]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - block/blk-mq.c
blk-mq: issue directly with bypass 'false' in blk_mq_sched_insert_requests
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
986d413b 36#include "blk-pm.h"
cf43e6be 37#include "blk-stat.h"
bd166ef1 38#include "blk-mq-sched.h"
c1c80384 39#include "blk-rq-qos.h"
320ae51f 40
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
f31967f0
JA
77 const int bit = ctx->index_hw[hctx->type];
78
79 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
81}
82
83static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85{
f31967f0
JA
86 const int bit = ctx->index_hw[hctx->type];
87
88 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
89}
90
f299b7c7
JA
91struct mq_inflight {
92 struct hd_struct *part;
93 unsigned int *inflight;
94};
95
7baa8572 96static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
97 struct request *rq, void *priv,
98 bool reserved)
99{
100 struct mq_inflight *mi = priv;
101
6131837b 102 /*
e016b782 103 * index[0] counts the specific partition that was asked for.
6131837b
OS
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
7baa8572
JA
107
108 return true;
f299b7c7
JA
109}
110
e016b782 111unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
f299b7c7 112{
e016b782 113 unsigned inflight[2];
f299b7c7
JA
114 struct mq_inflight mi = { .part = part, .inflight = inflight, };
115
b8d62b3a 116 inflight[0] = inflight[1] = 0;
f299b7c7 117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782
MP
118
119 return inflight[0];
f299b7c7
JA
120}
121
7baa8572 122static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
bf0ddaba
OS
123 struct request *rq, void *priv,
124 bool reserved)
125{
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
130
131 return true;
bf0ddaba
OS
132}
133
134void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 unsigned int inflight[2])
136{
137 struct mq_inflight mi = { .part = part, .inflight = inflight, };
138
139 inflight[0] = inflight[1] = 0;
140 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141}
142
1671d522 143void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 144{
4ecd4fef 145 int freeze_depth;
cddd5d17 146
4ecd4fef
CH
147 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 if (freeze_depth == 1) {
3ef28e83 149 percpu_ref_kill(&q->q_usage_counter);
344e9ffc 150 if (queue_is_mq(q))
055f6e18 151 blk_mq_run_hw_queues(q, false);
cddd5d17 152 }
f3af020b 153}
1671d522 154EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 155
6bae363e 156void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 157{
3ef28e83 158 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 159}
6bae363e 160EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 161
f91328c4
KB
162int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 unsigned long timeout)
164{
165 return wait_event_timeout(q->mq_freeze_wq,
166 percpu_ref_is_zero(&q->q_usage_counter),
167 timeout);
168}
169EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 170
f3af020b
TH
171/*
172 * Guarantee no request is in use, so we can change any data structure of
173 * the queue afterward.
174 */
3ef28e83 175void blk_freeze_queue(struct request_queue *q)
f3af020b 176{
3ef28e83
DW
177 /*
178 * In the !blk_mq case we are only calling this to kill the
179 * q_usage_counter, otherwise this increases the freeze depth
180 * and waits for it to return to zero. For this reason there is
181 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 * exported to drivers as the only user for unfreeze is blk_mq.
183 */
1671d522 184 blk_freeze_queue_start(q);
f3af020b
TH
185 blk_mq_freeze_queue_wait(q);
186}
3ef28e83
DW
187
188void blk_mq_freeze_queue(struct request_queue *q)
189{
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195}
c761d96b 196EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 197
b4c6a028 198void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 199{
4ecd4fef 200 int freeze_depth;
320ae51f 201
4ecd4fef
CH
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
bdd63160 205 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 206 wake_up_all(&q->mq_freeze_wq);
add703fd 207 }
320ae51f 208}
b4c6a028 209EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 210
852ec809
BVA
211/*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216{
8814ce8a 217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
218}
219EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
6a83e74d 221/**
69e07c4a 222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
223 * @q: request queue.
224 *
225 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
226 * callback function is invoked. Once this function is returned, we make
227 * sure no dispatch can happen until the queue is unquiesced via
228 * blk_mq_unquiesce_queue().
6a83e74d
BVA
229 */
230void blk_mq_quiesce_queue(struct request_queue *q)
231{
232 struct blk_mq_hw_ctx *hctx;
233 unsigned int i;
234 bool rcu = false;
235
1d9e9bc6 236 blk_mq_quiesce_queue_nowait(q);
f4560ffe 237
6a83e74d
BVA
238 queue_for_each_hw_ctx(q, hctx, i) {
239 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 240 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
241 else
242 rcu = true;
243 }
244 if (rcu)
245 synchronize_rcu();
246}
247EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
e4e73913
ML
249/*
250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251 * @q: request queue.
252 *
253 * This function recovers queue into the state before quiescing
254 * which is done by blk_mq_quiesce_queue.
255 */
256void blk_mq_unquiesce_queue(struct request_queue *q)
257{
8814ce8a 258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 259
1d9e9bc6
ML
260 /* dispatch requests which are inserted during quiescing */
261 blk_mq_run_hw_queues(q, true);
e4e73913
ML
262}
263EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
aed3ea94
JA
265void blk_mq_wake_waiters(struct request_queue *q)
266{
267 struct blk_mq_hw_ctx *hctx;
268 unsigned int i;
269
270 queue_for_each_hw_ctx(q, hctx, i)
271 if (blk_mq_hw_queue_mapped(hctx))
272 blk_mq_tag_wakeup_all(hctx->tags, true);
273}
274
320ae51f
JA
275bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276{
277 return blk_mq_has_free_tags(hctx->tags);
278}
279EXPORT_SYMBOL(blk_mq_can_queue);
280
fe1f4526
JA
281/*
282 * Only need start/end time stamping if we have stats enabled, or using
283 * an IO scheduler.
284 */
285static inline bool blk_mq_need_time_stamp(struct request *rq)
286{
287 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288}
289
e4cdf1a1
CH
290static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 unsigned int tag, unsigned int op)
320ae51f 292{
e4cdf1a1
CH
293 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 295 req_flags_t rq_flags = 0;
c3a148d2 296
e4cdf1a1
CH
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
d263ed99 301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 302 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
af76e555 310 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
311 rq->q = data->q;
312 rq->mq_ctx = data->ctx;
ea4f995e 313 rq->mq_hctx = data->hctx;
bf9ae8c5 314 rq->rq_flags = rq_flags;
ef295ecf 315 rq->cmd_flags = op;
1b6d65a0
BVA
316 if (data->flags & BLK_MQ_REQ_PREEMPT)
317 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 318 if (blk_queue_io_stat(data->q))
e8064021 319 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 320 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
323 rq->rq_disk = NULL;
324 rq->part = NULL;
fe1f4526
JA
325 if (blk_mq_need_time_stamp(rq))
326 rq->start_time_ns = ktime_get_ns();
327 else
328 rq->start_time_ns = 0;
544ccc8d 329 rq->io_start_time_ns = 0;
af76e555
CH
330 rq->nr_phys_segments = 0;
331#if defined(CONFIG_BLK_DEV_INTEGRITY)
332 rq->nr_integrity_segments = 0;
333#endif
af76e555
CH
334 rq->special = NULL;
335 /* tag was already set */
af76e555 336 rq->extra_len = 0;
079076b3 337 WRITE_ONCE(rq->deadline, 0);
af76e555 338
f6be4fb4
JA
339 rq->timeout = 0;
340
af76e555
CH
341 rq->end_io = NULL;
342 rq->end_io_data = NULL;
343 rq->next_rq = NULL;
344
e4cdf1a1 345 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 346 refcount_set(&rq->ref, 1);
e4cdf1a1 347 return rq;
5dee8577
CH
348}
349
d2c0d383 350static struct request *blk_mq_get_request(struct request_queue *q,
f9afca4d
JA
351 struct bio *bio,
352 struct blk_mq_alloc_data *data)
d2c0d383
CH
353{
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
e4cdf1a1 356 unsigned int tag;
21e768b4 357 bool put_ctx_on_error = false;
d2c0d383
CH
358
359 blk_queue_enter_live(q);
360 data->q = q;
21e768b4
BVA
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
d2c0d383 365 if (likely(!data->hctx))
f9afca4d
JA
366 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
367 data->ctx->cpu);
368 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 369 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
370
371 if (e) {
372 data->flags |= BLK_MQ_REQ_INTERNAL;
373
374 /*
375 * Flush requests are special and go directly to the
17a51199
JA
376 * dispatch list. Don't include reserved tags in the
377 * limiting, as it isn't useful.
d2c0d383 378 */
f9afca4d
JA
379 if (!op_is_flush(data->cmd_flags) &&
380 e->type->ops.limit_depth &&
17a51199 381 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 382 e->type->ops.limit_depth(data->cmd_flags, data);
d263ed99
JW
383 } else {
384 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
385 }
386
e4cdf1a1
CH
387 tag = blk_mq_get_tag(data);
388 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
389 if (put_ctx_on_error) {
390 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
391 data->ctx = NULL;
392 }
037cebb8
CH
393 blk_queue_exit(q);
394 return NULL;
d2c0d383
CH
395 }
396
f9afca4d
JA
397 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
398 if (!op_is_flush(data->cmd_flags)) {
037cebb8 399 rq->elv.icq = NULL;
f9cd4bfe 400 if (e && e->type->ops.prepare_request) {
e2b3fa5a
DLM
401 if (e->type->icq_cache)
402 blk_mq_sched_assign_ioc(rq);
44e8c2bf 403
f9cd4bfe 404 e->type->ops.prepare_request(rq, bio);
5bbf4e5a 405 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 406 }
037cebb8
CH
407 }
408 data->hctx->queued++;
409 return rq;
d2c0d383
CH
410}
411
cd6ce148 412struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 413 blk_mq_req_flags_t flags)
320ae51f 414{
f9afca4d 415 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
bd166ef1 416 struct request *rq;
a492f075 417 int ret;
320ae51f 418
3a0a5299 419 ret = blk_queue_enter(q, flags);
a492f075
JL
420 if (ret)
421 return ERR_PTR(ret);
320ae51f 422
f9afca4d 423 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 424 blk_queue_exit(q);
841bac2c 425
bd166ef1 426 if (!rq)
a492f075 427 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 428
1ad43c00 429 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 430
0c4de0f3
CH
431 rq->__data_len = 0;
432 rq->__sector = (sector_t) -1;
433 rq->bio = rq->biotail = NULL;
320ae51f
JA
434 return rq;
435}
4bb659b1 436EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 437
cd6ce148 438struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 439 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 440{
f9afca4d 441 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
1f5bd336 442 struct request *rq;
6d2809d5 443 unsigned int cpu;
1f5bd336
ML
444 int ret;
445
446 /*
447 * If the tag allocator sleeps we could get an allocation for a
448 * different hardware context. No need to complicate the low level
449 * allocator for this for the rare use case of a command tied to
450 * a specific queue.
451 */
452 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
453 return ERR_PTR(-EINVAL);
454
455 if (hctx_idx >= q->nr_hw_queues)
456 return ERR_PTR(-EIO);
457
3a0a5299 458 ret = blk_queue_enter(q, flags);
1f5bd336
ML
459 if (ret)
460 return ERR_PTR(ret);
461
c8712c6a
CH
462 /*
463 * Check if the hardware context is actually mapped to anything.
464 * If not tell the caller that it should skip this queue.
465 */
6d2809d5
OS
466 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
467 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
468 blk_queue_exit(q);
469 return ERR_PTR(-EXDEV);
c8712c6a 470 }
20e4d813 471 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 472 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 473
f9afca4d 474 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 475 blk_queue_exit(q);
c8712c6a 476
6d2809d5
OS
477 if (!rq)
478 return ERR_PTR(-EWOULDBLOCK);
479
480 return rq;
1f5bd336
ML
481}
482EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
483
12f5b931
KB
484static void __blk_mq_free_request(struct request *rq)
485{
486 struct request_queue *q = rq->q;
487 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 488 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
489 const int sched_tag = rq->internal_tag;
490
986d413b 491 blk_pm_mark_last_busy(rq);
ea4f995e 492 rq->mq_hctx = NULL;
12f5b931
KB
493 if (rq->tag != -1)
494 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
495 if (sched_tag != -1)
496 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
497 blk_mq_sched_restart(hctx);
498 blk_queue_exit(q);
499}
500
6af54051 501void blk_mq_free_request(struct request *rq)
320ae51f 502{
320ae51f 503 struct request_queue *q = rq->q;
6af54051
CH
504 struct elevator_queue *e = q->elevator;
505 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 506 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 507
5bbf4e5a 508 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
509 if (e && e->type->ops.finish_request)
510 e->type->ops.finish_request(rq);
6af54051
CH
511 if (rq->elv.icq) {
512 put_io_context(rq->elv.icq->ioc);
513 rq->elv.icq = NULL;
514 }
515 }
320ae51f 516
6af54051 517 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 518 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 519 atomic_dec(&hctx->nr_active);
87760e5e 520
7beb2f84
JA
521 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
522 laptop_io_completion(q->backing_dev_info);
523
a7905043 524 rq_qos_done(q, rq);
0d2602ca 525
12f5b931
KB
526 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
527 if (refcount_dec_and_test(&rq->ref))
528 __blk_mq_free_request(rq);
320ae51f 529}
1a3b595a 530EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 531
2a842aca 532inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 533{
fe1f4526
JA
534 u64 now = 0;
535
536 if (blk_mq_need_time_stamp(rq))
537 now = ktime_get_ns();
522a7775 538
4bc6339a
OS
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
522a7775 541 blk_stat_add(rq, now);
4bc6339a
OS
542 }
543
ed88660a
OS
544 if (rq->internal_tag != -1)
545 blk_mq_sched_completed_request(rq, now);
546
522a7775 547 blk_account_io_done(rq, now);
0d11e6ac 548
91b63639 549 if (rq->end_io) {
a7905043 550 rq_qos_done(rq->q, rq);
320ae51f 551 rq->end_io(rq, error);
91b63639
CH
552 } else {
553 if (unlikely(blk_bidi_rq(rq)))
554 blk_mq_free_request(rq->next_rq);
320ae51f 555 blk_mq_free_request(rq);
91b63639 556 }
320ae51f 557}
c8a446ad 558EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 559
2a842aca 560void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
561{
562 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 BUG();
c8a446ad 564 __blk_mq_end_request(rq, error);
63151a44 565}
c8a446ad 566EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 567
30a91cb4 568static void __blk_mq_complete_request_remote(void *data)
320ae51f 569{
3d6efbf6 570 struct request *rq = data;
c7bb9ad1 571 struct request_queue *q = rq->q;
320ae51f 572
c7bb9ad1 573 q->mq_ops->complete(rq);
320ae51f 574}
320ae51f 575
453f8341 576static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
577{
578 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 579 struct request_queue *q = rq->q;
38535201 580 bool shared = false;
320ae51f
JA
581 int cpu;
582
af78ff7c 583 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539
ML
584 /*
585 * Most of single queue controllers, there is only one irq vector
586 * for handling IO completion, and the only irq's affinity is set
587 * as all possible CPUs. On most of ARCHs, this affinity means the
588 * irq is handled on one specific CPU.
589 *
590 * So complete IO reqeust in softirq context in case of single queue
591 * for not degrading IO performance by irqsoff latency.
592 */
c7bb9ad1 593 if (q->nr_hw_queues == 1) {
36e76539
ML
594 __blk_complete_request(rq);
595 return;
596 }
597
4ab32bf3
JA
598 /*
599 * For a polled request, always complete locallly, it's pointless
600 * to redirect the completion.
601 */
602 if ((rq->cmd_flags & REQ_HIPRI) ||
603 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
c7bb9ad1 604 q->mq_ops->complete(rq);
30a91cb4
CH
605 return;
606 }
320ae51f
JA
607
608 cpu = get_cpu();
c7bb9ad1 609 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
610 shared = cpus_share_cache(cpu, ctx->cpu);
611
612 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 613 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
614 rq->csd.info = rq;
615 rq->csd.flags = 0;
c46fff2a 616 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 617 } else {
c7bb9ad1 618 q->mq_ops->complete(rq);
3d6efbf6 619 }
320ae51f
JA
620 put_cpu();
621}
30a91cb4 622
04ced159 623static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 624 __releases(hctx->srcu)
04ced159
JA
625{
626 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
627 rcu_read_unlock();
628 else
05707b64 629 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
630}
631
632static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 633 __acquires(hctx->srcu)
04ced159 634{
08b5a6e2
JA
635 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
636 /* shut up gcc false positive */
637 *srcu_idx = 0;
04ced159 638 rcu_read_lock();
08b5a6e2 639 } else
05707b64 640 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
641}
642
30a91cb4
CH
643/**
644 * blk_mq_complete_request - end I/O on a request
645 * @rq: the request being processed
646 *
647 * Description:
648 * Ends all I/O on a request. It does not handle partial completions.
649 * The actual completion happens out-of-order, through a IPI handler.
650 **/
16c15eb1 651bool blk_mq_complete_request(struct request *rq)
30a91cb4 652{
12f5b931 653 if (unlikely(blk_should_fake_timeout(rq->q)))
16c15eb1 654 return false;
12f5b931 655 __blk_mq_complete_request(rq);
16c15eb1 656 return true;
30a91cb4
CH
657}
658EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 659
973c0191
KB
660int blk_mq_request_started(struct request *rq)
661{
5a61c363 662 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
663}
664EXPORT_SYMBOL_GPL(blk_mq_request_started);
665
e2490073 666void blk_mq_start_request(struct request *rq)
320ae51f
JA
667{
668 struct request_queue *q = rq->q;
669
bd166ef1
JA
670 blk_mq_sched_started_request(rq);
671
320ae51f
JA
672 trace_block_rq_issue(q, rq);
673
cf43e6be 674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d
OS
675 rq->io_start_time_ns = ktime_get_ns();
676#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 rq->throtl_size = blk_rq_sectors(rq);
678#endif
cf43e6be 679 rq->rq_flags |= RQF_STATS;
a7905043 680 rq_qos_issue(q, rq);
cf43e6be
JA
681 }
682
1d9bd516 683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 684
1d9bd516 685 blk_add_timer(rq);
12f5b931 686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5
CH
687
688 if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 /*
690 * Make sure space for the drain appears. We know we can do
691 * this because max_hw_segments has been adjusted to be one
692 * fewer than the device can handle.
693 */
694 rq->nr_phys_segments++;
695 }
320ae51f 696}
e2490073 697EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 698
ed0791b2 699static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
700{
701 struct request_queue *q = rq->q;
702
923218f6
ML
703 blk_mq_put_driver_tag(rq);
704
320ae51f 705 trace_block_rq_requeue(q, rq);
a7905043 706 rq_qos_requeue(q, rq);
49f5baa5 707
12f5b931
KB
708 if (blk_mq_request_started(rq)) {
709 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 710 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073
CH
711 if (q->dma_drain_size && blk_rq_bytes(rq))
712 rq->nr_phys_segments--;
713 }
320ae51f
JA
714}
715
2b053aca 716void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 717{
ed0791b2 718 __blk_mq_requeue_request(rq);
ed0791b2 719
105976f5
ML
720 /* this request will be re-inserted to io scheduler queue */
721 blk_mq_sched_requeue_request(rq);
722
7d692330 723 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
725}
726EXPORT_SYMBOL(blk_mq_requeue_request);
727
6fca6a61
CH
728static void blk_mq_requeue_work(struct work_struct *work)
729{
730 struct request_queue *q =
2849450a 731 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
732 LIST_HEAD(rq_list);
733 struct request *rq, *next;
6fca6a61 734
18e9781d 735 spin_lock_irq(&q->requeue_lock);
6fca6a61 736 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 737 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
738
739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 740 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
741 continue;
742
e8064021 743 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 744 list_del_init(&rq->queuelist);
9e97d295 745 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
746 }
747
748 while (!list_empty(&rq_list)) {
749 rq = list_entry(rq_list.next, struct request, queuelist);
750 list_del_init(&rq->queuelist);
9e97d295 751 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
752 }
753
52d7f1b5 754 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
755}
756
2b053aca
BVA
757void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
758 bool kick_requeue_list)
6fca6a61
CH
759{
760 struct request_queue *q = rq->q;
761 unsigned long flags;
762
763 /*
764 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 765 * request head insertion from the workqueue.
6fca6a61 766 */
e8064021 767 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
768
769 spin_lock_irqsave(&q->requeue_lock, flags);
770 if (at_head) {
e8064021 771 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
772 list_add(&rq->queuelist, &q->requeue_list);
773 } else {
774 list_add_tail(&rq->queuelist, &q->requeue_list);
775 }
776 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
777
778 if (kick_requeue_list)
779 blk_mq_kick_requeue_list(q);
6fca6a61
CH
780}
781EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
782
783void blk_mq_kick_requeue_list(struct request_queue *q)
784{
ae943d20 785 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
786}
787EXPORT_SYMBOL(blk_mq_kick_requeue_list);
788
2849450a
MS
789void blk_mq_delay_kick_requeue_list(struct request_queue *q,
790 unsigned long msecs)
791{
d4acf365
BVA
792 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
793 msecs_to_jiffies(msecs));
2849450a
MS
794}
795EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
796
0e62f51f
JA
797struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
798{
88c7b2b7
JA
799 if (tag < tags->nr_tags) {
800 prefetch(tags->rqs[tag]);
4ee86bab 801 return tags->rqs[tag];
88c7b2b7 802 }
4ee86bab
HR
803
804 return NULL;
24d2f903
CH
805}
806EXPORT_SYMBOL(blk_mq_tag_to_rq);
807
ae879912
JA
808static bool blk_mq_check_busy(struct blk_mq_hw_ctx *hctx, struct request *rq,
809 void *priv, bool reserved)
810{
811 /*
812 * If we find a request, we know the queue is busy. Return false
813 * to stop the iteration.
814 */
815 if (rq->q == hctx->queue) {
816 bool *busy = priv;
817
818 *busy = true;
819 return false;
820 }
821
822 return true;
823}
824
825bool blk_mq_queue_busy(struct request_queue *q)
826{
827 bool busy = false;
828
829 blk_mq_queue_tag_busy_iter(q, blk_mq_check_busy, &busy);
830 return busy;
831}
832EXPORT_SYMBOL_GPL(blk_mq_queue_busy);
833
358f70da 834static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 835{
da661267 836 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
837 if (req->q->mq_ops->timeout) {
838 enum blk_eh_timer_return ret;
839
840 ret = req->q->mq_ops->timeout(req, reserved);
841 if (ret == BLK_EH_DONE)
842 return;
843 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 844 }
d1210d5a
CH
845
846 blk_add_timer(req);
87ee7b11 847}
5b3f25fc 848
12f5b931 849static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 850{
12f5b931 851 unsigned long deadline;
87ee7b11 852
12f5b931
KB
853 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
854 return false;
da661267
CH
855 if (rq->rq_flags & RQF_TIMED_OUT)
856 return false;
a7af0af3 857
079076b3 858 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
859 if (time_after_eq(jiffies, deadline))
860 return true;
a7af0af3 861
12f5b931
KB
862 if (*next == 0)
863 *next = deadline;
864 else if (time_after(*next, deadline))
865 *next = deadline;
866 return false;
87ee7b11
JA
867}
868
7baa8572 869static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
870 struct request *rq, void *priv, bool reserved)
871{
12f5b931
KB
872 unsigned long *next = priv;
873
874 /*
875 * Just do a quick check if it is expired before locking the request in
876 * so we're not unnecessarilly synchronizing across CPUs.
877 */
878 if (!blk_mq_req_expired(rq, next))
7baa8572 879 return true;
12f5b931
KB
880
881 /*
882 * We have reason to believe the request may be expired. Take a
883 * reference on the request to lock this request lifetime into its
884 * currently allocated context to prevent it from being reallocated in
885 * the event the completion by-passes this timeout handler.
886 *
887 * If the reference was already released, then the driver beat the
888 * timeout handler to posting a natural completion.
889 */
890 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 891 return true;
12f5b931 892
1d9bd516 893 /*
12f5b931
KB
894 * The request is now locked and cannot be reallocated underneath the
895 * timeout handler's processing. Re-verify this exact request is truly
896 * expired; if it is not expired, then the request was completed and
897 * reallocated as a new request.
1d9bd516 898 */
12f5b931 899 if (blk_mq_req_expired(rq, next))
1d9bd516 900 blk_mq_rq_timed_out(rq, reserved);
12f5b931
KB
901 if (refcount_dec_and_test(&rq->ref))
902 __blk_mq_free_request(rq);
7baa8572
JA
903
904 return true;
1d9bd516
TH
905}
906
287922eb 907static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 908{
287922eb
CH
909 struct request_queue *q =
910 container_of(work, struct request_queue, timeout_work);
12f5b931 911 unsigned long next = 0;
1d9bd516 912 struct blk_mq_hw_ctx *hctx;
81481eb4 913 int i;
320ae51f 914
71f79fb3
GKB
915 /* A deadlock might occur if a request is stuck requiring a
916 * timeout at the same time a queue freeze is waiting
917 * completion, since the timeout code would not be able to
918 * acquire the queue reference here.
919 *
920 * That's why we don't use blk_queue_enter here; instead, we use
921 * percpu_ref_tryget directly, because we need to be able to
922 * obtain a reference even in the short window between the queue
923 * starting to freeze, by dropping the first reference in
1671d522 924 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
925 * consumed, marked by the instant q_usage_counter reaches
926 * zero.
927 */
928 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
929 return;
930
12f5b931 931 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 932
12f5b931
KB
933 if (next != 0) {
934 mod_timer(&q->timeout, next);
0d2602ca 935 } else {
fcd36c36
BVA
936 /*
937 * Request timeouts are handled as a forward rolling timer. If
938 * we end up here it means that no requests are pending and
939 * also that no request has been pending for a while. Mark
940 * each hctx as idle.
941 */
f054b56c
ML
942 queue_for_each_hw_ctx(q, hctx, i) {
943 /* the hctx may be unmapped, so check it here */
944 if (blk_mq_hw_queue_mapped(hctx))
945 blk_mq_tag_idle(hctx);
946 }
0d2602ca 947 }
287922eb 948 blk_queue_exit(q);
320ae51f
JA
949}
950
88459642
OS
951struct flush_busy_ctx_data {
952 struct blk_mq_hw_ctx *hctx;
953 struct list_head *list;
954};
955
956static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
957{
958 struct flush_busy_ctx_data *flush_data = data;
959 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
960 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
961
88459642
OS
962 spin_lock(&ctx->lock);
963 list_splice_tail_init(&ctx->rq_list, flush_data->list);
e9a99a63 964 sbitmap_clear_bit(sb, bitnr);
88459642
OS
965 spin_unlock(&ctx->lock);
966 return true;
967}
968
1429d7c9
JA
969/*
970 * Process software queues that have been marked busy, splicing them
971 * to the for-dispatch
972 */
2c3ad667 973void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 974{
88459642
OS
975 struct flush_busy_ctx_data data = {
976 .hctx = hctx,
977 .list = list,
978 };
1429d7c9 979
88459642 980 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 981}
2c3ad667 982EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 983
b347689f
ML
984struct dispatch_rq_data {
985 struct blk_mq_hw_ctx *hctx;
986 struct request *rq;
987};
988
989static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
990 void *data)
991{
992 struct dispatch_rq_data *dispatch_data = data;
993 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
994 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
995
996 spin_lock(&ctx->lock);
b4f6f38d 997 if (!list_empty(&ctx->rq_list)) {
b347689f
ML
998 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
999 list_del_init(&dispatch_data->rq->queuelist);
1000 if (list_empty(&ctx->rq_list))
1001 sbitmap_clear_bit(sb, bitnr);
1002 }
1003 spin_unlock(&ctx->lock);
1004
1005 return !dispatch_data->rq;
1006}
1007
1008struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1009 struct blk_mq_ctx *start)
1010{
f31967f0 1011 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1012 struct dispatch_rq_data data = {
1013 .hctx = hctx,
1014 .rq = NULL,
1015 };
1016
1017 __sbitmap_for_each_set(&hctx->ctx_map, off,
1018 dispatch_rq_from_ctx, &data);
1019
1020 return data.rq;
1021}
1022
703fd1c0
JA
1023static inline unsigned int queued_to_index(unsigned int queued)
1024{
1025 if (!queued)
1026 return 0;
1429d7c9 1027
703fd1c0 1028 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1029}
1030
8ab6bb9e 1031bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
1032{
1033 struct blk_mq_alloc_data data = {
1034 .q = rq->q,
ea4f995e 1035 .hctx = rq->mq_hctx,
8ab6bb9e 1036 .flags = BLK_MQ_REQ_NOWAIT,
f9afca4d 1037 .cmd_flags = rq->cmd_flags,
bd166ef1 1038 };
d263ed99 1039 bool shared;
5feeacdd 1040
81380ca1
OS
1041 if (rq->tag != -1)
1042 goto done;
bd166ef1 1043
415b806d
SG
1044 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1045 data.flags |= BLK_MQ_REQ_RESERVED;
1046
d263ed99 1047 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1048 rq->tag = blk_mq_get_tag(&data);
1049 if (rq->tag >= 0) {
d263ed99 1050 if (shared) {
200e86b3
JA
1051 rq->rq_flags |= RQF_MQ_INFLIGHT;
1052 atomic_inc(&data.hctx->nr_active);
1053 }
bd166ef1 1054 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1055 }
1056
81380ca1 1057done:
81380ca1 1058 return rq->tag != -1;
bd166ef1
JA
1059}
1060
eb619fdb
JA
1061static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1062 int flags, void *key)
da55f2cc
OS
1063{
1064 struct blk_mq_hw_ctx *hctx;
1065
1066 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1067
5815839b 1068 spin_lock(&hctx->dispatch_wait_lock);
eb619fdb 1069 list_del_init(&wait->entry);
5815839b
ML
1070 spin_unlock(&hctx->dispatch_wait_lock);
1071
da55f2cc
OS
1072 blk_mq_run_hw_queue(hctx, true);
1073 return 1;
1074}
1075
f906a6a0
JA
1076/*
1077 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1078 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1079 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1080 * marking us as waiting.
1081 */
2278d69f 1082static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1083 struct request *rq)
da55f2cc 1084{
5815839b 1085 struct wait_queue_head *wq;
f906a6a0
JA
1086 wait_queue_entry_t *wait;
1087 bool ret;
da55f2cc 1088
2278d69f
ML
1089 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1090 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1091 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
f906a6a0 1092
c27d53fb
BVA
1093 /*
1094 * It's possible that a tag was freed in the window between the
1095 * allocation failure and adding the hardware queue to the wait
1096 * queue.
1097 *
1098 * Don't clear RESTART here, someone else could have set it.
1099 * At most this will cost an extra queue run.
1100 */
8ab6bb9e 1101 return blk_mq_get_driver_tag(rq);
eb619fdb 1102 }
eb619fdb 1103
2278d69f 1104 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1105 if (!list_empty_careful(&wait->entry))
1106 return false;
1107
5815839b
ML
1108 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1109
1110 spin_lock_irq(&wq->lock);
1111 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1112 if (!list_empty(&wait->entry)) {
5815839b
ML
1113 spin_unlock(&hctx->dispatch_wait_lock);
1114 spin_unlock_irq(&wq->lock);
c27d53fb 1115 return false;
eb619fdb
JA
1116 }
1117
5815839b
ML
1118 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1119 __add_wait_queue(wq, wait);
c27d53fb 1120
da55f2cc 1121 /*
eb619fdb
JA
1122 * It's possible that a tag was freed in the window between the
1123 * allocation failure and adding the hardware queue to the wait
1124 * queue.
da55f2cc 1125 */
8ab6bb9e 1126 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1127 if (!ret) {
5815839b
ML
1128 spin_unlock(&hctx->dispatch_wait_lock);
1129 spin_unlock_irq(&wq->lock);
c27d53fb 1130 return false;
eb619fdb 1131 }
c27d53fb
BVA
1132
1133 /*
1134 * We got a tag, remove ourselves from the wait queue to ensure
1135 * someone else gets the wakeup.
1136 */
c27d53fb 1137 list_del_init(&wait->entry);
5815839b
ML
1138 spin_unlock(&hctx->dispatch_wait_lock);
1139 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1140
1141 return true;
da55f2cc
OS
1142}
1143
6e768717
ML
1144#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1145#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1146/*
1147 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1148 * - EWMA is one simple way to compute running average value
1149 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1150 * - take 4 as factor for avoiding to get too small(0) result, and this
1151 * factor doesn't matter because EWMA decreases exponentially
1152 */
1153static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1154{
1155 unsigned int ewma;
1156
1157 if (hctx->queue->elevator)
1158 return;
1159
1160 ewma = hctx->dispatch_busy;
1161
1162 if (!ewma && !busy)
1163 return;
1164
1165 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1166 if (busy)
1167 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1168 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1169
1170 hctx->dispatch_busy = ewma;
1171}
1172
86ff7c2a
ML
1173#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1174
1f57f8d4
JA
1175/*
1176 * Returns true if we did some work AND can potentially do more.
1177 */
de148297 1178bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1179 bool got_budget)
320ae51f 1180{
81380ca1 1181 struct blk_mq_hw_ctx *hctx;
6d6f167c 1182 struct request *rq, *nxt;
eb619fdb 1183 bool no_tag = false;
fc17b653 1184 int errors, queued;
86ff7c2a 1185 blk_status_t ret = BLK_STS_OK;
320ae51f 1186
81380ca1
OS
1187 if (list_empty(list))
1188 return false;
1189
de148297
ML
1190 WARN_ON(!list_is_singular(list) && got_budget);
1191
320ae51f
JA
1192 /*
1193 * Now process all the entries, sending them to the driver.
1194 */
93efe981 1195 errors = queued = 0;
81380ca1 1196 do {
74c45052 1197 struct blk_mq_queue_data bd;
320ae51f 1198
f04c3df3 1199 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1200
ea4f995e 1201 hctx = rq->mq_hctx;
0bca799b
ML
1202 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1203 break;
1204
8ab6bb9e 1205 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1206 /*
da55f2cc 1207 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1208 * rerun the hardware queue when a tag is freed. The
1209 * waitqueue takes care of that. If the queue is run
1210 * before we add this entry back on the dispatch list,
1211 * we'll re-run it below.
3c782d67 1212 */
2278d69f 1213 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1214 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1215 /*
1216 * For non-shared tags, the RESTART check
1217 * will suffice.
1218 */
1219 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1220 no_tag = true;
de148297
ML
1221 break;
1222 }
1223 }
1224
320ae51f 1225 list_del_init(&rq->queuelist);
320ae51f 1226
74c45052 1227 bd.rq = rq;
113285b4
JA
1228
1229 /*
1230 * Flag last if we have no more requests, or if we have more
1231 * but can't assign a driver tag to it.
1232 */
1233 if (list_empty(list))
1234 bd.last = true;
1235 else {
113285b4 1236 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1237 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1238 }
74c45052
JA
1239
1240 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1241 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1242 /*
1243 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1244 * driver tag for the next request already, free it
1245 * again.
6d6f167c
JW
1246 */
1247 if (!list_empty(list)) {
1248 nxt = list_first_entry(list, struct request, queuelist);
1249 blk_mq_put_driver_tag(nxt);
1250 }
f04c3df3 1251 list_add(&rq->queuelist, list);
ed0791b2 1252 __blk_mq_requeue_request(rq);
320ae51f 1253 break;
fc17b653
CH
1254 }
1255
1256 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1257 errors++;
2a842aca 1258 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1259 continue;
320ae51f
JA
1260 }
1261
fc17b653 1262 queued++;
81380ca1 1263 } while (!list_empty(list));
320ae51f 1264
703fd1c0 1265 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1266
1267 /*
1268 * Any items that need requeuing? Stuff them into hctx->dispatch,
1269 * that is where we will continue on next queue run.
1270 */
f04c3df3 1271 if (!list_empty(list)) {
86ff7c2a
ML
1272 bool needs_restart;
1273
d666ba98
JA
1274 /*
1275 * If we didn't flush the entire list, we could have told
1276 * the driver there was more coming, but that turned out to
1277 * be a lie.
1278 */
1279 if (q->mq_ops->commit_rqs)
1280 q->mq_ops->commit_rqs(hctx);
1281
320ae51f 1282 spin_lock(&hctx->lock);
c13660a0 1283 list_splice_init(list, &hctx->dispatch);
320ae51f 1284 spin_unlock(&hctx->lock);
f04c3df3 1285
9ba52e58 1286 /*
710c785f
BVA
1287 * If SCHED_RESTART was set by the caller of this function and
1288 * it is no longer set that means that it was cleared by another
1289 * thread and hence that a queue rerun is needed.
9ba52e58 1290 *
eb619fdb
JA
1291 * If 'no_tag' is set, that means that we failed getting
1292 * a driver tag with an I/O scheduler attached. If our dispatch
1293 * waitqueue is no longer active, ensure that we run the queue
1294 * AFTER adding our entries back to the list.
bd166ef1 1295 *
710c785f
BVA
1296 * If no I/O scheduler has been configured it is possible that
1297 * the hardware queue got stopped and restarted before requests
1298 * were pushed back onto the dispatch list. Rerun the queue to
1299 * avoid starvation. Notes:
1300 * - blk_mq_run_hw_queue() checks whether or not a queue has
1301 * been stopped before rerunning a queue.
1302 * - Some but not all block drivers stop a queue before
fc17b653 1303 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1304 * and dm-rq.
86ff7c2a
ML
1305 *
1306 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1307 * bit is set, run queue after a delay to avoid IO stalls
1308 * that could otherwise occur if the queue is idle.
bd166ef1 1309 */
86ff7c2a
ML
1310 needs_restart = blk_mq_sched_needs_restart(hctx);
1311 if (!needs_restart ||
eb619fdb 1312 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1313 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1314 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1315 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1316
6e768717 1317 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1318 return false;
6e768717
ML
1319 } else
1320 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1321
1f57f8d4
JA
1322 /*
1323 * If the host/device is unable to accept more work, inform the
1324 * caller of that.
1325 */
1326 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1327 return false;
1328
93efe981 1329 return (queued + errors) != 0;
f04c3df3
JA
1330}
1331
6a83e74d
BVA
1332static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1333{
1334 int srcu_idx;
1335
b7a71e66
JA
1336 /*
1337 * We should be running this queue from one of the CPUs that
1338 * are mapped to it.
7df938fb
ML
1339 *
1340 * There are at least two related races now between setting
1341 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1342 * __blk_mq_run_hw_queue():
1343 *
1344 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1345 * but later it becomes online, then this warning is harmless
1346 * at all
1347 *
1348 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1349 * but later it becomes offline, then the warning can't be
1350 * triggered, and we depend on blk-mq timeout handler to
1351 * handle dispatched requests to this hctx
b7a71e66 1352 */
7df938fb
ML
1353 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1354 cpu_online(hctx->next_cpu)) {
1355 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1356 raw_smp_processor_id(),
1357 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1358 dump_stack();
1359 }
6a83e74d 1360
b7a71e66
JA
1361 /*
1362 * We can't run the queue inline with ints disabled. Ensure that
1363 * we catch bad users of this early.
1364 */
1365 WARN_ON_ONCE(in_interrupt());
1366
04ced159 1367 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1368
04ced159
JA
1369 hctx_lock(hctx, &srcu_idx);
1370 blk_mq_sched_dispatch_requests(hctx);
1371 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1372}
1373
f82ddf19
ML
1374static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1375{
1376 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1377
1378 if (cpu >= nr_cpu_ids)
1379 cpu = cpumask_first(hctx->cpumask);
1380 return cpu;
1381}
1382
506e931f
JA
1383/*
1384 * It'd be great if the workqueue API had a way to pass
1385 * in a mask and had some smarts for more clever placement.
1386 * For now we just round-robin here, switching for every
1387 * BLK_MQ_CPU_WORK_BATCH queued items.
1388 */
1389static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1390{
7bed4595 1391 bool tried = false;
476f8c98 1392 int next_cpu = hctx->next_cpu;
7bed4595 1393
b657d7e6
CH
1394 if (hctx->queue->nr_hw_queues == 1)
1395 return WORK_CPU_UNBOUND;
506e931f
JA
1396
1397 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1398select_cpu:
476f8c98 1399 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1400 cpu_online_mask);
506e931f 1401 if (next_cpu >= nr_cpu_ids)
f82ddf19 1402 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1403 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1404 }
1405
7bed4595
ML
1406 /*
1407 * Do unbound schedule if we can't find a online CPU for this hctx,
1408 * and it should only happen in the path of handling CPU DEAD.
1409 */
476f8c98 1410 if (!cpu_online(next_cpu)) {
7bed4595
ML
1411 if (!tried) {
1412 tried = true;
1413 goto select_cpu;
1414 }
1415
1416 /*
1417 * Make sure to re-select CPU next time once after CPUs
1418 * in hctx->cpumask become online again.
1419 */
476f8c98 1420 hctx->next_cpu = next_cpu;
7bed4595
ML
1421 hctx->next_cpu_batch = 1;
1422 return WORK_CPU_UNBOUND;
1423 }
476f8c98
ML
1424
1425 hctx->next_cpu = next_cpu;
1426 return next_cpu;
506e931f
JA
1427}
1428
7587a5ae
BVA
1429static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1430 unsigned long msecs)
320ae51f 1431{
5435c023 1432 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1433 return;
1434
1b792f2f 1435 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1436 int cpu = get_cpu();
1437 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1438 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1439 put_cpu();
398205b8
PB
1440 return;
1441 }
e4043dcf 1442
2a90d4aa 1443 put_cpu();
e4043dcf 1444 }
398205b8 1445
ae943d20
BVA
1446 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1447 msecs_to_jiffies(msecs));
7587a5ae
BVA
1448}
1449
1450void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1451{
1452 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1453}
1454EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1455
79f720a7 1456bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1457{
24f5a90f
ML
1458 int srcu_idx;
1459 bool need_run;
1460
1461 /*
1462 * When queue is quiesced, we may be switching io scheduler, or
1463 * updating nr_hw_queues, or other things, and we can't run queue
1464 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1465 *
1466 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1467 * quiesced.
1468 */
04ced159
JA
1469 hctx_lock(hctx, &srcu_idx);
1470 need_run = !blk_queue_quiesced(hctx->queue) &&
1471 blk_mq_hctx_has_pending(hctx);
1472 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1473
1474 if (need_run) {
79f720a7
JA
1475 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1476 return true;
1477 }
1478
1479 return false;
320ae51f 1480}
5b727272 1481EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1482
b94ec296 1483void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1484{
1485 struct blk_mq_hw_ctx *hctx;
1486 int i;
1487
1488 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1489 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1490 continue;
1491
b94ec296 1492 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1493 }
1494}
b94ec296 1495EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1496
fd001443
BVA
1497/**
1498 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1499 * @q: request queue.
1500 *
1501 * The caller is responsible for serializing this function against
1502 * blk_mq_{start,stop}_hw_queue().
1503 */
1504bool blk_mq_queue_stopped(struct request_queue *q)
1505{
1506 struct blk_mq_hw_ctx *hctx;
1507 int i;
1508
1509 queue_for_each_hw_ctx(q, hctx, i)
1510 if (blk_mq_hctx_stopped(hctx))
1511 return true;
1512
1513 return false;
1514}
1515EXPORT_SYMBOL(blk_mq_queue_stopped);
1516
39a70c76
ML
1517/*
1518 * This function is often used for pausing .queue_rq() by driver when
1519 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1520 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1521 *
1522 * We do not guarantee that dispatch can be drained or blocked
1523 * after blk_mq_stop_hw_queue() returns. Please use
1524 * blk_mq_quiesce_queue() for that requirement.
1525 */
2719aa21
JA
1526void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1527{
641a9ed6 1528 cancel_delayed_work(&hctx->run_work);
280d45f6 1529
641a9ed6 1530 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1531}
641a9ed6 1532EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1533
39a70c76
ML
1534/*
1535 * This function is often used for pausing .queue_rq() by driver when
1536 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1537 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1538 *
1539 * We do not guarantee that dispatch can be drained or blocked
1540 * after blk_mq_stop_hw_queues() returns. Please use
1541 * blk_mq_quiesce_queue() for that requirement.
1542 */
2719aa21
JA
1543void blk_mq_stop_hw_queues(struct request_queue *q)
1544{
641a9ed6
ML
1545 struct blk_mq_hw_ctx *hctx;
1546 int i;
1547
1548 queue_for_each_hw_ctx(q, hctx, i)
1549 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1550}
1551EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1552
320ae51f
JA
1553void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1554{
1555 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1556
0ffbce80 1557 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1558}
1559EXPORT_SYMBOL(blk_mq_start_hw_queue);
1560
2f268556
CH
1561void blk_mq_start_hw_queues(struct request_queue *q)
1562{
1563 struct blk_mq_hw_ctx *hctx;
1564 int i;
1565
1566 queue_for_each_hw_ctx(q, hctx, i)
1567 blk_mq_start_hw_queue(hctx);
1568}
1569EXPORT_SYMBOL(blk_mq_start_hw_queues);
1570
ae911c5e
JA
1571void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1572{
1573 if (!blk_mq_hctx_stopped(hctx))
1574 return;
1575
1576 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1577 blk_mq_run_hw_queue(hctx, async);
1578}
1579EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1580
1b4a3258 1581void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1582{
1583 struct blk_mq_hw_ctx *hctx;
1584 int i;
1585
ae911c5e
JA
1586 queue_for_each_hw_ctx(q, hctx, i)
1587 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1588}
1589EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1590
70f4db63 1591static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1592{
1593 struct blk_mq_hw_ctx *hctx;
1594
9f993737 1595 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1596
21c6e939 1597 /*
15fe8a90 1598 * If we are stopped, don't run the queue.
21c6e939 1599 */
15fe8a90 1600 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1601 return;
7587a5ae
BVA
1602
1603 __blk_mq_run_hw_queue(hctx);
1604}
1605
cfd0c552 1606static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1607 struct request *rq,
1608 bool at_head)
320ae51f 1609{
e57690fe
JA
1610 struct blk_mq_ctx *ctx = rq->mq_ctx;
1611
7b607814
BVA
1612 lockdep_assert_held(&ctx->lock);
1613
01b983c9
JA
1614 trace_block_rq_insert(hctx->queue, rq);
1615
72a0a36e
CH
1616 if (at_head)
1617 list_add(&rq->queuelist, &ctx->rq_list);
1618 else
1619 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1620}
4bb659b1 1621
2c3ad667
JA
1622void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1623 bool at_head)
cfd0c552
ML
1624{
1625 struct blk_mq_ctx *ctx = rq->mq_ctx;
1626
7b607814
BVA
1627 lockdep_assert_held(&ctx->lock);
1628
e57690fe 1629 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1630 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1631}
1632
157f377b
JA
1633/*
1634 * Should only be used carefully, when the caller knows we want to
1635 * bypass a potential IO scheduler on the target device.
1636 */
b0850297 1637void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b 1638{
ea4f995e 1639 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1640
1641 spin_lock(&hctx->lock);
1642 list_add_tail(&rq->queuelist, &hctx->dispatch);
1643 spin_unlock(&hctx->lock);
1644
b0850297
ML
1645 if (run_queue)
1646 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1647}
1648
bd166ef1
JA
1649void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1650 struct list_head *list)
320ae51f
JA
1651
1652{
3f0cedc7
ML
1653 struct request *rq;
1654
320ae51f
JA
1655 /*
1656 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1657 * offline now
1658 */
3f0cedc7 1659 list_for_each_entry(rq, list, queuelist) {
e57690fe 1660 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1661 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1662 }
3f0cedc7
ML
1663
1664 spin_lock(&ctx->lock);
1665 list_splice_tail_init(list, &ctx->rq_list);
cfd0c552 1666 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1667 spin_unlock(&ctx->lock);
320ae51f
JA
1668}
1669
3110fc79 1670static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1671{
1672 struct request *rqa = container_of(a, struct request, queuelist);
1673 struct request *rqb = container_of(b, struct request, queuelist);
1674
3110fc79
JA
1675 if (rqa->mq_ctx < rqb->mq_ctx)
1676 return -1;
1677 else if (rqa->mq_ctx > rqb->mq_ctx)
1678 return 1;
1679 else if (rqa->mq_hctx < rqb->mq_hctx)
1680 return -1;
1681 else if (rqa->mq_hctx > rqb->mq_hctx)
1682 return 1;
1683
1684 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1685}
1686
1687void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1688{
67cae4c9 1689 struct blk_mq_hw_ctx *this_hctx;
320ae51f
JA
1690 struct blk_mq_ctx *this_ctx;
1691 struct request_queue *this_q;
1692 struct request *rq;
1693 LIST_HEAD(list);
67cae4c9 1694 LIST_HEAD(rq_list);
320ae51f
JA
1695 unsigned int depth;
1696
1697 list_splice_init(&plug->mq_list, &list);
5f0ed774 1698 plug->rq_count = 0;
320ae51f 1699
ce5b009c
JA
1700 if (plug->rq_count > 2 && plug->multiple_queues)
1701 list_sort(NULL, &list, plug_rq_cmp);
320ae51f
JA
1702
1703 this_q = NULL;
67cae4c9 1704 this_hctx = NULL;
320ae51f
JA
1705 this_ctx = NULL;
1706 depth = 0;
1707
1708 while (!list_empty(&list)) {
1709 rq = list_entry_rq(list.next);
1710 list_del_init(&rq->queuelist);
1711 BUG_ON(!rq->q);
67cae4c9
JA
1712 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1713 if (this_hctx) {
587562d0 1714 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9
JA
1715 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1716 &rq_list,
bd166ef1 1717 from_schedule);
320ae51f
JA
1718 }
1719
320ae51f 1720 this_q = rq->q;
67cae4c9
JA
1721 this_ctx = rq->mq_ctx;
1722 this_hctx = rq->mq_hctx;
320ae51f
JA
1723 depth = 0;
1724 }
1725
1726 depth++;
67cae4c9 1727 list_add_tail(&rq->queuelist, &rq_list);
320ae51f
JA
1728 }
1729
1730 /*
67cae4c9
JA
1731 * If 'this_hctx' is set, we know we have entries to complete
1732 * on 'rq_list'. Do those.
320ae51f 1733 */
67cae4c9 1734 if (this_hctx) {
587562d0 1735 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9 1736 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1737 from_schedule);
320ae51f
JA
1738 }
1739}
1740
1741static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1742{
da8d7f07 1743 blk_init_request_from_bio(rq, bio);
4b570521 1744
6e85eaf3 1745 blk_account_io_start(rq, true);
320ae51f
JA
1746}
1747
fd2d3326
JA
1748static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1749{
bd166ef1
JA
1750 if (rq->tag != -1)
1751 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1752
1753 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1754}
1755
0f95549c
MS
1756static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1757 struct request *rq,
be94f058 1758 blk_qc_t *cookie, bool last)
f984df1f 1759{
f984df1f 1760 struct request_queue *q = rq->q;
f984df1f
SL
1761 struct blk_mq_queue_data bd = {
1762 .rq = rq,
be94f058 1763 .last = last,
f984df1f 1764 };
bd166ef1 1765 blk_qc_t new_cookie;
f06345ad 1766 blk_status_t ret;
0f95549c
MS
1767
1768 new_cookie = request_to_qc_t(hctx, rq);
1769
1770 /*
1771 * For OK queue, we are done. For error, caller may kill it.
1772 * Any other error (busy), just add it to our list as we
1773 * previously would have done.
1774 */
1775 ret = q->mq_ops->queue_rq(hctx, &bd);
1776 switch (ret) {
1777 case BLK_STS_OK:
6ce3dd6e 1778 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1779 *cookie = new_cookie;
1780 break;
1781 case BLK_STS_RESOURCE:
86ff7c2a 1782 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1783 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1784 __blk_mq_requeue_request(rq);
1785 break;
1786 default:
6ce3dd6e 1787 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1788 *cookie = BLK_QC_T_NONE;
1789 break;
1790 }
1791
1792 return ret;
1793}
1794
7f556a44 1795static blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 1796 struct request *rq,
396eaf21 1797 blk_qc_t *cookie,
7f556a44 1798 bool bypass, bool last)
0f95549c
MS
1799{
1800 struct request_queue *q = rq->q;
d964f04a 1801 bool run_queue = true;
7f556a44
JW
1802 blk_status_t ret = BLK_STS_RESOURCE;
1803 int srcu_idx;
1804 bool force = false;
d964f04a 1805
7f556a44 1806 hctx_lock(hctx, &srcu_idx);
23d4ee19 1807 /*
7f556a44 1808 * hctx_lock is needed before checking quiesced flag.
23d4ee19 1809 *
7f556a44
JW
1810 * When queue is stopped or quiesced, ignore 'bypass', insert
1811 * and return BLK_STS_OK to caller, and avoid driver to try to
1812 * dispatch again.
23d4ee19 1813 */
7f556a44 1814 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
d964f04a 1815 run_queue = false;
7f556a44
JW
1816 bypass = false;
1817 goto out_unlock;
d964f04a 1818 }
f984df1f 1819
7f556a44
JW
1820 if (unlikely(q->elevator && !bypass))
1821 goto out_unlock;
2253efc8 1822
0bca799b 1823 if (!blk_mq_get_dispatch_budget(hctx))
7f556a44 1824 goto out_unlock;
bd166ef1 1825
8ab6bb9e 1826 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1827 blk_mq_put_dispatch_budget(hctx);
7f556a44 1828 goto out_unlock;
88022d72 1829 }
de148297 1830
7f556a44
JW
1831 /*
1832 * Always add a request that has been through
1833 *.queue_rq() to the hardware dispatch list.
1834 */
1835 force = true;
1836 ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1837out_unlock:
04ced159 1838 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
1839 switch (ret) {
1840 case BLK_STS_OK:
1841 break;
1842 case BLK_STS_DEV_RESOURCE:
1843 case BLK_STS_RESOURCE:
1844 if (force) {
1845 blk_mq_request_bypass_insert(rq, run_queue);
1846 /*
1847 * We have to return BLK_STS_OK for the DM
1848 * to avoid livelock. Otherwise, we return
1849 * the real result to indicate whether the
1850 * request is direct-issued successfully.
1851 */
1852 ret = bypass ? BLK_STS_OK : ret;
1853 } else if (!bypass) {
1854 blk_mq_sched_insert_request(rq, false,
1855 run_queue, false);
1856 }
1857 break;
1858 default:
1859 if (!bypass)
1860 blk_mq_end_request(rq, ret);
1861 break;
1862 }
1863
1864 return ret;
5eb6126e
CH
1865}
1866
be94f058 1867blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
396eaf21 1868{
7f556a44 1869 blk_qc_t unused;
396eaf21 1870
7f556a44 1871 return blk_mq_try_issue_directly(rq->mq_hctx, rq, &unused, true, last);
5eb6126e
CH
1872}
1873
6ce3dd6e
ML
1874void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1875 struct list_head *list)
1876{
5b7a6f12
JW
1877 blk_qc_t unused;
1878 blk_status_t ret = BLK_STS_OK;
1879
6ce3dd6e 1880 while (!list_empty(list)) {
6ce3dd6e
ML
1881 struct request *rq = list_first_entry(list, struct request,
1882 queuelist);
1883
1884 list_del_init(&rq->queuelist);
5b7a6f12
JW
1885 if (ret == BLK_STS_OK)
1886 ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1887 false,
c616cbee 1888 list_empty(list));
5b7a6f12
JW
1889 else
1890 blk_mq_sched_insert_request(rq, false, true, false);
6ce3dd6e 1891 }
d666ba98
JA
1892
1893 /*
1894 * If we didn't flush the entire list, we could have told
1895 * the driver there was more coming, but that turned out to
1896 * be a lie.
1897 */
5b7a6f12 1898 if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
d666ba98 1899 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
1900}
1901
ce5b009c
JA
1902static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1903{
1904 list_add_tail(&rq->queuelist, &plug->mq_list);
1905 plug->rq_count++;
1906 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1907 struct request *tmp;
1908
1909 tmp = list_first_entry(&plug->mq_list, struct request,
1910 queuelist);
1911 if (tmp->q != rq->q)
1912 plug->multiple_queues = true;
1913 }
1914}
1915
dece1635 1916static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1917{
ef295ecf 1918 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1919 const int is_flush_fua = op_is_flush(bio->bi_opf);
f9afca4d 1920 struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
07068d5b 1921 struct request *rq;
f984df1f 1922 struct blk_plug *plug;
5b3f341f 1923 struct request *same_queue_rq = NULL;
7b371636 1924 blk_qc_t cookie;
07068d5b
JA
1925
1926 blk_queue_bounce(q, &bio);
1927
af67c31f 1928 blk_queue_split(q, &bio);
f36ea50c 1929
e23947bd 1930 if (!bio_integrity_prep(bio))
dece1635 1931 return BLK_QC_T_NONE;
07068d5b 1932
87c279e6 1933 if (!is_flush_fua && !blk_queue_nomerges(q) &&
5f0ed774 1934 blk_attempt_plug_merge(q, bio, &same_queue_rq))
87c279e6 1935 return BLK_QC_T_NONE;
f984df1f 1936
bd166ef1
JA
1937 if (blk_mq_sched_bio_merge(q, bio))
1938 return BLK_QC_T_NONE;
1939
d5337560 1940 rq_qos_throttle(q, bio);
87760e5e 1941
f9afca4d 1942 rq = blk_mq_get_request(q, bio, &data);
87760e5e 1943 if (unlikely(!rq)) {
c1c80384 1944 rq_qos_cleanup(q, bio);
03a07c92
GR
1945 if (bio->bi_opf & REQ_NOWAIT)
1946 bio_wouldblock_error(bio);
dece1635 1947 return BLK_QC_T_NONE;
87760e5e
JA
1948 }
1949
d6f1dda2
XW
1950 trace_block_getrq(q, bio, bio->bi_opf);
1951
c1c80384 1952 rq_qos_track(q, rq, bio);
07068d5b 1953
fd2d3326 1954 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1955
f984df1f 1956 plug = current->plug;
07068d5b 1957 if (unlikely(is_flush_fua)) {
f984df1f 1958 blk_mq_put_ctx(data.ctx);
07068d5b 1959 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1960
1961 /* bypass scheduler for flush rq */
1962 blk_insert_flush(rq);
1963 blk_mq_run_hw_queue(data.hctx, true);
b2c5d16b
JA
1964 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1965 /*
1966 * Use plugging if we have a ->commit_rqs() hook as well, as
1967 * we know the driver uses bd->last in a smart fashion.
1968 */
5f0ed774 1969 unsigned int request_count = plug->rq_count;
600271d9
SL
1970 struct request *last = NULL;
1971
b00c53e8 1972 blk_mq_put_ctx(data.ctx);
e6c4438b 1973 blk_mq_bio_to_request(rq, bio);
0a6219a9 1974
676d0607 1975 if (!request_count)
e6c4438b 1976 trace_block_plug(q);
600271d9
SL
1977 else
1978 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1979
600271d9
SL
1980 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1981 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1982 blk_flush_plug_list(plug, false);
1983 trace_block_plug(q);
320ae51f 1984 }
b094f89c 1985
ce5b009c 1986 blk_add_rq_to_plug(plug, rq);
2299722c 1987 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1988 blk_mq_bio_to_request(rq, bio);
07068d5b 1989
07068d5b 1990 /*
6a83e74d 1991 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1992 * Otherwise the existing request in the plug list will be
1993 * issued. So the plug list will have one request at most
2299722c
CH
1994 * The plug list might get flushed before this. If that happens,
1995 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1996 */
2299722c
CH
1997 if (list_empty(&plug->mq_list))
1998 same_queue_rq = NULL;
4711b573 1999 if (same_queue_rq) {
2299722c 2000 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2001 plug->rq_count--;
2002 }
ce5b009c 2003 blk_add_rq_to_plug(plug, rq);
2299722c 2004
bf4907c0
JA
2005 blk_mq_put_ctx(data.ctx);
2006
dad7a3be 2007 if (same_queue_rq) {
ea4f995e 2008 data.hctx = same_queue_rq->mq_hctx;
2299722c 2009 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
7f556a44 2010 &cookie, false, true);
dad7a3be 2011 }
6ce3dd6e
ML
2012 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2013 !data.hctx->dispatch_busy)) {
bf4907c0 2014 blk_mq_put_ctx(data.ctx);
2299722c 2015 blk_mq_bio_to_request(rq, bio);
7f556a44 2016 blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
ab42f35d 2017 } else {
b00c53e8 2018 blk_mq_put_ctx(data.ctx);
ab42f35d 2019 blk_mq_bio_to_request(rq, bio);
8fa9f556 2020 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2021 }
320ae51f 2022
7b371636 2023 return cookie;
320ae51f
JA
2024}
2025
cc71a6f4
JA
2026void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2027 unsigned int hctx_idx)
95363efd 2028{
e9b267d9 2029 struct page *page;
320ae51f 2030
24d2f903 2031 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2032 int i;
320ae51f 2033
24d2f903 2034 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2035 struct request *rq = tags->static_rqs[i];
2036
2037 if (!rq)
e9b267d9 2038 continue;
d6296d39 2039 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2040 tags->static_rqs[i] = NULL;
e9b267d9 2041 }
320ae51f 2042 }
320ae51f 2043
24d2f903
CH
2044 while (!list_empty(&tags->page_list)) {
2045 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2046 list_del_init(&page->lru);
f75782e4
CM
2047 /*
2048 * Remove kmemleak object previously allocated in
2049 * blk_mq_init_rq_map().
2050 */
2051 kmemleak_free(page_address(page));
320ae51f
JA
2052 __free_pages(page, page->private);
2053 }
cc71a6f4 2054}
320ae51f 2055
cc71a6f4
JA
2056void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2057{
24d2f903 2058 kfree(tags->rqs);
cc71a6f4 2059 tags->rqs = NULL;
2af8cbe3
JA
2060 kfree(tags->static_rqs);
2061 tags->static_rqs = NULL;
320ae51f 2062
24d2f903 2063 blk_mq_free_tags(tags);
320ae51f
JA
2064}
2065
cc71a6f4
JA
2066struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2067 unsigned int hctx_idx,
2068 unsigned int nr_tags,
2069 unsigned int reserved_tags)
320ae51f 2070{
24d2f903 2071 struct blk_mq_tags *tags;
59f082e4 2072 int node;
320ae51f 2073
ed76e329 2074 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
59f082e4
SL
2075 if (node == NUMA_NO_NODE)
2076 node = set->numa_node;
2077
2078 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2079 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2080 if (!tags)
2081 return NULL;
320ae51f 2082
590b5b7d 2083 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2084 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2085 node);
24d2f903
CH
2086 if (!tags->rqs) {
2087 blk_mq_free_tags(tags);
2088 return NULL;
2089 }
320ae51f 2090
590b5b7d
KC
2091 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2092 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2093 node);
2af8cbe3
JA
2094 if (!tags->static_rqs) {
2095 kfree(tags->rqs);
2096 blk_mq_free_tags(tags);
2097 return NULL;
2098 }
2099
cc71a6f4
JA
2100 return tags;
2101}
2102
2103static size_t order_to_size(unsigned int order)
2104{
2105 return (size_t)PAGE_SIZE << order;
2106}
2107
1d9bd516
TH
2108static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2109 unsigned int hctx_idx, int node)
2110{
2111 int ret;
2112
2113 if (set->ops->init_request) {
2114 ret = set->ops->init_request(set, rq, hctx_idx, node);
2115 if (ret)
2116 return ret;
2117 }
2118
12f5b931 2119 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2120 return 0;
2121}
2122
cc71a6f4
JA
2123int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2124 unsigned int hctx_idx, unsigned int depth)
2125{
2126 unsigned int i, j, entries_per_page, max_order = 4;
2127 size_t rq_size, left;
59f082e4
SL
2128 int node;
2129
ed76e329 2130 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
59f082e4
SL
2131 if (node == NUMA_NO_NODE)
2132 node = set->numa_node;
cc71a6f4
JA
2133
2134 INIT_LIST_HEAD(&tags->page_list);
2135
320ae51f
JA
2136 /*
2137 * rq_size is the size of the request plus driver payload, rounded
2138 * to the cacheline size
2139 */
24d2f903 2140 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2141 cache_line_size());
cc71a6f4 2142 left = rq_size * depth;
320ae51f 2143
cc71a6f4 2144 for (i = 0; i < depth; ) {
320ae51f
JA
2145 int this_order = max_order;
2146 struct page *page;
2147 int to_do;
2148 void *p;
2149
b3a834b1 2150 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2151 this_order--;
2152
2153 do {
59f082e4 2154 page = alloc_pages_node(node,
36e1f3d1 2155 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2156 this_order);
320ae51f
JA
2157 if (page)
2158 break;
2159 if (!this_order--)
2160 break;
2161 if (order_to_size(this_order) < rq_size)
2162 break;
2163 } while (1);
2164
2165 if (!page)
24d2f903 2166 goto fail;
320ae51f
JA
2167
2168 page->private = this_order;
24d2f903 2169 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2170
2171 p = page_address(page);
f75782e4
CM
2172 /*
2173 * Allow kmemleak to scan these pages as they contain pointers
2174 * to additional allocations like via ops->init_request().
2175 */
36e1f3d1 2176 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2177 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2178 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2179 left -= to_do * rq_size;
2180 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2181 struct request *rq = p;
2182
2183 tags->static_rqs[i] = rq;
1d9bd516
TH
2184 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2185 tags->static_rqs[i] = NULL;
2186 goto fail;
e9b267d9
CH
2187 }
2188
320ae51f
JA
2189 p += rq_size;
2190 i++;
2191 }
2192 }
cc71a6f4 2193 return 0;
320ae51f 2194
24d2f903 2195fail:
cc71a6f4
JA
2196 blk_mq_free_rqs(set, tags, hctx_idx);
2197 return -ENOMEM;
320ae51f
JA
2198}
2199
e57690fe
JA
2200/*
2201 * 'cpu' is going away. splice any existing rq_list entries from this
2202 * software queue to the hw queue dispatch list, and ensure that it
2203 * gets run.
2204 */
9467f859 2205static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2206{
9467f859 2207 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2208 struct blk_mq_ctx *ctx;
2209 LIST_HEAD(tmp);
2210
9467f859 2211 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2212 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
2213
2214 spin_lock(&ctx->lock);
2215 if (!list_empty(&ctx->rq_list)) {
2216 list_splice_init(&ctx->rq_list, &tmp);
2217 blk_mq_hctx_clear_pending(hctx, ctx);
2218 }
2219 spin_unlock(&ctx->lock);
2220
2221 if (list_empty(&tmp))
9467f859 2222 return 0;
484b4061 2223
e57690fe
JA
2224 spin_lock(&hctx->lock);
2225 list_splice_tail_init(&tmp, &hctx->dispatch);
2226 spin_unlock(&hctx->lock);
484b4061
JA
2227
2228 blk_mq_run_hw_queue(hctx, true);
9467f859 2229 return 0;
484b4061
JA
2230}
2231
9467f859 2232static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2233{
9467f859
TG
2234 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2235 &hctx->cpuhp_dead);
484b4061
JA
2236}
2237
c3b4afca 2238/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2239static void blk_mq_exit_hctx(struct request_queue *q,
2240 struct blk_mq_tag_set *set,
2241 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2242{
8ab0b7dc
ML
2243 if (blk_mq_hw_queue_mapped(hctx))
2244 blk_mq_tag_idle(hctx);
08e98fc6 2245
f70ced09 2246 if (set->ops->exit_request)
d6296d39 2247 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2248
08e98fc6
ML
2249 if (set->ops->exit_hctx)
2250 set->ops->exit_hctx(hctx, hctx_idx);
2251
6a83e74d 2252 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2253 cleanup_srcu_struct(hctx->srcu);
6a83e74d 2254
9467f859 2255 blk_mq_remove_cpuhp(hctx);
f70ced09 2256 blk_free_flush_queue(hctx->fq);
88459642 2257 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2258}
2259
624dbe47
ML
2260static void blk_mq_exit_hw_queues(struct request_queue *q,
2261 struct blk_mq_tag_set *set, int nr_queue)
2262{
2263 struct blk_mq_hw_ctx *hctx;
2264 unsigned int i;
2265
2266 queue_for_each_hw_ctx(q, hctx, i) {
2267 if (i == nr_queue)
2268 break;
477e19de 2269 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2270 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2271 }
624dbe47
ML
2272}
2273
08e98fc6
ML
2274static int blk_mq_init_hctx(struct request_queue *q,
2275 struct blk_mq_tag_set *set,
2276 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2277{
08e98fc6
ML
2278 int node;
2279
2280 node = hctx->numa_node;
2281 if (node == NUMA_NO_NODE)
2282 node = hctx->numa_node = set->numa_node;
2283
9f993737 2284 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2285 spin_lock_init(&hctx->lock);
2286 INIT_LIST_HEAD(&hctx->dispatch);
2287 hctx->queue = q;
2404e607 2288 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2289
9467f859 2290 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2291
2292 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2293
2294 /*
08e98fc6
ML
2295 * Allocate space for all possible cpus to avoid allocation at
2296 * runtime
320ae51f 2297 */
d904bfa7 2298 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
5b202853 2299 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
08e98fc6
ML
2300 if (!hctx->ctxs)
2301 goto unregister_cpu_notifier;
320ae51f 2302
5b202853
JW
2303 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2304 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
08e98fc6 2305 goto free_ctxs;
320ae51f 2306
08e98fc6 2307 hctx->nr_ctx = 0;
320ae51f 2308
5815839b 2309 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2310 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2311 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2312
08e98fc6
ML
2313 if (set->ops->init_hctx &&
2314 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2315 goto free_bitmap;
320ae51f 2316
5b202853
JW
2317 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2318 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
f70ced09 2319 if (!hctx->fq)
d48ece20 2320 goto exit_hctx;
320ae51f 2321
1d9bd516 2322 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
f70ced09 2323 goto free_fq;
320ae51f 2324
6a83e74d 2325 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2326 init_srcu_struct(hctx->srcu);
6a83e74d 2327
08e98fc6 2328 return 0;
320ae51f 2329
f70ced09
ML
2330 free_fq:
2331 kfree(hctx->fq);
2332 exit_hctx:
2333 if (set->ops->exit_hctx)
2334 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2335 free_bitmap:
88459642 2336 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2337 free_ctxs:
2338 kfree(hctx->ctxs);
2339 unregister_cpu_notifier:
9467f859 2340 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2341 return -1;
2342}
320ae51f 2343
320ae51f
JA
2344static void blk_mq_init_cpu_queues(struct request_queue *q,
2345 unsigned int nr_hw_queues)
2346{
b3c661b1
JA
2347 struct blk_mq_tag_set *set = q->tag_set;
2348 unsigned int i, j;
320ae51f
JA
2349
2350 for_each_possible_cpu(i) {
2351 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2352 struct blk_mq_hw_ctx *hctx;
2353
320ae51f
JA
2354 __ctx->cpu = i;
2355 spin_lock_init(&__ctx->lock);
2356 INIT_LIST_HEAD(&__ctx->rq_list);
2357 __ctx->queue = q;
2358
320ae51f
JA
2359 /*
2360 * Set local node, IFF we have more than one hw queue. If
2361 * not, we remain on the home node of the device
2362 */
b3c661b1
JA
2363 for (j = 0; j < set->nr_maps; j++) {
2364 hctx = blk_mq_map_queue_type(q, j, i);
2365 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2366 hctx->numa_node = local_memory_node(cpu_to_node(i));
2367 }
320ae51f
JA
2368 }
2369}
2370
cc71a6f4
JA
2371static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2372{
2373 int ret = 0;
2374
2375 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2376 set->queue_depth, set->reserved_tags);
2377 if (!set->tags[hctx_idx])
2378 return false;
2379
2380 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2381 set->queue_depth);
2382 if (!ret)
2383 return true;
2384
2385 blk_mq_free_rq_map(set->tags[hctx_idx]);
2386 set->tags[hctx_idx] = NULL;
2387 return false;
2388}
2389
2390static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2391 unsigned int hctx_idx)
2392{
4e6db0f2 2393 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2394 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2395 blk_mq_free_rq_map(set->tags[hctx_idx]);
2396 set->tags[hctx_idx] = NULL;
2397 }
cc71a6f4
JA
2398}
2399
4b855ad3 2400static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2401{
b3c661b1 2402 unsigned int i, j, hctx_idx;
320ae51f
JA
2403 struct blk_mq_hw_ctx *hctx;
2404 struct blk_mq_ctx *ctx;
2a34c087 2405 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2406
60de074b
AM
2407 /*
2408 * Avoid others reading imcomplete hctx->cpumask through sysfs
2409 */
2410 mutex_lock(&q->sysfs_lock);
2411
320ae51f 2412 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2413 cpumask_clear(hctx->cpumask);
320ae51f 2414 hctx->nr_ctx = 0;
d416c92c 2415 hctx->dispatch_from = NULL;
320ae51f
JA
2416 }
2417
2418 /*
4b855ad3 2419 * Map software to hardware queues.
4412efec
ML
2420 *
2421 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2422 */
20e4d813 2423 for_each_possible_cpu(i) {
ed76e329 2424 hctx_idx = set->map[0].mq_map[i];
4412efec
ML
2425 /* unmapped hw queue can be remapped after CPU topo changed */
2426 if (!set->tags[hctx_idx] &&
2427 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2428 /*
2429 * If tags initialization fail for some hctx,
2430 * that hctx won't be brought online. In this
2431 * case, remap the current ctx to hctx[0] which
2432 * is guaranteed to always have tags allocated
2433 */
ed76e329 2434 set->map[0].mq_map[i] = 0;
4412efec
ML
2435 }
2436
897bb0c7 2437 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1
JA
2438 for (j = 0; j < set->nr_maps; j++) {
2439 hctx = blk_mq_map_queue_type(q, j, i);
f31967f0 2440
b3c661b1
JA
2441 /*
2442 * If the CPU is already set in the mask, then we've
2443 * mapped this one already. This can happen if
2444 * devices share queues across queue maps.
2445 */
2446 if (cpumask_test_cpu(i, hctx->cpumask))
2447 continue;
2448
2449 cpumask_set_cpu(i, hctx->cpumask);
2450 hctx->type = j;
2451 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2452 hctx->ctxs[hctx->nr_ctx++] = ctx;
2453
2454 /*
2455 * If the nr_ctx type overflows, we have exceeded the
2456 * amount of sw queues we can support.
2457 */
2458 BUG_ON(!hctx->nr_ctx);
2459 }
320ae51f 2460 }
506e931f 2461
60de074b
AM
2462 mutex_unlock(&q->sysfs_lock);
2463
506e931f 2464 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2465 /*
2466 * If no software queues are mapped to this hardware queue,
2467 * disable it and free the request entries.
2468 */
2469 if (!hctx->nr_ctx) {
2470 /* Never unmap queue 0. We need it as a
2471 * fallback in case of a new remap fails
2472 * allocation
2473 */
2474 if (i && set->tags[i])
2475 blk_mq_free_map_and_requests(set, i);
2476
2477 hctx->tags = NULL;
2478 continue;
2479 }
484b4061 2480
2a34c087
ML
2481 hctx->tags = set->tags[i];
2482 WARN_ON(!hctx->tags);
2483
889fa31f
CY
2484 /*
2485 * Set the map size to the number of mapped software queues.
2486 * This is more accurate and more efficient than looping
2487 * over all possibly mapped software queues.
2488 */
88459642 2489 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2490
484b4061
JA
2491 /*
2492 * Initialize batch roundrobin counts
2493 */
f82ddf19 2494 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2495 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2496 }
320ae51f
JA
2497}
2498
8e8320c9
JA
2499/*
2500 * Caller needs to ensure that we're either frozen/quiesced, or that
2501 * the queue isn't live yet.
2502 */
2404e607 2503static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2504{
2505 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2506 int i;
2507
2404e607 2508 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2509 if (shared)
2404e607 2510 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2511 else
2404e607
JM
2512 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2513 }
2514}
2515
8e8320c9
JA
2516static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2517 bool shared)
2404e607
JM
2518{
2519 struct request_queue *q;
0d2602ca 2520
705cda97
BVA
2521 lockdep_assert_held(&set->tag_list_lock);
2522
0d2602ca
JA
2523 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2524 blk_mq_freeze_queue(q);
2404e607 2525 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2526 blk_mq_unfreeze_queue(q);
2527 }
2528}
2529
2530static void blk_mq_del_queue_tag_set(struct request_queue *q)
2531{
2532 struct blk_mq_tag_set *set = q->tag_set;
2533
0d2602ca 2534 mutex_lock(&set->tag_list_lock);
705cda97 2535 list_del_rcu(&q->tag_set_list);
2404e607
JM
2536 if (list_is_singular(&set->tag_list)) {
2537 /* just transitioned to unshared */
2538 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2539 /* update existing queue */
2540 blk_mq_update_tag_set_depth(set, false);
2541 }
0d2602ca 2542 mutex_unlock(&set->tag_list_lock);
a347c7ad 2543 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2544}
2545
2546static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2547 struct request_queue *q)
2548{
0d2602ca 2549 mutex_lock(&set->tag_list_lock);
2404e607 2550
ff821d27
JA
2551 /*
2552 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2553 */
2554 if (!list_empty(&set->tag_list) &&
2555 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2556 set->flags |= BLK_MQ_F_TAG_SHARED;
2557 /* update existing queue */
2558 blk_mq_update_tag_set_depth(set, true);
2559 }
2560 if (set->flags & BLK_MQ_F_TAG_SHARED)
2561 queue_set_hctx_shared(q, true);
705cda97 2562 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2563
0d2602ca
JA
2564 mutex_unlock(&set->tag_list_lock);
2565}
2566
1db4909e
ML
2567/* All allocations will be freed in release handler of q->mq_kobj */
2568static int blk_mq_alloc_ctxs(struct request_queue *q)
2569{
2570 struct blk_mq_ctxs *ctxs;
2571 int cpu;
2572
2573 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2574 if (!ctxs)
2575 return -ENOMEM;
2576
2577 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2578 if (!ctxs->queue_ctx)
2579 goto fail;
2580
2581 for_each_possible_cpu(cpu) {
2582 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2583 ctx->ctxs = ctxs;
2584 }
2585
2586 q->mq_kobj = &ctxs->kobj;
2587 q->queue_ctx = ctxs->queue_ctx;
2588
2589 return 0;
2590 fail:
2591 kfree(ctxs);
2592 return -ENOMEM;
2593}
2594
e09aae7e
ML
2595/*
2596 * It is the actual release handler for mq, but we do it from
2597 * request queue's release handler for avoiding use-after-free
2598 * and headache because q->mq_kobj shouldn't have been introduced,
2599 * but we can't group ctx/kctx kobj without it.
2600 */
2601void blk_mq_release(struct request_queue *q)
2602{
2603 struct blk_mq_hw_ctx *hctx;
2604 unsigned int i;
2605
2606 /* hctx kobj stays in hctx */
c3b4afca
ML
2607 queue_for_each_hw_ctx(q, hctx, i) {
2608 if (!hctx)
2609 continue;
6c8b232e 2610 kobject_put(&hctx->kobj);
c3b4afca 2611 }
e09aae7e
ML
2612
2613 kfree(q->queue_hw_ctx);
2614
7ea5fe31
ML
2615 /*
2616 * release .mq_kobj and sw queue's kobject now because
2617 * both share lifetime with request queue.
2618 */
2619 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2620}
2621
24d2f903 2622struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2623{
2624 struct request_queue *uninit_q, *q;
2625
6d469642 2626 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
b62c21b7
MS
2627 if (!uninit_q)
2628 return ERR_PTR(-ENOMEM);
2629
2630 q = blk_mq_init_allocated_queue(set, uninit_q);
2631 if (IS_ERR(q))
2632 blk_cleanup_queue(uninit_q);
2633
2634 return q;
2635}
2636EXPORT_SYMBOL(blk_mq_init_queue);
2637
9316a9ed
JA
2638/*
2639 * Helper for setting up a queue with mq ops, given queue depth, and
2640 * the passed in mq ops flags.
2641 */
2642struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2643 const struct blk_mq_ops *ops,
2644 unsigned int queue_depth,
2645 unsigned int set_flags)
2646{
2647 struct request_queue *q;
2648 int ret;
2649
2650 memset(set, 0, sizeof(*set));
2651 set->ops = ops;
2652 set->nr_hw_queues = 1;
b3c661b1 2653 set->nr_maps = 1;
9316a9ed
JA
2654 set->queue_depth = queue_depth;
2655 set->numa_node = NUMA_NO_NODE;
2656 set->flags = set_flags;
2657
2658 ret = blk_mq_alloc_tag_set(set);
2659 if (ret)
2660 return ERR_PTR(ret);
2661
2662 q = blk_mq_init_queue(set);
2663 if (IS_ERR(q)) {
2664 blk_mq_free_tag_set(set);
2665 return q;
2666 }
2667
2668 return q;
2669}
2670EXPORT_SYMBOL(blk_mq_init_sq_queue);
2671
07319678
BVA
2672static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2673{
2674 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2675
05707b64 2676 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
07319678
BVA
2677 __alignof__(struct blk_mq_hw_ctx)) !=
2678 sizeof(struct blk_mq_hw_ctx));
2679
2680 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2681 hw_ctx_size += sizeof(struct srcu_struct);
2682
2683 return hw_ctx_size;
2684}
2685
34d11ffa
JW
2686static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2687 struct blk_mq_tag_set *set, struct request_queue *q,
2688 int hctx_idx, int node)
2689{
2690 struct blk_mq_hw_ctx *hctx;
2691
2692 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2693 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2694 node);
2695 if (!hctx)
2696 return NULL;
2697
2698 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2699 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2700 node)) {
2701 kfree(hctx);
2702 return NULL;
2703 }
2704
2705 atomic_set(&hctx->nr_active, 0);
2706 hctx->numa_node = node;
2707 hctx->queue_num = hctx_idx;
2708
2709 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2710 free_cpumask_var(hctx->cpumask);
2711 kfree(hctx);
2712 return NULL;
2713 }
2714 blk_mq_hctx_kobj_init(hctx);
2715
2716 return hctx;
2717}
2718
868f2f0b
KB
2719static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2720 struct request_queue *q)
320ae51f 2721{
e01ad46d 2722 int i, j, end;
868f2f0b 2723 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2724
fb350e0a
ML
2725 /* protect against switching io scheduler */
2726 mutex_lock(&q->sysfs_lock);
24d2f903 2727 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2728 int node;
34d11ffa 2729 struct blk_mq_hw_ctx *hctx;
868f2f0b 2730
ed76e329 2731 node = blk_mq_hw_queue_to_node(&set->map[0], i);
34d11ffa
JW
2732 /*
2733 * If the hw queue has been mapped to another numa node,
2734 * we need to realloc the hctx. If allocation fails, fallback
2735 * to use the previous one.
2736 */
2737 if (hctxs[i] && (hctxs[i]->numa_node == node))
2738 continue;
868f2f0b 2739
34d11ffa
JW
2740 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2741 if (hctx) {
2742 if (hctxs[i]) {
2743 blk_mq_exit_hctx(q, set, hctxs[i], i);
2744 kobject_put(&hctxs[i]->kobj);
2745 }
2746 hctxs[i] = hctx;
2747 } else {
2748 if (hctxs[i])
2749 pr_warn("Allocate new hctx on node %d fails,\
2750 fallback to previous one on node %d\n",
2751 node, hctxs[i]->numa_node);
2752 else
2753 break;
868f2f0b 2754 }
320ae51f 2755 }
e01ad46d
JW
2756 /*
2757 * Increasing nr_hw_queues fails. Free the newly allocated
2758 * hctxs and keep the previous q->nr_hw_queues.
2759 */
2760 if (i != set->nr_hw_queues) {
2761 j = q->nr_hw_queues;
2762 end = i;
2763 } else {
2764 j = i;
2765 end = q->nr_hw_queues;
2766 q->nr_hw_queues = set->nr_hw_queues;
2767 }
34d11ffa 2768
e01ad46d 2769 for (; j < end; j++) {
868f2f0b
KB
2770 struct blk_mq_hw_ctx *hctx = hctxs[j];
2771
2772 if (hctx) {
cc71a6f4
JA
2773 if (hctx->tags)
2774 blk_mq_free_map_and_requests(set, j);
868f2f0b 2775 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2776 kobject_put(&hctx->kobj);
868f2f0b
KB
2777 hctxs[j] = NULL;
2778
2779 }
2780 }
fb350e0a 2781 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2782}
2783
392546ae
JA
2784/*
2785 * Maximum number of hardware queues we support. For single sets, we'll never
2786 * have more than the CPUs (software queues). For multiple sets, the tag_set
2787 * user may have set ->nr_hw_queues larger.
2788 */
2789static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2790{
2791 if (set->nr_maps == 1)
2792 return nr_cpu_ids;
2793
2794 return max(set->nr_hw_queues, nr_cpu_ids);
2795}
2796
868f2f0b
KB
2797struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2798 struct request_queue *q)
2799{
66841672
ML
2800 /* mark the queue as mq asap */
2801 q->mq_ops = set->ops;
2802
34dbad5d 2803 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2804 blk_mq_poll_stats_bkt,
2805 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2806 if (!q->poll_cb)
2807 goto err_exit;
2808
1db4909e 2809 if (blk_mq_alloc_ctxs(q))
c7de5726 2810 goto err_exit;
868f2f0b 2811
737f98cf
ML
2812 /* init q->mq_kobj and sw queues' kobjects */
2813 blk_mq_sysfs_init(q);
2814
392546ae
JA
2815 q->nr_queues = nr_hw_queues(set);
2816 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
868f2f0b
KB
2817 GFP_KERNEL, set->numa_node);
2818 if (!q->queue_hw_ctx)
1db4909e 2819 goto err_sys_init;
868f2f0b 2820
868f2f0b
KB
2821 blk_mq_realloc_hw_ctxs(set, q);
2822 if (!q->nr_hw_queues)
2823 goto err_hctxs;
320ae51f 2824
287922eb 2825 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2826 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 2827
a8908939 2828 q->tag_set = set;
320ae51f 2829
94eddfbe 2830 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
6544d229
CH
2831 if (set->nr_maps > HCTX_TYPE_POLL)
2832 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 2833
05f1dd53 2834 if (!(set->flags & BLK_MQ_F_SG_MERGE))
57d74df9 2835 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
05f1dd53 2836
1be036e9
CH
2837 q->sg_reserved_size = INT_MAX;
2838
2849450a 2839 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2840 INIT_LIST_HEAD(&q->requeue_list);
2841 spin_lock_init(&q->requeue_lock);
2842
254d259d 2843 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2844
eba71768
JA
2845 /*
2846 * Do this after blk_queue_make_request() overrides it...
2847 */
2848 q->nr_requests = set->queue_depth;
2849
64f1c21e
JA
2850 /*
2851 * Default to classic polling
2852 */
2853 q->poll_nsec = -1;
2854
24d2f903 2855 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2856 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2857 blk_mq_map_swqueue(q);
4593fdbe 2858
d3484991
JA
2859 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2860 int ret;
2861
131d08e1 2862 ret = elevator_init_mq(q);
d3484991
JA
2863 if (ret)
2864 return ERR_PTR(ret);
2865 }
2866
320ae51f 2867 return q;
18741986 2868
320ae51f 2869err_hctxs:
868f2f0b 2870 kfree(q->queue_hw_ctx);
1db4909e
ML
2871err_sys_init:
2872 blk_mq_sysfs_deinit(q);
c7de5726
ML
2873err_exit:
2874 q->mq_ops = NULL;
320ae51f
JA
2875 return ERR_PTR(-ENOMEM);
2876}
b62c21b7 2877EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2878
2879void blk_mq_free_queue(struct request_queue *q)
2880{
624dbe47 2881 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2882
0d2602ca 2883 blk_mq_del_queue_tag_set(q);
624dbe47 2884 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2885}
320ae51f 2886
a5164405
JA
2887static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2888{
2889 int i;
2890
cc71a6f4
JA
2891 for (i = 0; i < set->nr_hw_queues; i++)
2892 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2893 goto out_unwind;
a5164405
JA
2894
2895 return 0;
2896
2897out_unwind:
2898 while (--i >= 0)
cc71a6f4 2899 blk_mq_free_rq_map(set->tags[i]);
a5164405 2900
a5164405
JA
2901 return -ENOMEM;
2902}
2903
2904/*
2905 * Allocate the request maps associated with this tag_set. Note that this
2906 * may reduce the depth asked for, if memory is tight. set->queue_depth
2907 * will be updated to reflect the allocated depth.
2908 */
2909static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2910{
2911 unsigned int depth;
2912 int err;
2913
2914 depth = set->queue_depth;
2915 do {
2916 err = __blk_mq_alloc_rq_maps(set);
2917 if (!err)
2918 break;
2919
2920 set->queue_depth >>= 1;
2921 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2922 err = -ENOMEM;
2923 break;
2924 }
2925 } while (set->queue_depth);
2926
2927 if (!set->queue_depth || err) {
2928 pr_err("blk-mq: failed to allocate request map\n");
2929 return -ENOMEM;
2930 }
2931
2932 if (depth != set->queue_depth)
2933 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2934 depth, set->queue_depth);
2935
2936 return 0;
2937}
2938
ebe8bddb
OS
2939static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2940{
59388702 2941 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
2942 int i;
2943
7d4901a9
ML
2944 /*
2945 * transport .map_queues is usually done in the following
2946 * way:
2947 *
2948 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2949 * mask = get_cpu_mask(queue)
2950 * for_each_cpu(cpu, mask)
b3c661b1 2951 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
2952 * }
2953 *
2954 * When we need to remap, the table has to be cleared for
2955 * killing stale mapping since one CPU may not be mapped
2956 * to any hw queue.
2957 */
b3c661b1
JA
2958 for (i = 0; i < set->nr_maps; i++)
2959 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 2960
ebe8bddb 2961 return set->ops->map_queues(set);
b3c661b1
JA
2962 } else {
2963 BUG_ON(set->nr_maps > 1);
ed76e329 2964 return blk_mq_map_queues(&set->map[0]);
b3c661b1 2965 }
ebe8bddb
OS
2966}
2967
a4391c64
JA
2968/*
2969 * Alloc a tag set to be associated with one or more request queues.
2970 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 2971 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
2972 * value will be stored in set->queue_depth.
2973 */
24d2f903
CH
2974int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2975{
b3c661b1 2976 int i, ret;
da695ba2 2977
205fb5f5
BVA
2978 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2979
24d2f903
CH
2980 if (!set->nr_hw_queues)
2981 return -EINVAL;
a4391c64 2982 if (!set->queue_depth)
24d2f903
CH
2983 return -EINVAL;
2984 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2985 return -EINVAL;
2986
7d7e0f90 2987 if (!set->ops->queue_rq)
24d2f903
CH
2988 return -EINVAL;
2989
de148297
ML
2990 if (!set->ops->get_budget ^ !set->ops->put_budget)
2991 return -EINVAL;
2992
a4391c64
JA
2993 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2994 pr_info("blk-mq: reduced tag depth to %u\n",
2995 BLK_MQ_MAX_DEPTH);
2996 set->queue_depth = BLK_MQ_MAX_DEPTH;
2997 }
24d2f903 2998
b3c661b1
JA
2999 if (!set->nr_maps)
3000 set->nr_maps = 1;
3001 else if (set->nr_maps > HCTX_MAX_TYPES)
3002 return -EINVAL;
3003
6637fadf
SL
3004 /*
3005 * If a crashdump is active, then we are potentially in a very
3006 * memory constrained environment. Limit us to 1 queue and
3007 * 64 tags to prevent using too much memory.
3008 */
3009 if (is_kdump_kernel()) {
3010 set->nr_hw_queues = 1;
59388702 3011 set->nr_maps = 1;
6637fadf
SL
3012 set->queue_depth = min(64U, set->queue_depth);
3013 }
868f2f0b 3014 /*
392546ae
JA
3015 * There is no use for more h/w queues than cpus if we just have
3016 * a single map
868f2f0b 3017 */
392546ae 3018 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3019 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3020
392546ae 3021 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
24d2f903
CH
3022 GFP_KERNEL, set->numa_node);
3023 if (!set->tags)
a5164405 3024 return -ENOMEM;
24d2f903 3025
da695ba2 3026 ret = -ENOMEM;
b3c661b1
JA
3027 for (i = 0; i < set->nr_maps; i++) {
3028 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3029 sizeof(struct blk_mq_queue_map),
3030 GFP_KERNEL, set->numa_node);
3031 if (!set->map[i].mq_map)
3032 goto out_free_mq_map;
59388702 3033 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3034 }
bdd17e75 3035
ebe8bddb 3036 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3037 if (ret)
3038 goto out_free_mq_map;
3039
3040 ret = blk_mq_alloc_rq_maps(set);
3041 if (ret)
bdd17e75 3042 goto out_free_mq_map;
24d2f903 3043
0d2602ca
JA
3044 mutex_init(&set->tag_list_lock);
3045 INIT_LIST_HEAD(&set->tag_list);
3046
24d2f903 3047 return 0;
bdd17e75
CH
3048
3049out_free_mq_map:
b3c661b1
JA
3050 for (i = 0; i < set->nr_maps; i++) {
3051 kfree(set->map[i].mq_map);
3052 set->map[i].mq_map = NULL;
3053 }
5676e7b6
RE
3054 kfree(set->tags);
3055 set->tags = NULL;
da695ba2 3056 return ret;
24d2f903
CH
3057}
3058EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3059
3060void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3061{
b3c661b1 3062 int i, j;
24d2f903 3063
392546ae 3064 for (i = 0; i < nr_hw_queues(set); i++)
cc71a6f4 3065 blk_mq_free_map_and_requests(set, i);
484b4061 3066
b3c661b1
JA
3067 for (j = 0; j < set->nr_maps; j++) {
3068 kfree(set->map[j].mq_map);
3069 set->map[j].mq_map = NULL;
3070 }
bdd17e75 3071
981bd189 3072 kfree(set->tags);
5676e7b6 3073 set->tags = NULL;
24d2f903
CH
3074}
3075EXPORT_SYMBOL(blk_mq_free_tag_set);
3076
e3a2b3f9
JA
3077int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3078{
3079 struct blk_mq_tag_set *set = q->tag_set;
3080 struct blk_mq_hw_ctx *hctx;
3081 int i, ret;
3082
bd166ef1 3083 if (!set)
e3a2b3f9
JA
3084 return -EINVAL;
3085
70f36b60 3086 blk_mq_freeze_queue(q);
24f5a90f 3087 blk_mq_quiesce_queue(q);
70f36b60 3088
e3a2b3f9
JA
3089 ret = 0;
3090 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3091 if (!hctx->tags)
3092 continue;
bd166ef1
JA
3093 /*
3094 * If we're using an MQ scheduler, just update the scheduler
3095 * queue depth. This is similar to what the old code would do.
3096 */
70f36b60 3097 if (!hctx->sched_tags) {
c2e82a23 3098 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3099 false);
3100 } else {
3101 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3102 nr, true);
3103 }
e3a2b3f9
JA
3104 if (ret)
3105 break;
3106 }
3107
3108 if (!ret)
3109 q->nr_requests = nr;
3110
24f5a90f 3111 blk_mq_unquiesce_queue(q);
70f36b60 3112 blk_mq_unfreeze_queue(q);
70f36b60 3113
e3a2b3f9
JA
3114 return ret;
3115}
3116
d48ece20
JW
3117/*
3118 * request_queue and elevator_type pair.
3119 * It is just used by __blk_mq_update_nr_hw_queues to cache
3120 * the elevator_type associated with a request_queue.
3121 */
3122struct blk_mq_qe_pair {
3123 struct list_head node;
3124 struct request_queue *q;
3125 struct elevator_type *type;
3126};
3127
3128/*
3129 * Cache the elevator_type in qe pair list and switch the
3130 * io scheduler to 'none'
3131 */
3132static bool blk_mq_elv_switch_none(struct list_head *head,
3133 struct request_queue *q)
3134{
3135 struct blk_mq_qe_pair *qe;
3136
3137 if (!q->elevator)
3138 return true;
3139
3140 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3141 if (!qe)
3142 return false;
3143
3144 INIT_LIST_HEAD(&qe->node);
3145 qe->q = q;
3146 qe->type = q->elevator->type;
3147 list_add(&qe->node, head);
3148
3149 mutex_lock(&q->sysfs_lock);
3150 /*
3151 * After elevator_switch_mq, the previous elevator_queue will be
3152 * released by elevator_release. The reference of the io scheduler
3153 * module get by elevator_get will also be put. So we need to get
3154 * a reference of the io scheduler module here to prevent it to be
3155 * removed.
3156 */
3157 __module_get(qe->type->elevator_owner);
3158 elevator_switch_mq(q, NULL);
3159 mutex_unlock(&q->sysfs_lock);
3160
3161 return true;
3162}
3163
3164static void blk_mq_elv_switch_back(struct list_head *head,
3165 struct request_queue *q)
3166{
3167 struct blk_mq_qe_pair *qe;
3168 struct elevator_type *t = NULL;
3169
3170 list_for_each_entry(qe, head, node)
3171 if (qe->q == q) {
3172 t = qe->type;
3173 break;
3174 }
3175
3176 if (!t)
3177 return;
3178
3179 list_del(&qe->node);
3180 kfree(qe);
3181
3182 mutex_lock(&q->sysfs_lock);
3183 elevator_switch_mq(q, t);
3184 mutex_unlock(&q->sysfs_lock);
3185}
3186
e4dc2b32
KB
3187static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3188 int nr_hw_queues)
868f2f0b
KB
3189{
3190 struct request_queue *q;
d48ece20 3191 LIST_HEAD(head);
e01ad46d 3192 int prev_nr_hw_queues;
868f2f0b 3193
705cda97
BVA
3194 lockdep_assert_held(&set->tag_list_lock);
3195
392546ae 3196 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b
KB
3197 nr_hw_queues = nr_cpu_ids;
3198 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3199 return;
3200
3201 list_for_each_entry(q, &set->tag_list, tag_set_list)
3202 blk_mq_freeze_queue(q);
f5bbbbe4
JW
3203 /*
3204 * Sync with blk_mq_queue_tag_busy_iter.
3205 */
3206 synchronize_rcu();
d48ece20
JW
3207 /*
3208 * Switch IO scheduler to 'none', cleaning up the data associated
3209 * with the previous scheduler. We will switch back once we are done
3210 * updating the new sw to hw queue mappings.
3211 */
3212 list_for_each_entry(q, &set->tag_list, tag_set_list)
3213 if (!blk_mq_elv_switch_none(&head, q))
3214 goto switch_back;
868f2f0b 3215
477e19de
JW
3216 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3217 blk_mq_debugfs_unregister_hctxs(q);
3218 blk_mq_sysfs_unregister(q);
3219 }
3220
e01ad46d 3221 prev_nr_hw_queues = set->nr_hw_queues;
868f2f0b 3222 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 3223 blk_mq_update_queue_map(set);
e01ad46d 3224fallback:
868f2f0b
KB
3225 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3226 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3227 if (q->nr_hw_queues != set->nr_hw_queues) {
3228 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3229 nr_hw_queues, prev_nr_hw_queues);
3230 set->nr_hw_queues = prev_nr_hw_queues;
ed76e329 3231 blk_mq_map_queues(&set->map[0]);
e01ad46d
JW
3232 goto fallback;
3233 }
477e19de
JW
3234 blk_mq_map_swqueue(q);
3235 }
3236
3237 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3238 blk_mq_sysfs_register(q);
3239 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3240 }
3241
d48ece20
JW
3242switch_back:
3243 list_for_each_entry(q, &set->tag_list, tag_set_list)
3244 blk_mq_elv_switch_back(&head, q);
3245
868f2f0b
KB
3246 list_for_each_entry(q, &set->tag_list, tag_set_list)
3247 blk_mq_unfreeze_queue(q);
3248}
e4dc2b32
KB
3249
3250void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3251{
3252 mutex_lock(&set->tag_list_lock);
3253 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3254 mutex_unlock(&set->tag_list_lock);
3255}
868f2f0b
KB
3256EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3257
34dbad5d
OS
3258/* Enable polling stats and return whether they were already enabled. */
3259static bool blk_poll_stats_enable(struct request_queue *q)
3260{
3261 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3262 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3263 return true;
3264 blk_stat_add_callback(q, q->poll_cb);
3265 return false;
3266}
3267
3268static void blk_mq_poll_stats_start(struct request_queue *q)
3269{
3270 /*
3271 * We don't arm the callback if polling stats are not enabled or the
3272 * callback is already active.
3273 */
3274 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3275 blk_stat_is_active(q->poll_cb))
3276 return;
3277
3278 blk_stat_activate_msecs(q->poll_cb, 100);
3279}
3280
3281static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3282{
3283 struct request_queue *q = cb->data;
720b8ccc 3284 int bucket;
34dbad5d 3285
720b8ccc
SB
3286 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3287 if (cb->stat[bucket].nr_samples)
3288 q->poll_stat[bucket] = cb->stat[bucket];
3289 }
34dbad5d
OS
3290}
3291
64f1c21e
JA
3292static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3293 struct blk_mq_hw_ctx *hctx,
3294 struct request *rq)
3295{
64f1c21e 3296 unsigned long ret = 0;
720b8ccc 3297 int bucket;
64f1c21e
JA
3298
3299 /*
3300 * If stats collection isn't on, don't sleep but turn it on for
3301 * future users
3302 */
34dbad5d 3303 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3304 return 0;
3305
64f1c21e
JA
3306 /*
3307 * As an optimistic guess, use half of the mean service time
3308 * for this type of request. We can (and should) make this smarter.
3309 * For instance, if the completion latencies are tight, we can
3310 * get closer than just half the mean. This is especially
3311 * important on devices where the completion latencies are longer
720b8ccc
SB
3312 * than ~10 usec. We do use the stats for the relevant IO size
3313 * if available which does lead to better estimates.
64f1c21e 3314 */
720b8ccc
SB
3315 bucket = blk_mq_poll_stats_bkt(rq);
3316 if (bucket < 0)
3317 return ret;
3318
3319 if (q->poll_stat[bucket].nr_samples)
3320 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3321
3322 return ret;
3323}
3324
06426adf 3325static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 3326 struct blk_mq_hw_ctx *hctx,
06426adf
JA
3327 struct request *rq)
3328{
3329 struct hrtimer_sleeper hs;
3330 enum hrtimer_mode mode;
64f1c21e 3331 unsigned int nsecs;
06426adf
JA
3332 ktime_t kt;
3333
76a86f9d 3334 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3335 return false;
3336
3337 /*
1052b8ac 3338 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3339 *
64f1c21e
JA
3340 * 0: use half of prev avg
3341 * >0: use this specific value
3342 */
1052b8ac 3343 if (q->poll_nsec > 0)
64f1c21e
JA
3344 nsecs = q->poll_nsec;
3345 else
3346 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3347
3348 if (!nsecs)
06426adf
JA
3349 return false;
3350
76a86f9d 3351 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3352
3353 /*
3354 * This will be replaced with the stats tracking code, using
3355 * 'avg_completion_time / 2' as the pre-sleep target.
3356 */
8b0e1953 3357 kt = nsecs;
06426adf
JA
3358
3359 mode = HRTIMER_MODE_REL;
3360 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3361 hrtimer_set_expires(&hs.timer, kt);
3362
3363 hrtimer_init_sleeper(&hs, current);
3364 do {
5a61c363 3365 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3366 break;
3367 set_current_state(TASK_UNINTERRUPTIBLE);
3368 hrtimer_start_expires(&hs.timer, mode);
3369 if (hs.task)
3370 io_schedule();
3371 hrtimer_cancel(&hs.timer);
3372 mode = HRTIMER_MODE_ABS;
3373 } while (hs.task && !signal_pending(current));
3374
3375 __set_current_state(TASK_RUNNING);
3376 destroy_hrtimer_on_stack(&hs.timer);
3377 return true;
3378}
3379
1052b8ac
JA
3380static bool blk_mq_poll_hybrid(struct request_queue *q,
3381 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3382{
1052b8ac
JA
3383 struct request *rq;
3384
3385 if (q->poll_nsec == -1)
3386 return false;
3387
3388 if (!blk_qc_t_is_internal(cookie))
3389 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3390 else {
3391 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3392 /*
3393 * With scheduling, if the request has completed, we'll
3394 * get a NULL return here, as we clear the sched tag when
3395 * that happens. The request still remains valid, like always,
3396 * so we should be safe with just the NULL check.
3397 */
3398 if (!rq)
3399 return false;
3400 }
3401
3402 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3403}
3404
529262d5
CH
3405/**
3406 * blk_poll - poll for IO completions
3407 * @q: the queue
3408 * @cookie: cookie passed back at IO submission time
3409 * @spin: whether to spin for completions
3410 *
3411 * Description:
3412 * Poll for completions on the passed in queue. Returns number of
3413 * completed entries found. If @spin is true, then blk_poll will continue
3414 * looping until at least one completion is found, unless the task is
3415 * otherwise marked running (or we need to reschedule).
3416 */
3417int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3418{
3419 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3420 long state;
3421
529262d5
CH
3422 if (!blk_qc_t_valid(cookie) ||
3423 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3424 return 0;
3425
529262d5
CH
3426 if (current->plug)
3427 blk_flush_plug_list(current->plug, false);
3428
1052b8ac
JA
3429 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3430
06426adf
JA
3431 /*
3432 * If we sleep, have the caller restart the poll loop to reset
3433 * the state. Like for the other success return cases, the
3434 * caller is responsible for checking if the IO completed. If
3435 * the IO isn't complete, we'll get called again and will go
3436 * straight to the busy poll loop.
3437 */
1052b8ac 3438 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3439 return 1;
06426adf 3440
bbd7bb70
JA
3441 hctx->poll_considered++;
3442
3443 state = current->state;
aa61bec3 3444 do {
bbd7bb70
JA
3445 int ret;
3446
3447 hctx->poll_invoked++;
3448
9743139c 3449 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3450 if (ret > 0) {
3451 hctx->poll_success++;
849a3700 3452 __set_current_state(TASK_RUNNING);
85f4d4b6 3453 return ret;
bbd7bb70
JA
3454 }
3455
3456 if (signal_pending_state(state, current))
849a3700 3457 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3458
3459 if (current->state == TASK_RUNNING)
85f4d4b6 3460 return 1;
0a1b8b87 3461 if (ret < 0 || !spin)
bbd7bb70
JA
3462 break;
3463 cpu_relax();
aa61bec3 3464 } while (!need_resched());
bbd7bb70 3465
67b4110f 3466 __set_current_state(TASK_RUNNING);
85f4d4b6 3467 return 0;
bbd7bb70 3468}
529262d5 3469EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3470
9cf2bab6
JA
3471unsigned int blk_mq_rq_cpu(struct request *rq)
3472{
3473 return rq->mq_ctx->cpu;
3474}
3475EXPORT_SYMBOL(blk_mq_rq_cpu);
3476
320ae51f
JA
3477static int __init blk_mq_init(void)
3478{
9467f859
TG
3479 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3480 blk_mq_hctx_notify_dead);
320ae51f
JA
3481 return 0;
3482}
3483subsys_initcall(blk_mq_init);