]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_trait_selection/src/traits/coherence.rs
New upstream version 1.67.1+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / coherence.rs
CommitLineData
ba9703b0
XL
1//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on
2//! how this works.
0531ce1d 3//!
ba9703b0
XL
4//! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
5//! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
1a4d82fc 6
5099ac24 7use crate::infer::outlives::env::OutlivesEnvironment;
923072b8 8use crate::infer::{CombinedSnapshot, InferOk};
f2b60f7d 9use crate::traits::outlives_bounds::InferCtxtExt as _;
9fa01778 10use crate::traits::select::IntercrateAmbiguityCause;
5e7ed085 11use crate::traits::util::impl_subject_and_oblig;
74b04a01 12use crate::traits::SkipLeakCheck;
3c0e092e 13use crate::traits::{
487cf647
FG
14 self, Obligation, ObligationCause, ObligationCtxt, PredicateObligation, PredicateObligations,
15 SelectionContext,
3c0e092e 16};
064997fb 17use rustc_data_structures::fx::FxIndexSet;
5e7ed085 18use rustc_errors::Diagnostic;
f2b60f7d
FG
19use rustc_hir::def_id::{DefId, CRATE_DEF_ID, LOCAL_CRATE};
20use rustc_hir::CRATE_HIR_ID;
487cf647 21use rustc_infer::infer::{DefiningAnchor, InferCtxt, TyCtxtInferExt};
f2b60f7d 22use rustc_infer::traits::util;
5099ac24 23use rustc_middle::traits::specialization_graph::OverlapMode;
923072b8 24use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
064997fb
FG
25use rustc_middle::ty::visit::TypeVisitable;
26use rustc_middle::ty::{self, ImplSubject, Ty, TyCtxt, TypeVisitor};
dfeec247
XL
27use rustc_span::symbol::sym;
28use rustc_span::DUMMY_SP;
5e7ed085 29use std::fmt::Debug;
ba9703b0 30use std::iter;
064997fb 31use std::ops::ControlFlow;
1a4d82fc 32
487cf647
FG
33use super::NormalizeExt;
34
ff7c6d11
XL
35/// Whether we do the orphan check relative to this crate or
36/// to some remote crate.
37#[derive(Copy, Clone, Debug)]
38enum InCrate {
39 Local,
dfeec247 40 Remote,
ff7c6d11
XL
41}
42
43#[derive(Debug, Copy, Clone)]
44pub enum Conflict {
45 Upstream,
74b04a01 46 Downstream,
ff7c6d11 47}
c34b1796 48
ea8adc8c
XL
49pub struct OverlapResult<'tcx> {
50 pub impl_header: ty::ImplHeader<'tcx>,
064997fb 51 pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause>,
0731742a 52
9fa01778 53 /// `true` if the overlap might've been permitted before the shift
0731742a
XL
54 /// to universes.
55 pub involves_placeholder: bool,
56}
57
5e7ed085 58pub fn add_placeholder_note(err: &mut Diagnostic) {
74b04a01 59 err.note(
0731742a 60 "this behavior recently changed as a result of a bug fix; \
74b04a01
XL
61 see rust-lang/rust#56105 for details",
62 );
ea8adc8c
XL
63}
64
2b03887a 65/// If there are types that satisfy both impls, returns `Some`
ff7c6d11 66/// with a suitably-freshened `ImplHeader` with those types
2b03887a
FG
67/// substituted. Otherwise, returns `None`.
68#[instrument(skip(tcx, skip_leak_check), level = "debug")]
487cf647
FG
69pub fn overlapping_impls<'tcx>(
70 tcx: TyCtxt<'tcx>,
ff7c6d11
XL
71 impl1_def_id: DefId,
72 impl2_def_id: DefId,
74b04a01 73 skip_leak_check: SkipLeakCheck,
5099ac24 74 overlap_mode: OverlapMode,
487cf647 75) -> Option<OverlapResult<'tcx>> {
6a06907d
XL
76 // Before doing expensive operations like entering an inference context, do
77 // a quick check via fast_reject to tell if the impl headers could possibly
78 // unify.
923072b8 79 let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsInfer };
6a06907d
XL
80 let impl1_ref = tcx.impl_trait_ref(impl1_def_id);
81 let impl2_ref = tcx.impl_trait_ref(impl2_def_id);
923072b8
FG
82 let may_overlap = match (impl1_ref, impl2_ref) {
83 (Some(a), Some(b)) => iter::zip(a.substs, b.substs)
84 .all(|(arg1, arg2)| drcx.generic_args_may_unify(arg1, arg2)),
85 (None, None) => {
86 let self_ty1 = tcx.type_of(impl1_def_id);
87 let self_ty2 = tcx.type_of(impl2_def_id);
88 drcx.types_may_unify(self_ty1, self_ty2)
cdc7bbd5 89 }
923072b8
FG
90 _ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"),
91 };
92
93 if !may_overlap {
6a06907d
XL
94 // Some types involved are definitely different, so the impls couldn't possibly overlap.
95 debug!("overlapping_impls: fast_reject early-exit");
2b03887a 96 return None;
6a06907d 97 }
1a4d82fc 98
487cf647
FG
99 let infcx =
100 tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bubble).intercrate().build();
101 let selcx = &mut SelectionContext::new(&infcx);
2b03887a
FG
102 let overlaps =
103 overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).is_some();
ff7c6d11 104 if !overlaps {
2b03887a 105 return None;
ff7c6d11
XL
106 }
107
108 // In the case where we detect an error, run the check again, but
5e7ed085 109 // this time tracking intercrate ambiguity causes for better
ff7c6d11 110 // diagnostics. (These take time and can lead to false errors.)
487cf647
FG
111 let infcx =
112 tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bubble).intercrate().build();
113 let selcx = &mut SelectionContext::new(&infcx);
2b03887a
FG
114 selcx.enable_tracking_intercrate_ambiguity_causes();
115 Some(overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).unwrap())
85aaf69f
SL
116}
117
dc9dc135
XL
118fn with_fresh_ty_vars<'cx, 'tcx>(
119 selcx: &mut SelectionContext<'cx, 'tcx>,
120 param_env: ty::ParamEnv<'tcx>,
121 impl_def_id: DefId,
122) -> ty::ImplHeader<'tcx> {
7cac9316 123 let tcx = selcx.tcx();
487cf647 124 let impl_substs = selcx.infcx.fresh_substs_for_item(DUMMY_SP, impl_def_id);
7cac9316
XL
125
126 let header = ty::ImplHeader {
041b39d2 127 impl_def_id,
04454e1e
FG
128 self_ty: tcx.bound_type_of(impl_def_id).subst(tcx, impl_substs),
129 trait_ref: tcx.bound_impl_trait_ref(impl_def_id).map(|i| i.subst(tcx, impl_substs)),
0bf4aa26
XL
130 predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates,
131 };
7cac9316 132
487cf647
FG
133 let InferOk { value: mut header, obligations } =
134 selcx.infcx.at(&ObligationCause::dummy(), param_env).normalize(header);
7cac9316
XL
135
136 header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
137 header
138}
139
9cc50fc6 140/// Can both impl `a` and impl `b` be satisfied by a common type (including
9fa01778 141/// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
dc9dc135
XL
142fn overlap<'cx, 'tcx>(
143 selcx: &mut SelectionContext<'cx, 'tcx>,
74b04a01 144 skip_leak_check: SkipLeakCheck,
5099ac24
FG
145 impl1_def_id: DefId,
146 impl2_def_id: DefId,
147 overlap_mode: OverlapMode,
0731742a 148) -> Option<OverlapResult<'tcx>> {
5099ac24
FG
149 debug!(
150 "overlap(impl1_def_id={:?}, impl2_def_id={:?}, overlap_mode={:?})",
151 impl1_def_id, impl2_def_id, overlap_mode
152 );
c34b1796 153
487cf647 154 selcx.infcx.probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| {
5e7ed085 155 overlap_within_probe(selcx, impl1_def_id, impl2_def_id, overlap_mode, snapshot)
74b04a01 156 })
0731742a
XL
157}
158
a2a8927a 159fn overlap_within_probe<'cx, 'tcx>(
dc9dc135 160 selcx: &mut SelectionContext<'cx, 'tcx>,
5099ac24
FG
161 impl1_def_id: DefId,
162 impl2_def_id: DefId,
163 overlap_mode: OverlapMode,
2b03887a 164 snapshot: &CombinedSnapshot<'tcx>,
0731742a 165) -> Option<OverlapResult<'tcx>> {
487cf647 166 let infcx = selcx.infcx;
3c0e092e 167
5099ac24 168 if overlap_mode.use_negative_impl() {
487cf647
FG
169 if negative_impl(infcx.tcx, impl1_def_id, impl2_def_id)
170 || negative_impl(infcx.tcx, impl2_def_id, impl1_def_id)
5099ac24
FG
171 {
172 return None;
173 }
3c0e092e
XL
174 }
175
0bf4aa26 176 // For the purposes of this check, we don't bring any placeholder
7cac9316
XL
177 // types into scope; instead, we replace the generic types with
178 // fresh type variables, and hence we do our evaluations in an
179 // empty environment.
0531ce1d 180 let param_env = ty::ParamEnv::empty();
7cac9316 181
5099ac24
FG
182 let impl1_header = with_fresh_ty_vars(selcx, param_env, impl1_def_id);
183 let impl2_header = with_fresh_ty_vars(selcx, param_env, impl2_def_id);
c34b1796 184
5099ac24
FG
185 let obligations = equate_impl_headers(selcx, &impl1_header, &impl2_header)?;
186 debug!("overlap: unification check succeeded");
85aaf69f 187
5099ac24
FG
188 if overlap_mode.use_implicit_negative() {
189 if implicit_negative(selcx, param_env, &impl1_header, impl2_header, obligations) {
74b04a01
XL
190 return None;
191 }
5099ac24 192 }
85aaf69f 193
2b03887a 194 // We disable the leak when creating the `snapshot` by using
5e7ed085
FG
195 // `infcx.probe_maybe_disable_leak_check`.
196 if infcx.leak_check(true, snapshot).is_err() {
197 debug!("overlap: leak check failed");
198 return None;
5099ac24
FG
199 }
200
201 let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
202 debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
203
204 let involves_placeholder =
487cf647 205 matches!(selcx.infcx.region_constraints_added_in_snapshot(snapshot), Some(true));
5099ac24 206
487cf647 207 let impl_header = selcx.infcx.resolve_vars_if_possible(impl1_header);
5099ac24
FG
208 Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
209}
210
211fn equate_impl_headers<'cx, 'tcx>(
212 selcx: &mut SelectionContext<'cx, 'tcx>,
213 impl1_header: &ty::ImplHeader<'tcx>,
214 impl2_header: &ty::ImplHeader<'tcx>,
215) -> Option<PredicateObligations<'tcx>> {
216 // Do `a` and `b` unify? If not, no overlap.
217 debug!("equate_impl_headers(impl1_header={:?}, impl2_header={:?}", impl1_header, impl2_header);
218 selcx
487cf647 219 .infcx
5099ac24
FG
220 .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
221 .eq_impl_headers(impl1_header, impl2_header)
222 .map(|infer_ok| infer_ok.obligations)
223 .ok()
224}
c34b1796 225
5099ac24
FG
226/// Given impl1 and impl2 check if both impls can be satisfied by a common type (including
227/// where-clauses) If so, return false, otherwise return true, they are disjoint.
228fn implicit_negative<'cx, 'tcx>(
229 selcx: &mut SelectionContext<'cx, 'tcx>,
230 param_env: ty::ParamEnv<'tcx>,
231 impl1_header: &ty::ImplHeader<'tcx>,
232 impl2_header: ty::ImplHeader<'tcx>,
233 obligations: PredicateObligations<'tcx>,
234) -> bool {
3c0e092e
XL
235 // There's no overlap if obligations are unsatisfiable or if the obligation negated is
236 // satisfied.
237 //
238 // For example, given these two impl headers:
239 //
240 // `impl<'a> From<&'a str> for Box<dyn Error>`
241 // `impl<E> From<E> for Box<dyn Error> where E: Error`
242 //
243 // So we have:
244 //
245 // `Box<dyn Error>: From<&'?a str>`
246 // `Box<dyn Error>: From<?E>`
247 //
248 // After equating the two headers:
249 //
250 // `Box<dyn Error> = Box<dyn Error>`
251 // So, `?E = &'?a str` and then given the where clause `&'?a str: Error`.
252 //
253 // If the obligation `&'?a str: Error` holds, it means that there's overlap. If that doesn't
254 // hold we need to check if `&'?a str: !Error` holds, if doesn't hold there's overlap because
255 // at some point an impl for `&'?a str: Error` could be added.
5099ac24
FG
256 debug!(
257 "implicit_negative(impl1_header={:?}, impl2_header={:?}, obligations={:?})",
258 impl1_header, impl2_header, obligations
259 );
487cf647 260 let infcx = selcx.infcx;
5099ac24 261 let opt_failing_obligation = impl1_header
dfeec247
XL
262 .predicates
263 .iter()
fc512014 264 .copied()
5099ac24 265 .chain(impl2_header.predicates)
dfeec247
XL
266 .map(|p| infcx.resolve_vars_if_possible(p))
267 .map(|p| Obligation {
268 cause: ObligationCause::dummy(),
269 param_env,
270 recursion_depth: 0,
271 predicate: p,
272 })
273 .chain(obligations)
5099ac24 274 .find(|o| !selcx.predicate_may_hold_fatal(o));
c34b1796
AL
275
276 if let Some(failing_obligation) = opt_failing_obligation {
62682a34 277 debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
5099ac24
FG
278 true
279 } else {
280 false
c34b1796 281 }
5099ac24 282}
c34b1796 283
5099ac24
FG
284/// Given impl1 and impl2 check if both impls are never satisfied by a common type (including
285/// where-clauses) If so, return true, they are disjoint and false otherwise.
487cf647 286fn negative_impl<'tcx>(tcx: TyCtxt<'tcx>, impl1_def_id: DefId, impl2_def_id: DefId) -> bool {
5099ac24 287 debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id);
5099ac24 288
5099ac24 289 // Create an infcx, taking the predicates of impl1 as assumptions:
2b03887a
FG
290 let infcx = tcx.infer_ctxt().build();
291 // create a parameter environment corresponding to a (placeholder) instantiation of impl1
292 let impl_env = tcx.param_env(impl1_def_id);
293 let subject1 = match traits::fully_normalize(
294 &infcx,
295 ObligationCause::dummy(),
296 impl_env,
297 tcx.impl_subject(impl1_def_id),
298 ) {
299 Ok(s) => s,
300 Err(err) => {
301 tcx.sess.delay_span_bug(
302 tcx.def_span(impl1_def_id),
303 format!("failed to fully normalize {:?}: {:?}", impl1_def_id, err),
304 );
305 return false;
306 }
307 };
308
309 // Attempt to prove that impl2 applies, given all of the above.
310 let selcx = &mut SelectionContext::new(&infcx);
311 let impl2_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl2_def_id);
312 let (subject2, obligations) =
313 impl_subject_and_oblig(selcx, impl_env, impl2_def_id, impl2_substs);
314
315 !equate(&infcx, impl_env, subject1, subject2, obligations, impl1_def_id)
5e7ed085 316}
5099ac24 317
2b03887a
FG
318fn equate<'tcx>(
319 infcx: &InferCtxt<'tcx>,
5e7ed085 320 impl_env: ty::ParamEnv<'tcx>,
5e7ed085
FG
321 subject1: ImplSubject<'tcx>,
322 subject2: ImplSubject<'tcx>,
323 obligations: impl Iterator<Item = PredicateObligation<'tcx>>,
f2b60f7d 324 body_def_id: DefId,
5e7ed085
FG
325) -> bool {
326 // do the impls unify? If not, not disjoint.
327 let Ok(InferOk { obligations: more_obligations, .. }) =
328 infcx.at(&ObligationCause::dummy(), impl_env).eq(subject1, subject2)
329 else {
330 debug!("explicit_disjoint: {:?} does not unify with {:?}", subject1, subject2);
331 return true;
332 };
5099ac24 333
5e7ed085
FG
334 let opt_failing_obligation = obligations
335 .into_iter()
336 .chain(more_obligations)
487cf647 337 .find(|o| negative_impl_exists(infcx, o, body_def_id));
5e7ed085
FG
338
339 if let Some(failing_obligation) = opt_failing_obligation {
340 debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
341 false
342 } else {
343 true
344 }
5099ac24 345}
f035d41b 346
5e7ed085 347/// Try to prove that a negative impl exist for the given obligation and its super predicates.
487cf647
FG
348#[instrument(level = "debug", skip(infcx))]
349fn negative_impl_exists<'tcx>(
350 infcx: &InferCtxt<'tcx>,
5099ac24 351 o: &PredicateObligation<'tcx>,
f2b60f7d 352 body_def_id: DefId,
5099ac24 353) -> bool {
487cf647 354 if resolve_negative_obligation(infcx.fork(), o, body_def_id) {
5e7ed085
FG
355 return true;
356 }
357
358 // Try to prove a negative obligation exists for super predicates
487cf647
FG
359 for o in util::elaborate_predicates(infcx.tcx, iter::once(o.predicate)) {
360 if resolve_negative_obligation(infcx.fork(), &o, body_def_id) {
5e7ed085
FG
361 return true;
362 }
363 }
364
365 false
366}
367
368#[instrument(level = "debug", skip(infcx))]
2b03887a
FG
369fn resolve_negative_obligation<'tcx>(
370 infcx: InferCtxt<'tcx>,
5e7ed085 371 o: &PredicateObligation<'tcx>,
f2b60f7d 372 body_def_id: DefId,
5e7ed085 373) -> bool {
5099ac24 374 let tcx = infcx.tcx;
0731742a 375
5e7ed085
FG
376 let Some(o) = o.flip_polarity(tcx) else {
377 return false;
378 };
0731742a 379
f2b60f7d
FG
380 let param_env = o.param_env;
381 if !super::fully_solve_obligation(&infcx, o).is_empty() {
5e7ed085
FG
382 return false;
383 }
384
f2b60f7d
FG
385 let (body_id, body_def_id) = if let Some(body_def_id) = body_def_id.as_local() {
386 (tcx.hir().local_def_id_to_hir_id(body_def_id), body_def_id)
387 } else {
388 (CRATE_HIR_ID, CRATE_DEF_ID)
389 };
390
391 let ocx = ObligationCtxt::new(&infcx);
392 let wf_tys = ocx.assumed_wf_types(param_env, DUMMY_SP, body_def_id);
393 let outlives_env = OutlivesEnvironment::with_bounds(
394 param_env,
395 Some(&infcx),
396 infcx.implied_bounds_tys(param_env, body_id, wf_tys),
397 );
398
064997fb 399 infcx.process_registered_region_obligations(outlives_env.region_bound_pairs(), param_env);
5e7ed085 400
064997fb 401 infcx.resolve_regions(&outlives_env).is_empty()
c34b1796
AL
402}
403
dc9dc135
XL
404pub fn trait_ref_is_knowable<'tcx>(
405 tcx: TyCtxt<'tcx>,
406 trait_ref: ty::TraitRef<'tcx>,
f2b60f7d 407) -> Result<(), Conflict> {
62682a34 408 debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref);
ff7c6d11
XL
409 if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() {
410 // A downstream or cousin crate is allowed to implement some
411 // substitution of this trait-ref.
f2b60f7d 412 return Err(Conflict::Downstream);
c34b1796
AL
413 }
414
ff7c6d11
XL
415 if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
416 // This is a local or fundamental trait, so future-compatibility
417 // is no concern. We know that downstream/cousin crates are not
418 // allowed to implement a substitution of this trait ref, which
419 // means impls could only come from dependencies of this crate,
420 // which we already know about.
f2b60f7d 421 return Ok(());
c34b1796
AL
422 }
423
ff7c6d11
XL
424 // This is a remote non-fundamental trait, so if another crate
425 // can be the "final owner" of a substitution of this trait-ref,
426 // they are allowed to implement it future-compatibly.
427 //
428 // However, if we are a final owner, then nobody else can be,
429 // and if we are an intermediate owner, then we don't care
430 // about future-compatibility, which means that we're OK if
431 // we are an owner.
432 if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() {
433 debug!("trait_ref_is_knowable: orphan check passed");
f2b60f7d 434 Ok(())
ff7c6d11
XL
435 } else {
436 debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned");
f2b60f7d 437 Err(Conflict::Upstream)
ff7c6d11 438 }
85aaf69f
SL
439}
440
dc9dc135
XL
441pub fn trait_ref_is_local_or_fundamental<'tcx>(
442 tcx: TyCtxt<'tcx>,
443 trait_ref: ty::TraitRef<'tcx>,
444) -> bool {
48663c56 445 trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental)
ea8adc8c
XL
446}
447
1a4d82fc 448pub enum OrphanCheckErr<'tcx> {
e74abb32 449 NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>),
60c5eb7d 450 UncoveredTy(Ty<'tcx>, Option<Ty<'tcx>>),
1a4d82fc
JJ
451}
452
453/// Checks the coherence orphan rules. `impl_def_id` should be the
9fa01778 454/// `DefId` of a trait impl. To pass, either the trait must be local, or else
1a4d82fc
JJ
455/// two conditions must be satisfied:
456///
457/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
458/// 2. Some local type must appear in `Self`.
dfeec247 459pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> {
62682a34 460 debug!("orphan_check({:?})", impl_def_id);
1a4d82fc
JJ
461
462 // We only except this routine to be invoked on implementations
463 // of a trait, not inherent implementations.
c1a9b12d 464 let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
62682a34 465 debug!("orphan_check: trait_ref={:?}", trait_ref);
1a4d82fc
JJ
466
467 // If the *trait* is local to the crate, ok.
e9174d1e 468 if trait_ref.def_id.is_local() {
dfeec247 469 debug!("trait {:?} is local to current crate", trait_ref.def_id);
1a4d82fc
JJ
470 return Ok(());
471 }
472
ff7c6d11 473 orphan_check_trait_ref(tcx, trait_ref, InCrate::Local)
c34b1796
AL
474}
475
9fa01778 476/// Checks whether a trait-ref is potentially implementable by a crate.
ff7c6d11
XL
477///
478/// The current rule is that a trait-ref orphan checks in a crate C:
479///
480/// 1. Order the parameters in the trait-ref in subst order - Self first,
0731742a 481/// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
ff7c6d11
XL
482/// 2. Of these type parameters, there is at least one type parameter
483/// in which, walking the type as a tree, you can reach a type local
484/// to C where all types in-between are fundamental types. Call the
485/// first such parameter the "local key parameter".
0731742a 486/// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
ff7c6d11
XL
487/// going through `Box`, which is fundamental.
488/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
489/// the same reason.
490/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
491/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
492/// the local type and the type parameter.
3dfed10e
XL
493/// 3. Before this local type, no generic type parameter of the impl must
494/// be reachable through fundamental types.
495/// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
923072b8 496/// - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is
3dfed10e 497/// reachable through the fundamental type `Box`.
ff7c6d11
XL
498/// 4. Every type in the local key parameter not known in C, going
499/// through the parameter's type tree, must appear only as a subtree of
500/// a type local to C, with only fundamental types between the type
501/// local to C and the local key parameter.
0731742a 502/// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
ff7c6d11
XL
503/// is bad, because the only local type with `T` as a subtree is
504/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
505/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
0531ce1d 506/// the second occurrence of `T` is not a subtree of *any* local type.
ff7c6d11
XL
507/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
508/// `LocalType<Vec<T>>`, which is local and has no types between it and
509/// the type parameter.
510///
511/// The orphan rules actually serve several different purposes:
512///
0731742a 513/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
ff7c6d11
XL
514/// every type local to one crate is unknown in the other) can't implement
515/// the same trait-ref. This follows because it can be seen that no such
516/// type can orphan-check in 2 such crates.
517///
518/// To check that a local impl follows the orphan rules, we check it in
519/// InCrate::Local mode, using type parameters for the "generic" types.
520///
521/// 2. They ground negative reasoning for coherence. If a user wants to
522/// write both a conditional blanket impl and a specific impl, we need to
523/// make sure they do not overlap. For example, if we write
04454e1e 524/// ```ignore (illustrative)
ff7c6d11
XL
525/// impl<T> IntoIterator for Vec<T>
526/// impl<T: Iterator> IntoIterator for T
527/// ```
528/// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
529/// We can observe that this holds in the current crate, but we need to make
530/// sure this will also hold in all unknown crates (both "independent" crates,
531/// which we need for link-safety, and also child crates, because we don't want
532/// child crates to get error for impl conflicts in a *dependency*).
533///
534/// For that, we only allow negative reasoning if, for every assignment to the
535/// inference variables, every unknown crate would get an orphan error if they
536/// try to implement this trait-ref. To check for this, we use InCrate::Remote
537/// mode. That is sound because we already know all the impls from known crates.
538///
f9f354fc 539/// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
ff7c6d11
XL
540/// add "non-blanket" impls without breaking negative reasoning in dependent
541/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
542///
543/// For that, we only a allow crate to perform negative reasoning on
f9f354fc 544/// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2).
ff7c6d11
XL
545///
546/// Because we never perform negative reasoning generically (coherence does
547/// not involve type parameters), this can be interpreted as doing the full
548/// orphan check (using InCrate::Local mode), substituting non-local known
549/// types for all inference variables.
550///
551/// This allows for crates to future-compatibly add impls as long as they
552/// can't apply to types with a key parameter in a child crate - applying
553/// the rules, this basically means that every type parameter in the impl
554/// must appear behind a non-fundamental type (because this is not a
555/// type-system requirement, crate owners might also go for "semantic
556/// future-compatibility" involving things such as sealed traits, but
557/// the above requirement is sufficient, and is necessary in "open world"
558/// cases).
559///
560/// Note that this function is never called for types that have both type
561/// parameters and inference variables.
dc9dc135 562fn orphan_check_trait_ref<'tcx>(
e74abb32 563 tcx: TyCtxt<'tcx>,
dc9dc135
XL
564 trait_ref: ty::TraitRef<'tcx>,
565 in_crate: InCrate,
566) -> Result<(), OrphanCheckErr<'tcx>> {
dfeec247 567 debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})", trait_ref, in_crate);
ff7c6d11 568
5099ac24 569 if trait_ref.needs_infer() && trait_ref.needs_subst() {
dfeec247
XL
570 bug!(
571 "can't orphan check a trait ref with both params and inference variables {:?}",
572 trait_ref
573 );
ff7c6d11 574 }
c34b1796 575
064997fb
FG
576 let mut checker = OrphanChecker::new(tcx, in_crate);
577 match trait_ref.visit_with(&mut checker) {
578 ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)),
579 ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => {
580 // Does there exist some local type after the `ParamTy`.
581 checker.search_first_local_ty = true;
582 if let Some(OrphanCheckEarlyExit::LocalTy(local_ty)) =
583 trait_ref.visit_with(&mut checker).break_value()
584 {
585 Err(OrphanCheckErr::UncoveredTy(ty, Some(local_ty)))
586 } else {
587 Err(OrphanCheckErr::UncoveredTy(ty, None))
ba9703b0 588 }
e74abb32 589 }
064997fb 590 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()),
60c5eb7d 591 }
c34b1796
AL
592}
593
064997fb 594struct OrphanChecker<'tcx> {
a2a8927a 595 tcx: TyCtxt<'tcx>,
a2a8927a 596 in_crate: InCrate,
064997fb
FG
597 in_self_ty: bool,
598 /// Ignore orphan check failures and exclusively search for the first
599 /// local type.
600 search_first_local_ty: bool,
601 non_local_tys: Vec<(Ty<'tcx>, bool)>,
602}
603
604impl<'tcx> OrphanChecker<'tcx> {
605 fn new(tcx: TyCtxt<'tcx>, in_crate: InCrate) -> Self {
606 OrphanChecker {
607 tcx,
608 in_crate,
609 in_self_ty: true,
610 search_first_local_ty: false,
611 non_local_tys: Vec::new(),
dfeec247 612 }
e74abb32 613 }
c34b1796 614
064997fb
FG
615 fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
616 self.non_local_tys.push((t, self.in_self_ty));
617 ControlFlow::CONTINUE
618 }
ba9703b0 619
064997fb
FG
620 fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
621 if self.search_first_local_ty {
622 ControlFlow::CONTINUE
623 } else {
624 ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(t))
ba9703b0 625 }
064997fb 626 }
ba9703b0 627
064997fb
FG
628 fn def_id_is_local(&mut self, def_id: DefId) -> bool {
629 match self.in_crate {
630 InCrate::Local => def_id.is_local(),
631 InCrate::Remote => false,
632 }
633 }
c34b1796
AL
634}
635
064997fb
FG
636enum OrphanCheckEarlyExit<'tcx> {
637 ParamTy(Ty<'tcx>),
638 LocalTy(Ty<'tcx>),
ff7c6d11
XL
639}
640
064997fb
FG
641impl<'tcx> TypeVisitor<'tcx> for OrphanChecker<'tcx> {
642 type BreakTy = OrphanCheckEarlyExit<'tcx>;
643 fn visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
644 ControlFlow::CONTINUE
645 }
abe05a73 646
064997fb
FG
647 fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
648 let result = match *ty.kind() {
649 ty::Bool
650 | ty::Char
651 | ty::Int(..)
652 | ty::Uint(..)
653 | ty::Float(..)
654 | ty::Str
655 | ty::FnDef(..)
656 | ty::FnPtr(_)
657 | ty::Array(..)
658 | ty::Slice(..)
659 | ty::RawPtr(..)
660 | ty::Never
661 | ty::Tuple(..)
662 | ty::Projection(..) => self.found_non_local_ty(ty),
663
664 ty::Param(..) => self.found_param_ty(ty),
665
666 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match self.in_crate {
667 InCrate::Local => self.found_non_local_ty(ty),
668 // The inference variable might be unified with a local
669 // type in that remote crate.
670 InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
671 },
672
673 // For fundamental types, we just look inside of them.
674 ty::Ref(_, ty, _) => ty.visit_with(self),
675 ty::Adt(def, substs) => {
676 if self.def_id_is_local(def.did()) {
677 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
678 } else if def.is_fundamental() {
679 substs.visit_with(self)
680 } else {
681 self.found_non_local_ty(ty)
682 }
0731742a 683 }
064997fb
FG
684 ty::Foreign(def_id) => {
685 if self.def_id_is_local(def_id) {
686 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
687 } else {
688 self.found_non_local_ty(ty)
689 }
690 }
691 ty::Dynamic(tt, ..) => {
692 let principal = tt.principal().map(|p| p.def_id());
693 if principal.map_or(false, |p| self.def_id_is_local(p)) {
694 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
695 } else {
696 self.found_non_local_ty(ty)
697 }
698 }
699 ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
700 ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) => {
701 self.tcx.sess.delay_span_bug(
702 DUMMY_SP,
703 format!("ty_is_local invoked on closure or generator: {:?}", ty),
704 );
705 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
706 }
707 ty::Opaque(..) => {
708 // This merits some explanation.
709 // Normally, opaque types are not involved when performing
710 // coherence checking, since it is illegal to directly
711 // implement a trait on an opaque type. However, we might
712 // end up looking at an opaque type during coherence checking
713 // if an opaque type gets used within another type (e.g. as
714 // the type of a field) when checking for auto trait or `Sized`
715 // impls. This requires us to decide whether or not an opaque
716 // type should be considered 'local' or not.
717 //
718 // We choose to treat all opaque types as non-local, even
719 // those that appear within the same crate. This seems
720 // somewhat surprising at first, but makes sense when
721 // you consider that opaque types are supposed to hide
722 // the underlying type *within the same crate*. When an
723 // opaque type is used from outside the module
724 // where it is declared, it should be impossible to observe
725 // anything about it other than the traits that it implements.
726 //
727 // The alternative would be to look at the underlying type
728 // to determine whether or not the opaque type itself should
729 // be considered local. However, this could make it a breaking change
730 // to switch the underlying ('defining') type from a local type
731 // to a remote type. This would violate the rule that opaque
732 // types should be completely opaque apart from the traits
733 // that they implement, so we don't use this behavior.
734 self.found_non_local_ty(ty)
735 }
736 };
737 // A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so
738 // the first type we visit is always the self type.
739 self.in_self_ty = false;
740 result
741 }
1a4d82fc 742
f2b60f7d
FG
743 /// All possible values for a constant parameter already exist
744 /// in the crate defining the trait, so they are always non-local[^1].
745 ///
746 /// Because there's no way to have an impl where the first local
747 /// generic argument is a constant, we also don't have to fail
748 /// the orphan check when encountering a parameter or a generic constant.
749 ///
750 /// This means that we can completely ignore constants during the orphan check.
751 ///
752 /// See `src/test/ui/coherence/const-generics-orphan-check-ok.rs` for examples.
753 ///
754 /// [^1]: This might not hold for function pointers or trait objects in the future.
755 /// As these should be quite rare as const arguments and especially rare as impl
756 /// parameters, allowing uncovered const parameters in impls seems more useful
757 /// than allowing `impl<T> Trait<local_fn_ptr, T> for i32` to compile.
064997fb
FG
758 fn visit_const(&mut self, _c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
759 ControlFlow::CONTINUE
1a4d82fc
JJ
760 }
761}