]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - block/kyber-iosched.c
perf env: Fix memory leak of bpf_prog_info_linear member
[mirror_ubuntu-hirsute-kernel.git] / block / kyber-iosched.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
00e04393
OS
2/*
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4 * scalable techniques.
5 *
6 * Copyright (C) 2017 Facebook
00e04393
OS
7 */
8
9#include <linux/kernel.h>
10#include <linux/blkdev.h>
11#include <linux/blk-mq.h>
12#include <linux/elevator.h>
13#include <linux/module.h>
14#include <linux/sbitmap.h>
15
16#include "blk.h"
17#include "blk-mq.h"
16b738f6 18#include "blk-mq-debugfs.h"
00e04393
OS
19#include "blk-mq-sched.h"
20#include "blk-mq-tag.h"
00e04393 21
6c3b7af1
OS
22#define CREATE_TRACE_POINTS
23#include <trace/events/kyber.h>
24
6e25cb01
OS
25/*
26 * Scheduling domains: the device is divided into multiple domains based on the
27 * request type.
28 */
00e04393
OS
29enum {
30 KYBER_READ,
6e25cb01
OS
31 KYBER_WRITE,
32 KYBER_DISCARD,
33 KYBER_OTHER,
00e04393
OS
34 KYBER_NUM_DOMAINS,
35};
36
6c3b7af1
OS
37static const char *kyber_domain_names[] = {
38 [KYBER_READ] = "READ",
39 [KYBER_WRITE] = "WRITE",
40 [KYBER_DISCARD] = "DISCARD",
41 [KYBER_OTHER] = "OTHER",
42};
43
00e04393 44enum {
00e04393
OS
45 /*
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
48 * operations.
49 */
50 KYBER_ASYNC_PERCENT = 75,
51};
52
53/*
6e25cb01 54 * Maximum device-wide depth for each scheduling domain.
00e04393 55 *
6e25cb01
OS
56 * Even for fast devices with lots of tags like NVMe, you can saturate the
57 * device with only a fraction of the maximum possible queue depth. So, we cap
58 * these to a reasonable value.
00e04393
OS
59 */
60static const unsigned int kyber_depth[] = {
61 [KYBER_READ] = 256,
6e25cb01
OS
62 [KYBER_WRITE] = 128,
63 [KYBER_DISCARD] = 64,
64 [KYBER_OTHER] = 16,
00e04393
OS
65};
66
67/*
6e25cb01
OS
68 * Default latency targets for each scheduling domain.
69 */
70static const u64 kyber_latency_targets[] = {
f0a0cddd
OS
71 [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
6e25cb01
OS
74};
75
76/*
77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
78 * domain.
00e04393
OS
79 */
80static const unsigned int kyber_batch_size[] = {
81 [KYBER_READ] = 16,
6e25cb01
OS
82 [KYBER_WRITE] = 8,
83 [KYBER_DISCARD] = 1,
84 [KYBER_OTHER] = 1,
85};
86
87/*
88 * Requests latencies are recorded in a histogram with buckets defined relative
89 * to the target latency:
90 *
91 * <= 1/4 * target latency
92 * <= 1/2 * target latency
93 * <= 3/4 * target latency
94 * <= target latency
95 * <= 1 1/4 * target latency
96 * <= 1 1/2 * target latency
97 * <= 1 3/4 * target latency
98 * > 1 3/4 * target latency
99 */
100enum {
101 /*
102 * The width of the latency histogram buckets is
103 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104 */
105 KYBER_LATENCY_SHIFT = 2,
106 /*
107 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108 * thus, "good".
109 */
110 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113};
114
115/*
116 * We measure both the total latency and the I/O latency (i.e., latency after
117 * submitting to the device).
118 */
119enum {
120 KYBER_TOTAL_LATENCY,
121 KYBER_IO_LATENCY,
122};
123
6c3b7af1
OS
124static const char *kyber_latency_type_names[] = {
125 [KYBER_TOTAL_LATENCY] = "total",
126 [KYBER_IO_LATENCY] = "I/O",
127};
128
6e25cb01
OS
129/*
130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131 * domain except for KYBER_OTHER.
132 */
133struct kyber_cpu_latency {
134 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
00e04393
OS
135};
136
a6088845
JW
137/*
138 * There is a same mapping between ctx & hctx and kcq & khd,
139 * we use request->mq_ctx->index_hw to index the kcq in khd.
140 */
141struct kyber_ctx_queue {
142 /*
143 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 * Also protect the rqs on rq_list when merge.
145 */
146 spinlock_t lock;
147 struct list_head rq_list[KYBER_NUM_DOMAINS];
148} ____cacheline_aligned_in_smp;
149
00e04393 150struct kyber_queue_data {
6c3b7af1
OS
151 struct request_queue *q;
152
00e04393 153 /*
6e25cb01
OS
154 * Each scheduling domain has a limited number of in-flight requests
155 * device-wide, limited by these tokens.
00e04393
OS
156 */
157 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
158
159 /*
160 * Async request percentage, converted to per-word depth for
161 * sbitmap_get_shallow().
162 */
163 unsigned int async_depth;
164
6e25cb01
OS
165 struct kyber_cpu_latency __percpu *cpu_latency;
166
167 /* Timer for stats aggregation and adjusting domain tokens. */
168 struct timer_list timer;
169
170 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
171
172 unsigned long latency_timeout[KYBER_OTHER];
173
174 int domain_p99[KYBER_OTHER];
175
00e04393 176 /* Target latencies in nanoseconds. */
6e25cb01 177 u64 latency_targets[KYBER_OTHER];
00e04393
OS
178};
179
180struct kyber_hctx_data {
181 spinlock_t lock;
182 struct list_head rqs[KYBER_NUM_DOMAINS];
183 unsigned int cur_domain;
184 unsigned int batching;
a6088845
JW
185 struct kyber_ctx_queue *kcqs;
186 struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
00203ba4 187 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
fcf38cdf 188 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
00e04393
OS
189 atomic_t wait_index[KYBER_NUM_DOMAINS];
190};
191
fcf38cdf
OS
192static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
193 void *key);
194
a6088845 195static unsigned int kyber_sched_domain(unsigned int op)
00e04393 196{
6e25cb01
OS
197 switch (op & REQ_OP_MASK) {
198 case REQ_OP_READ:
00e04393 199 return KYBER_READ;
6e25cb01
OS
200 case REQ_OP_WRITE:
201 return KYBER_WRITE;
202 case REQ_OP_DISCARD:
203 return KYBER_DISCARD;
204 default:
00e04393 205 return KYBER_OTHER;
6e25cb01 206 }
00e04393
OS
207}
208
6e25cb01
OS
209static void flush_latency_buckets(struct kyber_queue_data *kqd,
210 struct kyber_cpu_latency *cpu_latency,
211 unsigned int sched_domain, unsigned int type)
00e04393 212{
6e25cb01
OS
213 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
214 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
215 unsigned int bucket;
00e04393 216
6e25cb01
OS
217 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
218 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
00e04393
OS
219}
220
221/*
6e25cb01
OS
222 * Calculate the histogram bucket with the given percentile rank, or -1 if there
223 * aren't enough samples yet.
00e04393 224 */
6e25cb01
OS
225static int calculate_percentile(struct kyber_queue_data *kqd,
226 unsigned int sched_domain, unsigned int type,
227 unsigned int percentile)
00e04393 228{
6e25cb01
OS
229 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
230 unsigned int bucket, samples = 0, percentile_samples;
231
232 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
233 samples += buckets[bucket];
234
235 if (!samples)
236 return -1;
00e04393
OS
237
238 /*
6e25cb01
OS
239 * We do the calculation once we have 500 samples or one second passes
240 * since the first sample was recorded, whichever comes first.
00e04393 241 */
6e25cb01
OS
242 if (!kqd->latency_timeout[sched_domain])
243 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
244 if (samples < 500 &&
245 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
246 return -1;
247 }
248 kqd->latency_timeout[sched_domain] = 0;
00e04393 249
6e25cb01
OS
250 percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
251 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
252 if (buckets[bucket] >= percentile_samples)
00e04393 253 break;
6e25cb01 254 percentile_samples -= buckets[bucket];
00e04393 255 }
6e25cb01 256 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
00e04393 257
6c3b7af1
OS
258 trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
259 kyber_latency_type_names[type], percentile,
260 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
261
6e25cb01
OS
262 return bucket;
263}
264
265static void kyber_resize_domain(struct kyber_queue_data *kqd,
266 unsigned int sched_domain, unsigned int depth)
267{
00e04393 268 depth = clamp(depth, 1U, kyber_depth[sched_domain]);
6c3b7af1 269 if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
00e04393 270 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
6c3b7af1
OS
271 trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
272 depth);
273 }
00e04393
OS
274}
275
6e25cb01
OS
276static void kyber_timer_fn(struct timer_list *t)
277{
278 struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
279 unsigned int sched_domain;
280 int cpu;
281 bool bad = false;
282
283 /* Sum all of the per-cpu latency histograms. */
284 for_each_online_cpu(cpu) {
285 struct kyber_cpu_latency *cpu_latency;
286
287 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
288 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
289 flush_latency_buckets(kqd, cpu_latency, sched_domain,
290 KYBER_TOTAL_LATENCY);
291 flush_latency_buckets(kqd, cpu_latency, sched_domain,
292 KYBER_IO_LATENCY);
00e04393
OS
293 }
294 }
295
6e25cb01
OS
296 /*
297 * Check if any domains have a high I/O latency, which might indicate
298 * congestion in the device. Note that we use the p90; we don't want to
299 * be too sensitive to outliers here.
300 */
301 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
302 int p90;
00e04393 303
6e25cb01
OS
304 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
305 90);
306 if (p90 >= KYBER_GOOD_BUCKETS)
307 bad = true;
308 }
00e04393
OS
309
310 /*
6e25cb01
OS
311 * Adjust the scheduling domain depths. If we determined that there was
312 * congestion, we throttle all domains with good latencies. Either way,
313 * we ease up on throttling domains with bad latencies.
00e04393 314 */
6e25cb01
OS
315 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
316 unsigned int orig_depth, depth;
317 int p99;
318
319 p99 = calculate_percentile(kqd, sched_domain,
320 KYBER_TOTAL_LATENCY, 99);
321 /*
322 * This is kind of subtle: different domains will not
323 * necessarily have enough samples to calculate the latency
324 * percentiles during the same window, so we have to remember
325 * the p99 for the next time we observe congestion; once we do,
326 * we don't want to throttle again until we get more data, so we
327 * reset it to -1.
328 */
329 if (bad) {
330 if (p99 < 0)
331 p99 = kqd->domain_p99[sched_domain];
332 kqd->domain_p99[sched_domain] = -1;
333 } else if (p99 >= 0) {
334 kqd->domain_p99[sched_domain] = p99;
335 }
336 if (p99 < 0)
337 continue;
338
339 /*
340 * If this domain has bad latency, throttle less. Otherwise,
341 * throttle more iff we determined that there is congestion.
342 *
343 * The new depth is scaled linearly with the p99 latency vs the
344 * latency target. E.g., if the p99 is 3/4 of the target, then
345 * we throttle down to 3/4 of the current depth, and if the p99
346 * is 2x the target, then we double the depth.
347 */
348 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
349 orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
350 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
351 kyber_resize_domain(kqd, sched_domain, depth);
352 }
353 }
00e04393
OS
354}
355
6e25cb01 356static unsigned int kyber_sched_tags_shift(struct request_queue *q)
00e04393
OS
357{
358 /*
359 * All of the hardware queues have the same depth, so we can just grab
360 * the shift of the first one.
361 */
222a5ae0 362 return q->queue_hw_ctx[0]->sched_tags->bitmap_tags->sb.shift;
a6088845
JW
363}
364
00e04393
OS
365static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
366{
367 struct kyber_queue_data *kqd;
00e04393
OS
368 unsigned int shift;
369 int ret = -ENOMEM;
370 int i;
371
6e25cb01 372 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
00e04393
OS
373 if (!kqd)
374 goto err;
00e04393 375
6c3b7af1
OS
376 kqd->q = q;
377
6e25cb01
OS
378 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
379 GFP_KERNEL | __GFP_ZERO);
380 if (!kqd->cpu_latency)
00e04393
OS
381 goto err_kqd;
382
6e25cb01
OS
383 timer_setup(&kqd->timer, kyber_timer_fn, 0);
384
00e04393
OS
385 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
386 WARN_ON(!kyber_depth[i]);
387 WARN_ON(!kyber_batch_size[i]);
388 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
fa2a1f60
OS
389 kyber_depth[i], -1, false,
390 GFP_KERNEL, q->node);
00e04393
OS
391 if (ret) {
392 while (--i >= 0)
393 sbitmap_queue_free(&kqd->domain_tokens[i]);
6e25cb01 394 goto err_buckets;
00e04393 395 }
00e04393
OS
396 }
397
6e25cb01
OS
398 for (i = 0; i < KYBER_OTHER; i++) {
399 kqd->domain_p99[i] = -1;
400 kqd->latency_targets[i] = kyber_latency_targets[i];
401 }
00e04393 402
6e25cb01
OS
403 shift = kyber_sched_tags_shift(q);
404 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
00e04393
OS
405
406 return kqd;
407
6e25cb01
OS
408err_buckets:
409 free_percpu(kqd->cpu_latency);
00e04393
OS
410err_kqd:
411 kfree(kqd);
412err:
413 return ERR_PTR(ret);
414}
415
416static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
417{
418 struct kyber_queue_data *kqd;
419 struct elevator_queue *eq;
420
421 eq = elevator_alloc(q, e);
422 if (!eq)
423 return -ENOMEM;
424
425 kqd = kyber_queue_data_alloc(q);
426 if (IS_ERR(kqd)) {
427 kobject_put(&eq->kobj);
428 return PTR_ERR(kqd);
429 }
430
6e25cb01
OS
431 blk_stat_enable_accounting(q);
432
00e04393
OS
433 eq->elevator_data = kqd;
434 q->elevator = eq;
435
00e04393
OS
436 return 0;
437}
438
439static void kyber_exit_sched(struct elevator_queue *e)
440{
441 struct kyber_queue_data *kqd = e->elevator_data;
00e04393
OS
442 int i;
443
6e25cb01 444 del_timer_sync(&kqd->timer);
00e04393
OS
445
446 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
447 sbitmap_queue_free(&kqd->domain_tokens[i]);
6e25cb01 448 free_percpu(kqd->cpu_latency);
00e04393
OS
449 kfree(kqd);
450}
451
a6088845
JW
452static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
453{
454 unsigned int i;
455
456 spin_lock_init(&kcq->lock);
457 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
458 INIT_LIST_HEAD(&kcq->rq_list[i]);
459}
460
00e04393
OS
461static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
462{
28820640 463 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
00e04393
OS
464 struct kyber_hctx_data *khd;
465 int i;
466
467 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
468 if (!khd)
469 return -ENOMEM;
470
a6088845
JW
471 khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
472 sizeof(struct kyber_ctx_queue),
473 GFP_KERNEL, hctx->numa_node);
474 if (!khd->kcqs)
475 goto err_khd;
476
477 for (i = 0; i < hctx->nr_ctx; i++)
478 kyber_ctx_queue_init(&khd->kcqs[i]);
479
480 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
481 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
482 ilog2(8), GFP_KERNEL, hctx->numa_node)) {
483 while (--i >= 0)
484 sbitmap_free(&khd->kcq_map[i]);
485 goto err_kcqs;
486 }
487 }
488
00e04393
OS
489 spin_lock_init(&khd->lock);
490
491 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
492 INIT_LIST_HEAD(&khd->rqs[i]);
00203ba4
JA
493 khd->domain_wait[i].sbq = NULL;
494 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
fcf38cdf 495 kyber_domain_wake);
00203ba4
JA
496 khd->domain_wait[i].wait.private = hctx;
497 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
00e04393
OS
498 atomic_set(&khd->wait_index[i], 0);
499 }
500
501 khd->cur_domain = 0;
502 khd->batching = 0;
503
504 hctx->sched_data = khd;
222a5ae0 505 sbitmap_queue_min_shallow_depth(hctx->sched_tags->bitmap_tags,
28820640 506 kqd->async_depth);
00e04393
OS
507
508 return 0;
a6088845
JW
509
510err_kcqs:
511 kfree(khd->kcqs);
512err_khd:
513 kfree(khd);
514 return -ENOMEM;
00e04393
OS
515}
516
517static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
518{
a6088845
JW
519 struct kyber_hctx_data *khd = hctx->sched_data;
520 int i;
521
522 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
523 sbitmap_free(&khd->kcq_map[i]);
524 kfree(khd->kcqs);
00e04393
OS
525 kfree(hctx->sched_data);
526}
527
528static int rq_get_domain_token(struct request *rq)
529{
530 return (long)rq->elv.priv[0];
531}
532
533static void rq_set_domain_token(struct request *rq, int token)
534{
535 rq->elv.priv[0] = (void *)(long)token;
536}
537
538static void rq_clear_domain_token(struct kyber_queue_data *kqd,
539 struct request *rq)
540{
541 unsigned int sched_domain;
542 int nr;
543
544 nr = rq_get_domain_token(rq);
545 if (nr != -1) {
a6088845 546 sched_domain = kyber_sched_domain(rq->cmd_flags);
00e04393
OS
547 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
548 rq->mq_ctx->cpu);
549 }
550}
551
5bbf4e5a 552static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
00e04393 553{
00e04393
OS
554 /*
555 * We use the scheduler tags as per-hardware queue queueing tokens.
556 * Async requests can be limited at this stage.
557 */
5bbf4e5a
CH
558 if (!op_is_sync(op)) {
559 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
560
00e04393 561 data->shallow_depth = kqd->async_depth;
5bbf4e5a
CH
562 }
563}
00e04393 564
53c4cd1c 565static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
14ccb66b 566 unsigned int nr_segs)
a6088845 567{
53c4cd1c
OS
568 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
569 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
a6088845 570 struct kyber_hctx_data *khd = hctx->sched_data;
f31967f0 571 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
a6088845
JW
572 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
573 struct list_head *rq_list = &kcq->rq_list[sched_domain];
574 bool merged;
575
576 spin_lock(&kcq->lock);
bdc6a287 577 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
a6088845 578 spin_unlock(&kcq->lock);
a6088845
JW
579
580 return merged;
581}
582
5d9c305b 583static void kyber_prepare_request(struct request *rq)
5bbf4e5a
CH
584{
585 rq_set_domain_token(rq, -1);
00e04393
OS
586}
587
a6088845
JW
588static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
589 struct list_head *rq_list, bool at_head)
590{
591 struct kyber_hctx_data *khd = hctx->sched_data;
592 struct request *rq, *next;
593
594 list_for_each_entry_safe(rq, next, rq_list, queuelist) {
595 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
f31967f0 596 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
a6088845
JW
597 struct list_head *head = &kcq->rq_list[sched_domain];
598
599 spin_lock(&kcq->lock);
600 if (at_head)
601 list_move(&rq->queuelist, head);
602 else
603 list_move_tail(&rq->queuelist, head);
604 sbitmap_set_bit(&khd->kcq_map[sched_domain],
f31967f0 605 rq->mq_ctx->index_hw[hctx->type]);
a6088845
JW
606 blk_mq_sched_request_inserted(rq);
607 spin_unlock(&kcq->lock);
608 }
609}
610
7b9e9361 611static void kyber_finish_request(struct request *rq)
00e04393 612{
7b9e9361 613 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
00e04393
OS
614
615 rq_clear_domain_token(kqd, rq);
00e04393
OS
616}
617
6e25cb01
OS
618static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
619 unsigned int sched_domain, unsigned int type,
620 u64 target, u64 latency)
00e04393 621{
6e25cb01
OS
622 unsigned int bucket;
623 u64 divisor;
00e04393 624
6e25cb01
OS
625 if (latency > 0) {
626 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
627 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
628 KYBER_LATENCY_BUCKETS - 1);
629 } else {
630 bucket = 0;
00e04393
OS
631 }
632
6e25cb01
OS
633 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
634}
00e04393 635
6e25cb01
OS
636static void kyber_completed_request(struct request *rq, u64 now)
637{
638 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
639 struct kyber_cpu_latency *cpu_latency;
640 unsigned int sched_domain;
641 u64 target;
642
643 sched_domain = kyber_sched_domain(rq->cmd_flags);
644 if (sched_domain == KYBER_OTHER)
00e04393
OS
645 return;
646
6e25cb01
OS
647 cpu_latency = get_cpu_ptr(kqd->cpu_latency);
648 target = kqd->latency_targets[sched_domain];
649 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
650 target, now - rq->start_time_ns);
651 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
652 now - rq->io_start_time_ns);
653 put_cpu_ptr(kqd->cpu_latency);
00e04393 654
6e25cb01 655 timer_reduce(&kqd->timer, jiffies + HZ / 10);
00e04393
OS
656}
657
a6088845
JW
658struct flush_kcq_data {
659 struct kyber_hctx_data *khd;
660 unsigned int sched_domain;
661 struct list_head *list;
662};
663
664static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
00e04393 665{
a6088845
JW
666 struct flush_kcq_data *flush_data = data;
667 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
00e04393 668
a6088845
JW
669 spin_lock(&kcq->lock);
670 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
671 flush_data->list);
672 sbitmap_clear_bit(sb, bitnr);
673 spin_unlock(&kcq->lock);
00e04393 674
a6088845
JW
675 return true;
676}
677
678static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
679 unsigned int sched_domain,
680 struct list_head *list)
681{
682 struct flush_kcq_data data = {
683 .khd = khd,
684 .sched_domain = sched_domain,
685 .list = list,
686 };
687
688 sbitmap_for_each_set(&khd->kcq_map[sched_domain],
689 flush_busy_kcq, &data);
00e04393
OS
690}
691
00203ba4 692static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
00e04393
OS
693 void *key)
694{
00203ba4
JA
695 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
696 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
00e04393 697
00203ba4 698 sbitmap_del_wait_queue(wait);
00e04393
OS
699 blk_mq_run_hw_queue(hctx, true);
700 return 1;
701}
702
703static int kyber_get_domain_token(struct kyber_queue_data *kqd,
704 struct kyber_hctx_data *khd,
705 struct blk_mq_hw_ctx *hctx)
706{
707 unsigned int sched_domain = khd->cur_domain;
708 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
00203ba4 709 struct sbq_wait *wait = &khd->domain_wait[sched_domain];
00e04393
OS
710 struct sbq_wait_state *ws;
711 int nr;
712
713 nr = __sbitmap_queue_get(domain_tokens);
00e04393
OS
714
715 /*
716 * If we failed to get a domain token, make sure the hardware queue is
717 * run when one becomes available. Note that this is serialized on
718 * khd->lock, but we still need to be careful about the waker.
719 */
00203ba4 720 if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
00e04393
OS
721 ws = sbq_wait_ptr(domain_tokens,
722 &khd->wait_index[sched_domain]);
fcf38cdf 723 khd->domain_ws[sched_domain] = ws;
00203ba4 724 sbitmap_add_wait_queue(domain_tokens, ws, wait);
00e04393
OS
725
726 /*
727 * Try again in case a token was freed before we got on the wait
fcf38cdf 728 * queue.
00e04393
OS
729 */
730 nr = __sbitmap_queue_get(domain_tokens);
fcf38cdf 731 }
8cf46660 732
fcf38cdf
OS
733 /*
734 * If we got a token while we were on the wait queue, remove ourselves
735 * from the wait queue to ensure that all wake ups make forward
736 * progress. It's possible that the waker already deleted the entry
737 * between the !list_empty_careful() check and us grabbing the lock, but
738 * list_del_init() is okay with that.
739 */
00203ba4 740 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
fcf38cdf
OS
741 ws = khd->domain_ws[sched_domain];
742 spin_lock_irq(&ws->wait.lock);
00203ba4 743 sbitmap_del_wait_queue(wait);
fcf38cdf 744 spin_unlock_irq(&ws->wait.lock);
00e04393 745 }
fcf38cdf 746
00e04393
OS
747 return nr;
748}
749
750static struct request *
751kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
752 struct kyber_hctx_data *khd,
a6088845 753 struct blk_mq_hw_ctx *hctx)
00e04393
OS
754{
755 struct list_head *rqs;
756 struct request *rq;
757 int nr;
758
759 rqs = &khd->rqs[khd->cur_domain];
00e04393
OS
760
761 /*
a6088845
JW
762 * If we already have a flushed request, then we just need to get a
763 * token for it. Otherwise, if there are pending requests in the kcqs,
764 * flush the kcqs, but only if we can get a token. If not, we should
765 * leave the requests in the kcqs so that they can be merged. Note that
766 * khd->lock serializes the flushes, so if we observed any bit set in
767 * the kcq_map, we will always get a request.
00e04393 768 */
a6088845 769 rq = list_first_entry_or_null(rqs, struct request, queuelist);
00e04393
OS
770 if (rq) {
771 nr = kyber_get_domain_token(kqd, khd, hctx);
772 if (nr >= 0) {
773 khd->batching++;
774 rq_set_domain_token(rq, nr);
775 list_del_init(&rq->queuelist);
776 return rq;
6c3b7af1
OS
777 } else {
778 trace_kyber_throttled(kqd->q,
779 kyber_domain_names[khd->cur_domain]);
00e04393 780 }
a6088845
JW
781 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
782 nr = kyber_get_domain_token(kqd, khd, hctx);
783 if (nr >= 0) {
784 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
785 rq = list_first_entry(rqs, struct request, queuelist);
786 khd->batching++;
787 rq_set_domain_token(rq, nr);
788 list_del_init(&rq->queuelist);
789 return rq;
6c3b7af1
OS
790 } else {
791 trace_kyber_throttled(kqd->q,
792 kyber_domain_names[khd->cur_domain]);
a6088845 793 }
00e04393
OS
794 }
795
796 /* There were either no pending requests or no tokens. */
797 return NULL;
798}
799
800static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
801{
802 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
803 struct kyber_hctx_data *khd = hctx->sched_data;
00e04393
OS
804 struct request *rq;
805 int i;
806
807 spin_lock(&khd->lock);
808
809 /*
810 * First, if we are still entitled to batch, try to dispatch a request
811 * from the batch.
812 */
813 if (khd->batching < kyber_batch_size[khd->cur_domain]) {
a6088845 814 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
00e04393
OS
815 if (rq)
816 goto out;
817 }
818
819 /*
820 * Either,
821 * 1. We were no longer entitled to a batch.
822 * 2. The domain we were batching didn't have any requests.
823 * 3. The domain we were batching was out of tokens.
824 *
825 * Start another batch. Note that this wraps back around to the original
826 * domain if no other domains have requests or tokens.
827 */
828 khd->batching = 0;
829 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
830 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
831 khd->cur_domain = 0;
832 else
833 khd->cur_domain++;
834
a6088845 835 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
00e04393
OS
836 if (rq)
837 goto out;
838 }
839
840 rq = NULL;
841out:
842 spin_unlock(&khd->lock);
843 return rq;
844}
845
846static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
847{
848 struct kyber_hctx_data *khd = hctx->sched_data;
849 int i;
850
851 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
a6088845
JW
852 if (!list_empty_careful(&khd->rqs[i]) ||
853 sbitmap_any_bit_set(&khd->kcq_map[i]))
00e04393
OS
854 return true;
855 }
a6088845
JW
856
857 return false;
00e04393
OS
858}
859
6e25cb01
OS
860#define KYBER_LAT_SHOW_STORE(domain, name) \
861static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
862 char *page) \
00e04393
OS
863{ \
864 struct kyber_queue_data *kqd = e->elevator_data; \
865 \
6e25cb01 866 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
00e04393
OS
867} \
868 \
6e25cb01
OS
869static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
870 const char *page, size_t count) \
00e04393
OS
871{ \
872 struct kyber_queue_data *kqd = e->elevator_data; \
873 unsigned long long nsec; \
874 int ret; \
875 \
876 ret = kstrtoull(page, 10, &nsec); \
877 if (ret) \
878 return ret; \
879 \
6e25cb01 880 kqd->latency_targets[domain] = nsec; \
00e04393
OS
881 \
882 return count; \
883}
6e25cb01
OS
884KYBER_LAT_SHOW_STORE(KYBER_READ, read);
885KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
00e04393
OS
886#undef KYBER_LAT_SHOW_STORE
887
888#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
889static struct elv_fs_entry kyber_sched_attrs[] = {
890 KYBER_LAT_ATTR(read),
891 KYBER_LAT_ATTR(write),
892 __ATTR_NULL
893};
894#undef KYBER_LAT_ATTR
895
16b738f6
OS
896#ifdef CONFIG_BLK_DEBUG_FS
897#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
898static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
899{ \
900 struct request_queue *q = data; \
901 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
902 \
903 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
904 return 0; \
905} \
906 \
907static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
908 __acquires(&khd->lock) \
909{ \
910 struct blk_mq_hw_ctx *hctx = m->private; \
911 struct kyber_hctx_data *khd = hctx->sched_data; \
912 \
913 spin_lock(&khd->lock); \
914 return seq_list_start(&khd->rqs[domain], *pos); \
915} \
916 \
917static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
918 loff_t *pos) \
919{ \
920 struct blk_mq_hw_ctx *hctx = m->private; \
921 struct kyber_hctx_data *khd = hctx->sched_data; \
922 \
923 return seq_list_next(v, &khd->rqs[domain], pos); \
924} \
925 \
926static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
927 __releases(&khd->lock) \
928{ \
929 struct blk_mq_hw_ctx *hctx = m->private; \
930 struct kyber_hctx_data *khd = hctx->sched_data; \
931 \
932 spin_unlock(&khd->lock); \
933} \
934 \
935static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
936 .start = kyber_##name##_rqs_start, \
937 .next = kyber_##name##_rqs_next, \
938 .stop = kyber_##name##_rqs_stop, \
939 .show = blk_mq_debugfs_rq_show, \
940}; \
941 \
942static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
943{ \
944 struct blk_mq_hw_ctx *hctx = data; \
945 struct kyber_hctx_data *khd = hctx->sched_data; \
00203ba4 946 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \
16b738f6 947 \
2055da97 948 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
16b738f6
OS
949 return 0; \
950}
951KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
6e25cb01
OS
952KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
16b738f6
OS
954KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
955#undef KYBER_DEBUGFS_DOMAIN_ATTRS
956
957static int kyber_async_depth_show(void *data, struct seq_file *m)
958{
959 struct request_queue *q = data;
960 struct kyber_queue_data *kqd = q->elevator->elevator_data;
961
962 seq_printf(m, "%u\n", kqd->async_depth);
963 return 0;
964}
965
966static int kyber_cur_domain_show(void *data, struct seq_file *m)
967{
968 struct blk_mq_hw_ctx *hctx = data;
969 struct kyber_hctx_data *khd = hctx->sched_data;
970
6c3b7af1 971 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
16b738f6
OS
972 return 0;
973}
974
975static int kyber_batching_show(void *data, struct seq_file *m)
976{
977 struct blk_mq_hw_ctx *hctx = data;
978 struct kyber_hctx_data *khd = hctx->sched_data;
979
980 seq_printf(m, "%u\n", khd->batching);
981 return 0;
982}
983
984#define KYBER_QUEUE_DOMAIN_ATTRS(name) \
985 {#name "_tokens", 0400, kyber_##name##_tokens_show}
986static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
987 KYBER_QUEUE_DOMAIN_ATTRS(read),
6e25cb01
OS
988 KYBER_QUEUE_DOMAIN_ATTRS(write),
989 KYBER_QUEUE_DOMAIN_ATTRS(discard),
16b738f6
OS
990 KYBER_QUEUE_DOMAIN_ATTRS(other),
991 {"async_depth", 0400, kyber_async_depth_show},
992 {},
993};
994#undef KYBER_QUEUE_DOMAIN_ATTRS
995
996#define KYBER_HCTX_DOMAIN_ATTRS(name) \
997 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
998 {#name "_waiting", 0400, kyber_##name##_waiting_show}
999static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1000 KYBER_HCTX_DOMAIN_ATTRS(read),
6e25cb01
OS
1001 KYBER_HCTX_DOMAIN_ATTRS(write),
1002 KYBER_HCTX_DOMAIN_ATTRS(discard),
16b738f6
OS
1003 KYBER_HCTX_DOMAIN_ATTRS(other),
1004 {"cur_domain", 0400, kyber_cur_domain_show},
1005 {"batching", 0400, kyber_batching_show},
1006 {},
1007};
1008#undef KYBER_HCTX_DOMAIN_ATTRS
1009#endif
1010
00e04393 1011static struct elevator_type kyber_sched = {
f9cd4bfe 1012 .ops = {
00e04393
OS
1013 .init_sched = kyber_init_sched,
1014 .exit_sched = kyber_exit_sched,
1015 .init_hctx = kyber_init_hctx,
1016 .exit_hctx = kyber_exit_hctx,
5bbf4e5a 1017 .limit_depth = kyber_limit_depth,
a6088845 1018 .bio_merge = kyber_bio_merge,
5bbf4e5a 1019 .prepare_request = kyber_prepare_request,
a6088845 1020 .insert_requests = kyber_insert_requests,
7b9e9361 1021 .finish_request = kyber_finish_request,
ba989a01 1022 .requeue_request = kyber_finish_request,
00e04393
OS
1023 .completed_request = kyber_completed_request,
1024 .dispatch_request = kyber_dispatch_request,
1025 .has_work = kyber_has_work,
1026 },
16b738f6
OS
1027#ifdef CONFIG_BLK_DEBUG_FS
1028 .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1029 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1030#endif
00e04393
OS
1031 .elevator_attrs = kyber_sched_attrs,
1032 .elevator_name = "kyber",
1033 .elevator_owner = THIS_MODULE,
1034};
1035
1036static int __init kyber_init(void)
1037{
1038 return elv_register(&kyber_sched);
1039}
1040
1041static void __exit kyber_exit(void)
1042{
1043 elv_unregister(&kyber_sched);
1044}
1045
1046module_init(kyber_init);
1047module_exit(kyber_exit);
1048
1049MODULE_AUTHOR("Omar Sandoval");
1050MODULE_LICENSE("GPL");
1051MODULE_DESCRIPTION("Kyber I/O scheduler");