allow writable in the read-only sp,
2267 * so we should update the spte at this point to get
2268 * a new sp with the correct access.
2269 */
2270 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2271 if (child->role.access == direct_access)
2272 return;
2273
bcdd9a93 2274 drop_parent_pte(child, sptep);
a357bd22
AK
2275 kvm_flush_remote_tlbs(vcpu->kvm);
2276 }
2277}
2278
505aef8f 2279static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2280 u64 *spte)
2281{
2282 u64 pte;
2283 struct kvm_mmu_page *child;
2284
2285 pte = *spte;
2286 if (is_shadow_present_pte(pte)) {
505aef8f 2287 if (is_last_spte(pte, sp->role.level)) {
c3707958 2288 drop_spte(kvm, spte);
505aef8f
XG
2289 if (is_large_pte(pte))
2290 --kvm->stat.lpages;
2291 } else {
38e3b2b2 2292 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2293 drop_parent_pte(child, spte);
38e3b2b2 2294 }
505aef8f
XG
2295 return true;
2296 }
2297
2298 if (is_mmio_spte(pte))
ce88decf 2299 mmu_spte_clear_no_track(spte);
c3707958 2300
505aef8f 2301 return false;
38e3b2b2
XG
2302}
2303
90cb0529 2304static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2305 struct kvm_mmu_page *sp)
a436036b 2306{
697fe2e2 2307 unsigned i;
697fe2e2 2308
38e3b2b2
XG
2309 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2310 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2311}
2312
31aa2b44 2313static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2314{
1e3f42f0
TY
2315 u64 *sptep;
2316 struct rmap_iterator iter;
a436036b 2317
018aabb5 2318 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2319 drop_parent_pte(sp, sptep);
31aa2b44
AK
2320}
2321
60c8aec6 2322static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2323 struct kvm_mmu_page *parent,
2324 struct list_head *invalid_list)
4731d4c7 2325{
60c8aec6
MT
2326 int i, zapped = 0;
2327 struct mmu_page_path parents;
2328 struct kvm_mmu_pages pages;
4731d4c7 2329
60c8aec6 2330 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2331 return 0;
60c8aec6 2332
60c8aec6
MT
2333 while (mmu_unsync_walk(parent, &pages)) {
2334 struct kvm_mmu_page *sp;
2335
2336 for_each_sp(pages, sp, parents, i) {
7775834a 2337 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2338 mmu_pages_clear_parents(&parents);
77662e00 2339 zapped++;
60c8aec6 2340 }
60c8aec6
MT
2341 }
2342
2343 return zapped;
4731d4c7
MT
2344}
2345
7775834a
XG
2346static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2347 struct list_head *invalid_list)
31aa2b44 2348{
4731d4c7 2349 int ret;
f691fe1d 2350
7775834a 2351 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2352 ++kvm->stat.mmu_shadow_zapped;
7775834a 2353 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2354 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2355 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2356
f6e2c02b 2357 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2358 unaccount_shadowed(kvm, sp);
5304b8d3 2359
4731d4c7
MT
2360 if (sp->unsync)
2361 kvm_unlink_unsync_page(kvm, sp);
4db35314 2362 if (!sp->root_count) {
54a4f023
GJ
2363 /* Count self */
2364 ret++;
7775834a 2365 list_move(&sp->link, invalid_list);
aa6bd187 2366 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2367 } else {
5b5c6a5a 2368 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2369
2370 /*
2371 * The obsolete pages can not be used on any vcpus.
2372 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2373 */
2374 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2375 kvm_reload_remote_mmus(kvm);
2e53d63a 2376 }
7775834a
XG
2377
2378 sp->role.invalid = 1;
4731d4c7 2379 return ret;
a436036b
AK
2380}
2381
7775834a
XG
2382static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2383 struct list_head *invalid_list)
2384{
945315b9 2385 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2386
2387 if (list_empty(invalid_list))
2388 return;
2389
c142786c
AK
2390 /*
2391 * wmb: make sure everyone sees our modifications to the page tables
2392 * rmb: make sure we see changes to vcpu->mode
2393 */
2394 smp_mb();
4f022648 2395
c142786c
AK
2396 /*
2397 * Wait for all vcpus to exit guest mode and/or lockless shadow
2398 * page table walks.
2399 */
2400 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2401
945315b9 2402 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2403 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2404 kvm_mmu_free_page(sp);
945315b9 2405 }
7775834a
XG
2406}
2407
5da59607
TY
2408static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2409 struct list_head *invalid_list)
2410{
2411 struct kvm_mmu_page *sp;
2412
2413 if (list_empty(&kvm->arch.active_mmu_pages))
2414 return false;
2415
d74c0e6b
GT
2416 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2417 struct kvm_mmu_page, link);
5da59607
TY
2418 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2419
2420 return true;
2421}
2422
82ce2c96
IE
2423/*
2424 * Changing the number of mmu pages allocated to the vm
49d5ca26 2425 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2426 */
49d5ca26 2427void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2428{
d98ba053 2429 LIST_HEAD(invalid_list);
82ce2c96 2430
b34cb590
TY
2431 spin_lock(&kvm->mmu_lock);
2432
49d5ca26 2433 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2434 /* Need to free some mmu pages to achieve the goal. */
2435 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2436 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2437 break;
82ce2c96 2438
aa6bd187 2439 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2440 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2441 }
82ce2c96 2442
49d5ca26 2443 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2444
2445 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2446}
2447
1cb3f3ae 2448int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2449{
4db35314 2450 struct kvm_mmu_page *sp;
d98ba053 2451 LIST_HEAD(invalid_list);
a436036b
AK
2452 int r;
2453
9ad17b10 2454 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2455 r = 0;
1cb3f3ae 2456 spin_lock(&kvm->mmu_lock);
b67bfe0d 2457 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2458 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2459 sp->role.word);
2460 r = 1;
f41d335a 2461 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2462 }
d98ba053 2463 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2464 spin_unlock(&kvm->mmu_lock);
2465
a436036b 2466 return r;
cea0f0e7 2467}
1cb3f3ae 2468EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2469
5c520e90 2470static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2471{
2472 trace_kvm_mmu_unsync_page(sp);
2473 ++vcpu->kvm->stat.mmu_unsync;
2474 sp->unsync = 1;
2475
2476 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2477}
2478
3d0c27ad
XG
2479static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2480 bool can_unsync)
4731d4c7 2481{
5c520e90 2482 struct kvm_mmu_page *sp;
9cf5cf5a 2483
3d0c27ad
XG
2484 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2485 return true;
2486
5c520e90 2487 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2488 if (!can_unsync)
3d0c27ad 2489 return true;
36a2e677 2490
5c520e90
XG
2491 if (sp->unsync)
2492 continue;
9cf5cf5a 2493
5c520e90
XG
2494 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2495 kvm_unsync_page(vcpu, sp);
4731d4c7 2496 }
3d0c27ad
XG
2497
2498 return false;
4731d4c7
MT
2499}
2500
ba049e93 2501static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2502{
2503 if (pfn_valid(pfn))
2504 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2505
2506 return true;
2507}
2508
d555c333 2509static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2510 unsigned pte_access, int level,
ba049e93 2511 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2512 bool can_unsync, bool host_writable)
1c4f1fd6 2513{
6e7d0354 2514 u64 spte;
1e73f9dd 2515 int ret = 0;
64d4d521 2516
54bf36aa 2517 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2518 return 0;
2519
982c2565 2520 spte = PT_PRESENT_MASK;
947da538 2521 if (!speculative)
3201b5d9 2522 spte |= shadow_accessed_mask;
640d9b0d 2523
7b52345e
SY
2524 if (pte_access & ACC_EXEC_MASK)
2525 spte |= shadow_x_mask;
2526 else
2527 spte |= shadow_nx_mask;
49fde340 2528
1c4f1fd6 2529 if (pte_access & ACC_USER_MASK)
7b52345e 2530 spte |= shadow_user_mask;
49fde340 2531
852e3c19 2532 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2533 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2534 if (tdp_enabled)
4b12f0de 2535 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2536 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2537
9bdbba13 2538 if (host_writable)
1403283a 2539 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2540 else
2541 pte_access &= ~ACC_WRITE_MASK;
1403283a 2542
35149e21 2543 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2544
c2288505 2545 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2546
c2193463 2547 /*
7751babd
XG
2548 * Other vcpu creates new sp in the window between
2549 * mapping_level() and acquiring mmu-lock. We can
2550 * allow guest to retry the access, the mapping can
2551 * be fixed if guest refault.
c2193463 2552 */
852e3c19 2553 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2554 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2555 goto done;
38187c83 2556
49fde340 2557 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2558
ecc5589f
MT
2559 /*
2560 * Optimization: for pte sync, if spte was writable the hash
2561 * lookup is unnecessary (and expensive). Write protection
2562 * is responsibility of mmu_get_page / kvm_sync_page.
2563 * Same reasoning can be applied to dirty page accounting.
2564 */
8dae4445 2565 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2566 goto set_pte;
2567
4731d4c7 2568 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2569 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2570 __func__, gfn);
1e73f9dd 2571 ret = 1;
1c4f1fd6 2572 pte_access &= ~ACC_WRITE_MASK;
49fde340 2573 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2574 }
2575 }
2576
9b51a630 2577 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2578 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2579 spte |= shadow_dirty_mask;
2580 }
1c4f1fd6 2581
38187c83 2582set_pte:
6e7d0354 2583 if (mmu_spte_update(sptep, spte))
b330aa0c 2584 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2585done:
1e73f9dd
MT
2586 return ret;
2587}
2588
029499b4 2589static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2590 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2591 bool speculative, bool host_writable)
1e73f9dd
MT
2592{
2593 int was_rmapped = 0;
53a27b39 2594 int rmap_count;
029499b4 2595 bool emulate = false;
1e73f9dd 2596
f7616203
XG
2597 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2598 *sptep, write_fault, gfn);
1e73f9dd 2599
afd28fe1 2600 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2601 /*
2602 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2603 * the parent of the now unreachable PTE.
2604 */
852e3c19
JR
2605 if (level > PT_PAGE_TABLE_LEVEL &&
2606 !is_large_pte(*sptep)) {
1e73f9dd 2607 struct kvm_mmu_page *child;
d555c333 2608 u64 pte = *sptep;
1e73f9dd
MT
2609
2610 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2611 drop_parent_pte(child, sptep);
3be2264b 2612 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2613 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2614 pgprintk("hfn old %llx new %llx\n",
d555c333 2615 spte_to_pfn(*sptep), pfn);
c3707958 2616 drop_spte(vcpu->kvm, sptep);
91546356 2617 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2618 } else
2619 was_rmapped = 1;
1e73f9dd 2620 }
852e3c19 2621
c2288505
XG
2622 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2623 true, host_writable)) {
1e73f9dd 2624 if (write_fault)
029499b4 2625 emulate = true;
77c3913b 2626 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2627 }
1e73f9dd 2628
029499b4
TY
2629 if (unlikely(is_mmio_spte(*sptep)))
2630 emulate = true;
ce88decf 2631
d555c333 2632 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2633 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2634 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2635 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2636 *sptep, sptep);
d555c333 2637 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2638 ++vcpu->kvm->stat.lpages;
2639
ffb61bb3 2640 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2641 if (!was_rmapped) {
2642 rmap_count = rmap_add(vcpu, sptep, gfn);
2643 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2644 rmap_recycle(vcpu, sptep, gfn);
2645 }
1c4f1fd6 2646 }
cb9aaa30 2647
f3ac1a4b 2648 kvm_release_pfn_clean(pfn);
029499b4
TY
2649
2650 return emulate;
1c4f1fd6
AK
2651}
2652
ba049e93 2653static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2654 bool no_dirty_log)
2655{
2656 struct kvm_memory_slot *slot;
957ed9ef 2657
5d163b1c 2658 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2659 if (!slot)
6c8ee57b 2660 return KVM_PFN_ERR_FAULT;
957ed9ef 2661
037d92dc 2662 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2663}
2664
2665static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2666 struct kvm_mmu_page *sp,
2667 u64 *start, u64 *end)
2668{
2669 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2670 struct kvm_memory_slot *slot;
957ed9ef
XG
2671 unsigned access = sp->role.access;
2672 int i, ret;
2673 gfn_t gfn;
2674
2675 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2676 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2677 if (!slot)
957ed9ef
XG
2678 return -1;
2679
d9ef13c2 2680 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2681 if (ret <= 0)
2682 return -1;
2683
2684 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2685 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2686 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2687
2688 return 0;
2689}
2690
2691static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2692 struct kvm_mmu_page *sp, u64 *sptep)
2693{
2694 u64 *spte, *start = NULL;
2695 int i;
2696
2697 WARN_ON(!sp->role.direct);
2698
2699 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2700 spte = sp->spt + i;
2701
2702 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2703 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2704 if (!start)
2705 continue;
2706 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2707 break;
2708 start = NULL;
2709 } else if (!start)
2710 start = spte;
2711 }
2712}
2713
2714static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2715{
2716 struct kvm_mmu_page *sp;
2717
2718 /*
2719 * Since it's no accessed bit on EPT, it's no way to
2720 * distinguish between actually accessed translations
2721 * and prefetched, so disable pte prefetch if EPT is
2722 * enabled.
2723 */
2724 if (!shadow_accessed_mask)
2725 return;
2726
2727 sp = page_header(__pa(sptep));
2728 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2729 return;
2730
2731 __direct_pte_prefetch(vcpu, sp, sptep);
2732}
2733
7ee0e5b2 2734static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2735 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2736{
9f652d21 2737 struct kvm_shadow_walk_iterator iterator;
140754bc 2738 struct kvm_mmu_page *sp;
b90a0e6c 2739 int emulate = 0;
140754bc 2740 gfn_t pseudo_gfn;
6aa8b732 2741
989c6b34
MT
2742 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2743 return 0;
2744
9f652d21 2745 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2746 if (iterator.level == level) {
029499b4
TY
2747 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2748 write, level, gfn, pfn, prefault,
2749 map_writable);
957ed9ef 2750 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2751 ++vcpu->stat.pf_fixed;
2752 break;
6aa8b732
AK
2753 }
2754
404381c5 2755 drop_large_spte(vcpu, iterator.sptep);
c3707958 2756 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2757 u64 base_addr = iterator.addr;
2758
2759 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2760 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2761 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2762 iterator.level - 1, 1, ACC_ALL);
140754bc 2763
98bba238 2764 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2765 }
2766 }
b90a0e6c 2767 return emulate;
6aa8b732
AK
2768}
2769
77db5cbd 2770static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2771{
77db5cbd
HY
2772 siginfo_t info;
2773
2774 info.si_signo = SIGBUS;
2775 info.si_errno = 0;
2776 info.si_code = BUS_MCEERR_AR;
2777 info.si_addr = (void __user *)address;
2778 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2779
77db5cbd 2780 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2781}
2782
ba049e93 2783static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2784{
4d8b81ab
XG
2785 /*
2786 * Do not cache the mmio info caused by writing the readonly gfn
2787 * into the spte otherwise read access on readonly gfn also can
2788 * caused mmio page fault and treat it as mmio access.
2789 * Return 1 to tell kvm to emulate it.
2790 */
2791 if (pfn == KVM_PFN_ERR_RO_FAULT)
2792 return 1;
2793
e6c1502b 2794 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2795 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2796 return 0;
d7c55201 2797 }
edba23e5 2798
d7c55201 2799 return -EFAULT;
bf998156
HY
2800}
2801
936a5fe6 2802static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2803 gfn_t *gfnp, kvm_pfn_t *pfnp,
2804 int *levelp)
936a5fe6 2805{
ba049e93 2806 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2807 gfn_t gfn = *gfnp;
2808 int level = *levelp;
2809
2810 /*
2811 * Check if it's a transparent hugepage. If this would be an
2812 * hugetlbfs page, level wouldn't be set to
2813 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2814 * here.
2815 */
bf4bea8e 2816 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2817 level == PT_PAGE_TABLE_LEVEL &&
2818 PageTransCompound(pfn_to_page(pfn)) &&
92f94f1e 2819 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2820 unsigned long mask;
2821 /*
2822 * mmu_notifier_retry was successful and we hold the
2823 * mmu_lock here, so the pmd can't become splitting
2824 * from under us, and in turn
2825 * __split_huge_page_refcount() can't run from under
2826 * us and we can safely transfer the refcount from
2827 * PG_tail to PG_head as we switch the pfn to tail to
2828 * head.
2829 */
2830 *levelp = level = PT_DIRECTORY_LEVEL;
2831 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2832 VM_BUG_ON((gfn & mask) != (pfn & mask));
2833 if (pfn & mask) {
2834 gfn &= ~mask;
2835 *gfnp = gfn;
2836 kvm_release_pfn_clean(pfn);
2837 pfn &= ~mask;
c3586667 2838 kvm_get_pfn(pfn);
936a5fe6
AA
2839 *pfnp = pfn;
2840 }
2841 }
2842}
2843
d7c55201 2844static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2845 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 2846{
d7c55201 2847 /* The pfn is invalid, report the error! */
81c52c56 2848 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2849 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2850 return true;
d7c55201
XG
2851 }
2852
ce88decf 2853 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2854 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 2855
798e88b3 2856 return false;
d7c55201
XG
2857}
2858
e5552fd2 2859static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2860{
1c118b82
XG
2861 /*
2862 * Do not fix the mmio spte with invalid generation number which
2863 * need to be updated by slow page fault path.
2864 */
2865 if (unlikely(error_code & PFERR_RSVD_MASK))
2866 return false;
2867
c7ba5b48
XG
2868 /*
2869 * #PF can be fast only if the shadow page table is present and it
2870 * is caused by write-protect, that means we just need change the
2871 * W bit of the spte which can be done out of mmu-lock.
2872 */
2873 if (!(error_code & PFERR_PRESENT_MASK) ||
2874 !(error_code & PFERR_WRITE_MASK))
2875 return false;
2876
2877 return true;
2878}
2879
2880static bool
92a476cb
XG
2881fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2882 u64 *sptep, u64 spte)
c7ba5b48 2883{
c7ba5b48
XG
2884 gfn_t gfn;
2885
2886 WARN_ON(!sp->role.direct);
2887
2888 /*
2889 * The gfn of direct spte is stable since it is calculated
2890 * by sp->gfn.
2891 */
2892 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2893
9b51a630
KH
2894 /*
2895 * Theoretically we could also set dirty bit (and flush TLB) here in
2896 * order to eliminate unnecessary PML logging. See comments in
2897 * set_spte. But fast_page_fault is very unlikely to happen with PML
2898 * enabled, so we do not do this. This might result in the same GPA
2899 * to be logged in PML buffer again when the write really happens, and
2900 * eventually to be called by mark_page_dirty twice. But it's also no
2901 * harm. This also avoids the TLB flush needed after setting dirty bit
2902 * so non-PML cases won't be impacted.
2903 *
2904 * Compare with set_spte where instead shadow_dirty_mask is set.
2905 */
c7ba5b48 2906 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2907 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2908
2909 return true;
2910}
2911
2912/*
2913 * Return value:
2914 * - true: let the vcpu to access on the same address again.
2915 * - false: let the real page fault path to fix it.
2916 */
2917static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2918 u32 error_code)
2919{
2920 struct kvm_shadow_walk_iterator iterator;
92a476cb 2921 struct kvm_mmu_page *sp;
c7ba5b48
XG
2922 bool ret = false;
2923 u64 spte = 0ull;
2924
37f6a4e2
MT
2925 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2926 return false;
2927
e5552fd2 2928 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2929 return false;
2930
2931 walk_shadow_page_lockless_begin(vcpu);
2932 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2933 if (!is_shadow_present_pte(spte) || iterator.level < level)
2934 break;
2935
2936 /*
2937 * If the mapping has been changed, let the vcpu fault on the
2938 * same address again.
2939 */
afd28fe1 2940 if (!is_shadow_present_pte(spte)) {
c7ba5b48
XG
2941 ret = true;
2942 goto exit;
2943 }
2944
92a476cb
XG
2945 sp = page_header(__pa(iterator.sptep));
2946 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2947 goto exit;
2948
2949 /*
2950 * Check if it is a spurious fault caused by TLB lazily flushed.
2951 *
2952 * Need not check the access of upper level table entries since
2953 * they are always ACC_ALL.
2954 */
2955 if (is_writable_pte(spte)) {
2956 ret = true;
2957 goto exit;
2958 }
2959
2960 /*
2961 * Currently, to simplify the code, only the spte write-protected
2962 * by dirty-log can be fast fixed.
2963 */
2964 if (!spte_is_locklessly_modifiable(spte))
2965 goto exit;
2966
c126d94f
XG
2967 /*
2968 * Do not fix write-permission on the large spte since we only dirty
2969 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2970 * that means other pages are missed if its slot is dirty-logged.
2971 *
2972 * Instead, we let the slow page fault path create a normal spte to
2973 * fix the access.
2974 *
2975 * See the comments in kvm_arch_commit_memory_region().
2976 */
2977 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2978 goto exit;
2979
c7ba5b48
XG
2980 /*
2981 * Currently, fast page fault only works for direct mapping since
2982 * the gfn is not stable for indirect shadow page.
2983 * See Documentation/virtual/kvm/locking.txt to get more detail.
2984 */
92a476cb 2985 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2986exit:
a72faf25
XG
2987 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2988 spte, ret);
c7ba5b48
XG
2989 walk_shadow_page_lockless_end(vcpu);
2990
2991 return ret;
2992}
2993
78b2c54a 2994static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 2995 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 2996static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2997
c7ba5b48
XG
2998static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2999 gfn_t gfn, bool prefault)
10589a46
MT
3000{
3001 int r;
852e3c19 3002 int level;
fd136902 3003 bool force_pt_level = false;
ba049e93 3004 kvm_pfn_t pfn;
e930bffe 3005 unsigned long mmu_seq;
c7ba5b48 3006 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3007
fd136902 3008 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3009 if (likely(!force_pt_level)) {
936a5fe6
AA
3010 /*
3011 * This path builds a PAE pagetable - so we can map
3012 * 2mb pages at maximum. Therefore check if the level
3013 * is larger than that.
3014 */
3015 if (level > PT_DIRECTORY_LEVEL)
3016 level = PT_DIRECTORY_LEVEL;
852e3c19 3017
936a5fe6 3018 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3019 }
05da4558 3020
c7ba5b48
XG
3021 if (fast_page_fault(vcpu, v, level, error_code))
3022 return 0;
3023
e930bffe 3024 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3025 smp_rmb();
060c2abe 3026
78b2c54a 3027 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3028 return 0;
aaee2c94 3029
d7c55201
XG
3030 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3031 return r;
d196e343 3032
aaee2c94 3033 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3034 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3035 goto out_unlock;
450e0b41 3036 make_mmu_pages_available(vcpu);
936a5fe6
AA
3037 if (likely(!force_pt_level))
3038 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3039 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3040 spin_unlock(&vcpu->kvm->mmu_lock);
3041
10589a46 3042 return r;
e930bffe
AA
3043
3044out_unlock:
3045 spin_unlock(&vcpu->kvm->mmu_lock);
3046 kvm_release_pfn_clean(pfn);
3047 return 0;
10589a46
MT
3048}
3049
3050
17ac10ad
AK
3051static void mmu_free_roots(struct kvm_vcpu *vcpu)
3052{
3053 int i;
4db35314 3054 struct kvm_mmu_page *sp;
d98ba053 3055 LIST_HEAD(invalid_list);
17ac10ad 3056
ad312c7c 3057 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3058 return;
35af577a 3059
81407ca5
JR
3060 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3061 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3062 vcpu->arch.mmu.direct_map)) {
ad312c7c 3063 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3064
35af577a 3065 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3066 sp = page_header(root);
3067 --sp->root_count;
d98ba053
XG
3068 if (!sp->root_count && sp->role.invalid) {
3069 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3070 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3071 }
aaee2c94 3072 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3073 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3074 return;
3075 }
35af577a
GN
3076
3077 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3078 for (i = 0; i < 4; ++i) {
ad312c7c 3079 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3080
417726a3 3081 if (root) {
417726a3 3082 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3083 sp = page_header(root);
3084 --sp->root_count;
2e53d63a 3085 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3086 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3087 &invalid_list);
417726a3 3088 }
ad312c7c 3089 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3090 }
d98ba053 3091 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3092 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3093 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3094}
3095
8986ecc0
MT
3096static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3097{
3098 int ret = 0;
3099
3100 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3101 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3102 ret = 1;
3103 }
3104
3105 return ret;
3106}
3107
651dd37a
JR
3108static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3109{
3110 struct kvm_mmu_page *sp;
7ebaf15e 3111 unsigned i;
651dd37a
JR
3112
3113 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3114 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3115 make_mmu_pages_available(vcpu);
bb11c6c9 3116 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3117 ++sp->root_count;
3118 spin_unlock(&vcpu->kvm->mmu_lock);
3119 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3120 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3121 for (i = 0; i < 4; ++i) {
3122 hpa_t root = vcpu->arch.mmu.pae_root[i];
3123
fa4a2c08 3124 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3125 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3126 make_mmu_pages_available(vcpu);
649497d1 3127 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3128 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3129 root = __pa(sp->spt);
3130 ++sp->root_count;
3131 spin_unlock(&vcpu->kvm->mmu_lock);
3132 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3133 }
6292757f 3134 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3135 } else
3136 BUG();
3137
3138 return 0;
3139}
3140
3141static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3142{
4db35314 3143 struct kvm_mmu_page *sp;
81407ca5
JR
3144 u64 pdptr, pm_mask;
3145 gfn_t root_gfn;
3146 int i;
3bb65a22 3147
5777ed34 3148 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3149
651dd37a
JR
3150 if (mmu_check_root(vcpu, root_gfn))
3151 return 1;
3152
3153 /*
3154 * Do we shadow a long mode page table? If so we need to
3155 * write-protect the guests page table root.
3156 */
3157 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3158 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3159
fa4a2c08 3160 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3161
8facbbff 3162 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3163 make_mmu_pages_available(vcpu);
651dd37a 3164 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3165 0, ACC_ALL);
4db35314
AK
3166 root = __pa(sp->spt);
3167 ++sp->root_count;
8facbbff 3168 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3169 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3170 return 0;
17ac10ad 3171 }
f87f9288 3172
651dd37a
JR
3173 /*
3174 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3175 * or a PAE 3-level page table. In either case we need to be aware that
3176 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3177 */
81407ca5
JR
3178 pm_mask = PT_PRESENT_MASK;
3179 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3180 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3181
17ac10ad 3182 for (i = 0; i < 4; ++i) {
ad312c7c 3183 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3184
fa4a2c08 3185 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3186 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3187 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3188 if (!is_present_gpte(pdptr)) {
ad312c7c 3189 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3190 continue;
3191 }
6de4f3ad 3192 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3193 if (mmu_check_root(vcpu, root_gfn))
3194 return 1;
5a7388c2 3195 }
8facbbff 3196 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3197 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3198 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3199 0, ACC_ALL);
4db35314
AK
3200 root = __pa(sp->spt);
3201 ++sp->root_count;
8facbbff
AK
3202 spin_unlock(&vcpu->kvm->mmu_lock);
3203
81407ca5 3204 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3205 }
6292757f 3206 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3207
3208 /*
3209 * If we shadow a 32 bit page table with a long mode page
3210 * table we enter this path.
3211 */
3212 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3213 if (vcpu->arch.mmu.lm_root == NULL) {
3214 /*
3215 * The additional page necessary for this is only
3216 * allocated on demand.
3217 */
3218
3219 u64 *lm_root;
3220
3221 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3222 if (lm_root == NULL)
3223 return 1;
3224
3225 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3226
3227 vcpu->arch.mmu.lm_root = lm_root;
3228 }
3229
3230 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3231 }
3232
8986ecc0 3233 return 0;
17ac10ad
AK
3234}
3235
651dd37a
JR
3236static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3237{
3238 if (vcpu->arch.mmu.direct_map)
3239 return mmu_alloc_direct_roots(vcpu);
3240 else
3241 return mmu_alloc_shadow_roots(vcpu);
3242}
3243
0ba73cda
MT
3244static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3245{
3246 int i;
3247 struct kvm_mmu_page *sp;
3248
81407ca5
JR
3249 if (vcpu->arch.mmu.direct_map)
3250 return;
3251
0ba73cda
MT
3252 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3253 return;
6903074c 3254
56f17dd3 3255 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3256 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3257 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3258 hpa_t root = vcpu->arch.mmu.root_hpa;
3259 sp = page_header(root);
3260 mmu_sync_children(vcpu, sp);
0375f7fa 3261 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3262 return;
3263 }
3264 for (i = 0; i < 4; ++i) {
3265 hpa_t root = vcpu->arch.mmu.pae_root[i];
3266
8986ecc0 3267 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3268 root &= PT64_BASE_ADDR_MASK;
3269 sp = page_header(root);
3270 mmu_sync_children(vcpu, sp);
3271 }
3272 }
0375f7fa 3273 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3274}
3275
3276void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3277{
3278 spin_lock(&vcpu->kvm->mmu_lock);
3279 mmu_sync_roots(vcpu);
6cffe8ca 3280 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3281}
bfd0a56b 3282EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3283
1871c602 3284static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3285 u32 access, struct x86_exception *exception)
6aa8b732 3286{
ab9ae313
AK
3287 if (exception)
3288 exception->error_code = 0;
6aa8b732
AK
3289 return vaddr;
3290}
3291
6539e738 3292static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3293 u32 access,
3294 struct x86_exception *exception)
6539e738 3295{
ab9ae313
AK
3296 if (exception)
3297 exception->error_code = 0;
54987b7a 3298 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3299}
3300
d625b155
XG
3301static bool
3302__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3303{
3304 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3305
3306 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3307 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3308}
3309
3310static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3311{
3312 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3313}
3314
3315static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3316{
3317 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3318}
3319
ded58749 3320static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3321{
3322 if (direct)
3323 return vcpu_match_mmio_gpa(vcpu, addr);
3324
3325 return vcpu_match_mmio_gva(vcpu, addr);
3326}
3327
47ab8751
XG
3328/* return true if reserved bit is detected on spte. */
3329static bool
3330walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3331{
3332 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3333 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3334 int root, leaf;
3335 bool reserved = false;
ce88decf 3336
37f6a4e2 3337 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3338 goto exit;
37f6a4e2 3339
ce88decf 3340 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3341
29ecd660
PB
3342 for (shadow_walk_init(&iterator, vcpu, addr),
3343 leaf = root = iterator.level;
47ab8751
XG
3344 shadow_walk_okay(&iterator);
3345 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3346 spte = mmu_spte_get_lockless(iterator.sptep);
3347
3348 sptes[leaf - 1] = spte;
29ecd660 3349 leaf--;
47ab8751 3350
ce88decf
XG
3351 if (!is_shadow_present_pte(spte))
3352 break;
47ab8751
XG
3353
3354 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3355 iterator.level);
47ab8751
XG
3356 }
3357
ce88decf
XG
3358 walk_shadow_page_lockless_end(vcpu);
3359
47ab8751
XG
3360 if (reserved) {
3361 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3362 __func__, addr);
29ecd660 3363 while (root > leaf) {
47ab8751
XG
3364 pr_err("------ spte 0x%llx level %d.\n",
3365 sptes[root - 1], root);
3366 root--;
3367 }
3368 }
3369exit:
3370 *sptep = spte;
3371 return reserved;
ce88decf
XG
3372}
3373
450869d6 3374int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3375{
3376 u64 spte;
47ab8751 3377 bool reserved;
ce88decf 3378
ded58749 3379 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3380 return RET_MMIO_PF_EMULATE;
ce88decf 3381
47ab8751 3382 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3383 if (WARN_ON(reserved))
47ab8751 3384 return RET_MMIO_PF_BUG;
ce88decf
XG
3385
3386 if (is_mmio_spte(spte)) {
3387 gfn_t gfn = get_mmio_spte_gfn(spte);
3388 unsigned access = get_mmio_spte_access(spte);
3389
54bf36aa 3390 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3391 return RET_MMIO_PF_INVALID;
3392
ce88decf
XG
3393 if (direct)
3394 addr = 0;
4f022648
XG
3395
3396 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3397 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3398 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3399 }
3400
ce88decf
XG
3401 /*
3402 * If the page table is zapped by other cpus, let CPU fault again on
3403 * the address.
3404 */
b37fbea6 3405 return RET_MMIO_PF_RETRY;
ce88decf 3406}
450869d6 3407EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3408
3d0c27ad
XG
3409static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3410 u32 error_code, gfn_t gfn)
3411{
3412 if (unlikely(error_code & PFERR_RSVD_MASK))
3413 return false;
3414
3415 if (!(error_code & PFERR_PRESENT_MASK) ||
3416 !(error_code & PFERR_WRITE_MASK))
3417 return false;
3418
3419 /*
3420 * guest is writing the page which is write tracked which can
3421 * not be fixed by page fault handler.
3422 */
3423 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3424 return true;
3425
3426 return false;
3427}
3428
e5691a81
XG
3429static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3430{
3431 struct kvm_shadow_walk_iterator iterator;
3432 u64 spte;
3433
3434 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3435 return;
3436
3437 walk_shadow_page_lockless_begin(vcpu);
3438 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3439 clear_sp_write_flooding_count(iterator.sptep);
3440 if (!is_shadow_present_pte(spte))
3441 break;
3442 }
3443 walk_shadow_page_lockless_end(vcpu);
3444}
3445
6aa8b732 3446static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3447 u32 error_code, bool prefault)
6aa8b732 3448{
3d0c27ad 3449 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3450 int r;
6aa8b732 3451
b8688d51 3452 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3453
3d0c27ad
XG
3454 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3455 return 1;
3456
e2dec939
AK
3457 r = mmu_topup_memory_caches(vcpu);
3458 if (r)
3459 return r;
714b93da 3460
fa4a2c08 3461 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3462
6aa8b732 3463
e833240f 3464 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3465 error_code, gfn, prefault);
6aa8b732
AK
3466}
3467
7e1fbeac 3468static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3469{
3470 struct kvm_arch_async_pf arch;
fb67e14f 3471
7c90705b 3472 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3473 arch.gfn = gfn;
c4806acd 3474 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3475 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3476
54bf36aa 3477 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3478}
3479
3480static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3481{
35754c98 3482 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3483 kvm_event_needs_reinjection(vcpu)))
3484 return false;
3485
3486 return kvm_x86_ops->interrupt_allowed(vcpu);
3487}
3488
78b2c54a 3489static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3490 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3491{
3520469d 3492 struct kvm_memory_slot *slot;
af585b92
GN
3493 bool async;
3494
54bf36aa 3495 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3496 async = false;
3497 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3498 if (!async)
3499 return false; /* *pfn has correct page already */
3500
78b2c54a 3501 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3502 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3503 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3504 trace_kvm_async_pf_doublefault(gva, gfn);
3505 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3506 return true;
3507 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3508 return true;
3509 }
3510
3520469d 3511 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3512 return false;
3513}
3514
6a39bbc5
XG
3515static bool
3516check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3517{
3518 int page_num = KVM_PAGES_PER_HPAGE(level);
3519
3520 gfn &= ~(page_num - 1);
3521
3522 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3523}
3524
56028d08 3525static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3526 bool prefault)
fb72d167 3527{
ba049e93 3528 kvm_pfn_t pfn;
fb72d167 3529 int r;
852e3c19 3530 int level;
cd1872f0 3531 bool force_pt_level;
05da4558 3532 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3533 unsigned long mmu_seq;
612819c3
MT
3534 int write = error_code & PFERR_WRITE_MASK;
3535 bool map_writable;
fb72d167 3536
fa4a2c08 3537 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3538
3d0c27ad
XG
3539 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3540 return 1;
3541
fb72d167
JR
3542 r = mmu_topup_memory_caches(vcpu);
3543 if (r)
3544 return r;
3545
fd136902
TY
3546 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3547 PT_DIRECTORY_LEVEL);
3548 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3549 if (likely(!force_pt_level)) {
6a39bbc5
XG
3550 if (level > PT_DIRECTORY_LEVEL &&
3551 !check_hugepage_cache_consistency(vcpu, gfn, level))
3552 level = PT_DIRECTORY_LEVEL;
936a5fe6 3553 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3554 }
852e3c19 3555
c7ba5b48
XG
3556 if (fast_page_fault(vcpu, gpa, level, error_code))
3557 return 0;
3558
e930bffe 3559 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3560 smp_rmb();
af585b92 3561
78b2c54a 3562 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3563 return 0;
3564
d7c55201
XG
3565 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3566 return r;
3567
fb72d167 3568 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3569 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3570 goto out_unlock;
450e0b41 3571 make_mmu_pages_available(vcpu);
936a5fe6
AA
3572 if (likely(!force_pt_level))
3573 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3574 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3575 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3576
3577 return r;
e930bffe
AA
3578
3579out_unlock:
3580 spin_unlock(&vcpu->kvm->mmu_lock);
3581 kvm_release_pfn_clean(pfn);
3582 return 0;
fb72d167
JR
3583}
3584
8a3c1a33
PB
3585static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3586 struct kvm_mmu *context)
6aa8b732 3587{
6aa8b732 3588 context->page_fault = nonpaging_page_fault;
6aa8b732 3589 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3590 context->sync_page = nonpaging_sync_page;
a7052897 3591 context->invlpg = nonpaging_invlpg;
0f53b5b1 3592 context->update_pte = nonpaging_update_pte;
cea0f0e7 3593 context->root_level = 0;
6aa8b732 3594 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3595 context->root_hpa = INVALID_PAGE;
c5a78f2b 3596 context->direct_map = true;
2d48a985 3597 context->nx = false;
6aa8b732
AK
3598}
3599
d8d173da 3600void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3601{
cea0f0e7 3602 mmu_free_roots(vcpu);
6aa8b732
AK
3603}
3604
5777ed34
JR
3605static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3606{
9f8fe504 3607 return kvm_read_cr3(vcpu);
5777ed34
JR
3608}
3609
6389ee94
AK
3610static void inject_page_fault(struct kvm_vcpu *vcpu,
3611 struct x86_exception *fault)
6aa8b732 3612{
6389ee94 3613 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3614}
3615
54bf36aa 3616static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3617 unsigned access, int *nr_present)
ce88decf
XG
3618{
3619 if (unlikely(is_mmio_spte(*sptep))) {
3620 if (gfn != get_mmio_spte_gfn(*sptep)) {
3621 mmu_spte_clear_no_track(sptep);
3622 return true;
3623 }
3624
3625 (*nr_present)++;
54bf36aa 3626 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3627 return true;
3628 }
3629
3630 return false;
3631}
3632
6fd01b71
AK
3633static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3634{
3635 unsigned index;
3636
3637 index = level - 1;
3638 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3639 return mmu->last_pte_bitmap & (1 << index);
3640}
3641
37406aaa
NHE
3642#define PTTYPE_EPT 18 /* arbitrary */
3643#define PTTYPE PTTYPE_EPT
3644#include "paging_tmpl.h"
3645#undef PTTYPE
3646
6aa8b732
AK
3647#define PTTYPE 64
3648#include "paging_tmpl.h"
3649#undef PTTYPE
3650
3651#define PTTYPE 32
3652#include "paging_tmpl.h"
3653#undef PTTYPE
3654
6dc98b86
XG
3655static void
3656__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3657 struct rsvd_bits_validate *rsvd_check,
3658 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3659 bool pse, bool amd)
82725b20 3660{
82725b20 3661 u64 exb_bit_rsvd = 0;
5f7dde7b 3662 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3663 u64 nonleaf_bit8_rsvd = 0;
82725b20 3664
a0a64f50 3665 rsvd_check->bad_mt_xwr = 0;
25d92081 3666
6dc98b86 3667 if (!nx)
82725b20 3668 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3669 if (!gbpages)
5f7dde7b 3670 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3671
3672 /*
3673 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3674 * leaf entries) on AMD CPUs only.
3675 */
6fec2144 3676 if (amd)
a0c0feb5
PB
3677 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3678
6dc98b86 3679 switch (level) {
82725b20
DE
3680 case PT32_ROOT_LEVEL:
3681 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3682 rsvd_check->rsvd_bits_mask[0][1] = 0;
3683 rsvd_check->rsvd_bits_mask[0][0] = 0;
3684 rsvd_check->rsvd_bits_mask[1][0] =
3685 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3686
6dc98b86 3687 if (!pse) {
a0a64f50 3688 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3689 break;
3690 }
3691
82725b20
DE
3692 if (is_cpuid_PSE36())
3693 /* 36bits PSE 4MB page */
a0a64f50 3694 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3695 else
3696 /* 32 bits PSE 4MB page */
a0a64f50 3697 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3698 break;
3699 case PT32E_ROOT_LEVEL:
a0a64f50 3700 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3701 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3702 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3703 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3704 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3705 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3706 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3707 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3708 rsvd_bits(maxphyaddr, 62) |
3709 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3710 rsvd_check->rsvd_bits_mask[1][0] =
3711 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3712 break;
3713 case PT64_ROOT_LEVEL:
a0a64f50
XG
3714 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3715 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3716 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3717 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3718 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3719 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3720 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3721 rsvd_bits(maxphyaddr, 51);
3722 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3723 rsvd_bits(maxphyaddr, 51);
3724 rsvd_check->rsvd_bits_mask[1][3] =
3725 rsvd_check->rsvd_bits_mask[0][3];
3726 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3727 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3728 rsvd_bits(13, 29);
a0a64f50 3729 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3730 rsvd_bits(maxphyaddr, 51) |
3731 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3732 rsvd_check->rsvd_bits_mask[1][0] =
3733 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3734 break;
3735 }
3736}
3737
6dc98b86
XG
3738static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3739 struct kvm_mmu *context)
3740{
3741 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3742 cpuid_maxphyaddr(vcpu), context->root_level,
3743 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3744 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3745}
3746
81b8eebb
XG
3747static void
3748__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3749 int maxphyaddr, bool execonly)
25d92081 3750{
951f9fd7 3751 u64 bad_mt_xwr;
25d92081 3752
a0a64f50 3753 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3754 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3755 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3756 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3757 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3758 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3759 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3760
3761 /* large page */
a0a64f50
XG
3762 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3763 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3764 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3765 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3766 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3767 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3768
951f9fd7
PB
3769 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3770 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3771 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3772 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3773 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3774 if (!execonly) {
3775 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3776 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3777 }
951f9fd7 3778 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3779}
3780
81b8eebb
XG
3781static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3782 struct kvm_mmu *context, bool execonly)
3783{
3784 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3785 cpuid_maxphyaddr(vcpu), execonly);
3786}
3787
c258b62b
XG
3788/*
3789 * the page table on host is the shadow page table for the page
3790 * table in guest or amd nested guest, its mmu features completely
3791 * follow the features in guest.
3792 */
3793void
3794reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3795{
6fec2144
PB
3796 /*
3797 * Passing "true" to the last argument is okay; it adds a check
3798 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3799 */
c258b62b
XG
3800 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3801 boot_cpu_data.x86_phys_bits,
3802 context->shadow_root_level, context->nx,
6fec2144
PB
3803 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3804 true);
c258b62b
XG
3805}
3806EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3807
6fec2144
PB
3808static inline bool boot_cpu_is_amd(void)
3809{
3810 WARN_ON_ONCE(!tdp_enabled);
3811 return shadow_x_mask == 0;
3812}
3813
c258b62b
XG
3814/*
3815 * the direct page table on host, use as much mmu features as
3816 * possible, however, kvm currently does not do execution-protection.
3817 */
3818static void
3819reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3820 struct kvm_mmu *context)
3821{
6fec2144 3822 if (boot_cpu_is_amd())
c258b62b
XG
3823 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3824 boot_cpu_data.x86_phys_bits,
3825 context->shadow_root_level, false,
6fec2144 3826 cpu_has_gbpages, true, true);
c258b62b
XG
3827 else
3828 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3829 boot_cpu_data.x86_phys_bits,
3830 false);
3831
3832}
3833
3834/*
3835 * as the comments in reset_shadow_zero_bits_mask() except it
3836 * is the shadow page table for intel nested guest.
3837 */
3838static void
3839reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3840 struct kvm_mmu *context, bool execonly)
3841{
3842 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3843 boot_cpu_data.x86_phys_bits, execonly);
3844}
3845
edc90b7d
XG
3846static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3847 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3848{
3849 unsigned bit, byte, pfec;
3850 u8 map;
66386ade 3851 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3852
66386ade 3853 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3854 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3855 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3856 pfec = byte << 1;
3857 map = 0;
3858 wf = pfec & PFERR_WRITE_MASK;
3859 uf = pfec & PFERR_USER_MASK;
3860 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3861 /*
3862 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3863 * subject to SMAP restrictions, and cleared otherwise. The
3864 * bit is only meaningful if the SMAP bit is set in CR4.
3865 */
3866 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3867 for (bit = 0; bit < 8; ++bit) {
3868 x = bit & ACC_EXEC_MASK;
3869 w = bit & ACC_WRITE_MASK;
3870 u = bit & ACC_USER_MASK;
3871
25d92081
YZ
3872 if (!ept) {
3873 /* Not really needed: !nx will cause pte.nx to fault */
3874 x |= !mmu->nx;
3875 /* Allow supervisor writes if !cr0.wp */
3876 w |= !is_write_protection(vcpu) && !uf;
3877 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3878 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3879
3880 /*
3881 * SMAP:kernel-mode data accesses from user-mode
3882 * mappings should fault. A fault is considered
3883 * as a SMAP violation if all of the following
3884 * conditions are ture:
3885 * - X86_CR4_SMAP is set in CR4
3886 * - An user page is accessed
3887 * - Page fault in kernel mode
3888 * - if CPL = 3 or X86_EFLAGS_AC is clear
3889 *
3890 * Here, we cover the first three conditions.
3891 * The fourth is computed dynamically in
3892 * permission_fault() and is in smapf.
3893 *
3894 * Also, SMAP does not affect instruction
3895 * fetches, add the !ff check here to make it
3896 * clearer.
3897 */
3898 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3899 } else
3900 /* Not really needed: no U/S accesses on ept */
3901 u = 1;
97d64b78 3902
97ec8c06
FW
3903 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3904 (smapf && smap);
97d64b78
AK
3905 map |= fault << bit;
3906 }
3907 mmu->permissions[byte] = map;
3908 }
3909}
3910
6fd01b71
AK
3911static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3912{
3913 u8 map;
3914 unsigned level, root_level = mmu->root_level;
3915 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3916
3917 if (root_level == PT32E_ROOT_LEVEL)
3918 --root_level;
3919 /* PT_PAGE_TABLE_LEVEL always terminates */
3920 map = 1 | (1 << ps_set_index);
3921 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3922 if (level <= PT_PDPE_LEVEL
3923 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3924 map |= 1 << (ps_set_index | (level - 1));
3925 }
3926 mmu->last_pte_bitmap = map;
3927}
3928
8a3c1a33
PB
3929static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3930 struct kvm_mmu *context,
3931 int level)
6aa8b732 3932{
2d48a985 3933 context->nx = is_nx(vcpu);
4d6931c3 3934 context->root_level = level;
2d48a985 3935
4d6931c3 3936 reset_rsvds_bits_mask(vcpu, context);
25d92081 3937 update_permission_bitmask(vcpu, context, false);
6fd01b71 3938 update_last_pte_bitmap(vcpu, context);
6aa8b732 3939
fa4a2c08 3940 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3941 context->page_fault = paging64_page_fault;
6aa8b732 3942 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3943 context->sync_page = paging64_sync_page;
a7052897 3944 context->invlpg = paging64_invlpg;
0f53b5b1 3945 context->update_pte = paging64_update_pte;
17ac10ad 3946 context->shadow_root_level = level;
17c3ba9d 3947 context->root_hpa = INVALID_PAGE;
c5a78f2b 3948 context->direct_map = false;
6aa8b732
AK
3949}
3950
8a3c1a33
PB
3951static void paging64_init_context(struct kvm_vcpu *vcpu,
3952 struct kvm_mmu *context)
17ac10ad 3953{
8a3c1a33 3954 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3955}
3956
8a3c1a33
PB
3957static void paging32_init_context(struct kvm_vcpu *vcpu,
3958 struct kvm_mmu *context)
6aa8b732 3959{
2d48a985 3960 context->nx = false;
4d6931c3 3961 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3962
4d6931c3 3963 reset_rsvds_bits_mask(vcpu, context);
25d92081 3964 update_permission_bitmask(vcpu, context, false);
6fd01b71 3965 update_last_pte_bitmap(vcpu, context);
6aa8b732 3966
6aa8b732 3967 context->page_fault = paging32_page_fault;
6aa8b732 3968 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3969 context->sync_page = paging32_sync_page;
a7052897 3970 context->invlpg = paging32_invlpg;
0f53b5b1 3971 context->update_pte = paging32_update_pte;
6aa8b732 3972 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3973 context->root_hpa = INVALID_PAGE;
c5a78f2b 3974 context->direct_map = false;
6aa8b732
AK
3975}
3976
8a3c1a33
PB
3977static void paging32E_init_context(struct kvm_vcpu *vcpu,
3978 struct kvm_mmu *context)
6aa8b732 3979{
8a3c1a33 3980 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3981}
3982
8a3c1a33 3983static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3984{
ad896af0 3985 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3986
c445f8ef 3987 context->base_role.word = 0;
699023e2 3988 context->base_role.smm = is_smm(vcpu);
fb72d167 3989 context->page_fault = tdp_page_fault;
e8bc217a 3990 context->sync_page = nonpaging_sync_page;
a7052897 3991 context->invlpg = nonpaging_invlpg;
0f53b5b1 3992 context->update_pte = nonpaging_update_pte;
67253af5 3993 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3994 context->root_hpa = INVALID_PAGE;
c5a78f2b 3995 context->direct_map = true;
1c97f0a0 3996 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3997 context->get_cr3 = get_cr3;
e4e517b4 3998 context->get_pdptr = kvm_pdptr_read;
cb659db8 3999 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4000
4001 if (!is_paging(vcpu)) {
2d48a985 4002 context->nx = false;
fb72d167
JR
4003 context->gva_to_gpa = nonpaging_gva_to_gpa;
4004 context->root_level = 0;
4005 } else if (is_long_mode(vcpu)) {
2d48a985 4006 context->nx = is_nx(vcpu);
fb72d167 4007 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4008 reset_rsvds_bits_mask(vcpu, context);
4009 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4010 } else if (is_pae(vcpu)) {
2d48a985 4011 context->nx = is_nx(vcpu);
fb72d167 4012 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4013 reset_rsvds_bits_mask(vcpu, context);
4014 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4015 } else {
2d48a985 4016 context->nx = false;
fb72d167 4017 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4018 reset_rsvds_bits_mask(vcpu, context);
4019 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4020 }
4021
25d92081 4022 update_permission_bitmask(vcpu, context, false);
6fd01b71 4023 update_last_pte_bitmap(vcpu, context);
c258b62b 4024 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4025}
4026
ad896af0 4027void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4028{
411c588d 4029 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4030 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4031 struct kvm_mmu *context = &vcpu->arch.mmu;
4032
fa4a2c08 4033 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4034
4035 if (!is_paging(vcpu))
8a3c1a33 4036 nonpaging_init_context(vcpu, context);
a9058ecd 4037 else if (is_long_mode(vcpu))
8a3c1a33 4038 paging64_init_context(vcpu, context);
6aa8b732 4039 else if (is_pae(vcpu))
8a3c1a33 4040 paging32E_init_context(vcpu, context);
6aa8b732 4041 else
8a3c1a33 4042 paging32_init_context(vcpu, context);
a770f6f2 4043
ad896af0
PB
4044 context->base_role.nxe = is_nx(vcpu);
4045 context->base_role.cr4_pae = !!is_pae(vcpu);
4046 context->base_role.cr0_wp = is_write_protection(vcpu);
4047 context->base_role.smep_andnot_wp
411c588d 4048 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4049 context->base_role.smap_andnot_wp
4050 = smap && !is_write_protection(vcpu);
699023e2 4051 context->base_role.smm = is_smm(vcpu);
c258b62b 4052 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4053}
4054EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4055
ad896af0 4056void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4057{
ad896af0
PB
4058 struct kvm_mmu *context = &vcpu->arch.mmu;
4059
fa4a2c08 4060 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4061
4062 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4063
4064 context->nx = true;
155a97a3
NHE
4065 context->page_fault = ept_page_fault;
4066 context->gva_to_gpa = ept_gva_to_gpa;
4067 context->sync_page = ept_sync_page;
4068 context->invlpg = ept_invlpg;
4069 context->update_pte = ept_update_pte;
155a97a3
NHE
4070 context->root_level = context->shadow_root_level;
4071 context->root_hpa = INVALID_PAGE;
4072 context->direct_map = false;
4073
4074 update_permission_bitmask(vcpu, context, true);
4075 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4076 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4077}
4078EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4079
8a3c1a33 4080static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4081{
ad896af0
PB
4082 struct kvm_mmu *context = &vcpu->arch.mmu;
4083
4084 kvm_init_shadow_mmu(vcpu);
4085 context->set_cr3 = kvm_x86_ops->set_cr3;
4086 context->get_cr3 = get_cr3;
4087 context->get_pdptr = kvm_pdptr_read;
4088 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4089}
4090
8a3c1a33 4091static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4092{
4093 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4094
4095 g_context->get_cr3 = get_cr3;
e4e517b4 4096 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4097 g_context->inject_page_fault = kvm_inject_page_fault;
4098
4099 /*
0af2593b
DM
4100 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4101 * L1's nested page tables (e.g. EPT12). The nested translation
4102 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4103 * L2's page tables as the first level of translation and L1's
4104 * nested page tables as the second level of translation. Basically
4105 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4106 */
4107 if (!is_paging(vcpu)) {
2d48a985 4108 g_context->nx = false;
02f59dc9
JR
4109 g_context->root_level = 0;
4110 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4111 } else if (is_long_mode(vcpu)) {
2d48a985 4112 g_context->nx = is_nx(vcpu);
02f59dc9 4113 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4114 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4115 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4116 } else if (is_pae(vcpu)) {
2d48a985 4117 g_context->nx = is_nx(vcpu);
02f59dc9 4118 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4119 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4120 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4121 } else {
2d48a985 4122 g_context->nx = false;
02f59dc9 4123 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4124 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4125 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4126 }
4127
25d92081 4128 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4129 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4130}
4131
8a3c1a33 4132static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4133{
02f59dc9 4134 if (mmu_is_nested(vcpu))
e0c6db3e 4135 init_kvm_nested_mmu(vcpu);
02f59dc9 4136 else if (tdp_enabled)
e0c6db3e 4137 init_kvm_tdp_mmu(vcpu);
fb72d167 4138 else
e0c6db3e 4139 init_kvm_softmmu(vcpu);
fb72d167
JR
4140}
4141
8a3c1a33 4142void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4143{
95f93af4 4144 kvm_mmu_unload(vcpu);
8a3c1a33 4145 init_kvm_mmu(vcpu);
17c3ba9d 4146}
8668a3c4 4147EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4148
4149int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4150{
714b93da
AK
4151 int r;
4152
e2dec939 4153 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4154 if (r)
4155 goto out;
8986ecc0 4156 r = mmu_alloc_roots(vcpu);
e2858b4a 4157 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4158 if (r)
4159 goto out;
3662cb1c 4160 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4161 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4162out:
4163 return r;
6aa8b732 4164}
17c3ba9d
AK
4165EXPORT_SYMBOL_GPL(kvm_mmu_load);
4166
4167void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4168{
4169 mmu_free_roots(vcpu);
95f93af4 4170 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4171}
4b16184c 4172EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4173
0028425f 4174static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4175 struct kvm_mmu_page *sp, u64 *spte,
4176 const void *new)
0028425f 4177{
30945387 4178 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4179 ++vcpu->kvm->stat.mmu_pde_zapped;
4180 return;
30945387 4181 }
0028425f 4182
4cee5764 4183 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4184 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4185}
4186
79539cec
AK
4187static bool need_remote_flush(u64 old, u64 new)
4188{
4189 if (!is_shadow_present_pte(old))
4190 return false;
4191 if (!is_shadow_present_pte(new))
4192 return true;
4193 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4194 return true;
53166229
GN
4195 old ^= shadow_nx_mask;
4196 new ^= shadow_nx_mask;
79539cec
AK
4197 return (old & ~new & PT64_PERM_MASK) != 0;
4198}
4199
889e5cbc
XG
4200static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4201 const u8 *new, int *bytes)
da4a00f0 4202{
889e5cbc
XG
4203 u64 gentry;
4204 int r;
72016f3a 4205
72016f3a
AK
4206 /*
4207 * Assume that the pte write on a page table of the same type
49b26e26
XG
4208 * as the current vcpu paging mode since we update the sptes only
4209 * when they have the same mode.
72016f3a 4210 */
889e5cbc 4211 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4212 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4213 *gpa &= ~(gpa_t)7;
4214 *bytes = 8;
54bf36aa 4215 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4216 if (r)
4217 gentry = 0;
08e850c6
AK
4218 new = (const u8 *)&gentry;
4219 }
4220
889e5cbc 4221 switch (*bytes) {
08e850c6
AK
4222 case 4:
4223 gentry = *(const u32 *)new;
4224 break;
4225 case 8:
4226 gentry = *(const u64 *)new;
4227 break;
4228 default:
4229 gentry = 0;
4230 break;
72016f3a
AK
4231 }
4232
889e5cbc
XG
4233 return gentry;
4234}
4235
4236/*
4237 * If we're seeing too many writes to a page, it may no longer be a page table,
4238 * or we may be forking, in which case it is better to unmap the page.
4239 */
a138fe75 4240static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4241{
a30f47cb
XG
4242 /*
4243 * Skip write-flooding detected for the sp whose level is 1, because
4244 * it can become unsync, then the guest page is not write-protected.
4245 */
f71fa31f 4246 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4247 return false;
3246af0e 4248
e5691a81
XG
4249 atomic_inc(&sp->write_flooding_count);
4250 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4251}
4252
4253/*
4254 * Misaligned accesses are too much trouble to fix up; also, they usually
4255 * indicate a page is not used as a page table.
4256 */
4257static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4258 int bytes)
4259{
4260 unsigned offset, pte_size, misaligned;
4261
4262 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4263 gpa, bytes, sp->role.word);
4264
4265 offset = offset_in_page(gpa);
4266 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4267
4268 /*
4269 * Sometimes, the OS only writes the last one bytes to update status
4270 * bits, for example, in linux, andb instruction is used in clear_bit().
4271 */
4272 if (!(offset & (pte_size - 1)) && bytes == 1)
4273 return false;
4274
889e5cbc
XG
4275 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4276 misaligned |= bytes < 4;
4277
4278 return misaligned;
4279}
4280
4281static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4282{
4283 unsigned page_offset, quadrant;
4284 u64 *spte;
4285 int level;
4286
4287 page_offset = offset_in_page(gpa);
4288 level = sp->role.level;
4289 *nspte = 1;
4290 if (!sp->role.cr4_pae) {
4291 page_offset <<= 1; /* 32->64 */
4292 /*
4293 * A 32-bit pde maps 4MB while the shadow pdes map
4294 * only 2MB. So we need to double the offset again
4295 * and zap two pdes instead of one.
4296 */
4297 if (level == PT32_ROOT_LEVEL) {
4298 page_offset &= ~7; /* kill rounding error */
4299 page_offset <<= 1;
4300 *nspte = 2;
4301 }
4302 quadrant = page_offset >> PAGE_SHIFT;
4303 page_offset &= ~PAGE_MASK;
4304 if (quadrant != sp->role.quadrant)
4305 return NULL;
4306 }
4307
4308 spte = &sp->spt[page_offset / sizeof(*spte)];
4309 return spte;
4310}
4311
13d268ca
XG
4312static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4313 const u8 *new, int bytes)
889e5cbc
XG
4314{
4315 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4316 struct kvm_mmu_page *sp;
889e5cbc
XG
4317 LIST_HEAD(invalid_list);
4318 u64 entry, gentry, *spte;
4319 int npte;
b8c67b7a 4320 bool remote_flush, local_flush;
4141259b
AM
4321 union kvm_mmu_page_role mask = { };
4322
4323 mask.cr0_wp = 1;
4324 mask.cr4_pae = 1;
4325 mask.nxe = 1;
4326 mask.smep_andnot_wp = 1;
4327 mask.smap_andnot_wp = 1;
699023e2 4328 mask.smm = 1;
889e5cbc
XG
4329
4330 /*
4331 * If we don't have indirect shadow pages, it means no page is
4332 * write-protected, so we can exit simply.
4333 */
4334 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4335 return;
4336
b8c67b7a 4337 remote_flush = local_flush = false;
889e5cbc
XG
4338
4339 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4340
4341 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4342
4343 /*
4344 * No need to care whether allocation memory is successful
4345 * or not since pte prefetch is skiped if it does not have
4346 * enough objects in the cache.
4347 */
4348 mmu_topup_memory_caches(vcpu);
4349
4350 spin_lock(&vcpu->kvm->mmu_lock);
4351 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4352 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4353
b67bfe0d 4354 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4355 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4356 detect_write_flooding(sp)) {
b8c67b7a 4357 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4358 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4359 continue;
4360 }
889e5cbc
XG
4361
4362 spte = get_written_sptes(sp, gpa, &npte);
4363 if (!spte)
4364 continue;
4365
0671a8e7 4366 local_flush = true;
ac1b714e 4367 while (npte--) {
79539cec 4368 entry = *spte;
38e3b2b2 4369 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4370 if (gentry &&
4371 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4372 & mask.word) && rmap_can_add(vcpu))
7c562522 4373 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4374 if (need_remote_flush(entry, *spte))
0671a8e7 4375 remote_flush = true;
ac1b714e 4376 ++spte;
9b7a0325 4377 }
9b7a0325 4378 }
b8c67b7a 4379 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4380 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4381 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4382}
4383
a436036b
AK
4384int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4385{
10589a46
MT
4386 gpa_t gpa;
4387 int r;
a436036b 4388
c5a78f2b 4389 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4390 return 0;
4391
1871c602 4392 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4393
10589a46 4394 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4395
10589a46 4396 return r;
a436036b 4397}
577bdc49 4398EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4399
81f4f76b 4400static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4401{
d98ba053 4402 LIST_HEAD(invalid_list);
103ad25a 4403
81f4f76b
TY
4404 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4405 return;
4406
5da59607
TY
4407 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4408 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4409 break;
ebeace86 4410
4cee5764 4411 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4412 }
aa6bd187 4413 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4414}
ebeace86 4415
dc25e89e
AP
4416int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4417 void *insn, int insn_len)
3067714c 4418{
1cb3f3ae 4419 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4420 enum emulation_result er;
ded58749 4421 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4422
e9ee956e
TY
4423 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4424 r = handle_mmio_page_fault(vcpu, cr2, direct);
4425 if (r == RET_MMIO_PF_EMULATE) {
4426 emulation_type = 0;
4427 goto emulate;
4428 }
4429 if (r == RET_MMIO_PF_RETRY)
4430 return 1;
4431 if (r < 0)
4432 return r;
4433 }
4434
56028d08 4435 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c 4436 if (r < 0)
e9ee956e
TY
4437 return r;
4438 if (!r)
4439 return 1;
3067714c 4440
ded58749 4441 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4442 emulation_type = 0;
e9ee956e 4443emulate:
1cb3f3ae 4444 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4445
4446 switch (er) {
4447 case EMULATE_DONE:
4448 return 1;
ac0a48c3 4449 case EMULATE_USER_EXIT:
3067714c 4450 ++vcpu->stat.mmio_exits;
6d77dbfc 4451 /* fall through */
3067714c 4452 case EMULATE_FAIL:
3f5d18a9 4453 return 0;
3067714c
AK
4454 default:
4455 BUG();
4456 }
3067714c
AK
4457}
4458EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4459
a7052897
MT
4460void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4461{
a7052897 4462 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4463 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4464 ++vcpu->stat.invlpg;
4465}
4466EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4467
18552672
JR
4468void kvm_enable_tdp(void)
4469{
4470 tdp_enabled = true;
4471}
4472EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4473
5f4cb662
JR
4474void kvm_disable_tdp(void)
4475{
4476 tdp_enabled = false;
4477}
4478EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4479
6aa8b732
AK
4480static void free_mmu_pages(struct kvm_vcpu *vcpu)
4481{
ad312c7c 4482 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4483 if (vcpu->arch.mmu.lm_root != NULL)
4484 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4485}
4486
4487static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4488{
17ac10ad 4489 struct page *page;
6aa8b732
AK
4490 int i;
4491
17ac10ad
AK
4492 /*
4493 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4494 * Therefore we need to allocate shadow page tables in the first
4495 * 4GB of memory, which happens to fit the DMA32 zone.
4496 */
4497 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4498 if (!page)
d7fa6ab2
WY
4499 return -ENOMEM;
4500
ad312c7c 4501 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4502 for (i = 0; i < 4; ++i)
ad312c7c 4503 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4504
6aa8b732 4505 return 0;
6aa8b732
AK
4506}
4507
8018c27b 4508int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4509{
e459e322
XG
4510 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4511 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4512 vcpu->arch.mmu.translate_gpa = translate_gpa;
4513 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4514
8018c27b
IM
4515 return alloc_mmu_pages(vcpu);
4516}
6aa8b732 4517
8a3c1a33 4518void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4519{
fa4a2c08 4520 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4521
8a3c1a33 4522 init_kvm_mmu(vcpu);
6aa8b732
AK
4523}
4524
13d268ca
XG
4525void kvm_mmu_init_vm(struct kvm *kvm)
4526{
4527 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4528
4529 node->track_write = kvm_mmu_pte_write;
4530 kvm_page_track_register_notifier(kvm, node);
4531}
4532
4533void kvm_mmu_uninit_vm(struct kvm *kvm)
4534{
4535 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4536
4537 kvm_page_track_unregister_notifier(kvm, node);
4538}
4539
1bad2b2a 4540/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4541typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4542
4543/* The caller should hold mmu-lock before calling this function. */
4544static bool
4545slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4546 slot_level_handler fn, int start_level, int end_level,
4547 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4548{
4549 struct slot_rmap_walk_iterator iterator;
4550 bool flush = false;
4551
4552 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4553 end_gfn, &iterator) {
4554 if (iterator.rmap)
4555 flush |= fn(kvm, iterator.rmap);
4556
4557 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4558 if (flush && lock_flush_tlb) {
4559 kvm_flush_remote_tlbs(kvm);
4560 flush = false;
4561 }
4562 cond_resched_lock(&kvm->mmu_lock);
4563 }
4564 }
4565
4566 if (flush && lock_flush_tlb) {
4567 kvm_flush_remote_tlbs(kvm);
4568 flush = false;
4569 }
4570
4571 return flush;
4572}
4573
4574static bool
4575slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4576 slot_level_handler fn, int start_level, int end_level,
4577 bool lock_flush_tlb)
4578{
4579 return slot_handle_level_range(kvm, memslot, fn, start_level,
4580 end_level, memslot->base_gfn,
4581 memslot->base_gfn + memslot->npages - 1,
4582 lock_flush_tlb);
4583}
4584
4585static bool
4586slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4587 slot_level_handler fn, bool lock_flush_tlb)
4588{
4589 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4590 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4591}
4592
4593static bool
4594slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4595 slot_level_handler fn, bool lock_flush_tlb)
4596{
4597 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4598 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4599}
4600
4601static bool
4602slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4603 slot_level_handler fn, bool lock_flush_tlb)
4604{
4605 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4606 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4607}
4608
efdfe536
XG
4609void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4610{
4611 struct kvm_memslots *slots;
4612 struct kvm_memory_slot *memslot;
9da0e4d5 4613 int i;
efdfe536
XG
4614
4615 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4616 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4617 slots = __kvm_memslots(kvm, i);
4618 kvm_for_each_memslot(memslot, slots) {
4619 gfn_t start, end;
4620
4621 start = max(gfn_start, memslot->base_gfn);
4622 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4623 if (start >= end)
4624 continue;
efdfe536 4625
9da0e4d5
PB
4626 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4627 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4628 start, end - 1, true);
4629 }
efdfe536
XG
4630 }
4631
4632 spin_unlock(&kvm->mmu_lock);
4633}
4634
018aabb5
TY
4635static bool slot_rmap_write_protect(struct kvm *kvm,
4636 struct kvm_rmap_head *rmap_head)
d77aa73c 4637{
018aabb5 4638 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4639}
4640
1c91cad4
KH
4641void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4642 struct kvm_memory_slot *memslot)
6aa8b732 4643{
d77aa73c 4644 bool flush;
6aa8b732 4645
9d1beefb 4646 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4647 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4648 false);
9d1beefb 4649 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4650
4651 /*
4652 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4653 * which do tlb flush out of mmu-lock should be serialized by
4654 * kvm->slots_lock otherwise tlb flush would be missed.
4655 */
4656 lockdep_assert_held(&kvm->slots_lock);
4657
4658 /*
4659 * We can flush all the TLBs out of the mmu lock without TLB
4660 * corruption since we just change the spte from writable to
4661 * readonly so that we only need to care the case of changing
4662 * spte from present to present (changing the spte from present
4663 * to nonpresent will flush all the TLBs immediately), in other
4664 * words, the only case we care is mmu_spte_update() where we
4665 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4666 * instead of PT_WRITABLE_MASK, that means it does not depend
4667 * on PT_WRITABLE_MASK anymore.
4668 */
d91ffee9
KH
4669 if (flush)
4670 kvm_flush_remote_tlbs(kvm);
6aa8b732 4671}
37a7d8b0 4672
3ea3b7fa 4673static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4674 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4675{
4676 u64 *sptep;
4677 struct rmap_iterator iter;
4678 int need_tlb_flush = 0;
ba049e93 4679 kvm_pfn_t pfn;
3ea3b7fa
WL
4680 struct kvm_mmu_page *sp;
4681
0d536790 4682restart:
018aabb5 4683 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4684 sp = page_header(__pa(sptep));
4685 pfn = spte_to_pfn(*sptep);
4686
4687 /*
decf6333
XG
4688 * We cannot do huge page mapping for indirect shadow pages,
4689 * which are found on the last rmap (level = 1) when not using
4690 * tdp; such shadow pages are synced with the page table in
4691 * the guest, and the guest page table is using 4K page size
4692 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4693 */
4694 if (sp->role.direct &&
4695 !kvm_is_reserved_pfn(pfn) &&
4696 PageTransCompound(pfn_to_page(pfn))) {
4697 drop_spte(kvm, sptep);
3ea3b7fa 4698 need_tlb_flush = 1;
0d536790
XG
4699 goto restart;
4700 }
3ea3b7fa
WL
4701 }
4702
4703 return need_tlb_flush;
4704}
4705
4706void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4707 const struct kvm_memory_slot *memslot)
3ea3b7fa 4708{
f36f3f28 4709 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4710 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4711 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4712 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4713 spin_unlock(&kvm->mmu_lock);
4714}
4715
f4b4b180
KH
4716void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4717 struct kvm_memory_slot *memslot)
4718{
d77aa73c 4719 bool flush;
f4b4b180
KH
4720
4721 spin_lock(&kvm->mmu_lock);
d77aa73c 4722 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4723 spin_unlock(&kvm->mmu_lock);
4724
4725 lockdep_assert_held(&kvm->slots_lock);
4726
4727 /*
4728 * It's also safe to flush TLBs out of mmu lock here as currently this
4729 * function is only used for dirty logging, in which case flushing TLB
4730 * out of mmu lock also guarantees no dirty pages will be lost in
4731 * dirty_bitmap.
4732 */
4733 if (flush)
4734 kvm_flush_remote_tlbs(kvm);
4735}
4736EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4737
4738void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4739 struct kvm_memory_slot *memslot)
4740{
d77aa73c 4741 bool flush;
f4b4b180
KH
4742
4743 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4744 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4745 false);
f4b4b180
KH
4746 spin_unlock(&kvm->mmu_lock);
4747
4748 /* see kvm_mmu_slot_remove_write_access */
4749 lockdep_assert_held(&kvm->slots_lock);
4750
4751 if (flush)
4752 kvm_flush_remote_tlbs(kvm);
4753}
4754EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4755
4756void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4757 struct kvm_memory_slot *memslot)
4758{
d77aa73c 4759 bool flush;
f4b4b180
KH
4760
4761 spin_lock(&kvm->mmu_lock);
d77aa73c 4762 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4763 spin_unlock(&kvm->mmu_lock);
4764
4765 lockdep_assert_held(&kvm->slots_lock);
4766
4767 /* see kvm_mmu_slot_leaf_clear_dirty */
4768 if (flush)
4769 kvm_flush_remote_tlbs(kvm);
4770}
4771EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4772
e7d11c7a 4773#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4774static void kvm_zap_obsolete_pages(struct kvm *kvm)
4775{
4776 struct kvm_mmu_page *sp, *node;
e7d11c7a 4777 int batch = 0;
5304b8d3
XG
4778
4779restart:
4780 list_for_each_entry_safe_reverse(sp, node,
4781 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4782 int ret;
4783
5304b8d3
XG
4784 /*
4785 * No obsolete page exists before new created page since
4786 * active_mmu_pages is the FIFO list.
4787 */
4788 if (!is_obsolete_sp(kvm, sp))
4789 break;
4790
4791 /*
5304b8d3
XG
4792 * Since we are reversely walking the list and the invalid
4793 * list will be moved to the head, skip the invalid page
4794 * can help us to avoid the infinity list walking.
4795 */
4796 if (sp->role.invalid)
4797 continue;
4798
f34d251d
XG
4799 /*
4800 * Need not flush tlb since we only zap the sp with invalid
4801 * generation number.
4802 */
e7d11c7a 4803 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4804 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4805 batch = 0;
5304b8d3
XG
4806 goto restart;
4807 }
4808
365c8868
XG
4809 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4810 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4811 batch += ret;
4812
4813 if (ret)
5304b8d3
XG
4814 goto restart;
4815 }
4816
f34d251d
XG
4817 /*
4818 * Should flush tlb before free page tables since lockless-walking
4819 * may use the pages.
4820 */
365c8868 4821 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4822}
4823
4824/*
4825 * Fast invalidate all shadow pages and use lock-break technique
4826 * to zap obsolete pages.
4827 *
4828 * It's required when memslot is being deleted or VM is being
4829 * destroyed, in these cases, we should ensure that KVM MMU does
4830 * not use any resource of the being-deleted slot or all slots
4831 * after calling the function.
4832 */
4833void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4834{
4835 spin_lock(&kvm->mmu_lock);
35006126 4836 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4837 kvm->arch.mmu_valid_gen++;
4838
f34d251d
XG
4839 /*
4840 * Notify all vcpus to reload its shadow page table
4841 * and flush TLB. Then all vcpus will switch to new
4842 * shadow page table with the new mmu_valid_gen.
4843 *
4844 * Note: we should do this under the protection of
4845 * mmu-lock, otherwise, vcpu would purge shadow page
4846 * but miss tlb flush.
4847 */
4848 kvm_reload_remote_mmus(kvm);
4849
5304b8d3
XG
4850 kvm_zap_obsolete_pages(kvm);
4851 spin_unlock(&kvm->mmu_lock);
4852}
4853
365c8868
XG
4854static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4855{
4856 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4857}
4858
54bf36aa 4859void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4860{
4861 /*
4862 * The very rare case: if the generation-number is round,
4863 * zap all shadow pages.
f8f55942 4864 */
54bf36aa 4865 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4866 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4867 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4868 }
f8f55942
XG
4869}
4870
70534a73
DC
4871static unsigned long
4872mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4873{
4874 struct kvm *kvm;
1495f230 4875 int nr_to_scan = sc->nr_to_scan;
70534a73 4876 unsigned long freed = 0;
3ee16c81 4877
2f303b74 4878 spin_lock(&kvm_lock);
3ee16c81
IE
4879
4880 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4881 int idx;
d98ba053 4882 LIST_HEAD(invalid_list);
3ee16c81 4883
35f2d16b
TY
4884 /*
4885 * Never scan more than sc->nr_to_scan VM instances.
4886 * Will not hit this condition practically since we do not try
4887 * to shrink more than one VM and it is very unlikely to see
4888 * !n_used_mmu_pages so many times.
4889 */
4890 if (!nr_to_scan--)
4891 break;
19526396
GN
4892 /*
4893 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4894 * here. We may skip a VM instance errorneosly, but we do not
4895 * want to shrink a VM that only started to populate its MMU
4896 * anyway.
4897 */
365c8868
XG
4898 if (!kvm->arch.n_used_mmu_pages &&
4899 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4900 continue;
19526396 4901
f656ce01 4902 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4903 spin_lock(&kvm->mmu_lock);
3ee16c81 4904
365c8868
XG
4905 if (kvm_has_zapped_obsolete_pages(kvm)) {
4906 kvm_mmu_commit_zap_page(kvm,
4907 &kvm->arch.zapped_obsolete_pages);
4908 goto unlock;
4909 }
4910
70534a73
DC
4911 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4912 freed++;
d98ba053 4913 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4914
365c8868 4915unlock:
3ee16c81 4916 spin_unlock(&kvm->mmu_lock);
f656ce01 4917 srcu_read_unlock(&kvm->srcu, idx);
19526396 4918
70534a73
DC
4919 /*
4920 * unfair on small ones
4921 * per-vm shrinkers cry out
4922 * sadness comes quickly
4923 */
19526396
GN
4924 list_move_tail(&kvm->vm_list, &vm_list);
4925 break;
3ee16c81 4926 }
3ee16c81 4927
2f303b74 4928 spin_unlock(&kvm_lock);
70534a73 4929 return freed;
70534a73
DC
4930}
4931
4932static unsigned long
4933mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4934{
45221ab6 4935 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4936}
4937
4938static struct shrinker mmu_shrinker = {
70534a73
DC
4939 .count_objects = mmu_shrink_count,
4940 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4941 .seeks = DEFAULT_SEEKS * 10,
4942};
4943
2ddfd20e 4944static void mmu_destroy_caches(void)
b5a33a75 4945{
53c07b18
XG
4946 if (pte_list_desc_cache)
4947 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4948 if (mmu_page_header_cache)
4949 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4950}
4951
4952int kvm_mmu_module_init(void)
4953{
53c07b18
XG
4954 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4955 sizeof(struct pte_list_desc),
20c2df83 4956 0, 0, NULL);
53c07b18 4957 if (!pte_list_desc_cache)
b5a33a75
AK
4958 goto nomem;
4959
d3d25b04
AK
4960 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4961 sizeof(struct kvm_mmu_page),
20c2df83 4962 0, 0, NULL);
d3d25b04
AK
4963 if (!mmu_page_header_cache)
4964 goto nomem;
4965
908c7f19 4966 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4967 goto nomem;
4968
3ee16c81
IE
4969 register_shrinker(&mmu_shrinker);
4970
b5a33a75
AK
4971 return 0;
4972
4973nomem:
3ee16c81 4974 mmu_destroy_caches();
b5a33a75
AK
4975 return -ENOMEM;
4976}
4977
3ad82a7e
ZX
4978/*
4979 * Caculate mmu pages needed for kvm.
4980 */
4981unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4982{
3ad82a7e
ZX
4983 unsigned int nr_mmu_pages;
4984 unsigned int nr_pages = 0;
bc6678a3 4985 struct kvm_memslots *slots;
be6ba0f0 4986 struct kvm_memory_slot *memslot;
9da0e4d5 4987 int i;
3ad82a7e 4988
9da0e4d5
PB
4989 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4990 slots = __kvm_memslots(kvm, i);
90d83dc3 4991
9da0e4d5
PB
4992 kvm_for_each_memslot(memslot, slots)
4993 nr_pages += memslot->npages;
4994 }
3ad82a7e
ZX
4995
4996 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4997 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 4998 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
4999
5000 return nr_mmu_pages;
5001}
5002
c42fffe3
XG
5003void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5004{
95f93af4 5005 kvm_mmu_unload(vcpu);
c42fffe3
XG
5006 free_mmu_pages(vcpu);
5007 mmu_free_memory_caches(vcpu);
b034cf01
XG
5008}
5009
b034cf01
XG
5010void kvm_mmu_module_exit(void)
5011{
5012 mmu_destroy_caches();
5013 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5014 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5015 mmu_audit_disable();
5016}