]> git.proxmox.com Git - qemu.git/blame - cpu-exec.c
Stand-alone TMU emulation code, by Magnus Damm.
[qemu.git] / cpu-exec.c
CommitLineData
7d13299d
FB
1/*
2 * i386 emulator main execution loop
5fafdf24 3 *
66321a11 4 * Copyright (c) 2003-2005 Fabrice Bellard
7d13299d 5 *
3ef693a0
FB
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
7d13299d 10 *
3ef693a0
FB
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
7d13299d 15 *
3ef693a0
FB
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
7d13299d 19 */
e4533c7a 20#include "config.h"
93ac68bc 21#include "exec.h"
956034d7 22#include "disas.h"
7d13299d 23
fbf9eeb3
FB
24#if !defined(CONFIG_SOFTMMU)
25#undef EAX
26#undef ECX
27#undef EDX
28#undef EBX
29#undef ESP
30#undef EBP
31#undef ESI
32#undef EDI
33#undef EIP
34#include <signal.h>
35#include <sys/ucontext.h>
36#endif
37
36bdbe54
FB
38int tb_invalidated_flag;
39
dc99065b 40//#define DEBUG_EXEC
9de5e440 41//#define DEBUG_SIGNAL
7d13299d 42
e4533c7a
FB
43void cpu_loop_exit(void)
44{
bfed01fc
TS
45 /* NOTE: the register at this point must be saved by hand because
46 longjmp restore them */
47 regs_to_env();
e4533c7a
FB
48 longjmp(env->jmp_env, 1);
49}
bfed01fc 50
e6e5906b 51#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
3475187d
FB
52#define reg_T2
53#endif
e4533c7a 54
fbf9eeb3
FB
55/* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
57 */
5fafdf24 58void cpu_resume_from_signal(CPUState *env1, void *puc)
fbf9eeb3
FB
59{
60#if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
62#endif
63
64 env = env1;
65
66 /* XXX: restore cpu registers saved in host registers */
67
68#if !defined(CONFIG_SOFTMMU)
69 if (puc) {
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72 }
73#endif
74 longjmp(env->jmp_env, 1);
75}
76
8a40a180
FB
77
78static TranslationBlock *tb_find_slow(target_ulong pc,
79 target_ulong cs_base,
c068688b 80 uint64_t flags)
8a40a180
FB
81{
82 TranslationBlock *tb, **ptb1;
83 int code_gen_size;
84 unsigned int h;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86 uint8_t *tc_ptr;
3b46e624 87
8a40a180
FB
88 spin_lock(&tb_lock);
89
90 tb_invalidated_flag = 0;
3b46e624 91
8a40a180 92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
3b46e624 93
8a40a180
FB
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
5fafdf24 104 if (tb->pc == pc &&
8a40a180 105 tb->page_addr[0] == phys_page1 &&
5fafdf24 106 tb->cs_base == cs_base &&
8a40a180
FB
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
5fafdf24 110 virt_page2 = (pc & TARGET_PAGE_MASK) +
8a40a180
FB
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
117 }
118 }
119 ptb1 = &tb->phys_hash_next;
120 }
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_alloc(pc);
124 if (!tb) {
125 /* flush must be done */
126 tb_flush(env);
127 /* cannot fail at this point */
128 tb = tb_alloc(pc);
129 /* don't forget to invalidate previous TB info */
15388002 130 tb_invalidated_flag = 1;
8a40a180
FB
131 }
132 tc_ptr = code_gen_ptr;
133 tb->tc_ptr = tc_ptr;
134 tb->cs_base = cs_base;
135 tb->flags = flags;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 138
8a40a180
FB
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
144 }
145 tb_link_phys(tb, phys_pc, phys_page2);
3b46e624 146
8a40a180 147 found:
8a40a180
FB
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
151 return tb;
152}
153
154static inline TranslationBlock *tb_find_fast(void)
155{
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
c068688b 158 uint64_t flags;
8a40a180
FB
159
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
162 is executed. */
163#if defined(TARGET_I386)
164 flags = env->hflags;
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
0573fbfc 166 flags |= env->intercept;
8a40a180
FB
167 cs_base = env->segs[R_CS].base;
168 pc = cs_base + env->eip;
169#elif defined(TARGET_ARM)
170 flags = env->thumb | (env->vfp.vec_len << 1)
b5ff1b31
FB
171 | (env->vfp.vec_stride << 4);
172 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
173 flags |= (1 << 6);
40f137e1
PB
174 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
175 flags |= (1 << 7);
8a40a180
FB
176 cs_base = 0;
177 pc = env->regs[15];
178#elif defined(TARGET_SPARC)
179#ifdef TARGET_SPARC64
a80dde08
FB
180 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
181 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
182 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
8a40a180 183#else
40ce0a9a
BS
184 // FPU enable . MMU Boot . MMU enabled . MMU no-fault . Supervisor
185 flags = (env->psref << 4) | (((env->mmuregs[0] & MMU_BM) >> 14) << 3)
186 | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
a80dde08 187 | env->psrs;
8a40a180
FB
188#endif
189 cs_base = env->npc;
190 pc = env->pc;
191#elif defined(TARGET_PPC)
1527c87e 192 flags = env->hflags;
8a40a180
FB
193 cs_base = 0;
194 pc = env->nip;
195#elif defined(TARGET_MIPS)
56b19403 196 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
cc9442b9 197 cs_base = 0;
ead9360e 198 pc = env->PC[env->current_tc];
e6e5906b 199#elif defined(TARGET_M68K)
acf930aa
PB
200 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
201 | (env->sr & SR_S) /* Bit 13 */
202 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
e6e5906b
PB
203 cs_base = 0;
204 pc = env->pc;
fdf9b3e8
FB
205#elif defined(TARGET_SH4)
206 flags = env->sr & (SR_MD | SR_RB);
207 cs_base = 0; /* XXXXX */
208 pc = env->pc;
eddf68a6
JM
209#elif defined(TARGET_ALPHA)
210 flags = env->ps;
211 cs_base = 0;
212 pc = env->pc;
8a40a180
FB
213#else
214#error unsupported CPU
215#endif
216 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
217 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
218 tb->flags != flags, 0)) {
219 tb = tb_find_slow(pc, cs_base, flags);
15388002
FB
220 /* Note: we do it here to avoid a gcc bug on Mac OS X when
221 doing it in tb_find_slow */
222 if (tb_invalidated_flag) {
223 /* as some TB could have been invalidated because
224 of memory exceptions while generating the code, we
225 must recompute the hash index here */
226 T0 = 0;
227 }
8a40a180
FB
228 }
229 return tb;
230}
231
232
7d13299d
FB
233/* main execution loop */
234
e4533c7a 235int cpu_exec(CPUState *env1)
7d13299d 236{
1057eaa7
PB
237#define DECLARE_HOST_REGS 1
238#include "hostregs_helper.h"
239#if defined(TARGET_SPARC)
3475187d
FB
240#if defined(reg_REGWPTR)
241 uint32_t *saved_regwptr;
242#endif
243#endif
fdbb4691 244#if defined(__sparc__) && !defined(HOST_SOLARIS)
b49d07ba
TS
245 int saved_i7;
246 target_ulong tmp_T0;
04369ff2 247#endif
8a40a180 248 int ret, interrupt_request;
7d13299d 249 void (*gen_func)(void);
8a40a180 250 TranslationBlock *tb;
c27004ec 251 uint8_t *tc_ptr;
8c6939c0 252
bfed01fc
TS
253 if (cpu_halted(env1) == EXCP_HALTED)
254 return EXCP_HALTED;
5a1e3cfc 255
5fafdf24 256 cpu_single_env = env1;
6a00d601 257
7d13299d 258 /* first we save global registers */
1057eaa7
PB
259#define SAVE_HOST_REGS 1
260#include "hostregs_helper.h"
c27004ec 261 env = env1;
fdbb4691 262#if defined(__sparc__) && !defined(HOST_SOLARIS)
e4533c7a
FB
263 /* we also save i7 because longjmp may not restore it */
264 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
265#endif
266
0d1a29f9 267 env_to_regs();
ecb644f4 268#if defined(TARGET_I386)
9de5e440 269 /* put eflags in CPU temporary format */
fc2b4c48
FB
270 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
271 DF = 1 - (2 * ((env->eflags >> 10) & 1));
9de5e440 272 CC_OP = CC_OP_EFLAGS;
fc2b4c48 273 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
93ac68bc 274#elif defined(TARGET_SPARC)
3475187d
FB
275#if defined(reg_REGWPTR)
276 saved_regwptr = REGWPTR;
277#endif
e6e5906b
PB
278#elif defined(TARGET_M68K)
279 env->cc_op = CC_OP_FLAGS;
280 env->cc_dest = env->sr & 0xf;
281 env->cc_x = (env->sr >> 4) & 1;
ecb644f4
TS
282#elif defined(TARGET_ALPHA)
283#elif defined(TARGET_ARM)
284#elif defined(TARGET_PPC)
6af0bf9c 285#elif defined(TARGET_MIPS)
fdf9b3e8
FB
286#elif defined(TARGET_SH4)
287 /* XXXXX */
e4533c7a
FB
288#else
289#error unsupported target CPU
290#endif
3fb2ded1 291 env->exception_index = -1;
9d27abd9 292
7d13299d 293 /* prepare setjmp context for exception handling */
3fb2ded1
FB
294 for(;;) {
295 if (setjmp(env->jmp_env) == 0) {
ee8b7021 296 env->current_tb = NULL;
3fb2ded1
FB
297 /* if an exception is pending, we execute it here */
298 if (env->exception_index >= 0) {
299 if (env->exception_index >= EXCP_INTERRUPT) {
300 /* exit request from the cpu execution loop */
301 ret = env->exception_index;
302 break;
303 } else if (env->user_mode_only) {
304 /* if user mode only, we simulate a fake exception
9f083493 305 which will be handled outside the cpu execution
3fb2ded1 306 loop */
83479e77 307#if defined(TARGET_I386)
5fafdf24
TS
308 do_interrupt_user(env->exception_index,
309 env->exception_is_int,
310 env->error_code,
3fb2ded1 311 env->exception_next_eip);
83479e77 312#endif
3fb2ded1
FB
313 ret = env->exception_index;
314 break;
315 } else {
83479e77 316#if defined(TARGET_I386)
3fb2ded1
FB
317 /* simulate a real cpu exception. On i386, it can
318 trigger new exceptions, but we do not handle
319 double or triple faults yet. */
5fafdf24
TS
320 do_interrupt(env->exception_index,
321 env->exception_is_int,
322 env->error_code,
d05e66d2 323 env->exception_next_eip, 0);
678dde13
TS
324 /* successfully delivered */
325 env->old_exception = -1;
ce09776b
FB
326#elif defined(TARGET_PPC)
327 do_interrupt(env);
6af0bf9c
FB
328#elif defined(TARGET_MIPS)
329 do_interrupt(env);
e95c8d51 330#elif defined(TARGET_SPARC)
1a0c3292 331 do_interrupt(env->exception_index);
b5ff1b31
FB
332#elif defined(TARGET_ARM)
333 do_interrupt(env);
fdf9b3e8
FB
334#elif defined(TARGET_SH4)
335 do_interrupt(env);
eddf68a6
JM
336#elif defined(TARGET_ALPHA)
337 do_interrupt(env);
0633879f
PB
338#elif defined(TARGET_M68K)
339 do_interrupt(0);
83479e77 340#endif
3fb2ded1
FB
341 }
342 env->exception_index = -1;
5fafdf24 343 }
9df217a3
FB
344#ifdef USE_KQEMU
345 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
346 int ret;
347 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
348 ret = kqemu_cpu_exec(env);
349 /* put eflags in CPU temporary format */
350 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
351 DF = 1 - (2 * ((env->eflags >> 10) & 1));
352 CC_OP = CC_OP_EFLAGS;
353 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
354 if (ret == 1) {
355 /* exception */
356 longjmp(env->jmp_env, 1);
357 } else if (ret == 2) {
358 /* softmmu execution needed */
359 } else {
360 if (env->interrupt_request != 0) {
361 /* hardware interrupt will be executed just after */
362 } else {
363 /* otherwise, we restart */
364 longjmp(env->jmp_env, 1);
365 }
366 }
3fb2ded1 367 }
9df217a3
FB
368#endif
369
3fb2ded1
FB
370 T0 = 0; /* force lookup of first TB */
371 for(;;) {
fdbb4691 372#if defined(__sparc__) && !defined(HOST_SOLARIS)
5fafdf24 373 /* g1 can be modified by some libc? functions */
3fb2ded1 374 tmp_T0 = T0;
3b46e624 375#endif
68a79315 376 interrupt_request = env->interrupt_request;
0573fbfc
TS
377 if (__builtin_expect(interrupt_request, 0)
378#if defined(TARGET_I386)
379 && env->hflags & HF_GIF_MASK
380#endif
381 ) {
6658ffb8
PB
382 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
383 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
384 env->exception_index = EXCP_DEBUG;
385 cpu_loop_exit();
386 }
a90b7318
AZ
387#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
388 defined(TARGET_PPC) || defined(TARGET_ALPHA)
389 if (interrupt_request & CPU_INTERRUPT_HALT) {
390 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
391 env->halted = 1;
392 env->exception_index = EXCP_HLT;
393 cpu_loop_exit();
394 }
395#endif
68a79315 396#if defined(TARGET_I386)
3b21e03e
FB
397 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
398 !(env->hflags & HF_SMM_MASK)) {
0573fbfc 399 svm_check_intercept(SVM_EXIT_SMI);
3b21e03e
FB
400 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
401 do_smm_enter();
402#if defined(__sparc__) && !defined(HOST_SOLARIS)
403 tmp_T0 = 0;
404#else
405 T0 = 0;
406#endif
407 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
0573fbfc 408 (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
3f337316 409 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
68a79315 410 int intno;
0573fbfc 411 svm_check_intercept(SVM_EXIT_INTR);
52621688 412 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
a541f297 413 intno = cpu_get_pic_interrupt(env);
f193c797 414 if (loglevel & CPU_LOG_TB_IN_ASM) {
68a79315
FB
415 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
416 }
d05e66d2 417 do_interrupt(intno, 0, 0, 0, 1);
907a5b26
FB
418 /* ensure that no TB jump will be modified as
419 the program flow was changed */
fdbb4691 420#if defined(__sparc__) && !defined(HOST_SOLARIS)
907a5b26
FB
421 tmp_T0 = 0;
422#else
423 T0 = 0;
0573fbfc
TS
424#endif
425#if !defined(CONFIG_USER_ONLY)
426 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
427 (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
428 int intno;
429 /* FIXME: this should respect TPR */
430 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
52621688 431 svm_check_intercept(SVM_EXIT_VINTR);
0573fbfc
TS
432 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
433 if (loglevel & CPU_LOG_TB_IN_ASM)
434 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
435 do_interrupt(intno, 0, 0, -1, 1);
52621688
TS
436 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
437 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
0573fbfc
TS
438#if defined(__sparc__) && !defined(HOST_SOLARIS)
439 tmp_T0 = 0;
440#else
441 T0 = 0;
442#endif
907a5b26 443#endif
68a79315 444 }
ce09776b 445#elif defined(TARGET_PPC)
9fddaa0c
FB
446#if 0
447 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
448 cpu_ppc_reset(env);
449 }
450#endif
47103572 451 if (interrupt_request & CPU_INTERRUPT_HARD) {
e9df014c
JM
452 ppc_hw_interrupt(env);
453 if (env->pending_interrupts == 0)
454 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
fdbb4691 455#if defined(__sparc__) && !defined(HOST_SOLARIS)
e9df014c 456 tmp_T0 = 0;
8a40a180 457#else
e9df014c 458 T0 = 0;
8a40a180 459#endif
ce09776b 460 }
6af0bf9c
FB
461#elif defined(TARGET_MIPS)
462 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
24c7b0e3 463 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
6af0bf9c 464 (env->CP0_Status & (1 << CP0St_IE)) &&
24c7b0e3
TS
465 !(env->CP0_Status & (1 << CP0St_EXL)) &&
466 !(env->CP0_Status & (1 << CP0St_ERL)) &&
6af0bf9c
FB
467 !(env->hflags & MIPS_HFLAG_DM)) {
468 /* Raise it */
469 env->exception_index = EXCP_EXT_INTERRUPT;
470 env->error_code = 0;
471 do_interrupt(env);
fdbb4691 472#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
473 tmp_T0 = 0;
474#else
475 T0 = 0;
476#endif
6af0bf9c 477 }
e95c8d51 478#elif defined(TARGET_SPARC)
66321a11
FB
479 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
480 (env->psret != 0)) {
481 int pil = env->interrupt_index & 15;
482 int type = env->interrupt_index & 0xf0;
483
484 if (((type == TT_EXTINT) &&
485 (pil == 15 || pil > env->psrpil)) ||
486 type != TT_EXTINT) {
487 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
488 do_interrupt(env->interrupt_index);
489 env->interrupt_index = 0;
327ac2e7
BS
490#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
491 cpu_check_irqs(env);
492#endif
fdbb4691 493#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
494 tmp_T0 = 0;
495#else
496 T0 = 0;
497#endif
66321a11 498 }
e95c8d51
FB
499 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
500 //do_interrupt(0, 0, 0, 0, 0);
501 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
a90b7318 502 }
b5ff1b31
FB
503#elif defined(TARGET_ARM)
504 if (interrupt_request & CPU_INTERRUPT_FIQ
505 && !(env->uncached_cpsr & CPSR_F)) {
506 env->exception_index = EXCP_FIQ;
507 do_interrupt(env);
508 }
509 if (interrupt_request & CPU_INTERRUPT_HARD
510 && !(env->uncached_cpsr & CPSR_I)) {
511 env->exception_index = EXCP_IRQ;
512 do_interrupt(env);
513 }
fdf9b3e8
FB
514#elif defined(TARGET_SH4)
515 /* XXXXX */
eddf68a6
JM
516#elif defined(TARGET_ALPHA)
517 if (interrupt_request & CPU_INTERRUPT_HARD) {
518 do_interrupt(env);
519 }
0633879f
PB
520#elif defined(TARGET_M68K)
521 if (interrupt_request & CPU_INTERRUPT_HARD
522 && ((env->sr & SR_I) >> SR_I_SHIFT)
523 < env->pending_level) {
524 /* Real hardware gets the interrupt vector via an
525 IACK cycle at this point. Current emulated
526 hardware doesn't rely on this, so we
527 provide/save the vector when the interrupt is
528 first signalled. */
529 env->exception_index = env->pending_vector;
530 do_interrupt(1);
531 }
68a79315 532#endif
9d05095e
FB
533 /* Don't use the cached interupt_request value,
534 do_interrupt may have updated the EXITTB flag. */
b5ff1b31 535 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
bf3e8bf1
FB
536 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
537 /* ensure that no TB jump will be modified as
538 the program flow was changed */
fdbb4691 539#if defined(__sparc__) && !defined(HOST_SOLARIS)
bf3e8bf1
FB
540 tmp_T0 = 0;
541#else
542 T0 = 0;
543#endif
544 }
68a79315
FB
545 if (interrupt_request & CPU_INTERRUPT_EXIT) {
546 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
547 env->exception_index = EXCP_INTERRUPT;
548 cpu_loop_exit();
549 }
3fb2ded1 550 }
7d13299d 551#ifdef DEBUG_EXEC
b5ff1b31 552 if ((loglevel & CPU_LOG_TB_CPU)) {
3fb2ded1 553 /* restore flags in standard format */
ecb644f4
TS
554 regs_to_env();
555#if defined(TARGET_I386)
3fb2ded1 556 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
7fe48483 557 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
3fb2ded1 558 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 559#elif defined(TARGET_ARM)
7fe48483 560 cpu_dump_state(env, logfile, fprintf, 0);
93ac68bc 561#elif defined(TARGET_SPARC)
3475187d
FB
562 REGWPTR = env->regbase + (env->cwp * 16);
563 env->regwptr = REGWPTR;
564 cpu_dump_state(env, logfile, fprintf, 0);
67867308 565#elif defined(TARGET_PPC)
7fe48483 566 cpu_dump_state(env, logfile, fprintf, 0);
e6e5906b
PB
567#elif defined(TARGET_M68K)
568 cpu_m68k_flush_flags(env, env->cc_op);
569 env->cc_op = CC_OP_FLAGS;
570 env->sr = (env->sr & 0xffe0)
571 | env->cc_dest | (env->cc_x << 4);
572 cpu_dump_state(env, logfile, fprintf, 0);
6af0bf9c
FB
573#elif defined(TARGET_MIPS)
574 cpu_dump_state(env, logfile, fprintf, 0);
fdf9b3e8
FB
575#elif defined(TARGET_SH4)
576 cpu_dump_state(env, logfile, fprintf, 0);
eddf68a6
JM
577#elif defined(TARGET_ALPHA)
578 cpu_dump_state(env, logfile, fprintf, 0);
e4533c7a 579#else
5fafdf24 580#error unsupported target CPU
e4533c7a 581#endif
3fb2ded1 582 }
7d13299d 583#endif
8a40a180 584 tb = tb_find_fast();
9d27abd9 585#ifdef DEBUG_EXEC
c1135f61 586 if ((loglevel & CPU_LOG_EXEC)) {
c27004ec
FB
587 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
588 (long)tb->tc_ptr, tb->pc,
589 lookup_symbol(tb->pc));
3fb2ded1 590 }
9d27abd9 591#endif
fdbb4691 592#if defined(__sparc__) && !defined(HOST_SOLARIS)
3fb2ded1 593 T0 = tmp_T0;
3b46e624 594#endif
8a40a180
FB
595 /* see if we can patch the calling TB. When the TB
596 spans two pages, we cannot safely do a direct
597 jump. */
c27004ec 598 {
8a40a180 599 if (T0 != 0 &&
f32fc648
FB
600#if USE_KQEMU
601 (env->kqemu_enabled != 2) &&
602#endif
8a40a180 603 tb->page_addr[1] == -1
bf3e8bf1 604#if defined(TARGET_I386) && defined(USE_CODE_COPY)
5fafdf24 605 && (tb->cflags & CF_CODE_COPY) ==
bf3e8bf1
FB
606 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
607#endif
608 ) {
3fb2ded1 609 spin_lock(&tb_lock);
c27004ec 610 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
97eb5b14
FB
611#if defined(USE_CODE_COPY)
612 /* propagates the FP use info */
5fafdf24 613 ((TranslationBlock *)(T0 & ~3))->cflags |=
97eb5b14
FB
614 (tb->cflags & CF_FP_USED);
615#endif
3fb2ded1
FB
616 spin_unlock(&tb_lock);
617 }
c27004ec 618 }
3fb2ded1 619 tc_ptr = tb->tc_ptr;
83479e77 620 env->current_tb = tb;
3fb2ded1
FB
621 /* execute the generated code */
622 gen_func = (void *)tc_ptr;
8c6939c0 623#if defined(__sparc__)
3fb2ded1
FB
624 __asm__ __volatile__("call %0\n\t"
625 "mov %%o7,%%i0"
626 : /* no outputs */
5fafdf24 627 : "r" (gen_func)
fdbb4691 628 : "i0", "i1", "i2", "i3", "i4", "i5",
faab7592 629 "o0", "o1", "o2", "o3", "o4", "o5",
fdbb4691
FB
630 "l0", "l1", "l2", "l3", "l4", "l5",
631 "l6", "l7");
8c6939c0 632#elif defined(__arm__)
3fb2ded1
FB
633 asm volatile ("mov pc, %0\n\t"
634 ".global exec_loop\n\t"
635 "exec_loop:\n\t"
636 : /* no outputs */
637 : "r" (gen_func)
638 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
bf3e8bf1
FB
639#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
640{
641 if (!(tb->cflags & CF_CODE_COPY)) {
97eb5b14
FB
642 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
643 save_native_fp_state(env);
644 }
bf3e8bf1
FB
645 gen_func();
646 } else {
97eb5b14
FB
647 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
648 restore_native_fp_state(env);
649 }
bf3e8bf1
FB
650 /* we work with native eflags */
651 CC_SRC = cc_table[CC_OP].compute_all();
652 CC_OP = CC_OP_EFLAGS;
653 asm(".globl exec_loop\n"
654 "\n"
655 "debug1:\n"
656 " pushl %%ebp\n"
657 " fs movl %10, %9\n"
658 " fs movl %11, %%eax\n"
659 " andl $0x400, %%eax\n"
660 " fs orl %8, %%eax\n"
661 " pushl %%eax\n"
662 " popf\n"
663 " fs movl %%esp, %12\n"
664 " fs movl %0, %%eax\n"
665 " fs movl %1, %%ecx\n"
666 " fs movl %2, %%edx\n"
667 " fs movl %3, %%ebx\n"
668 " fs movl %4, %%esp\n"
669 " fs movl %5, %%ebp\n"
670 " fs movl %6, %%esi\n"
671 " fs movl %7, %%edi\n"
672 " fs jmp *%9\n"
673 "exec_loop:\n"
674 " fs movl %%esp, %4\n"
675 " fs movl %12, %%esp\n"
676 " fs movl %%eax, %0\n"
677 " fs movl %%ecx, %1\n"
678 " fs movl %%edx, %2\n"
679 " fs movl %%ebx, %3\n"
680 " fs movl %%ebp, %5\n"
681 " fs movl %%esi, %6\n"
682 " fs movl %%edi, %7\n"
683 " pushf\n"
684 " popl %%eax\n"
685 " movl %%eax, %%ecx\n"
686 " andl $0x400, %%ecx\n"
687 " shrl $9, %%ecx\n"
688 " andl $0x8d5, %%eax\n"
689 " fs movl %%eax, %8\n"
690 " movl $1, %%eax\n"
691 " subl %%ecx, %%eax\n"
692 " fs movl %%eax, %11\n"
693 " fs movl %9, %%ebx\n" /* get T0 value */
694 " popl %%ebp\n"
695 :
696 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
697 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
698 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
699 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
700 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
701 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
702 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
703 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
704 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
705 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
706 "a" (gen_func),
707 "m" (*(uint8_t *)offsetof(CPUState, df)),
708 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
709 : "%ecx", "%edx"
710 );
711 }
712}
b8076a74
FB
713#elif defined(__ia64)
714 struct fptr {
715 void *ip;
716 void *gp;
717 } fp;
718
719 fp.ip = tc_ptr;
720 fp.gp = code_gen_buffer + 2 * (1 << 20);
721 (*(void (*)(void)) &fp)();
ae228531 722#else
3fb2ded1 723 gen_func();
ae228531 724#endif
83479e77 725 env->current_tb = NULL;
4cbf74b6
FB
726 /* reset soft MMU for next block (it can currently
727 only be set by a memory fault) */
728#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
3f337316
FB
729 if (env->hflags & HF_SOFTMMU_MASK) {
730 env->hflags &= ~HF_SOFTMMU_MASK;
4cbf74b6
FB
731 /* do not allow linking to another block */
732 T0 = 0;
733 }
f32fc648
FB
734#endif
735#if defined(USE_KQEMU)
736#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
737 if (kqemu_is_ok(env) &&
738 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
739 cpu_loop_exit();
740 }
4cbf74b6 741#endif
50a518e3 742 } /* for(;;) */
3fb2ded1 743 } else {
0d1a29f9 744 env_to_regs();
7d13299d 745 }
3fb2ded1
FB
746 } /* for(;;) */
747
7d13299d 748
e4533c7a 749#if defined(TARGET_I386)
97eb5b14
FB
750#if defined(USE_CODE_COPY)
751 if (env->native_fp_regs) {
752 save_native_fp_state(env);
753 }
754#endif
9de5e440 755 /* restore flags in standard format */
fc2b4c48 756 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
e4533c7a 757#elif defined(TARGET_ARM)
b7bcbe95 758 /* XXX: Save/restore host fpu exception state?. */
93ac68bc 759#elif defined(TARGET_SPARC)
3475187d
FB
760#if defined(reg_REGWPTR)
761 REGWPTR = saved_regwptr;
762#endif
67867308 763#elif defined(TARGET_PPC)
e6e5906b
PB
764#elif defined(TARGET_M68K)
765 cpu_m68k_flush_flags(env, env->cc_op);
766 env->cc_op = CC_OP_FLAGS;
767 env->sr = (env->sr & 0xffe0)
768 | env->cc_dest | (env->cc_x << 4);
6af0bf9c 769#elif defined(TARGET_MIPS)
fdf9b3e8 770#elif defined(TARGET_SH4)
eddf68a6 771#elif defined(TARGET_ALPHA)
fdf9b3e8 772 /* XXXXX */
e4533c7a
FB
773#else
774#error unsupported target CPU
775#endif
1057eaa7
PB
776
777 /* restore global registers */
fdbb4691 778#if defined(__sparc__) && !defined(HOST_SOLARIS)
8c6939c0 779 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
04369ff2 780#endif
1057eaa7
PB
781#include "hostregs_helper.h"
782
6a00d601 783 /* fail safe : never use cpu_single_env outside cpu_exec() */
5fafdf24 784 cpu_single_env = NULL;
7d13299d
FB
785 return ret;
786}
6dbad63e 787
fbf9eeb3
FB
788/* must only be called from the generated code as an exception can be
789 generated */
790void tb_invalidate_page_range(target_ulong start, target_ulong end)
791{
dc5d0b3d
FB
792 /* XXX: cannot enable it yet because it yields to MMU exception
793 where NIP != read address on PowerPC */
794#if 0
fbf9eeb3
FB
795 target_ulong phys_addr;
796 phys_addr = get_phys_addr_code(env, start);
797 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
dc5d0b3d 798#endif
fbf9eeb3
FB
799}
800
1a18c71b 801#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
e4533c7a 802
6dbad63e
FB
803void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
804{
805 CPUX86State *saved_env;
806
807 saved_env = env;
808 env = s;
a412ac57 809 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
a513fe19 810 selector &= 0xffff;
5fafdf24 811 cpu_x86_load_seg_cache(env, seg_reg, selector,
c27004ec 812 (selector << 4), 0xffff, 0);
a513fe19 813 } else {
b453b70b 814 load_seg(seg_reg, selector);
a513fe19 815 }
6dbad63e
FB
816 env = saved_env;
817}
9de5e440 818
d0a1ffc9
FB
819void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
820{
821 CPUX86State *saved_env;
822
823 saved_env = env;
824 env = s;
3b46e624 825
c27004ec 826 helper_fsave((target_ulong)ptr, data32);
d0a1ffc9
FB
827
828 env = saved_env;
829}
830
831void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
832{
833 CPUX86State *saved_env;
834
835 saved_env = env;
836 env = s;
3b46e624 837
c27004ec 838 helper_frstor((target_ulong)ptr, data32);
d0a1ffc9
FB
839
840 env = saved_env;
841}
842
e4533c7a
FB
843#endif /* TARGET_I386 */
844
67b915a5
FB
845#if !defined(CONFIG_SOFTMMU)
846
3fb2ded1
FB
847#if defined(TARGET_I386)
848
b56dad1c 849/* 'pc' is the host PC at which the exception was raised. 'address' is
fd6ce8f6
FB
850 the effective address of the memory exception. 'is_write' is 1 if a
851 write caused the exception and otherwise 0'. 'old_set' is the
852 signal set which should be restored */
2b413144 853static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
5fafdf24 854 int is_write, sigset_t *old_set,
bf3e8bf1 855 void *puc)
9de5e440 856{
a513fe19
FB
857 TranslationBlock *tb;
858 int ret;
68a79315 859
83479e77
FB
860 if (cpu_single_env)
861 env = cpu_single_env; /* XXX: find a correct solution for multithread */
fd6ce8f6 862#if defined(DEBUG_SIGNAL)
5fafdf24 863 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
bf3e8bf1 864 pc, address, is_write, *(unsigned long *)old_set);
9de5e440 865#endif
25eb4484 866 /* XXX: locking issue */
53a5960a 867 if (is_write && page_unprotect(h2g(address), pc, puc)) {
fd6ce8f6
FB
868 return 1;
869 }
fbf9eeb3 870
3fb2ded1 871 /* see if it is an MMU fault */
5fafdf24 872 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
93a40ea9 873 ((env->hflags & HF_CPL_MASK) == 3), 0);
3fb2ded1
FB
874 if (ret < 0)
875 return 0; /* not an MMU fault */
876 if (ret == 0)
877 return 1; /* the MMU fault was handled without causing real CPU fault */
878 /* now we have a real cpu fault */
a513fe19
FB
879 tb = tb_find_pc(pc);
880 if (tb) {
9de5e440
FB
881 /* the PC is inside the translated code. It means that we have
882 a virtual CPU fault */
bf3e8bf1 883 cpu_restore_state(tb, env, pc, puc);
3fb2ded1 884 }
4cbf74b6 885 if (ret == 1) {
3fb2ded1 886#if 0
5fafdf24 887 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
4cbf74b6 888 env->eip, env->cr[2], env->error_code);
3fb2ded1 889#endif
4cbf74b6
FB
890 /* we restore the process signal mask as the sigreturn should
891 do it (XXX: use sigsetjmp) */
892 sigprocmask(SIG_SETMASK, old_set, NULL);
54ca9095 893 raise_exception_err(env->exception_index, env->error_code);
4cbf74b6
FB
894 } else {
895 /* activate soft MMU for this block */
3f337316 896 env->hflags |= HF_SOFTMMU_MASK;
fbf9eeb3 897 cpu_resume_from_signal(env, puc);
4cbf74b6 898 }
3fb2ded1
FB
899 /* never comes here */
900 return 1;
901}
902
e4533c7a 903#elif defined(TARGET_ARM)
3fb2ded1 904static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
905 int is_write, sigset_t *old_set,
906 void *puc)
3fb2ded1 907{
68016c62
FB
908 TranslationBlock *tb;
909 int ret;
910
911 if (cpu_single_env)
912 env = cpu_single_env; /* XXX: find a correct solution for multithread */
913#if defined(DEBUG_SIGNAL)
5fafdf24 914 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
68016c62
FB
915 pc, address, is_write, *(unsigned long *)old_set);
916#endif
9f0777ed 917 /* XXX: locking issue */
53a5960a 918 if (is_write && page_unprotect(h2g(address), pc, puc)) {
9f0777ed
FB
919 return 1;
920 }
68016c62
FB
921 /* see if it is an MMU fault */
922 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
923 if (ret < 0)
924 return 0; /* not an MMU fault */
925 if (ret == 0)
926 return 1; /* the MMU fault was handled without causing real CPU fault */
927 /* now we have a real cpu fault */
928 tb = tb_find_pc(pc);
929 if (tb) {
930 /* the PC is inside the translated code. It means that we have
931 a virtual CPU fault */
932 cpu_restore_state(tb, env, pc, puc);
933 }
934 /* we restore the process signal mask as the sigreturn should
935 do it (XXX: use sigsetjmp) */
936 sigprocmask(SIG_SETMASK, old_set, NULL);
937 cpu_loop_exit();
3fb2ded1 938}
93ac68bc
FB
939#elif defined(TARGET_SPARC)
940static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
941 int is_write, sigset_t *old_set,
942 void *puc)
93ac68bc 943{
68016c62
FB
944 TranslationBlock *tb;
945 int ret;
946
947 if (cpu_single_env)
948 env = cpu_single_env; /* XXX: find a correct solution for multithread */
949#if defined(DEBUG_SIGNAL)
5fafdf24 950 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
68016c62
FB
951 pc, address, is_write, *(unsigned long *)old_set);
952#endif
b453b70b 953 /* XXX: locking issue */
53a5960a 954 if (is_write && page_unprotect(h2g(address), pc, puc)) {
b453b70b
FB
955 return 1;
956 }
68016c62
FB
957 /* see if it is an MMU fault */
958 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
959 if (ret < 0)
960 return 0; /* not an MMU fault */
961 if (ret == 0)
962 return 1; /* the MMU fault was handled without causing real CPU fault */
963 /* now we have a real cpu fault */
964 tb = tb_find_pc(pc);
965 if (tb) {
966 /* the PC is inside the translated code. It means that we have
967 a virtual CPU fault */
968 cpu_restore_state(tb, env, pc, puc);
969 }
970 /* we restore the process signal mask as the sigreturn should
971 do it (XXX: use sigsetjmp) */
972 sigprocmask(SIG_SETMASK, old_set, NULL);
973 cpu_loop_exit();
93ac68bc 974}
67867308
FB
975#elif defined (TARGET_PPC)
976static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
977 int is_write, sigset_t *old_set,
978 void *puc)
67867308
FB
979{
980 TranslationBlock *tb;
ce09776b 981 int ret;
3b46e624 982
67867308
FB
983 if (cpu_single_env)
984 env = cpu_single_env; /* XXX: find a correct solution for multithread */
67867308 985#if defined(DEBUG_SIGNAL)
5fafdf24 986 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
67867308
FB
987 pc, address, is_write, *(unsigned long *)old_set);
988#endif
989 /* XXX: locking issue */
53a5960a 990 if (is_write && page_unprotect(h2g(address), pc, puc)) {
67867308
FB
991 return 1;
992 }
993
ce09776b 994 /* see if it is an MMU fault */
7f957d28 995 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
ce09776b
FB
996 if (ret < 0)
997 return 0; /* not an MMU fault */
998 if (ret == 0)
999 return 1; /* the MMU fault was handled without causing real CPU fault */
1000
67867308
FB
1001 /* now we have a real cpu fault */
1002 tb = tb_find_pc(pc);
1003 if (tb) {
1004 /* the PC is inside the translated code. It means that we have
1005 a virtual CPU fault */
bf3e8bf1 1006 cpu_restore_state(tb, env, pc, puc);
67867308 1007 }
ce09776b 1008 if (ret == 1) {
67867308 1009#if 0
5fafdf24 1010 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
ce09776b 1011 env->nip, env->error_code, tb);
67867308
FB
1012#endif
1013 /* we restore the process signal mask as the sigreturn should
1014 do it (XXX: use sigsetjmp) */
bf3e8bf1 1015 sigprocmask(SIG_SETMASK, old_set, NULL);
9fddaa0c 1016 do_raise_exception_err(env->exception_index, env->error_code);
ce09776b
FB
1017 } else {
1018 /* activate soft MMU for this block */
fbf9eeb3 1019 cpu_resume_from_signal(env, puc);
ce09776b 1020 }
67867308 1021 /* never comes here */
e6e5906b
PB
1022 return 1;
1023}
1024
1025#elif defined(TARGET_M68K)
1026static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1027 int is_write, sigset_t *old_set,
1028 void *puc)
1029{
1030 TranslationBlock *tb;
1031 int ret;
1032
1033 if (cpu_single_env)
1034 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1035#if defined(DEBUG_SIGNAL)
5fafdf24 1036 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
e6e5906b
PB
1037 pc, address, is_write, *(unsigned long *)old_set);
1038#endif
1039 /* XXX: locking issue */
1040 if (is_write && page_unprotect(address, pc, puc)) {
1041 return 1;
1042 }
1043 /* see if it is an MMU fault */
1044 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1045 if (ret < 0)
1046 return 0; /* not an MMU fault */
1047 if (ret == 0)
1048 return 1; /* the MMU fault was handled without causing real CPU fault */
1049 /* now we have a real cpu fault */
1050 tb = tb_find_pc(pc);
1051 if (tb) {
1052 /* the PC is inside the translated code. It means that we have
1053 a virtual CPU fault */
1054 cpu_restore_state(tb, env, pc, puc);
1055 }
1056 /* we restore the process signal mask as the sigreturn should
1057 do it (XXX: use sigsetjmp) */
1058 sigprocmask(SIG_SETMASK, old_set, NULL);
1059 cpu_loop_exit();
1060 /* never comes here */
67867308
FB
1061 return 1;
1062}
6af0bf9c
FB
1063
1064#elif defined (TARGET_MIPS)
1065static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1066 int is_write, sigset_t *old_set,
1067 void *puc)
1068{
1069 TranslationBlock *tb;
1070 int ret;
3b46e624 1071
6af0bf9c
FB
1072 if (cpu_single_env)
1073 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1074#if defined(DEBUG_SIGNAL)
5fafdf24 1075 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
6af0bf9c
FB
1076 pc, address, is_write, *(unsigned long *)old_set);
1077#endif
1078 /* XXX: locking issue */
53a5960a 1079 if (is_write && page_unprotect(h2g(address), pc, puc)) {
6af0bf9c
FB
1080 return 1;
1081 }
1082
1083 /* see if it is an MMU fault */
cc9442b9 1084 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
6af0bf9c
FB
1085 if (ret < 0)
1086 return 0; /* not an MMU fault */
1087 if (ret == 0)
1088 return 1; /* the MMU fault was handled without causing real CPU fault */
1089
1090 /* now we have a real cpu fault */
1091 tb = tb_find_pc(pc);
1092 if (tb) {
1093 /* the PC is inside the translated code. It means that we have
1094 a virtual CPU fault */
1095 cpu_restore_state(tb, env, pc, puc);
1096 }
1097 if (ret == 1) {
1098#if 0
5fafdf24 1099 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1eb5207b 1100 env->PC, env->error_code, tb);
6af0bf9c
FB
1101#endif
1102 /* we restore the process signal mask as the sigreturn should
1103 do it (XXX: use sigsetjmp) */
1104 sigprocmask(SIG_SETMASK, old_set, NULL);
1105 do_raise_exception_err(env->exception_index, env->error_code);
1106 } else {
1107 /* activate soft MMU for this block */
1108 cpu_resume_from_signal(env, puc);
1109 }
1110 /* never comes here */
1111 return 1;
1112}
1113
fdf9b3e8
FB
1114#elif defined (TARGET_SH4)
1115static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1116 int is_write, sigset_t *old_set,
1117 void *puc)
1118{
1119 TranslationBlock *tb;
1120 int ret;
3b46e624 1121
fdf9b3e8
FB
1122 if (cpu_single_env)
1123 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1124#if defined(DEBUG_SIGNAL)
5fafdf24 1125 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
fdf9b3e8
FB
1126 pc, address, is_write, *(unsigned long *)old_set);
1127#endif
1128 /* XXX: locking issue */
1129 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1130 return 1;
1131 }
1132
1133 /* see if it is an MMU fault */
1134 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1135 if (ret < 0)
1136 return 0; /* not an MMU fault */
1137 if (ret == 0)
1138 return 1; /* the MMU fault was handled without causing real CPU fault */
1139
1140 /* now we have a real cpu fault */
eddf68a6
JM
1141 tb = tb_find_pc(pc);
1142 if (tb) {
1143 /* the PC is inside the translated code. It means that we have
1144 a virtual CPU fault */
1145 cpu_restore_state(tb, env, pc, puc);
1146 }
1147#if 0
5fafdf24 1148 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
eddf68a6
JM
1149 env->nip, env->error_code, tb);
1150#endif
1151 /* we restore the process signal mask as the sigreturn should
1152 do it (XXX: use sigsetjmp) */
1153 sigprocmask(SIG_SETMASK, old_set, NULL);
1154 cpu_loop_exit();
1155 /* never comes here */
1156 return 1;
1157}
1158
1159#elif defined (TARGET_ALPHA)
1160static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1161 int is_write, sigset_t *old_set,
1162 void *puc)
1163{
1164 TranslationBlock *tb;
1165 int ret;
3b46e624 1166
eddf68a6
JM
1167 if (cpu_single_env)
1168 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1169#if defined(DEBUG_SIGNAL)
5fafdf24 1170 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
eddf68a6
JM
1171 pc, address, is_write, *(unsigned long *)old_set);
1172#endif
1173 /* XXX: locking issue */
1174 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1175 return 1;
1176 }
1177
1178 /* see if it is an MMU fault */
1179 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1180 if (ret < 0)
1181 return 0; /* not an MMU fault */
1182 if (ret == 0)
1183 return 1; /* the MMU fault was handled without causing real CPU fault */
1184
1185 /* now we have a real cpu fault */
fdf9b3e8
FB
1186 tb = tb_find_pc(pc);
1187 if (tb) {
1188 /* the PC is inside the translated code. It means that we have
1189 a virtual CPU fault */
1190 cpu_restore_state(tb, env, pc, puc);
1191 }
fdf9b3e8 1192#if 0
5fafdf24 1193 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
fdf9b3e8
FB
1194 env->nip, env->error_code, tb);
1195#endif
1196 /* we restore the process signal mask as the sigreturn should
1197 do it (XXX: use sigsetjmp) */
355fb23d
PB
1198 sigprocmask(SIG_SETMASK, old_set, NULL);
1199 cpu_loop_exit();
fdf9b3e8
FB
1200 /* never comes here */
1201 return 1;
1202}
e4533c7a
FB
1203#else
1204#error unsupported target CPU
1205#endif
9de5e440 1206
2b413144
FB
1207#if defined(__i386__)
1208
d8ecc0b9
FB
1209#if defined(__APPLE__)
1210# include <sys/ucontext.h>
1211
1212# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1213# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1214# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1215#else
1216# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1217# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1218# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1219#endif
1220
bf3e8bf1 1221#if defined(USE_CODE_COPY)
5fafdf24 1222static void cpu_send_trap(unsigned long pc, int trap,
bf3e8bf1
FB
1223 struct ucontext *uc)
1224{
1225 TranslationBlock *tb;
1226
1227 if (cpu_single_env)
1228 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1229 /* now we have a real cpu fault */
1230 tb = tb_find_pc(pc);
1231 if (tb) {
1232 /* the PC is inside the translated code. It means that we have
1233 a virtual CPU fault */
1234 cpu_restore_state(tb, env, pc, uc);
1235 }
1236 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1237 raise_exception_err(trap, env->error_code);
1238}
1239#endif
1240
5fafdf24 1241int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1242 void *puc)
9de5e440 1243{
5a7b542b 1244 siginfo_t *info = pinfo;
9de5e440
FB
1245 struct ucontext *uc = puc;
1246 unsigned long pc;
bf3e8bf1 1247 int trapno;
97eb5b14 1248
d691f669
FB
1249#ifndef REG_EIP
1250/* for glibc 2.1 */
fd6ce8f6
FB
1251#define REG_EIP EIP
1252#define REG_ERR ERR
1253#define REG_TRAPNO TRAPNO
d691f669 1254#endif
d8ecc0b9
FB
1255 pc = EIP_sig(uc);
1256 trapno = TRAP_sig(uc);
bf3e8bf1
FB
1257#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1258 if (trapno == 0x00 || trapno == 0x05) {
1259 /* send division by zero or bound exception */
1260 cpu_send_trap(pc, trapno, uc);
1261 return 1;
1262 } else
1263#endif
5fafdf24
TS
1264 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1265 trapno == 0xe ?
d8ecc0b9 1266 (ERROR_sig(uc) >> 1) & 1 : 0,
bf3e8bf1 1267 &uc->uc_sigmask, puc);
2b413144
FB
1268}
1269
bc51c5c9
FB
1270#elif defined(__x86_64__)
1271
5a7b542b 1272int cpu_signal_handler(int host_signum, void *pinfo,
bc51c5c9
FB
1273 void *puc)
1274{
5a7b542b 1275 siginfo_t *info = pinfo;
bc51c5c9
FB
1276 struct ucontext *uc = puc;
1277 unsigned long pc;
1278
1279 pc = uc->uc_mcontext.gregs[REG_RIP];
5fafdf24
TS
1280 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1281 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
bc51c5c9
FB
1282 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1283 &uc->uc_sigmask, puc);
1284}
1285
83fb7adf 1286#elif defined(__powerpc__)
2b413144 1287
83fb7adf
FB
1288/***********************************************************************
1289 * signal context platform-specific definitions
1290 * From Wine
1291 */
1292#ifdef linux
1293/* All Registers access - only for local access */
1294# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1295/* Gpr Registers access */
1296# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1297# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1298# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1299# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1300# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1301# define LR_sig(context) REG_sig(link, context) /* Link register */
1302# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1303/* Float Registers access */
1304# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1305# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1306/* Exception Registers access */
1307# define DAR_sig(context) REG_sig(dar, context)
1308# define DSISR_sig(context) REG_sig(dsisr, context)
1309# define TRAP_sig(context) REG_sig(trap, context)
1310#endif /* linux */
1311
1312#ifdef __APPLE__
1313# include <sys/ucontext.h>
1314typedef struct ucontext SIGCONTEXT;
1315/* All Registers access - only for local access */
1316# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1317# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1318# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1319# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1320/* Gpr Registers access */
1321# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1322# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1323# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1324# define CTR_sig(context) REG_sig(ctr, context)
1325# define XER_sig(context) REG_sig(xer, context) /* Link register */
1326# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1327# define CR_sig(context) REG_sig(cr, context) /* Condition register */
1328/* Float Registers access */
1329# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1330# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1331/* Exception Registers access */
1332# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1333# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1334# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1335#endif /* __APPLE__ */
1336
5fafdf24 1337int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1338 void *puc)
2b413144 1339{
5a7b542b 1340 siginfo_t *info = pinfo;
25eb4484 1341 struct ucontext *uc = puc;
25eb4484 1342 unsigned long pc;
25eb4484
FB
1343 int is_write;
1344
83fb7adf 1345 pc = IAR_sig(uc);
25eb4484
FB
1346 is_write = 0;
1347#if 0
1348 /* ppc 4xx case */
83fb7adf 1349 if (DSISR_sig(uc) & 0x00800000)
25eb4484
FB
1350 is_write = 1;
1351#else
83fb7adf 1352 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
25eb4484
FB
1353 is_write = 1;
1354#endif
5fafdf24 1355 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1356 is_write, &uc->uc_sigmask, puc);
2b413144
FB
1357}
1358
2f87c607
FB
1359#elif defined(__alpha__)
1360
5fafdf24 1361int cpu_signal_handler(int host_signum, void *pinfo,
2f87c607
FB
1362 void *puc)
1363{
5a7b542b 1364 siginfo_t *info = pinfo;
2f87c607
FB
1365 struct ucontext *uc = puc;
1366 uint32_t *pc = uc->uc_mcontext.sc_pc;
1367 uint32_t insn = *pc;
1368 int is_write = 0;
1369
8c6939c0 1370 /* XXX: need kernel patch to get write flag faster */
2f87c607
FB
1371 switch (insn >> 26) {
1372 case 0x0d: // stw
1373 case 0x0e: // stb
1374 case 0x0f: // stq_u
1375 case 0x24: // stf
1376 case 0x25: // stg
1377 case 0x26: // sts
1378 case 0x27: // stt
1379 case 0x2c: // stl
1380 case 0x2d: // stq
1381 case 0x2e: // stl_c
1382 case 0x2f: // stq_c
1383 is_write = 1;
1384 }
1385
5fafdf24 1386 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1387 is_write, &uc->uc_sigmask, puc);
2f87c607 1388}
8c6939c0
FB
1389#elif defined(__sparc__)
1390
5fafdf24 1391int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1392 void *puc)
8c6939c0 1393{
5a7b542b 1394 siginfo_t *info = pinfo;
8c6939c0
FB
1395 uint32_t *regs = (uint32_t *)(info + 1);
1396 void *sigmask = (regs + 20);
1397 unsigned long pc;
1398 int is_write;
1399 uint32_t insn;
3b46e624 1400
8c6939c0
FB
1401 /* XXX: is there a standard glibc define ? */
1402 pc = regs[1];
1403 /* XXX: need kernel patch to get write flag faster */
1404 is_write = 0;
1405 insn = *(uint32_t *)pc;
1406 if ((insn >> 30) == 3) {
1407 switch((insn >> 19) & 0x3f) {
1408 case 0x05: // stb
1409 case 0x06: // sth
1410 case 0x04: // st
1411 case 0x07: // std
1412 case 0x24: // stf
1413 case 0x27: // stdf
1414 case 0x25: // stfsr
1415 is_write = 1;
1416 break;
1417 }
1418 }
5fafdf24 1419 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1420 is_write, sigmask, NULL);
8c6939c0
FB
1421}
1422
1423#elif defined(__arm__)
1424
5fafdf24 1425int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1426 void *puc)
8c6939c0 1427{
5a7b542b 1428 siginfo_t *info = pinfo;
8c6939c0
FB
1429 struct ucontext *uc = puc;
1430 unsigned long pc;
1431 int is_write;
3b46e624 1432
8c6939c0
FB
1433 pc = uc->uc_mcontext.gregs[R15];
1434 /* XXX: compute is_write */
1435 is_write = 0;
5fafdf24 1436 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
8c6939c0 1437 is_write,
f3a9676a 1438 &uc->uc_sigmask, puc);
8c6939c0
FB
1439}
1440
38e584a0
FB
1441#elif defined(__mc68000)
1442
5fafdf24 1443int cpu_signal_handler(int host_signum, void *pinfo,
38e584a0
FB
1444 void *puc)
1445{
5a7b542b 1446 siginfo_t *info = pinfo;
38e584a0
FB
1447 struct ucontext *uc = puc;
1448 unsigned long pc;
1449 int is_write;
3b46e624 1450
38e584a0
FB
1451 pc = uc->uc_mcontext.gregs[16];
1452 /* XXX: compute is_write */
1453 is_write = 0;
5fafdf24 1454 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
38e584a0 1455 is_write,
bf3e8bf1 1456 &uc->uc_sigmask, puc);
38e584a0
FB
1457}
1458
b8076a74
FB
1459#elif defined(__ia64)
1460
1461#ifndef __ISR_VALID
1462 /* This ought to be in <bits/siginfo.h>... */
1463# define __ISR_VALID 1
b8076a74
FB
1464#endif
1465
5a7b542b 1466int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
b8076a74 1467{
5a7b542b 1468 siginfo_t *info = pinfo;
b8076a74
FB
1469 struct ucontext *uc = puc;
1470 unsigned long ip;
1471 int is_write = 0;
1472
1473 ip = uc->uc_mcontext.sc_ip;
1474 switch (host_signum) {
1475 case SIGILL:
1476 case SIGFPE:
1477 case SIGSEGV:
1478 case SIGBUS:
1479 case SIGTRAP:
fd4a43e4 1480 if (info->si_code && (info->si_segvflags & __ISR_VALID))
b8076a74
FB
1481 /* ISR.W (write-access) is bit 33: */
1482 is_write = (info->si_isr >> 33) & 1;
1483 break;
1484
1485 default:
1486 break;
1487 }
1488 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1489 is_write,
1490 &uc->uc_sigmask, puc);
1491}
1492
90cb9493
FB
1493#elif defined(__s390__)
1494
5fafdf24 1495int cpu_signal_handler(int host_signum, void *pinfo,
90cb9493
FB
1496 void *puc)
1497{
5a7b542b 1498 siginfo_t *info = pinfo;
90cb9493
FB
1499 struct ucontext *uc = puc;
1500 unsigned long pc;
1501 int is_write;
3b46e624 1502
90cb9493
FB
1503 pc = uc->uc_mcontext.psw.addr;
1504 /* XXX: compute is_write */
1505 is_write = 0;
5fafdf24 1506 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
c4b89d18
TS
1507 is_write, &uc->uc_sigmask, puc);
1508}
1509
1510#elif defined(__mips__)
1511
5fafdf24 1512int cpu_signal_handler(int host_signum, void *pinfo,
c4b89d18
TS
1513 void *puc)
1514{
9617efe8 1515 siginfo_t *info = pinfo;
c4b89d18
TS
1516 struct ucontext *uc = puc;
1517 greg_t pc = uc->uc_mcontext.pc;
1518 int is_write;
3b46e624 1519
c4b89d18
TS
1520 /* XXX: compute is_write */
1521 is_write = 0;
5fafdf24 1522 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
c4b89d18 1523 is_write, &uc->uc_sigmask, puc);
90cb9493
FB
1524}
1525
9de5e440 1526#else
2b413144 1527
3fb2ded1 1528#error host CPU specific signal handler needed
2b413144 1529
9de5e440 1530#endif
67b915a5
FB
1531
1532#endif /* !defined(CONFIG_SOFTMMU) */