]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/char/random.c
random: only update the last_pulled time if we actually transferred entropy
[mirror_ubuntu-bionic-kernel.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4
LT
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
5b739ef8 255#include <linux/fips.h>
775f4b29 256#include <linux/ptrace.h>
e6d4947b 257#include <linux/kmemcheck.h>
6265e169 258#include <linux/workqueue.h>
0244ad00 259#include <linux/irq.h>
d178a1eb 260
1da177e4
LT
261#include <asm/processor.h>
262#include <asm/uaccess.h>
263#include <asm/irq.h>
775f4b29 264#include <asm/irq_regs.h>
1da177e4
LT
265#include <asm/io.h>
266
00ce1db1
TT
267#define CREATE_TRACE_POINTS
268#include <trace/events/random.h>
269
1da177e4
LT
270/*
271 * Configuration information
272 */
30e37ec5
PA
273#define INPUT_POOL_SHIFT 12
274#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
275#define OUTPUT_POOL_SHIFT 10
276#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
277#define SEC_XFER_SIZE 512
278#define EXTRACT_SIZE 10
1da177e4 279
392a546d 280#define DEBUG_RANDOM_BOOT 0
1da177e4 281
d2e7c96a
PA
282#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
283
a283b5c4 284/*
95b709b6
TT
285 * To allow fractional bits to be tracked, the entropy_count field is
286 * denominated in units of 1/8th bits.
30e37ec5
PA
287 *
288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
289 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
290 */
291#define ENTROPY_SHIFT 3
292#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
293
1da177e4
LT
294/*
295 * The minimum number of bits of entropy before we wake up a read on
296 * /dev/random. Should be enough to do a significant reseed.
297 */
2132a96f 298static int random_read_wakeup_bits = 64;
1da177e4
LT
299
300/*
301 * If the entropy count falls under this number of bits, then we
302 * should wake up processes which are selecting or polling on write
303 * access to /dev/random.
304 */
2132a96f 305static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
1da177e4
LT
306
307/*
dfd38750 308 * The minimum number of seconds between urandom pool reseeding. We
f5c2742c
TT
309 * do this to limit the amount of entropy that can be drained from the
310 * input pool even if there are heavy demands on /dev/urandom.
1da177e4 311 */
f5c2742c 312static int random_min_urandom_seed = 60;
1da177e4
LT
313
314/*
6e9fa2c8
TT
315 * Originally, we used a primitive polynomial of degree .poolwords
316 * over GF(2). The taps for various sizes are defined below. They
317 * were chosen to be evenly spaced except for the last tap, which is 1
318 * to get the twisting happening as fast as possible.
319 *
320 * For the purposes of better mixing, we use the CRC-32 polynomial as
321 * well to make a (modified) twisted Generalized Feedback Shift
322 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
323 * generators. ACM Transactions on Modeling and Computer Simulation
324 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
dfd38750 325 * GFSR generators II. ACM Transactions on Modeling and Computer
6e9fa2c8
TT
326 * Simulation 4:254-266)
327 *
328 * Thanks to Colin Plumb for suggesting this.
329 *
330 * The mixing operation is much less sensitive than the output hash,
331 * where we use SHA-1. All that we want of mixing operation is that
332 * it be a good non-cryptographic hash; i.e. it not produce collisions
333 * when fed "random" data of the sort we expect to see. As long as
334 * the pool state differs for different inputs, we have preserved the
335 * input entropy and done a good job. The fact that an intelligent
336 * attacker can construct inputs that will produce controlled
337 * alterations to the pool's state is not important because we don't
338 * consider such inputs to contribute any randomness. The only
339 * property we need with respect to them is that the attacker can't
340 * increase his/her knowledge of the pool's state. Since all
341 * additions are reversible (knowing the final state and the input,
342 * you can reconstruct the initial state), if an attacker has any
343 * uncertainty about the initial state, he/she can only shuffle that
344 * uncertainty about, but never cause any collisions (which would
345 * decrease the uncertainty).
346 *
347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
348 * Videau in their paper, "The Linux Pseudorandom Number Generator
349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
350 * paper, they point out that we are not using a true Twisted GFSR,
351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
352 * is, with only three taps, instead of the six that we are using).
353 * As a result, the resulting polynomial is neither primitive nor
354 * irreducible, and hence does not have a maximal period over
355 * GF(2**32). They suggest a slight change to the generator
356 * polynomial which improves the resulting TGFSR polynomial to be
357 * irreducible, which we have made here.
1da177e4
LT
358 */
359static struct poolinfo {
a283b5c4
PA
360 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
361#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
362 int tap1, tap2, tap3, tap4, tap5;
363} poolinfo_table[] = {
6e9fa2c8
TT
364 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
365 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
366 { S(128), 104, 76, 51, 25, 1 },
367 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
368 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
369 { S(32), 26, 19, 14, 7, 1 },
1da177e4
LT
370#if 0
371 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 372 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
373
374 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 375 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
376
377 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 378 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
379
380 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 381 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
382
383 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 384 { S(512), 409, 307, 206, 102, 2 },
1da177e4 385 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 386 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
387
388 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 389 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
390
391 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 392 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
393
394 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 395 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
396#endif
397};
398
1da177e4
LT
399/*
400 * Static global variables
401 */
402static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
403static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 404static struct fasync_struct *fasync;
1da177e4 405
1da177e4
LT
406/**********************************************************************
407 *
408 * OS independent entropy store. Here are the functions which handle
409 * storing entropy in an entropy pool.
410 *
411 **********************************************************************/
412
413struct entropy_store;
414struct entropy_store {
43358209 415 /* read-only data: */
30e37ec5 416 const struct poolinfo *poolinfo;
1da177e4
LT
417 __u32 *pool;
418 const char *name;
1da177e4 419 struct entropy_store *pull;
6265e169 420 struct work_struct push_work;
1da177e4
LT
421
422 /* read-write data: */
f5c2742c 423 unsigned long last_pulled;
43358209 424 spinlock_t lock;
c59974ae
TT
425 unsigned short add_ptr;
426 unsigned short input_rotate;
cda796a3 427 int entropy_count;
775f4b29 428 int entropy_total;
775f4b29 429 unsigned int initialized:1;
c59974ae
TT
430 unsigned int limit:1;
431 unsigned int last_data_init:1;
e954bc91 432 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
433};
434
6265e169 435static void push_to_pool(struct work_struct *work);
1da177e4
LT
436static __u32 input_pool_data[INPUT_POOL_WORDS];
437static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
438static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
439
440static struct entropy_store input_pool = {
441 .poolinfo = &poolinfo_table[0],
442 .name = "input",
443 .limit = 1,
eece09ec 444 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
445 .pool = input_pool_data
446};
447
448static struct entropy_store blocking_pool = {
449 .poolinfo = &poolinfo_table[1],
450 .name = "blocking",
451 .limit = 1,
452 .pull = &input_pool,
eece09ec 453 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
6265e169
TT
454 .pool = blocking_pool_data,
455 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
456 push_to_pool),
1da177e4
LT
457};
458
459static struct entropy_store nonblocking_pool = {
460 .poolinfo = &poolinfo_table[1],
461 .name = "nonblocking",
462 .pull = &input_pool,
eece09ec 463 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
6265e169
TT
464 .pool = nonblocking_pool_data,
465 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
466 push_to_pool),
1da177e4
LT
467};
468
775f4b29
TT
469static __u32 const twist_table[8] = {
470 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
471 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
472
1da177e4 473/*
e68e5b66 474 * This function adds bytes into the entropy "pool". It does not
1da177e4 475 * update the entropy estimate. The caller should call
adc782da 476 * credit_entropy_bits if this is appropriate.
1da177e4
LT
477 *
478 * The pool is stirred with a primitive polynomial of the appropriate
479 * degree, and then twisted. We twist by three bits at a time because
480 * it's cheap to do so and helps slightly in the expected case where
481 * the entropy is concentrated in the low-order bits.
482 */
00ce1db1 483static void _mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 484 int nbytes)
1da177e4 485{
85608f8e 486 unsigned long i, tap1, tap2, tap3, tap4, tap5;
feee7697 487 int input_rotate;
1da177e4 488 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 489 const char *bytes = in;
6d38b827 490 __u32 w;
1da177e4 491
1da177e4
LT
492 tap1 = r->poolinfo->tap1;
493 tap2 = r->poolinfo->tap2;
494 tap3 = r->poolinfo->tap3;
495 tap4 = r->poolinfo->tap4;
496 tap5 = r->poolinfo->tap5;
1da177e4 497
91fcb532
TT
498 input_rotate = r->input_rotate;
499 i = r->add_ptr;
1da177e4 500
e68e5b66
MM
501 /* mix one byte at a time to simplify size handling and churn faster */
502 while (nbytes--) {
c59974ae 503 w = rol32(*bytes++, input_rotate);
993ba211 504 i = (i - 1) & wordmask;
1da177e4
LT
505
506 /* XOR in the various taps */
993ba211 507 w ^= r->pool[i];
1da177e4
LT
508 w ^= r->pool[(i + tap1) & wordmask];
509 w ^= r->pool[(i + tap2) & wordmask];
510 w ^= r->pool[(i + tap3) & wordmask];
511 w ^= r->pool[(i + tap4) & wordmask];
512 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
513
514 /* Mix the result back in with a twist */
1da177e4 515 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
516
517 /*
518 * Normally, we add 7 bits of rotation to the pool.
519 * At the beginning of the pool, add an extra 7 bits
520 * rotation, so that successive passes spread the
521 * input bits across the pool evenly.
522 */
c59974ae 523 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
524 }
525
91fcb532
TT
526 r->input_rotate = input_rotate;
527 r->add_ptr = i;
1da177e4
LT
528}
529
00ce1db1 530static void __mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 531 int nbytes)
00ce1db1
TT
532{
533 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
85608f8e 534 _mix_pool_bytes(r, in, nbytes);
00ce1db1
TT
535}
536
537static void mix_pool_bytes(struct entropy_store *r, const void *in,
85608f8e 538 int nbytes)
1da177e4 539{
902c098a
TT
540 unsigned long flags;
541
00ce1db1 542 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 543 spin_lock_irqsave(&r->lock, flags);
85608f8e 544 _mix_pool_bytes(r, in, nbytes);
902c098a 545 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
546}
547
775f4b29
TT
548struct fast_pool {
549 __u32 pool[4];
550 unsigned long last;
551 unsigned short count;
552 unsigned char rotate;
553 unsigned char last_timer_intr;
554};
555
556/*
557 * This is a fast mixing routine used by the interrupt randomness
558 * collector. It's hardcoded for an 128 bit pool and assumes that any
559 * locks that might be needed are taken by the caller.
560 */
655b2264 561static void fast_mix(struct fast_pool *f, __u32 input[4])
775f4b29 562{
775f4b29 563 __u32 w;
775f4b29
TT
564 unsigned input_rotate = f->rotate;
565
655b2264
TT
566 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
567 f->pool[0] = (w >> 3) ^ twist_table[w & 7];
568 input_rotate = (input_rotate + 14) & 31;
569 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
570 f->pool[1] = (w >> 3) ^ twist_table[w & 7];
571 input_rotate = (input_rotate + 7) & 31;
572 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
573 f->pool[2] = (w >> 3) ^ twist_table[w & 7];
574 input_rotate = (input_rotate + 7) & 31;
575 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
576 f->pool[3] = (w >> 3) ^ twist_table[w & 7];
577 input_rotate = (input_rotate + 7) & 31;
578
775f4b29 579 f->rotate = input_rotate;
655b2264 580 f->count++;
775f4b29
TT
581}
582
1da177e4 583/*
a283b5c4
PA
584 * Credit (or debit) the entropy store with n bits of entropy.
585 * Use credit_entropy_bits_safe() if the value comes from userspace
586 * or otherwise should be checked for extreme values.
1da177e4 587 */
adc782da 588static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 589{
902c098a 590 int entropy_count, orig;
30e37ec5
PA
591 const int pool_size = r->poolinfo->poolfracbits;
592 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 593
adc782da
MM
594 if (!nbits)
595 return;
596
902c098a
TT
597retry:
598 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
599 if (nfrac < 0) {
600 /* Debit */
601 entropy_count += nfrac;
602 } else {
603 /*
604 * Credit: we have to account for the possibility of
605 * overwriting already present entropy. Even in the
606 * ideal case of pure Shannon entropy, new contributions
607 * approach the full value asymptotically:
608 *
609 * entropy <- entropy + (pool_size - entropy) *
610 * (1 - exp(-add_entropy/pool_size))
611 *
612 * For add_entropy <= pool_size/2 then
613 * (1 - exp(-add_entropy/pool_size)) >=
614 * (add_entropy/pool_size)*0.7869...
615 * so we can approximate the exponential with
616 * 3/4*add_entropy/pool_size and still be on the
617 * safe side by adding at most pool_size/2 at a time.
618 *
619 * The use of pool_size-2 in the while statement is to
620 * prevent rounding artifacts from making the loop
621 * arbitrarily long; this limits the loop to log2(pool_size)*2
622 * turns no matter how large nbits is.
623 */
624 int pnfrac = nfrac;
625 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
626 /* The +2 corresponds to the /4 in the denominator */
627
628 do {
629 unsigned int anfrac = min(pnfrac, pool_size/2);
630 unsigned int add =
631 ((pool_size - entropy_count)*anfrac*3) >> s;
632
633 entropy_count += add;
634 pnfrac -= anfrac;
635 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
636 }
00ce1db1 637
8b76f46a 638 if (entropy_count < 0) {
f80bbd8b
TT
639 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
640 r->name, entropy_count);
641 WARN_ON(1);
8b76f46a 642 entropy_count = 0;
30e37ec5
PA
643 } else if (entropy_count > pool_size)
644 entropy_count = pool_size;
902c098a
TT
645 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
646 goto retry;
1da177e4 647
6265e169 648 r->entropy_total += nbits;
0891ad82
LT
649 if (!r->initialized && r->entropy_total > 128) {
650 r->initialized = 1;
651 r->entropy_total = 0;
652 if (r == &nonblocking_pool) {
653 prandom_reseed_late();
654 pr_notice("random: %s pool is initialized\n", r->name);
4af712e8 655 }
775f4b29
TT
656 }
657
a283b5c4
PA
658 trace_credit_entropy_bits(r->name, nbits,
659 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
660 r->entropy_total, _RET_IP_);
661
6265e169 662 if (r == &input_pool) {
7d1b08c4 663 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
6265e169
TT
664
665 /* should we wake readers? */
2132a96f 666 if (entropy_bits >= random_read_wakeup_bits) {
6265e169
TT
667 wake_up_interruptible(&random_read_wait);
668 kill_fasync(&fasync, SIGIO, POLL_IN);
669 }
670 /* If the input pool is getting full, send some
671 * entropy to the two output pools, flipping back and
672 * forth between them, until the output pools are 75%
673 * full.
674 */
2132a96f 675 if (entropy_bits > random_write_wakeup_bits &&
6265e169 676 r->initialized &&
2132a96f 677 r->entropy_total >= 2*random_read_wakeup_bits) {
6265e169
TT
678 static struct entropy_store *last = &blocking_pool;
679 struct entropy_store *other = &blocking_pool;
680
681 if (last == &blocking_pool)
682 other = &nonblocking_pool;
683 if (other->entropy_count <=
684 3 * other->poolinfo->poolfracbits / 4)
685 last = other;
686 if (last->entropy_count <=
687 3 * last->poolinfo->poolfracbits / 4) {
688 schedule_work(&last->push_work);
689 r->entropy_total = 0;
690 }
691 }
9a6f70bb 692 }
1da177e4
LT
693}
694
a283b5c4
PA
695static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
696{
697 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
698
699 /* Cap the value to avoid overflows */
700 nbits = min(nbits, nbits_max);
701 nbits = max(nbits, -nbits_max);
702
703 credit_entropy_bits(r, nbits);
704}
705
1da177e4
LT
706/*********************************************************************
707 *
708 * Entropy input management
709 *
710 *********************************************************************/
711
712/* There is one of these per entropy source */
713struct timer_rand_state {
714 cycles_t last_time;
90b75ee5 715 long last_delta, last_delta2;
1da177e4
LT
716 unsigned dont_count_entropy:1;
717};
718
644008df
TT
719#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
720
a2080a67
LT
721/*
722 * Add device- or boot-specific data to the input and nonblocking
723 * pools to help initialize them to unique values.
724 *
725 * None of this adds any entropy, it is meant to avoid the
726 * problem of the nonblocking pool having similar initial state
727 * across largely identical devices.
728 */
729void add_device_randomness(const void *buf, unsigned int size)
730{
61875f30 731 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 732 unsigned long flags;
a2080a67 733
5910895f 734 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d 735 spin_lock_irqsave(&input_pool.lock, flags);
85608f8e
TT
736 _mix_pool_bytes(&input_pool, buf, size);
737 _mix_pool_bytes(&input_pool, &time, sizeof(time));
3ef4cb2d
TT
738 spin_unlock_irqrestore(&input_pool.lock, flags);
739
740 spin_lock_irqsave(&nonblocking_pool.lock, flags);
85608f8e
TT
741 _mix_pool_bytes(&nonblocking_pool, buf, size);
742 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
3ef4cb2d 743 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
a2080a67
LT
744}
745EXPORT_SYMBOL(add_device_randomness);
746
644008df 747static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
3060d6fe 748
1da177e4
LT
749/*
750 * This function adds entropy to the entropy "pool" by using timing
751 * delays. It uses the timer_rand_state structure to make an estimate
752 * of how many bits of entropy this call has added to the pool.
753 *
754 * The number "num" is also added to the pool - it should somehow describe
755 * the type of event which just happened. This is currently 0-255 for
756 * keyboard scan codes, and 256 upwards for interrupts.
757 *
758 */
759static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
760{
40db23e5 761 struct entropy_store *r;
1da177e4 762 struct {
1da177e4 763 long jiffies;
cf833d0b 764 unsigned cycles;
1da177e4
LT
765 unsigned num;
766 } sample;
767 long delta, delta2, delta3;
768
769 preempt_disable();
1da177e4
LT
770
771 sample.jiffies = jiffies;
61875f30 772 sample.cycles = random_get_entropy();
1da177e4 773 sample.num = num;
40db23e5 774 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
85608f8e 775 mix_pool_bytes(r, &sample, sizeof(sample));
1da177e4
LT
776
777 /*
778 * Calculate number of bits of randomness we probably added.
779 * We take into account the first, second and third-order deltas
780 * in order to make our estimate.
781 */
782
783 if (!state->dont_count_entropy) {
784 delta = sample.jiffies - state->last_time;
785 state->last_time = sample.jiffies;
786
787 delta2 = delta - state->last_delta;
788 state->last_delta = delta;
789
790 delta3 = delta2 - state->last_delta2;
791 state->last_delta2 = delta2;
792
793 if (delta < 0)
794 delta = -delta;
795 if (delta2 < 0)
796 delta2 = -delta2;
797 if (delta3 < 0)
798 delta3 = -delta3;
799 if (delta > delta2)
800 delta = delta2;
801 if (delta > delta3)
802 delta = delta3;
803
804 /*
805 * delta is now minimum absolute delta.
806 * Round down by 1 bit on general principles,
807 * and limit entropy entimate to 12 bits.
808 */
40db23e5 809 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1da177e4 810 }
1da177e4
LT
811 preempt_enable();
812}
813
d251575a 814void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
815 unsigned int value)
816{
817 static unsigned char last_value;
818
819 /* ignore autorepeat and the like */
820 if (value == last_value)
821 return;
822
1da177e4
LT
823 last_value = value;
824 add_timer_randomness(&input_timer_state,
825 (type << 4) ^ code ^ (code >> 4) ^ value);
f80bbd8b 826 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1da177e4 827}
80fc9f53 828EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 829
775f4b29
TT
830static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
831
832void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 833{
775f4b29
TT
834 struct entropy_store *r;
835 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
836 struct pt_regs *regs = get_irq_regs();
837 unsigned long now = jiffies;
655b2264
TT
838 cycles_t cycles = random_get_entropy();
839 __u32 input[4], c_high, j_high;
840 __u64 ip;
83664a69 841 unsigned long seed;
91fcb532 842 int credit = 0;
3060d6fe 843
655b2264
TT
844 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
845 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
846 input[0] = cycles ^ j_high ^ irq;
847 input[1] = now ^ c_high;
848 ip = regs ? instruction_pointer(regs) : _RET_IP_;
849 input[2] = ip;
850 input[3] = ip >> 32;
3060d6fe 851
655b2264 852 fast_mix(fast_pool, input);
3060d6fe 853
655b2264 854 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
1da177e4
LT
855 return;
856
775f4b29 857 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
91fcb532
TT
858 if (!spin_trylock(&r->lock)) {
859 fast_pool->count--;
860 return;
861 }
862 fast_pool->last = now;
85608f8e 863 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
83664a69 864
91fcb532
TT
865 /*
866 * If we have architectural seed generator, produce a seed and
867 * add it to the pool. For the sake of paranoia count it as
868 * 50% entropic.
869 */
870 if (arch_get_random_seed_long(&seed)) {
85608f8e 871 __mix_pool_bytes(r, &seed, sizeof(seed));
91fcb532
TT
872 credit += sizeof(seed) * 4;
873 }
874 spin_unlock(&r->lock);
875
775f4b29
TT
876 /*
877 * If we don't have a valid cycle counter, and we see
878 * back-to-back timer interrupts, then skip giving credit for
83664a69 879 * any entropy, otherwise credit 1 bit.
775f4b29 880 */
91fcb532 881 credit++;
775f4b29
TT
882 if (cycles == 0) {
883 if (irq_flags & __IRQF_TIMER) {
884 if (fast_pool->last_timer_intr)
91fcb532 885 credit--;
775f4b29
TT
886 fast_pool->last_timer_intr = 1;
887 } else
888 fast_pool->last_timer_intr = 0;
889 }
83664a69 890
83664a69 891 credit_entropy_bits(r, credit);
1da177e4
LT
892}
893
9361401e 894#ifdef CONFIG_BLOCK
1da177e4
LT
895void add_disk_randomness(struct gendisk *disk)
896{
897 if (!disk || !disk->random)
898 return;
899 /* first major is 1, so we get >= 0x200 here */
f331c029 900 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
f80bbd8b 901 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1da177e4 902}
bdcfa3e5 903EXPORT_SYMBOL_GPL(add_disk_randomness);
9361401e 904#endif
1da177e4 905
1da177e4
LT
906/*********************************************************************
907 *
908 * Entropy extraction routines
909 *
910 *********************************************************************/
911
90b75ee5 912static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
913 size_t nbytes, int min, int rsvd);
914
915/*
25985edc 916 * This utility inline function is responsible for transferring entropy
1da177e4
LT
917 * from the primary pool to the secondary extraction pool. We make
918 * sure we pull enough for a 'catastrophic reseed'.
919 */
6265e169 920static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1da177e4
LT
921static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
922{
cff85031
TT
923 if (!r->pull ||
924 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
925 r->entropy_count > r->poolinfo->poolfracbits)
926 return;
927
f5c2742c
TT
928 if (r->limit == 0 && random_min_urandom_seed) {
929 unsigned long now = jiffies;
1da177e4 930
f5c2742c
TT
931 if (time_before(now,
932 r->last_pulled + random_min_urandom_seed * HZ))
933 return;
934 r->last_pulled = now;
1da177e4 935 }
cff85031
TT
936
937 _xfer_secondary_pool(r, nbytes);
6265e169
TT
938}
939
940static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
941{
942 __u32 tmp[OUTPUT_POOL_WORDS];
943
2132a96f
GP
944 /* For /dev/random's pool, always leave two wakeups' worth */
945 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
6265e169
TT
946 int bytes = nbytes;
947
2132a96f
GP
948 /* pull at least as much as a wakeup */
949 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
6265e169
TT
950 /* but never more than the buffer size */
951 bytes = min_t(int, bytes, sizeof(tmp));
952
f80bbd8b
TT
953 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
954 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
6265e169 955 bytes = extract_entropy(r->pull, tmp, bytes,
2132a96f 956 random_read_wakeup_bits / 8, rsvd_bytes);
85608f8e 957 mix_pool_bytes(r, tmp, bytes);
6265e169
TT
958 credit_entropy_bits(r, bytes*8);
959}
960
961/*
962 * Used as a workqueue function so that when the input pool is getting
963 * full, we can "spill over" some entropy to the output pools. That
964 * way the output pools can store some of the excess entropy instead
965 * of letting it go to waste.
966 */
967static void push_to_pool(struct work_struct *work)
968{
969 struct entropy_store *r = container_of(work, struct entropy_store,
970 push_work);
971 BUG_ON(!r);
2132a96f 972 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
6265e169
TT
973 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
974 r->pull->entropy_count >> ENTROPY_SHIFT);
1da177e4
LT
975}
976
977/*
19fa5be1
GP
978 * This function decides how many bytes to actually take from the
979 * given pool, and also debits the entropy count accordingly.
1da177e4 980 */
1da177e4
LT
981static size_t account(struct entropy_store *r, size_t nbytes, int min,
982 int reserved)
983{
a283b5c4
PA
984 int entropy_count, orig;
985 size_t ibytes;
1da177e4 986
a283b5c4 987 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1da177e4
LT
988
989 /* Can we pull enough? */
10b3a32d 990retry:
a283b5c4 991 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
a283b5c4 992 ibytes = nbytes;
0fb7a01a 993 /* If limited, never pull more than available */
e33ba5fa
TT
994 if (r->limit) {
995 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
996
997 if ((have_bytes -= reserved) < 0)
998 have_bytes = 0;
999 ibytes = min_t(size_t, ibytes, have_bytes);
1000 }
0fb7a01a 1001 if (ibytes < min)
a283b5c4 1002 ibytes = 0;
e33ba5fa
TT
1003 if ((entropy_count -= ibytes << (ENTROPY_SHIFT + 3)) < 0)
1004 entropy_count = 0;
f9c6d498 1005
0fb7a01a
GP
1006 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1007 goto retry;
1da177e4 1008
f80bbd8b 1009 trace_debit_entropy(r->name, 8 * ibytes);
0fb7a01a 1010 if (ibytes &&
2132a96f 1011 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
b9809552
TT
1012 wake_up_interruptible(&random_write_wait);
1013 kill_fasync(&fasync, SIGIO, POLL_OUT);
1014 }
1015
a283b5c4 1016 return ibytes;
1da177e4
LT
1017}
1018
19fa5be1
GP
1019/*
1020 * This function does the actual extraction for extract_entropy and
1021 * extract_entropy_user.
1022 *
1023 * Note: we assume that .poolwords is a multiple of 16 words.
1024 */
1da177e4
LT
1025static void extract_buf(struct entropy_store *r, __u8 *out)
1026{
602b6aee 1027 int i;
d2e7c96a
PA
1028 union {
1029 __u32 w[5];
85a1f777 1030 unsigned long l[LONGS(20)];
d2e7c96a
PA
1031 } hash;
1032 __u32 workspace[SHA_WORKSPACE_WORDS];
902c098a 1033 unsigned long flags;
1da177e4 1034
85a1f777 1035 /*
dfd38750 1036 * If we have an architectural hardware random number
46884442 1037 * generator, use it for SHA's initial vector
85a1f777 1038 */
46884442 1039 sha_init(hash.w);
85a1f777
TT
1040 for (i = 0; i < LONGS(20); i++) {
1041 unsigned long v;
1042 if (!arch_get_random_long(&v))
1043 break;
46884442 1044 hash.l[i] = v;
85a1f777
TT
1045 }
1046
46884442
TT
1047 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1048 spin_lock_irqsave(&r->lock, flags);
1049 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1050 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1051
1da177e4 1052 /*
1c0ad3d4
MM
1053 * We mix the hash back into the pool to prevent backtracking
1054 * attacks (where the attacker knows the state of the pool
1055 * plus the current outputs, and attempts to find previous
1056 * ouputs), unless the hash function can be inverted. By
1057 * mixing at least a SHA1 worth of hash data back, we make
1058 * brute-forcing the feedback as hard as brute-forcing the
1059 * hash.
1da177e4 1060 */
85608f8e 1061 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
902c098a 1062 spin_unlock_irqrestore(&r->lock, flags);
1da177e4 1063
ffd8d3fa 1064 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
1065
1066 /*
1c0ad3d4
MM
1067 * In case the hash function has some recognizable output
1068 * pattern, we fold it in half. Thus, we always feed back
1069 * twice as much data as we output.
1da177e4 1070 */
d2e7c96a
PA
1071 hash.w[0] ^= hash.w[3];
1072 hash.w[1] ^= hash.w[4];
1073 hash.w[2] ^= rol32(hash.w[2], 16);
1074
d2e7c96a
PA
1075 memcpy(out, &hash, EXTRACT_SIZE);
1076 memset(&hash, 0, sizeof(hash));
1da177e4
LT
1077}
1078
19fa5be1
GP
1079/*
1080 * This function extracts randomness from the "entropy pool", and
1081 * returns it in a buffer.
1082 *
1083 * The min parameter specifies the minimum amount we can pull before
1084 * failing to avoid races that defeat catastrophic reseeding while the
1085 * reserved parameter indicates how much entropy we must leave in the
1086 * pool after each pull to avoid starving other readers.
1087 */
90b75ee5 1088static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1089 size_t nbytes, int min, int reserved)
1da177e4
LT
1090{
1091 ssize_t ret = 0, i;
1092 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1093 unsigned long flags;
1da177e4 1094
ec8f02da 1095 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1096 if (fips_enabled) {
1097 spin_lock_irqsave(&r->lock, flags);
1098 if (!r->last_data_init) {
c59974ae 1099 r->last_data_init = 1;
1e7e2e05
JW
1100 spin_unlock_irqrestore(&r->lock, flags);
1101 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1102 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1103 xfer_secondary_pool(r, EXTRACT_SIZE);
1104 extract_buf(r, tmp);
1105 spin_lock_irqsave(&r->lock, flags);
1106 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1107 }
1108 spin_unlock_irqrestore(&r->lock, flags);
1109 }
ec8f02da 1110
a283b5c4 1111 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1112 xfer_secondary_pool(r, nbytes);
1113 nbytes = account(r, nbytes, min, reserved);
1114
1115 while (nbytes) {
1116 extract_buf(r, tmp);
5b739ef8 1117
e954bc91 1118 if (fips_enabled) {
5b739ef8
NH
1119 spin_lock_irqsave(&r->lock, flags);
1120 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1121 panic("Hardware RNG duplicated output!\n");
1122 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1123 spin_unlock_irqrestore(&r->lock, flags);
1124 }
1da177e4
LT
1125 i = min_t(int, nbytes, EXTRACT_SIZE);
1126 memcpy(buf, tmp, i);
1127 nbytes -= i;
1128 buf += i;
1129 ret += i;
1130 }
1131
1132 /* Wipe data just returned from memory */
1133 memset(tmp, 0, sizeof(tmp));
1134
1135 return ret;
1136}
1137
19fa5be1
GP
1138/*
1139 * This function extracts randomness from the "entropy pool", and
1140 * returns it in a userspace buffer.
1141 */
1da177e4
LT
1142static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1143 size_t nbytes)
1144{
1145 ssize_t ret = 0, i;
1146 __u8 tmp[EXTRACT_SIZE];
1147
a283b5c4 1148 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1149 xfer_secondary_pool(r, nbytes);
1150 nbytes = account(r, nbytes, 0, 0);
1151
1152 while (nbytes) {
1153 if (need_resched()) {
1154 if (signal_pending(current)) {
1155 if (ret == 0)
1156 ret = -ERESTARTSYS;
1157 break;
1158 }
1159 schedule();
1160 }
1161
1162 extract_buf(r, tmp);
1163 i = min_t(int, nbytes, EXTRACT_SIZE);
1164 if (copy_to_user(buf, tmp, i)) {
1165 ret = -EFAULT;
1166 break;
1167 }
1168
1169 nbytes -= i;
1170 buf += i;
1171 ret += i;
1172 }
1173
1174 /* Wipe data just returned from memory */
1175 memset(tmp, 0, sizeof(tmp));
1176
1177 return ret;
1178}
1179
1180/*
1181 * This function is the exported kernel interface. It returns some
c2557a30 1182 * number of good random numbers, suitable for key generation, seeding
18e9cea7
GP
1183 * TCP sequence numbers, etc. It does not rely on the hardware random
1184 * number generator. For random bytes direct from the hardware RNG
1185 * (when available), use get_random_bytes_arch().
1da177e4
LT
1186 */
1187void get_random_bytes(void *buf, int nbytes)
c2557a30 1188{
392a546d
TT
1189#if DEBUG_RANDOM_BOOT > 0
1190 if (unlikely(nonblocking_pool.initialized == 0))
1191 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1192 "with %d bits of entropy available\n",
1193 (void *) _RET_IP_,
1194 nonblocking_pool.entropy_total);
1195#endif
5910895f 1196 trace_get_random_bytes(nbytes, _RET_IP_);
c2557a30
TT
1197 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1198}
1199EXPORT_SYMBOL(get_random_bytes);
1200
1201/*
1202 * This function will use the architecture-specific hardware random
1203 * number generator if it is available. The arch-specific hw RNG will
1204 * almost certainly be faster than what we can do in software, but it
1205 * is impossible to verify that it is implemented securely (as
1206 * opposed, to, say, the AES encryption of a sequence number using a
1207 * key known by the NSA). So it's useful if we need the speed, but
1208 * only if we're willing to trust the hardware manufacturer not to
1209 * have put in a back door.
1210 */
1211void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1212{
63d77173
PA
1213 char *p = buf;
1214
5910895f 1215 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1216 while (nbytes) {
1217 unsigned long v;
1218 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1219
63d77173
PA
1220 if (!arch_get_random_long(&v))
1221 break;
1222
bd29e568 1223 memcpy(p, &v, chunk);
63d77173
PA
1224 p += chunk;
1225 nbytes -= chunk;
1226 }
1227
c2557a30
TT
1228 if (nbytes)
1229 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1230}
c2557a30
TT
1231EXPORT_SYMBOL(get_random_bytes_arch);
1232
1da177e4
LT
1233
1234/*
1235 * init_std_data - initialize pool with system data
1236 *
1237 * @r: pool to initialize
1238 *
1239 * This function clears the pool's entropy count and mixes some system
1240 * data into the pool to prepare it for use. The pool is not cleared
1241 * as that can only decrease the entropy in the pool.
1242 */
1243static void init_std_data(struct entropy_store *r)
1244{
3e88bdff 1245 int i;
902c098a
TT
1246 ktime_t now = ktime_get_real();
1247 unsigned long rv;
1da177e4 1248
f5c2742c 1249 r->last_pulled = jiffies;
85608f8e 1250 mix_pool_bytes(r, &now, sizeof(now));
9ed17b70 1251 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
83664a69
PA
1252 if (!arch_get_random_seed_long(&rv) &&
1253 !arch_get_random_long(&rv))
ae9ecd92 1254 rv = random_get_entropy();
85608f8e 1255 mix_pool_bytes(r, &rv, sizeof(rv));
3e88bdff 1256 }
85608f8e 1257 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
1258}
1259
cbc96b75
TL
1260/*
1261 * Note that setup_arch() may call add_device_randomness()
1262 * long before we get here. This allows seeding of the pools
1263 * with some platform dependent data very early in the boot
1264 * process. But it limits our options here. We must use
1265 * statically allocated structures that already have all
1266 * initializations complete at compile time. We should also
1267 * take care not to overwrite the precious per platform data
1268 * we were given.
1269 */
53c3f63e 1270static int rand_initialize(void)
1da177e4
LT
1271{
1272 init_std_data(&input_pool);
1273 init_std_data(&blocking_pool);
1274 init_std_data(&nonblocking_pool);
1275 return 0;
1276}
ae9ecd92 1277early_initcall(rand_initialize);
1da177e4 1278
9361401e 1279#ifdef CONFIG_BLOCK
1da177e4
LT
1280void rand_initialize_disk(struct gendisk *disk)
1281{
1282 struct timer_rand_state *state;
1283
1284 /*
f8595815 1285 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1286 * source.
1287 */
f8595815 1288 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
644008df
TT
1289 if (state) {
1290 state->last_time = INITIAL_JIFFIES;
1da177e4 1291 disk->random = state;
644008df 1292 }
1da177e4 1293}
9361401e 1294#endif
1da177e4 1295
331c6490
PA
1296/*
1297 * Attempt an emergency refill using arch_get_random_seed_long().
1298 *
1299 * As with add_interrupt_randomness() be paranoid and only
1300 * credit the output as 50% entropic.
1301 */
1302static int arch_random_refill(void)
1303{
1304 const unsigned int nlongs = 64; /* Arbitrary number */
1305 unsigned int n = 0;
1306 unsigned int i;
1307 unsigned long buf[nlongs];
1308
7b878d4b
PA
1309 if (!arch_has_random_seed())
1310 return 0;
1311
331c6490
PA
1312 for (i = 0; i < nlongs; i++) {
1313 if (arch_get_random_seed_long(&buf[n]))
1314 n++;
1315 }
1316
1317 if (n) {
1318 unsigned int rand_bytes = n * sizeof(unsigned long);
1319
85608f8e 1320 mix_pool_bytes(&input_pool, buf, rand_bytes);
331c6490
PA
1321 credit_entropy_bits(&input_pool, rand_bytes*4);
1322 }
1323
1324 return n;
1325}
1326
1da177e4 1327static ssize_t
90b75ee5 1328random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1329{
12ff3a51 1330 ssize_t n;
1da177e4
LT
1331
1332 if (nbytes == 0)
1333 return 0;
1334
12ff3a51
GP
1335 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1336 while (1) {
1337 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1338 if (n < 0)
1339 return n;
f80bbd8b
TT
1340 trace_random_read(n*8, (nbytes-n)*8,
1341 ENTROPY_BITS(&blocking_pool),
1342 ENTROPY_BITS(&input_pool));
12ff3a51
GP
1343 if (n > 0)
1344 return n;
331c6490 1345
12ff3a51
GP
1346 /* Pool is (near) empty. Maybe wait and retry. */
1347
331c6490
PA
1348 /* First try an emergency refill */
1349 if (arch_random_refill())
1350 continue;
1351
12ff3a51
GP
1352 if (file->f_flags & O_NONBLOCK)
1353 return -EAGAIN;
1354
1355 wait_event_interruptible(random_read_wait,
1356 ENTROPY_BITS(&input_pool) >=
2132a96f 1357 random_read_wakeup_bits);
12ff3a51
GP
1358 if (signal_pending(current))
1359 return -ERESTARTSYS;
1da177e4 1360 }
1da177e4
LT
1361}
1362
1363static ssize_t
90b75ee5 1364urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4 1365{
301f0595
TT
1366 int ret;
1367
1368 if (unlikely(nonblocking_pool.initialized == 0))
1369 printk_once(KERN_NOTICE "random: %s urandom read "
1370 "with %d bits of entropy available\n",
1371 current->comm, nonblocking_pool.entropy_total);
1372
1373 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
f80bbd8b
TT
1374
1375 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1376 ENTROPY_BITS(&input_pool));
1377 return ret;
1da177e4
LT
1378}
1379
1380static unsigned int
1381random_poll(struct file *file, poll_table * wait)
1382{
1383 unsigned int mask;
1384
1385 poll_wait(file, &random_read_wait, wait);
1386 poll_wait(file, &random_write_wait, wait);
1387 mask = 0;
2132a96f 1388 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1da177e4 1389 mask |= POLLIN | POLLRDNORM;
2132a96f 1390 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1da177e4
LT
1391 mask |= POLLOUT | POLLWRNORM;
1392 return mask;
1393}
1394
7f397dcd
MM
1395static int
1396write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1397{
1da177e4
LT
1398 size_t bytes;
1399 __u32 buf[16];
1400 const char __user *p = buffer;
1da177e4 1401
7f397dcd
MM
1402 while (count > 0) {
1403 bytes = min(count, sizeof(buf));
1404 if (copy_from_user(&buf, p, bytes))
1405 return -EFAULT;
1da177e4 1406
7f397dcd 1407 count -= bytes;
1da177e4
LT
1408 p += bytes;
1409
85608f8e 1410 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1411 cond_resched();
1da177e4 1412 }
7f397dcd
MM
1413
1414 return 0;
1415}
1416
90b75ee5
MM
1417static ssize_t random_write(struct file *file, const char __user *buffer,
1418 size_t count, loff_t *ppos)
7f397dcd
MM
1419{
1420 size_t ret;
7f397dcd
MM
1421
1422 ret = write_pool(&blocking_pool, buffer, count);
1423 if (ret)
1424 return ret;
1425 ret = write_pool(&nonblocking_pool, buffer, count);
1426 if (ret)
1427 return ret;
1428
7f397dcd 1429 return (ssize_t)count;
1da177e4
LT
1430}
1431
43ae4860 1432static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1433{
1434 int size, ent_count;
1435 int __user *p = (int __user *)arg;
1436 int retval;
1437
1438 switch (cmd) {
1439 case RNDGETENTCNT:
43ae4860 1440 /* inherently racy, no point locking */
a283b5c4
PA
1441 ent_count = ENTROPY_BITS(&input_pool);
1442 if (put_user(ent_count, p))
1da177e4
LT
1443 return -EFAULT;
1444 return 0;
1445 case RNDADDTOENTCNT:
1446 if (!capable(CAP_SYS_ADMIN))
1447 return -EPERM;
1448 if (get_user(ent_count, p))
1449 return -EFAULT;
a283b5c4 1450 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1451 return 0;
1452 case RNDADDENTROPY:
1453 if (!capable(CAP_SYS_ADMIN))
1454 return -EPERM;
1455 if (get_user(ent_count, p++))
1456 return -EFAULT;
1457 if (ent_count < 0)
1458 return -EINVAL;
1459 if (get_user(size, p++))
1460 return -EFAULT;
7f397dcd
MM
1461 retval = write_pool(&input_pool, (const char __user *)p,
1462 size);
1da177e4
LT
1463 if (retval < 0)
1464 return retval;
a283b5c4 1465 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1466 return 0;
1467 case RNDZAPENTCNT:
1468 case RNDCLEARPOOL:
ae9ecd92
TT
1469 /*
1470 * Clear the entropy pool counters. We no longer clear
1471 * the entropy pool, as that's silly.
1472 */
1da177e4
LT
1473 if (!capable(CAP_SYS_ADMIN))
1474 return -EPERM;
ae9ecd92
TT
1475 input_pool.entropy_count = 0;
1476 nonblocking_pool.entropy_count = 0;
1477 blocking_pool.entropy_count = 0;
1da177e4
LT
1478 return 0;
1479 default:
1480 return -EINVAL;
1481 }
1482}
1483
9a6f70bb
JD
1484static int random_fasync(int fd, struct file *filp, int on)
1485{
1486 return fasync_helper(fd, filp, on, &fasync);
1487}
1488
2b8693c0 1489const struct file_operations random_fops = {
1da177e4
LT
1490 .read = random_read,
1491 .write = random_write,
1492 .poll = random_poll,
43ae4860 1493 .unlocked_ioctl = random_ioctl,
9a6f70bb 1494 .fasync = random_fasync,
6038f373 1495 .llseek = noop_llseek,
1da177e4
LT
1496};
1497
2b8693c0 1498const struct file_operations urandom_fops = {
1da177e4
LT
1499 .read = urandom_read,
1500 .write = random_write,
43ae4860 1501 .unlocked_ioctl = random_ioctl,
9a6f70bb 1502 .fasync = random_fasync,
6038f373 1503 .llseek = noop_llseek,
1da177e4
LT
1504};
1505
1506/***************************************************************
1507 * Random UUID interface
1508 *
1509 * Used here for a Boot ID, but can be useful for other kernel
1510 * drivers.
1511 ***************************************************************/
1512
1513/*
1514 * Generate random UUID
1515 */
1516void generate_random_uuid(unsigned char uuid_out[16])
1517{
1518 get_random_bytes(uuid_out, 16);
c41b20e7 1519 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1520 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1521 /* Set the UUID variant to DCE */
1522 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1523}
1da177e4
LT
1524EXPORT_SYMBOL(generate_random_uuid);
1525
1526/********************************************************************
1527 *
1528 * Sysctl interface
1529 *
1530 ********************************************************************/
1531
1532#ifdef CONFIG_SYSCTL
1533
1534#include <linux/sysctl.h>
1535
1536static int min_read_thresh = 8, min_write_thresh;
8c2aa339 1537static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1da177e4
LT
1538static int max_write_thresh = INPUT_POOL_WORDS * 32;
1539static char sysctl_bootid[16];
1540
1541/*
f22052b2 1542 * This function is used to return both the bootid UUID, and random
1da177e4
LT
1543 * UUID. The difference is in whether table->data is NULL; if it is,
1544 * then a new UUID is generated and returned to the user.
1545 *
f22052b2
GP
1546 * If the user accesses this via the proc interface, the UUID will be
1547 * returned as an ASCII string in the standard UUID format; if via the
1548 * sysctl system call, as 16 bytes of binary data.
1da177e4 1549 */
a151427e 1550static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1551 void __user *buffer, size_t *lenp, loff_t *ppos)
1552{
a151427e 1553 struct ctl_table fake_table;
1da177e4
LT
1554 unsigned char buf[64], tmp_uuid[16], *uuid;
1555
1556 uuid = table->data;
1557 if (!uuid) {
1558 uuid = tmp_uuid;
1da177e4 1559 generate_random_uuid(uuid);
44e4360f
MD
1560 } else {
1561 static DEFINE_SPINLOCK(bootid_spinlock);
1562
1563 spin_lock(&bootid_spinlock);
1564 if (!uuid[8])
1565 generate_random_uuid(uuid);
1566 spin_unlock(&bootid_spinlock);
1567 }
1da177e4 1568
35900771
JP
1569 sprintf(buf, "%pU", uuid);
1570
1da177e4
LT
1571 fake_table.data = buf;
1572 fake_table.maxlen = sizeof(buf);
1573
8d65af78 1574 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1575}
1576
a283b5c4
PA
1577/*
1578 * Return entropy available scaled to integral bits
1579 */
5eb10d91 1580static int proc_do_entropy(struct ctl_table *table, int write,
a283b5c4
PA
1581 void __user *buffer, size_t *lenp, loff_t *ppos)
1582{
5eb10d91 1583 struct ctl_table fake_table;
a283b5c4
PA
1584 int entropy_count;
1585
1586 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1587
1588 fake_table.data = &entropy_count;
1589 fake_table.maxlen = sizeof(entropy_count);
1590
1591 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1592}
1593
1da177e4 1594static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1595extern struct ctl_table random_table[];
1596struct ctl_table random_table[] = {
1da177e4 1597 {
1da177e4
LT
1598 .procname = "poolsize",
1599 .data = &sysctl_poolsize,
1600 .maxlen = sizeof(int),
1601 .mode = 0444,
6d456111 1602 .proc_handler = proc_dointvec,
1da177e4
LT
1603 },
1604 {
1da177e4
LT
1605 .procname = "entropy_avail",
1606 .maxlen = sizeof(int),
1607 .mode = 0444,
a283b5c4 1608 .proc_handler = proc_do_entropy,
1da177e4
LT
1609 .data = &input_pool.entropy_count,
1610 },
1611 {
1da177e4 1612 .procname = "read_wakeup_threshold",
2132a96f 1613 .data = &random_read_wakeup_bits,
1da177e4
LT
1614 .maxlen = sizeof(int),
1615 .mode = 0644,
6d456111 1616 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1617 .extra1 = &min_read_thresh,
1618 .extra2 = &max_read_thresh,
1619 },
1620 {
1da177e4 1621 .procname = "write_wakeup_threshold",
2132a96f 1622 .data = &random_write_wakeup_bits,
1da177e4
LT
1623 .maxlen = sizeof(int),
1624 .mode = 0644,
6d456111 1625 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1626 .extra1 = &min_write_thresh,
1627 .extra2 = &max_write_thresh,
1628 },
f5c2742c
TT
1629 {
1630 .procname = "urandom_min_reseed_secs",
1631 .data = &random_min_urandom_seed,
1632 .maxlen = sizeof(int),
1633 .mode = 0644,
1634 .proc_handler = proc_dointvec,
1635 },
1da177e4 1636 {
1da177e4
LT
1637 .procname = "boot_id",
1638 .data = &sysctl_bootid,
1639 .maxlen = 16,
1640 .mode = 0444,
6d456111 1641 .proc_handler = proc_do_uuid,
1da177e4
LT
1642 },
1643 {
1da177e4
LT
1644 .procname = "uuid",
1645 .maxlen = 16,
1646 .mode = 0444,
6d456111 1647 .proc_handler = proc_do_uuid,
1da177e4 1648 },
894d2491 1649 { }
1da177e4
LT
1650};
1651#endif /* CONFIG_SYSCTL */
1652
6e5714ea 1653static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1654
47d06e53 1655int random_int_secret_init(void)
1da177e4 1656{
6e5714ea 1657 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1658 return 0;
1659}
1da177e4
LT
1660
1661/*
1662 * Get a random word for internal kernel use only. Similar to urandom but
1663 * with the goal of minimal entropy pool depletion. As a result, the random
1664 * value is not cryptographically secure but for several uses the cost of
1665 * depleting entropy is too high
1666 */
74feec5d 1667static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1668unsigned int get_random_int(void)
1669{
63d77173 1670 __u32 *hash;
6e5714ea 1671 unsigned int ret;
8a0a9bd4 1672
63d77173
PA
1673 if (arch_get_random_int(&ret))
1674 return ret;
1675
1676 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1677
61875f30 1678 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1679 md5_transform(hash, random_int_secret);
1680 ret = hash[0];
8a0a9bd4
LT
1681 put_cpu_var(get_random_int_hash);
1682
1683 return ret;
1da177e4 1684}
16c7fa05 1685EXPORT_SYMBOL(get_random_int);
1da177e4
LT
1686
1687/*
1688 * randomize_range() returns a start address such that
1689 *
1690 * [...... <range> .....]
1691 * start end
1692 *
1693 * a <range> with size "len" starting at the return value is inside in the
1694 * area defined by [start, end], but is otherwise randomized.
1695 */
1696unsigned long
1697randomize_range(unsigned long start, unsigned long end, unsigned long len)
1698{
1699 unsigned long range = end - len - start;
1700
1701 if (end <= start + len)
1702 return 0;
1703 return PAGE_ALIGN(get_random_int() % range + start);
1704}