]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/kvm/paging_tmpl.h
KVM: MMU: make return value of mmio page fault handler more readable
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kvm / paging_tmpl.h
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21/*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26#if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
e04da980
JR
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
6aa8b732 33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
c7addb90 34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
cea0f0e7
AK
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
b3e4e63f 37 #define CMPXCHG cmpxchg
cea0f0e7 38 #else
b3e4e63f 39 #define CMPXCHG cmpxchg64
cea0f0e7
AK
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
6aa8b732
AK
42#elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
e04da980
JR
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
6aa8b732 49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
c7addb90 50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
cea0f0e7 51 #define PT_MAX_FULL_LEVELS 2
b3e4e63f 52 #define CMPXCHG cmpxchg
6aa8b732
AK
53#else
54 #error Invalid PTTYPE value
55#endif
56
e04da980
JR
57#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
5fb07ddb 59
6aa8b732
AK
60/*
61 * The guest_walker structure emulates the behavior of the hardware page
62 * table walker.
63 */
64struct guest_walker {
65 int level;
8cbc7069 66 unsigned max_level;
cea0f0e7 67 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
7819026e 68 pt_element_t ptes[PT_MAX_FULL_LEVELS];
189be38d 69 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
7819026e 70 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
8cbc7069 71 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
fe135d2c
AK
72 unsigned pt_access;
73 unsigned pte_access;
815af8d4 74 gfn_t gfn;
8c28d031 75 struct x86_exception fault;
6aa8b732
AK
76};
77
e04da980 78static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
5fb07ddb 79{
e04da980 80 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
5fb07ddb
AK
81}
82
a78484c6 83static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
c8cfbb55
TY
84 pt_element_t __user *ptep_user, unsigned index,
85 pt_element_t orig_pte, pt_element_t new_pte)
b3e4e63f 86{
c8cfbb55 87 int npages;
b3e4e63f
MT
88 pt_element_t ret;
89 pt_element_t *table;
90 struct page *page;
91
c8cfbb55
TY
92 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
93 /* Check if the user is doing something meaningless. */
94 if (unlikely(npages != 1))
a78484c6
RJ
95 return -EFAULT;
96
8fd75e12 97 table = kmap_atomic(page);
b3e4e63f 98 ret = CMPXCHG(&table[index], orig_pte, new_pte);
8fd75e12 99 kunmap_atomic(table);
b3e4e63f
MT
100
101 kvm_release_page_dirty(page);
102
103 return (ret != orig_pte);
104}
105
8cbc7069
AK
106static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
107 struct kvm_mmu *mmu,
108 struct guest_walker *walker,
109 int write_fault)
110{
111 unsigned level, index;
112 pt_element_t pte, orig_pte;
113 pt_element_t __user *ptep_user;
114 gfn_t table_gfn;
115 int ret;
116
117 for (level = walker->max_level; level >= walker->level; --level) {
118 pte = orig_pte = walker->ptes[level - 1];
119 table_gfn = walker->table_gfn[level - 1];
120 ptep_user = walker->ptep_user[level - 1];
121 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
122 if (!(pte & PT_ACCESSED_MASK)) {
123 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
124 pte |= PT_ACCESSED_MASK;
125 }
126 if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
127 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
128 pte |= PT_DIRTY_MASK;
129 }
130 if (pte == orig_pte)
131 continue;
132
133 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
134 if (ret)
135 return ret;
136
137 mark_page_dirty(vcpu->kvm, table_gfn);
138 walker->ptes[level] = pte;
139 }
140 return 0;
141}
142
ac79c978
AK
143/*
144 * Fetch a guest pte for a guest virtual address
145 */
1e301feb
JR
146static int FNAME(walk_addr_generic)(struct guest_walker *walker,
147 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
33770780 148 gva_t addr, u32 access)
6aa8b732 149{
8cbc7069 150 int ret;
42bf3f0a 151 pt_element_t pte;
b7233635 152 pt_element_t __user *uninitialized_var(ptep_user);
cea0f0e7 153 gfn_t table_gfn;
b0cfeb5d 154 unsigned index, pt_access, pte_access, accessed_dirty;
42bf3f0a 155 gpa_t pte_gpa;
134291bf
TY
156 int offset;
157 const int write_fault = access & PFERR_WRITE_MASK;
158 const int user_fault = access & PFERR_USER_MASK;
159 const int fetch_fault = access & PFERR_FETCH_MASK;
160 u16 errcode = 0;
13d22b6a
AK
161 gpa_t real_gpa;
162 gfn_t gfn;
6aa8b732 163
6fbc2770 164 trace_kvm_mmu_pagetable_walk(addr, access);
92c1c1e8 165retry_walk:
1e301feb
JR
166 walker->level = mmu->root_level;
167 pte = mmu->get_cr3(vcpu);
168
1b0973bd 169#if PTTYPE == 64
1e301feb 170 if (walker->level == PT32E_ROOT_LEVEL) {
e4e517b4 171 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
07420171 172 trace_kvm_mmu_paging_element(pte, walker->level);
134291bf 173 if (!is_present_gpte(pte))
f59c1d2d 174 goto error;
1b0973bd
AK
175 --walker->level;
176 }
177#endif
8cbc7069 178 walker->max_level = walker->level;
a9058ecd 179 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
1e301feb 180 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
6aa8b732 181
b514c30f 182 accessed_dirty = PT_ACCESSED_MASK;
13d22b6a
AK
183 pt_access = pte_access = ACC_ALL;
184 ++walker->level;
ac79c978 185
13d22b6a 186 do {
6e2ca7d1
TY
187 gfn_t real_gfn;
188 unsigned long host_addr;
189
13d22b6a
AK
190 pt_access &= pte_access;
191 --walker->level;
192
42bf3f0a 193 index = PT_INDEX(addr, walker->level);
ac79c978 194
5fb07ddb 195 table_gfn = gpte_to_gfn(pte);
2329d46d
JR
196 offset = index * sizeof(pt_element_t);
197 pte_gpa = gfn_to_gpa(table_gfn) + offset;
42bf3f0a 198 walker->table_gfn[walker->level - 1] = table_gfn;
7819026e 199 walker->pte_gpa[walker->level - 1] = pte_gpa;
42bf3f0a 200
6e2ca7d1
TY
201 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
202 PFERR_USER_MASK|PFERR_WRITE_MASK);
134291bf
TY
203 if (unlikely(real_gfn == UNMAPPED_GVA))
204 goto error;
6e2ca7d1
TY
205 real_gfn = gpa_to_gfn(real_gfn);
206
207 host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
134291bf
TY
208 if (unlikely(kvm_is_error_hva(host_addr)))
209 goto error;
6e2ca7d1
TY
210
211 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
134291bf
TY
212 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
213 goto error;
8cbc7069 214 walker->ptep_user[walker->level - 1] = ptep_user;
a6085fba 215
07420171 216 trace_kvm_mmu_paging_element(pte, walker->level);
42bf3f0a 217
134291bf
TY
218 if (unlikely(!is_present_gpte(pte)))
219 goto error;
7993ba43 220
781e0743
AK
221 if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
222 walker->level))) {
134291bf
TY
223 errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
224 goto error;
f59c1d2d 225 }
82725b20 226
b514c30f 227 accessed_dirty &= pte;
97d64b78 228 pte_access = pt_access & gpte_access(vcpu, pte);
73b1087e 229
7819026e 230 walker->ptes[walker->level - 1] = pte;
6fd01b71 231 } while (!is_last_gpte(mmu, walker->level, pte));
42bf3f0a 232
71331a1d 233 if (unlikely(permission_fault(mmu, pte_access, access))) {
134291bf 234 errcode |= PFERR_PRESENT_MASK;
f59c1d2d 235 goto error;
134291bf 236 }
f59c1d2d 237
13d22b6a
AK
238 gfn = gpte_to_gfn_lvl(pte, walker->level);
239 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
240
241 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
242 gfn += pse36_gfn_delta(pte);
243
c5421519 244 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access);
13d22b6a
AK
245 if (real_gpa == UNMAPPED_GVA)
246 return 0;
247
248 walker->gfn = real_gpa >> PAGE_SHIFT;
249
8ea667f2
AK
250 if (!write_fault)
251 protect_clean_gpte(&pte_access, pte);
908e7d79
GN
252 else
253 /*
254 * On a write fault, fold the dirty bit into accessed_dirty by
255 * shifting it one place right.
256 */
257 accessed_dirty &= pte >> (PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT);
b514c30f
AK
258
259 if (unlikely(!accessed_dirty)) {
260 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
261 if (unlikely(ret < 0))
262 goto error;
263 else if (ret)
264 goto retry_walk;
265 }
42bf3f0a 266
fe135d2c
AK
267 walker->pt_access = pt_access;
268 walker->pte_access = pte_access;
269 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
518c5a05 270 __func__, (u64)pte, pte_access, pt_access);
7993ba43
AK
271 return 1;
272
f59c1d2d 273error:
134291bf 274 errcode |= write_fault | user_fault;
e57d4a35
YW
275 if (fetch_fault && (mmu->nx ||
276 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
134291bf 277 errcode |= PFERR_FETCH_MASK;
8df25a32 278
134291bf
TY
279 walker->fault.vector = PF_VECTOR;
280 walker->fault.error_code_valid = true;
281 walker->fault.error_code = errcode;
6389ee94
AK
282 walker->fault.address = addr;
283 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
8df25a32 284
8c28d031 285 trace_kvm_mmu_walker_error(walker->fault.error_code);
fe551881 286 return 0;
6aa8b732
AK
287}
288
1e301feb 289static int FNAME(walk_addr)(struct guest_walker *walker,
33770780 290 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
1e301feb
JR
291{
292 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
33770780 293 access);
1e301feb
JR
294}
295
6539e738
JR
296static int FNAME(walk_addr_nested)(struct guest_walker *walker,
297 struct kvm_vcpu *vcpu, gva_t addr,
33770780 298 u32 access)
6539e738
JR
299{
300 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
33770780 301 addr, access);
6539e738
JR
302}
303
bd6360cc
XG
304static bool
305FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
306 u64 *spte, pt_element_t gpte, bool no_dirty_log)
0028425f 307{
41074d07 308 unsigned pte_access;
bd6360cc 309 gfn_t gfn;
35149e21 310 pfn_t pfn;
0028425f 311
a052b42b 312 if (prefetch_invalid_gpte(vcpu, sp, spte, gpte))
bd6360cc 313 return false;
407c61c6 314
b8688d51 315 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
bd6360cc
XG
316
317 gfn = gpte_to_gfn(gpte);
3d34adec 318 pte_access = sp->role.access & gpte_access(vcpu, gpte);
8ea667f2 319 protect_clean_gpte(&pte_access, gpte);
bd6360cc
XG
320 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
321 no_dirty_log && (pte_access & ACC_WRITE_MASK));
81c52c56 322 if (is_error_pfn(pfn))
bd6360cc 323 return false;
0f53b5b1 324
1403283a 325 /*
bd6360cc
XG
326 * we call mmu_set_spte() with host_writable = true because
327 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
1403283a 328 */
f7616203
XG
329 mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL,
330 gfn, pfn, true, true);
bd6360cc
XG
331
332 return true;
333}
334
335static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
336 u64 *spte, const void *pte)
337{
338 pt_element_t gpte = *(const pt_element_t *)pte;
339
340 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
0028425f
AK
341}
342
39c8c672
AK
343static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
344 struct guest_walker *gw, int level)
345{
39c8c672 346 pt_element_t curr_pte;
189be38d
XG
347 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
348 u64 mask;
349 int r, index;
350
351 if (level == PT_PAGE_TABLE_LEVEL) {
352 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
353 base_gpa = pte_gpa & ~mask;
354 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
355
356 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
357 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
358 curr_pte = gw->prefetch_ptes[index];
359 } else
360 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
39c8c672 361 &curr_pte, sizeof(curr_pte));
189be38d 362
39c8c672
AK
363 return r || curr_pte != gw->ptes[level - 1];
364}
365
189be38d
XG
366static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
367 u64 *sptep)
957ed9ef
XG
368{
369 struct kvm_mmu_page *sp;
189be38d 370 pt_element_t *gptep = gw->prefetch_ptes;
957ed9ef 371 u64 *spte;
189be38d 372 int i;
957ed9ef
XG
373
374 sp = page_header(__pa(sptep));
375
376 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
377 return;
378
379 if (sp->role.direct)
380 return __direct_pte_prefetch(vcpu, sp, sptep);
381
382 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
957ed9ef
XG
383 spte = sp->spt + i;
384
385 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
957ed9ef
XG
386 if (spte == sptep)
387 continue;
388
c3707958 389 if (is_shadow_present_pte(*spte))
957ed9ef
XG
390 continue;
391
bd6360cc 392 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
957ed9ef 393 break;
957ed9ef
XG
394 }
395}
396
6aa8b732
AK
397/*
398 * Fetch a shadow pte for a specific level in the paging hierarchy.
d4878f24
XG
399 * If the guest tries to write a write-protected page, we need to
400 * emulate this operation, return 1 to indicate this case.
6aa8b732 401 */
d4878f24 402static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
e7a04c99 403 struct guest_walker *gw,
c2288505 404 int write_fault, int hlevel,
d4878f24 405 pfn_t pfn, bool map_writable, bool prefault)
6aa8b732 406{
5991b332 407 struct kvm_mmu_page *sp = NULL;
24157aaf 408 struct kvm_shadow_walk_iterator it;
d4878f24
XG
409 unsigned direct_access, access = gw->pt_access;
410 int top_level, emulate = 0;
abb9e0b8 411
b36c7a7c 412 direct_access = gw->pte_access;
84754cd8 413
5991b332
AK
414 top_level = vcpu->arch.mmu.root_level;
415 if (top_level == PT32E_ROOT_LEVEL)
416 top_level = PT32_ROOT_LEVEL;
417 /*
418 * Verify that the top-level gpte is still there. Since the page
419 * is a root page, it is either write protected (and cannot be
420 * changed from now on) or it is invalid (in which case, we don't
421 * really care if it changes underneath us after this point).
422 */
423 if (FNAME(gpte_changed)(vcpu, gw, top_level))
424 goto out_gpte_changed;
425
24157aaf
AK
426 for (shadow_walk_init(&it, vcpu, addr);
427 shadow_walk_okay(&it) && it.level > gw->level;
428 shadow_walk_next(&it)) {
0b3c9333
AK
429 gfn_t table_gfn;
430
a30f47cb 431 clear_sp_write_flooding_count(it.sptep);
24157aaf 432 drop_large_spte(vcpu, it.sptep);
ef0197e8 433
5991b332 434 sp = NULL;
24157aaf
AK
435 if (!is_shadow_present_pte(*it.sptep)) {
436 table_gfn = gw->table_gfn[it.level - 2];
437 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
438 false, access, it.sptep);
5991b332 439 }
0b3c9333
AK
440
441 /*
442 * Verify that the gpte in the page we've just write
443 * protected is still there.
444 */
24157aaf 445 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
0b3c9333 446 goto out_gpte_changed;
abb9e0b8 447
5991b332 448 if (sp)
24157aaf 449 link_shadow_page(it.sptep, sp);
e7a04c99 450 }
050e6499 451
0b3c9333 452 for (;
24157aaf
AK
453 shadow_walk_okay(&it) && it.level > hlevel;
454 shadow_walk_next(&it)) {
0b3c9333
AK
455 gfn_t direct_gfn;
456
a30f47cb 457 clear_sp_write_flooding_count(it.sptep);
24157aaf 458 validate_direct_spte(vcpu, it.sptep, direct_access);
0b3c9333 459
24157aaf 460 drop_large_spte(vcpu, it.sptep);
0b3c9333 461
24157aaf 462 if (is_shadow_present_pte(*it.sptep))
0b3c9333
AK
463 continue;
464
24157aaf 465 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
0b3c9333 466
24157aaf
AK
467 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
468 true, direct_access, it.sptep);
469 link_shadow_page(it.sptep, sp);
0b3c9333
AK
470 }
471
a30f47cb 472 clear_sp_write_flooding_count(it.sptep);
f7616203
XG
473 mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate,
474 it.level, gw->gfn, pfn, prefault, map_writable);
189be38d 475 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
0b3c9333 476
d4878f24 477 return emulate;
0b3c9333
AK
478
479out_gpte_changed:
5991b332 480 if (sp)
24157aaf 481 kvm_mmu_put_page(sp, it.sptep);
0b3c9333 482 kvm_release_pfn_clean(pfn);
d4878f24 483 return 0;
6aa8b732
AK
484}
485
7751babd
XG
486 /*
487 * To see whether the mapped gfn can write its page table in the current
488 * mapping.
489 *
490 * It is the helper function of FNAME(page_fault). When guest uses large page
491 * size to map the writable gfn which is used as current page table, we should
492 * force kvm to use small page size to map it because new shadow page will be
493 * created when kvm establishes shadow page table that stop kvm using large
494 * page size. Do it early can avoid unnecessary #PF and emulation.
495 *
93c05d3e
XG
496 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
497 * currently used as its page table.
498 *
7751babd
XG
499 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
500 * since the PDPT is always shadowed, that means, we can not use large page
501 * size to map the gfn which is used as PDPT.
502 */
503static bool
504FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
93c05d3e
XG
505 struct guest_walker *walker, int user_fault,
506 bool *write_fault_to_shadow_pgtable)
7751babd
XG
507{
508 int level;
509 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
93c05d3e 510 bool self_changed = false;
7751babd
XG
511
512 if (!(walker->pte_access & ACC_WRITE_MASK ||
513 (!is_write_protection(vcpu) && !user_fault)))
514 return false;
515
93c05d3e
XG
516 for (level = walker->level; level <= walker->max_level; level++) {
517 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
518
519 self_changed |= !(gfn & mask);
520 *write_fault_to_shadow_pgtable |= !gfn;
521 }
7751babd 522
93c05d3e 523 return self_changed;
7751babd
XG
524}
525
6aa8b732
AK
526/*
527 * Page fault handler. There are several causes for a page fault:
528 * - there is no shadow pte for the guest pte
529 * - write access through a shadow pte marked read only so that we can set
530 * the dirty bit
531 * - write access to a shadow pte marked read only so we can update the page
532 * dirty bitmap, when userspace requests it
533 * - mmio access; in this case we will never install a present shadow pte
534 * - normal guest page fault due to the guest pte marked not present, not
535 * writable, or not executable
536 *
e2dec939
AK
537 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
538 * a negative value on error.
6aa8b732 539 */
56028d08 540static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
78b2c54a 541 bool prefault)
6aa8b732
AK
542{
543 int write_fault = error_code & PFERR_WRITE_MASK;
6aa8b732
AK
544 int user_fault = error_code & PFERR_USER_MASK;
545 struct guest_walker walker;
e2dec939 546 int r;
35149e21 547 pfn_t pfn;
7e4e4056 548 int level = PT_PAGE_TABLE_LEVEL;
936a5fe6 549 int force_pt_level;
e930bffe 550 unsigned long mmu_seq;
93c05d3e 551 bool map_writable, is_self_change_mapping;
6aa8b732 552
b8688d51 553 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
714b93da 554
ce88decf
XG
555 if (unlikely(error_code & PFERR_RSVD_MASK))
556 return handle_mmio_page_fault(vcpu, addr, error_code,
557 mmu_is_nested(vcpu));
558
e2dec939
AK
559 r = mmu_topup_memory_caches(vcpu);
560 if (r)
561 return r;
714b93da 562
6aa8b732 563 /*
a8b876b1 564 * Look up the guest pte for the faulting address.
6aa8b732 565 */
33770780 566 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
6aa8b732
AK
567
568 /*
569 * The page is not mapped by the guest. Let the guest handle it.
570 */
7993ba43 571 if (!r) {
b8688d51 572 pgprintk("%s: guest page fault\n", __func__);
a30f47cb 573 if (!prefault)
fb67e14f 574 inject_page_fault(vcpu, &walker.fault);
a30f47cb 575
6aa8b732
AK
576 return 0;
577 }
578
93c05d3e
XG
579 vcpu->arch.write_fault_to_shadow_pgtable = false;
580
581 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
582 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
583
936a5fe6 584 if (walker.level >= PT_DIRECTORY_LEVEL)
7751babd 585 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn)
93c05d3e 586 || is_self_change_mapping;
936a5fe6
AA
587 else
588 force_pt_level = 1;
589 if (!force_pt_level) {
7e4e4056
JR
590 level = min(walker.level, mapping_level(vcpu, walker.gfn));
591 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
05da4558 592 }
7e4e4056 593
e930bffe 594 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 595 smp_rmb();
af585b92 596
78b2c54a 597 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
612819c3 598 &map_writable))
af585b92 599 return 0;
d7824fff 600
d7c55201
XG
601 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
602 walker.gfn, pfn, walker.pte_access, &r))
603 return r;
604
c2288505
XG
605 /*
606 * Do not change pte_access if the pfn is a mmio page, otherwise
607 * we will cache the incorrect access into mmio spte.
608 */
609 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
610 !is_write_protection(vcpu) && !user_fault &&
611 !is_noslot_pfn(pfn)) {
612 walker.pte_access |= ACC_WRITE_MASK;
613 walker.pte_access &= ~ACC_USER_MASK;
614
615 /*
616 * If we converted a user page to a kernel page,
617 * so that the kernel can write to it when cr0.wp=0,
618 * then we should prevent the kernel from executing it
619 * if SMEP is enabled.
620 */
621 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
622 walker.pte_access &= ~ACC_EXEC_MASK;
623 }
624
aaee2c94 625 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 626 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 627 goto out_unlock;
bc32ce21 628
0375f7fa 629 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
450e0b41 630 make_mmu_pages_available(vcpu);
936a5fe6
AA
631 if (!force_pt_level)
632 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
c2288505 633 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
d4878f24 634 level, pfn, map_writable, prefault);
1165f5fe 635 ++vcpu->stat.pf_fixed;
0375f7fa 636 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
aaee2c94 637 spin_unlock(&vcpu->kvm->mmu_lock);
6aa8b732 638
d4878f24 639 return r;
e930bffe
AA
640
641out_unlock:
642 spin_unlock(&vcpu->kvm->mmu_lock);
643 kvm_release_pfn_clean(pfn);
644 return 0;
6aa8b732
AK
645}
646
505aef8f
XG
647static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
648{
649 int offset = 0;
650
f71fa31f 651 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
505aef8f
XG
652
653 if (PTTYPE == 32)
654 offset = sp->role.quadrant << PT64_LEVEL_BITS;
655
656 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
657}
658
a461930b 659static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
a7052897 660{
a461930b 661 struct kvm_shadow_walk_iterator iterator;
f78978aa 662 struct kvm_mmu_page *sp;
a461930b
AK
663 int level;
664 u64 *sptep;
665
bebb106a
XG
666 vcpu_clear_mmio_info(vcpu, gva);
667
f57f2ef5
XG
668 /*
669 * No need to check return value here, rmap_can_add() can
670 * help us to skip pte prefetch later.
671 */
672 mmu_topup_memory_caches(vcpu);
a7052897 673
f57f2ef5 674 spin_lock(&vcpu->kvm->mmu_lock);
a461930b
AK
675 for_each_shadow_entry(vcpu, gva, iterator) {
676 level = iterator.level;
677 sptep = iterator.sptep;
ad218f85 678
f78978aa 679 sp = page_header(__pa(sptep));
884a0ff0 680 if (is_last_spte(*sptep, level)) {
f57f2ef5
XG
681 pt_element_t gpte;
682 gpa_t pte_gpa;
683
f78978aa
XG
684 if (!sp->unsync)
685 break;
686
505aef8f 687 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
08e850c6 688 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
a461930b 689
505aef8f
XG
690 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
691 kvm_flush_remote_tlbs(vcpu->kvm);
f57f2ef5
XG
692
693 if (!rmap_can_add(vcpu))
694 break;
695
696 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
697 sizeof(pt_element_t)))
698 break;
699
700 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
87917239 701 }
a7052897 702
f78978aa 703 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
a461930b
AK
704 break;
705 }
ad218f85 706 spin_unlock(&vcpu->kvm->mmu_lock);
a7052897
MT
707}
708
1871c602 709static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
ab9ae313 710 struct x86_exception *exception)
6aa8b732
AK
711{
712 struct guest_walker walker;
e119d117
AK
713 gpa_t gpa = UNMAPPED_GVA;
714 int r;
6aa8b732 715
33770780 716 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
6aa8b732 717
e119d117 718 if (r) {
1755fbcc 719 gpa = gfn_to_gpa(walker.gfn);
e119d117 720 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
721 } else if (exception)
722 *exception = walker.fault;
6aa8b732
AK
723
724 return gpa;
725}
726
6539e738 727static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
728 u32 access,
729 struct x86_exception *exception)
6539e738
JR
730{
731 struct guest_walker walker;
732 gpa_t gpa = UNMAPPED_GVA;
733 int r;
734
33770780 735 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
6539e738
JR
736
737 if (r) {
738 gpa = gfn_to_gpa(walker.gfn);
739 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
740 } else if (exception)
741 *exception = walker.fault;
6539e738
JR
742
743 return gpa;
744}
745
e8bc217a
MT
746/*
747 * Using the cached information from sp->gfns is safe because:
748 * - The spte has a reference to the struct page, so the pfn for a given gfn
749 * can't change unless all sptes pointing to it are nuked first.
a4ee1ca4
XG
750 *
751 * Note:
752 * We should flush all tlbs if spte is dropped even though guest is
753 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
754 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
755 * used by guest then tlbs are not flushed, so guest is allowed to access the
756 * freed pages.
757 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
e8bc217a 758 */
a4a8e6f7 759static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
e8bc217a 760{
505aef8f 761 int i, nr_present = 0;
9bdbba13 762 bool host_writable;
51fb60d8 763 gpa_t first_pte_gpa;
e8bc217a 764
2032a93d
LJ
765 /* direct kvm_mmu_page can not be unsync. */
766 BUG_ON(sp->role.direct);
767
505aef8f 768 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
51fb60d8 769
e8bc217a
MT
770 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
771 unsigned pte_access;
772 pt_element_t gpte;
773 gpa_t pte_gpa;
f55c3f41 774 gfn_t gfn;
e8bc217a 775
ce88decf 776 if (!sp->spt[i])
e8bc217a
MT
777 continue;
778
51fb60d8 779 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
e8bc217a
MT
780
781 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
782 sizeof(pt_element_t)))
783 return -EINVAL;
784
a052b42b 785 if (prefetch_invalid_gpte(vcpu, sp, &sp->spt[i], gpte)) {
a4ee1ca4 786 vcpu->kvm->tlbs_dirty++;
407c61c6
XG
787 continue;
788 }
789
ce88decf
XG
790 gfn = gpte_to_gfn(gpte);
791 pte_access = sp->role.access;
3d34adec 792 pte_access &= gpte_access(vcpu, gpte);
8ea667f2 793 protect_clean_gpte(&pte_access, gpte);
ce88decf 794
f2fd125d
XG
795 if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access,
796 &nr_present))
ce88decf
XG
797 continue;
798
407c61c6 799 if (gfn != sp->gfns[i]) {
c3707958 800 drop_spte(vcpu->kvm, &sp->spt[i]);
a4ee1ca4 801 vcpu->kvm->tlbs_dirty++;
e8bc217a
MT
802 continue;
803 }
804
805 nr_present++;
ce88decf 806
f8e453b0
XG
807 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
808
c2288505 809 set_spte(vcpu, &sp->spt[i], pte_access,
640d9b0d 810 PT_PAGE_TABLE_LEVEL, gfn,
1403283a 811 spte_to_pfn(sp->spt[i]), true, false,
9bdbba13 812 host_writable);
e8bc217a
MT
813 }
814
815 return !nr_present;
816}
817
6aa8b732
AK
818#undef pt_element_t
819#undef guest_walker
820#undef FNAME
821#undef PT_BASE_ADDR_MASK
822#undef PT_INDEX
e04da980
JR
823#undef PT_LVL_ADDR_MASK
824#undef PT_LVL_OFFSET_MASK
c7addb90 825#undef PT_LEVEL_BITS
cea0f0e7 826#undef PT_MAX_FULL_LEVELS
5fb07ddb 827#undef gpte_to_gfn
e04da980 828#undef gpte_to_gfn_lvl
b3e4e63f 829#undef CMPXCHG