]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/edac/amd64_edac.c
EDAC, sb_edac: Remove NULL pointer check on array pci_tad
[mirror_ubuntu-jammy-kernel.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418 3
d1ea71cd 4static struct edac_pci_ctl_info *pci_ctl;
2bc65418
DT
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
2ec591ac 18/* Per-node stuff */
ae7bb7c6 19static struct ecc_settings **ecc_stngs;
2bc65418 20
b70ef010
BP
21/*
22 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
24 * or higher value'.
25 *
26 *FIXME: Produce a better mapping/linearisation.
27 */
c7e5301a 28static const struct scrubrate {
39094443
BP
29 u32 scrubval; /* bit pattern for scrub rate */
30 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
31} scrubrates[] = {
b70ef010
BP
32 { 0x01, 1600000000UL},
33 { 0x02, 800000000UL},
34 { 0x03, 400000000UL},
35 { 0x04, 200000000UL},
36 { 0x05, 100000000UL},
37 { 0x06, 50000000UL},
38 { 0x07, 25000000UL},
39 { 0x08, 12284069UL},
40 { 0x09, 6274509UL},
41 { 0x0A, 3121951UL},
42 { 0x0B, 1560975UL},
43 { 0x0C, 781440UL},
44 { 0x0D, 390720UL},
45 { 0x0E, 195300UL},
46 { 0x0F, 97650UL},
47 { 0x10, 48854UL},
48 { 0x11, 24427UL},
49 { 0x12, 12213UL},
50 { 0x13, 6101UL},
51 { 0x14, 3051UL},
52 { 0x15, 1523UL},
53 { 0x16, 761UL},
54 { 0x00, 0UL}, /* scrubbing off */
55};
56
66fed2d4
BP
57int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
58 u32 *val, const char *func)
b2b0c605
BP
59{
60 int err = 0;
61
62 err = pci_read_config_dword(pdev, offset, val);
63 if (err)
64 amd64_warn("%s: error reading F%dx%03x.\n",
65 func, PCI_FUNC(pdev->devfn), offset);
66
67 return err;
68}
69
70int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
71 u32 val, const char *func)
72{
73 int err = 0;
74
75 err = pci_write_config_dword(pdev, offset, val);
76 if (err)
77 amd64_warn("%s: error writing to F%dx%03x.\n",
78 func, PCI_FUNC(pdev->devfn), offset);
79
80 return err;
81}
82
7981a28f
AG
83/*
84 * Select DCT to which PCI cfg accesses are routed
85 */
86static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
87{
88 u32 reg = 0;
89
90 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
91 reg &= (pvt->model == 0x30) ? ~3 : ~1;
92 reg |= dct;
93 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
94}
95
b2b0c605
BP
96/*
97 *
98 * Depending on the family, F2 DCT reads need special handling:
99 *
7981a28f 100 * K8: has a single DCT only and no address offsets >= 0x100
b2b0c605
BP
101 *
102 * F10h: each DCT has its own set of regs
103 * DCT0 -> F2x040..
104 * DCT1 -> F2x140..
105 *
94c1acf2 106 * F16h: has only 1 DCT
7981a28f
AG
107 *
108 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
b2b0c605 109 */
7981a28f
AG
110static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
111 int offset, u32 *val)
b2b0c605 112{
7981a28f
AG
113 switch (pvt->fam) {
114 case 0xf:
115 if (dct || offset >= 0x100)
116 return -EINVAL;
117 break;
b2b0c605 118
7981a28f
AG
119 case 0x10:
120 if (dct) {
121 /*
122 * Note: If ganging is enabled, barring the regs
123 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 * return 0. (cf. Section 2.8.1 F10h BKDG)
125 */
126 if (dct_ganging_enabled(pvt))
127 return 0;
b2b0c605 128
7981a28f
AG
129 offset += 0x100;
130 }
131 break;
73ba8593 132
7981a28f
AG
133 case 0x15:
134 /*
135 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 * We should select which DCT we access using F1x10C[DctCfgSel]
137 */
138 dct = (dct && pvt->model == 0x30) ? 3 : dct;
139 f15h_select_dct(pvt, dct);
140 break;
73ba8593 141
7981a28f
AG
142 case 0x16:
143 if (dct)
144 return -EINVAL;
145 break;
b2b0c605 146
7981a28f
AG
147 default:
148 break;
b2b0c605 149 }
7981a28f 150 return amd64_read_pci_cfg(pvt->F2, offset, val);
b2b0c605
BP
151}
152
2bc65418
DT
153/*
154 * Memory scrubber control interface. For K8, memory scrubbing is handled by
155 * hardware and can involve L2 cache, dcache as well as the main memory. With
156 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
157 * functionality.
158 *
159 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161 * bytes/sec for the setting.
162 *
163 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164 * other archs, we might not have access to the caches directly.
165 */
166
167/*
168 * scan the scrub rate mapping table for a close or matching bandwidth value to
169 * issue. If requested is too big, then use last maximum value found.
170 */
da92110d 171static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
2bc65418
DT
172{
173 u32 scrubval;
174 int i;
175
176 /*
177 * map the configured rate (new_bw) to a value specific to the AMD64
178 * memory controller and apply to register. Search for the first
179 * bandwidth entry that is greater or equal than the setting requested
180 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
181 *
182 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
183 * by falling back to the last element in scrubrates[].
2bc65418 184 */
168bfeef 185 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
186 /*
187 * skip scrub rates which aren't recommended
188 * (see F10 BKDG, F3x58)
189 */
395ae783 190 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
191 continue;
192
193 if (scrubrates[i].bandwidth <= new_bw)
194 break;
2bc65418
DT
195 }
196
197 scrubval = scrubrates[i].scrubval;
2bc65418 198
da92110d
AG
199 if (pvt->fam == 0x15 && pvt->model == 0x60) {
200 f15h_select_dct(pvt, 0);
201 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
202 f15h_select_dct(pvt, 1);
203 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
204 } else {
205 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
206 }
2bc65418 207
39094443
BP
208 if (scrubval)
209 return scrubrates[i].bandwidth;
210
2bc65418
DT
211 return 0;
212}
213
d1ea71cd 214static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
215{
216 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 217 u32 min_scrubrate = 0x5;
2bc65418 218
a4b4bedc 219 if (pvt->fam == 0xf)
87b3e0e6
BP
220 min_scrubrate = 0x0;
221
da92110d
AG
222 if (pvt->fam == 0x15) {
223 /* Erratum #505 */
224 if (pvt->model < 0x10)
225 f15h_select_dct(pvt, 0);
73ba8593 226
da92110d
AG
227 if (pvt->model == 0x60)
228 min_scrubrate = 0x6;
229 }
230 return __set_scrub_rate(pvt, bw, min_scrubrate);
2bc65418
DT
231}
232
d1ea71cd 233static int get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
234{
235 struct amd64_pvt *pvt = mci->pvt_info;
236 u32 scrubval = 0;
39094443 237 int i, retval = -EINVAL;
2bc65418 238
da92110d
AG
239 if (pvt->fam == 0x15) {
240 /* Erratum #505 */
241 if (pvt->model < 0x10)
242 f15h_select_dct(pvt, 0);
73ba8593 243
da92110d
AG
244 if (pvt->model == 0x60)
245 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
246 } else
247 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
248
249 scrubval = scrubval & 0x001F;
250
926311fd 251 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 252 if (scrubrates[i].scrubval == scrubval) {
39094443 253 retval = scrubrates[i].bandwidth;
2bc65418
DT
254 break;
255 }
256 }
39094443 257 return retval;
2bc65418
DT
258}
259
6775763a 260/*
7f19bf75
BP
261 * returns true if the SysAddr given by sys_addr matches the
262 * DRAM base/limit associated with node_id
6775763a 263 */
d1ea71cd 264static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
6775763a 265{
7f19bf75 266 u64 addr;
6775763a
DT
267
268 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
269 * all ones if the most significant implemented address bit is 1.
270 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
271 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
272 * Application Programming.
273 */
274 addr = sys_addr & 0x000000ffffffffffull;
275
7f19bf75
BP
276 return ((addr >= get_dram_base(pvt, nid)) &&
277 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
278}
279
280/*
281 * Attempt to map a SysAddr to a node. On success, return a pointer to the
282 * mem_ctl_info structure for the node that the SysAddr maps to.
283 *
284 * On failure, return NULL.
285 */
286static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
287 u64 sys_addr)
288{
289 struct amd64_pvt *pvt;
c7e5301a 290 u8 node_id;
6775763a
DT
291 u32 intlv_en, bits;
292
293 /*
294 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
295 * 3.4.4.2) registers to map the SysAddr to a node ID.
296 */
297 pvt = mci->pvt_info;
298
299 /*
300 * The value of this field should be the same for all DRAM Base
301 * registers. Therefore we arbitrarily choose to read it from the
302 * register for node 0.
303 */
7f19bf75 304 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
305
306 if (intlv_en == 0) {
7f19bf75 307 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
d1ea71cd 308 if (base_limit_match(pvt, sys_addr, node_id))
8edc5445 309 goto found;
6775763a 310 }
8edc5445 311 goto err_no_match;
6775763a
DT
312 }
313
72f158fe
BP
314 if (unlikely((intlv_en != 0x01) &&
315 (intlv_en != 0x03) &&
316 (intlv_en != 0x07))) {
24f9a7fe 317 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
318 return NULL;
319 }
320
321 bits = (((u32) sys_addr) >> 12) & intlv_en;
322
323 for (node_id = 0; ; ) {
7f19bf75 324 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
325 break; /* intlv_sel field matches */
326
7f19bf75 327 if (++node_id >= DRAM_RANGES)
6775763a
DT
328 goto err_no_match;
329 }
330
331 /* sanity test for sys_addr */
d1ea71cd 332 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
333 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
334 "range for node %d with node interleaving enabled.\n",
335 __func__, sys_addr, node_id);
6775763a
DT
336 return NULL;
337 }
338
339found:
b487c33e 340 return edac_mc_find((int)node_id);
6775763a
DT
341
342err_no_match:
956b9ba1
JP
343 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
344 (unsigned long)sys_addr);
6775763a
DT
345
346 return NULL;
347}
e2ce7255
DT
348
349/*
11c75ead
BP
350 * compute the CS base address of the @csrow on the DRAM controller @dct.
351 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 352 */
11c75ead
BP
353static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
354 u64 *base, u64 *mask)
e2ce7255 355{
11c75ead
BP
356 u64 csbase, csmask, base_bits, mask_bits;
357 u8 addr_shift;
e2ce7255 358
18b94f66 359 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
360 csbase = pvt->csels[dct].csbases[csrow];
361 csmask = pvt->csels[dct].csmasks[csrow];
10ef6b0d
CG
362 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
363 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
11c75ead 364 addr_shift = 4;
94c1acf2
AG
365
366 /*
18b94f66
AG
367 * F16h and F15h, models 30h and later need two addr_shift values:
368 * 8 for high and 6 for low (cf. F16h BKDG).
369 */
370 } else if (pvt->fam == 0x16 ||
371 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
94c1acf2
AG
372 csbase = pvt->csels[dct].csbases[csrow];
373 csmask = pvt->csels[dct].csmasks[csrow >> 1];
374
10ef6b0d
CG
375 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
376 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
377
378 *mask = ~0ULL;
379 /* poke holes for the csmask */
10ef6b0d
CG
380 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
381 (GENMASK_ULL(30, 19) << 8));
94c1acf2 382
10ef6b0d
CG
383 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
384 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
385
386 return;
11c75ead
BP
387 } else {
388 csbase = pvt->csels[dct].csbases[csrow];
389 csmask = pvt->csels[dct].csmasks[csrow >> 1];
390 addr_shift = 8;
e2ce7255 391
a4b4bedc 392 if (pvt->fam == 0x15)
10ef6b0d
CG
393 base_bits = mask_bits =
394 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
11c75ead 395 else
10ef6b0d
CG
396 base_bits = mask_bits =
397 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
11c75ead 398 }
e2ce7255 399
11c75ead 400 *base = (csbase & base_bits) << addr_shift;
e2ce7255 401
11c75ead
BP
402 *mask = ~0ULL;
403 /* poke holes for the csmask */
404 *mask &= ~(mask_bits << addr_shift);
405 /* OR them in */
406 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
407}
408
11c75ead
BP
409#define for_each_chip_select(i, dct, pvt) \
410 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
411
614ec9d8
BP
412#define chip_select_base(i, dct, pvt) \
413 pvt->csels[dct].csbases[i]
414
11c75ead
BP
415#define for_each_chip_select_mask(i, dct, pvt) \
416 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
417
e2ce7255
DT
418/*
419 * @input_addr is an InputAddr associated with the node given by mci. Return the
420 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
421 */
422static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
423{
424 struct amd64_pvt *pvt;
425 int csrow;
426 u64 base, mask;
427
428 pvt = mci->pvt_info;
429
11c75ead
BP
430 for_each_chip_select(csrow, 0, pvt) {
431 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
432 continue;
433
11c75ead
BP
434 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
435
436 mask = ~mask;
e2ce7255
DT
437
438 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
439 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
440 (unsigned long)input_addr, csrow,
441 pvt->mc_node_id);
e2ce7255
DT
442
443 return csrow;
444 }
445 }
956b9ba1
JP
446 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
447 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
448
449 return -1;
450}
451
e2ce7255
DT
452/*
453 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
454 * for the node represented by mci. Info is passed back in *hole_base,
455 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
456 * info is invalid. Info may be invalid for either of the following reasons:
457 *
458 * - The revision of the node is not E or greater. In this case, the DRAM Hole
459 * Address Register does not exist.
460 *
461 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
462 * indicating that its contents are not valid.
463 *
464 * The values passed back in *hole_base, *hole_offset, and *hole_size are
465 * complete 32-bit values despite the fact that the bitfields in the DHAR
466 * only represent bits 31-24 of the base and offset values.
467 */
468int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
469 u64 *hole_offset, u64 *hole_size)
470{
471 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
472
473 /* only revE and later have the DRAM Hole Address Register */
a4b4bedc 474 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
475 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
476 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
477 return 1;
478 }
479
bc21fa57 480 /* valid for Fam10h and above */
a4b4bedc 481 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 482 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
483 return 1;
484 }
485
c8e518d5 486 if (!dhar_valid(pvt)) {
956b9ba1
JP
487 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
488 pvt->mc_node_id);
e2ce7255
DT
489 return 1;
490 }
491
492 /* This node has Memory Hoisting */
493
494 /* +------------------+--------------------+--------------------+-----
495 * | memory | DRAM hole | relocated |
496 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
497 * | | | DRAM hole |
498 * | | | [0x100000000, |
499 * | | | (0x100000000+ |
500 * | | | (0xffffffff-x))] |
501 * +------------------+--------------------+--------------------+-----
502 *
503 * Above is a diagram of physical memory showing the DRAM hole and the
504 * relocated addresses from the DRAM hole. As shown, the DRAM hole
505 * starts at address x (the base address) and extends through address
506 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
507 * addresses in the hole so that they start at 0x100000000.
508 */
509
1f31677e
BP
510 *hole_base = dhar_base(pvt);
511 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255 512
a4b4bedc
BP
513 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
514 : k8_dhar_offset(pvt);
e2ce7255 515
956b9ba1
JP
516 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
517 pvt->mc_node_id, (unsigned long)*hole_base,
518 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
519
520 return 0;
521}
522EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
523
93c2df58
DT
524/*
525 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
526 * assumed that sys_addr maps to the node given by mci.
527 *
528 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
529 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
530 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
531 * then it is also involved in translating a SysAddr to a DramAddr. Sections
532 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
533 * These parts of the documentation are unclear. I interpret them as follows:
534 *
535 * When node n receives a SysAddr, it processes the SysAddr as follows:
536 *
537 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
538 * Limit registers for node n. If the SysAddr is not within the range
539 * specified by the base and limit values, then node n ignores the Sysaddr
540 * (since it does not map to node n). Otherwise continue to step 2 below.
541 *
542 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
543 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
544 * the range of relocated addresses (starting at 0x100000000) from the DRAM
545 * hole. If not, skip to step 3 below. Else get the value of the
546 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
547 * offset defined by this value from the SysAddr.
548 *
549 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
550 * Base register for node n. To obtain the DramAddr, subtract the base
551 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
552 */
553static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
554{
7f19bf75 555 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 556 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 557 int ret;
93c2df58 558
7f19bf75 559 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
560
561 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
562 &hole_size);
563 if (!ret) {
1f31677e
BP
564 if ((sys_addr >= (1ULL << 32)) &&
565 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
566 /* use DHAR to translate SysAddr to DramAddr */
567 dram_addr = sys_addr - hole_offset;
568
956b9ba1
JP
569 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
570 (unsigned long)sys_addr,
571 (unsigned long)dram_addr);
93c2df58
DT
572
573 return dram_addr;
574 }
575 }
576
577 /*
578 * Translate the SysAddr to a DramAddr as shown near the start of
579 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
580 * only deals with 40-bit values. Therefore we discard bits 63-40 of
581 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
582 * discard are all 1s. Otherwise the bits we discard are all 0s. See
583 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
584 * Programmer's Manual Volume 1 Application Programming.
585 */
10ef6b0d 586 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
93c2df58 587
956b9ba1
JP
588 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
589 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
590 return dram_addr;
591}
592
593/*
594 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
595 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
596 * for node interleaving.
597 */
598static int num_node_interleave_bits(unsigned intlv_en)
599{
600 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
601 int n;
602
603 BUG_ON(intlv_en > 7);
604 n = intlv_shift_table[intlv_en];
605 return n;
606}
607
608/* Translate the DramAddr given by @dram_addr to an InputAddr. */
609static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
610{
611 struct amd64_pvt *pvt;
612 int intlv_shift;
613 u64 input_addr;
614
615 pvt = mci->pvt_info;
616
617 /*
618 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
619 * concerning translating a DramAddr to an InputAddr.
620 */
7f19bf75 621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
10ef6b0d 622 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
f678b8cc 623 (dram_addr & 0xfff);
93c2df58 624
956b9ba1
JP
625 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
626 intlv_shift, (unsigned long)dram_addr,
627 (unsigned long)input_addr);
93c2df58
DT
628
629 return input_addr;
630}
631
632/*
633 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
634 * assumed that @sys_addr maps to the node given by mci.
635 */
636static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
637{
638 u64 input_addr;
639
640 input_addr =
641 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
642
c19ca6cb 643 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
956b9ba1 644 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
645
646 return input_addr;
647}
648
93c2df58
DT
649/* Map the Error address to a PAGE and PAGE OFFSET. */
650static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 651 struct err_info *err)
93c2df58 652{
33ca0643
BP
653 err->page = (u32) (error_address >> PAGE_SHIFT);
654 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
655}
656
657/*
658 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
659 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
660 * of a node that detected an ECC memory error. mci represents the node that
661 * the error address maps to (possibly different from the node that detected
662 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
663 * error.
664 */
665static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
666{
667 int csrow;
668
669 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
670
671 if (csrow == -1)
24f9a7fe
BP
672 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
673 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
674 return csrow;
675}
e2ce7255 676
bfc04aec 677static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 678
2da11654
DT
679/*
680 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
681 * are ECC capable.
682 */
d1ea71cd 683static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
2da11654 684{
cb328507 685 u8 bit;
1f6189ed 686 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 687
a4b4bedc 688 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
689 ? 19
690 : 17;
691
584fcff4 692 if (pvt->dclr0 & BIT(bit))
2da11654
DT
693 edac_cap = EDAC_FLAG_SECDED;
694
695 return edac_cap;
696}
697
d1ea71cd 698static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 699
d1ea71cd 700static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
68798e17 701{
956b9ba1 702 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 703
a597d2a5
AG
704 if (pvt->dram_type == MEM_LRDDR3) {
705 u32 dcsm = pvt->csels[chan].csmasks[0];
706 /*
707 * It's assumed all LRDIMMs in a DCT are going to be of
708 * same 'type' until proven otherwise. So, use a cs
709 * value of '0' here to get dcsm value.
710 */
711 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
712 }
713
714 edac_dbg(1, "All DIMMs support ECC:%s\n",
715 (dclr & BIT(19)) ? "yes" : "no");
716
68798e17 717
956b9ba1
JP
718 edac_dbg(1, " PAR/ERR parity: %s\n",
719 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 720
a4b4bedc 721 if (pvt->fam == 0x10)
956b9ba1
JP
722 edac_dbg(1, " DCT 128bit mode width: %s\n",
723 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 724
956b9ba1
JP
725 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
726 (dclr & BIT(12)) ? "yes" : "no",
727 (dclr & BIT(13)) ? "yes" : "no",
728 (dclr & BIT(14)) ? "yes" : "no",
729 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
730}
731
2da11654 732/* Display and decode various NB registers for debug purposes. */
b2b0c605 733static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 734{
956b9ba1 735 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 736
956b9ba1
JP
737 edac_dbg(1, " NB two channel DRAM capable: %s\n",
738 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 739
956b9ba1
JP
740 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
741 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
742 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17 743
d1ea71cd 744 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
2da11654 745
956b9ba1 746 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 747
956b9ba1
JP
748 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
749 pvt->dhar, dhar_base(pvt),
a4b4bedc
BP
750 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
751 : f10_dhar_offset(pvt));
2da11654 752
956b9ba1 753 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 754
d1ea71cd 755 debug_display_dimm_sizes(pvt, 0);
4d796364 756
8de1d91e 757 /* everything below this point is Fam10h and above */
a4b4bedc 758 if (pvt->fam == 0xf)
2da11654 759 return;
4d796364 760
d1ea71cd 761 debug_display_dimm_sizes(pvt, 1);
2da11654 762
a3b7db09 763 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 764
8de1d91e 765 /* Only if NOT ganged does dclr1 have valid info */
68798e17 766 if (!dct_ganging_enabled(pvt))
d1ea71cd 767 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
2da11654
DT
768}
769
94be4bff 770/*
18b94f66 771 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 772 */
11c75ead 773static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 774{
18b94f66 775 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
776 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
777 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
a597d2a5 778 } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
18b94f66
AG
779 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
780 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
9d858bb1 781 } else {
11c75ead
BP
782 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
783 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
784 }
785}
786
787/*
11c75ead 788 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 789 */
b2b0c605 790static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 791{
11c75ead 792 int cs;
94be4bff 793
11c75ead 794 prep_chip_selects(pvt);
94be4bff 795
11c75ead 796 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
797 int reg0 = DCSB0 + (cs * 4);
798 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
799 u32 *base0 = &pvt->csels[0].csbases[cs];
800 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 801
7981a28f 802 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
956b9ba1
JP
803 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
804 cs, *base0, reg0);
94be4bff 805
7981a28f 806 if (pvt->fam == 0xf)
11c75ead 807 continue;
b2b0c605 808
7981a28f 809 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
956b9ba1 810 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
7981a28f
AG
811 cs, *base1, (pvt->fam == 0x10) ? reg1
812 : reg0);
94be4bff
DT
813 }
814
11c75ead 815 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
816 int reg0 = DCSM0 + (cs * 4);
817 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
818 u32 *mask0 = &pvt->csels[0].csmasks[cs];
819 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 820
7981a28f 821 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
956b9ba1
JP
822 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
823 cs, *mask0, reg0);
94be4bff 824
7981a28f 825 if (pvt->fam == 0xf)
11c75ead 826 continue;
b2b0c605 827
7981a28f 828 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
956b9ba1 829 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
7981a28f
AG
830 cs, *mask1, (pvt->fam == 0x10) ? reg1
831 : reg0);
94be4bff
DT
832 }
833}
834
a597d2a5 835static void determine_memory_type(struct amd64_pvt *pvt)
94be4bff 836{
a597d2a5 837 u32 dram_ctrl, dcsm;
94be4bff 838
a597d2a5
AG
839 switch (pvt->fam) {
840 case 0xf:
841 if (pvt->ext_model >= K8_REV_F)
842 goto ddr3;
843
844 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
845 return;
846
847 case 0x10:
6b4c0bde 848 if (pvt->dchr0 & DDR3_MODE)
a597d2a5
AG
849 goto ddr3;
850
851 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
852 return;
853
854 case 0x15:
855 if (pvt->model < 0x60)
856 goto ddr3;
857
858 /*
859 * Model 0x60h needs special handling:
860 *
861 * We use a Chip Select value of '0' to obtain dcsm.
862 * Theoretically, it is possible to populate LRDIMMs of different
863 * 'Rank' value on a DCT. But this is not the common case. So,
864 * it's reasonable to assume all DIMMs are going to be of same
865 * 'type' until proven otherwise.
866 */
867 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
868 dcsm = pvt->csels[0].csmasks[0];
869
870 if (((dram_ctrl >> 8) & 0x7) == 0x2)
871 pvt->dram_type = MEM_DDR4;
872 else if (pvt->dclr0 & BIT(16))
873 pvt->dram_type = MEM_DDR3;
874 else if (dcsm & 0x3)
875 pvt->dram_type = MEM_LRDDR3;
6b4c0bde 876 else
a597d2a5 877 pvt->dram_type = MEM_RDDR3;
94be4bff 878
a597d2a5
AG
879 return;
880
881 case 0x16:
882 goto ddr3;
883
884 default:
885 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
886 pvt->dram_type = MEM_EMPTY;
887 }
888 return;
94be4bff 889
a597d2a5
AG
890ddr3:
891 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
94be4bff
DT
892}
893
cb328507 894/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
895static int k8_early_channel_count(struct amd64_pvt *pvt)
896{
cb328507 897 int flag;
ddff876d 898
9f56da0e 899 if (pvt->ext_model >= K8_REV_F)
ddff876d 900 /* RevF (NPT) and later */
41d8bfab 901 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 902 else
ddff876d
DT
903 /* RevE and earlier */
904 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
905
906 /* not used */
907 pvt->dclr1 = 0;
908
909 return (flag) ? 2 : 1;
910}
911
70046624 912/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
a4b4bedc 913static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
ddff876d 914{
2ec591ac
BP
915 u16 mce_nid = amd_get_nb_id(m->extcpu);
916 struct mem_ctl_info *mci;
70046624
BP
917 u8 start_bit = 1;
918 u8 end_bit = 47;
2ec591ac
BP
919 u64 addr;
920
921 mci = edac_mc_find(mce_nid);
922 if (!mci)
923 return 0;
924
925 pvt = mci->pvt_info;
70046624 926
a4b4bedc 927 if (pvt->fam == 0xf) {
70046624
BP
928 start_bit = 3;
929 end_bit = 39;
930 }
931
10ef6b0d 932 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
c1ae6830
BP
933
934 /*
935 * Erratum 637 workaround
936 */
a4b4bedc 937 if (pvt->fam == 0x15) {
c1ae6830
BP
938 u64 cc6_base, tmp_addr;
939 u32 tmp;
8b84c8df 940 u8 intlv_en;
c1ae6830 941
10ef6b0d 942 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
c1ae6830
BP
943 return addr;
944
c1ae6830
BP
945
946 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
947 intlv_en = tmp >> 21 & 0x7;
948
949 /* add [47:27] + 3 trailing bits */
10ef6b0d 950 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
c1ae6830
BP
951
952 /* reverse and add DramIntlvEn */
953 cc6_base |= intlv_en ^ 0x7;
954
955 /* pin at [47:24] */
956 cc6_base <<= 24;
957
958 if (!intlv_en)
10ef6b0d 959 return cc6_base | (addr & GENMASK_ULL(23, 0));
c1ae6830
BP
960
961 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
962
963 /* faster log2 */
10ef6b0d 964 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
c1ae6830
BP
965
966 /* OR DramIntlvSel into bits [14:12] */
10ef6b0d 967 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
c1ae6830
BP
968
969 /* add remaining [11:0] bits from original MC4_ADDR */
10ef6b0d 970 tmp_addr |= addr & GENMASK_ULL(11, 0);
c1ae6830
BP
971
972 return cc6_base | tmp_addr;
973 }
974
975 return addr;
ddff876d
DT
976}
977
e2c0bffe
DB
978static struct pci_dev *pci_get_related_function(unsigned int vendor,
979 unsigned int device,
980 struct pci_dev *related)
981{
982 struct pci_dev *dev = NULL;
983
984 while ((dev = pci_get_device(vendor, device, dev))) {
985 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
986 (dev->bus->number == related->bus->number) &&
987 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
988 break;
989 }
990
991 return dev;
992}
993
7f19bf75 994static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 995{
e2c0bffe 996 struct amd_northbridge *nb;
18b94f66
AG
997 struct pci_dev *f1 = NULL;
998 unsigned int pci_func;
71d2a32e 999 int off = range << 3;
e2c0bffe 1000 u32 llim;
ddff876d 1001
7f19bf75
BP
1002 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1003 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 1004
18b94f66 1005 if (pvt->fam == 0xf)
7f19bf75 1006 return;
ddff876d 1007
7f19bf75
BP
1008 if (!dram_rw(pvt, range))
1009 return;
ddff876d 1010
7f19bf75
BP
1011 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1012 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 1013
e2c0bffe 1014 /* F15h: factor in CC6 save area by reading dst node's limit reg */
18b94f66 1015 if (pvt->fam != 0x15)
e2c0bffe 1016 return;
f08e457c 1017
e2c0bffe
DB
1018 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1019 if (WARN_ON(!nb))
1020 return;
f08e457c 1021
a597d2a5
AG
1022 if (pvt->model == 0x60)
1023 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1024 else if (pvt->model == 0x30)
1025 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1026 else
1027 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
18b94f66
AG
1028
1029 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
e2c0bffe
DB
1030 if (WARN_ON(!f1))
1031 return;
f08e457c 1032
e2c0bffe 1033 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 1034
10ef6b0d 1035 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
f08e457c 1036
e2c0bffe
DB
1037 /* {[39:27],111b} */
1038 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 1039
10ef6b0d 1040 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
f08e457c 1041
e2c0bffe
DB
1042 /* [47:40] */
1043 pvt->ranges[range].lim.hi |= llim >> 13;
1044
1045 pci_dev_put(f1);
ddff876d
DT
1046}
1047
f192c7b1 1048static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1049 struct err_info *err)
ddff876d 1050{
f192c7b1 1051 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 1052
33ca0643 1053 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
1054
1055 /*
1056 * Find out which node the error address belongs to. This may be
1057 * different from the node that detected the error.
1058 */
33ca0643
BP
1059 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1060 if (!err->src_mci) {
ab5a503c
MCC
1061 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1062 (unsigned long)sys_addr);
33ca0643 1063 err->err_code = ERR_NODE;
ab5a503c
MCC
1064 return;
1065 }
1066
1067 /* Now map the sys_addr to a CSROW */
33ca0643
BP
1068 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1069 if (err->csrow < 0) {
1070 err->err_code = ERR_CSROW;
ab5a503c
MCC
1071 return;
1072 }
1073
ddff876d 1074 /* CHIPKILL enabled */
f192c7b1 1075 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
1076 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1077 if (err->channel < 0) {
ddff876d
DT
1078 /*
1079 * Syndrome didn't map, so we don't know which of the
1080 * 2 DIMMs is in error. So we need to ID 'both' of them
1081 * as suspect.
1082 */
33ca0643 1083 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1084 "possible error reporting race\n",
33ca0643
BP
1085 err->syndrome);
1086 err->err_code = ERR_CHANNEL;
ddff876d
DT
1087 return;
1088 }
1089 } else {
1090 /*
1091 * non-chipkill ecc mode
1092 *
1093 * The k8 documentation is unclear about how to determine the
1094 * channel number when using non-chipkill memory. This method
1095 * was obtained from email communication with someone at AMD.
1096 * (Wish the email was placed in this comment - norsk)
1097 */
33ca0643 1098 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1099 }
ddff876d
DT
1100}
1101
41d8bfab 1102static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1103{
41d8bfab 1104 unsigned shift = 0;
ddff876d 1105
41d8bfab
BP
1106 if (i <= 2)
1107 shift = i;
1108 else if (!(i & 0x1))
1109 shift = i >> 1;
1433eb99 1110 else
41d8bfab 1111 shift = (i + 1) >> 1;
ddff876d 1112
41d8bfab
BP
1113 return 128 << (shift + !!dct_width);
1114}
1115
1116static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1117 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1118{
1119 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1120
1121 if (pvt->ext_model >= K8_REV_F) {
1122 WARN_ON(cs_mode > 11);
1123 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1124 }
1125 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1126 unsigned diff;
41d8bfab
BP
1127 WARN_ON(cs_mode > 10);
1128
11b0a314
BP
1129 /*
1130 * the below calculation, besides trying to win an obfuscated C
1131 * contest, maps cs_mode values to DIMM chip select sizes. The
1132 * mappings are:
1133 *
1134 * cs_mode CS size (mb)
1135 * ======= ============
1136 * 0 32
1137 * 1 64
1138 * 2 128
1139 * 3 128
1140 * 4 256
1141 * 5 512
1142 * 6 256
1143 * 7 512
1144 * 8 1024
1145 * 9 1024
1146 * 10 2048
1147 *
1148 * Basically, it calculates a value with which to shift the
1149 * smallest CS size of 32MB.
1150 *
1151 * ddr[23]_cs_size have a similar purpose.
1152 */
1153 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1154
1155 return 32 << (cs_mode - diff);
41d8bfab
BP
1156 }
1157 else {
1158 WARN_ON(cs_mode > 6);
1159 return 32 << cs_mode;
1160 }
ddff876d
DT
1161}
1162
1afd3c98
DT
1163/*
1164 * Get the number of DCT channels in use.
1165 *
1166 * Return:
1167 * number of Memory Channels in operation
1168 * Pass back:
1169 * contents of the DCL0_LOW register
1170 */
7d20d14d 1171static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1172{
6ba5dcdc 1173 int i, j, channels = 0;
1afd3c98 1174
7d20d14d 1175 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
a4b4bedc 1176 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1177 return 2;
1afd3c98
DT
1178
1179 /*
d16149e8
BP
1180 * Need to check if in unganged mode: In such, there are 2 channels,
1181 * but they are not in 128 bit mode and thus the above 'dclr0' status
1182 * bit will be OFF.
1afd3c98
DT
1183 *
1184 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1185 * their CSEnable bit on. If so, then SINGLE DIMM case.
1186 */
956b9ba1 1187 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1188
1afd3c98
DT
1189 /*
1190 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1191 * is more than just one DIMM present in unganged mode. Need to check
1192 * both controllers since DIMMs can be placed in either one.
1193 */
525a1b20
BP
1194 for (i = 0; i < 2; i++) {
1195 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1196
57a30854
WW
1197 for (j = 0; j < 4; j++) {
1198 if (DBAM_DIMM(j, dbam) > 0) {
1199 channels++;
1200 break;
1201 }
1202 }
1afd3c98
DT
1203 }
1204
d16149e8
BP
1205 if (channels > 2)
1206 channels = 2;
1207
24f9a7fe 1208 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1209
1210 return channels;
1afd3c98
DT
1211}
1212
41d8bfab 1213static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1214{
41d8bfab
BP
1215 unsigned shift = 0;
1216 int cs_size = 0;
1217
1218 if (i == 0 || i == 3 || i == 4)
1219 cs_size = -1;
1220 else if (i <= 2)
1221 shift = i;
1222 else if (i == 12)
1223 shift = 7;
1224 else if (!(i & 0x1))
1225 shift = i >> 1;
1226 else
1227 shift = (i + 1) >> 1;
1228
1229 if (cs_size != -1)
1230 cs_size = (128 * (1 << !!dct_width)) << shift;
1231
1232 return cs_size;
1233}
1234
a597d2a5
AG
1235static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1236{
1237 unsigned shift = 0;
1238 int cs_size = 0;
1239
1240 if (i < 4 || i == 6)
1241 cs_size = -1;
1242 else if (i == 12)
1243 shift = 7;
1244 else if (!(i & 0x1))
1245 shift = i >> 1;
1246 else
1247 shift = (i + 1) >> 1;
1248
1249 if (cs_size != -1)
1250 cs_size = rank_multiply * (128 << shift);
1251
1252 return cs_size;
1253}
1254
1255static int ddr4_cs_size(unsigned i)
1256{
1257 int cs_size = 0;
1258
1259 if (i == 0)
1260 cs_size = -1;
1261 else if (i == 1)
1262 cs_size = 1024;
1263 else
1264 /* Min cs_size = 1G */
1265 cs_size = 1024 * (1 << (i >> 1));
1266
1267 return cs_size;
1268}
1269
41d8bfab 1270static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1271 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1272{
1273 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1274
1275 WARN_ON(cs_mode > 11);
1433eb99
BP
1276
1277 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1278 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1279 else
41d8bfab
BP
1280 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1281}
1282
1283/*
1284 * F15h supports only 64bit DCT interfaces
1285 */
1286static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1287 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1288{
1289 WARN_ON(cs_mode > 12);
1433eb99 1290
41d8bfab 1291 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1292}
1293
a597d2a5
AG
1294/* F15h M60h supports DDR4 mapping as well.. */
1295static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1296 unsigned cs_mode, int cs_mask_nr)
1297{
1298 int cs_size;
1299 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1300
1301 WARN_ON(cs_mode > 12);
1302
1303 if (pvt->dram_type == MEM_DDR4) {
1304 if (cs_mode > 9)
1305 return -1;
1306
1307 cs_size = ddr4_cs_size(cs_mode);
1308 } else if (pvt->dram_type == MEM_LRDDR3) {
1309 unsigned rank_multiply = dcsm & 0xf;
1310
1311 if (rank_multiply == 3)
1312 rank_multiply = 4;
1313 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1314 } else {
1315 /* Minimum cs size is 512mb for F15hM60h*/
1316 if (cs_mode == 0x1)
1317 return -1;
1318
1319 cs_size = ddr3_cs_size(cs_mode, false);
1320 }
1321
1322 return cs_size;
1323}
1324
94c1acf2 1325/*
18b94f66 1326 * F16h and F15h model 30h have only limited cs_modes.
94c1acf2
AG
1327 */
1328static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1329 unsigned cs_mode, int cs_mask_nr)
94c1acf2
AG
1330{
1331 WARN_ON(cs_mode > 12);
1332
1333 if (cs_mode == 6 || cs_mode == 8 ||
1334 cs_mode == 9 || cs_mode == 12)
1335 return -1;
1336 else
1337 return ddr3_cs_size(cs_mode, false);
1338}
1339
5a5d2371 1340static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1341{
6163b5d4 1342
a4b4bedc 1343 if (pvt->fam == 0xf)
5a5d2371
BP
1344 return;
1345
7981a28f 1346 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1347 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1348 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1349
956b9ba1
JP
1350 edac_dbg(0, " DCTs operate in %s mode\n",
1351 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1352
1353 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1354 edac_dbg(0, " Address range split per DCT: %s\n",
1355 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1356
956b9ba1
JP
1357 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1358 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1359 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1360
956b9ba1
JP
1361 edac_dbg(0, " channel interleave: %s, "
1362 "interleave bits selector: 0x%x\n",
1363 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1364 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1365 }
1366
7981a28f 1367 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1368}
1369
18b94f66
AG
1370/*
1371 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1372 * 2.10.12 Memory Interleaving Modes).
1373 */
1374static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1375 u8 intlv_en, int num_dcts_intlv,
1376 u32 dct_sel)
1377{
1378 u8 channel = 0;
1379 u8 select;
1380
1381 if (!(intlv_en))
1382 return (u8)(dct_sel);
1383
1384 if (num_dcts_intlv == 2) {
1385 select = (sys_addr >> 8) & 0x3;
1386 channel = select ? 0x3 : 0;
9d0e8d83
AG
1387 } else if (num_dcts_intlv == 4) {
1388 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1389 switch (intlv_addr) {
1390 case 0x4:
1391 channel = (sys_addr >> 8) & 0x3;
1392 break;
1393 case 0x5:
1394 channel = (sys_addr >> 9) & 0x3;
1395 break;
1396 }
1397 }
18b94f66
AG
1398 return channel;
1399}
1400
f71d0a05 1401/*
229a7a11 1402 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1403 * Interleaving Modes.
1404 */
b15f0fca 1405static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1406 bool hi_range_sel, u8 intlv_en)
6163b5d4 1407{
151fa71c 1408 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1409
1410 if (dct_ganging_enabled(pvt))
229a7a11 1411 return 0;
6163b5d4 1412
229a7a11
BP
1413 if (hi_range_sel)
1414 return dct_sel_high;
6163b5d4 1415
229a7a11
BP
1416 /*
1417 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1418 */
1419 if (dct_interleave_enabled(pvt)) {
1420 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1421
1422 /* return DCT select function: 0=DCT0, 1=DCT1 */
1423 if (!intlv_addr)
1424 return sys_addr >> 6 & 1;
1425
1426 if (intlv_addr & 0x2) {
1427 u8 shift = intlv_addr & 0x1 ? 9 : 6;
dc0a50a8 1428 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
229a7a11
BP
1429
1430 return ((sys_addr >> shift) & 1) ^ temp;
1431 }
1432
dc0a50a8
YG
1433 if (intlv_addr & 0x4) {
1434 u8 shift = intlv_addr & 0x1 ? 9 : 8;
1435
1436 return (sys_addr >> shift) & 1;
1437 }
1438
229a7a11
BP
1439 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1440 }
1441
1442 if (dct_high_range_enabled(pvt))
1443 return ~dct_sel_high & 1;
6163b5d4
DT
1444
1445 return 0;
1446}
1447
c8e518d5 1448/* Convert the sys_addr to the normalized DCT address */
c7e5301a 1449static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
c8e518d5
BP
1450 u64 sys_addr, bool hi_rng,
1451 u32 dct_sel_base_addr)
6163b5d4
DT
1452{
1453 u64 chan_off;
c8e518d5
BP
1454 u64 dram_base = get_dram_base(pvt, range);
1455 u64 hole_off = f10_dhar_offset(pvt);
6f3508f6 1456 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1457
c8e518d5
BP
1458 if (hi_rng) {
1459 /*
1460 * if
1461 * base address of high range is below 4Gb
1462 * (bits [47:27] at [31:11])
1463 * DRAM address space on this DCT is hoisted above 4Gb &&
1464 * sys_addr > 4Gb
1465 *
1466 * remove hole offset from sys_addr
1467 * else
1468 * remove high range offset from sys_addr
1469 */
1470 if ((!(dct_sel_base_addr >> 16) ||
1471 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1472 dhar_valid(pvt) &&
c8e518d5 1473 (sys_addr >= BIT_64(32)))
bc21fa57 1474 chan_off = hole_off;
6163b5d4
DT
1475 else
1476 chan_off = dct_sel_base_off;
1477 } else {
c8e518d5
BP
1478 /*
1479 * if
1480 * we have a valid hole &&
1481 * sys_addr > 4Gb
1482 *
1483 * remove hole
1484 * else
1485 * remove dram base to normalize to DCT address
1486 */
972ea17a 1487 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1488 chan_off = hole_off;
6163b5d4 1489 else
c8e518d5 1490 chan_off = dram_base;
6163b5d4
DT
1491 }
1492
10ef6b0d 1493 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
6163b5d4
DT
1494}
1495
6163b5d4
DT
1496/*
1497 * checks if the csrow passed in is marked as SPARED, if so returns the new
1498 * spare row
1499 */
11c75ead 1500static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1501{
614ec9d8
BP
1502 int tmp_cs;
1503
1504 if (online_spare_swap_done(pvt, dct) &&
1505 csrow == online_spare_bad_dramcs(pvt, dct)) {
1506
1507 for_each_chip_select(tmp_cs, dct, pvt) {
1508 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1509 csrow = tmp_cs;
1510 break;
1511 }
1512 }
6163b5d4
DT
1513 }
1514 return csrow;
1515}
1516
1517/*
1518 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1519 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1520 *
1521 * Return:
1522 * -EINVAL: NOT FOUND
1523 * 0..csrow = Chip-Select Row
1524 */
c7e5301a 1525static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
6163b5d4
DT
1526{
1527 struct mem_ctl_info *mci;
1528 struct amd64_pvt *pvt;
11c75ead 1529 u64 cs_base, cs_mask;
6163b5d4
DT
1530 int cs_found = -EINVAL;
1531 int csrow;
1532
2ec591ac 1533 mci = edac_mc_find(nid);
6163b5d4
DT
1534 if (!mci)
1535 return cs_found;
1536
1537 pvt = mci->pvt_info;
1538
956b9ba1 1539 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1540
11c75ead
BP
1541 for_each_chip_select(csrow, dct, pvt) {
1542 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1543 continue;
1544
11c75ead 1545 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1546
956b9ba1
JP
1547 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1548 csrow, cs_base, cs_mask);
6163b5d4 1549
11c75ead 1550 cs_mask = ~cs_mask;
6163b5d4 1551
956b9ba1
JP
1552 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1553 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1554
11c75ead 1555 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
18b94f66
AG
1556 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1557 cs_found = csrow;
1558 break;
1559 }
11c75ead 1560 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1561
956b9ba1 1562 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1563 break;
1564 }
1565 }
1566 return cs_found;
1567}
1568
95b0ef55
BP
1569/*
1570 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1571 * swapped with a region located at the bottom of memory so that the GPU can use
1572 * the interleaved region and thus two channels.
1573 */
b15f0fca 1574static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1575{
1576 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1577
a4b4bedc 1578 if (pvt->fam == 0x10) {
95b0ef55 1579 /* only revC3 and revE have that feature */
a4b4bedc 1580 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
95b0ef55
BP
1581 return sys_addr;
1582 }
1583
7981a28f 1584 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
95b0ef55
BP
1585
1586 if (!(swap_reg & 0x1))
1587 return sys_addr;
1588
1589 swap_base = (swap_reg >> 3) & 0x7f;
1590 swap_limit = (swap_reg >> 11) & 0x7f;
1591 rgn_size = (swap_reg >> 20) & 0x7f;
1592 tmp_addr = sys_addr >> 27;
1593
1594 if (!(sys_addr >> 34) &&
1595 (((tmp_addr >= swap_base) &&
1596 (tmp_addr <= swap_limit)) ||
1597 (tmp_addr < rgn_size)))
1598 return sys_addr ^ (u64)swap_base << 27;
1599
1600 return sys_addr;
1601}
1602
f71d0a05 1603/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1604static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1605 u64 sys_addr, int *chan_sel)
f71d0a05 1606{
229a7a11 1607 int cs_found = -EINVAL;
c8e518d5 1608 u64 chan_addr;
5d4b58e8 1609 u32 dct_sel_base;
11c75ead 1610 u8 channel;
229a7a11 1611 bool high_range = false;
f71d0a05 1612
7f19bf75 1613 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1614 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1615 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1616
956b9ba1
JP
1617 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1618 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1619
355fba60
BP
1620 if (dhar_valid(pvt) &&
1621 dhar_base(pvt) <= sys_addr &&
1622 sys_addr < BIT_64(32)) {
1623 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1624 sys_addr);
1625 return -EINVAL;
1626 }
1627
f030ddfb 1628 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1629 return -EINVAL;
1630
b15f0fca 1631 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1632
f71d0a05
DT
1633 dct_sel_base = dct_sel_baseaddr(pvt);
1634
1635 /*
1636 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1637 * select between DCT0 and DCT1.
1638 */
1639 if (dct_high_range_enabled(pvt) &&
1640 !dct_ganging_enabled(pvt) &&
1641 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1642 high_range = true;
f71d0a05 1643
b15f0fca 1644 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1645
b15f0fca 1646 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1647 high_range, dct_sel_base);
f71d0a05 1648
e2f79dbd
BP
1649 /* Remove node interleaving, see F1x120 */
1650 if (intlv_en)
1651 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1652 (chan_addr & 0xfff);
f71d0a05 1653
5d4b58e8 1654 /* remove channel interleave */
f71d0a05
DT
1655 if (dct_interleave_enabled(pvt) &&
1656 !dct_high_range_enabled(pvt) &&
1657 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1658
1659 if (dct_sel_interleave_addr(pvt) != 1) {
1660 if (dct_sel_interleave_addr(pvt) == 0x3)
1661 /* hash 9 */
1662 chan_addr = ((chan_addr >> 10) << 9) |
1663 (chan_addr & 0x1ff);
1664 else
1665 /* A[6] or hash 6 */
1666 chan_addr = ((chan_addr >> 7) << 6) |
1667 (chan_addr & 0x3f);
1668 } else
1669 /* A[12] */
1670 chan_addr = ((chan_addr >> 13) << 12) |
1671 (chan_addr & 0xfff);
f71d0a05
DT
1672 }
1673
956b9ba1 1674 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1675
b15f0fca 1676 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1677
33ca0643 1678 if (cs_found >= 0)
f71d0a05 1679 *chan_sel = channel;
33ca0643 1680
f71d0a05
DT
1681 return cs_found;
1682}
1683
18b94f66
AG
1684static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1685 u64 sys_addr, int *chan_sel)
1686{
1687 int cs_found = -EINVAL;
1688 int num_dcts_intlv = 0;
1689 u64 chan_addr, chan_offset;
1690 u64 dct_base, dct_limit;
1691 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1692 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1693
1694 u64 dhar_offset = f10_dhar_offset(pvt);
1695 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1696 u8 node_id = dram_dst_node(pvt, range);
1697 u8 intlv_en = dram_intlv_en(pvt, range);
1698
1699 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1700 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1701
1702 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1703 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1704
1705 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1706 range, sys_addr, get_dram_limit(pvt, range));
1707
1708 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1709 !(get_dram_limit(pvt, range) >= sys_addr))
1710 return -EINVAL;
1711
1712 if (dhar_valid(pvt) &&
1713 dhar_base(pvt) <= sys_addr &&
1714 sys_addr < BIT_64(32)) {
1715 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1716 sys_addr);
1717 return -EINVAL;
1718 }
1719
1720 /* Verify sys_addr is within DCT Range. */
4fc06b31
AG
1721 dct_base = (u64) dct_sel_baseaddr(pvt);
1722 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
18b94f66
AG
1723
1724 if (!(dct_cont_base_reg & BIT(0)) &&
4fc06b31
AG
1725 !(dct_base <= (sys_addr >> 27) &&
1726 dct_limit >= (sys_addr >> 27)))
18b94f66
AG
1727 return -EINVAL;
1728
1729 /* Verify number of dct's that participate in channel interleaving. */
1730 num_dcts_intlv = (int) hweight8(intlv_en);
1731
1732 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1733 return -EINVAL;
1734
dc0a50a8
YG
1735 if (pvt->model >= 0x60)
1736 channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
1737 else
1738 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1739 num_dcts_intlv, dct_sel);
18b94f66
AG
1740
1741 /* Verify we stay within the MAX number of channels allowed */
7f3f5240 1742 if (channel > 3)
18b94f66
AG
1743 return -EINVAL;
1744
1745 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1746
1747 /* Get normalized DCT addr */
1748 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1749 chan_offset = dhar_offset;
1750 else
4fc06b31 1751 chan_offset = dct_base << 27;
18b94f66
AG
1752
1753 chan_addr = sys_addr - chan_offset;
1754
1755 /* remove channel interleave */
1756 if (num_dcts_intlv == 2) {
1757 if (intlv_addr == 0x4)
1758 chan_addr = ((chan_addr >> 9) << 8) |
1759 (chan_addr & 0xff);
1760 else if (intlv_addr == 0x5)
1761 chan_addr = ((chan_addr >> 10) << 9) |
1762 (chan_addr & 0x1ff);
1763 else
1764 return -EINVAL;
1765
1766 } else if (num_dcts_intlv == 4) {
1767 if (intlv_addr == 0x4)
1768 chan_addr = ((chan_addr >> 10) << 8) |
1769 (chan_addr & 0xff);
1770 else if (intlv_addr == 0x5)
1771 chan_addr = ((chan_addr >> 11) << 9) |
1772 (chan_addr & 0x1ff);
1773 else
1774 return -EINVAL;
1775 }
1776
1777 if (dct_offset_en) {
1778 amd64_read_pci_cfg(pvt->F1,
1779 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1780 &tmp);
4fc06b31 1781 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
18b94f66
AG
1782 }
1783
1784 f15h_select_dct(pvt, channel);
1785
1786 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1787
1788 /*
1789 * Find Chip select:
1790 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1791 * there is support for 4 DCT's, but only 2 are currently functional.
1792 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1793 * pvt->csels[1]. So we need to use '1' here to get correct info.
1794 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1795 */
1796 alias_channel = (channel == 3) ? 1 : channel;
1797
1798 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1799
1800 if (cs_found >= 0)
1801 *chan_sel = alias_channel;
1802
1803 return cs_found;
1804}
1805
1806static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
1807 u64 sys_addr,
1808 int *chan_sel)
f71d0a05 1809{
e761359a
BP
1810 int cs_found = -EINVAL;
1811 unsigned range;
f71d0a05 1812
7f19bf75 1813 for (range = 0; range < DRAM_RANGES; range++) {
7f19bf75 1814 if (!dram_rw(pvt, range))
f71d0a05
DT
1815 continue;
1816
18b94f66
AG
1817 if (pvt->fam == 0x15 && pvt->model >= 0x30)
1818 cs_found = f15_m30h_match_to_this_node(pvt, range,
1819 sys_addr,
1820 chan_sel);
f71d0a05 1821
18b94f66
AG
1822 else if ((get_dram_base(pvt, range) <= sys_addr) &&
1823 (get_dram_limit(pvt, range) >= sys_addr)) {
b15f0fca 1824 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1825 sys_addr, chan_sel);
f71d0a05
DT
1826 if (cs_found >= 0)
1827 break;
1828 }
1829 }
1830 return cs_found;
1831}
1832
1833/*
bdc30a0c
BP
1834 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1835 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1836 *
bdc30a0c
BP
1837 * The @sys_addr is usually an error address received from the hardware
1838 * (MCX_ADDR).
f71d0a05 1839 */
b15f0fca 1840static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1841 struct err_info *err)
f71d0a05
DT
1842{
1843 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1844
33ca0643 1845 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1846
33ca0643
BP
1847 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1848 if (err->csrow < 0) {
1849 err->err_code = ERR_CSROW;
bdc30a0c
BP
1850 return;
1851 }
1852
bdc30a0c
BP
1853 /*
1854 * We need the syndromes for channel detection only when we're
1855 * ganged. Otherwise @chan should already contain the channel at
1856 * this point.
1857 */
a97fa68e 1858 if (dct_ganging_enabled(pvt))
33ca0643 1859 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1860}
1861
f71d0a05 1862/*
8566c4df 1863 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1864 * CSROWs
f71d0a05 1865 */
d1ea71cd 1866static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1867{
bb89f5a0 1868 int dimm, size0, size1;
525a1b20
BP
1869 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1870 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1871
a4b4bedc 1872 if (pvt->fam == 0xf) {
8566c4df 1873 /* K8 families < revF not supported yet */
1433eb99 1874 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1875 return;
1876 else
1877 WARN_ON(ctrl != 0);
1878 }
1879
7981a28f
AG
1880 if (pvt->fam == 0x10) {
1881 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
1882 : pvt->dbam0;
1883 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
1884 pvt->csels[1].csbases :
1885 pvt->csels[0].csbases;
1886 } else if (ctrl) {
1887 dbam = pvt->dbam0;
1888 dcsb = pvt->csels[1].csbases;
1889 }
956b9ba1
JP
1890 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1891 ctrl, dbam);
f71d0a05 1892
8566c4df
BP
1893 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1894
f71d0a05
DT
1895 /* Dump memory sizes for DIMM and its CSROWs */
1896 for (dimm = 0; dimm < 4; dimm++) {
1897
1898 size0 = 0;
11c75ead 1899 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
a597d2a5
AG
1900 /* For f15m60h, need multiplier for LRDIMM cs_size
1901 * calculation. We pass 'dimm' value to the dbam_to_cs
1902 * mapper so we can find the multiplier from the
1903 * corresponding DCSM.
1904 */
41d8bfab 1905 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
a597d2a5
AG
1906 DBAM_DIMM(dimm, dbam),
1907 dimm);
f71d0a05
DT
1908
1909 size1 = 0;
11c75ead 1910 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab 1911 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
a597d2a5
AG
1912 DBAM_DIMM(dimm, dbam),
1913 dimm);
f71d0a05 1914
24f9a7fe 1915 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1916 dimm * 2, size0,
1917 dimm * 2 + 1, size1);
f71d0a05
DT
1918 }
1919}
1920
d1ea71cd 1921static struct amd64_family_type family_types[] = {
4d37607a 1922 [K8_CPUS] = {
0092b20d 1923 .ctl_name = "K8",
8d5b5d9c 1924 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
3f37a36b 1925 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
4d37607a 1926 .ops = {
1433eb99 1927 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1928 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1929 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1930 }
1931 },
1932 [F10_CPUS] = {
0092b20d 1933 .ctl_name = "F10h",
8d5b5d9c 1934 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
3f37a36b 1935 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
4d37607a 1936 .ops = {
7d20d14d 1937 .early_channel_count = f1x_early_channel_count,
b15f0fca 1938 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1939 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1940 }
1941 },
1942 [F15_CPUS] = {
1943 .ctl_name = "F15h",
df71a053 1944 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
3f37a36b 1945 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
b2b0c605 1946 .ops = {
7d20d14d 1947 .early_channel_count = f1x_early_channel_count,
b15f0fca 1948 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1949 .dbam_to_cs = f15_dbam_to_chip_select,
4d37607a
DT
1950 }
1951 },
18b94f66
AG
1952 [F15_M30H_CPUS] = {
1953 .ctl_name = "F15h_M30h",
1954 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
3f37a36b 1955 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
18b94f66
AG
1956 .ops = {
1957 .early_channel_count = f1x_early_channel_count,
1958 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1959 .dbam_to_cs = f16_dbam_to_chip_select,
18b94f66
AG
1960 }
1961 },
a597d2a5
AG
1962 [F15_M60H_CPUS] = {
1963 .ctl_name = "F15h_M60h",
1964 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
3f37a36b 1965 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
a597d2a5
AG
1966 .ops = {
1967 .early_channel_count = f1x_early_channel_count,
1968 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1969 .dbam_to_cs = f15_m60h_dbam_to_chip_select,
1970 }
1971 },
94c1acf2
AG
1972 [F16_CPUS] = {
1973 .ctl_name = "F16h",
1974 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
3f37a36b 1975 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
94c1acf2
AG
1976 .ops = {
1977 .early_channel_count = f1x_early_channel_count,
1978 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1979 .dbam_to_cs = f16_dbam_to_chip_select,
94c1acf2
AG
1980 }
1981 },
85a8885b
AG
1982 [F16_M30H_CPUS] = {
1983 .ctl_name = "F16h_M30h",
1984 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
3f37a36b 1985 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
85a8885b
AG
1986 .ops = {
1987 .early_channel_count = f1x_early_channel_count,
1988 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1989 .dbam_to_cs = f16_dbam_to_chip_select,
85a8885b
AG
1990 }
1991 },
4d37607a
DT
1992};
1993
b1289d6f 1994/*
bfc04aec
BP
1995 * These are tables of eigenvectors (one per line) which can be used for the
1996 * construction of the syndrome tables. The modified syndrome search algorithm
1997 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1998 *
bfc04aec 1999 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 2000 */
c7e5301a 2001static const u16 x4_vectors[] = {
bfc04aec
BP
2002 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2003 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2004 0x0001, 0x0002, 0x0004, 0x0008,
2005 0x1013, 0x3032, 0x4044, 0x8088,
2006 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2007 0x4857, 0xc4fe, 0x13cc, 0x3288,
2008 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2009 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2010 0x15c1, 0x2a42, 0x89ac, 0x4758,
2011 0x2b03, 0x1602, 0x4f0c, 0xca08,
2012 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2013 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2014 0x2b87, 0x164e, 0x642c, 0xdc18,
2015 0x40b9, 0x80de, 0x1094, 0x20e8,
2016 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2017 0x11c1, 0x2242, 0x84ac, 0x4c58,
2018 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2019 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2020 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2021 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2022 0x16b3, 0x3d62, 0x4f34, 0x8518,
2023 0x1e2f, 0x391a, 0x5cac, 0xf858,
2024 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2025 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2026 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2027 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2028 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2029 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2030 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2031 0x185d, 0x2ca6, 0x7914, 0x9e28,
2032 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2033 0x4199, 0x82ee, 0x19f4, 0x2e58,
2034 0x4807, 0xc40e, 0x130c, 0x3208,
2035 0x1905, 0x2e0a, 0x5804, 0xac08,
2036 0x213f, 0x132a, 0xadfc, 0x5ba8,
2037 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
2038};
2039
c7e5301a 2040static const u16 x8_vectors[] = {
bfc04aec
BP
2041 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2042 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2043 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2044 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2045 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2046 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2047 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2048 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2049 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2050 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2051 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2052 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2053 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2054 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2055 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2056 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2057 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2058 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2059 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2060};
2061
c7e5301a 2062static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
d34a6ecd 2063 unsigned v_dim)
b1289d6f 2064{
bfc04aec
BP
2065 unsigned int i, err_sym;
2066
2067 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2068 u16 s = syndrome;
d34a6ecd
BP
2069 unsigned v_idx = err_sym * v_dim;
2070 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
2071
2072 /* walk over all 16 bits of the syndrome */
2073 for (i = 1; i < (1U << 16); i <<= 1) {
2074
2075 /* if bit is set in that eigenvector... */
2076 if (v_idx < v_end && vectors[v_idx] & i) {
2077 u16 ev_comp = vectors[v_idx++];
2078
2079 /* ... and bit set in the modified syndrome, */
2080 if (s & i) {
2081 /* remove it. */
2082 s ^= ev_comp;
4d37607a 2083
bfc04aec
BP
2084 if (!s)
2085 return err_sym;
2086 }
b1289d6f 2087
bfc04aec
BP
2088 } else if (s & i)
2089 /* can't get to zero, move to next symbol */
2090 break;
2091 }
b1289d6f
DT
2092 }
2093
956b9ba1 2094 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
2095 return -1;
2096}
d27bf6fa 2097
bfc04aec
BP
2098static int map_err_sym_to_channel(int err_sym, int sym_size)
2099{
2100 if (sym_size == 4)
2101 switch (err_sym) {
2102 case 0x20:
2103 case 0x21:
2104 return 0;
2105 break;
2106 case 0x22:
2107 case 0x23:
2108 return 1;
2109 break;
2110 default:
2111 return err_sym >> 4;
2112 break;
2113 }
2114 /* x8 symbols */
2115 else
2116 switch (err_sym) {
2117 /* imaginary bits not in a DIMM */
2118 case 0x10:
2119 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2120 err_sym);
2121 return -1;
2122 break;
2123
2124 case 0x11:
2125 return 0;
2126 break;
2127 case 0x12:
2128 return 1;
2129 break;
2130 default:
2131 return err_sym >> 3;
2132 break;
2133 }
2134 return -1;
2135}
2136
2137static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2138{
2139 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
2140 int err_sym = -1;
2141
a3b7db09 2142 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
2143 err_sym = decode_syndrome(syndrome, x8_vectors,
2144 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
2145 pvt->ecc_sym_sz);
2146 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
2147 err_sym = decode_syndrome(syndrome, x4_vectors,
2148 ARRAY_SIZE(x4_vectors),
a3b7db09 2149 pvt->ecc_sym_sz);
ad6a32e9 2150 else {
a3b7db09 2151 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 2152 return err_sym;
bfc04aec 2153 }
ad6a32e9 2154
a3b7db09 2155 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
2156}
2157
33ca0643
BP
2158static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
2159 u8 ecc_type)
d27bf6fa 2160{
33ca0643
BP
2161 enum hw_event_mc_err_type err_type;
2162 const char *string;
d27bf6fa 2163
33ca0643
BP
2164 if (ecc_type == 2)
2165 err_type = HW_EVENT_ERR_CORRECTED;
2166 else if (ecc_type == 1)
2167 err_type = HW_EVENT_ERR_UNCORRECTED;
2168 else {
2169 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
2170 return;
2171 }
2172
33ca0643
BP
2173 switch (err->err_code) {
2174 case DECODE_OK:
2175 string = "";
2176 break;
2177 case ERR_NODE:
2178 string = "Failed to map error addr to a node";
2179 break;
2180 case ERR_CSROW:
2181 string = "Failed to map error addr to a csrow";
2182 break;
2183 case ERR_CHANNEL:
2184 string = "unknown syndrome - possible error reporting race";
2185 break;
2186 default:
2187 string = "WTF error";
2188 break;
d27bf6fa 2189 }
33ca0643
BP
2190
2191 edac_mc_handle_error(err_type, mci, 1,
2192 err->page, err->offset, err->syndrome,
2193 err->csrow, err->channel, -1,
2194 string, "");
d27bf6fa
DT
2195}
2196
df781d03 2197static inline void decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2198{
0c510cc8
DB
2199 struct mem_ctl_info *mci;
2200 struct amd64_pvt *pvt;
f192c7b1 2201 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
2202 u8 xec = XEC(m->status, 0x1f);
2203 u16 ec = EC(m->status);
33ca0643
BP
2204 u64 sys_addr;
2205 struct err_info err;
d27bf6fa 2206
0c510cc8
DB
2207 mci = edac_mc_find(node_id);
2208 if (!mci)
2209 return;
2210
2211 pvt = mci->pvt_info;
2212
66fed2d4 2213 /* Bail out early if this was an 'observed' error */
5980bb9c 2214 if (PP(ec) == NBSL_PP_OBS)
b70ef010 2215 return;
d27bf6fa 2216
ecaf5606
BP
2217 /* Do only ECC errors */
2218 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2219 return;
d27bf6fa 2220
33ca0643
BP
2221 memset(&err, 0, sizeof(err));
2222
a4b4bedc 2223 sys_addr = get_error_address(pvt, m);
33ca0643 2224
ecaf5606 2225 if (ecc_type == 2)
33ca0643
BP
2226 err.syndrome = extract_syndrome(m->status);
2227
2228 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2229
2230 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
2231}
2232
0ec449ee 2233/*
3f37a36b
BP
2234 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2235 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
0ec449ee 2236 */
3f37a36b 2237static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f2_id)
0ec449ee 2238{
0ec449ee 2239 /* Reserve the ADDRESS MAP Device */
3f37a36b 2240 pvt->F1 = pci_get_related_function(pvt->F3->vendor, f1_id, pvt->F3);
8d5b5d9c 2241 if (!pvt->F1) {
24f9a7fe
BP
2242 amd64_err("error address map device not found: "
2243 "vendor %x device 0x%x (broken BIOS?)\n",
2244 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2245 return -ENODEV;
0ec449ee
DT
2246 }
2247
3f37a36b
BP
2248 /* Reserve the DCT Device */
2249 pvt->F2 = pci_get_related_function(pvt->F3->vendor, f2_id, pvt->F3);
2250 if (!pvt->F2) {
8d5b5d9c
BP
2251 pci_dev_put(pvt->F1);
2252 pvt->F1 = NULL;
0ec449ee 2253
3f37a36b 2254 amd64_err("error F2 device not found: "
24f9a7fe 2255 "vendor %x device 0x%x (broken BIOS?)\n",
3f37a36b 2256 PCI_VENDOR_ID_AMD, f2_id);
0ec449ee 2257
bbd0c1f6 2258 return -ENODEV;
0ec449ee 2259 }
956b9ba1
JP
2260 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2261 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2262 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2263
2264 return 0;
2265}
2266
360b7f3c 2267static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2268{
8d5b5d9c 2269 pci_dev_put(pvt->F1);
3f37a36b 2270 pci_dev_put(pvt->F2);
0ec449ee
DT
2271}
2272
2273/*
2274 * Retrieve the hardware registers of the memory controller (this includes the
2275 * 'Address Map' and 'Misc' device regs)
2276 */
360b7f3c 2277static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2278{
a4b4bedc 2279 unsigned range;
0ec449ee 2280 u64 msr_val;
ad6a32e9 2281 u32 tmp;
0ec449ee
DT
2282
2283 /*
2284 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2285 * those are Read-As-Zero
2286 */
e97f8bb8 2287 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 2288 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2289
2290 /* check first whether TOP_MEM2 is enabled */
2291 rdmsrl(MSR_K8_SYSCFG, msr_val);
2292 if (msr_val & (1U << 21)) {
e97f8bb8 2293 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 2294 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 2295 } else
956b9ba1 2296 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 2297
5980bb9c 2298 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2299
5a5d2371 2300 read_dram_ctl_register(pvt);
0ec449ee 2301
7f19bf75
BP
2302 for (range = 0; range < DRAM_RANGES; range++) {
2303 u8 rw;
0ec449ee 2304
7f19bf75
BP
2305 /* read settings for this DRAM range */
2306 read_dram_base_limit_regs(pvt, range);
2307
2308 rw = dram_rw(pvt, range);
2309 if (!rw)
2310 continue;
2311
956b9ba1
JP
2312 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2313 range,
2314 get_dram_base(pvt, range),
2315 get_dram_limit(pvt, range));
7f19bf75 2316
956b9ba1
JP
2317 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2318 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2319 (rw & 0x1) ? "R" : "-",
2320 (rw & 0x2) ? "W" : "-",
2321 dram_intlv_sel(pvt, range),
2322 dram_dst_node(pvt, range));
0ec449ee
DT
2323 }
2324
b2b0c605 2325 read_dct_base_mask(pvt);
0ec449ee 2326
bc21fa57 2327 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
7981a28f 2328 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
0ec449ee 2329
8d5b5d9c 2330 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2331
7981a28f
AG
2332 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
2333 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
0ec449ee 2334
78da121e 2335 if (!dct_ganging_enabled(pvt)) {
7981a28f
AG
2336 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
2337 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
0ec449ee 2338 }
ad6a32e9 2339
a3b7db09 2340 pvt->ecc_sym_sz = 4;
a597d2a5
AG
2341 determine_memory_type(pvt);
2342 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
a3b7db09 2343
a4b4bedc 2344 if (pvt->fam >= 0x10) {
b2b0c605 2345 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
7981a28f 2346 /* F16h has only DCT0, so no need to read dbam1 */
a4b4bedc 2347 if (pvt->fam != 0x16)
7981a28f 2348 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
ad6a32e9 2349
a3b7db09 2350 /* F10h, revD and later can do x8 ECC too */
a4b4bedc 2351 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
a3b7db09
BP
2352 pvt->ecc_sym_sz = 8;
2353 }
b2b0c605 2354 dump_misc_regs(pvt);
0ec449ee
DT
2355}
2356
2357/*
2358 * NOTE: CPU Revision Dependent code
2359 *
2360 * Input:
11c75ead 2361 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2362 * k8 private pointer to -->
2363 * DRAM Bank Address mapping register
2364 * node_id
2365 * DCL register where dual_channel_active is
2366 *
2367 * The DBAM register consists of 4 sets of 4 bits each definitions:
2368 *
2369 * Bits: CSROWs
2370 * 0-3 CSROWs 0 and 1
2371 * 4-7 CSROWs 2 and 3
2372 * 8-11 CSROWs 4 and 5
2373 * 12-15 CSROWs 6 and 7
2374 *
2375 * Values range from: 0 to 15
2376 * The meaning of the values depends on CPU revision and dual-channel state,
2377 * see relevant BKDG more info.
2378 *
2379 * The memory controller provides for total of only 8 CSROWs in its current
2380 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2381 * single channel or two (2) DIMMs in dual channel mode.
2382 *
2383 * The following code logic collapses the various tables for CSROW based on CPU
2384 * revision.
2385 *
2386 * Returns:
2387 * The number of PAGE_SIZE pages on the specified CSROW number it
2388 * encompasses
2389 *
2390 */
d1ea71cd 2391static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2392{
1433eb99 2393 u32 cs_mode, nr_pages;
f92cae45 2394 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 2395
10de6497 2396
0ec449ee
DT
2397 /*
2398 * The math on this doesn't look right on the surface because x/2*4 can
2399 * be simplified to x*2 but this expression makes use of the fact that
2400 * it is integral math where 1/2=0. This intermediate value becomes the
2401 * number of bits to shift the DBAM register to extract the proper CSROW
2402 * field.
2403 */
0a5dfc31 2404 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2405
a597d2a5
AG
2406 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
2407 << (20 - PAGE_SHIFT);
0ec449ee 2408
10de6497
BP
2409 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2410 csrow_nr, dct, cs_mode);
2411 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2412
2413 return nr_pages;
2414}
2415
2416/*
2417 * Initialize the array of csrow attribute instances, based on the values
2418 * from pci config hardware registers.
2419 */
360b7f3c 2420static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2421{
10de6497 2422 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2423 struct csrow_info *csrow;
de3910eb 2424 struct dimm_info *dimm;
084a4fcc 2425 enum edac_type edac_mode;
10de6497 2426 int i, j, empty = 1;
a895bf8b 2427 int nr_pages = 0;
10de6497 2428 u32 val;
0ec449ee 2429
a97fa68e 2430 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2431
2299ef71 2432 pvt->nbcfg = val;
0ec449ee 2433
956b9ba1
JP
2434 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2435 pvt->mc_node_id, val,
2436 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2437
10de6497
BP
2438 /*
2439 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2440 */
11c75ead 2441 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2442 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2443 bool row_dct1 = false;
0ec449ee 2444
a4b4bedc 2445 if (pvt->fam != 0xf)
10de6497
BP
2446 row_dct1 = !!csrow_enabled(i, 1, pvt);
2447
2448 if (!row_dct0 && !row_dct1)
0ec449ee 2449 continue;
0ec449ee 2450
10de6497 2451 csrow = mci->csrows[i];
0ec449ee 2452 empty = 0;
10de6497
BP
2453
2454 edac_dbg(1, "MC node: %d, csrow: %d\n",
2455 pvt->mc_node_id, i);
2456
1eef1282 2457 if (row_dct0) {
d1ea71cd 2458 nr_pages = get_csrow_nr_pages(pvt, 0, i);
1eef1282
MCC
2459 csrow->channels[0]->dimm->nr_pages = nr_pages;
2460 }
11c75ead 2461
10de6497 2462 /* K8 has only one DCT */
a4b4bedc 2463 if (pvt->fam != 0xf && row_dct1) {
d1ea71cd 2464 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
1eef1282
MCC
2465
2466 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2467 nr_pages += row_dct1_pages;
2468 }
0ec449ee 2469
10de6497 2470 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee
DT
2471
2472 /*
2473 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2474 */
a97fa68e 2475 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2476 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2477 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2478 else
084a4fcc
MCC
2479 edac_mode = EDAC_NONE;
2480
2481 for (j = 0; j < pvt->channel_count; j++) {
de3910eb 2482 dimm = csrow->channels[j]->dimm;
a597d2a5 2483 dimm->mtype = pvt->dram_type;
de3910eb 2484 dimm->edac_mode = edac_mode;
084a4fcc 2485 }
0ec449ee
DT
2486 }
2487
2488 return empty;
2489}
d27bf6fa 2490
f6d6ae96 2491/* get all cores on this DCT */
8b84c8df 2492static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2493{
2494 int cpu;
2495
2496 for_each_online_cpu(cpu)
2497 if (amd_get_nb_id(cpu) == nid)
2498 cpumask_set_cpu(cpu, mask);
2499}
2500
2501/* check MCG_CTL on all the cpus on this node */
d1ea71cd 2502static bool nb_mce_bank_enabled_on_node(u16 nid)
f6d6ae96
BP
2503{
2504 cpumask_var_t mask;
50542251 2505 int cpu, nbe;
f6d6ae96
BP
2506 bool ret = false;
2507
2508 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2509 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2510 return false;
2511 }
2512
2513 get_cpus_on_this_dct_cpumask(mask, nid);
2514
f6d6ae96
BP
2515 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2516
2517 for_each_cpu(cpu, mask) {
50542251 2518 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2519 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2520
956b9ba1
JP
2521 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2522 cpu, reg->q,
2523 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2524
2525 if (!nbe)
2526 goto out;
f6d6ae96
BP
2527 }
2528 ret = true;
2529
2530out:
f6d6ae96
BP
2531 free_cpumask_var(mask);
2532 return ret;
2533}
2534
c7e5301a 2535static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
f6d6ae96
BP
2536{
2537 cpumask_var_t cmask;
50542251 2538 int cpu;
f6d6ae96
BP
2539
2540 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2541 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2542 return false;
2543 }
2544
ae7bb7c6 2545 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2546
f6d6ae96
BP
2547 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2548
2549 for_each_cpu(cpu, cmask) {
2550
50542251
BP
2551 struct msr *reg = per_cpu_ptr(msrs, cpu);
2552
f6d6ae96 2553 if (on) {
5980bb9c 2554 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2555 s->flags.nb_mce_enable = 1;
f6d6ae96 2556
5980bb9c 2557 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2558 } else {
2559 /*
d95cf4de 2560 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2561 */
ae7bb7c6 2562 if (!s->flags.nb_mce_enable)
5980bb9c 2563 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2564 }
f6d6ae96
BP
2565 }
2566 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2567
f6d6ae96
BP
2568 free_cpumask_var(cmask);
2569
2570 return 0;
2571}
2572
c7e5301a 2573static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2299ef71 2574 struct pci_dev *F3)
f9431992 2575{
2299ef71 2576 bool ret = true;
c9f4f26e 2577 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2578
2299ef71
BP
2579 if (toggle_ecc_err_reporting(s, nid, ON)) {
2580 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2581 return false;
2582 }
2583
c9f4f26e 2584 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2585
ae7bb7c6
BP
2586 s->old_nbctl = value & mask;
2587 s->nbctl_valid = true;
f9431992
DT
2588
2589 value |= mask;
c9f4f26e 2590 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2591
a97fa68e 2592 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2593
956b9ba1
JP
2594 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2595 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2596
a97fa68e 2597 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2598 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2599
ae7bb7c6 2600 s->flags.nb_ecc_prev = 0;
d95cf4de 2601
f9431992 2602 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2603 value |= NBCFG_ECC_ENABLE;
2604 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2605
a97fa68e 2606 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2607
a97fa68e 2608 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2609 amd64_warn("Hardware rejected DRAM ECC enable,"
2610 "check memory DIMM configuration.\n");
2299ef71 2611 ret = false;
f9431992 2612 } else {
24f9a7fe 2613 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2614 }
d95cf4de 2615 } else {
ae7bb7c6 2616 s->flags.nb_ecc_prev = 1;
f9431992 2617 }
d95cf4de 2618
956b9ba1
JP
2619 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2620 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2621
2299ef71 2622 return ret;
f9431992
DT
2623}
2624
c7e5301a 2625static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
360b7f3c 2626 struct pci_dev *F3)
f9431992 2627{
c9f4f26e
BP
2628 u32 value, mask = 0x3; /* UECC/CECC enable */
2629
f9431992 2630
ae7bb7c6 2631 if (!s->nbctl_valid)
f9431992
DT
2632 return;
2633
c9f4f26e 2634 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2635 value &= ~mask;
ae7bb7c6 2636 value |= s->old_nbctl;
f9431992 2637
c9f4f26e 2638 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2639
ae7bb7c6
BP
2640 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2641 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2642 amd64_read_pci_cfg(F3, NBCFG, &value);
2643 value &= ~NBCFG_ECC_ENABLE;
2644 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2645 }
2646
2647 /* restore the NB Enable MCGCTL bit */
2299ef71 2648 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2649 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2650}
2651
2652/*
2299ef71
BP
2653 * EDAC requires that the BIOS have ECC enabled before
2654 * taking over the processing of ECC errors. A command line
2655 * option allows to force-enable hardware ECC later in
2656 * enable_ecc_error_reporting().
f9431992 2657 */
cab4d277
BP
2658static const char *ecc_msg =
2659 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2660 " Either enable ECC checking or force module loading by setting "
2661 "'ecc_enable_override'.\n"
2662 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2663
c7e5301a 2664static bool ecc_enabled(struct pci_dev *F3, u16 nid)
f9431992
DT
2665{
2666 u32 value;
2299ef71 2667 u8 ecc_en = 0;
06724535 2668 bool nb_mce_en = false;
f9431992 2669
a97fa68e 2670 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2671
a97fa68e 2672 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2673 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2674
d1ea71cd 2675 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
06724535 2676 if (!nb_mce_en)
2299ef71
BP
2677 amd64_notice("NB MCE bank disabled, set MSR "
2678 "0x%08x[4] on node %d to enable.\n",
2679 MSR_IA32_MCG_CTL, nid);
f9431992 2680
2299ef71
BP
2681 if (!ecc_en || !nb_mce_en) {
2682 amd64_notice("%s", ecc_msg);
2683 return false;
2684 }
2685 return true;
f9431992
DT
2686}
2687
df71a053
BP
2688static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2689 struct amd64_family_type *fam)
7d6034d3
DT
2690{
2691 struct amd64_pvt *pvt = mci->pvt_info;
2692
2693 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2694 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2695
5980bb9c 2696 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2697 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2698
5980bb9c 2699 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2700 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2701
d1ea71cd 2702 mci->edac_cap = determine_edac_cap(pvt);
7d6034d3
DT
2703 mci->mod_name = EDAC_MOD_STR;
2704 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2705 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2706 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2707 mci->ctl_page_to_phys = NULL;
2708
7d6034d3 2709 /* memory scrubber interface */
d1ea71cd
BP
2710 mci->set_sdram_scrub_rate = set_scrub_rate;
2711 mci->get_sdram_scrub_rate = get_scrub_rate;
7d6034d3
DT
2712}
2713
0092b20d
BP
2714/*
2715 * returns a pointer to the family descriptor on success, NULL otherwise.
2716 */
d1ea71cd 2717static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
395ae783 2718{
0092b20d
BP
2719 struct amd64_family_type *fam_type = NULL;
2720
18b94f66 2721 pvt->ext_model = boot_cpu_data.x86_model >> 4;
a4b4bedc 2722 pvt->stepping = boot_cpu_data.x86_mask;
18b94f66
AG
2723 pvt->model = boot_cpu_data.x86_model;
2724 pvt->fam = boot_cpu_data.x86;
2725
2726 switch (pvt->fam) {
395ae783 2727 case 0xf:
d1ea71cd
BP
2728 fam_type = &family_types[K8_CPUS];
2729 pvt->ops = &family_types[K8_CPUS].ops;
395ae783 2730 break;
df71a053 2731
395ae783 2732 case 0x10:
d1ea71cd
BP
2733 fam_type = &family_types[F10_CPUS];
2734 pvt->ops = &family_types[F10_CPUS].ops;
df71a053
BP
2735 break;
2736
2737 case 0x15:
18b94f66 2738 if (pvt->model == 0x30) {
d1ea71cd
BP
2739 fam_type = &family_types[F15_M30H_CPUS];
2740 pvt->ops = &family_types[F15_M30H_CPUS].ops;
18b94f66 2741 break;
a597d2a5
AG
2742 } else if (pvt->model == 0x60) {
2743 fam_type = &family_types[F15_M60H_CPUS];
2744 pvt->ops = &family_types[F15_M60H_CPUS].ops;
2745 break;
18b94f66
AG
2746 }
2747
d1ea71cd
BP
2748 fam_type = &family_types[F15_CPUS];
2749 pvt->ops = &family_types[F15_CPUS].ops;
395ae783
BP
2750 break;
2751
94c1acf2 2752 case 0x16:
85a8885b
AG
2753 if (pvt->model == 0x30) {
2754 fam_type = &family_types[F16_M30H_CPUS];
2755 pvt->ops = &family_types[F16_M30H_CPUS].ops;
2756 break;
2757 }
d1ea71cd
BP
2758 fam_type = &family_types[F16_CPUS];
2759 pvt->ops = &family_types[F16_CPUS].ops;
94c1acf2
AG
2760 break;
2761
395ae783 2762 default:
24f9a7fe 2763 amd64_err("Unsupported family!\n");
0092b20d 2764 return NULL;
395ae783 2765 }
0092b20d 2766
df71a053 2767 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
18b94f66 2768 (pvt->fam == 0xf ?
24f9a7fe
BP
2769 (pvt->ext_model >= K8_REV_F ? "revF or later "
2770 : "revE or earlier ")
2771 : ""), pvt->mc_node_id);
0092b20d 2772 return fam_type;
395ae783
BP
2773}
2774
e339f1ec
TI
2775static const struct attribute_group *amd64_edac_attr_groups[] = {
2776#ifdef CONFIG_EDAC_DEBUG
2777 &amd64_edac_dbg_group,
2778#endif
2779#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
2780 &amd64_edac_inj_group,
2781#endif
2782 NULL
2783};
2784
3f37a36b 2785static int init_one_instance(unsigned int nid)
7d6034d3 2786{
3f37a36b 2787 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
0092b20d 2788 struct amd64_family_type *fam_type = NULL;
360b7f3c 2789 struct mem_ctl_info *mci = NULL;
ab5a503c 2790 struct edac_mc_layer layers[2];
3f37a36b 2791 struct amd64_pvt *pvt = NULL;
7d6034d3
DT
2792 int err = 0, ret;
2793
2794 ret = -ENOMEM;
2795 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2796 if (!pvt)
360b7f3c 2797 goto err_ret;
7d6034d3 2798
360b7f3c 2799 pvt->mc_node_id = nid;
3f37a36b 2800 pvt->F3 = F3;
7d6034d3 2801
395ae783 2802 ret = -EINVAL;
d1ea71cd 2803 fam_type = per_family_init(pvt);
0092b20d 2804 if (!fam_type)
395ae783
BP
2805 goto err_free;
2806
7d6034d3 2807 ret = -ENODEV;
3f37a36b 2808 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f2_id);
7d6034d3
DT
2809 if (err)
2810 goto err_free;
2811
360b7f3c 2812 read_mc_regs(pvt);
7d6034d3 2813
7d6034d3
DT
2814 /*
2815 * We need to determine how many memory channels there are. Then use
2816 * that information for calculating the size of the dynamic instance
360b7f3c 2817 * tables in the 'mci' structure.
7d6034d3 2818 */
360b7f3c 2819 ret = -EINVAL;
7d6034d3
DT
2820 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2821 if (pvt->channel_count < 0)
360b7f3c 2822 goto err_siblings;
7d6034d3
DT
2823
2824 ret = -ENOMEM;
ab5a503c
MCC
2825 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2826 layers[0].size = pvt->csels[0].b_cnt;
2827 layers[0].is_virt_csrow = true;
2828 layers[1].type = EDAC_MC_LAYER_CHANNEL;
f0a56c48
BP
2829
2830 /*
2831 * Always allocate two channels since we can have setups with DIMMs on
2832 * only one channel. Also, this simplifies handling later for the price
2833 * of a couple of KBs tops.
2834 */
2835 layers[1].size = 2;
ab5a503c 2836 layers[1].is_virt_csrow = false;
f0a56c48 2837
ca0907b9 2838 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2839 if (!mci)
360b7f3c 2840 goto err_siblings;
7d6034d3
DT
2841
2842 mci->pvt_info = pvt;
3f37a36b 2843 mci->pdev = &pvt->F3->dev;
7d6034d3 2844
df71a053 2845 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2846
2847 if (init_csrows(mci))
7d6034d3
DT
2848 mci->edac_cap = EDAC_FLAG_NONE;
2849
7d6034d3 2850 ret = -ENODEV;
e339f1ec 2851 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
956b9ba1 2852 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2853 goto err_add_mc;
2854 }
2855
549d042d
BP
2856 /* register stuff with EDAC MCE */
2857 if (report_gart_errors)
2858 amd_report_gart_errors(true);
2859
df781d03 2860 amd_register_ecc_decoder(decode_bus_error);
549d042d 2861
7d6034d3
DT
2862 return 0;
2863
2864err_add_mc:
2865 edac_mc_free(mci);
2866
360b7f3c
BP
2867err_siblings:
2868 free_mc_sibling_devs(pvt);
7d6034d3 2869
360b7f3c
BP
2870err_free:
2871 kfree(pvt);
7d6034d3 2872
360b7f3c 2873err_ret:
7d6034d3
DT
2874 return ret;
2875}
2876
3f37a36b 2877static int probe_one_instance(unsigned int nid)
7d6034d3 2878{
2299ef71 2879 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2880 struct ecc_settings *s;
3f37a36b 2881 int ret;
7d6034d3 2882
ae7bb7c6
BP
2883 ret = -ENOMEM;
2884 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2885 if (!s)
2299ef71 2886 goto err_out;
ae7bb7c6
BP
2887
2888 ecc_stngs[nid] = s;
2889
2299ef71
BP
2890 if (!ecc_enabled(F3, nid)) {
2891 ret = -ENODEV;
2892
2893 if (!ecc_enable_override)
2894 goto err_enable;
2895
2896 amd64_warn("Forcing ECC on!\n");
2897
2898 if (!enable_ecc_error_reporting(s, nid, F3))
2899 goto err_enable;
2900 }
2901
3f37a36b 2902 ret = init_one_instance(nid);
360b7f3c 2903 if (ret < 0) {
ae7bb7c6 2904 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2905 restore_ecc_error_reporting(s, nid, F3);
2906 }
7d6034d3
DT
2907
2908 return ret;
2299ef71
BP
2909
2910err_enable:
2911 kfree(s);
2912 ecc_stngs[nid] = NULL;
2913
2914err_out:
2915 return ret;
7d6034d3
DT
2916}
2917
3f37a36b 2918static void remove_one_instance(unsigned int nid)
7d6034d3 2919{
360b7f3c
BP
2920 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2921 struct ecc_settings *s = ecc_stngs[nid];
3f37a36b
BP
2922 struct mem_ctl_info *mci;
2923 struct amd64_pvt *pvt;
7d6034d3 2924
3f37a36b 2925 mci = find_mci_by_dev(&F3->dev);
a4b4bedc
BP
2926 WARN_ON(!mci);
2927
7d6034d3 2928 /* Remove from EDAC CORE tracking list */
3f37a36b 2929 mci = edac_mc_del_mc(&F3->dev);
7d6034d3
DT
2930 if (!mci)
2931 return;
2932
2933 pvt = mci->pvt_info;
2934
360b7f3c 2935 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2936
360b7f3c 2937 free_mc_sibling_devs(pvt);
7d6034d3 2938
549d042d
BP
2939 /* unregister from EDAC MCE */
2940 amd_report_gart_errors(false);
df781d03 2941 amd_unregister_ecc_decoder(decode_bus_error);
549d042d 2942
360b7f3c
BP
2943 kfree(ecc_stngs[nid]);
2944 ecc_stngs[nid] = NULL;
ae7bb7c6 2945
7d6034d3 2946 /* Free the EDAC CORE resources */
8f68ed97 2947 mci->pvt_info = NULL;
8f68ed97
BP
2948
2949 kfree(pvt);
7d6034d3
DT
2950 edac_mc_free(mci);
2951}
2952
360b7f3c 2953static void setup_pci_device(void)
7d6034d3
DT
2954{
2955 struct mem_ctl_info *mci;
2956 struct amd64_pvt *pvt;
2957
d1ea71cd 2958 if (pci_ctl)
7d6034d3
DT
2959 return;
2960
2ec591ac 2961 mci = edac_mc_find(0);
d1ea71cd
BP
2962 if (!mci)
2963 return;
7d6034d3 2964
d1ea71cd
BP
2965 pvt = mci->pvt_info;
2966 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2967 if (!pci_ctl) {
2968 pr_warn("%s(): Unable to create PCI control\n", __func__);
2969 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
7d6034d3
DT
2970 }
2971}
2972
2973static int __init amd64_edac_init(void)
2974{
360b7f3c 2975 int err = -ENODEV;
3f37a36b 2976 int i;
7d6034d3 2977
9653a5c7 2978 if (amd_cache_northbridges() < 0)
56b34b91 2979 goto err_ret;
7d6034d3 2980
6ba92fea
BP
2981 opstate_init();
2982
cc4d8860 2983 err = -ENOMEM;
ae7bb7c6 2984 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2ec591ac 2985 if (!ecc_stngs)
a9f0fbe2 2986 goto err_free;
cc4d8860 2987
50542251 2988 msrs = msrs_alloc();
56b34b91 2989 if (!msrs)
360b7f3c 2990 goto err_free;
50542251 2991
3f37a36b
BP
2992 for (i = 0; i < amd_nb_num(); i++)
2993 if (probe_one_instance(i)) {
2994 /* unwind properly */
2995 while (--i >= 0)
2996 remove_one_instance(i);
7d6034d3 2997
3f37a36b
BP
2998 goto err_pci;
2999 }
7d6034d3 3000
360b7f3c 3001 setup_pci_device();
f5b10c45
TP
3002
3003#ifdef CONFIG_X86_32
3004 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
3005#endif
3006
de0336b3
BP
3007 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
3008
360b7f3c 3009 return 0;
7d6034d3 3010
56b34b91
BP
3011err_pci:
3012 msrs_free(msrs);
3013 msrs = NULL;
cc4d8860 3014
360b7f3c 3015err_free:
360b7f3c
BP
3016 kfree(ecc_stngs);
3017 ecc_stngs = NULL;
3018
56b34b91 3019err_ret:
7d6034d3
DT
3020 return err;
3021}
3022
3023static void __exit amd64_edac_exit(void)
3024{
3f37a36b
BP
3025 int i;
3026
d1ea71cd
BP
3027 if (pci_ctl)
3028 edac_pci_release_generic_ctl(pci_ctl);
7d6034d3 3029
3f37a36b
BP
3030 for (i = 0; i < amd_nb_num(); i++)
3031 remove_one_instance(i);
50542251 3032
ae7bb7c6
BP
3033 kfree(ecc_stngs);
3034 ecc_stngs = NULL;
3035
50542251
BP
3036 msrs_free(msrs);
3037 msrs = NULL;
7d6034d3
DT
3038}
3039
3040module_init(amd64_edac_init);
3041module_exit(amd64_edac_exit);
3042
3043MODULE_LICENSE("GPL");
3044MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3045 "Dave Peterson, Thayne Harbaugh");
3046MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3047 EDAC_AMD64_VERSION);
3048
3049module_param(edac_op_state, int, 0444);
3050MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");