]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_trait_selection/src/traits/project.rs
New upstream version 1.52.0~beta.3+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / project.rs
CommitLineData
ba9703b0
XL
1//! Code for projecting associated types out of trait references.
2
ba9703b0
XL
3use super::specialization_graph;
4use super::translate_substs;
5use super::util;
6use super::MismatchedProjectionTypes;
7use super::Obligation;
8use super::ObligationCause;
9use super::PredicateObligation;
10use super::Selection;
11use super::SelectionContext;
12use super::SelectionError;
f9f354fc 13use super::{
f035d41b 14 ImplSourceClosureData, ImplSourceDiscriminantKindData, ImplSourceFnPointerData,
6a06907d 15 ImplSourceGeneratorData, ImplSourcePointeeData, ImplSourceUserDefinedData,
f9f354fc 16};
f035d41b 17use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
ba9703b0
XL
18
19use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
20use crate::infer::{InferCtxt, InferOk, LateBoundRegionConversionTime};
21use crate::traits::error_reporting::InferCtxtExt;
f9f354fc 22use rustc_data_structures::stack::ensure_sufficient_stack;
ba9703b0
XL
23use rustc_errors::ErrorReported;
24use rustc_hir::def_id::DefId;
3dfed10e 25use rustc_hir::lang_items::LangItem;
f035d41b 26use rustc_infer::infer::resolve::OpportunisticRegionResolver;
ba9703b0 27use rustc_middle::ty::fold::{TypeFoldable, TypeFolder};
f035d41b 28use rustc_middle::ty::subst::Subst;
ba9703b0 29use rustc_middle::ty::{self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, WithConstness};
f035d41b 30use rustc_span::symbol::sym;
ba9703b0
XL
31
32pub use rustc_middle::traits::Reveal;
33
34pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
35
36pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
37
38pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::ProjectionTy<'tcx>>;
39
f9652781
XL
40pub(super) struct InProgress;
41
ba9703b0
XL
42/// When attempting to resolve `<T as TraitRef>::Name` ...
43#[derive(Debug)]
44pub enum ProjectionTyError<'tcx> {
45 /// ...we found multiple sources of information and couldn't resolve the ambiguity.
46 TooManyCandidates,
47
48 /// ...an error occurred matching `T : TraitRef`
49 TraitSelectionError(SelectionError<'tcx>),
50}
51
52#[derive(PartialEq, Eq, Debug)]
53enum ProjectionTyCandidate<'tcx> {
29967ef6 54 /// From a where-clause in the env or object type
ba9703b0
XL
55 ParamEnv(ty::PolyProjectionPredicate<'tcx>),
56
29967ef6 57 /// From the definition of `Trait` when you have something like <<A as Trait>::B as Trait2>::C
ba9703b0
XL
58 TraitDef(ty::PolyProjectionPredicate<'tcx>),
59
29967ef6
XL
60 /// Bounds specified on an object type
61 Object(ty::PolyProjectionPredicate<'tcx>),
62
63 /// From a "impl" (or a "pseudo-impl" returned by select)
ba9703b0
XL
64 Select(Selection<'tcx>),
65}
66
67enum ProjectionTyCandidateSet<'tcx> {
68 None,
69 Single(ProjectionTyCandidate<'tcx>),
70 Ambiguous,
71 Error(SelectionError<'tcx>),
72}
73
74impl<'tcx> ProjectionTyCandidateSet<'tcx> {
75 fn mark_ambiguous(&mut self) {
76 *self = ProjectionTyCandidateSet::Ambiguous;
77 }
78
79 fn mark_error(&mut self, err: SelectionError<'tcx>) {
80 *self = ProjectionTyCandidateSet::Error(err);
81 }
82
83 // Returns true if the push was successful, or false if the candidate
84 // was discarded -- this could be because of ambiguity, or because
85 // a higher-priority candidate is already there.
86 fn push_candidate(&mut self, candidate: ProjectionTyCandidate<'tcx>) -> bool {
87 use self::ProjectionTyCandidate::*;
88 use self::ProjectionTyCandidateSet::*;
89
90 // This wacky variable is just used to try and
91 // make code readable and avoid confusing paths.
92 // It is assigned a "value" of `()` only on those
93 // paths in which we wish to convert `*self` to
94 // ambiguous (and return false, because the candidate
95 // was not used). On other paths, it is not assigned,
96 // and hence if those paths *could* reach the code that
97 // comes after the match, this fn would not compile.
98 let convert_to_ambiguous;
99
100 match self {
101 None => {
102 *self = Single(candidate);
103 return true;
104 }
105
106 Single(current) => {
107 // Duplicates can happen inside ParamEnv. In the case, we
108 // perform a lazy deduplication.
109 if current == &candidate {
110 return false;
111 }
112
113 // Prefer where-clauses. As in select, if there are multiple
114 // candidates, we prefer where-clause candidates over impls. This
115 // may seem a bit surprising, since impls are the source of
116 // "truth" in some sense, but in fact some of the impls that SEEM
117 // applicable are not, because of nested obligations. Where
118 // clauses are the safer choice. See the comment on
119 // `select::SelectionCandidate` and #21974 for more details.
120 match (current, candidate) {
121 (ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
122 (ParamEnv(..), _) => return false,
123 (_, ParamEnv(..)) => unreachable!(),
124 (_, _) => convert_to_ambiguous = (),
125 }
126 }
127
128 Ambiguous | Error(..) => {
129 return false;
130 }
131 }
132
133 // We only ever get here when we moved from a single candidate
134 // to ambiguous.
135 let () = convert_to_ambiguous;
136 *self = Ambiguous;
137 false
138 }
139}
140
141/// Evaluates constraints of the form:
142///
143/// for<...> <T as Trait>::U == V
144///
145/// If successful, this may result in additional obligations. Also returns
146/// the projection cache key used to track these additional obligations.
f9652781
XL
147///
148/// ## Returns
149///
150/// - `Err(_)`: the projection can be normalized, but is not equal to the
151/// expected type.
152/// - `Ok(Err(InProgress))`: this is called recursively while normalizing
153/// the same projection.
154/// - `Ok(Ok(None))`: The projection cannot be normalized due to ambiguity
155/// (resolving some inference variables in the projection may fix this).
156/// - `Ok(Ok(Some(obligations)))`: The projection bound holds subject to
157/// the given obligations. If the projection cannot be normalized because
158/// the required trait bound doesn't hold this returned with `obligations`
159/// being a predicate that cannot be proven.
29967ef6 160#[instrument(level = "debug", skip(selcx))]
f9652781 161pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
ba9703b0
XL
162 selcx: &mut SelectionContext<'cx, 'tcx>,
163 obligation: &PolyProjectionObligation<'tcx>,
f9652781
XL
164) -> Result<
165 Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
166 MismatchedProjectionTypes<'tcx>,
167> {
ba9703b0 168 let infcx = selcx.infcx();
f035d41b 169 infcx.commit_if_ok(|_snapshot| {
29967ef6 170 let placeholder_predicate =
fc512014 171 infcx.replace_bound_vars_with_placeholders(obligation.predicate);
ba9703b0
XL
172
173 let placeholder_obligation = obligation.with(placeholder_predicate);
174 let result = project_and_unify_type(selcx, &placeholder_obligation)?;
ba9703b0
XL
175 Ok(result)
176 })
177}
178
179/// Evaluates constraints of the form:
180///
181/// <T as Trait>::U == V
182///
183/// If successful, this may result in additional obligations.
f9652781
XL
184///
185/// See [poly_project_and_unify_type] for an explanation of the return value.
ba9703b0
XL
186fn project_and_unify_type<'cx, 'tcx>(
187 selcx: &mut SelectionContext<'cx, 'tcx>,
188 obligation: &ProjectionObligation<'tcx>,
f9652781
XL
189) -> Result<
190 Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
191 MismatchedProjectionTypes<'tcx>,
192> {
29967ef6 193 debug!(?obligation, "project_and_unify_type");
ba9703b0
XL
194
195 let mut obligations = vec![];
196 let normalized_ty = match opt_normalize_projection_type(
197 selcx,
198 obligation.param_env,
199 obligation.predicate.projection_ty,
200 obligation.cause.clone(),
201 obligation.recursion_depth,
202 &mut obligations,
203 ) {
f9652781
XL
204 Ok(Some(n)) => n,
205 Ok(None) => return Ok(Ok(None)),
206 Err(InProgress) => return Ok(Err(InProgress)),
ba9703b0
XL
207 };
208
29967ef6 209 debug!(?normalized_ty, ?obligations, "project_and_unify_type result");
ba9703b0
XL
210
211 let infcx = selcx.infcx();
212 match infcx
213 .at(&obligation.cause, obligation.param_env)
214 .eq(normalized_ty, obligation.predicate.ty)
215 {
216 Ok(InferOk { obligations: inferred_obligations, value: () }) => {
217 obligations.extend(inferred_obligations);
f9652781 218 Ok(Ok(Some(obligations)))
ba9703b0
XL
219 }
220 Err(err) => {
221 debug!("project_and_unify_type: equating types encountered error {:?}", err);
222 Err(MismatchedProjectionTypes { err })
223 }
224 }
225}
226
227/// Normalizes any associated type projections in `value`, replacing
228/// them with a fully resolved type where possible. The return value
229/// combines the normalized result and any additional obligations that
230/// were incurred as result.
231pub fn normalize<'a, 'b, 'tcx, T>(
232 selcx: &'a mut SelectionContext<'b, 'tcx>,
233 param_env: ty::ParamEnv<'tcx>,
234 cause: ObligationCause<'tcx>,
fc512014 235 value: T,
ba9703b0
XL
236) -> Normalized<'tcx, T>
237where
238 T: TypeFoldable<'tcx>,
239{
240 let mut obligations = Vec::new();
241 let value = normalize_to(selcx, param_env, cause, value, &mut obligations);
242 Normalized { value, obligations }
243}
244
245pub fn normalize_to<'a, 'b, 'tcx, T>(
246 selcx: &'a mut SelectionContext<'b, 'tcx>,
247 param_env: ty::ParamEnv<'tcx>,
248 cause: ObligationCause<'tcx>,
fc512014 249 value: T,
ba9703b0
XL
250 obligations: &mut Vec<PredicateObligation<'tcx>>,
251) -> T
252where
253 T: TypeFoldable<'tcx>,
254{
255 normalize_with_depth_to(selcx, param_env, cause, 0, value, obligations)
256}
257
258/// As `normalize`, but with a custom depth.
259pub fn normalize_with_depth<'a, 'b, 'tcx, T>(
260 selcx: &'a mut SelectionContext<'b, 'tcx>,
261 param_env: ty::ParamEnv<'tcx>,
262 cause: ObligationCause<'tcx>,
263 depth: usize,
fc512014 264 value: T,
ba9703b0
XL
265) -> Normalized<'tcx, T>
266where
267 T: TypeFoldable<'tcx>,
268{
269 let mut obligations = Vec::new();
270 let value = normalize_with_depth_to(selcx, param_env, cause, depth, value, &mut obligations);
271 Normalized { value, obligations }
272}
273
29967ef6 274#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
ba9703b0
XL
275pub fn normalize_with_depth_to<'a, 'b, 'tcx, T>(
276 selcx: &'a mut SelectionContext<'b, 'tcx>,
277 param_env: ty::ParamEnv<'tcx>,
278 cause: ObligationCause<'tcx>,
279 depth: usize,
fc512014 280 value: T,
ba9703b0
XL
281 obligations: &mut Vec<PredicateObligation<'tcx>>,
282) -> T
283where
284 T: TypeFoldable<'tcx>,
285{
ba9703b0 286 let mut normalizer = AssocTypeNormalizer::new(selcx, param_env, cause, depth, obligations);
f9f354fc 287 let result = ensure_sufficient_stack(|| normalizer.fold(value));
29967ef6
XL
288 debug!(?result, obligations.len = normalizer.obligations.len());
289 debug!(?normalizer.obligations,);
ba9703b0
XL
290 result
291}
292
293struct AssocTypeNormalizer<'a, 'b, 'tcx> {
294 selcx: &'a mut SelectionContext<'b, 'tcx>,
295 param_env: ty::ParamEnv<'tcx>,
296 cause: ObligationCause<'tcx>,
297 obligations: &'a mut Vec<PredicateObligation<'tcx>>,
298 depth: usize,
299}
300
301impl<'a, 'b, 'tcx> AssocTypeNormalizer<'a, 'b, 'tcx> {
302 fn new(
303 selcx: &'a mut SelectionContext<'b, 'tcx>,
304 param_env: ty::ParamEnv<'tcx>,
305 cause: ObligationCause<'tcx>,
306 depth: usize,
307 obligations: &'a mut Vec<PredicateObligation<'tcx>>,
308 ) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
309 AssocTypeNormalizer { selcx, param_env, cause, obligations, depth }
310 }
311
fc512014 312 fn fold<T: TypeFoldable<'tcx>>(&mut self, value: T) -> T {
ba9703b0
XL
313 let value = self.selcx.infcx().resolve_vars_if_possible(value);
314
315 if !value.has_projections() { value } else { value.fold_with(self) }
316 }
317}
318
319impl<'a, 'b, 'tcx> TypeFolder<'tcx> for AssocTypeNormalizer<'a, 'b, 'tcx> {
320 fn tcx<'c>(&'c self) -> TyCtxt<'tcx> {
321 self.selcx.tcx()
322 }
323
324 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
325 if !ty.has_projections() {
326 return ty;
327 }
328 // We don't want to normalize associated types that occur inside of region
329 // binders, because they may contain bound regions, and we can't cope with that.
330 //
331 // Example:
332 //
333 // for<'a> fn(<T as Foo<&'a>>::A)
334 //
335 // Instead of normalizing `<T as Foo<&'a>>::A` here, we'll
336 // normalize it when we instantiate those bound regions (which
337 // should occur eventually).
338
339 let ty = ty.super_fold_with(self);
1b1a35ee
XL
340 match *ty.kind() {
341 ty::Opaque(def_id, substs) if !substs.has_escaping_bound_vars() => {
ba9703b0 342 // Only normalize `impl Trait` after type-checking, usually in codegen.
f035d41b 343 match self.param_env.reveal() {
ba9703b0
XL
344 Reveal::UserFacing => ty,
345
346 Reveal::All => {
f9f354fc
XL
347 let recursion_limit = self.tcx().sess.recursion_limit();
348 if !recursion_limit.value_within_limit(self.depth) {
ba9703b0
XL
349 let obligation = Obligation::with_depth(
350 self.cause.clone(),
f9f354fc 351 recursion_limit.0,
ba9703b0
XL
352 self.param_env,
353 ty,
354 );
355 self.selcx.infcx().report_overflow_error(&obligation, true);
356 }
357
358 let generic_ty = self.tcx().type_of(def_id);
359 let concrete_ty = generic_ty.subst(self.tcx(), substs);
360 self.depth += 1;
361 let folded_ty = self.fold_ty(concrete_ty);
362 self.depth -= 1;
363 folded_ty
364 }
365 }
366 }
367
fc512014 368 ty::Projection(data) if !data.has_escaping_bound_vars() => {
f9652781 369 // This is kind of hacky -- we need to be able to
ba9703b0
XL
370 // handle normalization within binders because
371 // otherwise we wind up a need to normalize when doing
372 // trait matching (since you can have a trait
f035d41b 373 // obligation like `for<'a> T::B: Fn(&'a i32)`), but
ba9703b0
XL
374 // we can't normalize with bound regions in scope. So
375 // far now we just ignore binders but only normalize
376 // if all bound regions are gone (and then we still
377 // have to renormalize whenever we instantiate a
378 // binder). It would be better to normalize in a
379 // binding-aware fashion.
380
381 let normalized_ty = normalize_projection_type(
382 self.selcx,
383 self.param_env,
fc512014 384 data,
ba9703b0
XL
385 self.cause.clone(),
386 self.depth,
387 &mut self.obligations,
388 );
389 debug!(
29967ef6
XL
390 ?self.depth,
391 ?ty,
392 ?normalized_ty,
393 obligations.len = ?self.obligations.len(),
394 "AssocTypeNormalizer: normalized type"
ba9703b0
XL
395 );
396 normalized_ty
397 }
398
399 _ => ty,
400 }
401 }
402
403 fn fold_const(&mut self, constant: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
f9f354fc
XL
404 if self.selcx.tcx().lazy_normalization() {
405 constant
406 } else {
407 let constant = constant.super_fold_with(self);
408 constant.eval(self.selcx.tcx(), self.param_env)
409 }
ba9703b0
XL
410 }
411}
412
413/// The guts of `normalize`: normalize a specific projection like `<T
414/// as Trait>::Item`. The result is always a type (and possibly
415/// additional obligations). If ambiguity arises, which implies that
416/// there are unresolved type variables in the projection, we will
417/// substitute a fresh type variable `$X` and generate a new
418/// obligation `<T as Trait>::Item == $X` for later.
419pub fn normalize_projection_type<'a, 'b, 'tcx>(
420 selcx: &'a mut SelectionContext<'b, 'tcx>,
421 param_env: ty::ParamEnv<'tcx>,
422 projection_ty: ty::ProjectionTy<'tcx>,
423 cause: ObligationCause<'tcx>,
424 depth: usize,
425 obligations: &mut Vec<PredicateObligation<'tcx>>,
426) -> Ty<'tcx> {
427 opt_normalize_projection_type(
428 selcx,
429 param_env,
430 projection_ty,
431 cause.clone(),
432 depth,
433 obligations,
434 )
f9652781
XL
435 .ok()
436 .flatten()
ba9703b0
XL
437 .unwrap_or_else(move || {
438 // if we bottom out in ambiguity, create a type variable
439 // and a deferred predicate to resolve this when more type
440 // information is available.
441
442 let tcx = selcx.infcx().tcx;
443 let def_id = projection_ty.item_def_id;
444 let ty_var = selcx.infcx().next_ty_var(TypeVariableOrigin {
445 kind: TypeVariableOriginKind::NormalizeProjectionType,
446 span: tcx.def_span(def_id),
447 });
448 let projection = ty::Binder::dummy(ty::ProjectionPredicate { projection_ty, ty: ty_var });
449 let obligation =
f9f354fc 450 Obligation::with_depth(cause, depth + 1, param_env, projection.to_predicate(tcx));
ba9703b0
XL
451 obligations.push(obligation);
452 ty_var
453 })
454}
455
456/// The guts of `normalize`: normalize a specific projection like `<T
457/// as Trait>::Item`. The result is always a type (and possibly
458/// additional obligations). Returns `None` in the case of ambiguity,
459/// which indicates that there are unbound type variables.
460///
461/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
462/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
463/// often immediately appended to another obligations vector. So now this
464/// function takes an obligations vector and appends to it directly, which is
465/// slightly uglier but avoids the need for an extra short-lived allocation.
29967ef6 466#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
ba9703b0
XL
467fn opt_normalize_projection_type<'a, 'b, 'tcx>(
468 selcx: &'a mut SelectionContext<'b, 'tcx>,
469 param_env: ty::ParamEnv<'tcx>,
470 projection_ty: ty::ProjectionTy<'tcx>,
471 cause: ObligationCause<'tcx>,
472 depth: usize,
473 obligations: &mut Vec<PredicateObligation<'tcx>>,
f9652781 474) -> Result<Option<Ty<'tcx>>, InProgress> {
ba9703b0
XL
475 let infcx = selcx.infcx();
476
fc512014 477 let projection_ty = infcx.resolve_vars_if_possible(projection_ty);
ba9703b0
XL
478 let cache_key = ProjectionCacheKey::new(projection_ty);
479
ba9703b0
XL
480 // FIXME(#20304) For now, I am caching here, which is good, but it
481 // means we don't capture the type variables that are created in
482 // the case of ambiguity. Which means we may create a large stream
483 // of such variables. OTOH, if we move the caching up a level, we
484 // would not benefit from caching when proving `T: Trait<U=Foo>`
485 // bounds. It might be the case that we want two distinct caches,
486 // or else another kind of cache entry.
487
f9f354fc 488 let cache_result = infcx.inner.borrow_mut().projection_cache().try_start(cache_key);
ba9703b0
XL
489 match cache_result {
490 Ok(()) => {}
491 Err(ProjectionCacheEntry::Ambiguous) => {
492 // If we found ambiguity the last time, that means we will continue
493 // to do so until some type in the key changes (and we know it
494 // hasn't, because we just fully resolved it).
29967ef6 495 debug!("found cache entry: ambiguous");
f9652781 496 return Ok(None);
ba9703b0
XL
497 }
498 Err(ProjectionCacheEntry::InProgress) => {
ba9703b0
XL
499 // Under lazy normalization, this can arise when
500 // bootstrapping. That is, imagine an environment with a
501 // where-clause like `A::B == u32`. Now, if we are asked
502 // to normalize `A::B`, we will want to check the
503 // where-clauses in scope. So we will try to unify `A::B`
504 // with `A::B`, which can trigger a recursive
f9652781 505 // normalization.
ba9703b0 506
29967ef6 507 debug!("found cache entry: in-progress");
ba9703b0 508
b9856134
XL
509 // Cache that normalizing this projection resulted in a cycle. This
510 // should ensure that, unless this happens within a snapshot that's
511 // rolled back, fulfillment or evaluation will notice the cycle.
512
513 infcx.inner.borrow_mut().projection_cache().recur(cache_key);
514 return Err(InProgress);
515 }
516 Err(ProjectionCacheEntry::Recur) => {
f9652781 517 return Err(InProgress);
ba9703b0
XL
518 }
519 Err(ProjectionCacheEntry::NormalizedTy(ty)) => {
520 // This is the hottest path in this function.
521 //
522 // If we find the value in the cache, then return it along
523 // with the obligations that went along with it. Note
524 // that, when using a fulfillment context, these
525 // obligations could in principle be ignored: they have
526 // already been registered when the cache entry was
527 // created (and hence the new ones will quickly be
528 // discarded as duplicated). But when doing trait
529 // evaluation this is not the case, and dropping the trait
530 // evaluations can causes ICEs (e.g., #43132).
29967ef6 531 debug!(?ty, "found normalized ty");
ba9703b0
XL
532
533 // Once we have inferred everything we need to know, we
534 // can ignore the `obligations` from that point on.
535 if infcx.unresolved_type_vars(&ty.value).is_none() {
f9f354fc 536 infcx.inner.borrow_mut().projection_cache().complete_normalized(cache_key, &ty);
ba9703b0
XL
537 // No need to extend `obligations`.
538 } else {
539 obligations.extend(ty.obligations);
540 }
f9652781 541 return Ok(Some(ty.value));
ba9703b0
XL
542 }
543 Err(ProjectionCacheEntry::Error) => {
29967ef6 544 debug!("opt_normalize_projection_type: found error");
ba9703b0
XL
545 let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
546 obligations.extend(result.obligations);
f9652781 547 return Ok(Some(result.value));
ba9703b0
XL
548 }
549 }
550
551 let obligation = Obligation::with_depth(cause.clone(), depth, param_env, projection_ty);
552 match project_type(selcx, &obligation) {
553 Ok(ProjectedTy::Progress(Progress {
554 ty: projected_ty,
555 obligations: mut projected_obligations,
556 })) => {
557 // if projection succeeded, then what we get out of this
558 // is also non-normalized (consider: it was derived from
559 // an impl, where-clause etc) and hence we must
560 // re-normalize it
561
29967ef6 562 debug!(?projected_ty, ?depth, ?projected_obligations);
ba9703b0
XL
563
564 let result = if projected_ty.has_projections() {
565 let mut normalizer = AssocTypeNormalizer::new(
566 selcx,
567 param_env,
568 cause,
569 depth + 1,
570 &mut projected_obligations,
571 );
fc512014 572 let normalized_ty = normalizer.fold(projected_ty);
ba9703b0 573
29967ef6 574 debug!(?normalized_ty, ?depth);
ba9703b0
XL
575
576 Normalized { value: normalized_ty, obligations: projected_obligations }
577 } else {
578 Normalized { value: projected_ty, obligations: projected_obligations }
579 };
580
581 let cache_value = prune_cache_value_obligations(infcx, &result);
f9f354fc 582 infcx.inner.borrow_mut().projection_cache().insert_ty(cache_key, cache_value);
ba9703b0 583 obligations.extend(result.obligations);
f9652781 584 Ok(Some(result.value))
ba9703b0
XL
585 }
586 Ok(ProjectedTy::NoProgress(projected_ty)) => {
29967ef6 587 debug!(?projected_ty, "opt_normalize_projection_type: no progress");
ba9703b0 588 let result = Normalized { value: projected_ty, obligations: vec![] };
f9f354fc 589 infcx.inner.borrow_mut().projection_cache().insert_ty(cache_key, result.clone());
ba9703b0 590 // No need to extend `obligations`.
f9652781 591 Ok(Some(result.value))
ba9703b0
XL
592 }
593 Err(ProjectionTyError::TooManyCandidates) => {
29967ef6 594 debug!("opt_normalize_projection_type: too many candidates");
f9f354fc 595 infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
f9652781 596 Ok(None)
ba9703b0
XL
597 }
598 Err(ProjectionTyError::TraitSelectionError(_)) => {
599 debug!("opt_normalize_projection_type: ERROR");
600 // if we got an error processing the `T as Trait` part,
601 // just return `ty::err` but add the obligation `T :
602 // Trait`, which when processed will cause the error to be
603 // reported later
604
f9f354fc 605 infcx.inner.borrow_mut().projection_cache().error(cache_key);
ba9703b0
XL
606 let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
607 obligations.extend(result.obligations);
f9652781 608 Ok(Some(result.value))
ba9703b0
XL
609 }
610 }
611}
612
613/// If there are unresolved type variables, then we need to include
614/// any subobligations that bind them, at least until those type
615/// variables are fully resolved.
616fn prune_cache_value_obligations<'a, 'tcx>(
617 infcx: &'a InferCtxt<'a, 'tcx>,
618 result: &NormalizedTy<'tcx>,
619) -> NormalizedTy<'tcx> {
620 if infcx.unresolved_type_vars(&result.value).is_none() {
621 return NormalizedTy { value: result.value, obligations: vec![] };
622 }
623
624 let mut obligations: Vec<_> = result
625 .obligations
626 .iter()
3dfed10e 627 .filter(|obligation| {
5869c6ff 628 let bound_predicate = obligation.predicate.kind();
29967ef6 629 match bound_predicate.skip_binder() {
3dfed10e
XL
630 // We found a `T: Foo<X = U>` predicate, let's check
631 // if `U` references any unresolved type
632 // variables. In principle, we only care if this
633 // projection can help resolve any of the type
634 // variables found in `result.value` -- but we just
635 // check for any type variables here, for fear of
636 // indirect obligations (e.g., we project to `?0`,
637 // but we have `T: Foo<X = ?1>` and `?1: Bar<X =
638 // ?0>`).
5869c6ff 639 ty::PredicateKind::Projection(data) => {
29967ef6 640 infcx.unresolved_type_vars(&bound_predicate.rebind(data.ty)).is_some()
3dfed10e 641 }
ba9703b0 642
3dfed10e
XL
643 // We are only interested in `T: Foo<X = U>` predicates, whre
644 // `U` references one of `unresolved_type_vars`. =)
645 _ => false,
646 }
ba9703b0
XL
647 })
648 .cloned()
649 .collect();
650
651 obligations.shrink_to_fit();
652
653 NormalizedTy { value: result.value, obligations }
654}
655
ba9703b0
XL
656/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
657/// hold. In various error cases, we cannot generate a valid
658/// normalized projection. Therefore, we create an inference variable
659/// return an associated obligation that, when fulfilled, will lead to
660/// an error.
661///
662/// Note that we used to return `Error` here, but that was quite
663/// dubious -- the premise was that an error would *eventually* be
664/// reported, when the obligation was processed. But in general once
665/// you see a `Error` you are supposed to be able to assume that an
666/// error *has been* reported, so that you can take whatever heuristic
667/// paths you want to take. To make things worse, it was possible for
668/// cycles to arise, where you basically had a setup like `<MyType<$0>
669/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
670/// Trait>::Foo> to `[type error]` would lead to an obligation of
671/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
672/// an error for this obligation, but we legitimately should not,
673/// because it contains `[type error]`. Yuck! (See issue #29857 for
674/// one case where this arose.)
675fn normalize_to_error<'a, 'tcx>(
676 selcx: &mut SelectionContext<'a, 'tcx>,
677 param_env: ty::ParamEnv<'tcx>,
678 projection_ty: ty::ProjectionTy<'tcx>,
679 cause: ObligationCause<'tcx>,
680 depth: usize,
681) -> NormalizedTy<'tcx> {
682 let trait_ref = projection_ty.trait_ref(selcx.tcx()).to_poly_trait_ref();
683 let trait_obligation = Obligation {
684 cause,
685 recursion_depth: depth,
686 param_env,
f9f354fc 687 predicate: trait_ref.without_const().to_predicate(selcx.tcx()),
ba9703b0
XL
688 };
689 let tcx = selcx.infcx().tcx;
690 let def_id = projection_ty.item_def_id;
691 let new_value = selcx.infcx().next_ty_var(TypeVariableOrigin {
692 kind: TypeVariableOriginKind::NormalizeProjectionType,
693 span: tcx.def_span(def_id),
694 });
695 Normalized { value: new_value, obligations: vec![trait_obligation] }
696}
697
698enum ProjectedTy<'tcx> {
699 Progress(Progress<'tcx>),
700 NoProgress(Ty<'tcx>),
701}
702
703struct Progress<'tcx> {
704 ty: Ty<'tcx>,
705 obligations: Vec<PredicateObligation<'tcx>>,
706}
707
708impl<'tcx> Progress<'tcx> {
709 fn error(tcx: TyCtxt<'tcx>) -> Self {
f035d41b 710 Progress { ty: tcx.ty_error(), obligations: vec![] }
ba9703b0
XL
711 }
712
713 fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
714 debug!(
29967ef6
XL
715 self.obligations.len = ?self.obligations.len(),
716 obligations.len = obligations.len(),
717 "with_addl_obligations"
ba9703b0
XL
718 );
719
29967ef6 720 debug!(?self.obligations, ?obligations, "with_addl_obligations");
ba9703b0
XL
721
722 self.obligations.append(&mut obligations);
723 self
724 }
725}
726
727/// Computes the result of a projection type (if we can).
728///
729/// IMPORTANT:
730/// - `obligation` must be fully normalized
731fn project_type<'cx, 'tcx>(
732 selcx: &mut SelectionContext<'cx, 'tcx>,
733 obligation: &ProjectionTyObligation<'tcx>,
734) -> Result<ProjectedTy<'tcx>, ProjectionTyError<'tcx>> {
29967ef6 735 debug!(?obligation, "project_type");
ba9703b0 736
f9f354fc 737 if !selcx.tcx().sess.recursion_limit().value_within_limit(obligation.recursion_depth) {
ba9703b0 738 debug!("project: overflow!");
fc512014
XL
739 // This should really be an immediate error, but some existing code
740 // relies on being able to recover from this.
741 return Err(ProjectionTyError::TraitSelectionError(SelectionError::Overflow));
ba9703b0
XL
742 }
743
6a06907d 744 if obligation.predicate.references_error() {
ba9703b0
XL
745 return Ok(ProjectedTy::Progress(Progress::error(selcx.tcx())));
746 }
747
748 let mut candidates = ProjectionTyCandidateSet::None;
749
750 // Make sure that the following procedures are kept in order. ParamEnv
751 // needs to be first because it has highest priority, and Select checks
752 // the return value of push_candidate which assumes it's ran at last.
6a06907d 753 assemble_candidates_from_param_env(selcx, obligation, &mut candidates);
ba9703b0 754
6a06907d 755 assemble_candidates_from_trait_def(selcx, obligation, &mut candidates);
ba9703b0 756
6a06907d 757 assemble_candidates_from_object_ty(selcx, obligation, &mut candidates);
29967ef6
XL
758
759 if let ProjectionTyCandidateSet::Single(ProjectionTyCandidate::Object(_)) = candidates {
760 // Avoid normalization cycle from selection (see
761 // `assemble_candidates_from_object_ty`).
762 // FIXME(lazy_normalization): Lazy normalization should save us from
6a06907d 763 // having to special case this.
29967ef6 764 } else {
6a06907d 765 assemble_candidates_from_impls(selcx, obligation, &mut candidates);
29967ef6 766 };
ba9703b0
XL
767
768 match candidates {
29967ef6
XL
769 ProjectionTyCandidateSet::Single(candidate) => {
770 Ok(ProjectedTy::Progress(confirm_candidate(selcx, obligation, candidate)))
771 }
ba9703b0
XL
772 ProjectionTyCandidateSet::None => Ok(ProjectedTy::NoProgress(
773 selcx
774 .tcx()
775 .mk_projection(obligation.predicate.item_def_id, obligation.predicate.substs),
776 )),
777 // Error occurred while trying to processing impls.
778 ProjectionTyCandidateSet::Error(e) => Err(ProjectionTyError::TraitSelectionError(e)),
779 // Inherent ambiguity that prevents us from even enumerating the
780 // candidates.
781 ProjectionTyCandidateSet::Ambiguous => Err(ProjectionTyError::TooManyCandidates),
782 }
783}
784
785/// The first thing we have to do is scan through the parameter
786/// environment to see whether there are any projection predicates
787/// there that can answer this question.
788fn assemble_candidates_from_param_env<'cx, 'tcx>(
789 selcx: &mut SelectionContext<'cx, 'tcx>,
790 obligation: &ProjectionTyObligation<'tcx>,
ba9703b0
XL
791 candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
792) {
793 debug!("assemble_candidates_from_param_env(..)");
794 assemble_candidates_from_predicates(
795 selcx,
796 obligation,
ba9703b0
XL
797 candidate_set,
798 ProjectionTyCandidate::ParamEnv,
f035d41b 799 obligation.param_env.caller_bounds().iter(),
29967ef6 800 false,
ba9703b0
XL
801 );
802}
803
804/// In the case of a nested projection like <<A as Foo>::FooT as Bar>::BarT, we may find
805/// that the definition of `Foo` has some clues:
806///
807/// ```
808/// trait Foo {
809/// type FooT : Bar<BarT=i32>
810/// }
811/// ```
812///
813/// Here, for example, we could conclude that the result is `i32`.
814fn assemble_candidates_from_trait_def<'cx, 'tcx>(
815 selcx: &mut SelectionContext<'cx, 'tcx>,
816 obligation: &ProjectionTyObligation<'tcx>,
ba9703b0
XL
817 candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
818) {
819 debug!("assemble_candidates_from_trait_def(..)");
820
821 let tcx = selcx.tcx();
822 // Check whether the self-type is itself a projection.
f035d41b 823 // If so, extract what we know from the trait and try to come up with a good answer.
6a06907d 824 let bounds = match *obligation.predicate.self_ty().kind() {
29967ef6
XL
825 ty::Projection(ref data) => tcx.item_bounds(data.item_def_id).subst(tcx, data.substs),
826 ty::Opaque(def_id, substs) => tcx.item_bounds(def_id).subst(tcx, substs),
ba9703b0
XL
827 ty::Infer(ty::TyVar(_)) => {
828 // If the self-type is an inference variable, then it MAY wind up
829 // being a projected type, so induce an ambiguity.
830 candidate_set.mark_ambiguous();
831 return;
832 }
833 _ => return,
834 };
835
ba9703b0
XL
836 assemble_candidates_from_predicates(
837 selcx,
838 obligation,
ba9703b0
XL
839 candidate_set,
840 ProjectionTyCandidate::TraitDef,
f035d41b 841 bounds.iter(),
29967ef6 842 true,
ba9703b0
XL
843 )
844}
845
29967ef6
XL
846/// In the case of a trait object like
847/// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
848/// predicate in the trait object.
849///
850/// We don't go through the select candidate for these bounds to avoid cycles:
851/// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
852/// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
853/// this then has to be normalized without having to prove
854/// `dyn Iterator<Item = ()>: Iterator` again.
855fn assemble_candidates_from_object_ty<'cx, 'tcx>(
856 selcx: &mut SelectionContext<'cx, 'tcx>,
857 obligation: &ProjectionTyObligation<'tcx>,
29967ef6
XL
858 candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
859) {
860 debug!("assemble_candidates_from_object_ty(..)");
861
862 let tcx = selcx.tcx();
863
6a06907d 864 let self_ty = obligation.predicate.self_ty();
29967ef6
XL
865 let object_ty = selcx.infcx().shallow_resolve(self_ty);
866 let data = match object_ty.kind() {
867 ty::Dynamic(data, ..) => data,
868 ty::Infer(ty::TyVar(_)) => {
869 // If the self-type is an inference variable, then it MAY wind up
870 // being an object type, so induce an ambiguity.
871 candidate_set.mark_ambiguous();
872 return;
873 }
874 _ => return,
875 };
876 let env_predicates = data
877 .projection_bounds()
878 .filter(|bound| bound.item_def_id() == obligation.predicate.item_def_id)
879 .map(|p| p.with_self_ty(tcx, object_ty).to_predicate(tcx));
880
881 assemble_candidates_from_predicates(
882 selcx,
883 obligation,
29967ef6
XL
884 candidate_set,
885 ProjectionTyCandidate::Object,
886 env_predicates,
887 false,
888 );
889}
890
ba9703b0
XL
891fn assemble_candidates_from_predicates<'cx, 'tcx>(
892 selcx: &mut SelectionContext<'cx, 'tcx>,
893 obligation: &ProjectionTyObligation<'tcx>,
ba9703b0
XL
894 candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
895 ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionTyCandidate<'tcx>,
896 env_predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
29967ef6 897 potentially_unnormalized_candidates: bool,
ba9703b0 898) {
29967ef6
XL
899 debug!(?obligation, "assemble_candidates_from_predicates");
900
ba9703b0
XL
901 let infcx = selcx.infcx();
902 for predicate in env_predicates {
29967ef6 903 debug!(?predicate);
5869c6ff
XL
904 let bound_predicate = predicate.kind();
905 if let ty::PredicateKind::Projection(data) = predicate.kind().skip_binder() {
29967ef6 906 let data = bound_predicate.rebind(data);
ba9703b0
XL
907 let same_def_id = data.projection_def_id() == obligation.predicate.item_def_id;
908
909 let is_match = same_def_id
910 && infcx.probe(|_| {
29967ef6
XL
911 selcx.match_projection_projections(
912 obligation,
6a06907d 913 data,
29967ef6
XL
914 potentially_unnormalized_candidates,
915 )
ba9703b0
XL
916 });
917
29967ef6 918 debug!(?data, ?is_match, ?same_def_id);
ba9703b0
XL
919
920 if is_match {
921 candidate_set.push_candidate(ctor(data));
29967ef6
XL
922
923 if potentially_unnormalized_candidates
924 && !obligation.predicate.has_infer_types_or_consts()
925 {
926 // HACK: Pick the first trait def candidate for a fully
927 // inferred predicate. This is to allow duplicates that
928 // differ only in normalization.
929 return;
930 }
ba9703b0
XL
931 }
932 }
933 }
934}
935
936fn assemble_candidates_from_impls<'cx, 'tcx>(
937 selcx: &mut SelectionContext<'cx, 'tcx>,
938 obligation: &ProjectionTyObligation<'tcx>,
ba9703b0
XL
939 candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
940) {
29967ef6
XL
941 debug!("assemble_candidates_from_impls");
942
ba9703b0
XL
943 // If we are resolving `<T as TraitRef<...>>::Item == Type`,
944 // start out by selecting the predicate `T as TraitRef<...>`:
6a06907d 945 let poly_trait_ref = obligation.predicate.trait_ref(selcx.tcx()).to_poly_trait_ref();
ba9703b0
XL
946 let trait_obligation = obligation.with(poly_trait_ref.to_poly_trait_predicate());
947 let _ = selcx.infcx().commit_if_ok(|_| {
f035d41b
XL
948 let impl_source = match selcx.select(&trait_obligation) {
949 Ok(Some(impl_source)) => impl_source,
ba9703b0
XL
950 Ok(None) => {
951 candidate_set.mark_ambiguous();
952 return Err(());
953 }
954 Err(e) => {
29967ef6 955 debug!(error = ?e, "selection error");
ba9703b0
XL
956 candidate_set.mark_error(e);
957 return Err(());
958 }
959 };
960
f035d41b 961 let eligible = match &impl_source {
1b1a35ee
XL
962 super::ImplSource::Closure(_)
963 | super::ImplSource::Generator(_)
964 | super::ImplSource::FnPointer(_)
1b1a35ee 965 | super::ImplSource::TraitAlias(_) => {
29967ef6 966 debug!(?impl_source);
ba9703b0
XL
967 true
968 }
1b1a35ee 969 super::ImplSource::UserDefined(impl_data) => {
ba9703b0
XL
970 // We have to be careful when projecting out of an
971 // impl because of specialization. If we are not in
972 // codegen (i.e., projection mode is not "any"), and the
973 // impl's type is declared as default, then we disable
974 // projection (even if the trait ref is fully
975 // monomorphic). In the case where trait ref is not
976 // fully monomorphic (i.e., includes type parameters),
977 // this is because those type parameters may
978 // ultimately be bound to types from other crates that
979 // may have specialized impls we can't see. In the
980 // case where the trait ref IS fully monomorphic, this
981 // is a policy decision that we made in the RFC in
982 // order to preserve flexibility for the crate that
983 // defined the specializable impl to specialize later
984 // for existing types.
985 //
986 // In either case, we handle this by not adding a
987 // candidate for an impl if it contains a `default`
988 // type.
989 //
990 // NOTE: This should be kept in sync with the similar code in
fc512014 991 // `rustc_ty_utils::instance::resolve_associated_item()`.
ba9703b0
XL
992 let node_item =
993 assoc_ty_def(selcx, impl_data.impl_def_id, obligation.predicate.item_def_id)
994 .map_err(|ErrorReported| ())?;
995
996 if node_item.is_final() {
997 // Non-specializable items are always projectable.
998 true
999 } else {
1000 // Only reveal a specializable default if we're past type-checking
1001 // and the obligation is monomorphic, otherwise passes such as
1002 // transmute checking and polymorphic MIR optimizations could
1003 // get a result which isn't correct for all monomorphizations.
f035d41b 1004 if obligation.param_env.reveal() == Reveal::All {
ba9703b0
XL
1005 // NOTE(eddyb) inference variables can resolve to parameters, so
1006 // assume `poly_trait_ref` isn't monomorphic, if it contains any.
fc512014 1007 let poly_trait_ref = selcx.infcx().resolve_vars_if_possible(poly_trait_ref);
ba9703b0
XL
1008 !poly_trait_ref.still_further_specializable()
1009 } else {
1010 debug!(
29967ef6
XL
1011 assoc_ty = ?selcx.tcx().def_path_str(node_item.item.def_id),
1012 ?obligation.predicate,
1013 "assemble_candidates_from_impls: not eligible due to default",
ba9703b0
XL
1014 );
1015 false
1016 }
1017 }
1018 }
1b1a35ee 1019 super::ImplSource::DiscriminantKind(..) => {
f9f354fc
XL
1020 // While `DiscriminantKind` is automatically implemented for every type,
1021 // the concrete discriminant may not be known yet.
1022 //
1023 // Any type with multiple potential discriminant types is therefore not eligible.
1024 let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
1025
1b1a35ee 1026 match self_ty.kind() {
f9f354fc
XL
1027 ty::Bool
1028 | ty::Char
1029 | ty::Int(_)
1030 | ty::Uint(_)
1031 | ty::Float(_)
1032 | ty::Adt(..)
1033 | ty::Foreign(_)
1034 | ty::Str
1035 | ty::Array(..)
1036 | ty::Slice(_)
1037 | ty::RawPtr(..)
1038 | ty::Ref(..)
1039 | ty::FnDef(..)
1040 | ty::FnPtr(..)
1041 | ty::Dynamic(..)
1042 | ty::Closure(..)
1043 | ty::Generator(..)
1044 | ty::GeneratorWitness(..)
1045 | ty::Never
1046 | ty::Tuple(..)
1047 // Integers and floats always have `u8` as their discriminant.
1048 | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
1049
1050 ty::Projection(..)
1051 | ty::Opaque(..)
1052 | ty::Param(..)
1053 | ty::Bound(..)
1054 | ty::Placeholder(..)
1055 | ty::Infer(..)
f035d41b 1056 | ty::Error(_) => false,
f9f354fc
XL
1057 }
1058 }
6a06907d
XL
1059 super::ImplSource::Pointee(..) => {
1060 // While `Pointee` is automatically implemented for every type,
1061 // the concrete metadata type may not be known yet.
1062 //
1063 // Any type with multiple potential metadata types is therefore not eligible.
1064 let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
1065
1066 // FIXME: should this normalize?
1067 let tail = selcx.tcx().struct_tail_without_normalization(self_ty);
1068 match tail.kind() {
1069 ty::Bool
1070 | ty::Char
1071 | ty::Int(_)
1072 | ty::Uint(_)
1073 | ty::Float(_)
1074 | ty::Foreign(_)
1075 | ty::Str
1076 | ty::Array(..)
1077 | ty::Slice(_)
1078 | ty::RawPtr(..)
1079 | ty::Ref(..)
1080 | ty::FnDef(..)
1081 | ty::FnPtr(..)
1082 | ty::Dynamic(..)
1083 | ty::Closure(..)
1084 | ty::Generator(..)
1085 | ty::GeneratorWitness(..)
1086 | ty::Never
1087 // If returned by `struct_tail_without_normalization` this is a unit struct
1088 // without any fields, or not a struct, and therefore is Sized.
1089 | ty::Adt(..)
1090 // If returned by `struct_tail_without_normalization` this is the empty tuple.
1091 | ty::Tuple(..)
1092 // Integers and floats are always Sized, and so have unit type metadata.
1093 | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
1094
1095 ty::Projection(..)
1096 | ty::Opaque(..)
1097 | ty::Param(..)
1098 | ty::Bound(..)
1099 | ty::Placeholder(..)
1100 | ty::Infer(..)
1101 | ty::Error(_) => false,
1102 }
1103 }
1b1a35ee 1104 super::ImplSource::Param(..) => {
ba9703b0
XL
1105 // This case tell us nothing about the value of an
1106 // associated type. Consider:
1107 //
1108 // ```
1109 // trait SomeTrait { type Foo; }
1110 // fn foo<T:SomeTrait>(...) { }
1111 // ```
1112 //
1113 // If the user writes `<T as SomeTrait>::Foo`, then the `T
1114 // : SomeTrait` binding does not help us decide what the
1115 // type `Foo` is (at least, not more specifically than
1116 // what we already knew).
1117 //
1118 // But wait, you say! What about an example like this:
1119 //
1120 // ```
1121 // fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
1122 // ```
1123 //
1124 // Doesn't the `T : Sometrait<Foo=usize>` predicate help
1125 // resolve `T::Foo`? And of course it does, but in fact
1126 // that single predicate is desugared into two predicates
1127 // in the compiler: a trait predicate (`T : SomeTrait`) and a
1128 // projection. And the projection where clause is handled
1129 // in `assemble_candidates_from_param_env`.
1130 false
1131 }
29967ef6
XL
1132 super::ImplSource::Object(_) => {
1133 // Handled by the `Object` projection candidate. See
1134 // `assemble_candidates_from_object_ty` for an explanation of
1135 // why we special case object types.
1136 false
1137 }
1b1a35ee 1138 super::ImplSource::AutoImpl(..) | super::ImplSource::Builtin(..) => {
ba9703b0 1139 // These traits have no associated types.
f9652781 1140 selcx.tcx().sess.delay_span_bug(
ba9703b0 1141 obligation.cause.span,
f9652781 1142 &format!("Cannot project an associated type from `{:?}`", impl_source),
ba9703b0 1143 );
f9652781 1144 return Err(());
ba9703b0
XL
1145 }
1146 };
1147
1148 if eligible {
f035d41b 1149 if candidate_set.push_candidate(ProjectionTyCandidate::Select(impl_source)) {
ba9703b0
XL
1150 Ok(())
1151 } else {
1152 Err(())
1153 }
1154 } else {
1155 Err(())
1156 }
1157 });
1158}
1159
1160fn confirm_candidate<'cx, 'tcx>(
1161 selcx: &mut SelectionContext<'cx, 'tcx>,
1162 obligation: &ProjectionTyObligation<'tcx>,
ba9703b0
XL
1163 candidate: ProjectionTyCandidate<'tcx>,
1164) -> Progress<'tcx> {
29967ef6 1165 debug!(?obligation, ?candidate, "confirm_candidate");
f035d41b 1166 let mut progress = match candidate {
ba9703b0 1167 ProjectionTyCandidate::ParamEnv(poly_projection)
29967ef6
XL
1168 | ProjectionTyCandidate::Object(poly_projection) => {
1169 confirm_param_env_candidate(selcx, obligation, poly_projection, false)
1170 }
1171
1172 ProjectionTyCandidate::TraitDef(poly_projection) => {
1173 confirm_param_env_candidate(selcx, obligation, poly_projection, true)
ba9703b0
XL
1174 }
1175
f035d41b 1176 ProjectionTyCandidate::Select(impl_source) => {
29967ef6 1177 confirm_select_candidate(selcx, obligation, impl_source)
ba9703b0 1178 }
f035d41b
XL
1179 };
1180 // When checking for cycle during evaluation, we compare predicates with
1181 // "syntactic" equality. Since normalization generally introduces a type
1182 // with new region variables, we need to resolve them to existing variables
1183 // when possible for this to work. See `auto-trait-projection-recursion.rs`
1184 // for a case where this matters.
1185 if progress.ty.has_infer_regions() {
1186 progress.ty = OpportunisticRegionResolver::new(selcx.infcx()).fold_ty(progress.ty);
ba9703b0 1187 }
f035d41b 1188 progress
ba9703b0
XL
1189}
1190
1191fn confirm_select_candidate<'cx, 'tcx>(
1192 selcx: &mut SelectionContext<'cx, 'tcx>,
1193 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1194 impl_source: Selection<'tcx>,
ba9703b0 1195) -> Progress<'tcx> {
f035d41b 1196 match impl_source {
1b1a35ee
XL
1197 super::ImplSource::UserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
1198 super::ImplSource::Generator(data) => confirm_generator_candidate(selcx, obligation, data),
1199 super::ImplSource::Closure(data) => confirm_closure_candidate(selcx, obligation, data),
1200 super::ImplSource::FnPointer(data) => confirm_fn_pointer_candidate(selcx, obligation, data),
1201 super::ImplSource::DiscriminantKind(data) => {
f9f354fc
XL
1202 confirm_discriminant_kind_candidate(selcx, obligation, data)
1203 }
6a06907d 1204 super::ImplSource::Pointee(data) => confirm_pointee_candidate(selcx, obligation, data),
29967ef6
XL
1205 super::ImplSource::Object(_)
1206 | super::ImplSource::AutoImpl(..)
1b1a35ee
XL
1207 | super::ImplSource::Param(..)
1208 | super::ImplSource::Builtin(..)
29967ef6
XL
1209 | super::ImplSource::TraitAlias(..) => {
1210 // we don't create Select candidates with this kind of resolution
ba9703b0
XL
1211 span_bug!(
1212 obligation.cause.span,
1213 "Cannot project an associated type from `{:?}`",
f035d41b 1214 impl_source
ba9703b0
XL
1215 )
1216 }
1217 }
1218}
1219
ba9703b0
XL
1220fn confirm_generator_candidate<'cx, 'tcx>(
1221 selcx: &mut SelectionContext<'cx, 'tcx>,
1222 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1223 impl_source: ImplSourceGeneratorData<'tcx, PredicateObligation<'tcx>>,
ba9703b0 1224) -> Progress<'tcx> {
f035d41b 1225 let gen_sig = impl_source.substs.as_generator().poly_sig();
ba9703b0
XL
1226 let Normalized { value: gen_sig, obligations } = normalize_with_depth(
1227 selcx,
1228 obligation.param_env,
1229 obligation.cause.clone(),
1230 obligation.recursion_depth + 1,
fc512014 1231 gen_sig,
ba9703b0
XL
1232 );
1233
29967ef6 1234 debug!(?obligation, ?gen_sig, ?obligations, "confirm_generator_candidate");
ba9703b0
XL
1235
1236 let tcx = selcx.tcx();
1237
3dfed10e 1238 let gen_def_id = tcx.require_lang_item(LangItem::Generator, None);
ba9703b0
XL
1239
1240 let predicate = super::util::generator_trait_ref_and_outputs(
1241 tcx,
1242 gen_def_id,
1243 obligation.predicate.self_ty(),
1244 gen_sig,
1245 )
1246 .map_bound(|(trait_ref, yield_ty, return_ty)| {
1247 let name = tcx.associated_item(obligation.predicate.item_def_id).ident.name;
1248 let ty = if name == sym::Return {
1249 return_ty
1250 } else if name == sym::Yield {
1251 yield_ty
1252 } else {
1253 bug!()
1254 };
1255
1256 ty::ProjectionPredicate {
1257 projection_ty: ty::ProjectionTy {
1258 substs: trait_ref.substs,
1259 item_def_id: obligation.predicate.item_def_id,
1260 },
1261 ty,
1262 }
1263 });
1264
29967ef6 1265 confirm_param_env_candidate(selcx, obligation, predicate, false)
f035d41b 1266 .with_addl_obligations(impl_source.nested)
ba9703b0
XL
1267 .with_addl_obligations(obligations)
1268}
1269
f9f354fc
XL
1270fn confirm_discriminant_kind_candidate<'cx, 'tcx>(
1271 selcx: &mut SelectionContext<'cx, 'tcx>,
1272 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1273 _: ImplSourceDiscriminantKindData,
f9f354fc
XL
1274) -> Progress<'tcx> {
1275 let tcx = selcx.tcx();
1276
1277 let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
1278 let substs = tcx.mk_substs([self_ty.into()].iter());
1279
3dfed10e 1280 let discriminant_def_id = tcx.require_lang_item(LangItem::Discriminant, None);
f9f354fc
XL
1281
1282 let predicate = ty::ProjectionPredicate {
1283 projection_ty: ty::ProjectionTy { substs, item_def_id: discriminant_def_id },
3dfed10e 1284 ty: self_ty.discriminant_ty(tcx),
f9f354fc
XL
1285 };
1286
fc512014
XL
1287 // We get here from `poly_project_and_unify_type` which replaces bound vars
1288 // with placeholders, so dummy is okay here.
1289 confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
f9f354fc
XL
1290}
1291
6a06907d
XL
1292fn confirm_pointee_candidate<'cx, 'tcx>(
1293 selcx: &mut SelectionContext<'cx, 'tcx>,
1294 obligation: &ProjectionTyObligation<'tcx>,
1295 _: ImplSourcePointeeData,
1296) -> Progress<'tcx> {
1297 let tcx = selcx.tcx();
1298
1299 let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
1300 let substs = tcx.mk_substs([self_ty.into()].iter());
1301
1302 let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, None);
1303
1304 let predicate = ty::ProjectionPredicate {
1305 projection_ty: ty::ProjectionTy { substs, item_def_id: metadata_def_id },
1306 ty: self_ty.ptr_metadata_ty(tcx),
1307 };
1308
1309 confirm_param_env_candidate(selcx, obligation, ty::Binder::bind(predicate), false)
1310}
1311
ba9703b0
XL
1312fn confirm_fn_pointer_candidate<'cx, 'tcx>(
1313 selcx: &mut SelectionContext<'cx, 'tcx>,
1314 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1315 fn_pointer_impl_source: ImplSourceFnPointerData<'tcx, PredicateObligation<'tcx>>,
ba9703b0 1316) -> Progress<'tcx> {
f035d41b 1317 let fn_type = selcx.infcx().shallow_resolve(fn_pointer_impl_source.fn_ty);
ba9703b0
XL
1318 let sig = fn_type.fn_sig(selcx.tcx());
1319 let Normalized { value: sig, obligations } = normalize_with_depth(
1320 selcx,
1321 obligation.param_env,
1322 obligation.cause.clone(),
1323 obligation.recursion_depth + 1,
fc512014 1324 sig,
ba9703b0
XL
1325 );
1326
1327 confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
f035d41b 1328 .with_addl_obligations(fn_pointer_impl_source.nested)
ba9703b0
XL
1329 .with_addl_obligations(obligations)
1330}
1331
1332fn confirm_closure_candidate<'cx, 'tcx>(
1333 selcx: &mut SelectionContext<'cx, 'tcx>,
1334 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1335 impl_source: ImplSourceClosureData<'tcx, PredicateObligation<'tcx>>,
ba9703b0 1336) -> Progress<'tcx> {
f035d41b 1337 let closure_sig = impl_source.substs.as_closure().sig();
ba9703b0
XL
1338 let Normalized { value: closure_sig, obligations } = normalize_with_depth(
1339 selcx,
1340 obligation.param_env,
1341 obligation.cause.clone(),
1342 obligation.recursion_depth + 1,
fc512014 1343 closure_sig,
ba9703b0
XL
1344 );
1345
29967ef6 1346 debug!(?obligation, ?closure_sig, ?obligations, "confirm_closure_candidate");
ba9703b0
XL
1347
1348 confirm_callable_candidate(selcx, obligation, closure_sig, util::TupleArgumentsFlag::No)
f035d41b 1349 .with_addl_obligations(impl_source.nested)
ba9703b0
XL
1350 .with_addl_obligations(obligations)
1351}
1352
1353fn confirm_callable_candidate<'cx, 'tcx>(
1354 selcx: &mut SelectionContext<'cx, 'tcx>,
1355 obligation: &ProjectionTyObligation<'tcx>,
1356 fn_sig: ty::PolyFnSig<'tcx>,
1357 flag: util::TupleArgumentsFlag,
1358) -> Progress<'tcx> {
1359 let tcx = selcx.tcx();
1360
29967ef6 1361 debug!(?obligation, ?fn_sig, "confirm_callable_candidate");
ba9703b0 1362
3dfed10e
XL
1363 let fn_once_def_id = tcx.require_lang_item(LangItem::FnOnce, None);
1364 let fn_once_output_def_id = tcx.require_lang_item(LangItem::FnOnceOutput, None);
ba9703b0
XL
1365
1366 let predicate = super::util::closure_trait_ref_and_return_type(
1367 tcx,
1368 fn_once_def_id,
1369 obligation.predicate.self_ty(),
1370 fn_sig,
1371 flag,
1372 )
1373 .map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
f035d41b
XL
1374 projection_ty: ty::ProjectionTy {
1375 substs: trait_ref.substs,
1376 item_def_id: fn_once_output_def_id,
1377 },
ba9703b0
XL
1378 ty: ret_type,
1379 });
1380
29967ef6 1381 confirm_param_env_candidate(selcx, obligation, predicate, false)
ba9703b0
XL
1382}
1383
1384fn confirm_param_env_candidate<'cx, 'tcx>(
1385 selcx: &mut SelectionContext<'cx, 'tcx>,
1386 obligation: &ProjectionTyObligation<'tcx>,
1387 poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
29967ef6 1388 potentially_unnormalized_candidate: bool,
ba9703b0
XL
1389) -> Progress<'tcx> {
1390 let infcx = selcx.infcx();
1391 let cause = &obligation.cause;
1392 let param_env = obligation.param_env;
1393
1394 let (cache_entry, _) = infcx.replace_bound_vars_with_fresh_vars(
1395 cause.span,
1396 LateBoundRegionConversionTime::HigherRankedType,
fc512014 1397 poly_cache_entry,
ba9703b0
XL
1398 );
1399
6a06907d
XL
1400 let cache_projection = cache_entry.projection_ty;
1401 let obligation_projection = obligation.predicate;
29967ef6 1402 let mut nested_obligations = Vec::new();
6a06907d 1403 let cache_projection = if potentially_unnormalized_candidate {
29967ef6
XL
1404 ensure_sufficient_stack(|| {
1405 normalize_with_depth_to(
1406 selcx,
1407 obligation.param_env,
1408 obligation.cause.clone(),
1409 obligation.recursion_depth + 1,
6a06907d 1410 cache_projection,
29967ef6
XL
1411 &mut nested_obligations,
1412 )
1413 })
1414 } else {
6a06907d 1415 cache_projection
29967ef6
XL
1416 };
1417
6a06907d 1418 match infcx.at(cause, param_env).eq(cache_projection, obligation_projection) {
29967ef6
XL
1419 Ok(InferOk { value: _, obligations }) => {
1420 nested_obligations.extend(obligations);
1421 assoc_ty_own_obligations(selcx, obligation, &mut nested_obligations);
1422 Progress { ty: cache_entry.ty, obligations: nested_obligations }
1423 }
ba9703b0
XL
1424 Err(e) => {
1425 let msg = format!(
1426 "Failed to unify obligation `{:?}` with poly_projection `{:?}`: {:?}",
1427 obligation, poly_cache_entry, e,
1428 );
1429 debug!("confirm_param_env_candidate: {}", msg);
f035d41b
XL
1430 let err = infcx.tcx.ty_error_with_message(obligation.cause.span, &msg);
1431 Progress { ty: err, obligations: vec![] }
ba9703b0
XL
1432 }
1433 }
1434}
1435
1436fn confirm_impl_candidate<'cx, 'tcx>(
1437 selcx: &mut SelectionContext<'cx, 'tcx>,
1438 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1439 impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
ba9703b0
XL
1440) -> Progress<'tcx> {
1441 let tcx = selcx.tcx();
1442
29967ef6 1443 let ImplSourceUserDefinedData { impl_def_id, substs, mut nested } = impl_impl_source;
ba9703b0
XL
1444 let assoc_item_id = obligation.predicate.item_def_id;
1445 let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
1446
1447 let param_env = obligation.param_env;
1448 let assoc_ty = match assoc_ty_def(selcx, impl_def_id, assoc_item_id) {
1449 Ok(assoc_ty) => assoc_ty,
f035d41b 1450 Err(ErrorReported) => return Progress { ty: tcx.ty_error(), obligations: nested },
ba9703b0
XL
1451 };
1452
1453 if !assoc_ty.item.defaultness.has_value() {
1454 // This means that the impl is missing a definition for the
1455 // associated type. This error will be reported by the type
1456 // checker method `check_impl_items_against_trait`, so here we
1457 // just return Error.
1458 debug!(
1459 "confirm_impl_candidate: no associated type {:?} for {:?}",
1460 assoc_ty.item.ident, obligation.predicate
1461 );
f035d41b 1462 return Progress { ty: tcx.ty_error(), obligations: nested };
ba9703b0 1463 }
f035d41b
XL
1464 // If we're trying to normalize `<Vec<u32> as X>::A<S>` using
1465 //`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
1466 //
1467 // * `obligation.predicate.substs` is `[Vec<u32>, S]`
1468 // * `substs` is `[u32]`
1469 // * `substs` ends up as `[u32, S]`
ba9703b0
XL
1470 let substs = obligation.predicate.substs.rebase_onto(tcx, trait_def_id, substs);
1471 let substs =
1472 translate_substs(selcx.infcx(), param_env, impl_def_id, substs, assoc_ty.defining_node);
f035d41b 1473 let ty = tcx.type_of(assoc_ty.item.def_id);
ba9703b0 1474 if substs.len() != tcx.generics_of(assoc_ty.item.def_id).count() {
f035d41b 1475 let err = tcx.ty_error_with_message(
29967ef6 1476 obligation.cause.span,
f035d41b
XL
1477 "impl item and trait item have different parameter counts",
1478 );
1479 Progress { ty: err, obligations: nested }
ba9703b0 1480 } else {
29967ef6 1481 assoc_ty_own_obligations(selcx, obligation, &mut nested);
ba9703b0
XL
1482 Progress { ty: ty.subst(tcx, substs), obligations: nested }
1483 }
1484}
1485
29967ef6
XL
1486// Get obligations corresponding to the predicates from the where-clause of the
1487// associated type itself.
1488// Note: `feature(generic_associated_types)` is required to write such
1489// predicates, even for non-generic associcated types.
1490fn assoc_ty_own_obligations<'cx, 'tcx>(
1491 selcx: &mut SelectionContext<'cx, 'tcx>,
1492 obligation: &ProjectionTyObligation<'tcx>,
1493 nested: &mut Vec<PredicateObligation<'tcx>>,
1494) {
1495 let tcx = selcx.tcx();
1496 for predicate in tcx
1497 .predicates_of(obligation.predicate.item_def_id)
1498 .instantiate_own(tcx, obligation.predicate.substs)
1499 .predicates
1500 {
1501 let normalized = normalize_with_depth_to(
1502 selcx,
1503 obligation.param_env,
1504 obligation.cause.clone(),
1505 obligation.recursion_depth + 1,
fc512014 1506 predicate,
29967ef6
XL
1507 nested,
1508 );
1509 nested.push(Obligation::with_depth(
1510 obligation.cause.clone(),
1511 obligation.recursion_depth + 1,
1512 obligation.param_env,
1513 normalized,
1514 ));
1515 }
1516}
1517
ba9703b0
XL
1518/// Locate the definition of an associated type in the specialization hierarchy,
1519/// starting from the given impl.
1520///
1521/// Based on the "projection mode", this lookup may in fact only examine the
1522/// topmost impl. See the comments for `Reveal` for more details.
1523fn assoc_ty_def(
1524 selcx: &SelectionContext<'_, '_>,
1525 impl_def_id: DefId,
1526 assoc_ty_def_id: DefId,
1527) -> Result<specialization_graph::LeafDef, ErrorReported> {
1528 let tcx = selcx.tcx();
1529 let assoc_ty_name = tcx.associated_item(assoc_ty_def_id).ident;
1530 let trait_def_id = tcx.impl_trait_ref(impl_def_id).unwrap().def_id;
1531 let trait_def = tcx.trait_def(trait_def_id);
1532
1533 // This function may be called while we are still building the
1534 // specialization graph that is queried below (via TraitDef::ancestors()),
1535 // so, in order to avoid unnecessary infinite recursion, we manually look
1536 // for the associated item at the given impl.
1537 // If there is no such item in that impl, this function will fail with a
1538 // cycle error if the specialization graph is currently being built.
1539 let impl_node = specialization_graph::Node::Impl(impl_def_id);
1540 for item in impl_node.items(tcx) {
f035d41b 1541 if matches!(item.kind, ty::AssocKind::Type)
ba9703b0
XL
1542 && tcx.hygienic_eq(item.ident, assoc_ty_name, trait_def_id)
1543 {
1544 return Ok(specialization_graph::LeafDef {
1545 item: *item,
1546 defining_node: impl_node,
1547 finalizing_node: if item.defaultness.is_default() { None } else { Some(impl_node) },
1548 });
1549 }
1550 }
1551
1552 let ancestors = trait_def.ancestors(tcx, impl_def_id)?;
1553 if let Some(assoc_item) = ancestors.leaf_def(tcx, assoc_ty_name, ty::AssocKind::Type) {
1554 Ok(assoc_item)
1555 } else {
1556 // This is saying that neither the trait nor
1557 // the impl contain a definition for this
1558 // associated type. Normally this situation
1559 // could only arise through a compiler bug --
1560 // if the user wrote a bad item name, it
1561 // should have failed in astconv.
1562 bug!("No associated type `{}` for {}", assoc_ty_name, tcx.def_path_str(impl_def_id))
1563 }
1564}
1565
1566crate trait ProjectionCacheKeyExt<'tcx>: Sized {
1567 fn from_poly_projection_predicate(
1568 selcx: &mut SelectionContext<'cx, 'tcx>,
f9f354fc 1569 predicate: ty::PolyProjectionPredicate<'tcx>,
ba9703b0
XL
1570 ) -> Option<Self>;
1571}
1572
1573impl<'tcx> ProjectionCacheKeyExt<'tcx> for ProjectionCacheKey<'tcx> {
1574 fn from_poly_projection_predicate(
1575 selcx: &mut SelectionContext<'cx, 'tcx>,
f9f354fc 1576 predicate: ty::PolyProjectionPredicate<'tcx>,
ba9703b0
XL
1577 ) -> Option<Self> {
1578 let infcx = selcx.infcx();
1579 // We don't do cross-snapshot caching of obligations with escaping regions,
1580 // so there's no cache key to use
1581 predicate.no_bound_vars().map(|predicate| {
1582 ProjectionCacheKey::new(
1583 // We don't attempt to match up with a specific type-variable state
1584 // from a specific call to `opt_normalize_projection_type` - if
1585 // there's no precise match, the original cache entry is "stranded"
1586 // anyway.
fc512014 1587 infcx.resolve_vars_if_possible(predicate.projection_ty),
ba9703b0
XL
1588 )
1589 })
1590 }
1591}