]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/block/zram/zram_drv.c
zram: remove init_lock in zram_make_request
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
b1f5b81e
RJ
18#ifdef CONFIG_ZRAM_DEBUG
19#define DEBUG
20#endif
21
306b0c95
NG
22#include <linux/module.h>
23#include <linux/kernel.h>
8946a086 24#include <linux/bio.h>
306b0c95
NG
25#include <linux/bitops.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h>
28#include <linux/device.h>
29#include <linux/genhd.h>
30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/slab.h>
306b0c95 32#include <linux/string.h>
306b0c95 33#include <linux/vmalloc.h>
fcfa8d95 34#include <linux/err.h>
306b0c95 35
16a4bfb9 36#include "zram_drv.h"
306b0c95
NG
37
38/* Globals */
f1e3cfff 39static int zram_major;
0f0e3ba3 40static struct zram *zram_devices;
b7ca232e 41static const char *default_compressor = "lzo";
306b0c95 42
306b0c95 43/* Module params (documentation at end) */
ca3d70bd 44static unsigned int num_devices = 1;
33863c21 45
a68eb3b6 46#define ZRAM_ATTR_RO(name) \
083914ea 47static ssize_t name##_show(struct device *d, \
a68eb3b6
SS
48 struct device_attribute *attr, char *b) \
49{ \
50 struct zram *zram = dev_to_zram(d); \
56b4e8cb 51 return scnprintf(b, PAGE_SIZE, "%llu\n", \
a68eb3b6
SS
52 (u64)atomic64_read(&zram->stats.name)); \
53} \
083914ea 54static DEVICE_ATTR_RO(name);
a68eb3b6 55
08eee69f 56static inline bool init_done(struct zram *zram)
be2d1d56 57{
08eee69f 58 return zram->disksize;
be2d1d56
SS
59}
60
9b3bb7ab
SS
61static inline struct zram *dev_to_zram(struct device *dev)
62{
63 return (struct zram *)dev_to_disk(dev)->private_data;
64}
65
66static ssize_t disksize_show(struct device *dev,
67 struct device_attribute *attr, char *buf)
68{
69 struct zram *zram = dev_to_zram(dev);
70
56b4e8cb 71 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
9b3bb7ab
SS
72}
73
74static ssize_t initstate_show(struct device *dev,
75 struct device_attribute *attr, char *buf)
76{
a68eb3b6 77 u32 val;
9b3bb7ab
SS
78 struct zram *zram = dev_to_zram(dev);
79
a68eb3b6
SS
80 down_read(&zram->init_lock);
81 val = init_done(zram);
82 up_read(&zram->init_lock);
9b3bb7ab 83
56b4e8cb 84 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
85}
86
87static ssize_t orig_data_size_show(struct device *dev,
88 struct device_attribute *attr, char *buf)
89{
90 struct zram *zram = dev_to_zram(dev);
91
56b4e8cb 92 return scnprintf(buf, PAGE_SIZE, "%llu\n",
90a7806e 93 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
9b3bb7ab
SS
94}
95
9b3bb7ab
SS
96static ssize_t mem_used_total_show(struct device *dev,
97 struct device_attribute *attr, char *buf)
98{
99 u64 val = 0;
100 struct zram *zram = dev_to_zram(dev);
9b3bb7ab
SS
101
102 down_read(&zram->init_lock);
5a99e95b
WY
103 if (init_done(zram)) {
104 struct zram_meta *meta = zram->meta;
722cdc17 105 val = zs_get_total_pages(meta->mem_pool);
5a99e95b 106 }
9b3bb7ab
SS
107 up_read(&zram->init_lock);
108
722cdc17 109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
9b3bb7ab
SS
110}
111
beca3ec7
SS
112static ssize_t max_comp_streams_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114{
115 int val;
116 struct zram *zram = dev_to_zram(dev);
117
118 down_read(&zram->init_lock);
119 val = zram->max_comp_streams;
120 up_read(&zram->init_lock);
121
56b4e8cb 122 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
beca3ec7
SS
123}
124
9ada9da9
MK
125static ssize_t mem_limit_show(struct device *dev,
126 struct device_attribute *attr, char *buf)
127{
128 u64 val;
129 struct zram *zram = dev_to_zram(dev);
130
131 down_read(&zram->init_lock);
132 val = zram->limit_pages;
133 up_read(&zram->init_lock);
134
135 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
136}
137
138static ssize_t mem_limit_store(struct device *dev,
139 struct device_attribute *attr, const char *buf, size_t len)
140{
141 u64 limit;
142 char *tmp;
143 struct zram *zram = dev_to_zram(dev);
144
145 limit = memparse(buf, &tmp);
146 if (buf == tmp) /* no chars parsed, invalid input */
147 return -EINVAL;
148
149 down_write(&zram->init_lock);
150 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
151 up_write(&zram->init_lock);
152
153 return len;
154}
155
461a8eee
MK
156static ssize_t mem_used_max_show(struct device *dev,
157 struct device_attribute *attr, char *buf)
158{
159 u64 val = 0;
160 struct zram *zram = dev_to_zram(dev);
161
162 down_read(&zram->init_lock);
163 if (init_done(zram))
164 val = atomic_long_read(&zram->stats.max_used_pages);
165 up_read(&zram->init_lock);
166
167 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
168}
169
170static ssize_t mem_used_max_store(struct device *dev,
171 struct device_attribute *attr, const char *buf, size_t len)
172{
173 int err;
174 unsigned long val;
175 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
176
177 err = kstrtoul(buf, 10, &val);
178 if (err || val != 0)
179 return -EINVAL;
180
181 down_read(&zram->init_lock);
5a99e95b
WY
182 if (init_done(zram)) {
183 struct zram_meta *meta = zram->meta;
461a8eee
MK
184 atomic_long_set(&zram->stats.max_used_pages,
185 zs_get_total_pages(meta->mem_pool));
5a99e95b 186 }
461a8eee
MK
187 up_read(&zram->init_lock);
188
189 return len;
190}
191
beca3ec7
SS
192static ssize_t max_comp_streams_store(struct device *dev,
193 struct device_attribute *attr, const char *buf, size_t len)
194{
195 int num;
196 struct zram *zram = dev_to_zram(dev);
60a726e3 197 int ret;
beca3ec7 198
60a726e3
MK
199 ret = kstrtoint(buf, 0, &num);
200 if (ret < 0)
201 return ret;
beca3ec7
SS
202 if (num < 1)
203 return -EINVAL;
60a726e3 204
beca3ec7
SS
205 down_write(&zram->init_lock);
206 if (init_done(zram)) {
60a726e3 207 if (!zcomp_set_max_streams(zram->comp, num)) {
fe8eb122 208 pr_info("Cannot change max compression streams\n");
60a726e3
MK
209 ret = -EINVAL;
210 goto out;
211 }
beca3ec7 212 }
60a726e3 213
beca3ec7 214 zram->max_comp_streams = num;
60a726e3
MK
215 ret = len;
216out:
beca3ec7 217 up_write(&zram->init_lock);
60a726e3 218 return ret;
beca3ec7
SS
219}
220
e46b8a03
SS
221static ssize_t comp_algorithm_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 size_t sz;
225 struct zram *zram = dev_to_zram(dev);
226
227 down_read(&zram->init_lock);
228 sz = zcomp_available_show(zram->compressor, buf);
229 up_read(&zram->init_lock);
230
231 return sz;
232}
233
234static ssize_t comp_algorithm_store(struct device *dev,
235 struct device_attribute *attr, const char *buf, size_t len)
236{
237 struct zram *zram = dev_to_zram(dev);
238 down_write(&zram->init_lock);
239 if (init_done(zram)) {
240 up_write(&zram->init_lock);
241 pr_info("Can't change algorithm for initialized device\n");
242 return -EBUSY;
243 }
244 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
245 up_write(&zram->init_lock);
246 return len;
247}
248
92967471 249/* flag operations needs meta->tb_lock */
8b3cc3ed 250static int zram_test_flag(struct zram_meta *meta, u32 index,
f1e3cfff 251 enum zram_pageflags flag)
306b0c95 252{
d2d5e762 253 return meta->table[index].value & BIT(flag);
306b0c95
NG
254}
255
8b3cc3ed 256static void zram_set_flag(struct zram_meta *meta, u32 index,
f1e3cfff 257 enum zram_pageflags flag)
306b0c95 258{
d2d5e762 259 meta->table[index].value |= BIT(flag);
306b0c95
NG
260}
261
8b3cc3ed 262static void zram_clear_flag(struct zram_meta *meta, u32 index,
f1e3cfff 263 enum zram_pageflags flag)
306b0c95 264{
d2d5e762
WY
265 meta->table[index].value &= ~BIT(flag);
266}
267
268static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
269{
270 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
271}
272
273static void zram_set_obj_size(struct zram_meta *meta,
274 u32 index, size_t size)
275{
276 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
277
278 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
306b0c95
NG
279}
280
9b3bb7ab
SS
281static inline int is_partial_io(struct bio_vec *bvec)
282{
283 return bvec->bv_len != PAGE_SIZE;
284}
285
286/*
287 * Check if request is within bounds and aligned on zram logical blocks.
288 */
54850e73 289static inline int valid_io_request(struct zram *zram,
290 sector_t start, unsigned int size)
9b3bb7ab 291{
54850e73 292 u64 end, bound;
a539c72a 293
9b3bb7ab 294 /* unaligned request */
54850e73 295 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
9b3bb7ab 296 return 0;
54850e73 297 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
9b3bb7ab
SS
298 return 0;
299
54850e73 300 end = start + (size >> SECTOR_SHIFT);
9b3bb7ab
SS
301 bound = zram->disksize >> SECTOR_SHIFT;
302 /* out of range range */
75c7caf5 303 if (unlikely(start >= bound || end > bound || start > end))
9b3bb7ab
SS
304 return 0;
305
306 /* I/O request is valid */
307 return 1;
308}
309
1fec1172 310static void zram_meta_free(struct zram_meta *meta, u64 disksize)
9b3bb7ab 311{
1fec1172
GM
312 size_t num_pages = disksize >> PAGE_SHIFT;
313 size_t index;
314
315 /* Free all pages that are still in this zram device */
316 for (index = 0; index < num_pages; index++) {
317 unsigned long handle = meta->table[index].handle;
318
319 if (!handle)
320 continue;
321
322 zs_free(meta->mem_pool, handle);
323 }
324
9b3bb7ab 325 zs_destroy_pool(meta->mem_pool);
9b3bb7ab
SS
326 vfree(meta->table);
327 kfree(meta);
328}
329
330static struct zram_meta *zram_meta_alloc(u64 disksize)
331{
332 size_t num_pages;
333 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
b8179958 334
9b3bb7ab 335 if (!meta)
b8179958 336 return NULL;
9b3bb7ab 337
9b3bb7ab
SS
338 num_pages = disksize >> PAGE_SHIFT;
339 meta->table = vzalloc(num_pages * sizeof(*meta->table));
340 if (!meta->table) {
341 pr_err("Error allocating zram address table\n");
b8179958 342 goto out_error;
9b3bb7ab
SS
343 }
344
345 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
346 if (!meta->mem_pool) {
347 pr_err("Error creating memory pool\n");
b8179958 348 goto out_error;
9b3bb7ab
SS
349 }
350
351 return meta;
352
b8179958 353out_error:
9b3bb7ab 354 vfree(meta->table);
9b3bb7ab 355 kfree(meta);
b8179958 356 return NULL;
9b3bb7ab
SS
357}
358
08eee69f
MK
359static inline bool zram_meta_get(struct zram *zram)
360{
361 if (atomic_inc_not_zero(&zram->refcount))
362 return true;
363 return false;
364}
365
366static inline void zram_meta_put(struct zram *zram)
367{
368 atomic_dec(&zram->refcount);
369}
370
9b3bb7ab
SS
371static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
372{
373 if (*offset + bvec->bv_len >= PAGE_SIZE)
374 (*index)++;
375 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
376}
377
306b0c95
NG
378static int page_zero_filled(void *ptr)
379{
380 unsigned int pos;
381 unsigned long *page;
382
383 page = (unsigned long *)ptr;
384
385 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
386 if (page[pos])
387 return 0;
388 }
389
390 return 1;
391}
392
9b3bb7ab
SS
393static void handle_zero_page(struct bio_vec *bvec)
394{
395 struct page *page = bvec->bv_page;
396 void *user_mem;
397
398 user_mem = kmap_atomic(page);
399 if (is_partial_io(bvec))
400 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
401 else
402 clear_page(user_mem);
403 kunmap_atomic(user_mem);
404
405 flush_dcache_page(page);
406}
407
d2d5e762
WY
408
409/*
410 * To protect concurrent access to the same index entry,
411 * caller should hold this table index entry's bit_spinlock to
412 * indicate this index entry is accessing.
413 */
f1e3cfff 414static void zram_free_page(struct zram *zram, size_t index)
306b0c95 415{
8b3cc3ed
MK
416 struct zram_meta *meta = zram->meta;
417 unsigned long handle = meta->table[index].handle;
306b0c95 418
fd1a30de 419 if (unlikely(!handle)) {
2e882281
NG
420 /*
421 * No memory is allocated for zero filled pages.
422 * Simply clear zero page flag.
423 */
8b3cc3ed
MK
424 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
425 zram_clear_flag(meta, index, ZRAM_ZERO);
90a7806e 426 atomic64_dec(&zram->stats.zero_pages);
306b0c95
NG
427 }
428 return;
429 }
430
8b3cc3ed 431 zs_free(meta->mem_pool, handle);
306b0c95 432
d2d5e762
WY
433 atomic64_sub(zram_get_obj_size(meta, index),
434 &zram->stats.compr_data_size);
90a7806e 435 atomic64_dec(&zram->stats.pages_stored);
306b0c95 436
8b3cc3ed 437 meta->table[index].handle = 0;
d2d5e762 438 zram_set_obj_size(meta, index, 0);
306b0c95
NG
439}
440
37b51fdd 441static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
306b0c95 442{
b7ca232e 443 int ret = 0;
37b51fdd 444 unsigned char *cmem;
8b3cc3ed 445 struct zram_meta *meta = zram->meta;
92967471 446 unsigned long handle;
023b409f 447 size_t size;
92967471 448
d2d5e762 449 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
92967471 450 handle = meta->table[index].handle;
d2d5e762 451 size = zram_get_obj_size(meta, index);
306b0c95 452
8b3cc3ed 453 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 454 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
42e99bd9 455 clear_page(mem);
8c921b2b
JM
456 return 0;
457 }
306b0c95 458
8b3cc3ed 459 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
92967471 460 if (size == PAGE_SIZE)
42e99bd9 461 copy_page(mem, cmem);
37b51fdd 462 else
b7ca232e 463 ret = zcomp_decompress(zram->comp, cmem, size, mem);
8b3cc3ed 464 zs_unmap_object(meta->mem_pool, handle);
d2d5e762 465 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
a1dd52af 466
8c921b2b 467 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 468 if (unlikely(ret)) {
8c921b2b 469 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
8c921b2b 470 return ret;
a1dd52af 471 }
306b0c95 472
8c921b2b 473 return 0;
306b0c95
NG
474}
475
37b51fdd 476static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
b627cff3 477 u32 index, int offset)
924bd88d
JM
478{
479 int ret;
37b51fdd
SS
480 struct page *page;
481 unsigned char *user_mem, *uncmem = NULL;
8b3cc3ed 482 struct zram_meta *meta = zram->meta;
37b51fdd
SS
483 page = bvec->bv_page;
484
d2d5e762 485 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
8b3cc3ed
MK
486 if (unlikely(!meta->table[index].handle) ||
487 zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 488 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
37b51fdd 489 handle_zero_page(bvec);
924bd88d
JM
490 return 0;
491 }
d2d5e762 492 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
924bd88d 493
37b51fdd
SS
494 if (is_partial_io(bvec))
495 /* Use a temporary buffer to decompress the page */
7e5a5104
MK
496 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
497
498 user_mem = kmap_atomic(page);
499 if (!is_partial_io(bvec))
37b51fdd
SS
500 uncmem = user_mem;
501
502 if (!uncmem) {
503 pr_info("Unable to allocate temp memory\n");
504 ret = -ENOMEM;
505 goto out_cleanup;
506 }
924bd88d 507
37b51fdd 508 ret = zram_decompress_page(zram, uncmem, index);
924bd88d 509 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 510 if (unlikely(ret))
37b51fdd 511 goto out_cleanup;
924bd88d 512
37b51fdd
SS
513 if (is_partial_io(bvec))
514 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
515 bvec->bv_len);
516
517 flush_dcache_page(page);
518 ret = 0;
519out_cleanup:
520 kunmap_atomic(user_mem);
521 if (is_partial_io(bvec))
522 kfree(uncmem);
523 return ret;
924bd88d
JM
524}
525
461a8eee
MK
526static inline void update_used_max(struct zram *zram,
527 const unsigned long pages)
528{
529 int old_max, cur_max;
530
531 old_max = atomic_long_read(&zram->stats.max_used_pages);
532
533 do {
534 cur_max = old_max;
535 if (pages > cur_max)
536 old_max = atomic_long_cmpxchg(
537 &zram->stats.max_used_pages, cur_max, pages);
538 } while (old_max != cur_max);
539}
540
924bd88d
JM
541static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
542 int offset)
306b0c95 543{
397c6066 544 int ret = 0;
8c921b2b 545 size_t clen;
c2344348 546 unsigned long handle;
130f315a 547 struct page *page;
924bd88d 548 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
8b3cc3ed 549 struct zram_meta *meta = zram->meta;
b7ca232e 550 struct zcomp_strm *zstrm;
e46e3315 551 bool locked = false;
461a8eee 552 unsigned long alloced_pages;
306b0c95 553
8c921b2b 554 page = bvec->bv_page;
924bd88d
JM
555 if (is_partial_io(bvec)) {
556 /*
557 * This is a partial IO. We need to read the full page
558 * before to write the changes.
559 */
7e5a5104 560 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
924bd88d 561 if (!uncmem) {
924bd88d
JM
562 ret = -ENOMEM;
563 goto out;
564 }
37b51fdd 565 ret = zram_decompress_page(zram, uncmem, index);
397c6066 566 if (ret)
924bd88d 567 goto out;
924bd88d
JM
568 }
569
b7ca232e 570 zstrm = zcomp_strm_find(zram->comp);
e46e3315 571 locked = true;
ba82fe2e 572 user_mem = kmap_atomic(page);
924bd88d 573
397c6066 574 if (is_partial_io(bvec)) {
924bd88d
JM
575 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
576 bvec->bv_len);
397c6066
NG
577 kunmap_atomic(user_mem);
578 user_mem = NULL;
579 } else {
924bd88d 580 uncmem = user_mem;
397c6066 581 }
924bd88d
JM
582
583 if (page_zero_filled(uncmem)) {
c4065152
WY
584 if (user_mem)
585 kunmap_atomic(user_mem);
f40ac2ae 586 /* Free memory associated with this sector now. */
d2d5e762 587 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 588 zram_free_page(zram, index);
92967471 589 zram_set_flag(meta, index, ZRAM_ZERO);
d2d5e762 590 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 591
90a7806e 592 atomic64_inc(&zram->stats.zero_pages);
924bd88d
JM
593 ret = 0;
594 goto out;
8c921b2b 595 }
306b0c95 596
b7ca232e 597 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
397c6066
NG
598 if (!is_partial_io(bvec)) {
599 kunmap_atomic(user_mem);
600 user_mem = NULL;
601 uncmem = NULL;
602 }
306b0c95 603
b7ca232e 604 if (unlikely(ret)) {
8c921b2b 605 pr_err("Compression failed! err=%d\n", ret);
924bd88d 606 goto out;
8c921b2b 607 }
b7ca232e 608 src = zstrm->buffer;
c8f2f0db 609 if (unlikely(clen > max_zpage_size)) {
c8f2f0db 610 clen = PAGE_SIZE;
397c6066
NG
611 if (is_partial_io(bvec))
612 src = uncmem;
c8f2f0db 613 }
a1dd52af 614
8b3cc3ed 615 handle = zs_malloc(meta->mem_pool, clen);
fd1a30de 616 if (!handle) {
596b3dd4
MR
617 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
618 index, clen);
924bd88d
JM
619 ret = -ENOMEM;
620 goto out;
8c921b2b 621 }
9ada9da9 622
461a8eee
MK
623 alloced_pages = zs_get_total_pages(meta->mem_pool);
624 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
9ada9da9
MK
625 zs_free(meta->mem_pool, handle);
626 ret = -ENOMEM;
627 goto out;
628 }
629
461a8eee
MK
630 update_used_max(zram, alloced_pages);
631
8b3cc3ed 632 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
306b0c95 633
42e99bd9 634 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
397c6066 635 src = kmap_atomic(page);
42e99bd9 636 copy_page(cmem, src);
397c6066 637 kunmap_atomic(src);
42e99bd9
JL
638 } else {
639 memcpy(cmem, src, clen);
640 }
306b0c95 641
b7ca232e
SS
642 zcomp_strm_release(zram->comp, zstrm);
643 locked = false;
8b3cc3ed 644 zs_unmap_object(meta->mem_pool, handle);
fd1a30de 645
f40ac2ae
SS
646 /*
647 * Free memory associated with this sector
648 * before overwriting unused sectors.
649 */
d2d5e762 650 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae
SS
651 zram_free_page(zram, index);
652
8b3cc3ed 653 meta->table[index].handle = handle;
d2d5e762
WY
654 zram_set_obj_size(meta, index, clen);
655 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
306b0c95 656
8c921b2b 657 /* Update stats */
90a7806e
SS
658 atomic64_add(clen, &zram->stats.compr_data_size);
659 atomic64_inc(&zram->stats.pages_stored);
924bd88d 660out:
e46e3315 661 if (locked)
b7ca232e 662 zcomp_strm_release(zram->comp, zstrm);
397c6066
NG
663 if (is_partial_io(bvec))
664 kfree(uncmem);
924bd88d 665 return ret;
8c921b2b
JM
666}
667
668static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
b627cff3 669 int offset, int rw)
8c921b2b 670{
c5bde238 671 int ret;
8c921b2b 672
be257c61
SS
673 if (rw == READ) {
674 atomic64_inc(&zram->stats.num_reads);
b627cff3 675 ret = zram_bvec_read(zram, bvec, index, offset);
be257c61
SS
676 } else {
677 atomic64_inc(&zram->stats.num_writes);
c5bde238 678 ret = zram_bvec_write(zram, bvec, index, offset);
be257c61 679 }
c5bde238 680
0cf1e9d6
CY
681 if (unlikely(ret)) {
682 if (rw == READ)
683 atomic64_inc(&zram->stats.failed_reads);
684 else
685 atomic64_inc(&zram->stats.failed_writes);
686 }
687
c5bde238 688 return ret;
924bd88d
JM
689}
690
f4659d8e
JK
691/*
692 * zram_bio_discard - handler on discard request
693 * @index: physical block index in PAGE_SIZE units
694 * @offset: byte offset within physical block
695 */
696static void zram_bio_discard(struct zram *zram, u32 index,
697 int offset, struct bio *bio)
698{
699 size_t n = bio->bi_iter.bi_size;
d2d5e762 700 struct zram_meta *meta = zram->meta;
f4659d8e
JK
701
702 /*
703 * zram manages data in physical block size units. Because logical block
704 * size isn't identical with physical block size on some arch, we
705 * could get a discard request pointing to a specific offset within a
706 * certain physical block. Although we can handle this request by
707 * reading that physiclal block and decompressing and partially zeroing
708 * and re-compressing and then re-storing it, this isn't reasonable
709 * because our intent with a discard request is to save memory. So
710 * skipping this logical block is appropriate here.
711 */
712 if (offset) {
38515c73 713 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
714 return;
715
38515c73 716 n -= (PAGE_SIZE - offset);
f4659d8e
JK
717 index++;
718 }
719
720 while (n >= PAGE_SIZE) {
d2d5e762 721 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f4659d8e 722 zram_free_page(zram, index);
d2d5e762 723 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
015254da 724 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
725 index++;
726 n -= PAGE_SIZE;
727 }
728}
729
ba6b17d6 730static void zram_reset_device(struct zram *zram)
924bd88d 731{
08eee69f
MK
732 struct zram_meta *meta;
733 struct zcomp *comp;
734 u64 disksize;
735
644d4787 736 down_write(&zram->init_lock);
9ada9da9
MK
737
738 zram->limit_pages = 0;
739
be2d1d56 740 if (!init_done(zram)) {
644d4787 741 up_write(&zram->init_lock);
9b3bb7ab 742 return;
644d4787 743 }
9b3bb7ab 744
08eee69f
MK
745 meta = zram->meta;
746 comp = zram->comp;
747 disksize = zram->disksize;
748 /*
749 * Refcount will go down to 0 eventually and r/w handler
750 * cannot handle further I/O so it will bail out by
751 * check zram_meta_get.
752 */
753 zram_meta_put(zram);
754 /*
755 * We want to free zram_meta in process context to avoid
756 * deadlock between reclaim path and any other locks.
757 */
758 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
759
9b3bb7ab
SS
760 /* Reset stats */
761 memset(&zram->stats, 0, sizeof(zram->stats));
9b3bb7ab 762 zram->disksize = 0;
08eee69f 763 zram->max_comp_streams = 1;
a096cafc
SS
764 set_capacity(zram->disk, 0);
765
644d4787 766 up_write(&zram->init_lock);
08eee69f
MK
767 /* I/O operation under all of CPU are done so let's free */
768 zram_meta_free(meta, disksize);
769 zcomp_destroy(comp);
9b3bb7ab
SS
770}
771
9b3bb7ab
SS
772static ssize_t disksize_store(struct device *dev,
773 struct device_attribute *attr, const char *buf, size_t len)
774{
775 u64 disksize;
d61f98c7 776 struct zcomp *comp;
9b3bb7ab
SS
777 struct zram_meta *meta;
778 struct zram *zram = dev_to_zram(dev);
fcfa8d95 779 int err;
9b3bb7ab
SS
780
781 disksize = memparse(buf, NULL);
782 if (!disksize)
783 return -EINVAL;
784
785 disksize = PAGE_ALIGN(disksize);
786 meta = zram_meta_alloc(disksize);
db5d711e
MK
787 if (!meta)
788 return -ENOMEM;
b67d1ec1 789
d61f98c7 790 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
fcfa8d95 791 if (IS_ERR(comp)) {
d61f98c7
SS
792 pr_info("Cannot initialise %s compressing backend\n",
793 zram->compressor);
fcfa8d95
SS
794 err = PTR_ERR(comp);
795 goto out_free_meta;
d61f98c7
SS
796 }
797
9b3bb7ab 798 down_write(&zram->init_lock);
be2d1d56 799 if (init_done(zram)) {
9b3bb7ab 800 pr_info("Cannot change disksize for initialized device\n");
b7ca232e 801 err = -EBUSY;
fcfa8d95 802 goto out_destroy_comp;
9b3bb7ab
SS
803 }
804
08eee69f
MK
805 init_waitqueue_head(&zram->io_done);
806 atomic_set(&zram->refcount, 1);
b67d1ec1 807 zram->meta = meta;
d61f98c7 808 zram->comp = comp;
9b3bb7ab
SS
809 zram->disksize = disksize;
810 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
9b3bb7ab 811 up_write(&zram->init_lock);
b4c5c609
MK
812
813 /*
814 * Revalidate disk out of the init_lock to avoid lockdep splat.
815 * It's okay because disk's capacity is protected by init_lock
816 * so that revalidate_disk always sees up-to-date capacity.
817 */
818 revalidate_disk(zram->disk);
819
9b3bb7ab 820 return len;
b7ca232e 821
fcfa8d95
SS
822out_destroy_comp:
823 up_write(&zram->init_lock);
824 zcomp_destroy(comp);
825out_free_meta:
1fec1172 826 zram_meta_free(meta, disksize);
b7ca232e 827 return err;
9b3bb7ab
SS
828}
829
830static ssize_t reset_store(struct device *dev,
831 struct device_attribute *attr, const char *buf, size_t len)
832{
833 int ret;
834 unsigned short do_reset;
835 struct zram *zram;
836 struct block_device *bdev;
837
838 zram = dev_to_zram(dev);
839 bdev = bdget_disk(zram->disk, 0);
840
46a51c80
RK
841 if (!bdev)
842 return -ENOMEM;
843
ba6b17d6 844 mutex_lock(&bdev->bd_mutex);
9b3bb7ab 845 /* Do not reset an active device! */
2b269ce6 846 if (bdev->bd_openers) {
1b672224
RK
847 ret = -EBUSY;
848 goto out;
849 }
9b3bb7ab
SS
850
851 ret = kstrtou16(buf, 10, &do_reset);
852 if (ret)
1b672224 853 goto out;
9b3bb7ab 854
1b672224
RK
855 if (!do_reset) {
856 ret = -EINVAL;
857 goto out;
858 }
9b3bb7ab
SS
859
860 /* Make sure all pending I/O is finished */
46a51c80 861 fsync_bdev(bdev);
ba6b17d6 862 zram_reset_device(zram);
ba6b17d6
SS
863
864 mutex_unlock(&bdev->bd_mutex);
865 revalidate_disk(zram->disk);
1b672224 866 bdput(bdev);
9b3bb7ab 867
9b3bb7ab 868 return len;
1b672224
RK
869
870out:
ba6b17d6 871 mutex_unlock(&bdev->bd_mutex);
1b672224
RK
872 bdput(bdev);
873 return ret;
8c921b2b
JM
874}
875
be257c61 876static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 877{
b627cff3 878 int offset, rw;
8c921b2b 879 u32 index;
7988613b
KO
880 struct bio_vec bvec;
881 struct bvec_iter iter;
8c921b2b 882
4f024f37
KO
883 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
884 offset = (bio->bi_iter.bi_sector &
885 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 886
f4659d8e
JK
887 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
888 zram_bio_discard(zram, index, offset, bio);
889 bio_endio(bio, 0);
890 return;
891 }
892
b627cff3 893 rw = bio_data_dir(bio);
7988613b 894 bio_for_each_segment(bvec, bio, iter) {
924bd88d
JM
895 int max_transfer_size = PAGE_SIZE - offset;
896
7988613b 897 if (bvec.bv_len > max_transfer_size) {
924bd88d
JM
898 /*
899 * zram_bvec_rw() can only make operation on a single
900 * zram page. Split the bio vector.
901 */
902 struct bio_vec bv;
903
7988613b 904 bv.bv_page = bvec.bv_page;
924bd88d 905 bv.bv_len = max_transfer_size;
7988613b 906 bv.bv_offset = bvec.bv_offset;
924bd88d 907
b627cff3 908 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
924bd88d
JM
909 goto out;
910
7988613b 911 bv.bv_len = bvec.bv_len - max_transfer_size;
924bd88d 912 bv.bv_offset += max_transfer_size;
b627cff3 913 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
924bd88d
JM
914 goto out;
915 } else
b627cff3 916 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
924bd88d
JM
917 goto out;
918
7988613b 919 update_position(&index, &offset, &bvec);
a1dd52af 920 }
306b0c95
NG
921
922 set_bit(BIO_UPTODATE, &bio->bi_flags);
923 bio_endio(bio, 0);
7d7854b4 924 return;
306b0c95
NG
925
926out:
306b0c95 927 bio_io_error(bio);
306b0c95
NG
928}
929
306b0c95 930/*
f1e3cfff 931 * Handler function for all zram I/O requests.
306b0c95 932 */
5a7bbad2 933static void zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 934{
f1e3cfff 935 struct zram *zram = queue->queuedata;
306b0c95 936
08eee69f 937 if (unlikely(!zram_meta_get(zram)))
3de738cd 938 goto error;
0900beae 939
54850e73 940 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
941 bio->bi_iter.bi_size)) {
da5cc7d3 942 atomic64_inc(&zram->stats.invalid_io);
08eee69f 943 goto put_zram;
6642a67c
JM
944 }
945
be257c61 946 __zram_make_request(zram, bio);
08eee69f 947 zram_meta_put(zram);
b4fdcb02 948 return;
08eee69f
MK
949put_zram:
950 zram_meta_put(zram);
0900beae
JM
951error:
952 bio_io_error(bio);
306b0c95
NG
953}
954
2ccbec05
NG
955static void zram_slot_free_notify(struct block_device *bdev,
956 unsigned long index)
107c161b 957{
f1e3cfff 958 struct zram *zram;
f614a9f4 959 struct zram_meta *meta;
107c161b 960
f1e3cfff 961 zram = bdev->bd_disk->private_data;
f614a9f4 962 meta = zram->meta;
a0c516cb 963
d2d5e762 964 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 965 zram_free_page(zram, index);
d2d5e762 966 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 967 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
968}
969
8c7f0102 970static int zram_rw_page(struct block_device *bdev, sector_t sector,
971 struct page *page, int rw)
972{
08eee69f 973 int offset, err = -EIO;
8c7f0102 974 u32 index;
975 struct zram *zram;
976 struct bio_vec bv;
977
978 zram = bdev->bd_disk->private_data;
08eee69f
MK
979 if (unlikely(!zram_meta_get(zram)))
980 goto out;
981
8c7f0102 982 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
983 atomic64_inc(&zram->stats.invalid_io);
08eee69f
MK
984 err = -EINVAL;
985 goto put_zram;
8c7f0102 986 }
987
988 index = sector >> SECTORS_PER_PAGE_SHIFT;
989 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
990
991 bv.bv_page = page;
992 bv.bv_len = PAGE_SIZE;
993 bv.bv_offset = 0;
994
995 err = zram_bvec_rw(zram, &bv, index, offset, rw);
08eee69f
MK
996put_zram:
997 zram_meta_put(zram);
998out:
8c7f0102 999 /*
1000 * If I/O fails, just return error(ie, non-zero) without
1001 * calling page_endio.
1002 * It causes resubmit the I/O with bio request by upper functions
1003 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1004 * bio->bi_end_io does things to handle the error
1005 * (e.g., SetPageError, set_page_dirty and extra works).
1006 */
1007 if (err == 0)
1008 page_endio(page, rw, 0);
1009 return err;
1010}
1011
f1e3cfff 1012static const struct block_device_operations zram_devops = {
f1e3cfff 1013 .swap_slot_free_notify = zram_slot_free_notify,
8c7f0102 1014 .rw_page = zram_rw_page,
107c161b 1015 .owner = THIS_MODULE
306b0c95
NG
1016};
1017
083914ea
GM
1018static DEVICE_ATTR_RW(disksize);
1019static DEVICE_ATTR_RO(initstate);
1020static DEVICE_ATTR_WO(reset);
1021static DEVICE_ATTR_RO(orig_data_size);
1022static DEVICE_ATTR_RO(mem_used_total);
1023static DEVICE_ATTR_RW(mem_limit);
1024static DEVICE_ATTR_RW(mem_used_max);
1025static DEVICE_ATTR_RW(max_comp_streams);
1026static DEVICE_ATTR_RW(comp_algorithm);
9b3bb7ab 1027
a68eb3b6
SS
1028ZRAM_ATTR_RO(num_reads);
1029ZRAM_ATTR_RO(num_writes);
64447249
SS
1030ZRAM_ATTR_RO(failed_reads);
1031ZRAM_ATTR_RO(failed_writes);
a68eb3b6
SS
1032ZRAM_ATTR_RO(invalid_io);
1033ZRAM_ATTR_RO(notify_free);
1034ZRAM_ATTR_RO(zero_pages);
1035ZRAM_ATTR_RO(compr_data_size);
1036
9b3bb7ab
SS
1037static struct attribute *zram_disk_attrs[] = {
1038 &dev_attr_disksize.attr,
1039 &dev_attr_initstate.attr,
1040 &dev_attr_reset.attr,
1041 &dev_attr_num_reads.attr,
1042 &dev_attr_num_writes.attr,
64447249
SS
1043 &dev_attr_failed_reads.attr,
1044 &dev_attr_failed_writes.attr,
9b3bb7ab
SS
1045 &dev_attr_invalid_io.attr,
1046 &dev_attr_notify_free.attr,
1047 &dev_attr_zero_pages.attr,
1048 &dev_attr_orig_data_size.attr,
1049 &dev_attr_compr_data_size.attr,
1050 &dev_attr_mem_used_total.attr,
9ada9da9 1051 &dev_attr_mem_limit.attr,
461a8eee 1052 &dev_attr_mem_used_max.attr,
beca3ec7 1053 &dev_attr_max_comp_streams.attr,
e46b8a03 1054 &dev_attr_comp_algorithm.attr,
9b3bb7ab
SS
1055 NULL,
1056};
1057
1058static struct attribute_group zram_disk_attr_group = {
1059 .attrs = zram_disk_attrs,
1060};
1061
f1e3cfff 1062static int create_device(struct zram *zram, int device_id)
306b0c95 1063{
39a9b8ac 1064 int ret = -ENOMEM;
de1a21a0 1065
0900beae 1066 init_rwsem(&zram->init_lock);
306b0c95 1067
f1e3cfff
NG
1068 zram->queue = blk_alloc_queue(GFP_KERNEL);
1069 if (!zram->queue) {
306b0c95
NG
1070 pr_err("Error allocating disk queue for device %d\n",
1071 device_id);
de1a21a0 1072 goto out;
306b0c95
NG
1073 }
1074
f1e3cfff
NG
1075 blk_queue_make_request(zram->queue, zram_make_request);
1076 zram->queue->queuedata = zram;
306b0c95
NG
1077
1078 /* gendisk structure */
f1e3cfff
NG
1079 zram->disk = alloc_disk(1);
1080 if (!zram->disk) {
94b8435f 1081 pr_warn("Error allocating disk structure for device %d\n",
306b0c95 1082 device_id);
39a9b8ac 1083 goto out_free_queue;
306b0c95
NG
1084 }
1085
f1e3cfff
NG
1086 zram->disk->major = zram_major;
1087 zram->disk->first_minor = device_id;
1088 zram->disk->fops = &zram_devops;
1089 zram->disk->queue = zram->queue;
1090 zram->disk->private_data = zram;
1091 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1092
33863c21 1093 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1094 set_capacity(zram->disk, 0);
b67d1ec1
SS
1095 /* zram devices sort of resembles non-rotational disks */
1096 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1097 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1098 /*
1099 * To ensure that we always get PAGE_SIZE aligned
1100 * and n*PAGE_SIZED sized I/O requests.
1101 */
f1e3cfff 1102 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1103 blk_queue_logical_block_size(zram->disk->queue,
1104 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1105 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1106 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e
JK
1107 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1108 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1109 /*
1110 * zram_bio_discard() will clear all logical blocks if logical block
1111 * size is identical with physical block size(PAGE_SIZE). But if it is
1112 * different, we will skip discarding some parts of logical blocks in
1113 * the part of the request range which isn't aligned to physical block
1114 * size. So we can't ensure that all discarded logical blocks are
1115 * zeroed.
1116 */
1117 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1118 zram->disk->queue->limits.discard_zeroes_data = 1;
1119 else
1120 zram->disk->queue->limits.discard_zeroes_data = 0;
1121 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
5d83d5a0 1122
f1e3cfff 1123 add_disk(zram->disk);
306b0c95 1124
33863c21
NG
1125 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1126 &zram_disk_attr_group);
1127 if (ret < 0) {
94b8435f 1128 pr_warn("Error creating sysfs group");
39a9b8ac 1129 goto out_free_disk;
33863c21 1130 }
e46b8a03 1131 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
be2d1d56 1132 zram->meta = NULL;
beca3ec7 1133 zram->max_comp_streams = 1;
39a9b8ac 1134 return 0;
de1a21a0 1135
39a9b8ac
JL
1136out_free_disk:
1137 del_gendisk(zram->disk);
1138 put_disk(zram->disk);
1139out_free_queue:
1140 blk_cleanup_queue(zram->queue);
de1a21a0
NG
1141out:
1142 return ret;
306b0c95
NG
1143}
1144
a096cafc 1145static void destroy_devices(unsigned int nr)
306b0c95 1146{
a096cafc
SS
1147 struct zram *zram;
1148 unsigned int i;
33863c21 1149
a096cafc
SS
1150 for (i = 0; i < nr; i++) {
1151 zram = &zram_devices[i];
1152 /*
1153 * Remove sysfs first, so no one will perform a disksize
1154 * store while we destroy the devices
1155 */
1156 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1157 &zram_disk_attr_group);
306b0c95 1158
a096cafc
SS
1159 zram_reset_device(zram);
1160
1161 del_gendisk(zram->disk);
1162 put_disk(zram->disk);
1163
1164 blk_cleanup_queue(zram->queue);
1165 }
1166
1167 kfree(zram_devices);
1168 unregister_blkdev(zram_major, "zram");
1169 pr_info("Destroyed %u device(s)\n", nr);
306b0c95
NG
1170}
1171
f1e3cfff 1172static int __init zram_init(void)
306b0c95 1173{
de1a21a0 1174 int ret, dev_id;
306b0c95 1175
5fa5a901 1176 if (num_devices > max_num_devices) {
94b8435f 1177 pr_warn("Invalid value for num_devices: %u\n",
5fa5a901 1178 num_devices);
a096cafc 1179 return -EINVAL;
306b0c95
NG
1180 }
1181
f1e3cfff
NG
1182 zram_major = register_blkdev(0, "zram");
1183 if (zram_major <= 0) {
94b8435f 1184 pr_warn("Unable to get major number\n");
a096cafc 1185 return -EBUSY;
306b0c95
NG
1186 }
1187
306b0c95 1188 /* Allocate the device array and initialize each one */
5fa5a901 1189 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
43801f6e 1190 if (!zram_devices) {
a096cafc
SS
1191 unregister_blkdev(zram_major, "zram");
1192 return -ENOMEM;
de1a21a0 1193 }
306b0c95 1194
5fa5a901 1195 for (dev_id = 0; dev_id < num_devices; dev_id++) {
43801f6e 1196 ret = create_device(&zram_devices[dev_id], dev_id);
de1a21a0 1197 if (ret)
a096cafc 1198 goto out_error;
de1a21a0
NG
1199 }
1200
a096cafc 1201 pr_info("Created %u device(s)\n", num_devices);
306b0c95 1202 return 0;
de1a21a0 1203
a096cafc
SS
1204out_error:
1205 destroy_devices(dev_id);
306b0c95
NG
1206 return ret;
1207}
1208
f1e3cfff 1209static void __exit zram_exit(void)
306b0c95 1210{
a096cafc 1211 destroy_devices(num_devices);
306b0c95
NG
1212}
1213
f1e3cfff
NG
1214module_init(zram_init);
1215module_exit(zram_exit);
306b0c95 1216
9b3bb7ab
SS
1217module_param(num_devices, uint, 0);
1218MODULE_PARM_DESC(num_devices, "Number of zram devices");
1219
306b0c95
NG
1220MODULE_LICENSE("Dual BSD/GPL");
1221MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1222MODULE_DESCRIPTION("Compressed RAM Block Device");