]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/bio.c
blkcg: associate writeback bios with a blkg
[mirror_ubuntu-jammy-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
67b42d0b 35#include "blk-rq-qos.h"
0bfc2455 36
392ddc32
JA
37/*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41#define BIO_INLINE_VECS 4
42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
bd5c4fac 48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
f4f8154a 58struct bio_set fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
119 if (!slab)
120 goto out_unlock;
121
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
d6c02a9b 161 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 165{
ed996a52
CH
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 171
ed996a52 172 if (idx == BVEC_POOL_MAX) {
9f060e22 173 mempool_free(bv, pool);
ed996a52 174 } else {
bb799ca0
JA
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179}
180
9f060e22
KO
181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
1da177e4
LT
183{
184 struct bio_vec *bvl;
1da177e4 185
7ff9345f
JA
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
ed996a52 216 if (*idx == BVEC_POOL_MAX) {
7ff9345f 217fallback:
9f060e22 218 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
0a0d96b0 227 */
7ff9345f 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 229
0a0d96b0 230 /*
d0164adc 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 232 * is set, retry with the 1-entry mempool
0a0d96b0 233 */
7ff9345f 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 236 *idx = BVEC_POOL_MAX;
7ff9345f
JA
237 goto fallback;
238 }
239 }
240
ed996a52 241 (*idx)++;
1da177e4
LT
242 return bvl;
243}
244
9ae3b3f5 245void bio_uninit(struct bio *bio)
1da177e4 246{
4254bba1 247 bio_disassociate_task(bio);
4254bba1 248}
9ae3b3f5 249EXPORT_SYMBOL(bio_uninit);
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
9ae3b3f5 256 bio_uninit(bio);
4254bba1
KO
257
258 if (bs) {
8aa6ba2f 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
8aa6ba2f 267 mempool_free(p, &bs->bio_pool);
4254bba1
KO
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
9ae3b3f5
JA
274/*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
3a83f467
ML
279void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
1da177e4 281{
2b94de55 282 memset(bio, 0, sizeof(*bio));
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
9ae3b3f5 305 bio_uninit(bio);
f44b48c7
KO
306
307 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 308 bio->bi_flags = flags;
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
4e4cbee9
CH
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902
RD
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
df2cb6da
KO
349static void bio_alloc_rescue(struct work_struct *work)
350{
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364}
365
366static void punt_bios_to_rescuer(struct bio_set *bs)
367{
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
47e0fb46
N
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
df2cb6da
KO
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
f5fe1b51 387 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 389 current->bio_list[0] = nopunt;
df2cb6da 390
f5fe1b51
N
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
df2cb6da
KO
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401}
402
1da177e4
LT
403/**
404 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 405 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 406 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 407 * @bs: the bio_set to allocate from.
1da177e4
LT
408 *
409 * Description:
3f86a82a
KO
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
d0164adc
MG
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 419 *
df2cb6da
KO
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
3f86a82a
KO
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
7a88fa19
DC
438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
1da177e4 440{
df2cb6da 441 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
442 unsigned front_pad;
443 unsigned inline_vecs;
34053979 444 struct bio_vec *bvl = NULL;
451a9ebf
TH
445 struct bio *bio;
446 void *p;
447
3f86a82a
KO
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
d8f429e1 458 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
d8f429e1 461 return NULL;
df2cb6da
KO
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
d0164adc
MG
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
df2cb6da
KO
481 */
482
f5fe1b51
N
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
d0164adc 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 488
8aa6ba2f 489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
8aa6ba2f 493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
494 }
495
3f86a82a
KO
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
451a9ebf
TH
500 if (unlikely(!p))
501 return NULL;
1da177e4 502
3f86a82a 503 bio = p + front_pad;
3a83f467 504 bio_init(bio, NULL, 0);
34053979 505
3f86a82a 506 if (nr_iovecs > inline_vecs) {
ed996a52
CH
507 unsigned long idx = 0;
508
8aa6ba2f 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
8aa6ba2f 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
514 }
515
34053979
IM
516 if (unlikely(!bvl))
517 goto err_free;
a38352e0 518
ed996a52 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
1da177e4 522 }
3f86a82a
KO
523
524 bio->bi_pool = bs;
34053979 525 bio->bi_max_vecs = nr_iovecs;
34053979 526 bio->bi_io_vec = bvl;
1da177e4 527 return bio;
34053979
IM
528
529err_free:
8aa6ba2f 530 mempool_free(p, &bs->bio_pool);
34053979 531 return NULL;
1da177e4 532}
a112a71d 533EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 534
38a72dac 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
536{
537 unsigned long flags;
7988613b
KO
538 struct bio_vec bv;
539 struct bvec_iter iter;
1da177e4 540
38a72dac 541 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
1da177e4
LT
545 bvec_kunmap_irq(data, &flags);
546 }
547}
38a72dac 548EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
549
550/**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
557 **/
558void bio_put(struct bio *bio)
559{
dac56212 560 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 561 bio_free(bio);
dac56212
JA
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
1da177e4 571}
a112a71d 572EXPORT_SYMBOL(bio_put);
1da177e4 573
165125e1 574inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
575{
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580}
a112a71d 581EXPORT_SYMBOL(bio_phys_segments);
1da177e4 582
59d276fe
KO
583/**
584 * __bio_clone_fast - clone a bio that shares the original bio's biovec
585 * @bio: destination bio
586 * @bio_src: bio to clone
587 *
588 * Clone a &bio. Caller will own the returned bio, but not
589 * the actual data it points to. Reference count of returned
590 * bio will be one.
591 *
592 * Caller must ensure that @bio_src is not freed before @bio.
593 */
594void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595{
ed996a52 596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
597
598 /*
74d46992 599 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
600 * so we don't set nor calculate new physical/hw segment counts here
601 */
74d46992 602 bio->bi_disk = bio_src->bi_disk;
62530ed8 603 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 604 bio_set_flag(bio, BIO_CLONED);
111be883
SL
605 if (bio_flagged(bio_src, BIO_THROTTLED))
606 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 607 bio->bi_opf = bio_src->bi_opf;
ca474b73 608 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 609 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
610 bio->bi_iter = bio_src->bi_iter;
611 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 612
b5f2954d 613 bio_clone_blkcg_association(bio, bio_src);
e439bedf 614 blkcg_bio_issue_init(bio);
59d276fe
KO
615}
616EXPORT_SYMBOL(__bio_clone_fast);
617
618/**
619 * bio_clone_fast - clone a bio that shares the original bio's biovec
620 * @bio: bio to clone
621 * @gfp_mask: allocation priority
622 * @bs: bio_set to allocate from
623 *
624 * Like __bio_clone_fast, only also allocates the returned bio
625 */
626struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
627{
628 struct bio *b;
629
630 b = bio_alloc_bioset(gfp_mask, 0, bs);
631 if (!b)
632 return NULL;
633
634 __bio_clone_fast(b, bio);
635
636 if (bio_integrity(bio)) {
637 int ret;
638
639 ret = bio_integrity_clone(b, bio, gfp_mask);
640
641 if (ret < 0) {
642 bio_put(b);
643 return NULL;
644 }
645 }
646
647 return b;
648}
649EXPORT_SYMBOL(bio_clone_fast);
650
1da177e4 651/**
c66a14d0
KO
652 * bio_add_pc_page - attempt to add page to bio
653 * @q: the target queue
654 * @bio: destination bio
655 * @page: page to add
656 * @len: vec entry length
657 * @offset: vec entry offset
1da177e4 658 *
c66a14d0
KO
659 * Attempt to add a page to the bio_vec maplist. This can fail for a
660 * number of reasons, such as the bio being full or target block device
661 * limitations. The target block device must allow bio's up to PAGE_SIZE,
662 * so it is always possible to add a single page to an empty bio.
663 *
664 * This should only be used by REQ_PC bios.
1da177e4 665 */
c66a14d0
KO
666int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
667 *page, unsigned int len, unsigned int offset)
1da177e4
LT
668{
669 int retried_segments = 0;
670 struct bio_vec *bvec;
671
672 /*
673 * cloned bio must not modify vec list
674 */
675 if (unlikely(bio_flagged(bio, BIO_CLONED)))
676 return 0;
677
c66a14d0 678 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
679 return 0;
680
80cfd548
JA
681 /*
682 * For filesystems with a blocksize smaller than the pagesize
683 * we will often be called with the same page as last time and
684 * a consecutive offset. Optimize this special case.
685 */
686 if (bio->bi_vcnt > 0) {
687 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
688
689 if (page == prev->bv_page &&
690 offset == prev->bv_offset + prev->bv_len) {
691 prev->bv_len += len;
fcbf6a08 692 bio->bi_iter.bi_size += len;
80cfd548
JA
693 goto done;
694 }
66cb45aa
JA
695
696 /*
697 * If the queue doesn't support SG gaps and adding this
698 * offset would create a gap, disallow it.
699 */
03100aad 700 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 701 return 0;
80cfd548
JA
702 }
703
0aa69fd3 704 if (bio_full(bio))
1da177e4
LT
705 return 0;
706
707 /*
fcbf6a08
ML
708 * setup the new entry, we might clear it again later if we
709 * cannot add the page
710 */
711 bvec = &bio->bi_io_vec[bio->bi_vcnt];
712 bvec->bv_page = page;
713 bvec->bv_len = len;
714 bvec->bv_offset = offset;
715 bio->bi_vcnt++;
716 bio->bi_phys_segments++;
717 bio->bi_iter.bi_size += len;
718
719 /*
720 * Perform a recount if the number of segments is greater
721 * than queue_max_segments(q).
1da177e4
LT
722 */
723
fcbf6a08 724 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
725
726 if (retried_segments)
fcbf6a08 727 goto failed;
1da177e4
LT
728
729 retried_segments = 1;
730 blk_recount_segments(q, bio);
731 }
732
1da177e4 733 /* If we may be able to merge these biovecs, force a recount */
3dccdae5 734 if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec))
b7c44ed9 735 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 736
80cfd548 737 done:
1da177e4 738 return len;
fcbf6a08
ML
739
740 failed:
741 bvec->bv_page = NULL;
742 bvec->bv_len = 0;
743 bvec->bv_offset = 0;
744 bio->bi_vcnt--;
745 bio->bi_iter.bi_size -= len;
746 blk_recount_segments(q, bio);
747 return 0;
1da177e4 748}
a112a71d 749EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 750
1da177e4 751/**
0aa69fd3
CH
752 * __bio_try_merge_page - try appending data to an existing bvec.
753 * @bio: destination bio
754 * @page: page to add
755 * @len: length of the data to add
756 * @off: offset of the data in @page
1da177e4 757 *
0aa69fd3
CH
758 * Try to add the data at @page + @off to the last bvec of @bio. This is a
759 * a useful optimisation for file systems with a block size smaller than the
760 * page size.
761 *
762 * Return %true on success or %false on failure.
1da177e4 763 */
0aa69fd3
CH
764bool __bio_try_merge_page(struct bio *bio, struct page *page,
765 unsigned int len, unsigned int off)
1da177e4 766{
c66a14d0 767 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 768 return false;
762380ad 769
c66a14d0 770 if (bio->bi_vcnt > 0) {
0aa69fd3 771 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 772
0aa69fd3 773 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
c66a14d0 774 bv->bv_len += len;
0aa69fd3
CH
775 bio->bi_iter.bi_size += len;
776 return true;
c66a14d0
KO
777 }
778 }
0aa69fd3
CH
779 return false;
780}
781EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 782
0aa69fd3
CH
783/**
784 * __bio_add_page - add page to a bio in a new segment
785 * @bio: destination bio
786 * @page: page to add
787 * @len: length of the data to add
788 * @off: offset of the data in @page
789 *
790 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
791 * that @bio has space for another bvec.
792 */
793void __bio_add_page(struct bio *bio, struct page *page,
794 unsigned int len, unsigned int off)
795{
796 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 797
0aa69fd3
CH
798 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
799 WARN_ON_ONCE(bio_full(bio));
800
801 bv->bv_page = page;
802 bv->bv_offset = off;
803 bv->bv_len = len;
c66a14d0 804
c66a14d0 805 bio->bi_iter.bi_size += len;
0aa69fd3
CH
806 bio->bi_vcnt++;
807}
808EXPORT_SYMBOL_GPL(__bio_add_page);
809
810/**
811 * bio_add_page - attempt to add page to bio
812 * @bio: destination bio
813 * @page: page to add
814 * @len: vec entry length
815 * @offset: vec entry offset
816 *
817 * Attempt to add a page to the bio_vec maplist. This will only fail
818 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
819 */
820int bio_add_page(struct bio *bio, struct page *page,
821 unsigned int len, unsigned int offset)
822{
823 if (!__bio_try_merge_page(bio, page, len, offset)) {
824 if (bio_full(bio))
825 return 0;
826 __bio_add_page(bio, page, len, offset);
827 }
c66a14d0 828 return len;
1da177e4 829}
a112a71d 830EXPORT_SYMBOL(bio_add_page);
1da177e4 831
576ed913
CH
832#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
833
2cefe4db 834/**
17d51b10 835 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
836 * @bio: bio to add pages to
837 * @iter: iov iterator describing the region to be mapped
838 *
17d51b10 839 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 840 * pages will have to be released using put_page() when done.
17d51b10
MW
841 * For multi-segment *iter, this function only adds pages from the
842 * the next non-empty segment of the iov iterator.
2cefe4db 843 */
17d51b10 844static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 845{
576ed913
CH
846 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
847 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
848 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
849 struct page **pages = (struct page **)bv;
576ed913
CH
850 ssize_t size, left;
851 unsigned len, i;
b403ea24 852 size_t offset;
576ed913
CH
853
854 /*
855 * Move page array up in the allocated memory for the bio vecs as far as
856 * possible so that we can start filling biovecs from the beginning
857 * without overwriting the temporary page array.
858 */
859 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
860 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
861
862 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
863 if (unlikely(size <= 0))
864 return size ? size : -EFAULT;
2cefe4db 865
576ed913
CH
866 for (left = size, i = 0; left > 0; left -= len, i++) {
867 struct page *page = pages[i];
2cefe4db 868
576ed913
CH
869 len = min_t(size_t, PAGE_SIZE - offset, left);
870 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
871 return -EINVAL;
872 offset = 0;
2cefe4db
KO
873 }
874
2cefe4db
KO
875 iov_iter_advance(iter, size);
876 return 0;
877}
17d51b10
MW
878
879/**
880 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
881 * @bio: bio to add pages to
882 * @iter: iov iterator describing the region to be mapped
883 *
884 * Pins pages from *iter and appends them to @bio's bvec array. The
885 * pages will have to be released using put_page() when done.
886 * The function tries, but does not guarantee, to pin as many pages as
887 * fit into the bio, or are requested in *iter, whatever is smaller.
888 * If MM encounters an error pinning the requested pages, it stops.
889 * Error is returned only if 0 pages could be pinned.
890 */
891int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
892{
893 unsigned short orig_vcnt = bio->bi_vcnt;
894
895 do {
896 int ret = __bio_iov_iter_get_pages(bio, iter);
897
898 if (unlikely(ret))
899 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
900
901 } while (iov_iter_count(iter) && !bio_full(bio));
902
903 return 0;
904}
2cefe4db
KO
905EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
906
4246a0b6 907static void submit_bio_wait_endio(struct bio *bio)
9e882242 908{
65e53aab 909 complete(bio->bi_private);
9e882242
KO
910}
911
912/**
913 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
914 * @bio: The &struct bio which describes the I/O
915 *
916 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
917 * bio_endio() on failure.
3d289d68
JK
918 *
919 * WARNING: Unlike to how submit_bio() is usually used, this function does not
920 * result in bio reference to be consumed. The caller must drop the reference
921 * on his own.
9e882242 922 */
4e49ea4a 923int submit_bio_wait(struct bio *bio)
9e882242 924{
e319e1fb 925 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 926
65e53aab 927 bio->bi_private = &done;
9e882242 928 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 929 bio->bi_opf |= REQ_SYNC;
4e49ea4a 930 submit_bio(bio);
65e53aab 931 wait_for_completion_io(&done);
9e882242 932
65e53aab 933 return blk_status_to_errno(bio->bi_status);
9e882242
KO
934}
935EXPORT_SYMBOL(submit_bio_wait);
936
054bdf64
KO
937/**
938 * bio_advance - increment/complete a bio by some number of bytes
939 * @bio: bio to advance
940 * @bytes: number of bytes to complete
941 *
942 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
943 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
944 * be updated on the last bvec as well.
945 *
946 * @bio will then represent the remaining, uncompleted portion of the io.
947 */
948void bio_advance(struct bio *bio, unsigned bytes)
949{
950 if (bio_integrity(bio))
951 bio_integrity_advance(bio, bytes);
952
4550dd6c 953 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
954}
955EXPORT_SYMBOL(bio_advance);
956
45db54d5
KO
957void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
958 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 959{
1cb9dda4 960 struct bio_vec src_bv, dst_bv;
16ac3d63 961 void *src_p, *dst_p;
1cb9dda4 962 unsigned bytes;
16ac3d63 963
45db54d5
KO
964 while (src_iter->bi_size && dst_iter->bi_size) {
965 src_bv = bio_iter_iovec(src, *src_iter);
966 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
967
968 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 969
1cb9dda4
KO
970 src_p = kmap_atomic(src_bv.bv_page);
971 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 972
1cb9dda4
KO
973 memcpy(dst_p + dst_bv.bv_offset,
974 src_p + src_bv.bv_offset,
16ac3d63
KO
975 bytes);
976
977 kunmap_atomic(dst_p);
978 kunmap_atomic(src_p);
979
6e6e811d
KO
980 flush_dcache_page(dst_bv.bv_page);
981
45db54d5
KO
982 bio_advance_iter(src, src_iter, bytes);
983 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
984 }
985}
38a72dac
KO
986EXPORT_SYMBOL(bio_copy_data_iter);
987
988/**
45db54d5
KO
989 * bio_copy_data - copy contents of data buffers from one bio to another
990 * @src: source bio
991 * @dst: destination bio
38a72dac
KO
992 *
993 * Stops when it reaches the end of either @src or @dst - that is, copies
994 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
995 */
996void bio_copy_data(struct bio *dst, struct bio *src)
997{
45db54d5
KO
998 struct bvec_iter src_iter = src->bi_iter;
999 struct bvec_iter dst_iter = dst->bi_iter;
1000
1001 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1002}
16ac3d63
KO
1003EXPORT_SYMBOL(bio_copy_data);
1004
45db54d5
KO
1005/**
1006 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1007 * another
1008 * @src: source bio list
1009 * @dst: destination bio list
1010 *
1011 * Stops when it reaches the end of either the @src list or @dst list - that is,
1012 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1013 * bios).
1014 */
1015void bio_list_copy_data(struct bio *dst, struct bio *src)
1016{
1017 struct bvec_iter src_iter = src->bi_iter;
1018 struct bvec_iter dst_iter = dst->bi_iter;
1019
1020 while (1) {
1021 if (!src_iter.bi_size) {
1022 src = src->bi_next;
1023 if (!src)
1024 break;
1025
1026 src_iter = src->bi_iter;
1027 }
1028
1029 if (!dst_iter.bi_size) {
1030 dst = dst->bi_next;
1031 if (!dst)
1032 break;
1033
1034 dst_iter = dst->bi_iter;
1035 }
1036
1037 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1038 }
1039}
1040EXPORT_SYMBOL(bio_list_copy_data);
1041
1da177e4 1042struct bio_map_data {
152e283f 1043 int is_our_pages;
26e49cfc
KO
1044 struct iov_iter iter;
1045 struct iovec iov[];
1da177e4
LT
1046};
1047
0e5b935d 1048static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1049 gfp_t gfp_mask)
1da177e4 1050{
0e5b935d
AV
1051 struct bio_map_data *bmd;
1052 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1053 return NULL;
1da177e4 1054
0e5b935d
AV
1055 bmd = kmalloc(sizeof(struct bio_map_data) +
1056 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1057 if (!bmd)
1058 return NULL;
1059 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1060 bmd->iter = *data;
1061 bmd->iter.iov = bmd->iov;
1062 return bmd;
1da177e4
LT
1063}
1064
9124d3fe
DP
1065/**
1066 * bio_copy_from_iter - copy all pages from iov_iter to bio
1067 * @bio: The &struct bio which describes the I/O as destination
1068 * @iter: iov_iter as source
1069 *
1070 * Copy all pages from iov_iter to bio.
1071 * Returns 0 on success, or error on failure.
1072 */
98a09d61 1073static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1074{
9124d3fe 1075 int i;
c5dec1c3 1076 struct bio_vec *bvec;
c5dec1c3 1077
d74c6d51 1078 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1079 ssize_t ret;
c5dec1c3 1080
9124d3fe
DP
1081 ret = copy_page_from_iter(bvec->bv_page,
1082 bvec->bv_offset,
1083 bvec->bv_len,
98a09d61 1084 iter);
9124d3fe 1085
98a09d61 1086 if (!iov_iter_count(iter))
9124d3fe
DP
1087 break;
1088
1089 if (ret < bvec->bv_len)
1090 return -EFAULT;
c5dec1c3
FT
1091 }
1092
9124d3fe
DP
1093 return 0;
1094}
1095
1096/**
1097 * bio_copy_to_iter - copy all pages from bio to iov_iter
1098 * @bio: The &struct bio which describes the I/O as source
1099 * @iter: iov_iter as destination
1100 *
1101 * Copy all pages from bio to iov_iter.
1102 * Returns 0 on success, or error on failure.
1103 */
1104static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1105{
1106 int i;
1107 struct bio_vec *bvec;
1108
1109 bio_for_each_segment_all(bvec, bio, i) {
1110 ssize_t ret;
1111
1112 ret = copy_page_to_iter(bvec->bv_page,
1113 bvec->bv_offset,
1114 bvec->bv_len,
1115 &iter);
1116
1117 if (!iov_iter_count(&iter))
1118 break;
1119
1120 if (ret < bvec->bv_len)
1121 return -EFAULT;
1122 }
1123
1124 return 0;
c5dec1c3
FT
1125}
1126
491221f8 1127void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1128{
1129 struct bio_vec *bvec;
1130 int i;
1131
1132 bio_for_each_segment_all(bvec, bio, i)
1133 __free_page(bvec->bv_page);
1134}
491221f8 1135EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1136
1da177e4
LT
1137/**
1138 * bio_uncopy_user - finish previously mapped bio
1139 * @bio: bio being terminated
1140 *
ddad8dd0 1141 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1142 * to user space in case of a read.
1143 */
1144int bio_uncopy_user(struct bio *bio)
1145{
1146 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1147 int ret = 0;
1da177e4 1148
35dc2483
RD
1149 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1150 /*
1151 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1152 * don't copy into a random user address space, just free
1153 * and return -EINTR so user space doesn't expect any data.
35dc2483 1154 */
2d99b55d
HR
1155 if (!current->mm)
1156 ret = -EINTR;
1157 else if (bio_data_dir(bio) == READ)
9124d3fe 1158 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1159 if (bmd->is_our_pages)
1160 bio_free_pages(bio);
35dc2483 1161 }
c8db4448 1162 kfree(bmd);
1da177e4
LT
1163 bio_put(bio);
1164 return ret;
1165}
1166
1167/**
c5dec1c3 1168 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1169 * @q: destination block queue
1170 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1171 * @iter: iovec iterator
1172 * @gfp_mask: memory allocation flags
1da177e4
LT
1173 *
1174 * Prepares and returns a bio for indirect user io, bouncing data
1175 * to/from kernel pages as necessary. Must be paired with
1176 * call bio_uncopy_user() on io completion.
1177 */
152e283f
FT
1178struct bio *bio_copy_user_iov(struct request_queue *q,
1179 struct rq_map_data *map_data,
e81cef5d 1180 struct iov_iter *iter,
26e49cfc 1181 gfp_t gfp_mask)
1da177e4 1182{
1da177e4 1183 struct bio_map_data *bmd;
1da177e4
LT
1184 struct page *page;
1185 struct bio *bio;
d16d44eb
AV
1186 int i = 0, ret;
1187 int nr_pages;
26e49cfc 1188 unsigned int len = iter->count;
bd5cecea 1189 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1190
0e5b935d 1191 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1192 if (!bmd)
1193 return ERR_PTR(-ENOMEM);
1194
26e49cfc
KO
1195 /*
1196 * We need to do a deep copy of the iov_iter including the iovecs.
1197 * The caller provided iov might point to an on-stack or otherwise
1198 * shortlived one.
1199 */
1200 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1201
d16d44eb
AV
1202 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1203 if (nr_pages > BIO_MAX_PAGES)
1204 nr_pages = BIO_MAX_PAGES;
26e49cfc 1205
1da177e4 1206 ret = -ENOMEM;
a9e9dc24 1207 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1208 if (!bio)
1209 goto out_bmd;
1210
1da177e4 1211 ret = 0;
56c451f4
FT
1212
1213 if (map_data) {
e623ddb4 1214 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1215 i = map_data->offset / PAGE_SIZE;
1216 }
1da177e4 1217 while (len) {
e623ddb4 1218 unsigned int bytes = PAGE_SIZE;
1da177e4 1219
56c451f4
FT
1220 bytes -= offset;
1221
1da177e4
LT
1222 if (bytes > len)
1223 bytes = len;
1224
152e283f 1225 if (map_data) {
e623ddb4 1226 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1227 ret = -ENOMEM;
1228 break;
1229 }
e623ddb4
FT
1230
1231 page = map_data->pages[i / nr_pages];
1232 page += (i % nr_pages);
1233
1234 i++;
1235 } else {
152e283f 1236 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1237 if (!page) {
1238 ret = -ENOMEM;
1239 break;
1240 }
1da177e4
LT
1241 }
1242
56c451f4 1243 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1244 break;
1da177e4
LT
1245
1246 len -= bytes;
56c451f4 1247 offset = 0;
1da177e4
LT
1248 }
1249
1250 if (ret)
1251 goto cleanup;
1252
2884d0be
AV
1253 if (map_data)
1254 map_data->offset += bio->bi_iter.bi_size;
1255
1da177e4
LT
1256 /*
1257 * success
1258 */
00e23707 1259 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1260 (map_data && map_data->from_user)) {
98a09d61 1261 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1262 if (ret)
1263 goto cleanup;
98a09d61 1264 } else {
f3587d76 1265 zero_fill_bio(bio);
98a09d61 1266 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1267 }
1268
26e49cfc 1269 bio->bi_private = bmd;
2884d0be
AV
1270 if (map_data && map_data->null_mapped)
1271 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1272 return bio;
1273cleanup:
152e283f 1274 if (!map_data)
1dfa0f68 1275 bio_free_pages(bio);
1da177e4
LT
1276 bio_put(bio);
1277out_bmd:
c8db4448 1278 kfree(bmd);
1da177e4
LT
1279 return ERR_PTR(ret);
1280}
1281
37f19e57
CH
1282/**
1283 * bio_map_user_iov - map user iovec into bio
1284 * @q: the struct request_queue for the bio
1285 * @iter: iovec iterator
1286 * @gfp_mask: memory allocation flags
1287 *
1288 * Map the user space address into a bio suitable for io to a block
1289 * device. Returns an error pointer in case of error.
1290 */
1291struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1292 struct iov_iter *iter,
37f19e57 1293 gfp_t gfp_mask)
1da177e4 1294{
26e49cfc 1295 int j;
1da177e4 1296 struct bio *bio;
076098e5 1297 int ret;
2b04e8f6 1298 struct bio_vec *bvec;
1da177e4 1299
b282cc76 1300 if (!iov_iter_count(iter))
1da177e4
LT
1301 return ERR_PTR(-EINVAL);
1302
b282cc76 1303 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1304 if (!bio)
1305 return ERR_PTR(-ENOMEM);
1306
0a0f1513 1307 while (iov_iter_count(iter)) {
629e42bc 1308 struct page **pages;
076098e5
AV
1309 ssize_t bytes;
1310 size_t offs, added = 0;
1311 int npages;
1da177e4 1312
0a0f1513 1313 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1314 if (unlikely(bytes <= 0)) {
1315 ret = bytes ? bytes : -EFAULT;
f1970baf 1316 goto out_unmap;
99172157 1317 }
f1970baf 1318
076098e5 1319 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1320
98f0bc99
AV
1321 if (unlikely(offs & queue_dma_alignment(q))) {
1322 ret = -EINVAL;
1323 j = 0;
1324 } else {
1325 for (j = 0; j < npages; j++) {
1326 struct page *page = pages[j];
1327 unsigned int n = PAGE_SIZE - offs;
1328 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1329
98f0bc99
AV
1330 if (n > bytes)
1331 n = bytes;
95d78c28 1332
98f0bc99
AV
1333 if (!bio_add_pc_page(q, bio, page, n, offs))
1334 break;
1da177e4 1335
98f0bc99
AV
1336 /*
1337 * check if vector was merged with previous
1338 * drop page reference if needed
1339 */
1340 if (bio->bi_vcnt == prev_bi_vcnt)
1341 put_page(page);
1342
1343 added += n;
1344 bytes -= n;
1345 offs = 0;
1346 }
0a0f1513 1347 iov_iter_advance(iter, added);
f1970baf 1348 }
1da177e4 1349 /*
f1970baf 1350 * release the pages we didn't map into the bio, if any
1da177e4 1351 */
629e42bc 1352 while (j < npages)
09cbfeaf 1353 put_page(pages[j++]);
629e42bc 1354 kvfree(pages);
e2e115d1
AV
1355 /* couldn't stuff something into bio? */
1356 if (bytes)
1357 break;
1da177e4
LT
1358 }
1359
b7c44ed9 1360 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1361
1362 /*
5fad1b64 1363 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1364 * it would normally disappear when its bi_end_io is run.
1365 * however, we need it for the unmap, so grab an extra
1366 * reference to it
1367 */
1368 bio_get(bio);
1da177e4 1369 return bio;
f1970baf
JB
1370
1371 out_unmap:
2b04e8f6
AV
1372 bio_for_each_segment_all(bvec, bio, j) {
1373 put_page(bvec->bv_page);
f1970baf 1374 }
1da177e4
LT
1375 bio_put(bio);
1376 return ERR_PTR(ret);
1377}
1378
1da177e4
LT
1379static void __bio_unmap_user(struct bio *bio)
1380{
1381 struct bio_vec *bvec;
1382 int i;
1383
1384 /*
1385 * make sure we dirty pages we wrote to
1386 */
d74c6d51 1387 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1388 if (bio_data_dir(bio) == READ)
1389 set_page_dirty_lock(bvec->bv_page);
1390
09cbfeaf 1391 put_page(bvec->bv_page);
1da177e4
LT
1392 }
1393
1394 bio_put(bio);
1395}
1396
1397/**
1398 * bio_unmap_user - unmap a bio
1399 * @bio: the bio being unmapped
1400 *
5fad1b64
BVA
1401 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1402 * process context.
1da177e4
LT
1403 *
1404 * bio_unmap_user() may sleep.
1405 */
1406void bio_unmap_user(struct bio *bio)
1407{
1408 __bio_unmap_user(bio);
1409 bio_put(bio);
1410}
1411
4246a0b6 1412static void bio_map_kern_endio(struct bio *bio)
b823825e 1413{
b823825e 1414 bio_put(bio);
b823825e
JA
1415}
1416
75c72b83
CH
1417/**
1418 * bio_map_kern - map kernel address into bio
1419 * @q: the struct request_queue for the bio
1420 * @data: pointer to buffer to map
1421 * @len: length in bytes
1422 * @gfp_mask: allocation flags for bio allocation
1423 *
1424 * Map the kernel address into a bio suitable for io to a block
1425 * device. Returns an error pointer in case of error.
1426 */
1427struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1428 gfp_t gfp_mask)
df46b9a4
MC
1429{
1430 unsigned long kaddr = (unsigned long)data;
1431 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1432 unsigned long start = kaddr >> PAGE_SHIFT;
1433 const int nr_pages = end - start;
1434 int offset, i;
1435 struct bio *bio;
1436
a9e9dc24 1437 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1438 if (!bio)
1439 return ERR_PTR(-ENOMEM);
1440
1441 offset = offset_in_page(kaddr);
1442 for (i = 0; i < nr_pages; i++) {
1443 unsigned int bytes = PAGE_SIZE - offset;
1444
1445 if (len <= 0)
1446 break;
1447
1448 if (bytes > len)
1449 bytes = len;
1450
defd94b7 1451 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1452 offset) < bytes) {
1453 /* we don't support partial mappings */
1454 bio_put(bio);
1455 return ERR_PTR(-EINVAL);
1456 }
df46b9a4
MC
1457
1458 data += bytes;
1459 len -= bytes;
1460 offset = 0;
1461 }
1462
b823825e 1463 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1464 return bio;
1465}
a112a71d 1466EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1467
4246a0b6 1468static void bio_copy_kern_endio(struct bio *bio)
68154e90 1469{
1dfa0f68
CH
1470 bio_free_pages(bio);
1471 bio_put(bio);
1472}
1473
4246a0b6 1474static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1475{
42d2683a 1476 char *p = bio->bi_private;
1dfa0f68 1477 struct bio_vec *bvec;
68154e90
FT
1478 int i;
1479
d74c6d51 1480 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1481 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1482 p += bvec->bv_len;
68154e90
FT
1483 }
1484
4246a0b6 1485 bio_copy_kern_endio(bio);
68154e90
FT
1486}
1487
1488/**
1489 * bio_copy_kern - copy kernel address into bio
1490 * @q: the struct request_queue for the bio
1491 * @data: pointer to buffer to copy
1492 * @len: length in bytes
1493 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1494 * @reading: data direction is READ
68154e90
FT
1495 *
1496 * copy the kernel address into a bio suitable for io to a block
1497 * device. Returns an error pointer in case of error.
1498 */
1499struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1500 gfp_t gfp_mask, int reading)
1501{
42d2683a
CH
1502 unsigned long kaddr = (unsigned long)data;
1503 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1504 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1505 struct bio *bio;
1506 void *p = data;
1dfa0f68 1507 int nr_pages = 0;
68154e90 1508
42d2683a
CH
1509 /*
1510 * Overflow, abort
1511 */
1512 if (end < start)
1513 return ERR_PTR(-EINVAL);
68154e90 1514
42d2683a
CH
1515 nr_pages = end - start;
1516 bio = bio_kmalloc(gfp_mask, nr_pages);
1517 if (!bio)
1518 return ERR_PTR(-ENOMEM);
68154e90 1519
42d2683a
CH
1520 while (len) {
1521 struct page *page;
1522 unsigned int bytes = PAGE_SIZE;
68154e90 1523
42d2683a
CH
1524 if (bytes > len)
1525 bytes = len;
1526
1527 page = alloc_page(q->bounce_gfp | gfp_mask);
1528 if (!page)
1529 goto cleanup;
1530
1531 if (!reading)
1532 memcpy(page_address(page), p, bytes);
1533
1534 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1535 break;
1536
1537 len -= bytes;
1538 p += bytes;
68154e90
FT
1539 }
1540
1dfa0f68
CH
1541 if (reading) {
1542 bio->bi_end_io = bio_copy_kern_endio_read;
1543 bio->bi_private = data;
1544 } else {
1545 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1546 }
76029ff3 1547
68154e90 1548 return bio;
42d2683a
CH
1549
1550cleanup:
1dfa0f68 1551 bio_free_pages(bio);
42d2683a
CH
1552 bio_put(bio);
1553 return ERR_PTR(-ENOMEM);
68154e90
FT
1554}
1555
1da177e4
LT
1556/*
1557 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1558 * for performing direct-IO in BIOs.
1559 *
1560 * The problem is that we cannot run set_page_dirty() from interrupt context
1561 * because the required locks are not interrupt-safe. So what we can do is to
1562 * mark the pages dirty _before_ performing IO. And in interrupt context,
1563 * check that the pages are still dirty. If so, fine. If not, redirty them
1564 * in process context.
1565 *
1566 * We special-case compound pages here: normally this means reads into hugetlb
1567 * pages. The logic in here doesn't really work right for compound pages
1568 * because the VM does not uniformly chase down the head page in all cases.
1569 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1570 * handle them at all. So we skip compound pages here at an early stage.
1571 *
1572 * Note that this code is very hard to test under normal circumstances because
1573 * direct-io pins the pages with get_user_pages(). This makes
1574 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1575 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1576 * pagecache.
1577 *
1578 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1579 * deferred bio dirtying paths.
1580 */
1581
1582/*
1583 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1584 */
1585void bio_set_pages_dirty(struct bio *bio)
1586{
cb34e057 1587 struct bio_vec *bvec;
1da177e4
LT
1588 int i;
1589
cb34e057 1590 bio_for_each_segment_all(bvec, bio, i) {
3bb50983
CH
1591 if (!PageCompound(bvec->bv_page))
1592 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1593 }
1594}
1900fcc4 1595EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1da177e4 1596
86b6c7a7 1597static void bio_release_pages(struct bio *bio)
1da177e4 1598{
cb34e057 1599 struct bio_vec *bvec;
1da177e4
LT
1600 int i;
1601
24d5493f
CH
1602 bio_for_each_segment_all(bvec, bio, i)
1603 put_page(bvec->bv_page);
1da177e4
LT
1604}
1605
1606/*
1607 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1608 * If they are, then fine. If, however, some pages are clean then they must
1609 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1610 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1611 *
1612 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1613 * here on. It will run one put_page() against each page and will run one
1614 * bio_put() against the BIO.
1da177e4
LT
1615 */
1616
65f27f38 1617static void bio_dirty_fn(struct work_struct *work);
1da177e4 1618
65f27f38 1619static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1620static DEFINE_SPINLOCK(bio_dirty_lock);
1621static struct bio *bio_dirty_list;
1622
1623/*
1624 * This runs in process context
1625 */
65f27f38 1626static void bio_dirty_fn(struct work_struct *work)
1da177e4 1627{
24d5493f 1628 struct bio *bio, *next;
1da177e4 1629
24d5493f
CH
1630 spin_lock_irq(&bio_dirty_lock);
1631 next = bio_dirty_list;
1da177e4 1632 bio_dirty_list = NULL;
24d5493f 1633 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1634
24d5493f
CH
1635 while ((bio = next) != NULL) {
1636 next = bio->bi_private;
1da177e4
LT
1637
1638 bio_set_pages_dirty(bio);
1639 bio_release_pages(bio);
1640 bio_put(bio);
1da177e4
LT
1641 }
1642}
1643
1644void bio_check_pages_dirty(struct bio *bio)
1645{
cb34e057 1646 struct bio_vec *bvec;
24d5493f 1647 unsigned long flags;
1da177e4
LT
1648 int i;
1649
cb34e057 1650 bio_for_each_segment_all(bvec, bio, i) {
24d5493f
CH
1651 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1652 goto defer;
1da177e4
LT
1653 }
1654
24d5493f
CH
1655 bio_release_pages(bio);
1656 bio_put(bio);
1657 return;
1658defer:
1659 spin_lock_irqsave(&bio_dirty_lock, flags);
1660 bio->bi_private = bio_dirty_list;
1661 bio_dirty_list = bio;
1662 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1663 schedule_work(&bio_dirty_work);
1da177e4 1664}
1900fcc4 1665EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1da177e4 1666
ddcf35d3 1667void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1668 unsigned long sectors, struct hd_struct *part)
394ffa50 1669{
ddcf35d3 1670 const int sgrp = op_stat_group(op);
394ffa50
GZ
1671 int cpu = part_stat_lock();
1672
d62e26b3 1673 part_round_stats(q, cpu, part);
ddcf35d3
MC
1674 part_stat_inc(cpu, part, ios[sgrp]);
1675 part_stat_add(cpu, part, sectors[sgrp], sectors);
1676 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1677
1678 part_stat_unlock();
1679}
1680EXPORT_SYMBOL(generic_start_io_acct);
1681
ddcf35d3 1682void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1683 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1684{
1685 unsigned long duration = jiffies - start_time;
ddcf35d3 1686 const int sgrp = op_stat_group(req_op);
394ffa50
GZ
1687 int cpu = part_stat_lock();
1688
b57e99b4 1689 part_stat_add(cpu, part, nsecs[sgrp], jiffies_to_nsecs(duration));
d62e26b3 1690 part_round_stats(q, cpu, part);
ddcf35d3 1691 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1692
1693 part_stat_unlock();
1694}
1695EXPORT_SYMBOL(generic_end_io_acct);
1696
2d4dc890
IL
1697#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1698void bio_flush_dcache_pages(struct bio *bi)
1699{
7988613b
KO
1700 struct bio_vec bvec;
1701 struct bvec_iter iter;
2d4dc890 1702
7988613b
KO
1703 bio_for_each_segment(bvec, bi, iter)
1704 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1705}
1706EXPORT_SYMBOL(bio_flush_dcache_pages);
1707#endif
1708
c4cf5261
JA
1709static inline bool bio_remaining_done(struct bio *bio)
1710{
1711 /*
1712 * If we're not chaining, then ->__bi_remaining is always 1 and
1713 * we always end io on the first invocation.
1714 */
1715 if (!bio_flagged(bio, BIO_CHAIN))
1716 return true;
1717
1718 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1719
326e1dbb 1720 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1721 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1722 return true;
326e1dbb 1723 }
c4cf5261
JA
1724
1725 return false;
1726}
1727
1da177e4
LT
1728/**
1729 * bio_endio - end I/O on a bio
1730 * @bio: bio
1da177e4
LT
1731 *
1732 * Description:
4246a0b6
CH
1733 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1734 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1735 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1736 *
1737 * bio_endio() can be called several times on a bio that has been chained
1738 * using bio_chain(). The ->bi_end_io() function will only be called the
1739 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1740 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1741 **/
4246a0b6 1742void bio_endio(struct bio *bio)
1da177e4 1743{
ba8c6967 1744again:
2b885517 1745 if (!bio_remaining_done(bio))
ba8c6967 1746 return;
7c20f116
CH
1747 if (!bio_integrity_endio(bio))
1748 return;
1da177e4 1749
67b42d0b
JB
1750 if (bio->bi_disk)
1751 rq_qos_done_bio(bio->bi_disk->queue, bio);
1752
ba8c6967
CH
1753 /*
1754 * Need to have a real endio function for chained bios, otherwise
1755 * various corner cases will break (like stacking block devices that
1756 * save/restore bi_end_io) - however, we want to avoid unbounded
1757 * recursion and blowing the stack. Tail call optimization would
1758 * handle this, but compiling with frame pointers also disables
1759 * gcc's sibling call optimization.
1760 */
1761 if (bio->bi_end_io == bio_chain_endio) {
1762 bio = __bio_chain_endio(bio);
1763 goto again;
196d38bc 1764 }
ba8c6967 1765
74d46992
CH
1766 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1767 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1768 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1769 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1770 }
1771
9e234eea 1772 blk_throtl_bio_endio(bio);
b222dd2f
SL
1773 /* release cgroup info */
1774 bio_uninit(bio);
ba8c6967
CH
1775 if (bio->bi_end_io)
1776 bio->bi_end_io(bio);
1da177e4 1777}
a112a71d 1778EXPORT_SYMBOL(bio_endio);
1da177e4 1779
20d0189b
KO
1780/**
1781 * bio_split - split a bio
1782 * @bio: bio to split
1783 * @sectors: number of sectors to split from the front of @bio
1784 * @gfp: gfp mask
1785 * @bs: bio set to allocate from
1786 *
1787 * Allocates and returns a new bio which represents @sectors from the start of
1788 * @bio, and updates @bio to represent the remaining sectors.
1789 *
f3f5da62
MP
1790 * Unless this is a discard request the newly allocated bio will point
1791 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1792 * @bio is not freed before the split.
20d0189b
KO
1793 */
1794struct bio *bio_split(struct bio *bio, int sectors,
1795 gfp_t gfp, struct bio_set *bs)
1796{
f341a4d3 1797 struct bio *split;
20d0189b
KO
1798
1799 BUG_ON(sectors <= 0);
1800 BUG_ON(sectors >= bio_sectors(bio));
1801
f9d03f96 1802 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1803 if (!split)
1804 return NULL;
1805
1806 split->bi_iter.bi_size = sectors << 9;
1807
1808 if (bio_integrity(split))
fbd08e76 1809 bio_integrity_trim(split);
20d0189b
KO
1810
1811 bio_advance(bio, split->bi_iter.bi_size);
1812
fbbaf700 1813 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1814 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1815
20d0189b
KO
1816 return split;
1817}
1818EXPORT_SYMBOL(bio_split);
1819
6678d83f
KO
1820/**
1821 * bio_trim - trim a bio
1822 * @bio: bio to trim
1823 * @offset: number of sectors to trim from the front of @bio
1824 * @size: size we want to trim @bio to, in sectors
1825 */
1826void bio_trim(struct bio *bio, int offset, int size)
1827{
1828 /* 'bio' is a cloned bio which we need to trim to match
1829 * the given offset and size.
6678d83f 1830 */
6678d83f
KO
1831
1832 size <<= 9;
4f024f37 1833 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1834 return;
1835
b7c44ed9 1836 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1837
1838 bio_advance(bio, offset << 9);
1839
4f024f37 1840 bio->bi_iter.bi_size = size;
376a78ab
DM
1841
1842 if (bio_integrity(bio))
fbd08e76 1843 bio_integrity_trim(bio);
376a78ab 1844
6678d83f
KO
1845}
1846EXPORT_SYMBOL_GPL(bio_trim);
1847
1da177e4
LT
1848/*
1849 * create memory pools for biovec's in a bio_set.
1850 * use the global biovec slabs created for general use.
1851 */
8aa6ba2f 1852int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1853{
ed996a52 1854 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1855
8aa6ba2f 1856 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1857}
1858
917a38c7
KO
1859/*
1860 * bioset_exit - exit a bioset initialized with bioset_init()
1861 *
1862 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1863 * kzalloc()).
1864 */
1865void bioset_exit(struct bio_set *bs)
1da177e4 1866{
df2cb6da
KO
1867 if (bs->rescue_workqueue)
1868 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1869 bs->rescue_workqueue = NULL;
df2cb6da 1870
8aa6ba2f
KO
1871 mempool_exit(&bs->bio_pool);
1872 mempool_exit(&bs->bvec_pool);
9f060e22 1873
7878cba9 1874 bioset_integrity_free(bs);
917a38c7
KO
1875 if (bs->bio_slab)
1876 bio_put_slab(bs);
1877 bs->bio_slab = NULL;
1878}
1879EXPORT_SYMBOL(bioset_exit);
1da177e4 1880
917a38c7
KO
1881/**
1882 * bioset_init - Initialize a bio_set
dad08527 1883 * @bs: pool to initialize
917a38c7
KO
1884 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1885 * @front_pad: Number of bytes to allocate in front of the returned bio
1886 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1887 * and %BIOSET_NEED_RESCUER
1888 *
dad08527
KO
1889 * Description:
1890 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1891 * to ask for a number of bytes to be allocated in front of the bio.
1892 * Front pad allocation is useful for embedding the bio inside
1893 * another structure, to avoid allocating extra data to go with the bio.
1894 * Note that the bio must be embedded at the END of that structure always,
1895 * or things will break badly.
1896 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1897 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1898 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1899 * dispatch queued requests when the mempool runs out of space.
1900 *
917a38c7
KO
1901 */
1902int bioset_init(struct bio_set *bs,
1903 unsigned int pool_size,
1904 unsigned int front_pad,
1905 int flags)
1906{
1907 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1908
1909 bs->front_pad = front_pad;
1910
1911 spin_lock_init(&bs->rescue_lock);
1912 bio_list_init(&bs->rescue_list);
1913 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1914
1915 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1916 if (!bs->bio_slab)
1917 return -ENOMEM;
1918
1919 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1920 goto bad;
1921
1922 if ((flags & BIOSET_NEED_BVECS) &&
1923 biovec_init_pool(&bs->bvec_pool, pool_size))
1924 goto bad;
1925
1926 if (!(flags & BIOSET_NEED_RESCUER))
1927 return 0;
1928
1929 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1930 if (!bs->rescue_workqueue)
1931 goto bad;
1932
1933 return 0;
1934bad:
1935 bioset_exit(bs);
1936 return -ENOMEM;
1937}
1938EXPORT_SYMBOL(bioset_init);
1939
28e89fd9
JA
1940/*
1941 * Initialize and setup a new bio_set, based on the settings from
1942 * another bio_set.
1943 */
1944int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1945{
1946 int flags;
1947
1948 flags = 0;
1949 if (src->bvec_pool.min_nr)
1950 flags |= BIOSET_NEED_BVECS;
1951 if (src->rescue_workqueue)
1952 flags |= BIOSET_NEED_RESCUER;
1953
1954 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1955}
1956EXPORT_SYMBOL(bioset_init_from_src);
1957
852c788f 1958#ifdef CONFIG_BLK_CGROUP
1d933cf0 1959
a7b39b4e 1960/**
b5f2954d 1961 * bio_associate_blkcg - associate a bio with the specified blkcg
a7b39b4e 1962 * @bio: target bio
b5f2954d
DZ
1963 * @blkcg_css: css of the blkcg to associate
1964 *
1965 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1966 * treat @bio as if it were issued by a task which belongs to the blkcg.
a7b39b4e 1967 *
b5f2954d
DZ
1968 * This function takes an extra reference of @blkcg_css which will be put
1969 * when @bio is released. The caller must own @bio and is responsible for
0fe061b9
DZ
1970 * synchronizing calls to this function. If @blkcg_css is %NULL, a call to
1971 * blkcg_get_css() finds the current css from the kthread or task.
a7b39b4e 1972 */
b5f2954d 1973int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
a7b39b4e 1974{
b5f2954d
DZ
1975 if (unlikely(bio->bi_css))
1976 return -EBUSY;
0fe061b9
DZ
1977
1978 if (blkcg_css)
1979 css_get(blkcg_css);
1980 else
1981 blkcg_css = blkcg_get_css();
1982
b5f2954d
DZ
1983 bio->bi_css = blkcg_css;
1984 return 0;
a7b39b4e 1985}
b5f2954d 1986EXPORT_SYMBOL_GPL(bio_associate_blkcg);
a7b39b4e 1987
d459d853 1988/**
2268c0fe
DZ
1989 * bio_disassociate_blkg - puts back the blkg reference if associated
1990 * @bio: target bio
1991 *
1992 * Helper to disassociate the blkg from @bio if a blkg is associated.
1993 */
1994void bio_disassociate_blkg(struct bio *bio)
1995{
1996 if (bio->bi_blkg) {
1997 blkg_put(bio->bi_blkg);
1998 bio->bi_blkg = NULL;
1999 }
2000}
892ad71f 2001EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2268c0fe
DZ
2002
2003/**
2004 * __bio_associate_blkg - associate a bio with the a blkg
d459d853 2005 * @bio: target bio
b5f2954d 2006 * @blkg: the blkg to associate
d459d853 2007 *
beea9da0
DZ
2008 * This tries to associate @bio with the specified @blkg. Association failure
2009 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2010 * be anything between @blkg and the root_blkg. This situation only happens
2011 * when a cgroup is dying and then the remaining bios will spill to the closest
2012 * alive blkg.
2013 *
2014 * A reference will be taken on the @blkg and will be released when @bio is
2015 * freed.
d459d853 2016 */
2268c0fe 2017static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
d459d853 2018{
2268c0fe
DZ
2019 bio_disassociate_blkg(bio);
2020
beea9da0 2021 bio->bi_blkg = blkg_try_get_closest(blkg);
2268c0fe
DZ
2022}
2023
6a7f6d86
DZ
2024static void __bio_associate_blkg_from_css(struct bio *bio,
2025 struct cgroup_subsys_state *css)
2026{
2027 struct blkcg_gq *blkg;
2028
2029 rcu_read_lock();
2030
2031 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue);
2032 __bio_associate_blkg(bio, blkg);
2033
2034 rcu_read_unlock();
2035}
2036
fd42df30
DZ
2037/**
2038 * bio_associate_blkg_from_css - associate a bio with a specified css
2039 * @bio: target bio
2040 * @css: target css
2041 *
2042 * Associate @bio with the blkg found by combining the css's blkg and the
2043 * request_queue of the @bio. This takes a reference on the css that will
2044 * be put upon freeing of @bio.
2045 */
2046void bio_associate_blkg_from_css(struct bio *bio,
2047 struct cgroup_subsys_state *css)
2048{
2049 css_get(css);
2050 bio->bi_css = css;
2051 __bio_associate_blkg_from_css(bio, css);
2052}
2053EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2054
6a7f6d86
DZ
2055#ifdef CONFIG_MEMCG
2056/**
2057 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2058 * @bio: target bio
2059 * @page: the page to lookup the blkcg from
2060 *
2061 * Associate @bio with the blkg from @page's owning memcg and the respective
2062 * request_queue. This works like every other associate function wrt
2063 * references.
2064 */
2065void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2066{
2067 struct cgroup_subsys_state *css;
2068
2069 if (unlikely(bio->bi_css))
2070 return;
2071 if (!page->mem_cgroup)
2072 return;
2073
2074 css = cgroup_get_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2075 bio->bi_css = css;
2076 __bio_associate_blkg_from_css(bio, css);
2077}
2078#endif /* CONFIG_MEMCG */
2079
2268c0fe
DZ
2080/**
2081 * bio_associate_blkg - associate a bio with a blkg
2082 * @bio: target bio
2083 *
2084 * Associate @bio with the blkg found from the bio's css and request_queue.
2085 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2086 * already associated, the css is reused and association redone as the
2087 * request_queue may have changed.
2088 */
2089void bio_associate_blkg(struct bio *bio)
2090{
2091 struct request_queue *q = bio->bi_disk->queue;
2092 struct blkcg *blkcg;
2093 struct blkcg_gq *blkg;
2094
2095 rcu_read_lock();
2096
2097 bio_associate_blkcg(bio, NULL);
2098 blkcg = bio_blkcg(bio);
2099
2100 if (!blkcg->css.parent) {
2101 __bio_associate_blkg(bio, q->root_blkg);
2102 } else {
2103 blkg = blkg_lookup_create(blkcg, q);
2104
2105 __bio_associate_blkg(bio, blkg);
2106 }
2107
2108 rcu_read_unlock();
d459d853 2109}
5cdf2e3f 2110EXPORT_SYMBOL_GPL(bio_associate_blkg);
d459d853 2111
852c788f
TH
2112/**
2113 * bio_disassociate_task - undo bio_associate_current()
2114 * @bio: target bio
2115 */
2116void bio_disassociate_task(struct bio *bio)
2117{
b5f2954d
DZ
2118 if (bio->bi_css) {
2119 css_put(bio->bi_css);
2120 bio->bi_css = NULL;
2121 }
2268c0fe 2122 bio_disassociate_blkg(bio);
852c788f
TH
2123}
2124
20bd723e 2125/**
b5f2954d 2126 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
20bd723e
PV
2127 * @dst: destination bio
2128 * @src: source bio
2129 */
b5f2954d 2130void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
20bd723e 2131{
b5f2954d
DZ
2132 if (src->bi_css)
2133 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2268c0fe
DZ
2134
2135 if (src->bi_blkg)
2136 __bio_associate_blkg(dst, src->bi_blkg);
20bd723e 2137}
b5f2954d 2138EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2139#endif /* CONFIG_BLK_CGROUP */
2140
1da177e4
LT
2141static void __init biovec_init_slabs(void)
2142{
2143 int i;
2144
ed996a52 2145 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2146 int size;
2147 struct biovec_slab *bvs = bvec_slabs + i;
2148
a7fcd37c
JA
2149 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2150 bvs->slab = NULL;
2151 continue;
2152 }
a7fcd37c 2153
1da177e4
LT
2154 size = bvs->nr_vecs * sizeof(struct bio_vec);
2155 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2156 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2157 }
2158}
2159
2160static int __init init_bio(void)
2161{
bb799ca0
JA
2162 bio_slab_max = 2;
2163 bio_slab_nr = 0;
6396bb22
KC
2164 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2165 GFP_KERNEL);
bb799ca0
JA
2166 if (!bio_slabs)
2167 panic("bio: can't allocate bios\n");
1da177e4 2168
7878cba9 2169 bio_integrity_init();
1da177e4
LT
2170 biovec_init_slabs();
2171
f4f8154a 2172 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2173 panic("bio: can't allocate bios\n");
2174
f4f8154a 2175 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2176 panic("bio: can't create integrity pool\n");
2177
1da177e4
LT
2178 return 0;
2179}
1da177e4 2180subsys_initcall(init_bio);