]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Fold intel_pstate_reset_all_pid() into the caller
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
4836df17
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
93f0822d
DB
15#include <linux/kernel.h>
16#include <linux/kernel_stat.h>
17#include <linux/module.h>
18#include <linux/ktime.h>
19#include <linux/hrtimer.h>
20#include <linux/tick.h>
21#include <linux/slab.h>
55687da1 22#include <linux/sched/cpufreq.h>
93f0822d
DB
23#include <linux/list.h>
24#include <linux/cpu.h>
25#include <linux/cpufreq.h>
26#include <linux/sysfs.h>
27#include <linux/types.h>
28#include <linux/fs.h>
29#include <linux/debugfs.h>
fbbcdc07 30#include <linux/acpi.h>
d6472302 31#include <linux/vmalloc.h>
93f0822d
DB
32#include <trace/events/power.h>
33
34#include <asm/div64.h>
35#include <asm/msr.h>
36#include <asm/cpu_device_id.h>
64df1fdf 37#include <asm/cpufeature.h>
5b20c944 38#include <asm/intel-family.h>
93f0822d 39
001c76f0
RW
40#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41
9522a2ff
SP
42#ifdef CONFIG_ACPI
43#include <acpi/processor.h>
17669006 44#include <acpi/cppc_acpi.h>
9522a2ff
SP
45#endif
46
f0fe3cd7 47#define FRAC_BITS 8
93f0822d
DB
48#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 50
a1c9787d
RW
51#define EXT_BITS 6
52#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
d5dd33d9
SP
53#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
a1c9787d 55
93f0822d
DB
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
7180dddf 61static inline int32_t div_fp(s64 x, s64 y)
93f0822d 62{
7180dddf 63 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
64}
65
d022a65e
DB
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
a1c9787d
RW
77static inline u64 mul_ext_fp(u64 x, u64 y)
78{
79 return (x * y) >> EXT_FRAC_BITS;
80}
81
82static inline u64 div_ext_fp(u64 x, u64 y)
83{
84 return div64_u64(x << EXT_FRAC_BITS, y);
85}
86
e4c204ce
RW
87static inline int32_t percent_ext_fp(int percent)
88{
89 return div_ext_fp(percent, 100);
90}
91
13ad7701
SP
92/**
93 * struct sample - Store performance sample
a1c9787d 94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
13ad7701
SP
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
a1c9787d 97 * P state. This can be different than core_avg_perf
13ad7701
SP
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
104 * current sample
13ad7701
SP
105 * @time: Current time from scheduler
106 *
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
109 */
93f0822d 110struct sample {
a1c9787d 111 int32_t core_avg_perf;
157386b6 112 int32_t busy_scaled;
93f0822d
DB
113 u64 aperf;
114 u64 mperf;
4055fad3 115 u64 tsc;
a4675fbc 116 u64 time;
93f0822d
DB
117};
118
13ad7701
SP
119/**
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
128 * frequency units
129 * @turbo_pstate: Max Turbo P state possible for this platform
001c76f0
RW
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
13ad7701
SP
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
93f0822d
DB
135struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
3bcc6fa9 139 int max_pstate_physical;
b27580b0 140 int scaling;
93f0822d 141 int turbo_pstate;
001c76f0
RW
142 unsigned int max_freq;
143 unsigned int turbo_freq;
93f0822d
DB
144};
145
13ad7701
SP
146/**
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
149 * the lowest P state
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
154 *
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
158 */
007bea09 159struct vid_data {
21855ff5
DB
160 int min;
161 int max;
162 int turbo;
007bea09
DB
163 int32_t ratio;
164};
165
13ad7701
SP
166/**
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
175 *
176 * Stores PID coefficients and last error for PID controller.
177 */
93f0822d
DB
178struct _pid {
179 int setpoint;
180 int32_t integral;
181 int32_t p_gain;
182 int32_t i_gain;
183 int32_t d_gain;
184 int deadband;
d253d2a5 185 int32_t last_err;
93f0822d
DB
186};
187
c5a2ee7d
RW
188/**
189 * struct global_params - Global parameters, mostly tunable via sysfs.
190 * @no_turbo: Whether or not to use turbo P-states.
191 * @turbo_disabled: Whethet or not turbo P-states are available at all,
192 * based on the MSR_IA32_MISC_ENABLE value and whether or
193 * not the maximum reported turbo P-state is different from
194 * the maximum reported non-turbo one.
195 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
196 * P-state capacity.
197 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
198 * P-state capacity.
199 */
200struct global_params {
201 bool no_turbo;
202 bool turbo_disabled;
203 int max_perf_pct;
204 int min_perf_pct;
eae48f04
SP
205};
206
13ad7701
SP
207/**
208 * struct cpudata - Per CPU instance data storage
209 * @cpu: CPU number for this instance data
2f1d407a 210 * @policy: CPUFreq policy value
13ad7701 211 * @update_util: CPUFreq utility callback information
4578ee7e 212 * @update_util_set: CPUFreq utility callback is set
09c448d3
RW
213 * @iowait_boost: iowait-related boost fraction
214 * @last_update: Time of the last update.
13ad7701
SP
215 * @pstate: Stores P state limits for this CPU
216 * @vid: Stores VID limits for this CPU
217 * @pid: Stores PID parameters for this CPU
218 * @last_sample_time: Last Sample time
219 * @prev_aperf: Last APERF value read from APERF MSR
220 * @prev_mperf: Last MPERF value read from MPERF MSR
221 * @prev_tsc: Last timestamp counter (TSC) value
222 * @prev_cummulative_iowait: IO Wait time difference from last and
223 * current sample
224 * @sample: Storage for storing last Sample data
e14cf885
RW
225 * @min_perf: Minimum capacity limit as a fraction of the maximum
226 * turbo P-state capacity.
227 * @max_perf: Maximum capacity limit as a fraction of the maximum
228 * turbo P-state capacity.
9522a2ff
SP
229 * @acpi_perf_data: Stores ACPI perf information read from _PSS
230 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
984edbdc
SP
231 * @epp_powersave: Last saved HWP energy performance preference
232 * (EPP) or energy performance bias (EPB),
233 * when policy switched to performance
8442885f 234 * @epp_policy: Last saved policy used to set EPP/EPB
984edbdc
SP
235 * @epp_default: Power on default HWP energy performance
236 * preference/bias
237 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
238 * operation
13ad7701
SP
239 *
240 * This structure stores per CPU instance data for all CPUs.
241 */
93f0822d
DB
242struct cpudata {
243 int cpu;
244
2f1d407a 245 unsigned int policy;
a4675fbc 246 struct update_util_data update_util;
4578ee7e 247 bool update_util_set;
93f0822d 248
93f0822d 249 struct pstate_data pstate;
007bea09 250 struct vid_data vid;
93f0822d 251 struct _pid pid;
93f0822d 252
09c448d3 253 u64 last_update;
a4675fbc 254 u64 last_sample_time;
93f0822d
DB
255 u64 prev_aperf;
256 u64 prev_mperf;
4055fad3 257 u64 prev_tsc;
63d1d656 258 u64 prev_cummulative_iowait;
d37e2b76 259 struct sample sample;
e14cf885
RW
260 int32_t min_perf;
261 int32_t max_perf;
9522a2ff
SP
262#ifdef CONFIG_ACPI
263 struct acpi_processor_performance acpi_perf_data;
264 bool valid_pss_table;
265#endif
09c448d3 266 unsigned int iowait_boost;
984edbdc 267 s16 epp_powersave;
8442885f 268 s16 epp_policy;
984edbdc
SP
269 s16 epp_default;
270 s16 epp_saved;
93f0822d
DB
271};
272
273static struct cpudata **all_cpu_data;
13ad7701
SP
274
275/**
3954517e 276 * struct pstate_adjust_policy - Stores static PID configuration data
13ad7701
SP
277 * @sample_rate_ms: PID calculation sample rate in ms
278 * @sample_rate_ns: Sample rate calculation in ns
279 * @deadband: PID deadband
280 * @setpoint: PID Setpoint
281 * @p_gain_pct: PID proportional gain
282 * @i_gain_pct: PID integral gain
283 * @d_gain_pct: PID derivative gain
284 *
285 * Stores per CPU model static PID configuration data.
286 */
93f0822d
DB
287struct pstate_adjust_policy {
288 int sample_rate_ms;
a4675fbc 289 s64 sample_rate_ns;
93f0822d
DB
290 int deadband;
291 int setpoint;
292 int p_gain_pct;
293 int d_gain_pct;
294 int i_gain_pct;
295};
296
13ad7701
SP
297/**
298 * struct pstate_funcs - Per CPU model specific callbacks
299 * @get_max: Callback to get maximum non turbo effective P state
300 * @get_max_physical: Callback to get maximum non turbo physical P state
301 * @get_min: Callback to get minimum P state
302 * @get_turbo: Callback to get turbo P state
303 * @get_scaling: Callback to get frequency scaling factor
304 * @get_val: Callback to convert P state to actual MSR write value
305 * @get_vid: Callback to get VID data for Atom platforms
306 * @get_target_pstate: Callback to a function to calculate next P state to use
307 *
308 * Core and Atom CPU models have different way to get P State limits. This
309 * structure is used to store those callbacks.
310 */
016c8150
DB
311struct pstate_funcs {
312 int (*get_max)(void);
3bcc6fa9 313 int (*get_max_physical)(void);
016c8150
DB
314 int (*get_min)(void);
315 int (*get_turbo)(void);
b27580b0 316 int (*get_scaling)(void);
fdfdb2b1 317 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 318 void (*get_vid)(struct cpudata *);
157386b6 319 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
320};
321
13ad7701
SP
322/**
323 * struct cpu_defaults- Per CPU model default config data
13ad7701
SP
324 * @funcs: Callback function data
325 */
016c8150 326struct cpu_defaults {
016c8150 327 struct pstate_funcs funcs;
93f0822d
DB
328};
329
157386b6 330static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 331static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 332
4a7cb7a9 333static struct pstate_funcs pstate_funcs __read_mostly;
5c439053
RW
334static struct pstate_adjust_policy pid_params __read_mostly = {
335 .sample_rate_ms = 10,
336 .sample_rate_ns = 10 * NSEC_PER_MSEC,
337 .deadband = 0,
338 .setpoint = 97,
339 .p_gain_pct = 20,
340 .d_gain_pct = 0,
341 .i_gain_pct = 0,
342};
343
4a7cb7a9 344static int hwp_active __read_mostly;
eae48f04 345static bool per_cpu_limits __read_mostly;
016c8150 346
0c30b65b
RW
347static bool driver_registered __read_mostly;
348
9522a2ff
SP
349#ifdef CONFIG_ACPI
350static bool acpi_ppc;
351#endif
13ad7701 352
c5a2ee7d 353static struct global_params global;
93f0822d 354
0c30b65b 355static DEFINE_MUTEX(intel_pstate_driver_lock);
a410c03d
SP
356static DEFINE_MUTEX(intel_pstate_limits_lock);
357
9522a2ff 358#ifdef CONFIG_ACPI
2b3ec765
SP
359
360static bool intel_pstate_get_ppc_enable_status(void)
361{
362 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
363 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
364 return true;
365
366 return acpi_ppc;
367}
368
17669006
RW
369#ifdef CONFIG_ACPI_CPPC_LIB
370
371/* The work item is needed to avoid CPU hotplug locking issues */
372static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
373{
374 sched_set_itmt_support();
375}
376
377static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
378
379static void intel_pstate_set_itmt_prio(int cpu)
380{
381 struct cppc_perf_caps cppc_perf;
382 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
383 int ret;
384
385 ret = cppc_get_perf_caps(cpu, &cppc_perf);
386 if (ret)
387 return;
388
389 /*
390 * The priorities can be set regardless of whether or not
391 * sched_set_itmt_support(true) has been called and it is valid to
392 * update them at any time after it has been called.
393 */
394 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
395
396 if (max_highest_perf <= min_highest_perf) {
397 if (cppc_perf.highest_perf > max_highest_perf)
398 max_highest_perf = cppc_perf.highest_perf;
399
400 if (cppc_perf.highest_perf < min_highest_perf)
401 min_highest_perf = cppc_perf.highest_perf;
402
403 if (max_highest_perf > min_highest_perf) {
404 /*
405 * This code can be run during CPU online under the
406 * CPU hotplug locks, so sched_set_itmt_support()
407 * cannot be called from here. Queue up a work item
408 * to invoke it.
409 */
410 schedule_work(&sched_itmt_work);
411 }
412 }
413}
414#else
415static void intel_pstate_set_itmt_prio(int cpu)
416{
417}
418#endif
419
9522a2ff
SP
420static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
421{
422 struct cpudata *cpu;
9522a2ff
SP
423 int ret;
424 int i;
425
17669006
RW
426 if (hwp_active) {
427 intel_pstate_set_itmt_prio(policy->cpu);
e59a8f7f 428 return;
17669006 429 }
e59a8f7f 430
2b3ec765 431 if (!intel_pstate_get_ppc_enable_status())
9522a2ff
SP
432 return;
433
434 cpu = all_cpu_data[policy->cpu];
435
436 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
437 policy->cpu);
438 if (ret)
439 return;
440
441 /*
442 * Check if the control value in _PSS is for PERF_CTL MSR, which should
443 * guarantee that the states returned by it map to the states in our
444 * list directly.
445 */
446 if (cpu->acpi_perf_data.control_register.space_id !=
447 ACPI_ADR_SPACE_FIXED_HARDWARE)
448 goto err;
449
450 /*
451 * If there is only one entry _PSS, simply ignore _PSS and continue as
452 * usual without taking _PSS into account
453 */
454 if (cpu->acpi_perf_data.state_count < 2)
455 goto err;
456
457 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
458 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
459 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
460 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
461 (u32) cpu->acpi_perf_data.states[i].core_frequency,
462 (u32) cpu->acpi_perf_data.states[i].power,
463 (u32) cpu->acpi_perf_data.states[i].control);
464 }
465
466 /*
467 * The _PSS table doesn't contain whole turbo frequency range.
468 * This just contains +1 MHZ above the max non turbo frequency,
469 * with control value corresponding to max turbo ratio. But
470 * when cpufreq set policy is called, it will call with this
471 * max frequency, which will cause a reduced performance as
472 * this driver uses real max turbo frequency as the max
473 * frequency. So correct this frequency in _PSS table to
b00345d1 474 * correct max turbo frequency based on the turbo state.
9522a2ff
SP
475 * Also need to convert to MHz as _PSS freq is in MHz.
476 */
7de32556 477 if (!global.turbo_disabled)
9522a2ff
SP
478 cpu->acpi_perf_data.states[0].core_frequency =
479 policy->cpuinfo.max_freq / 1000;
480 cpu->valid_pss_table = true;
6cacd115 481 pr_debug("_PPC limits will be enforced\n");
9522a2ff
SP
482
483 return;
484
485 err:
486 cpu->valid_pss_table = false;
487 acpi_processor_unregister_performance(policy->cpu);
488}
489
490static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
491{
492 struct cpudata *cpu;
493
494 cpu = all_cpu_data[policy->cpu];
495 if (!cpu->valid_pss_table)
496 return;
497
498 acpi_processor_unregister_performance(policy->cpu);
499}
9522a2ff 500#else
7a3ba767 501static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
502{
503}
504
7a3ba767 505static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
9522a2ff
SP
506{
507}
508#endif
509
93f0822d 510static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 511 int deadband, int integral) {
b54a0dfd
PL
512 pid->setpoint = int_tofp(setpoint);
513 pid->deadband = int_tofp(deadband);
93f0822d 514 pid->integral = int_tofp(integral);
d98d099b 515 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
516}
517
518static inline void pid_p_gain_set(struct _pid *pid, int percent)
519{
22590efb 520 pid->p_gain = div_fp(percent, 100);
93f0822d
DB
521}
522
523static inline void pid_i_gain_set(struct _pid *pid, int percent)
524{
22590efb 525 pid->i_gain = div_fp(percent, 100);
93f0822d
DB
526}
527
528static inline void pid_d_gain_set(struct _pid *pid, int percent)
529{
22590efb 530 pid->d_gain = div_fp(percent, 100);
93f0822d
DB
531}
532
d253d2a5 533static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 534{
d253d2a5 535 signed int result;
93f0822d
DB
536 int32_t pterm, dterm, fp_error;
537 int32_t integral_limit;
538
b54a0dfd 539 fp_error = pid->setpoint - busy;
93f0822d 540
b54a0dfd 541 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
542 return 0;
543
544 pterm = mul_fp(pid->p_gain, fp_error);
545
546 pid->integral += fp_error;
547
e0d4c8f8
KCA
548 /*
549 * We limit the integral here so that it will never
550 * get higher than 30. This prevents it from becoming
551 * too large an input over long periods of time and allows
552 * it to get factored out sooner.
553 *
554 * The value of 30 was chosen through experimentation.
555 */
93f0822d
DB
556 integral_limit = int_tofp(30);
557 if (pid->integral > integral_limit)
558 pid->integral = integral_limit;
559 if (pid->integral < -integral_limit)
560 pid->integral = -integral_limit;
561
d253d2a5
BS
562 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
563 pid->last_err = fp_error;
93f0822d
DB
564
565 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 566 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
567 return (signed int)fp_toint(result);
568}
569
570static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
571{
016c8150
DB
572 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
573 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
574 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 575
2d8d1f18 576 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
577}
578
4521e1a0
GM
579static inline void update_turbo_state(void)
580{
581 u64 misc_en;
582 struct cpudata *cpu;
583
584 cpu = all_cpu_data[0];
585 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
7de32556 586 global.turbo_disabled =
4521e1a0
GM
587 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
588 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
589}
590
c5a2ee7d
RW
591static int min_perf_pct_min(void)
592{
593 struct cpudata *cpu = all_cpu_data[0];
594
595 return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
596 cpu->pstate.turbo_pstate);
597}
598
8442885f
SP
599static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
600{
601 u64 epb;
602 int ret;
603
604 if (!static_cpu_has(X86_FEATURE_EPB))
605 return -ENXIO;
606
607 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608 if (ret)
609 return (s16)ret;
610
611 return (s16)(epb & 0x0f);
612}
613
614static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
615{
616 s16 epp;
617
984edbdc
SP
618 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
619 /*
620 * When hwp_req_data is 0, means that caller didn't read
621 * MSR_HWP_REQUEST, so need to read and get EPP.
622 */
623 if (!hwp_req_data) {
624 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
625 &hwp_req_data);
626 if (epp)
627 return epp;
628 }
8442885f 629 epp = (hwp_req_data >> 24) & 0xff;
984edbdc 630 } else {
8442885f
SP
631 /* When there is no EPP present, HWP uses EPB settings */
632 epp = intel_pstate_get_epb(cpu_data);
984edbdc 633 }
8442885f
SP
634
635 return epp;
636}
637
984edbdc 638static int intel_pstate_set_epb(int cpu, s16 pref)
8442885f
SP
639{
640 u64 epb;
984edbdc 641 int ret;
8442885f
SP
642
643 if (!static_cpu_has(X86_FEATURE_EPB))
984edbdc 644 return -ENXIO;
8442885f 645
984edbdc
SP
646 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
647 if (ret)
648 return ret;
8442885f
SP
649
650 epb = (epb & ~0x0f) | pref;
651 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
984edbdc
SP
652
653 return 0;
8442885f
SP
654}
655
984edbdc
SP
656/*
657 * EPP/EPB display strings corresponding to EPP index in the
658 * energy_perf_strings[]
659 * index String
660 *-------------------------------------
661 * 0 default
662 * 1 performance
663 * 2 balance_performance
664 * 3 balance_power
665 * 4 power
666 */
667static const char * const energy_perf_strings[] = {
668 "default",
669 "performance",
670 "balance_performance",
671 "balance_power",
672 "power",
673 NULL
674};
675
676static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
677{
678 s16 epp;
679 int index = -EINVAL;
680
681 epp = intel_pstate_get_epp(cpu_data, 0);
682 if (epp < 0)
683 return epp;
684
685 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
686 /*
687 * Range:
688 * 0x00-0x3F : Performance
689 * 0x40-0x7F : Balance performance
690 * 0x80-0xBF : Balance power
691 * 0xC0-0xFF : Power
692 * The EPP is a 8 bit value, but our ranges restrict the
693 * value which can be set. Here only using top two bits
694 * effectively.
695 */
696 index = (epp >> 6) + 1;
697 } else if (static_cpu_has(X86_FEATURE_EPB)) {
698 /*
699 * Range:
700 * 0x00-0x03 : Performance
701 * 0x04-0x07 : Balance performance
702 * 0x08-0x0B : Balance power
703 * 0x0C-0x0F : Power
704 * The EPB is a 4 bit value, but our ranges restrict the
705 * value which can be set. Here only using top two bits
706 * effectively.
707 */
708 index = (epp >> 2) + 1;
709 }
710
711 return index;
712}
713
714static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
715 int pref_index)
716{
717 int epp = -EINVAL;
718 int ret;
719
720 if (!pref_index)
721 epp = cpu_data->epp_default;
722
723 mutex_lock(&intel_pstate_limits_lock);
724
725 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
726 u64 value;
727
728 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
729 if (ret)
730 goto return_pref;
731
732 value &= ~GENMASK_ULL(31, 24);
733
734 /*
735 * If epp is not default, convert from index into
736 * energy_perf_strings to epp value, by shifting 6
737 * bits left to use only top two bits in epp.
738 * The resultant epp need to shifted by 24 bits to
739 * epp position in MSR_HWP_REQUEST.
740 */
741 if (epp == -EINVAL)
742 epp = (pref_index - 1) << 6;
743
744 value |= (u64)epp << 24;
745 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
746 } else {
747 if (epp == -EINVAL)
748 epp = (pref_index - 1) << 2;
749 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
750 }
751return_pref:
752 mutex_unlock(&intel_pstate_limits_lock);
753
754 return ret;
755}
756
757static ssize_t show_energy_performance_available_preferences(
758 struct cpufreq_policy *policy, char *buf)
759{
760 int i = 0;
761 int ret = 0;
762
763 while (energy_perf_strings[i] != NULL)
764 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
765
766 ret += sprintf(&buf[ret], "\n");
767
768 return ret;
769}
770
771cpufreq_freq_attr_ro(energy_performance_available_preferences);
772
773static ssize_t store_energy_performance_preference(
774 struct cpufreq_policy *policy, const char *buf, size_t count)
775{
776 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
777 char str_preference[21];
778 int ret, i = 0;
779
780 ret = sscanf(buf, "%20s", str_preference);
781 if (ret != 1)
782 return -EINVAL;
783
784 while (energy_perf_strings[i] != NULL) {
785 if (!strcmp(str_preference, energy_perf_strings[i])) {
786 intel_pstate_set_energy_pref_index(cpu_data, i);
787 return count;
788 }
789 ++i;
790 }
791
792 return -EINVAL;
793}
794
795static ssize_t show_energy_performance_preference(
796 struct cpufreq_policy *policy, char *buf)
797{
798 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
799 int preference;
800
801 preference = intel_pstate_get_energy_pref_index(cpu_data);
802 if (preference < 0)
803 return preference;
804
805 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
806}
807
808cpufreq_freq_attr_rw(energy_performance_preference);
809
810static struct freq_attr *hwp_cpufreq_attrs[] = {
811 &energy_performance_preference,
812 &energy_performance_available_preferences,
813 NULL,
814};
815
111b8b3f 816static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
2f86dc4c 817{
3f8ed54a 818 int min, hw_min, max, hw_max, cpu;
74da56ce
KCA
819 u64 value, cap;
820
111b8b3f 821 for_each_cpu(cpu, policy->cpus) {
8442885f
SP
822 struct cpudata *cpu_data = all_cpu_data[cpu];
823 s16 epp;
eae48f04 824
f9f4872d
SP
825 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
826 hw_min = HWP_LOWEST_PERF(cap);
7de32556 827 if (global.no_turbo)
4e5d3f71
SP
828 hw_max = HWP_GUARANTEED_PERF(cap);
829 else
830 hw_max = HWP_HIGHEST_PERF(cap);
f9f4872d 831
e14cf885 832 max = fp_ext_toint(hw_max * cpu_data->max_perf);
7de32556
RW
833 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
834 min = max;
835 else
e14cf885 836 min = fp_ext_toint(hw_max * cpu_data->min_perf);
eae48f04 837
2f86dc4c 838 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
3f8ed54a 839
2f86dc4c
DB
840 value &= ~HWP_MIN_PERF(~0L);
841 value |= HWP_MIN_PERF(min);
842
2f86dc4c
DB
843 value &= ~HWP_MAX_PERF(~0L);
844 value |= HWP_MAX_PERF(max);
8442885f
SP
845
846 if (cpu_data->epp_policy == cpu_data->policy)
847 goto skip_epp;
848
849 cpu_data->epp_policy = cpu_data->policy;
850
984edbdc
SP
851 if (cpu_data->epp_saved >= 0) {
852 epp = cpu_data->epp_saved;
853 cpu_data->epp_saved = -EINVAL;
854 goto update_epp;
855 }
856
8442885f
SP
857 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
858 epp = intel_pstate_get_epp(cpu_data, value);
984edbdc 859 cpu_data->epp_powersave = epp;
8442885f 860 /* If EPP read was failed, then don't try to write */
984edbdc 861 if (epp < 0)
8442885f 862 goto skip_epp;
8442885f 863
8442885f
SP
864
865 epp = 0;
866 } else {
867 /* skip setting EPP, when saved value is invalid */
984edbdc 868 if (cpu_data->epp_powersave < 0)
8442885f
SP
869 goto skip_epp;
870
871 /*
872 * No need to restore EPP when it is not zero. This
873 * means:
874 * - Policy is not changed
875 * - user has manually changed
876 * - Error reading EPB
877 */
878 epp = intel_pstate_get_epp(cpu_data, value);
879 if (epp)
880 goto skip_epp;
881
984edbdc 882 epp = cpu_data->epp_powersave;
8442885f 883 }
984edbdc 884update_epp:
8442885f
SP
885 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
886 value &= ~GENMASK_ULL(31, 24);
887 value |= (u64)epp << 24;
888 } else {
889 intel_pstate_set_epb(cpu, epp);
890 }
891skip_epp:
2f86dc4c
DB
892 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
893 }
41cfd64c 894}
2f86dc4c 895
984edbdc
SP
896static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
897{
898 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
899
900 if (!hwp_active)
901 return 0;
902
903 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
904
905 return 0;
906}
907
8442885f
SP
908static int intel_pstate_resume(struct cpufreq_policy *policy)
909{
910 if (!hwp_active)
911 return 0;
912
aa439248
RW
913 mutex_lock(&intel_pstate_limits_lock);
914
8442885f 915 all_cpu_data[policy->cpu]->epp_policy = 0;
5f98ced1 916 intel_pstate_hwp_set(policy);
aa439248
RW
917
918 mutex_unlock(&intel_pstate_limits_lock);
919
5f98ced1 920 return 0;
8442885f
SP
921}
922
111b8b3f 923static void intel_pstate_update_policies(void)
41cfd64c 924{
111b8b3f
RW
925 int cpu;
926
927 for_each_possible_cpu(cpu)
928 cpufreq_update_policy(cpu);
2f86dc4c
DB
929}
930
93f0822d
DB
931/************************** debugfs begin ************************/
932static int pid_param_set(void *data, u64 val)
933{
4ddd0146
RW
934 unsigned int cpu;
935
93f0822d 936 *(u32 *)data = val;
6e7408ac 937 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
4ddd0146
RW
938 for_each_possible_cpu(cpu)
939 if (all_cpu_data[cpu])
940 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
941
93f0822d
DB
942 return 0;
943}
845c1cbe 944
93f0822d
DB
945static int pid_param_get(void *data, u64 *val)
946{
947 *val = *(u32 *)data;
948 return 0;
949}
2d8d1f18 950DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d 951
fb1fe104
RW
952static struct dentry *debugfs_parent;
953
93f0822d
DB
954struct pid_param {
955 char *name;
956 void *value;
fb1fe104 957 struct dentry *dentry;
93f0822d
DB
958};
959
960static struct pid_param pid_files[] = {
fb1fe104
RW
961 {"sample_rate_ms", &pid_params.sample_rate_ms, },
962 {"d_gain_pct", &pid_params.d_gain_pct, },
963 {"i_gain_pct", &pid_params.i_gain_pct, },
964 {"deadband", &pid_params.deadband, },
965 {"setpoint", &pid_params.setpoint, },
966 {"p_gain_pct", &pid_params.p_gain_pct, },
967 {NULL, NULL, }
93f0822d
DB
968};
969
fb1fe104 970static void intel_pstate_debug_expose_params(void)
93f0822d 971{
fb1fe104 972 int i;
93f0822d
DB
973
974 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
975 if (IS_ERR_OR_NULL(debugfs_parent))
976 return;
fb1fe104
RW
977
978 for (i = 0; pid_files[i].name; i++) {
979 struct dentry *dentry;
980
981 dentry = debugfs_create_file(pid_files[i].name, 0660,
982 debugfs_parent, pid_files[i].value,
983 &fops_pid_param);
984 if (!IS_ERR(dentry))
985 pid_files[i].dentry = dentry;
93f0822d
DB
986 }
987}
988
fb1fe104
RW
989static void intel_pstate_debug_hide_params(void)
990{
991 int i;
992
993 if (IS_ERR_OR_NULL(debugfs_parent))
994 return;
995
996 for (i = 0; pid_files[i].name; i++) {
997 debugfs_remove(pid_files[i].dentry);
998 pid_files[i].dentry = NULL;
93f0822d 999 }
fb1fe104
RW
1000
1001 debugfs_remove(debugfs_parent);
1002 debugfs_parent = NULL;
93f0822d
DB
1003}
1004
1005/************************** debugfs end ************************/
1006
1007/************************** sysfs begin ************************/
1008#define show_one(file_name, object) \
1009 static ssize_t show_##file_name \
1010 (struct kobject *kobj, struct attribute *attr, char *buf) \
1011 { \
7de32556 1012 return sprintf(buf, "%u\n", global.object); \
93f0822d
DB
1013 }
1014
fb1fe104
RW
1015static ssize_t intel_pstate_show_status(char *buf);
1016static int intel_pstate_update_status(const char *buf, size_t size);
1017
1018static ssize_t show_status(struct kobject *kobj,
1019 struct attribute *attr, char *buf)
1020{
1021 ssize_t ret;
1022
1023 mutex_lock(&intel_pstate_driver_lock);
1024 ret = intel_pstate_show_status(buf);
1025 mutex_unlock(&intel_pstate_driver_lock);
1026
1027 return ret;
1028}
1029
1030static ssize_t store_status(struct kobject *a, struct attribute *b,
1031 const char *buf, size_t count)
1032{
1033 char *p = memchr(buf, '\n', count);
1034 int ret;
1035
1036 mutex_lock(&intel_pstate_driver_lock);
1037 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1038 mutex_unlock(&intel_pstate_driver_lock);
1039
1040 return ret < 0 ? ret : count;
1041}
1042
d01b1f48
KCA
1043static ssize_t show_turbo_pct(struct kobject *kobj,
1044 struct attribute *attr, char *buf)
1045{
1046 struct cpudata *cpu;
1047 int total, no_turbo, turbo_pct;
1048 uint32_t turbo_fp;
1049
0c30b65b
RW
1050 mutex_lock(&intel_pstate_driver_lock);
1051
1052 if (!driver_registered) {
1053 mutex_unlock(&intel_pstate_driver_lock);
1054 return -EAGAIN;
1055 }
1056
d01b1f48
KCA
1057 cpu = all_cpu_data[0];
1058
1059 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1060 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
22590efb 1061 turbo_fp = div_fp(no_turbo, total);
d01b1f48 1062 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
0c30b65b
RW
1063
1064 mutex_unlock(&intel_pstate_driver_lock);
1065
d01b1f48
KCA
1066 return sprintf(buf, "%u\n", turbo_pct);
1067}
1068
0522424e
KCA
1069static ssize_t show_num_pstates(struct kobject *kobj,
1070 struct attribute *attr, char *buf)
1071{
1072 struct cpudata *cpu;
1073 int total;
1074
0c30b65b
RW
1075 mutex_lock(&intel_pstate_driver_lock);
1076
1077 if (!driver_registered) {
1078 mutex_unlock(&intel_pstate_driver_lock);
1079 return -EAGAIN;
1080 }
1081
0522424e
KCA
1082 cpu = all_cpu_data[0];
1083 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
0c30b65b
RW
1084
1085 mutex_unlock(&intel_pstate_driver_lock);
1086
0522424e
KCA
1087 return sprintf(buf, "%u\n", total);
1088}
1089
4521e1a0
GM
1090static ssize_t show_no_turbo(struct kobject *kobj,
1091 struct attribute *attr, char *buf)
1092{
1093 ssize_t ret;
1094
0c30b65b
RW
1095 mutex_lock(&intel_pstate_driver_lock);
1096
1097 if (!driver_registered) {
1098 mutex_unlock(&intel_pstate_driver_lock);
1099 return -EAGAIN;
1100 }
1101
4521e1a0 1102 update_turbo_state();
7de32556
RW
1103 if (global.turbo_disabled)
1104 ret = sprintf(buf, "%u\n", global.turbo_disabled);
4521e1a0 1105 else
7de32556 1106 ret = sprintf(buf, "%u\n", global.no_turbo);
4521e1a0 1107
0c30b65b
RW
1108 mutex_unlock(&intel_pstate_driver_lock);
1109
4521e1a0
GM
1110 return ret;
1111}
1112
93f0822d 1113static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 1114 const char *buf, size_t count)
93f0822d
DB
1115{
1116 unsigned int input;
1117 int ret;
845c1cbe 1118
93f0822d
DB
1119 ret = sscanf(buf, "%u", &input);
1120 if (ret != 1)
1121 return -EINVAL;
4521e1a0 1122
0c30b65b
RW
1123 mutex_lock(&intel_pstate_driver_lock);
1124
1125 if (!driver_registered) {
1126 mutex_unlock(&intel_pstate_driver_lock);
1127 return -EAGAIN;
1128 }
1129
a410c03d
SP
1130 mutex_lock(&intel_pstate_limits_lock);
1131
4521e1a0 1132 update_turbo_state();
7de32556 1133 if (global.turbo_disabled) {
4836df17 1134 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
a410c03d 1135 mutex_unlock(&intel_pstate_limits_lock);
0c30b65b 1136 mutex_unlock(&intel_pstate_driver_lock);
4521e1a0 1137 return -EPERM;
dd5fbf70 1138 }
2f86dc4c 1139
7de32556 1140 global.no_turbo = clamp_t(int, input, 0, 1);
111b8b3f 1141
c5a2ee7d
RW
1142 if (global.no_turbo) {
1143 struct cpudata *cpu = all_cpu_data[0];
1144 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1145
1146 /* Squash the global minimum into the permitted range. */
1147 if (global.min_perf_pct > pct)
1148 global.min_perf_pct = pct;
1149 }
1150
cd59b4be
RW
1151 mutex_unlock(&intel_pstate_limits_lock);
1152
7de32556
RW
1153 intel_pstate_update_policies();
1154
0c30b65b
RW
1155 mutex_unlock(&intel_pstate_driver_lock);
1156
93f0822d
DB
1157 return count;
1158}
1159
1160static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1161 const char *buf, size_t count)
93f0822d
DB
1162{
1163 unsigned int input;
1164 int ret;
845c1cbe 1165
93f0822d
DB
1166 ret = sscanf(buf, "%u", &input);
1167 if (ret != 1)
1168 return -EINVAL;
1169
0c30b65b
RW
1170 mutex_lock(&intel_pstate_driver_lock);
1171
1172 if (!driver_registered) {
1173 mutex_unlock(&intel_pstate_driver_lock);
1174 return -EAGAIN;
1175 }
1176
a410c03d
SP
1177 mutex_lock(&intel_pstate_limits_lock);
1178
c5a2ee7d 1179 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
111b8b3f 1180
cd59b4be
RW
1181 mutex_unlock(&intel_pstate_limits_lock);
1182
7de32556
RW
1183 intel_pstate_update_policies();
1184
0c30b65b
RW
1185 mutex_unlock(&intel_pstate_driver_lock);
1186
93f0822d
DB
1187 return count;
1188}
1189
1190static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 1191 const char *buf, size_t count)
93f0822d
DB
1192{
1193 unsigned int input;
1194 int ret;
845c1cbe 1195
93f0822d
DB
1196 ret = sscanf(buf, "%u", &input);
1197 if (ret != 1)
1198 return -EINVAL;
a0475992 1199
0c30b65b
RW
1200 mutex_lock(&intel_pstate_driver_lock);
1201
1202 if (!driver_registered) {
1203 mutex_unlock(&intel_pstate_driver_lock);
1204 return -EAGAIN;
1205 }
1206
a410c03d
SP
1207 mutex_lock(&intel_pstate_limits_lock);
1208
c5a2ee7d
RW
1209 global.min_perf_pct = clamp_t(int, input,
1210 min_perf_pct_min(), global.max_perf_pct);
111b8b3f 1211
cd59b4be
RW
1212 mutex_unlock(&intel_pstate_limits_lock);
1213
7de32556
RW
1214 intel_pstate_update_policies();
1215
0c30b65b
RW
1216 mutex_unlock(&intel_pstate_driver_lock);
1217
93f0822d
DB
1218 return count;
1219}
1220
93f0822d
DB
1221show_one(max_perf_pct, max_perf_pct);
1222show_one(min_perf_pct, min_perf_pct);
1223
fb1fe104 1224define_one_global_rw(status);
93f0822d
DB
1225define_one_global_rw(no_turbo);
1226define_one_global_rw(max_perf_pct);
1227define_one_global_rw(min_perf_pct);
d01b1f48 1228define_one_global_ro(turbo_pct);
0522424e 1229define_one_global_ro(num_pstates);
93f0822d
DB
1230
1231static struct attribute *intel_pstate_attributes[] = {
fb1fe104 1232 &status.attr,
93f0822d 1233 &no_turbo.attr,
d01b1f48 1234 &turbo_pct.attr,
0522424e 1235 &num_pstates.attr,
93f0822d
DB
1236 NULL
1237};
1238
1239static struct attribute_group intel_pstate_attr_group = {
1240 .attrs = intel_pstate_attributes,
1241};
93f0822d 1242
317dd50e 1243static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 1244{
317dd50e 1245 struct kobject *intel_pstate_kobject;
93f0822d
DB
1246 int rc;
1247
1248 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1249 &cpu_subsys.dev_root->kobj);
eae48f04
SP
1250 if (WARN_ON(!intel_pstate_kobject))
1251 return;
1252
2d8d1f18 1253 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
eae48f04
SP
1254 if (WARN_ON(rc))
1255 return;
1256
1257 /*
1258 * If per cpu limits are enforced there are no global limits, so
1259 * return without creating max/min_perf_pct attributes
1260 */
1261 if (per_cpu_limits)
1262 return;
1263
1264 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1265 WARN_ON(rc);
1266
1267 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1268 WARN_ON(rc);
1269
93f0822d 1270}
93f0822d 1271/************************** sysfs end ************************/
2f86dc4c 1272
ba88d433 1273static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 1274{
f05c9665 1275 /* First disable HWP notification interrupt as we don't process them */
da7de91c
SP
1276 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1277 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
f05c9665 1278
ba88d433 1279 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
8442885f 1280 cpudata->epp_policy = 0;
984edbdc
SP
1281 if (cpudata->epp_default == -EINVAL)
1282 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2f86dc4c
DB
1283}
1284
6e978b22
SP
1285#define MSR_IA32_POWER_CTL_BIT_EE 19
1286
1287/* Disable energy efficiency optimization */
1288static void intel_pstate_disable_ee(int cpu)
1289{
1290 u64 power_ctl;
1291 int ret;
1292
1293 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1294 if (ret)
1295 return;
1296
1297 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1298 pr_info("Disabling energy efficiency optimization\n");
1299 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1300 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1301 }
1302}
1303
938d21a2 1304static int atom_get_min_pstate(void)
19e77c28
DB
1305{
1306 u64 value;
845c1cbe 1307
92134bdb 1308 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1309 return (value >> 8) & 0x7F;
19e77c28
DB
1310}
1311
938d21a2 1312static int atom_get_max_pstate(void)
19e77c28
DB
1313{
1314 u64 value;
845c1cbe 1315
92134bdb 1316 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
c16ed060 1317 return (value >> 16) & 0x7F;
19e77c28 1318}
93f0822d 1319
938d21a2 1320static int atom_get_turbo_pstate(void)
61d8d2ab
DB
1321{
1322 u64 value;
845c1cbe 1323
92134bdb 1324 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
c16ed060 1325 return value & 0x7F;
61d8d2ab
DB
1326}
1327
fdfdb2b1 1328static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
1329{
1330 u64 val;
1331 int32_t vid_fp;
1332 u32 vid;
1333
144c8e17 1334 val = (u64)pstate << 8;
7de32556 1335 if (global.no_turbo && !global.turbo_disabled)
007bea09
DB
1336 val |= (u64)1 << 32;
1337
1338 vid_fp = cpudata->vid.min + mul_fp(
1339 int_tofp(pstate - cpudata->pstate.min_pstate),
1340 cpudata->vid.ratio);
1341
1342 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 1343 vid = ceiling_fp(vid_fp);
007bea09 1344
21855ff5
DB
1345 if (pstate > cpudata->pstate.max_pstate)
1346 vid = cpudata->vid.turbo;
1347
fdfdb2b1 1348 return val | vid;
007bea09
DB
1349}
1350
1421df63 1351static int silvermont_get_scaling(void)
b27580b0
DB
1352{
1353 u64 value;
1354 int i;
1421df63
PL
1355 /* Defined in Table 35-6 from SDM (Sept 2015) */
1356 static int silvermont_freq_table[] = {
1357 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
1358
1359 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
1360 i = value & 0x7;
1361 WARN_ON(i > 4);
b27580b0 1362
1421df63
PL
1363 return silvermont_freq_table[i];
1364}
b27580b0 1365
1421df63
PL
1366static int airmont_get_scaling(void)
1367{
1368 u64 value;
1369 int i;
1370 /* Defined in Table 35-10 from SDM (Sept 2015) */
1371 static int airmont_freq_table[] = {
1372 83300, 100000, 133300, 116700, 80000,
1373 93300, 90000, 88900, 87500};
1374
1375 rdmsrl(MSR_FSB_FREQ, value);
1376 i = value & 0xF;
1377 WARN_ON(i > 8);
1378
1379 return airmont_freq_table[i];
b27580b0
DB
1380}
1381
938d21a2 1382static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
1383{
1384 u64 value;
1385
92134bdb 1386 rdmsrl(MSR_ATOM_CORE_VIDS, value);
c16ed060
DB
1387 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1388 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
1389 cpudata->vid.ratio = div_fp(
1390 cpudata->vid.max - cpudata->vid.min,
1391 int_tofp(cpudata->pstate.max_pstate -
1392 cpudata->pstate.min_pstate));
21855ff5 1393
92134bdb 1394 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
21855ff5 1395 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
1396}
1397
016c8150 1398static int core_get_min_pstate(void)
93f0822d
DB
1399{
1400 u64 value;
845c1cbe 1401
05e99c8c 1402 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1403 return (value >> 40) & 0xFF;
1404}
1405
3bcc6fa9 1406static int core_get_max_pstate_physical(void)
93f0822d
DB
1407{
1408 u64 value;
845c1cbe 1409
05e99c8c 1410 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
1411 return (value >> 8) & 0xFF;
1412}
1413
8fc7554a
SP
1414static int core_get_tdp_ratio(u64 plat_info)
1415{
1416 /* Check how many TDP levels present */
1417 if (plat_info & 0x600000000) {
1418 u64 tdp_ctrl;
1419 u64 tdp_ratio;
1420 int tdp_msr;
1421 int err;
1422
1423 /* Get the TDP level (0, 1, 2) to get ratios */
1424 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1425 if (err)
1426 return err;
1427
1428 /* TDP MSR are continuous starting at 0x648 */
1429 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1430 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1431 if (err)
1432 return err;
1433
1434 /* For level 1 and 2, bits[23:16] contain the ratio */
1435 if (tdp_ctrl & 0x03)
1436 tdp_ratio >>= 16;
1437
1438 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1439 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1440
1441 return (int)tdp_ratio;
1442 }
1443
1444 return -ENXIO;
1445}
1446
016c8150 1447static int core_get_max_pstate(void)
93f0822d 1448{
6a35fc2d
SP
1449 u64 tar;
1450 u64 plat_info;
1451 int max_pstate;
8fc7554a 1452 int tdp_ratio;
6a35fc2d
SP
1453 int err;
1454
1455 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1456 max_pstate = (plat_info >> 8) & 0xFF;
1457
8fc7554a
SP
1458 tdp_ratio = core_get_tdp_ratio(plat_info);
1459 if (tdp_ratio <= 0)
1460 return max_pstate;
1461
1462 if (hwp_active) {
1463 /* Turbo activation ratio is not used on HWP platforms */
1464 return tdp_ratio;
1465 }
1466
6a35fc2d
SP
1467 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1468 if (!err) {
8fc7554a
SP
1469 int tar_levels;
1470
6a35fc2d 1471 /* Do some sanity checking for safety */
8fc7554a
SP
1472 tar_levels = tar & 0xff;
1473 if (tdp_ratio - 1 == tar_levels) {
1474 max_pstate = tar_levels;
1475 pr_debug("max_pstate=TAC %x\n", max_pstate);
6a35fc2d
SP
1476 }
1477 }
845c1cbe 1478
6a35fc2d 1479 return max_pstate;
93f0822d
DB
1480}
1481
016c8150 1482static int core_get_turbo_pstate(void)
93f0822d
DB
1483{
1484 u64 value;
1485 int nont, ret;
845c1cbe 1486
100cf6f2 1487 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
016c8150 1488 nont = core_get_max_pstate();
285cb990 1489 ret = (value) & 255;
93f0822d
DB
1490 if (ret <= nont)
1491 ret = nont;
1492 return ret;
1493}
1494
b27580b0
DB
1495static inline int core_get_scaling(void)
1496{
1497 return 100000;
1498}
1499
fdfdb2b1 1500static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
1501{
1502 u64 val;
1503
144c8e17 1504 val = (u64)pstate << 8;
7de32556 1505 if (global.no_turbo && !global.turbo_disabled)
016c8150
DB
1506 val |= (u64)1 << 32;
1507
fdfdb2b1 1508 return val;
016c8150
DB
1509}
1510
b34ef932
DC
1511static int knl_get_turbo_pstate(void)
1512{
1513 u64 value;
1514 int nont, ret;
1515
100cf6f2 1516 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
b34ef932
DC
1517 nont = core_get_max_pstate();
1518 ret = (((value) >> 8) & 0xFF);
1519 if (ret <= nont)
1520 ret = nont;
1521 return ret;
1522}
1523
016c8150 1524static struct cpu_defaults core_params = {
016c8150
DB
1525 .funcs = {
1526 .get_max = core_get_max_pstate,
3bcc6fa9 1527 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
1528 .get_min = core_get_min_pstate,
1529 .get_turbo = core_get_turbo_pstate,
b27580b0 1530 .get_scaling = core_get_scaling,
fdfdb2b1 1531 .get_val = core_get_val,
157386b6 1532 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
1533 },
1534};
1535
42ce8921 1536static const struct cpu_defaults silvermont_params = {
1421df63
PL
1537 .funcs = {
1538 .get_max = atom_get_max_pstate,
1539 .get_max_physical = atom_get_max_pstate,
1540 .get_min = atom_get_min_pstate,
1541 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1542 .get_val = atom_get_val,
1421df63
PL
1543 .get_scaling = silvermont_get_scaling,
1544 .get_vid = atom_get_vid,
e70eed2b 1545 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
1546 },
1547};
1548
42ce8921 1549static const struct cpu_defaults airmont_params = {
19e77c28 1550 .funcs = {
938d21a2
PL
1551 .get_max = atom_get_max_pstate,
1552 .get_max_physical = atom_get_max_pstate,
1553 .get_min = atom_get_min_pstate,
1554 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 1555 .get_val = atom_get_val,
1421df63 1556 .get_scaling = airmont_get_scaling,
938d21a2 1557 .get_vid = atom_get_vid,
e70eed2b 1558 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
1559 },
1560};
1561
42ce8921 1562static const struct cpu_defaults knl_params = {
b34ef932
DC
1563 .funcs = {
1564 .get_max = core_get_max_pstate,
3bcc6fa9 1565 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
1566 .get_min = core_get_min_pstate,
1567 .get_turbo = knl_get_turbo_pstate,
69cefc27 1568 .get_scaling = core_get_scaling,
fdfdb2b1 1569 .get_val = core_get_val,
157386b6 1570 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
1571 },
1572};
1573
42ce8921 1574static const struct cpu_defaults bxt_params = {
41bad47f
SP
1575 .funcs = {
1576 .get_max = core_get_max_pstate,
1577 .get_max_physical = core_get_max_pstate_physical,
1578 .get_min = core_get_min_pstate,
1579 .get_turbo = core_get_turbo_pstate,
1580 .get_scaling = core_get_scaling,
1581 .get_val = core_get_val,
1582 .get_target_pstate = get_target_pstate_use_cpu_load,
1583 },
1584};
1585
93f0822d
DB
1586static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1587{
1588 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 1589 int max_perf_adj;
93f0822d 1590 int min_perf;
845c1cbe 1591
7de32556 1592 if (global.no_turbo || global.turbo_disabled)
93f0822d
DB
1593 max_perf = cpu->pstate.max_pstate;
1594
e0d4c8f8
KCA
1595 /*
1596 * performance can be limited by user through sysfs, by cpufreq
1597 * policy, or by cpu specific default values determined through
1598 * experimentation.
1599 */
e14cf885 1600 max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
799281a3
RW
1601 *max = clamp_t(int, max_perf_adj,
1602 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 1603
e14cf885 1604 min_perf = fp_ext_toint(max_perf * cpu->min_perf);
799281a3 1605 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
1606}
1607
a6c6ead1 1608static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
fdfdb2b1 1609{
bc95a454
RW
1610 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1611 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1612 /*
1613 * Generally, there is no guarantee that this code will always run on
1614 * the CPU being updated, so force the register update to run on the
1615 * right CPU.
1616 */
1617 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1618 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1619}
1620
a6c6ead1
RW
1621static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1622{
1623 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1624}
1625
1626static void intel_pstate_max_within_limits(struct cpudata *cpu)
1627{
1628 int min_pstate, max_pstate;
1629
1630 update_turbo_state();
1631 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1632 intel_pstate_set_pstate(cpu, max_pstate);
1633}
1634
93f0822d
DB
1635static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1636{
016c8150
DB
1637 cpu->pstate.min_pstate = pstate_funcs.get_min();
1638 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1639 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1640 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1641 cpu->pstate.scaling = pstate_funcs.get_scaling();
001c76f0
RW
1642 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1643 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d 1644
007bea09
DB
1645 if (pstate_funcs.get_vid)
1646 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1647
1648 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1649}
1650
a1c9787d 1651static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
93f0822d 1652{
6b17ddb2 1653 struct sample *sample = &cpu->sample;
e66c1768 1654
a1c9787d 1655 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
93f0822d
DB
1656}
1657
4fec7ad5 1658static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1659{
93f0822d 1660 u64 aperf, mperf;
4ab60c3f 1661 unsigned long flags;
4055fad3 1662 u64 tsc;
93f0822d 1663
4ab60c3f 1664 local_irq_save(flags);
93f0822d
DB
1665 rdmsrl(MSR_IA32_APERF, aperf);
1666 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1667 tsc = rdtsc();
4fec7ad5 1668 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1669 local_irq_restore(flags);
4fec7ad5 1670 return false;
8e601a9f 1671 }
4ab60c3f 1672 local_irq_restore(flags);
b69880f9 1673
c4ee841f 1674 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1675 cpu->sample.time = time;
d37e2b76
DB
1676 cpu->sample.aperf = aperf;
1677 cpu->sample.mperf = mperf;
4055fad3 1678 cpu->sample.tsc = tsc;
d37e2b76
DB
1679 cpu->sample.aperf -= cpu->prev_aperf;
1680 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1681 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1682
93f0822d
DB
1683 cpu->prev_aperf = aperf;
1684 cpu->prev_mperf = mperf;
4055fad3 1685 cpu->prev_tsc = tsc;
febce40f
RW
1686 /*
1687 * First time this function is invoked in a given cycle, all of the
1688 * previous sample data fields are equal to zero or stale and they must
1689 * be populated with meaningful numbers for things to work, so assume
1690 * that sample.time will always be reset before setting the utilization
1691 * update hook and make the caller skip the sample then.
1692 */
1693 return !!cpu->last_sample_time;
93f0822d
DB
1694}
1695
8fa520af
PL
1696static inline int32_t get_avg_frequency(struct cpudata *cpu)
1697{
a1c9787d
RW
1698 return mul_ext_fp(cpu->sample.core_avg_perf,
1699 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
8fa520af
PL
1700}
1701
bdcaa23f
PL
1702static inline int32_t get_avg_pstate(struct cpudata *cpu)
1703{
8edb0a6e
RW
1704 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1705 cpu->sample.core_avg_perf);
bdcaa23f
PL
1706}
1707
e70eed2b
PL
1708static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1709{
1710 struct sample *sample = &cpu->sample;
09c448d3 1711 int32_t busy_frac, boost;
0843e83c 1712 int target, avg_pstate;
e70eed2b 1713
09c448d3 1714 busy_frac = div_fp(sample->mperf, sample->tsc);
63d1d656 1715
09c448d3
RW
1716 boost = cpu->iowait_boost;
1717 cpu->iowait_boost >>= 1;
63d1d656 1718
09c448d3
RW
1719 if (busy_frac < boost)
1720 busy_frac = boost;
63d1d656 1721
09c448d3 1722 sample->busy_scaled = busy_frac * 100;
0843e83c 1723
7de32556 1724 target = global.no_turbo || global.turbo_disabled ?
0843e83c
RW
1725 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1726 target += target >> 2;
1727 target = mul_fp(target, busy_frac);
1728 if (target < cpu->pstate.min_pstate)
1729 target = cpu->pstate.min_pstate;
1730
1731 /*
1732 * If the average P-state during the previous cycle was higher than the
1733 * current target, add 50% of the difference to the target to reduce
1734 * possible performance oscillations and offset possible performance
1735 * loss related to moving the workload from one CPU to another within
1736 * a package/module.
1737 */
1738 avg_pstate = get_avg_pstate(cpu);
1739 if (avg_pstate > target)
1740 target += (avg_pstate - target) >> 1;
1741
1742 return target;
e70eed2b
PL
1743}
1744
157386b6 1745static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1746{
1aa7a6e2 1747 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
a4675fbc 1748 u64 duration_ns;
93f0822d 1749
e0d4c8f8 1750 /*
f00593a4
RW
1751 * perf_scaled is the ratio of the average P-state during the last
1752 * sampling period to the P-state requested last time (in percent).
1753 *
1754 * That measures the system's response to the previous P-state
1755 * selection.
e0d4c8f8 1756 */
22590efb
RW
1757 max_pstate = cpu->pstate.max_pstate_physical;
1758 current_pstate = cpu->pstate.current_pstate;
1aa7a6e2 1759 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
a1c9787d 1760 div_fp(100 * max_pstate, current_pstate));
c4ee841f 1761
e0d4c8f8 1762 /*
a4675fbc
RW
1763 * Since our utilization update callback will not run unless we are
1764 * in C0, check if the actual elapsed time is significantly greater (3x)
1765 * than our sample interval. If it is, then we were idle for a long
1aa7a6e2 1766 * enough period of time to adjust our performance metric.
e0d4c8f8 1767 */
a4675fbc 1768 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1769 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
22590efb 1770 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1aa7a6e2 1771 perf_scaled = mul_fp(perf_scaled, sample_ratio);
ffb81056
RW
1772 } else {
1773 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1774 if (sample_ratio < int_tofp(1))
1aa7a6e2 1775 perf_scaled = 0;
c4ee841f
DB
1776 }
1777
1aa7a6e2
RW
1778 cpu->sample.busy_scaled = perf_scaled;
1779 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
93f0822d
DB
1780}
1781
001c76f0 1782static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
fdfdb2b1
RW
1783{
1784 int max_perf, min_perf;
1785
fdfdb2b1
RW
1786 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1787 pstate = clamp_t(int, pstate, min_perf, max_perf);
001c76f0
RW
1788 return pstate;
1789}
1790
1791static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1792{
fdfdb2b1
RW
1793 if (pstate == cpu->pstate.current_pstate)
1794 return;
1795
bc95a454 1796 cpu->pstate.current_pstate = pstate;
fdfdb2b1
RW
1797 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1798}
1799
93f0822d
DB
1800static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1801{
157386b6 1802 int from, target_pstate;
4055fad3
DS
1803 struct sample *sample;
1804
1805 from = cpu->pstate.current_pstate;
93f0822d 1806
2f1d407a
RW
1807 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1808 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
93f0822d 1809
001c76f0
RW
1810 update_turbo_state();
1811
64078299
RW
1812 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1813 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
fdfdb2b1 1814 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1815
1816 sample = &cpu->sample;
a1c9787d 1817 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
157386b6 1818 fp_toint(sample->busy_scaled),
4055fad3
DS
1819 from,
1820 cpu->pstate.current_pstate,
1821 sample->mperf,
1822 sample->aperf,
1823 sample->tsc,
3ba7bcaa
SP
1824 get_avg_frequency(cpu),
1825 fp_toint(cpu->iowait_boost * 100));
93f0822d
DB
1826}
1827
a4675fbc 1828static void intel_pstate_update_util(struct update_util_data *data, u64 time,
58919e83 1829 unsigned int flags)
93f0822d 1830{
a4675fbc 1831 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
09c448d3
RW
1832 u64 delta_ns;
1833
1d29815e 1834 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
09c448d3
RW
1835 if (flags & SCHED_CPUFREQ_IOWAIT) {
1836 cpu->iowait_boost = int_tofp(1);
1837 } else if (cpu->iowait_boost) {
1838 /* Clear iowait_boost if the CPU may have been idle. */
1839 delta_ns = time - cpu->last_update;
1840 if (delta_ns > TICK_NSEC)
1841 cpu->iowait_boost = 0;
1842 }
1843 cpu->last_update = time;
1844 }
b69880f9 1845
09c448d3 1846 delta_ns = time - cpu->sample.time;
a4675fbc 1847 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1848 bool sample_taken = intel_pstate_sample(cpu, time);
1849
6d45b719 1850 if (sample_taken) {
a1c9787d 1851 intel_pstate_calc_avg_perf(cpu);
6d45b719
RW
1852 if (!hwp_active)
1853 intel_pstate_adjust_busy_pstate(cpu);
1854 }
a4675fbc 1855 }
93f0822d
DB
1856}
1857
1858#define ICPU(model, policy) \
6cbd7ee1
DB
1859 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1860 (unsigned long)&policy }
93f0822d
DB
1861
1862static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
5b20c944
DH
1863 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
1864 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
1865 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
1866 ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
1867 ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
1868 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
1869 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
1870 ICPU(INTEL_FAM6_HASWELL_X, core_params),
1871 ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
1872 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
1873 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
1874 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
1875 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
1876 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1877 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
1878 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1879 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
58bf4542 1880 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
41bad47f 1881 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
93f0822d
DB
1882 {}
1883};
1884MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1885
29327c84 1886static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
5b20c944 1887 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
65c1262f
SP
1888 ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1889 ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
2f86dc4c
DB
1890 {}
1891};
1892
6e978b22
SP
1893static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1894 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1895 {}
1896};
1897
93f0822d
DB
1898static int intel_pstate_init_cpu(unsigned int cpunum)
1899{
93f0822d
DB
1900 struct cpudata *cpu;
1901
eae48f04
SP
1902 cpu = all_cpu_data[cpunum];
1903
1904 if (!cpu) {
c5a2ee7d 1905 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
eae48f04
SP
1906 if (!cpu)
1907 return -ENOMEM;
1908
1909 all_cpu_data[cpunum] = cpu;
eae48f04 1910
984edbdc
SP
1911 cpu->epp_default = -EINVAL;
1912 cpu->epp_powersave = -EINVAL;
1913 cpu->epp_saved = -EINVAL;
eae48f04 1914 }
93f0822d
DB
1915
1916 cpu = all_cpu_data[cpunum];
1917
93f0822d 1918 cpu->cpu = cpunum;
ba88d433 1919
a4675fbc 1920 if (hwp_active) {
6e978b22
SP
1921 const struct x86_cpu_id *id;
1922
1923 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1924 if (id)
1925 intel_pstate_disable_ee(cpunum);
1926
ba88d433 1927 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1928 pid_params.sample_rate_ms = 50;
1929 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1930 }
ba88d433 1931
179e8471 1932 intel_pstate_get_cpu_pstates(cpu);
016c8150 1933
93f0822d 1934 intel_pstate_busy_pid_reset(cpu);
93f0822d 1935
4836df17 1936 pr_debug("controlling: cpu %d\n", cpunum);
93f0822d
DB
1937
1938 return 0;
1939}
1940
1941static unsigned int intel_pstate_get(unsigned int cpu_num)
1942{
f96fd0c8 1943 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1944
f96fd0c8 1945 return cpu ? get_avg_frequency(cpu) : 0;
93f0822d
DB
1946}
1947
febce40f 1948static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1949{
febce40f
RW
1950 struct cpudata *cpu = all_cpu_data[cpu_num];
1951
5ab666e0
RW
1952 if (cpu->update_util_set)
1953 return;
1954
febce40f
RW
1955 /* Prevent intel_pstate_update_util() from using stale data. */
1956 cpu->sample.time = 0;
0bed612b
RW
1957 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1958 intel_pstate_update_util);
4578ee7e 1959 cpu->update_util_set = true;
bb6ab52f
RW
1960}
1961
1962static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1963{
4578ee7e
CY
1964 struct cpudata *cpu_data = all_cpu_data[cpu];
1965
1966 if (!cpu_data->update_util_set)
1967 return;
1968
0bed612b 1969 cpufreq_remove_update_util_hook(cpu);
4578ee7e 1970 cpu_data->update_util_set = false;
bb6ab52f
RW
1971 synchronize_sched();
1972}
1973
80b120ca
RW
1974static int intel_pstate_get_max_freq(struct cpudata *cpu)
1975{
1976 return global.turbo_disabled || global.no_turbo ?
1977 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1978}
1979
eae48f04 1980static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
c5a2ee7d 1981 struct cpudata *cpu)
eae48f04 1982{
80b120ca 1983 int max_freq = intel_pstate_get_max_freq(cpu);
e4c204ce 1984 int32_t max_policy_perf, min_policy_perf;
a410c03d 1985
80b120ca 1986 max_policy_perf = div_ext_fp(policy->max, max_freq);
e4c204ce 1987 max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
5879f877 1988 if (policy->max == policy->min) {
e4c204ce 1989 min_policy_perf = max_policy_perf;
5879f877 1990 } else {
80b120ca 1991 min_policy_perf = div_ext_fp(policy->min, max_freq);
e4c204ce
RW
1992 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1993 0, max_policy_perf);
5879f877 1994 }
eae48f04 1995
e4c204ce 1996 /* Normalize user input to [min_perf, max_perf] */
c5a2ee7d 1997 if (per_cpu_limits) {
e14cf885
RW
1998 cpu->min_perf = min_policy_perf;
1999 cpu->max_perf = max_policy_perf;
c5a2ee7d
RW
2000 } else {
2001 int32_t global_min, global_max;
2002
2003 /* Global limits are in percent of the maximum turbo P-state. */
2004 global_max = percent_ext_fp(global.max_perf_pct);
2005 global_min = percent_ext_fp(global.min_perf_pct);
80b120ca 2006 if (max_freq != cpu->pstate.turbo_freq) {
c5a2ee7d
RW
2007 int32_t turbo_factor;
2008
2009 turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
2010 cpu->pstate.max_pstate);
2011 global_min = mul_ext_fp(global_min, turbo_factor);
2012 global_max = mul_ext_fp(global_max, turbo_factor);
2013 }
2014 global_min = clamp_t(int32_t, global_min, 0, global_max);
eae48f04 2015
e14cf885
RW
2016 cpu->min_perf = max(min_policy_perf, global_min);
2017 cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2018 cpu->max_perf = min(max_policy_perf, global_max);
2019 cpu->max_perf = max(min_policy_perf, cpu->max_perf);
c5a2ee7d
RW
2020
2021 /* Make sure min_perf <= max_perf */
e14cf885 2022 cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
c5a2ee7d 2023 }
eae48f04 2024
e14cf885
RW
2025 cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2026 cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
eae48f04
SP
2027
2028 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
e14cf885
RW
2029 fp_ext_toint(cpu->max_perf * 100),
2030 fp_ext_toint(cpu->min_perf * 100));
eae48f04
SP
2031}
2032
93f0822d
DB
2033static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2034{
3be9200d
SP
2035 struct cpudata *cpu;
2036
d3929b83
DB
2037 if (!policy->cpuinfo.max_freq)
2038 return -ENODEV;
2039
2c2c1af4
SP
2040 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2041 policy->cpuinfo.max_freq, policy->max);
2042
a6c6ead1 2043 cpu = all_cpu_data[policy->cpu];
2f1d407a
RW
2044 cpu->policy = policy->policy;
2045
b59fe540
SP
2046 mutex_lock(&intel_pstate_limits_lock);
2047
c5a2ee7d 2048 intel_pstate_update_perf_limits(policy, cpu);
a240c4aa 2049
2f1d407a 2050 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
a6c6ead1
RW
2051 /*
2052 * NOHZ_FULL CPUs need this as the governor callback may not
2053 * be invoked on them.
2054 */
2055 intel_pstate_clear_update_util_hook(policy->cpu);
2056 intel_pstate_max_within_limits(cpu);
2057 }
2058
bb6ab52f
RW
2059 intel_pstate_set_update_util_hook(policy->cpu);
2060
5f98ced1
RW
2061 if (hwp_active)
2062 intel_pstate_hwp_set(policy);
2f86dc4c 2063
b59fe540
SP
2064 mutex_unlock(&intel_pstate_limits_lock);
2065
93f0822d
DB
2066 return 0;
2067}
2068
80b120ca
RW
2069static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2070 struct cpudata *cpu)
2071{
2072 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2073 policy->max < policy->cpuinfo.max_freq &&
2074 policy->max > cpu->pstate.max_freq) {
2075 pr_debug("policy->max > max non turbo frequency\n");
2076 policy->max = policy->cpuinfo.max_freq;
2077 }
2078}
2079
93f0822d
DB
2080static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2081{
7d9a8a9f 2082 struct cpudata *cpu = all_cpu_data[policy->cpu];
7d9a8a9f
SP
2083
2084 update_turbo_state();
80b120ca
RW
2085 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2086 intel_pstate_get_max_freq(cpu));
93f0822d 2087
285cb990 2088 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 2089 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
2090 return -EINVAL;
2091
80b120ca
RW
2092 intel_pstate_adjust_policy_max(policy, cpu);
2093
93f0822d
DB
2094 return 0;
2095}
2096
001c76f0
RW
2097static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2098{
2099 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2100}
2101
bb18008f 2102static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 2103{
001c76f0 2104 pr_debug("CPU %d exiting\n", policy->cpu);
93f0822d 2105
001c76f0 2106 intel_pstate_clear_update_util_hook(policy->cpu);
984edbdc
SP
2107 if (hwp_active)
2108 intel_pstate_hwp_save_state(policy);
2109 else
001c76f0
RW
2110 intel_cpufreq_stop_cpu(policy);
2111}
bb18008f 2112
001c76f0
RW
2113static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2114{
2115 intel_pstate_exit_perf_limits(policy);
a4675fbc 2116
001c76f0 2117 policy->fast_switch_possible = false;
2f86dc4c 2118
001c76f0 2119 return 0;
93f0822d
DB
2120}
2121
001c76f0 2122static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 2123{
93f0822d 2124 struct cpudata *cpu;
52e0a509 2125 int rc;
93f0822d
DB
2126
2127 rc = intel_pstate_init_cpu(policy->cpu);
2128 if (rc)
2129 return rc;
2130
2131 cpu = all_cpu_data[policy->cpu];
2132
e14cf885
RW
2133 cpu->max_perf = int_ext_tofp(1);
2134 cpu->min_perf = 0;
93f0822d 2135
b27580b0
DB
2136 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2137 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
2138
2139 /* cpuinfo and default policy values */
b27580b0 2140 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
983e600e 2141 update_turbo_state();
7de32556 2142 policy->cpuinfo.max_freq = global.turbo_disabled ?
983e600e
SP
2143 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2144 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2145
9522a2ff 2146 intel_pstate_init_acpi_perf_limits(policy);
93f0822d
DB
2147 cpumask_set_cpu(policy->cpu, policy->cpus);
2148
001c76f0
RW
2149 policy->fast_switch_possible = true;
2150
93f0822d
DB
2151 return 0;
2152}
2153
001c76f0 2154static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
9522a2ff 2155{
001c76f0
RW
2156 int ret = __intel_pstate_cpu_init(policy);
2157
2158 if (ret)
2159 return ret;
2160
2161 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
7de32556 2162 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
001c76f0
RW
2163 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2164 else
2165 policy->policy = CPUFREQ_POLICY_POWERSAVE;
9522a2ff
SP
2166
2167 return 0;
2168}
2169
001c76f0 2170static struct cpufreq_driver intel_pstate = {
93f0822d
DB
2171 .flags = CPUFREQ_CONST_LOOPS,
2172 .verify = intel_pstate_verify_policy,
2173 .setpolicy = intel_pstate_set_policy,
984edbdc 2174 .suspend = intel_pstate_hwp_save_state,
8442885f 2175 .resume = intel_pstate_resume,
93f0822d
DB
2176 .get = intel_pstate_get,
2177 .init = intel_pstate_cpu_init,
9522a2ff 2178 .exit = intel_pstate_cpu_exit,
bb18008f 2179 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 2180 .name = "intel_pstate",
93f0822d
DB
2181};
2182
001c76f0
RW
2183static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2184{
2185 struct cpudata *cpu = all_cpu_data[policy->cpu];
001c76f0
RW
2186
2187 update_turbo_state();
80b120ca
RW
2188 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2189 intel_pstate_get_max_freq(cpu));
001c76f0 2190
80b120ca 2191 intel_pstate_adjust_policy_max(policy, cpu);
001c76f0 2192
c5a2ee7d
RW
2193 intel_pstate_update_perf_limits(policy, cpu);
2194
001c76f0
RW
2195 return 0;
2196}
2197
001c76f0
RW
2198static int intel_cpufreq_target(struct cpufreq_policy *policy,
2199 unsigned int target_freq,
2200 unsigned int relation)
2201{
2202 struct cpudata *cpu = all_cpu_data[policy->cpu];
2203 struct cpufreq_freqs freqs;
2204 int target_pstate;
2205
64897b20
RW
2206 update_turbo_state();
2207
001c76f0 2208 freqs.old = policy->cur;
64897b20 2209 freqs.new = target_freq;
001c76f0
RW
2210
2211 cpufreq_freq_transition_begin(policy, &freqs);
2212 switch (relation) {
2213 case CPUFREQ_RELATION_L:
2214 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2215 break;
2216 case CPUFREQ_RELATION_H:
2217 target_pstate = freqs.new / cpu->pstate.scaling;
2218 break;
2219 default:
2220 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2221 break;
2222 }
2223 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2224 if (target_pstate != cpu->pstate.current_pstate) {
2225 cpu->pstate.current_pstate = target_pstate;
2226 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2227 pstate_funcs.get_val(cpu, target_pstate));
2228 }
64078299 2229 freqs.new = target_pstate * cpu->pstate.scaling;
001c76f0
RW
2230 cpufreq_freq_transition_end(policy, &freqs, false);
2231
2232 return 0;
2233}
2234
2235static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2236 unsigned int target_freq)
2237{
2238 struct cpudata *cpu = all_cpu_data[policy->cpu];
2239 int target_pstate;
2240
64897b20
RW
2241 update_turbo_state();
2242
001c76f0 2243 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
64078299 2244 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
001c76f0 2245 intel_pstate_update_pstate(cpu, target_pstate);
64078299 2246 return target_pstate * cpu->pstate.scaling;
001c76f0
RW
2247}
2248
2249static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2250{
2251 int ret = __intel_pstate_cpu_init(policy);
2252
2253 if (ret)
2254 return ret;
2255
2256 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2257 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2258 policy->cur = policy->cpuinfo.min_freq;
2259
2260 return 0;
2261}
2262
2263static struct cpufreq_driver intel_cpufreq = {
2264 .flags = CPUFREQ_CONST_LOOPS,
2265 .verify = intel_cpufreq_verify_policy,
2266 .target = intel_cpufreq_target,
2267 .fast_switch = intel_cpufreq_fast_switch,
2268 .init = intel_cpufreq_cpu_init,
2269 .exit = intel_pstate_cpu_exit,
2270 .stop_cpu = intel_cpufreq_stop_cpu,
2271 .name = "intel_cpufreq",
2272};
2273
2274static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2275
fb1fe104
RW
2276static void intel_pstate_driver_cleanup(void)
2277{
2278 unsigned int cpu;
2279
2280 get_online_cpus();
2281 for_each_online_cpu(cpu) {
2282 if (all_cpu_data[cpu]) {
2283 if (intel_pstate_driver == &intel_pstate)
2284 intel_pstate_clear_update_util_hook(cpu);
2285
2286 kfree(all_cpu_data[cpu]);
2287 all_cpu_data[cpu] = NULL;
2288 }
2289 }
2290 put_online_cpus();
2291}
2292
2293static int intel_pstate_register_driver(void)
2294{
2295 int ret;
2296
c5a2ee7d
RW
2297 memset(&global, 0, sizeof(global));
2298 global.max_perf_pct = 100;
c3a49c89 2299
fb1fe104
RW
2300 ret = cpufreq_register_driver(intel_pstate_driver);
2301 if (ret) {
2302 intel_pstate_driver_cleanup();
2303 return ret;
2304 }
2305
c5a2ee7d
RW
2306 global.min_perf_pct = min_perf_pct_min();
2307
fb1fe104
RW
2308 mutex_lock(&intel_pstate_limits_lock);
2309 driver_registered = true;
2310 mutex_unlock(&intel_pstate_limits_lock);
2311
2312 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2313 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2314 intel_pstate_debug_expose_params();
2315
2316 return 0;
2317}
2318
2319static int intel_pstate_unregister_driver(void)
2320{
2321 if (hwp_active)
2322 return -EBUSY;
2323
2324 if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2325 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2326 intel_pstate_debug_hide_params();
2327
2328 mutex_lock(&intel_pstate_limits_lock);
2329 driver_registered = false;
2330 mutex_unlock(&intel_pstate_limits_lock);
2331
2332 cpufreq_unregister_driver(intel_pstate_driver);
2333 intel_pstate_driver_cleanup();
2334
2335 return 0;
2336}
2337
2338static ssize_t intel_pstate_show_status(char *buf)
2339{
2340 if (!driver_registered)
2341 return sprintf(buf, "off\n");
2342
2343 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2344 "active" : "passive");
2345}
2346
2347static int intel_pstate_update_status(const char *buf, size_t size)
2348{
2349 int ret;
2350
2351 if (size == 3 && !strncmp(buf, "off", size))
2352 return driver_registered ?
2353 intel_pstate_unregister_driver() : -EINVAL;
2354
2355 if (size == 6 && !strncmp(buf, "active", size)) {
2356 if (driver_registered) {
2357 if (intel_pstate_driver == &intel_pstate)
2358 return 0;
2359
2360 ret = intel_pstate_unregister_driver();
2361 if (ret)
2362 return ret;
2363 }
2364
2365 intel_pstate_driver = &intel_pstate;
2366 return intel_pstate_register_driver();
2367 }
2368
2369 if (size == 7 && !strncmp(buf, "passive", size)) {
2370 if (driver_registered) {
2371 if (intel_pstate_driver != &intel_pstate)
2372 return 0;
2373
2374 ret = intel_pstate_unregister_driver();
2375 if (ret)
2376 return ret;
2377 }
2378
2379 intel_pstate_driver = &intel_cpufreq;
2380 return intel_pstate_register_driver();
2381 }
2382
2383 return -EINVAL;
2384}
2385
eed43609
JZ
2386static int no_load __initdata;
2387static int no_hwp __initdata;
2388static int hwp_only __initdata;
29327c84 2389static unsigned int force_load __initdata;
6be26498 2390
29327c84 2391static int __init intel_pstate_msrs_not_valid(void)
b563b4e3 2392{
016c8150 2393 if (!pstate_funcs.get_max() ||
c410833a
SK
2394 !pstate_funcs.get_min() ||
2395 !pstate_funcs.get_turbo())
b563b4e3
DB
2396 return -ENODEV;
2397
b563b4e3
DB
2398 return 0;
2399}
016c8150 2400
7f7a516e
SP
2401#ifdef CONFIG_ACPI
2402static void intel_pstate_use_acpi_profile(void)
2403{
55395345
RW
2404 switch (acpi_gbl_FADT.preferred_profile) {
2405 case PM_MOBILE:
2406 case PM_TABLET:
2407 case PM_APPLIANCE_PC:
2408 case PM_DESKTOP:
2409 case PM_WORKSTATION:
7f7a516e
SP
2410 pstate_funcs.get_target_pstate =
2411 get_target_pstate_use_cpu_load;
55395345 2412 }
7f7a516e
SP
2413}
2414#else
2415static void intel_pstate_use_acpi_profile(void)
2416{
2417}
2418#endif
2419
29327c84 2420static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
2421{
2422 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 2423 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
2424 pstate_funcs.get_min = funcs->get_min;
2425 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 2426 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 2427 pstate_funcs.get_val = funcs->get_val;
007bea09 2428 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
2429 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2430
7f7a516e 2431 intel_pstate_use_acpi_profile();
016c8150
DB
2432}
2433
9522a2ff 2434#ifdef CONFIG_ACPI
fbbcdc07 2435
29327c84 2436static bool __init intel_pstate_no_acpi_pss(void)
fbbcdc07
AH
2437{
2438 int i;
2439
2440 for_each_possible_cpu(i) {
2441 acpi_status status;
2442 union acpi_object *pss;
2443 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2444 struct acpi_processor *pr = per_cpu(processors, i);
2445
2446 if (!pr)
2447 continue;
2448
2449 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2450 if (ACPI_FAILURE(status))
2451 continue;
2452
2453 pss = buffer.pointer;
2454 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2455 kfree(pss);
2456 return false;
2457 }
2458
2459 kfree(pss);
2460 }
2461
2462 return true;
2463}
2464
29327c84 2465static bool __init intel_pstate_has_acpi_ppc(void)
966916ea 2466{
2467 int i;
2468
2469 for_each_possible_cpu(i) {
2470 struct acpi_processor *pr = per_cpu(processors, i);
2471
2472 if (!pr)
2473 continue;
2474 if (acpi_has_method(pr->handle, "_PPC"))
2475 return true;
2476 }
2477 return false;
2478}
2479
2480enum {
2481 PSS,
2482 PPC,
2483};
2484
fbbcdc07
AH
2485struct hw_vendor_info {
2486 u16 valid;
2487 char oem_id[ACPI_OEM_ID_SIZE];
2488 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 2489 int oem_pwr_table;
fbbcdc07
AH
2490};
2491
2492/* Hardware vendor-specific info that has its own power management modes */
29327c84 2493static struct hw_vendor_info vendor_info[] __initdata = {
966916ea 2494 {1, "HP ", "ProLiant", PSS},
2495 {1, "ORACLE", "X4-2 ", PPC},
2496 {1, "ORACLE", "X4-2L ", PPC},
2497 {1, "ORACLE", "X4-2B ", PPC},
2498 {1, "ORACLE", "X3-2 ", PPC},
2499 {1, "ORACLE", "X3-2L ", PPC},
2500 {1, "ORACLE", "X3-2B ", PPC},
2501 {1, "ORACLE", "X4470M2 ", PPC},
2502 {1, "ORACLE", "X4270M3 ", PPC},
2503 {1, "ORACLE", "X4270M2 ", PPC},
2504 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
2505 {1, "ORACLE", "X4170 M3", PPC},
2506 {1, "ORACLE", "X4275 M3", PPC},
2507 {1, "ORACLE", "X6-2 ", PPC},
2508 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
2509 {0, "", ""},
2510};
2511
29327c84 2512static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
fbbcdc07
AH
2513{
2514 struct acpi_table_header hdr;
2515 struct hw_vendor_info *v_info;
2f86dc4c
DB
2516 const struct x86_cpu_id *id;
2517 u64 misc_pwr;
2518
2519 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2520 if (id) {
2521 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2522 if ( misc_pwr & (1 << 8))
2523 return true;
2524 }
fbbcdc07 2525
c410833a
SK
2526 if (acpi_disabled ||
2527 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
2528 return false;
2529
2530 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 2531 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 2532 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2533 ACPI_OEM_TABLE_ID_SIZE))
2534 switch (v_info->oem_pwr_table) {
2535 case PSS:
2536 return intel_pstate_no_acpi_pss();
2537 case PPC:
aa4ea34d
EZ
2538 return intel_pstate_has_acpi_ppc() &&
2539 (!force_load);
966916ea 2540 }
fbbcdc07
AH
2541 }
2542
2543 return false;
2544}
d0ea59e1
RW
2545
2546static void intel_pstate_request_control_from_smm(void)
2547{
2548 /*
2549 * It may be unsafe to request P-states control from SMM if _PPC support
2550 * has not been enabled.
2551 */
2552 if (acpi_ppc)
2553 acpi_processor_pstate_control();
2554}
fbbcdc07
AH
2555#else /* CONFIG_ACPI not enabled */
2556static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 2557static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
d0ea59e1 2558static inline void intel_pstate_request_control_from_smm(void) {}
fbbcdc07
AH
2559#endif /* CONFIG_ACPI */
2560
7791e4aa
SP
2561static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2562 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2563 {}
2564};
2565
93f0822d
DB
2566static int __init intel_pstate_init(void)
2567{
eb5139d1 2568 int rc;
93f0822d 2569
6be26498
DB
2570 if (no_load)
2571 return -ENODEV;
2572
eb5139d1 2573 if (x86_match_cpu(hwp_support_ids)) {
7791e4aa 2574 copy_cpu_funcs(&core_params.funcs);
eb5139d1
RW
2575 if (no_hwp) {
2576 pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2577 } else {
2578 hwp_active++;
2579 intel_pstate.attr = hwp_cpufreq_attrs;
2580 goto hwp_cpu_matched;
2581 }
2582 } else {
2583 const struct x86_cpu_id *id;
2584 struct cpu_defaults *cpu_def;
7791e4aa 2585
eb5139d1
RW
2586 id = x86_match_cpu(intel_pstate_cpu_ids);
2587 if (!id)
2588 return -ENODEV;
93f0822d 2589
eb5139d1 2590 cpu_def = (struct cpu_defaults *)id->driver_data;
eb5139d1
RW
2591 copy_cpu_funcs(&cpu_def->funcs);
2592 }
016c8150 2593
b563b4e3
DB
2594 if (intel_pstate_msrs_not_valid())
2595 return -ENODEV;
2596
7791e4aa
SP
2597hwp_cpu_matched:
2598 /*
2599 * The Intel pstate driver will be ignored if the platform
2600 * firmware has its own power management modes.
2601 */
2602 if (intel_pstate_platform_pwr_mgmt_exists())
2603 return -ENODEV;
2604
fb1fe104
RW
2605 if (!hwp_active && hwp_only)
2606 return -ENOTSUPP;
2607
4836df17 2608 pr_info("Intel P-state driver initializing\n");
93f0822d 2609
b57ffac5 2610 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
2611 if (!all_cpu_data)
2612 return -ENOMEM;
93f0822d 2613
d0ea59e1
RW
2614 intel_pstate_request_control_from_smm();
2615
93f0822d 2616 intel_pstate_sysfs_expose_params();
b69880f9 2617
0c30b65b 2618 mutex_lock(&intel_pstate_driver_lock);
fb1fe104 2619 rc = intel_pstate_register_driver();
0c30b65b 2620 mutex_unlock(&intel_pstate_driver_lock);
fb1fe104
RW
2621 if (rc)
2622 return rc;
366430b5 2623
7791e4aa 2624 if (hwp_active)
4836df17 2625 pr_info("HWP enabled\n");
7791e4aa 2626
fb1fe104 2627 return 0;
93f0822d
DB
2628}
2629device_initcall(intel_pstate_init);
2630
6be26498
DB
2631static int __init intel_pstate_setup(char *str)
2632{
2633 if (!str)
2634 return -EINVAL;
2635
001c76f0 2636 if (!strcmp(str, "disable")) {
6be26498 2637 no_load = 1;
001c76f0
RW
2638 } else if (!strcmp(str, "passive")) {
2639 pr_info("Passive mode enabled\n");
2640 intel_pstate_driver = &intel_cpufreq;
2641 no_hwp = 1;
2642 }
539342f6 2643 if (!strcmp(str, "no_hwp")) {
4836df17 2644 pr_info("HWP disabled\n");
2f86dc4c 2645 no_hwp = 1;
539342f6 2646 }
aa4ea34d
EZ
2647 if (!strcmp(str, "force"))
2648 force_load = 1;
d64c3b0b
KCA
2649 if (!strcmp(str, "hwp_only"))
2650 hwp_only = 1;
eae48f04
SP
2651 if (!strcmp(str, "per_cpu_perf_limits"))
2652 per_cpu_limits = true;
9522a2ff
SP
2653
2654#ifdef CONFIG_ACPI
2655 if (!strcmp(str, "support_acpi_ppc"))
2656 acpi_ppc = true;
2657#endif
2658
6be26498
DB
2659 return 0;
2660}
2661early_param("intel_pstate", intel_pstate_setup);
2662
93f0822d
DB
2663MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2664MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2665MODULE_LICENSE("GPL");