]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_passes/src/region.rs
New upstream version 1.55.0+dfsg1
[rustc.git] / compiler / rustc_passes / src / region.rs
CommitLineData
dfeec247
XL
1//! This file builds up the `ScopeTree`, which describes
2//! the parent links in the region hierarchy.
3//!
4//! For more information about how MIR-based region-checking works,
ba9703b0 5//! see the [rustc dev guide].
dfeec247 6//!
ba9703b0 7//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html
dfeec247 8
74b04a01 9use rustc_ast::walk_list;
dfeec247
XL
10use rustc_data_structures::fx::FxHashSet;
11use rustc_hir as hir;
12use rustc_hir::def_id::DefId;
13use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
14use rustc_hir::{Arm, Block, Expr, Local, Node, Pat, PatKind, Stmt};
15use rustc_index::vec::Idx;
ba9703b0
XL
16use rustc_middle::middle::region::*;
17use rustc_middle::ty::query::Providers;
18use rustc_middle::ty::TyCtxt;
dfeec247
XL
19use rustc_span::source_map;
20use rustc_span::Span;
dfeec247
XL
21
22use std::mem;
23
24#[derive(Debug, Copy, Clone)]
25pub struct Context {
dfeec247
XL
26 /// The scope that contains any new variables declared, plus its depth in
27 /// the scope tree.
28 var_parent: Option<(Scope, ScopeDepth)>,
29
30 /// Region parent of expressions, etc., plus its depth in the scope tree.
31 parent: Option<(Scope, ScopeDepth)>,
32}
33
34struct RegionResolutionVisitor<'tcx> {
35 tcx: TyCtxt<'tcx>,
36
37 // The number of expressions and patterns visited in the current body.
38 expr_and_pat_count: usize,
39 // When this is `true`, we record the `Scopes` we encounter
40 // when processing a Yield expression. This allows us to fix
41 // up their indices.
42 pessimistic_yield: bool,
43 // Stores scopes when `pessimistic_yield` is `true`.
44 fixup_scopes: Vec<Scope>,
45 // The generated scope tree.
46 scope_tree: ScopeTree,
47
48 cx: Context,
49
50 /// `terminating_scopes` is a set containing the ids of each
51 /// statement, or conditional/repeating expression. These scopes
52 /// are calling "terminating scopes" because, when attempting to
53 /// find the scope of a temporary, by default we search up the
54 /// enclosing scopes until we encounter the terminating scope. A
55 /// conditional/repeating expression is one which is not
56 /// guaranteed to execute exactly once upon entering the parent
57 /// scope. This could be because the expression only executes
58 /// conditionally, such as the expression `b` in `a && b`, or
59 /// because the expression may execute many times, such as a loop
60 /// body. The reason that we distinguish such expressions is that,
61 /// upon exiting the parent scope, we cannot statically know how
62 /// many times the expression executed, and thus if the expression
63 /// creates temporaries we cannot know statically how many such
64 /// temporaries we would have to cleanup. Therefore, we ensure that
65 /// the temporaries never outlast the conditional/repeating
66 /// expression, preventing the need for dynamic checks and/or
67 /// arbitrary amounts of stack space. Terminating scopes end
68 /// up being contained in a DestructionScope that contains the
69 /// destructor's execution.
70 terminating_scopes: FxHashSet<hir::ItemLocalId>,
71}
72
73/// Records the lifetime of a local variable as `cx.var_parent`
74fn record_var_lifetime(
75 visitor: &mut RegionResolutionVisitor<'_>,
76 var_id: hir::ItemLocalId,
77 _sp: Span,
78) {
79 match visitor.cx.var_parent {
80 None => {
81 // this can happen in extern fn declarations like
82 //
83 // extern fn isalnum(c: c_int) -> c_int
84 }
85 Some((parent_scope, _)) => visitor.scope_tree.record_var_scope(var_id, parent_scope),
86 }
87}
88
89fn resolve_block<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, blk: &'tcx hir::Block<'tcx>) {
90 debug!("resolve_block(blk.hir_id={:?})", blk.hir_id);
91
92 let prev_cx = visitor.cx;
93
94 // We treat the tail expression in the block (if any) somewhat
95 // differently from the statements. The issue has to do with
96 // temporary lifetimes. Consider the following:
97 //
98 // quux({
99 // let inner = ... (&bar()) ...;
100 //
101 // (... (&foo()) ...) // (the tail expression)
102 // }, other_argument());
103 //
104 // Each of the statements within the block is a terminating
105 // scope, and thus a temporary (e.g., the result of calling
106 // `bar()` in the initializer expression for `let inner = ...;`)
107 // will be cleaned up immediately after its corresponding
108 // statement (i.e., `let inner = ...;`) executes.
109 //
110 // On the other hand, temporaries associated with evaluating the
111 // tail expression for the block are assigned lifetimes so that
112 // they will be cleaned up as part of the terminating scope
113 // *surrounding* the block expression. Here, the terminating
114 // scope for the block expression is the `quux(..)` call; so
115 // those temporaries will only be cleaned up *after* both
116 // `other_argument()` has run and also the call to `quux(..)`
117 // itself has returned.
118
119 visitor.enter_node_scope_with_dtor(blk.hir_id.local_id);
120 visitor.cx.var_parent = visitor.cx.parent;
121
122 {
123 // This block should be kept approximately in sync with
124 // `intravisit::walk_block`. (We manually walk the block, rather
125 // than call `walk_block`, in order to maintain precise
126 // index information.)
127
128 for (i, statement) in blk.stmts.iter().enumerate() {
129 match statement.kind {
130 hir::StmtKind::Local(..) | hir::StmtKind::Item(..) => {
131 // Each declaration introduces a subscope for bindings
132 // introduced by the declaration; this subscope covers a
133 // suffix of the block. Each subscope in a block has the
134 // previous subscope in the block as a parent, except for
135 // the first such subscope, which has the block itself as a
136 // parent.
137 visitor.enter_scope(Scope {
138 id: blk.hir_id.local_id,
139 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
140 });
141 visitor.cx.var_parent = visitor.cx.parent;
142 }
143 hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {}
144 }
145 visitor.visit_stmt(statement)
146 }
147 walk_list!(visitor, visit_expr, &blk.expr);
148 }
149
150 visitor.cx = prev_cx;
151}
152
153fn resolve_arm<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) {
154 let prev_cx = visitor.cx;
155
156 visitor.enter_scope(Scope { id: arm.hir_id.local_id, data: ScopeData::Node });
157 visitor.cx.var_parent = visitor.cx.parent;
158
159 visitor.terminating_scopes.insert(arm.body.hir_id.local_id);
160
161 if let Some(hir::Guard::If(ref expr)) = arm.guard {
162 visitor.terminating_scopes.insert(expr.hir_id.local_id);
163 }
164
165 intravisit::walk_arm(visitor, arm);
166
167 visitor.cx = prev_cx;
168}
169
170fn resolve_pat<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) {
171 visitor.record_child_scope(Scope { id: pat.hir_id.local_id, data: ScopeData::Node });
172
173 // If this is a binding then record the lifetime of that binding.
174 if let PatKind::Binding(..) = pat.kind {
175 record_var_lifetime(visitor, pat.hir_id.local_id, pat.span);
176 }
177
178 debug!("resolve_pat - pre-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
179
180 intravisit::walk_pat(visitor, pat);
181
182 visitor.expr_and_pat_count += 1;
183
184 debug!("resolve_pat - post-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
185}
186
187fn resolve_stmt<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) {
188 let stmt_id = stmt.hir_id.local_id;
189 debug!("resolve_stmt(stmt.id={:?})", stmt_id);
190
191 // Every statement will clean up the temporaries created during
192 // execution of that statement. Therefore each statement has an
193 // associated destruction scope that represents the scope of the
194 // statement plus its destructors, and thus the scope for which
195 // regions referenced by the destructors need to survive.
196 visitor.terminating_scopes.insert(stmt_id);
197
198 let prev_parent = visitor.cx.parent;
199 visitor.enter_node_scope_with_dtor(stmt_id);
200
201 intravisit::walk_stmt(visitor, stmt);
202
203 visitor.cx.parent = prev_parent;
204}
205
206fn resolve_expr<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
207 debug!("resolve_expr - pre-increment {} expr = {:?}", visitor.expr_and_pat_count, expr);
208
209 let prev_cx = visitor.cx;
210 visitor.enter_node_scope_with_dtor(expr.hir_id.local_id);
211
212 {
213 let terminating_scopes = &mut visitor.terminating_scopes;
214 let mut terminating = |id: hir::ItemLocalId| {
215 terminating_scopes.insert(id);
216 };
217 match expr.kind {
218 // Conditional or repeating scopes are always terminating
219 // scopes, meaning that temporaries cannot outlive them.
220 // This ensures fixed size stacks.
221 hir::ExprKind::Binary(
222 source_map::Spanned { node: hir::BinOpKind::And, .. },
223 _,
224 ref r,
225 )
226 | hir::ExprKind::Binary(
227 source_map::Spanned { node: hir::BinOpKind::Or, .. },
228 _,
229 ref r,
230 ) => {
231 // For shortcircuiting operators, mark the RHS as a terminating
232 // scope since it only executes conditionally.
233 terminating(r.hir_id.local_id);
234 }
235
5869c6ff
XL
236 hir::ExprKind::If(ref expr, ref then, Some(ref otherwise)) => {
237 terminating(expr.hir_id.local_id);
238 terminating(then.hir_id.local_id);
239 terminating(otherwise.hir_id.local_id);
240 }
241
242 hir::ExprKind::If(ref expr, ref then, None) => {
243 terminating(expr.hir_id.local_id);
244 terminating(then.hir_id.local_id);
245 }
246
247 hir::ExprKind::Loop(ref body, _, _, _) => {
dfeec247
XL
248 terminating(body.hir_id.local_id);
249 }
250
251 hir::ExprKind::DropTemps(ref expr) => {
252 // `DropTemps(expr)` does not denote a conditional scope.
253 // Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`.
254 terminating(expr.hir_id.local_id);
255 }
256
257 hir::ExprKind::AssignOp(..)
258 | hir::ExprKind::Index(..)
259 | hir::ExprKind::Unary(..)
260 | hir::ExprKind::Call(..)
261 | hir::ExprKind::MethodCall(..) => {
262 // FIXME(https://github.com/rust-lang/rfcs/issues/811) Nested method calls
263 //
264 // The lifetimes for a call or method call look as follows:
265 //
266 // call.id
267 // - arg0.id
268 // - ...
269 // - argN.id
270 // - call.callee_id
271 //
272 // The idea is that call.callee_id represents *the time when
273 // the invoked function is actually running* and call.id
274 // represents *the time to prepare the arguments and make the
275 // call*. See the section "Borrows in Calls" borrowck/README.md
276 // for an extended explanation of why this distinction is
277 // important.
278 //
279 // record_superlifetime(new_cx, expr.callee_id);
280 }
281
282 _ => {}
283 }
284 }
285
286 let prev_pessimistic = visitor.pessimistic_yield;
287
288 // Ordinarily, we can rely on the visit order of HIR intravisit
289 // to correspond to the actual execution order of statements.
74b04a01 290 // However, there's a weird corner case with compound assignment
dfeec247
XL
291 // operators (e.g. `a += b`). The evaluation order depends on whether
292 // or not the operator is overloaded (e.g. whether or not a trait
293 // like AddAssign is implemented).
294
295 // For primitive types (which, despite having a trait impl, don't actually
296 // end up calling it), the evluation order is right-to-left. For example,
297 // the following code snippet:
298 //
299 // let y = &mut 0;
300 // *{println!("LHS!"); y} += {println!("RHS!"); 1};
301 //
302 // will print:
303 //
304 // RHS!
305 // LHS!
306 //
307 // However, if the operator is used on a non-primitive type,
308 // the evaluation order will be left-to-right, since the operator
309 // actually get desugared to a method call. For example, this
310 // nearly identical code snippet:
311 //
312 // let y = &mut String::new();
313 // *{println!("LHS String"); y} += {println!("RHS String"); "hi"};
314 //
315 // will print:
316 // LHS String
317 // RHS String
318 //
319 // To determine the actual execution order, we need to perform
320 // trait resolution. Unfortunately, we need to be able to compute
321 // yield_in_scope before type checking is even done, as it gets
322 // used by AST borrowcheck.
323 //
324 // Fortunately, we don't need to know the actual execution order.
325 // It suffices to know the 'worst case' order with respect to yields.
326 // Specifically, we need to know the highest 'expr_and_pat_count'
327 // that we could assign to the yield expression. To do this,
328 // we pick the greater of the two values from the left-hand
329 // and right-hand expressions. This makes us overly conservative
330 // about what types could possibly live across yield points,
331 // but we will never fail to detect that a type does actually
332 // live across a yield point. The latter part is critical -
333 // we're already overly conservative about what types will live
334 // across yield points, as the generated MIR will determine
335 // when things are actually live. However, for typecheck to work
336 // properly, we can't miss any types.
337
338 match expr.kind {
339 // Manually recurse over closures, because they are the only
340 // case of nested bodies that share the parent environment.
341 hir::ExprKind::Closure(.., body, _, _) => {
342 let body = visitor.tcx.hir().body(body);
343 visitor.visit_body(body);
344 }
345 hir::ExprKind::AssignOp(_, ref left_expr, ref right_expr) => {
346 debug!(
347 "resolve_expr - enabling pessimistic_yield, was previously {}",
348 prev_pessimistic
349 );
350
351 let start_point = visitor.fixup_scopes.len();
352 visitor.pessimistic_yield = true;
353
354 // If the actual execution order turns out to be right-to-left,
355 // then we're fine. However, if the actual execution order is left-to-right,
356 // then we'll assign too low a count to any `yield` expressions
357 // we encounter in 'right_expression' - they should really occur after all of the
358 // expressions in 'left_expression'.
359 visitor.visit_expr(&right_expr);
360 visitor.pessimistic_yield = prev_pessimistic;
361
362 debug!("resolve_expr - restoring pessimistic_yield to {}", prev_pessimistic);
363 visitor.visit_expr(&left_expr);
364 debug!("resolve_expr - fixing up counts to {}", visitor.expr_and_pat_count);
365
366 // Remove and process any scopes pushed by the visitor
367 let target_scopes = visitor.fixup_scopes.drain(start_point..);
368
369 for scope in target_scopes {
370 let mut yield_data = visitor.scope_tree.yield_in_scope.get_mut(&scope).unwrap();
371 let count = yield_data.expr_and_pat_count;
372 let span = yield_data.span;
373
374 // expr_and_pat_count never decreases. Since we recorded counts in yield_in_scope
375 // before walking the left-hand side, it should be impossible for the recorded
376 // count to be greater than the left-hand side count.
377 if count > visitor.expr_and_pat_count {
378 bug!(
379 "Encountered greater count {} at span {:?} - expected no greater than {}",
380 count,
381 span,
382 visitor.expr_and_pat_count
383 );
384 }
385 let new_count = visitor.expr_and_pat_count;
386 debug!(
387 "resolve_expr - increasing count for scope {:?} from {} to {} at span {:?}",
388 scope, count, new_count, span
389 );
390
391 yield_data.expr_and_pat_count = new_count;
392 }
393 }
394
395 _ => intravisit::walk_expr(visitor, expr),
396 }
397
398 visitor.expr_and_pat_count += 1;
399
400 debug!("resolve_expr post-increment {}, expr = {:?}", visitor.expr_and_pat_count, expr);
401
402 if let hir::ExprKind::Yield(_, source) = &expr.kind {
403 // Mark this expr's scope and all parent scopes as containing `yield`.
404 let mut scope = Scope { id: expr.hir_id.local_id, data: ScopeData::Node };
405 loop {
406 let data = YieldData {
407 span: expr.span,
408 expr_and_pat_count: visitor.expr_and_pat_count,
409 source: *source,
410 };
411 visitor.scope_tree.yield_in_scope.insert(scope, data);
412 if visitor.pessimistic_yield {
413 debug!("resolve_expr in pessimistic_yield - marking scope {:?} for fixup", scope);
414 visitor.fixup_scopes.push(scope);
415 }
416
417 // Keep traversing up while we can.
418 match visitor.scope_tree.parent_map.get(&scope) {
419 // Don't cross from closure bodies to their parent.
420 Some(&(superscope, _)) => match superscope.data {
421 ScopeData::CallSite => break,
422 _ => scope = superscope,
423 },
424 None => break,
425 }
426 }
427 }
428
429 visitor.cx = prev_cx;
430}
431
432fn resolve_local<'tcx>(
433 visitor: &mut RegionResolutionVisitor<'tcx>,
434 pat: Option<&'tcx hir::Pat<'tcx>>,
435 init: Option<&'tcx hir::Expr<'tcx>>,
436) {
437 debug!("resolve_local(pat={:?}, init={:?})", pat, init);
438
439 let blk_scope = visitor.cx.var_parent.map(|(p, _)| p);
440
441 // As an exception to the normal rules governing temporary
442 // lifetimes, initializers in a let have a temporary lifetime
443 // of the enclosing block. This means that e.g., a program
444 // like the following is legal:
445 //
446 // let ref x = HashMap::new();
447 //
448 // Because the hash map will be freed in the enclosing block.
449 //
450 // We express the rules more formally based on 3 grammars (defined
451 // fully in the helpers below that implement them):
452 //
453 // 1. `E&`, which matches expressions like `&<rvalue>` that
454 // own a pointer into the stack.
455 //
456 // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
457 // y)` that produce ref bindings into the value they are
458 // matched against or something (at least partially) owned by
459 // the value they are matched against. (By partially owned,
460 // I mean that creating a binding into a ref-counted or managed value
461 // would still count.)
462 //
463 // 3. `ET`, which matches both rvalues like `foo()` as well as places
464 // based on rvalues like `foo().x[2].y`.
465 //
466 // A subexpression `<rvalue>` that appears in a let initializer
467 // `let pat [: ty] = expr` has an extended temporary lifetime if
468 // any of the following conditions are met:
469 //
470 // A. `pat` matches `P&` and `expr` matches `ET`
471 // (covers cases where `pat` creates ref bindings into an rvalue
472 // produced by `expr`)
473 // B. `ty` is a borrowed pointer and `expr` matches `ET`
474 // (covers cases where coercion creates a borrow)
475 // C. `expr` matches `E&`
476 // (covers cases `expr` borrows an rvalue that is then assigned
477 // to memory (at least partially) owned by the binding)
478 //
479 // Here are some examples hopefully giving an intuition where each
480 // rule comes into play and why:
481 //
482 // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
483 // would have an extended lifetime, but not `foo()`.
484 //
485 // Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended
486 // lifetime.
487 //
488 // In some cases, multiple rules may apply (though not to the same
489 // rvalue). For example:
490 //
491 // let ref x = [&a(), &b()];
492 //
493 // Here, the expression `[...]` has an extended lifetime due to rule
494 // A, but the inner rvalues `a()` and `b()` have an extended lifetime
495 // due to rule C.
496
497 if let Some(expr) = init {
498 record_rvalue_scope_if_borrow_expr(visitor, &expr, blk_scope);
499
500 if let Some(pat) = pat {
501 if is_binding_pat(pat) {
502 record_rvalue_scope(visitor, &expr, blk_scope);
503 }
504 }
505 }
506
507 // Make sure we visit the initializer first, so expr_and_pat_count remains correct
508 if let Some(expr) = init {
509 visitor.visit_expr(expr);
510 }
511 if let Some(pat) = pat {
512 visitor.visit_pat(pat);
513 }
514
515 /// Returns `true` if `pat` match the `P&` non-terminal.
516 ///
517 /// ```text
518 /// P& = ref X
519 /// | StructName { ..., P&, ... }
520 /// | VariantName(..., P&, ...)
521 /// | [ ..., P&, ... ]
522 /// | ( ..., P&, ... )
523 /// | ... "|" P& "|" ...
524 /// | box P&
525 /// ```
526 fn is_binding_pat(pat: &hir::Pat<'_>) -> bool {
527 // Note that the code below looks for *explicit* refs only, that is, it won't
528 // know about *implicit* refs as introduced in #42640.
529 //
530 // This is not a problem. For example, consider
531 //
532 // let (ref x, ref y) = (Foo { .. }, Bar { .. });
533 //
534 // Due to the explicit refs on the left hand side, the below code would signal
535 // that the temporary value on the right hand side should live until the end of
536 // the enclosing block (as opposed to being dropped after the let is complete).
537 //
538 // To create an implicit ref, however, you must have a borrowed value on the RHS
539 // already, as in this example (which won't compile before #42640):
540 //
541 // let Foo { x, .. } = &Foo { x: ..., ... };
542 //
543 // in place of
544 //
545 // let Foo { ref x, .. } = Foo { ... };
546 //
547 // In the former case (the implicit ref version), the temporary is created by the
548 // & expression, and its lifetime would be extended to the end of the block (due
549 // to a different rule, not the below code).
550 match pat.kind {
551 PatKind::Binding(hir::BindingAnnotation::Ref, ..)
552 | PatKind::Binding(hir::BindingAnnotation::RefMut, ..) => true,
553
554 PatKind::Struct(_, ref field_pats, _) => {
555 field_pats.iter().any(|fp| is_binding_pat(&fp.pat))
556 }
557
558 PatKind::Slice(ref pats1, ref pats2, ref pats3) => {
559 pats1.iter().any(|p| is_binding_pat(&p))
560 || pats2.iter().any(|p| is_binding_pat(&p))
561 || pats3.iter().any(|p| is_binding_pat(&p))
562 }
563
564 PatKind::Or(ref subpats)
565 | PatKind::TupleStruct(_, ref subpats, _)
566 | PatKind::Tuple(ref subpats, _) => subpats.iter().any(|p| is_binding_pat(&p)),
567
568 PatKind::Box(ref subpat) => is_binding_pat(&subpat),
569
570 PatKind::Ref(_, _)
ba9703b0
XL
571 | PatKind::Binding(
572 hir::BindingAnnotation::Unannotated | hir::BindingAnnotation::Mutable,
573 ..,
574 )
dfeec247
XL
575 | PatKind::Wild
576 | PatKind::Path(_)
577 | PatKind::Lit(_)
578 | PatKind::Range(_, _, _) => false,
579 }
580 }
581
582 /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
583 ///
584 /// ```text
585 /// E& = & ET
586 /// | StructName { ..., f: E&, ... }
587 /// | [ ..., E&, ... ]
588 /// | ( ..., E&, ... )
589 /// | {...; E&}
590 /// | box E&
591 /// | E& as ...
592 /// | ( E& )
593 /// ```
594 fn record_rvalue_scope_if_borrow_expr<'tcx>(
595 visitor: &mut RegionResolutionVisitor<'tcx>,
596 expr: &hir::Expr<'_>,
597 blk_id: Option<Scope>,
598 ) {
599 match expr.kind {
600 hir::ExprKind::AddrOf(_, _, ref subexpr) => {
601 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
602 record_rvalue_scope(visitor, &subexpr, blk_id);
603 }
604 hir::ExprKind::Struct(_, fields, _) => {
605 for field in fields {
606 record_rvalue_scope_if_borrow_expr(visitor, &field.expr, blk_id);
607 }
608 }
609 hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => {
610 for subexpr in subexprs {
611 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
612 }
613 }
614 hir::ExprKind::Cast(ref subexpr, _) => {
615 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id)
616 }
617 hir::ExprKind::Block(ref block, _) => {
618 if let Some(ref subexpr) = block.expr {
619 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
620 }
621 }
622 _ => {}
623 }
624 }
625
626 /// Applied to an expression `expr` if `expr` -- or something owned or partially owned by
627 /// `expr` -- is going to be indirectly referenced by a variable in a let statement. In that
628 /// case, the "temporary lifetime" or `expr` is extended to be the block enclosing the `let`
629 /// statement.
630 ///
631 /// More formally, if `expr` matches the grammar `ET`, record the rvalue scope of the matching
632 /// `<rvalue>` as `blk_id`:
633 ///
634 /// ```text
635 /// ET = *ET
636 /// | ET[...]
637 /// | ET.f
638 /// | (ET)
639 /// | <rvalue>
640 /// ```
641 ///
642 /// Note: ET is intended to match "rvalues or places based on rvalues".
643 fn record_rvalue_scope<'tcx>(
644 visitor: &mut RegionResolutionVisitor<'tcx>,
645 expr: &hir::Expr<'_>,
646 blk_scope: Option<Scope>,
647 ) {
648 let mut expr = expr;
649 loop {
650 // Note: give all the expressions matching `ET` with the
651 // extended temporary lifetime, not just the innermost rvalue,
652 // because in codegen if we must compile e.g., `*rvalue()`
653 // into a temporary, we request the temporary scope of the
654 // outer expression.
655 visitor.scope_tree.record_rvalue_scope(expr.hir_id.local_id, blk_scope);
656
657 match expr.kind {
658 hir::ExprKind::AddrOf(_, _, ref subexpr)
6a06907d 659 | hir::ExprKind::Unary(hir::UnOp::Deref, ref subexpr)
dfeec247
XL
660 | hir::ExprKind::Field(ref subexpr, _)
661 | hir::ExprKind::Index(ref subexpr, _) => {
662 expr = &subexpr;
663 }
664 _ => {
665 return;
666 }
667 }
668 }
669 }
670}
671
672impl<'tcx> RegionResolutionVisitor<'tcx> {
673 /// Records the current parent (if any) as the parent of `child_scope`.
674 /// Returns the depth of `child_scope`.
675 fn record_child_scope(&mut self, child_scope: Scope) -> ScopeDepth {
676 let parent = self.cx.parent;
677 self.scope_tree.record_scope_parent(child_scope, parent);
678 // If `child_scope` has no parent, it must be the root node, and so has
679 // a depth of 1. Otherwise, its depth is one more than its parent's.
680 parent.map_or(1, |(_p, d)| d + 1)
681 }
682
683 /// Records the current parent (if any) as the parent of `child_scope`,
684 /// and sets `child_scope` as the new current parent.
685 fn enter_scope(&mut self, child_scope: Scope) {
686 let child_depth = self.record_child_scope(child_scope);
687 self.cx.parent = Some((child_scope, child_depth));
688 }
689
690 fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId) {
691 // If node was previously marked as a terminating scope during the
692 // recursive visit of its parent node in the AST, then we need to
693 // account for the destruction scope representing the scope of
694 // the destructors that run immediately after it completes.
695 if self.terminating_scopes.contains(&id) {
696 self.enter_scope(Scope { id, data: ScopeData::Destruction });
697 }
698 self.enter_scope(Scope { id, data: ScopeData::Node });
699 }
700}
701
702impl<'tcx> Visitor<'tcx> for RegionResolutionVisitor<'tcx> {
ba9703b0 703 type Map = intravisit::ErasedMap<'tcx>;
dfeec247 704
ba9703b0 705 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
dfeec247
XL
706 NestedVisitorMap::None
707 }
708
709 fn visit_block(&mut self, b: &'tcx Block<'tcx>) {
710 resolve_block(self, b);
711 }
712
713 fn visit_body(&mut self, body: &'tcx hir::Body<'tcx>) {
714 let body_id = body.id();
715 let owner_id = self.tcx.hir().body_owner(body_id);
716
717 debug!(
718 "visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})",
719 owner_id,
17df50a5 720 self.tcx.sess.source_map().span_to_diagnostic_string(body.value.span),
dfeec247
XL
721 body_id,
722 self.cx.parent
723 );
724
ba9703b0
XL
725 // Save all state that is specific to the outer function
726 // body. These will be restored once down below, once we've
727 // visited the body.
dfeec247
XL
728 let outer_ec = mem::replace(&mut self.expr_and_pat_count, 0);
729 let outer_cx = self.cx;
730 let outer_ts = mem::take(&mut self.terminating_scopes);
ba9703b0
XL
731 // The 'pessimistic yield' flag is set to true when we are
732 // processing a `+=` statement and have to make pessimistic
733 // control flow assumptions. This doesn't apply to nested
734 // bodies within the `+=` statements. See #69307.
735 let outer_pessimistic_yield = mem::replace(&mut self.pessimistic_yield, false);
dfeec247
XL
736 self.terminating_scopes.insert(body.value.hir_id.local_id);
737
dfeec247
XL
738 self.enter_scope(Scope { id: body.value.hir_id.local_id, data: ScopeData::CallSite });
739 self.enter_scope(Scope { id: body.value.hir_id.local_id, data: ScopeData::Arguments });
740
741 // The arguments and `self` are parented to the fn.
742 self.cx.var_parent = self.cx.parent.take();
743 for param in body.params {
744 self.visit_pat(&param.pat);
745 }
746
747 // The body of the every fn is a root scope.
748 self.cx.parent = self.cx.var_parent;
749 if self.tcx.hir().body_owner_kind(owner_id).is_fn_or_closure() {
750 self.visit_expr(&body.value)
751 } else {
752 // Only functions have an outer terminating (drop) scope, while
753 // temporaries in constant initializers may be 'static, but only
754 // according to rvalue lifetime semantics, using the same
755 // syntactical rules used for let initializers.
756 //
757 // e.g., in `let x = &f();`, the temporary holding the result from
758 // the `f()` call lives for the entirety of the surrounding block.
759 //
760 // Similarly, `const X: ... = &f();` would have the result of `f()`
761 // live for `'static`, implying (if Drop restrictions on constants
762 // ever get lifted) that the value *could* have a destructor, but
763 // it'd get leaked instead of the destructor running during the
764 // evaluation of `X` (if at all allowed by CTFE).
765 //
766 // However, `const Y: ... = g(&f());`, like `let y = g(&f());`,
767 // would *not* let the `f()` temporary escape into an outer scope
768 // (i.e., `'static`), which means that after `g` returns, it drops,
769 // and all the associated destruction scope rules apply.
770 self.cx.var_parent = None;
771 resolve_local(self, None, Some(&body.value));
772 }
773
774 if body.generator_kind.is_some() {
775 self.scope_tree.body_expr_count.insert(body_id, self.expr_and_pat_count);
776 }
777
778 // Restore context we had at the start.
779 self.expr_and_pat_count = outer_ec;
780 self.cx = outer_cx;
781 self.terminating_scopes = outer_ts;
ba9703b0 782 self.pessimistic_yield = outer_pessimistic_yield;
dfeec247
XL
783 }
784
785 fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) {
786 resolve_arm(self, a);
787 }
788 fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) {
789 resolve_pat(self, p);
790 }
791 fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) {
792 resolve_stmt(self, s);
793 }
794 fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
795 resolve_expr(self, ex);
796 }
797 fn visit_local(&mut self, l: &'tcx Local<'tcx>) {
f9f354fc 798 resolve_local(self, Some(&l.pat), l.init.as_deref());
dfeec247
XL
799 }
800}
801
802fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree {
803 let closure_base_def_id = tcx.closure_base_def_id(def_id);
804 if closure_base_def_id != def_id {
805 return tcx.region_scope_tree(closure_base_def_id);
806 }
807
3dfed10e 808 let id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
dfeec247
XL
809 let scope_tree = if let Some(body_id) = tcx.hir().maybe_body_owned_by(id) {
810 let mut visitor = RegionResolutionVisitor {
811 tcx,
812 scope_tree: ScopeTree::default(),
813 expr_and_pat_count: 0,
cdc7bbd5 814 cx: Context { parent: None, var_parent: None },
dfeec247
XL
815 terminating_scopes: Default::default(),
816 pessimistic_yield: false,
817 fixup_scopes: vec![],
818 };
819
820 let body = tcx.hir().body(body_id);
821 visitor.scope_tree.root_body = Some(body.value.hir_id);
822
823 // If the item is an associated const or a method,
824 // record its impl/trait parent, as it can also have
825 // lifetime parameters free in this body.
826 match tcx.hir().get(id) {
827 Node::ImplItem(_) | Node::TraitItem(_) => {
828 visitor.scope_tree.root_parent = Some(tcx.hir().get_parent_item(id));
829 }
830 _ => {}
831 }
832
833 visitor.visit_body(body);
834
835 visitor.scope_tree
836 } else {
837 ScopeTree::default()
838 };
839
840 tcx.arena.alloc(scope_tree)
841}
842
f035d41b 843pub fn provide(providers: &mut Providers) {
dfeec247
XL
844 *providers = Providers { region_scope_tree, ..*providers };
845}