]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Fix IPS related flicker
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c 154
6299f992 155 pinned = 0;
73aa808f 156 mutex_lock(&dev->struct_mutex);
35c20a60 157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 158 if (i915_gem_obj_is_pinned(obj))
f343c5f6 159 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
853ba5d2 162 args->aper_size = dev_priv->gtt.base.total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
6a2c4232
CW
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 170{
6a2c4232
CW
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
00731155 176
6a2c4232
CW
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
00731155 211
6a2c4232
CW
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232
CW
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
6a2c4232 260 page_cache_release(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
77a0d1ca 353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
00731155 371 i915_gem_chipset_flush(dev);
063e4e6b
PZ
372
373out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 387 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
ff72145b 405 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
406 if (obj == NULL)
407 return -ENOMEM;
408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
433 */
434int
435i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437{
438 struct drm_i915_gem_create *args = data;
63ed2cb2 439
ff72145b 440 return i915_gem_create(file, dev,
da6b51d0 441 args->size, &args->handle);
ff72145b
DA
442}
443
8461d226
DV
444static inline int
445__copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448{
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468}
469
8c59967c 470static inline int
4f0c7cfb
BW
471__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
8c59967c
DV
473 int length)
474{
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494}
495
4c914c0c
BV
496/*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503{
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530}
531
d174bd64
DV
532/* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
eb01459f 535static int
d174bd64
DV
536shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539{
540 char *vaddr;
541 int ret;
542
e7e58eb5 543 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
f60d7f0c 555 return ret ? -EFAULT : 0;
d174bd64
DV
556}
557
23c18c71
DV
558static void
559shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561{
e7e58eb5 562 if (unlikely(swizzled)) {
23c18c71
DV
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578}
579
d174bd64
DV
580/* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582static int
583shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586{
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
23c18c71
DV
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
d174bd64
DV
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
f60d7f0c 606 return ret ? - EFAULT : 0;
d174bd64
DV
607}
608
eb01459f 609static int
dbf7bff0
DV
610i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
eb01459f 614{
8461d226 615 char __user *user_data;
eb01459f 616 ssize_t remain;
8461d226 617 loff_t offset;
eb2c0c81 618 int shmem_page_offset, page_length, ret = 0;
8461d226 619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 620 int prefaulted = 0;
8489731c 621 int needs_clflush = 0;
67d5a50c 622 struct sg_page_iter sg_iter;
eb01459f 623
2bb4629a 624 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
625 remain = args->size;
626
8461d226 627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 628
4c914c0c 629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
630 if (ret)
631 return ret;
632
8461d226 633 offset = args->offset;
eb01459f 634
67d5a50c
ID
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
2db76d7c 637 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
638
639 if (remain <= 0)
640 break;
641
eb01459f
EA
642 /* Operation in this page
643 *
eb01459f 644 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
645 * page_length = bytes to copy for this page
646 */
c8cbbb8b 647 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 651
8461d226
DV
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
d174bd64
DV
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
dbf7bff0 660
dbf7bff0
DV
661 mutex_unlock(&dev->struct_mutex);
662
d330a953 663 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 664 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
eb01459f 672
d174bd64
DV
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
eb01459f 676
dbf7bff0 677 mutex_lock(&dev->struct_mutex);
f60d7f0c 678
f60d7f0c 679 if (ret)
8461d226 680 goto out;
8461d226 681
17793c9a 682next_page:
eb01459f 683 remain -= page_length;
8461d226 684 user_data += page_length;
eb01459f
EA
685 offset += page_length;
686 }
687
4f27b75d 688out:
f60d7f0c
CW
689 i915_gem_object_unpin_pages(obj);
690
eb01459f
EA
691 return ret;
692}
693
673a394b
EA
694/**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699int
700i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 701 struct drm_file *file)
673a394b
EA
702{
703 struct drm_i915_gem_pread *args = data;
05394f39 704 struct drm_i915_gem_object *obj;
35b62a89 705 int ret = 0;
673a394b 706
51311d0a
CW
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
2bb4629a 711 to_user_ptr(args->data_ptr),
51311d0a
CW
712 args->size))
713 return -EFAULT;
714
4f27b75d 715 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 716 if (ret)
4f27b75d 717 return ret;
673a394b 718
05394f39 719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 720 if (&obj->base == NULL) {
1d7cfea1
CW
721 ret = -ENOENT;
722 goto unlock;
4f27b75d 723 }
673a394b 724
7dcd2499 725 /* Bounds check source. */
05394f39
CW
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
ce9d419d 728 ret = -EINVAL;
35b62a89 729 goto out;
ce9d419d
CW
730 }
731
1286ff73
DV
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
db53a302
CW
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
dbf7bff0 742 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 743
35b62a89 744out:
05394f39 745 drm_gem_object_unreference(&obj->base);
1d7cfea1 746unlock:
4f27b75d 747 mutex_unlock(&dev->struct_mutex);
eb01459f 748 return ret;
673a394b
EA
749}
750
0839ccb8
KP
751/* This is the fast write path which cannot handle
752 * page faults in the source data
9b7530cc 753 */
0839ccb8
KP
754
755static inline int
756fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
9b7530cc 760{
4f0c7cfb
BW
761 void __iomem *vaddr_atomic;
762 void *vaddr;
0839ccb8 763 unsigned long unwritten;
9b7530cc 764
3e4d3af5 765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 769 user_data, length);
3e4d3af5 770 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 771 return unwritten;
0839ccb8
KP
772}
773
3de09aa3
EA
774/**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
673a394b 778static int
05394f39
CW
779i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
3de09aa3 781 struct drm_i915_gem_pwrite *args,
05394f39 782 struct drm_file *file)
673a394b 783{
3e31c6c0 784 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 785 ssize_t remain;
0839ccb8 786 loff_t offset, page_base;
673a394b 787 char __user *user_data;
935aaa69
DV
788 int page_offset, page_length, ret;
789
1ec9e26d 790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
673a394b 801
2bb4629a 802 user_data = to_user_ptr(args->data_ptr);
673a394b 803 remain = args->size;
673a394b 804
f343c5f6 805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 806
77a0d1ca 807 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 808
673a394b
EA
809 while (remain > 0) {
810 /* Operation in this page
811 *
0839ccb8
KP
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
673a394b 815 */
c8cbbb8b
CW
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
0839ccb8
KP
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
0839ccb8 822 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
0839ccb8 825 */
5d4545ae 826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
063e4e6b 829 goto out_flush;
935aaa69 830 }
673a394b 831
0839ccb8
KP
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
673a394b 835 }
673a394b 836
063e4e6b
PZ
837out_flush:
838 intel_fb_obj_flush(obj, false);
935aaa69 839out_unpin:
d7f46fc4 840 i915_gem_object_ggtt_unpin(obj);
935aaa69 841out:
3de09aa3 842 return ret;
673a394b
EA
843}
844
d174bd64
DV
845/* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
3043c60c 849static int
d174bd64
DV
850shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
673a394b 855{
d174bd64 856 char *vaddr;
673a394b 857 int ret;
3de09aa3 858
e7e58eb5 859 if (unlikely(page_do_bit17_swizzling))
d174bd64 860 return -EINVAL;
3de09aa3 861
d174bd64
DV
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
c2831a94
CW
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
d174bd64
DV
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
3de09aa3 872
755d2218 873 return ret ? -EFAULT : 0;
3de09aa3
EA
874}
875
d174bd64
DV
876/* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
3043c60c 878static int
d174bd64
DV
879shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
673a394b 884{
d174bd64
DV
885 char *vaddr;
886 int ret;
e5281ccd 887
d174bd64 888 vaddr = kmap(page);
e7e58eb5 889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
d174bd64
DV
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
895 user_data,
896 page_length);
d174bd64
DV
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
23c18c71
DV
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
d174bd64 905 kunmap(page);
40123c1f 906
755d2218 907 return ret ? -EFAULT : 0;
40123c1f
EA
908}
909
40123c1f 910static int
e244a443
DV
911i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
40123c1f 915{
40123c1f 916 ssize_t remain;
8c59967c
DV
917 loff_t offset;
918 char __user *user_data;
eb2c0c81 919 int shmem_page_offset, page_length, ret = 0;
8c59967c 920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 921 int hit_slowpath = 0;
58642885
DV
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
67d5a50c 924 struct sg_page_iter sg_iter;
40123c1f 925
2bb4629a 926 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
927 remain = args->size;
928
8c59967c 929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 930
58642885
DV
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
2c22569b 936 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
58642885 940 }
c76ce038
CW
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 946
755d2218
CW
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
77a0d1ca 951 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 952
755d2218
CW
953 i915_gem_object_pin_pages(obj);
954
673a394b 955 offset = args->offset;
05394f39 956 obj->dirty = 1;
673a394b 957
67d5a50c
ID
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
2db76d7c 960 struct page *page = sg_page_iter_page(&sg_iter);
58642885 961 int partial_cacheline_write;
e5281ccd 962
9da3da66
CW
963 if (remain <= 0)
964 break;
965
40123c1f
EA
966 /* Operation in this page
967 *
40123c1f 968 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
969 * page_length = bytes to copy for this page
970 */
c8cbbb8b 971 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 976
58642885
DV
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
8c59967c
DV
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
d174bd64
DV
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
e244a443
DV
993
994 hit_slowpath = 1;
e244a443 995 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
40123c1f 1000
e244a443 1001 mutex_lock(&dev->struct_mutex);
755d2218 1002
755d2218 1003 if (ret)
8c59967c 1004 goto out;
8c59967c 1005
17793c9a 1006next_page:
40123c1f 1007 remain -= page_length;
8c59967c 1008 user_data += page_length;
40123c1f 1009 offset += page_length;
673a394b
EA
1010 }
1011
fbd5a26d 1012out:
755d2218
CW
1013 i915_gem_object_unpin_pages(obj);
1014
e244a443 1015 if (hit_slowpath) {
8dcf015e
DV
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
e244a443 1025 }
8c59967c 1026 }
673a394b 1027
58642885 1028 if (needs_clflush_after)
e76e9aeb 1029 i915_gem_chipset_flush(dev);
58642885 1030
063e4e6b 1031 intel_fb_obj_flush(obj, false);
40123c1f 1032 return ret;
673a394b
EA
1033}
1034
1035/**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040int
1041i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1042 struct drm_file *file)
673a394b 1043{
5d77d9c5 1044 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1045 struct drm_i915_gem_pwrite *args = data;
05394f39 1046 struct drm_i915_gem_object *obj;
51311d0a
CW
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
2bb4629a 1053 to_user_ptr(args->data_ptr),
51311d0a
CW
1054 args->size))
1055 return -EFAULT;
1056
d330a953 1057 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
673a394b 1063
5d77d9c5
ID
1064 intel_runtime_pm_get(dev_priv);
1065
fbd5a26d 1066 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1067 if (ret)
5d77d9c5 1068 goto put_rpm;
1d7cfea1 1069
05394f39 1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1071 if (&obj->base == NULL) {
1d7cfea1
CW
1072 ret = -ENOENT;
1073 goto unlock;
fbd5a26d 1074 }
673a394b 1075
7dcd2499 1076 /* Bounds check destination. */
05394f39
CW
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
ce9d419d 1079 ret = -EINVAL;
35b62a89 1080 goto out;
ce9d419d
CW
1081 }
1082
1286ff73
DV
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
db53a302
CW
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
935aaa69 1093 ret = -EFAULT;
673a394b
EA
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
2c22569b
CW
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
fbd5a26d 1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1107 }
673a394b 1108
6a2c4232
CW
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
5c0480f2 1115
35b62a89 1116out:
05394f39 1117 drm_gem_object_unreference(&obj->base);
1d7cfea1 1118unlock:
fbd5a26d 1119 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1120put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
673a394b
EA
1123 return ret;
1124}
1125
b361237b 1126int
33196ded 1127i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1128 bool interruptible)
1129{
1f83fee0 1130 if (i915_reset_in_progress(error)) {
b361237b
CW
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1f83fee0
DV
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
b361237b
CW
1138 return -EIO;
1139
6689c167
MA
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
b361237b
CW
1147 }
1148
1149 return 0;
1150}
1151
094f9a54
CW
1152static void fake_irq(unsigned long data)
1153{
1154 wake_up_process((struct task_struct *)data);
1155}
1156
1157static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1158 struct intel_engine_cs *ring)
094f9a54
CW
1159{
1160 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1161}
1162
eed29a5b 1163static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1164{
2def4ad9
CW
1165 unsigned long timeout;
1166
eed29a5b 1167 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1168 return -EBUSY;
1169
1170 timeout = jiffies + 1;
1171 while (!need_resched()) {
eed29a5b 1172 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1173 return 0;
1174
1175 if (time_after_eq(jiffies, timeout))
1176 break;
b29c19b6 1177
2def4ad9
CW
1178 cpu_relax_lowlatency();
1179 }
eed29a5b 1180 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1181 return 0;
1182
1183 return -EAGAIN;
b29c19b6
CW
1184}
1185
b361237b 1186/**
9c654818
JH
1187 * __i915_wait_request - wait until execution of request has finished
1188 * @req: duh!
1189 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1190 * @interruptible: do an interruptible wait (normally yes)
1191 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1192 *
f69061be
DV
1193 * Note: It is of utmost importance that the passed in seqno and reset_counter
1194 * values have been read by the caller in an smp safe manner. Where read-side
1195 * locks are involved, it is sufficient to read the reset_counter before
1196 * unlocking the lock that protects the seqno. For lockless tricks, the
1197 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1198 * inserted.
1199 *
9c654818 1200 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1201 * errno with remaining time filled in timeout argument.
1202 */
9c654818 1203int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1204 unsigned reset_counter,
b29c19b6 1205 bool interruptible,
5ed0bdf2 1206 s64 *timeout,
2e1b8730 1207 struct intel_rps_client *rps)
b361237b 1208{
9c654818 1209 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1210 struct drm_device *dev = ring->dev;
3e31c6c0 1211 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1212 const bool irq_test_in_progress =
1213 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1214 DEFINE_WAIT(wait);
47e9766d 1215 unsigned long timeout_expire;
5ed0bdf2 1216 s64 before, now;
b361237b
CW
1217 int ret;
1218
9df7575f 1219 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1220
b4716185
CW
1221 if (list_empty(&req->list))
1222 return 0;
1223
1b5a433a 1224 if (i915_gem_request_completed(req, true))
b361237b
CW
1225 return 0;
1226
7bd0e226
DV
1227 timeout_expire = timeout ?
1228 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1229
2e1b8730 1230 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1231 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1232
094f9a54 1233 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1234 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1235 before = ktime_get_raw_ns();
2def4ad9
CW
1236
1237 /* Optimistic spin for the next jiffie before touching IRQs */
1238 ret = __i915_spin_request(req);
1239 if (ret == 0)
1240 goto out;
1241
1242 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1243 ret = -ENODEV;
1244 goto out;
1245 }
1246
094f9a54
CW
1247 for (;;) {
1248 struct timer_list timer;
b361237b 1249
094f9a54
CW
1250 prepare_to_wait(&ring->irq_queue, &wait,
1251 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1252
f69061be
DV
1253 /* We need to check whether any gpu reset happened in between
1254 * the caller grabbing the seqno and now ... */
094f9a54
CW
1255 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257 * is truely gone. */
1258 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 if (ret == 0)
1260 ret = -EAGAIN;
1261 break;
1262 }
f69061be 1263
1b5a433a 1264 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1265 ret = 0;
1266 break;
1267 }
b361237b 1268
094f9a54
CW
1269 if (interruptible && signal_pending(current)) {
1270 ret = -ERESTARTSYS;
1271 break;
1272 }
1273
47e9766d 1274 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1275 ret = -ETIME;
1276 break;
1277 }
1278
1279 timer.function = NULL;
1280 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1281 unsigned long expire;
1282
094f9a54 1283 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1284 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1285 mod_timer(&timer, expire);
1286 }
1287
5035c275 1288 io_schedule();
094f9a54 1289
094f9a54
CW
1290 if (timer.function) {
1291 del_singleshot_timer_sync(&timer);
1292 destroy_timer_on_stack(&timer);
1293 }
1294 }
168c3f21
MK
1295 if (!irq_test_in_progress)
1296 ring->irq_put(ring);
094f9a54
CW
1297
1298 finish_wait(&ring->irq_queue, &wait);
b361237b 1299
2def4ad9
CW
1300out:
1301 now = ktime_get_raw_ns();
1302 trace_i915_gem_request_wait_end(req);
1303
b361237b 1304 if (timeout) {
5ed0bdf2
TG
1305 s64 tres = *timeout - (now - before);
1306
1307 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1308
1309 /*
1310 * Apparently ktime isn't accurate enough and occasionally has a
1311 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1312 * things up to make the test happy. We allow up to 1 jiffy.
1313 *
1314 * This is a regrssion from the timespec->ktime conversion.
1315 */
1316 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1317 *timeout = 0;
b361237b
CW
1318 }
1319
094f9a54 1320 return ret;
b361237b
CW
1321}
1322
fcfa423c
JH
1323int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1324 struct drm_file *file)
1325{
1326 struct drm_i915_private *dev_private;
1327 struct drm_i915_file_private *file_priv;
1328
1329 WARN_ON(!req || !file || req->file_priv);
1330
1331 if (!req || !file)
1332 return -EINVAL;
1333
1334 if (req->file_priv)
1335 return -EINVAL;
1336
1337 dev_private = req->ring->dev->dev_private;
1338 file_priv = file->driver_priv;
1339
1340 spin_lock(&file_priv->mm.lock);
1341 req->file_priv = file_priv;
1342 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1343 spin_unlock(&file_priv->mm.lock);
1344
1345 req->pid = get_pid(task_pid(current));
1346
1347 return 0;
1348}
1349
b4716185
CW
1350static inline void
1351i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1352{
1353 struct drm_i915_file_private *file_priv = request->file_priv;
1354
1355 if (!file_priv)
1356 return;
1357
1358 spin_lock(&file_priv->mm.lock);
1359 list_del(&request->client_list);
1360 request->file_priv = NULL;
1361 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1362
1363 put_pid(request->pid);
1364 request->pid = NULL;
b4716185
CW
1365}
1366
1367static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1368{
1369 trace_i915_gem_request_retire(request);
1370
1371 /* We know the GPU must have read the request to have
1372 * sent us the seqno + interrupt, so use the position
1373 * of tail of the request to update the last known position
1374 * of the GPU head.
1375 *
1376 * Note this requires that we are always called in request
1377 * completion order.
1378 */
1379 request->ringbuf->last_retired_head = request->postfix;
1380
1381 list_del_init(&request->list);
1382 i915_gem_request_remove_from_client(request);
1383
b4716185
CW
1384 i915_gem_request_unreference(request);
1385}
1386
1387static void
1388__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1389{
1390 struct intel_engine_cs *engine = req->ring;
1391 struct drm_i915_gem_request *tmp;
1392
1393 lockdep_assert_held(&engine->dev->struct_mutex);
1394
1395 if (list_empty(&req->list))
1396 return;
1397
1398 do {
1399 tmp = list_first_entry(&engine->request_list,
1400 typeof(*tmp), list);
1401
1402 i915_gem_request_retire(tmp);
1403 } while (tmp != req);
1404
1405 WARN_ON(i915_verify_lists(engine->dev));
1406}
1407
b361237b 1408/**
a4b3a571 1409 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1410 * request and object lists appropriately for that event.
1411 */
1412int
a4b3a571 1413i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1414{
a4b3a571
DV
1415 struct drm_device *dev;
1416 struct drm_i915_private *dev_priv;
1417 bool interruptible;
b361237b
CW
1418 int ret;
1419
a4b3a571
DV
1420 BUG_ON(req == NULL);
1421
1422 dev = req->ring->dev;
1423 dev_priv = dev->dev_private;
1424 interruptible = dev_priv->mm.interruptible;
1425
b361237b 1426 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1427
33196ded 1428 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1429 if (ret)
1430 return ret;
1431
b4716185
CW
1432 ret = __i915_wait_request(req,
1433 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1434 interruptible, NULL, NULL);
b4716185
CW
1435 if (ret)
1436 return ret;
d26e3af8 1437
b4716185 1438 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1439 return 0;
1440}
1441
b361237b
CW
1442/**
1443 * Ensures that all rendering to the object has completed and the object is
1444 * safe to unbind from the GTT or access from the CPU.
1445 */
2e2f351d 1446int
b361237b
CW
1447i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1448 bool readonly)
1449{
b4716185 1450 int ret, i;
b361237b 1451
b4716185 1452 if (!obj->active)
b361237b
CW
1453 return 0;
1454
b4716185
CW
1455 if (readonly) {
1456 if (obj->last_write_req != NULL) {
1457 ret = i915_wait_request(obj->last_write_req);
1458 if (ret)
1459 return ret;
b361237b 1460
b4716185
CW
1461 i = obj->last_write_req->ring->id;
1462 if (obj->last_read_req[i] == obj->last_write_req)
1463 i915_gem_object_retire__read(obj, i);
1464 else
1465 i915_gem_object_retire__write(obj);
1466 }
1467 } else {
1468 for (i = 0; i < I915_NUM_RINGS; i++) {
1469 if (obj->last_read_req[i] == NULL)
1470 continue;
1471
1472 ret = i915_wait_request(obj->last_read_req[i]);
1473 if (ret)
1474 return ret;
1475
1476 i915_gem_object_retire__read(obj, i);
1477 }
1478 RQ_BUG_ON(obj->active);
1479 }
1480
1481 return 0;
1482}
1483
1484static void
1485i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1486 struct drm_i915_gem_request *req)
1487{
1488 int ring = req->ring->id;
1489
1490 if (obj->last_read_req[ring] == req)
1491 i915_gem_object_retire__read(obj, ring);
1492 else if (obj->last_write_req == req)
1493 i915_gem_object_retire__write(obj);
1494
1495 __i915_gem_request_retire__upto(req);
b361237b
CW
1496}
1497
3236f57a
CW
1498/* A nonblocking variant of the above wait. This is a highly dangerous routine
1499 * as the object state may change during this call.
1500 */
1501static __must_check int
1502i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1503 struct intel_rps_client *rps,
3236f57a
CW
1504 bool readonly)
1505{
1506 struct drm_device *dev = obj->base.dev;
1507 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1508 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1509 unsigned reset_counter;
b4716185 1510 int ret, i, n = 0;
3236f57a
CW
1511
1512 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1513 BUG_ON(!dev_priv->mm.interruptible);
1514
b4716185 1515 if (!obj->active)
3236f57a
CW
1516 return 0;
1517
33196ded 1518 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1519 if (ret)
1520 return ret;
1521
f69061be 1522 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1523
1524 if (readonly) {
1525 struct drm_i915_gem_request *req;
1526
1527 req = obj->last_write_req;
1528 if (req == NULL)
1529 return 0;
1530
b4716185
CW
1531 requests[n++] = i915_gem_request_reference(req);
1532 } else {
1533 for (i = 0; i < I915_NUM_RINGS; i++) {
1534 struct drm_i915_gem_request *req;
1535
1536 req = obj->last_read_req[i];
1537 if (req == NULL)
1538 continue;
1539
b4716185
CW
1540 requests[n++] = i915_gem_request_reference(req);
1541 }
1542 }
1543
3236f57a 1544 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1545 for (i = 0; ret == 0 && i < n; i++)
1546 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1547 NULL, rps);
3236f57a
CW
1548 mutex_lock(&dev->struct_mutex);
1549
b4716185
CW
1550 for (i = 0; i < n; i++) {
1551 if (ret == 0)
1552 i915_gem_object_retire_request(obj, requests[i]);
1553 i915_gem_request_unreference(requests[i]);
1554 }
1555
1556 return ret;
3236f57a
CW
1557}
1558
2e1b8730
CW
1559static struct intel_rps_client *to_rps_client(struct drm_file *file)
1560{
1561 struct drm_i915_file_private *fpriv = file->driver_priv;
1562 return &fpriv->rps;
1563}
1564
673a394b 1565/**
2ef7eeaa
EA
1566 * Called when user space prepares to use an object with the CPU, either
1567 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1568 */
1569int
1570i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1571 struct drm_file *file)
673a394b
EA
1572{
1573 struct drm_i915_gem_set_domain *args = data;
05394f39 1574 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1575 uint32_t read_domains = args->read_domains;
1576 uint32_t write_domain = args->write_domain;
673a394b
EA
1577 int ret;
1578
2ef7eeaa 1579 /* Only handle setting domains to types used by the CPU. */
21d509e3 1580 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1581 return -EINVAL;
1582
21d509e3 1583 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1584 return -EINVAL;
1585
1586 /* Having something in the write domain implies it's in the read
1587 * domain, and only that read domain. Enforce that in the request.
1588 */
1589 if (write_domain != 0 && read_domains != write_domain)
1590 return -EINVAL;
1591
76c1dec1 1592 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1593 if (ret)
76c1dec1 1594 return ret;
1d7cfea1 1595
05394f39 1596 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1597 if (&obj->base == NULL) {
1d7cfea1
CW
1598 ret = -ENOENT;
1599 goto unlock;
76c1dec1 1600 }
673a394b 1601
3236f57a
CW
1602 /* Try to flush the object off the GPU without holding the lock.
1603 * We will repeat the flush holding the lock in the normal manner
1604 * to catch cases where we are gazumped.
1605 */
6e4930f6 1606 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1607 to_rps_client(file),
6e4930f6 1608 !write_domain);
3236f57a
CW
1609 if (ret)
1610 goto unref;
1611
43566ded 1612 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1613 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1614 else
e47c68e9 1615 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1616
3236f57a 1617unref:
05394f39 1618 drm_gem_object_unreference(&obj->base);
1d7cfea1 1619unlock:
673a394b
EA
1620 mutex_unlock(&dev->struct_mutex);
1621 return ret;
1622}
1623
1624/**
1625 * Called when user space has done writes to this buffer
1626 */
1627int
1628i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1629 struct drm_file *file)
673a394b
EA
1630{
1631 struct drm_i915_gem_sw_finish *args = data;
05394f39 1632 struct drm_i915_gem_object *obj;
673a394b
EA
1633 int ret = 0;
1634
76c1dec1 1635 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1636 if (ret)
76c1dec1 1637 return ret;
1d7cfea1 1638
05394f39 1639 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1640 if (&obj->base == NULL) {
1d7cfea1
CW
1641 ret = -ENOENT;
1642 goto unlock;
673a394b
EA
1643 }
1644
673a394b 1645 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1646 if (obj->pin_display)
e62b59e4 1647 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1648
05394f39 1649 drm_gem_object_unreference(&obj->base);
1d7cfea1 1650unlock:
673a394b
EA
1651 mutex_unlock(&dev->struct_mutex);
1652 return ret;
1653}
1654
1655/**
1656 * Maps the contents of an object, returning the address it is mapped
1657 * into.
1658 *
1659 * While the mapping holds a reference on the contents of the object, it doesn't
1660 * imply a ref on the object itself.
34367381
DV
1661 *
1662 * IMPORTANT:
1663 *
1664 * DRM driver writers who look a this function as an example for how to do GEM
1665 * mmap support, please don't implement mmap support like here. The modern way
1666 * to implement DRM mmap support is with an mmap offset ioctl (like
1667 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1668 * That way debug tooling like valgrind will understand what's going on, hiding
1669 * the mmap call in a driver private ioctl will break that. The i915 driver only
1670 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1671 */
1672int
1673i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1674 struct drm_file *file)
673a394b
EA
1675{
1676 struct drm_i915_gem_mmap *args = data;
1677 struct drm_gem_object *obj;
673a394b
EA
1678 unsigned long addr;
1679
1816f923
AG
1680 if (args->flags & ~(I915_MMAP_WC))
1681 return -EINVAL;
1682
1683 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1684 return -ENODEV;
1685
05394f39 1686 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1687 if (obj == NULL)
bf79cb91 1688 return -ENOENT;
673a394b 1689
1286ff73
DV
1690 /* prime objects have no backing filp to GEM mmap
1691 * pages from.
1692 */
1693 if (!obj->filp) {
1694 drm_gem_object_unreference_unlocked(obj);
1695 return -EINVAL;
1696 }
1697
6be5ceb0 1698 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1699 PROT_READ | PROT_WRITE, MAP_SHARED,
1700 args->offset);
1816f923
AG
1701 if (args->flags & I915_MMAP_WC) {
1702 struct mm_struct *mm = current->mm;
1703 struct vm_area_struct *vma;
1704
1705 down_write(&mm->mmap_sem);
1706 vma = find_vma(mm, addr);
1707 if (vma)
1708 vma->vm_page_prot =
1709 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1710 else
1711 addr = -ENOMEM;
1712 up_write(&mm->mmap_sem);
1713 }
bc9025bd 1714 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1715 if (IS_ERR((void *)addr))
1716 return addr;
1717
1718 args->addr_ptr = (uint64_t) addr;
1719
1720 return 0;
1721}
1722
de151cf6
JB
1723/**
1724 * i915_gem_fault - fault a page into the GTT
1725 * vma: VMA in question
1726 * vmf: fault info
1727 *
1728 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1729 * from userspace. The fault handler takes care of binding the object to
1730 * the GTT (if needed), allocating and programming a fence register (again,
1731 * only if needed based on whether the old reg is still valid or the object
1732 * is tiled) and inserting a new PTE into the faulting process.
1733 *
1734 * Note that the faulting process may involve evicting existing objects
1735 * from the GTT and/or fence registers to make room. So performance may
1736 * suffer if the GTT working set is large or there are few fence registers
1737 * left.
1738 */
1739int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1740{
05394f39
CW
1741 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1742 struct drm_device *dev = obj->base.dev;
3e31c6c0 1743 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1744 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1745 pgoff_t page_offset;
1746 unsigned long pfn;
1747 int ret = 0;
0f973f27 1748 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1749
f65c9168
PZ
1750 intel_runtime_pm_get(dev_priv);
1751
de151cf6
JB
1752 /* We don't use vmf->pgoff since that has the fake offset */
1753 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1754 PAGE_SHIFT;
1755
d9bc7e9f
CW
1756 ret = i915_mutex_lock_interruptible(dev);
1757 if (ret)
1758 goto out;
a00b10c3 1759
db53a302
CW
1760 trace_i915_gem_object_fault(obj, page_offset, true, write);
1761
6e4930f6
CW
1762 /* Try to flush the object off the GPU first without holding the lock.
1763 * Upon reacquiring the lock, we will perform our sanity checks and then
1764 * repeat the flush holding the lock in the normal manner to catch cases
1765 * where we are gazumped.
1766 */
1767 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1768 if (ret)
1769 goto unlock;
1770
eb119bd6
CW
1771 /* Access to snoopable pages through the GTT is incoherent. */
1772 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1773 ret = -EFAULT;
eb119bd6
CW
1774 goto unlock;
1775 }
1776
c5ad54cf 1777 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1778 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1779 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1780 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1781
c5ad54cf
JL
1782 memset(&view, 0, sizeof(view));
1783 view.type = I915_GGTT_VIEW_PARTIAL;
1784 view.params.partial.offset = rounddown(page_offset, chunk_size);
1785 view.params.partial.size =
1786 min_t(unsigned int,
1787 chunk_size,
1788 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1789 view.params.partial.offset);
1790 }
1791
1792 /* Now pin it into the GTT if needed */
1793 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1794 if (ret)
1795 goto unlock;
4a684a41 1796
c9839303
CW
1797 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1798 if (ret)
1799 goto unpin;
74898d7e 1800
06d98131 1801 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1802 if (ret)
c9839303 1803 goto unpin;
7d1c4804 1804
b90b91d8 1805 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1806 pfn = dev_priv->gtt.mappable_base +
1807 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1808 pfn >>= PAGE_SHIFT;
de151cf6 1809
c5ad54cf
JL
1810 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1811 /* Overriding existing pages in partial view does not cause
1812 * us any trouble as TLBs are still valid because the fault
1813 * is due to userspace losing part of the mapping or never
1814 * having accessed it before (at this partials' range).
1815 */
1816 unsigned long base = vma->vm_start +
1817 (view.params.partial.offset << PAGE_SHIFT);
1818 unsigned int i;
b90b91d8 1819
c5ad54cf
JL
1820 for (i = 0; i < view.params.partial.size; i++) {
1821 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1822 if (ret)
1823 break;
1824 }
1825
1826 obj->fault_mappable = true;
c5ad54cf
JL
1827 } else {
1828 if (!obj->fault_mappable) {
1829 unsigned long size = min_t(unsigned long,
1830 vma->vm_end - vma->vm_start,
1831 obj->base.size);
1832 int i;
1833
1834 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1835 ret = vm_insert_pfn(vma,
1836 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1837 pfn + i);
1838 if (ret)
1839 break;
1840 }
1841
1842 obj->fault_mappable = true;
1843 } else
1844 ret = vm_insert_pfn(vma,
1845 (unsigned long)vmf->virtual_address,
1846 pfn + page_offset);
1847 }
c9839303 1848unpin:
c5ad54cf 1849 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1850unlock:
de151cf6 1851 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1852out:
de151cf6 1853 switch (ret) {
d9bc7e9f 1854 case -EIO:
2232f031
DV
1855 /*
1856 * We eat errors when the gpu is terminally wedged to avoid
1857 * userspace unduly crashing (gl has no provisions for mmaps to
1858 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1859 * and so needs to be reported.
1860 */
1861 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1862 ret = VM_FAULT_SIGBUS;
1863 break;
1864 }
045e769a 1865 case -EAGAIN:
571c608d
DV
1866 /*
1867 * EAGAIN means the gpu is hung and we'll wait for the error
1868 * handler to reset everything when re-faulting in
1869 * i915_mutex_lock_interruptible.
d9bc7e9f 1870 */
c715089f
CW
1871 case 0:
1872 case -ERESTARTSYS:
bed636ab 1873 case -EINTR:
e79e0fe3
DR
1874 case -EBUSY:
1875 /*
1876 * EBUSY is ok: this just means that another thread
1877 * already did the job.
1878 */
f65c9168
PZ
1879 ret = VM_FAULT_NOPAGE;
1880 break;
de151cf6 1881 case -ENOMEM:
f65c9168
PZ
1882 ret = VM_FAULT_OOM;
1883 break;
a7c2e1aa 1884 case -ENOSPC:
45d67817 1885 case -EFAULT:
f65c9168
PZ
1886 ret = VM_FAULT_SIGBUS;
1887 break;
de151cf6 1888 default:
a7c2e1aa 1889 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1890 ret = VM_FAULT_SIGBUS;
1891 break;
de151cf6 1892 }
f65c9168
PZ
1893
1894 intel_runtime_pm_put(dev_priv);
1895 return ret;
de151cf6
JB
1896}
1897
901782b2
CW
1898/**
1899 * i915_gem_release_mmap - remove physical page mappings
1900 * @obj: obj in question
1901 *
af901ca1 1902 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1903 * relinquish ownership of the pages back to the system.
1904 *
1905 * It is vital that we remove the page mapping if we have mapped a tiled
1906 * object through the GTT and then lose the fence register due to
1907 * resource pressure. Similarly if the object has been moved out of the
1908 * aperture, than pages mapped into userspace must be revoked. Removing the
1909 * mapping will then trigger a page fault on the next user access, allowing
1910 * fixup by i915_gem_fault().
1911 */
d05ca301 1912void
05394f39 1913i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1914{
6299f992
CW
1915 if (!obj->fault_mappable)
1916 return;
901782b2 1917
6796cb16
DH
1918 drm_vma_node_unmap(&obj->base.vma_node,
1919 obj->base.dev->anon_inode->i_mapping);
6299f992 1920 obj->fault_mappable = false;
901782b2
CW
1921}
1922
eedd10f4
CW
1923void
1924i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1925{
1926 struct drm_i915_gem_object *obj;
1927
1928 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1929 i915_gem_release_mmap(obj);
1930}
1931
0fa87796 1932uint32_t
e28f8711 1933i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1934{
e28f8711 1935 uint32_t gtt_size;
92b88aeb
CW
1936
1937 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1938 tiling_mode == I915_TILING_NONE)
1939 return size;
92b88aeb
CW
1940
1941 /* Previous chips need a power-of-two fence region when tiling */
1942 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1943 gtt_size = 1024*1024;
92b88aeb 1944 else
e28f8711 1945 gtt_size = 512*1024;
92b88aeb 1946
e28f8711
CW
1947 while (gtt_size < size)
1948 gtt_size <<= 1;
92b88aeb 1949
e28f8711 1950 return gtt_size;
92b88aeb
CW
1951}
1952
de151cf6
JB
1953/**
1954 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1955 * @obj: object to check
1956 *
1957 * Return the required GTT alignment for an object, taking into account
5e783301 1958 * potential fence register mapping.
de151cf6 1959 */
d865110c
ID
1960uint32_t
1961i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1962 int tiling_mode, bool fenced)
de151cf6 1963{
de151cf6
JB
1964 /*
1965 * Minimum alignment is 4k (GTT page size), but might be greater
1966 * if a fence register is needed for the object.
1967 */
d865110c 1968 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1969 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1970 return 4096;
1971
a00b10c3
CW
1972 /*
1973 * Previous chips need to be aligned to the size of the smallest
1974 * fence register that can contain the object.
1975 */
e28f8711 1976 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1977}
1978
d8cb5086
CW
1979static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1980{
1981 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1982 int ret;
1983
0de23977 1984 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1985 return 0;
1986
da494d7c
DV
1987 dev_priv->mm.shrinker_no_lock_stealing = true;
1988
d8cb5086
CW
1989 ret = drm_gem_create_mmap_offset(&obj->base);
1990 if (ret != -ENOSPC)
da494d7c 1991 goto out;
d8cb5086
CW
1992
1993 /* Badly fragmented mmap space? The only way we can recover
1994 * space is by destroying unwanted objects. We can't randomly release
1995 * mmap_offsets as userspace expects them to be persistent for the
1996 * lifetime of the objects. The closest we can is to release the
1997 * offsets on purgeable objects by truncating it and marking it purged,
1998 * which prevents userspace from ever using that object again.
1999 */
21ab4e74
CW
2000 i915_gem_shrink(dev_priv,
2001 obj->base.size >> PAGE_SHIFT,
2002 I915_SHRINK_BOUND |
2003 I915_SHRINK_UNBOUND |
2004 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2005 ret = drm_gem_create_mmap_offset(&obj->base);
2006 if (ret != -ENOSPC)
da494d7c 2007 goto out;
d8cb5086
CW
2008
2009 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2010 ret = drm_gem_create_mmap_offset(&obj->base);
2011out:
2012 dev_priv->mm.shrinker_no_lock_stealing = false;
2013
2014 return ret;
d8cb5086
CW
2015}
2016
2017static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2018{
d8cb5086
CW
2019 drm_gem_free_mmap_offset(&obj->base);
2020}
2021
da6b51d0 2022int
ff72145b
DA
2023i915_gem_mmap_gtt(struct drm_file *file,
2024 struct drm_device *dev,
da6b51d0 2025 uint32_t handle,
ff72145b 2026 uint64_t *offset)
de151cf6 2027{
05394f39 2028 struct drm_i915_gem_object *obj;
de151cf6
JB
2029 int ret;
2030
76c1dec1 2031 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2032 if (ret)
76c1dec1 2033 return ret;
de151cf6 2034
ff72145b 2035 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2036 if (&obj->base == NULL) {
1d7cfea1
CW
2037 ret = -ENOENT;
2038 goto unlock;
2039 }
de151cf6 2040
05394f39 2041 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2042 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2043 ret = -EFAULT;
1d7cfea1 2044 goto out;
ab18282d
CW
2045 }
2046
d8cb5086
CW
2047 ret = i915_gem_object_create_mmap_offset(obj);
2048 if (ret)
2049 goto out;
de151cf6 2050
0de23977 2051 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2052
1d7cfea1 2053out:
05394f39 2054 drm_gem_object_unreference(&obj->base);
1d7cfea1 2055unlock:
de151cf6 2056 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2057 return ret;
de151cf6
JB
2058}
2059
ff72145b
DA
2060/**
2061 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2062 * @dev: DRM device
2063 * @data: GTT mapping ioctl data
2064 * @file: GEM object info
2065 *
2066 * Simply returns the fake offset to userspace so it can mmap it.
2067 * The mmap call will end up in drm_gem_mmap(), which will set things
2068 * up so we can get faults in the handler above.
2069 *
2070 * The fault handler will take care of binding the object into the GTT
2071 * (since it may have been evicted to make room for something), allocating
2072 * a fence register, and mapping the appropriate aperture address into
2073 * userspace.
2074 */
2075int
2076i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2077 struct drm_file *file)
2078{
2079 struct drm_i915_gem_mmap_gtt *args = data;
2080
da6b51d0 2081 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2082}
2083
225067ee
DV
2084/* Immediately discard the backing storage */
2085static void
2086i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2087{
4d6294bf 2088 i915_gem_object_free_mmap_offset(obj);
1286ff73 2089
4d6294bf
CW
2090 if (obj->base.filp == NULL)
2091 return;
e5281ccd 2092
225067ee
DV
2093 /* Our goal here is to return as much of the memory as
2094 * is possible back to the system as we are called from OOM.
2095 * To do this we must instruct the shmfs to drop all of its
2096 * backing pages, *now*.
2097 */
5537252b 2098 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2099 obj->madv = __I915_MADV_PURGED;
2100}
e5281ccd 2101
5537252b
CW
2102/* Try to discard unwanted pages */
2103static void
2104i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2105{
5537252b
CW
2106 struct address_space *mapping;
2107
2108 switch (obj->madv) {
2109 case I915_MADV_DONTNEED:
2110 i915_gem_object_truncate(obj);
2111 case __I915_MADV_PURGED:
2112 return;
2113 }
2114
2115 if (obj->base.filp == NULL)
2116 return;
2117
2118 mapping = file_inode(obj->base.filp)->i_mapping,
2119 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2120}
2121
5cdf5881 2122static void
05394f39 2123i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2124{
90797e6d
ID
2125 struct sg_page_iter sg_iter;
2126 int ret;
1286ff73 2127
05394f39 2128 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2129
6c085a72
CW
2130 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2131 if (ret) {
2132 /* In the event of a disaster, abandon all caches and
2133 * hope for the best.
2134 */
2135 WARN_ON(ret != -EIO);
2c22569b 2136 i915_gem_clflush_object(obj, true);
6c085a72
CW
2137 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2138 }
2139
6dacfd2f 2140 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2141 i915_gem_object_save_bit_17_swizzle(obj);
2142
05394f39
CW
2143 if (obj->madv == I915_MADV_DONTNEED)
2144 obj->dirty = 0;
3ef94daa 2145
90797e6d 2146 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2147 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2148
05394f39 2149 if (obj->dirty)
9da3da66 2150 set_page_dirty(page);
3ef94daa 2151
05394f39 2152 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2153 mark_page_accessed(page);
3ef94daa 2154
9da3da66 2155 page_cache_release(page);
3ef94daa 2156 }
05394f39 2157 obj->dirty = 0;
673a394b 2158
9da3da66
CW
2159 sg_free_table(obj->pages);
2160 kfree(obj->pages);
37e680a1 2161}
6c085a72 2162
dd624afd 2163int
37e680a1
CW
2164i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2165{
2166 const struct drm_i915_gem_object_ops *ops = obj->ops;
2167
2f745ad3 2168 if (obj->pages == NULL)
37e680a1
CW
2169 return 0;
2170
a5570178
CW
2171 if (obj->pages_pin_count)
2172 return -EBUSY;
2173
9843877d 2174 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2175
a2165e31
CW
2176 /* ->put_pages might need to allocate memory for the bit17 swizzle
2177 * array, hence protect them from being reaped by removing them from gtt
2178 * lists early. */
35c20a60 2179 list_del(&obj->global_list);
a2165e31 2180
37e680a1 2181 ops->put_pages(obj);
05394f39 2182 obj->pages = NULL;
37e680a1 2183
5537252b 2184 i915_gem_object_invalidate(obj);
6c085a72
CW
2185
2186 return 0;
2187}
2188
37e680a1 2189static int
6c085a72 2190i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2191{
6c085a72 2192 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2193 int page_count, i;
2194 struct address_space *mapping;
9da3da66
CW
2195 struct sg_table *st;
2196 struct scatterlist *sg;
90797e6d 2197 struct sg_page_iter sg_iter;
e5281ccd 2198 struct page *page;
90797e6d 2199 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2200 gfp_t gfp;
e5281ccd 2201
6c085a72
CW
2202 /* Assert that the object is not currently in any GPU domain. As it
2203 * wasn't in the GTT, there shouldn't be any way it could have been in
2204 * a GPU cache
2205 */
2206 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2207 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2208
9da3da66
CW
2209 st = kmalloc(sizeof(*st), GFP_KERNEL);
2210 if (st == NULL)
2211 return -ENOMEM;
2212
05394f39 2213 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2214 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2215 kfree(st);
e5281ccd 2216 return -ENOMEM;
9da3da66 2217 }
e5281ccd 2218
9da3da66
CW
2219 /* Get the list of pages out of our struct file. They'll be pinned
2220 * at this point until we release them.
2221 *
2222 * Fail silently without starting the shrinker
2223 */
496ad9aa 2224 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2225 gfp = mapping_gfp_mask(mapping);
caf49191 2226 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2227 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2228 sg = st->sgl;
2229 st->nents = 0;
2230 for (i = 0; i < page_count; i++) {
6c085a72
CW
2231 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2232 if (IS_ERR(page)) {
21ab4e74
CW
2233 i915_gem_shrink(dev_priv,
2234 page_count,
2235 I915_SHRINK_BOUND |
2236 I915_SHRINK_UNBOUND |
2237 I915_SHRINK_PURGEABLE);
6c085a72
CW
2238 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2239 }
2240 if (IS_ERR(page)) {
2241 /* We've tried hard to allocate the memory by reaping
2242 * our own buffer, now let the real VM do its job and
2243 * go down in flames if truly OOM.
2244 */
6c085a72 2245 i915_gem_shrink_all(dev_priv);
f461d1be 2246 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2247 if (IS_ERR(page))
2248 goto err_pages;
6c085a72 2249 }
426729dc
KRW
2250#ifdef CONFIG_SWIOTLB
2251 if (swiotlb_nr_tbl()) {
2252 st->nents++;
2253 sg_set_page(sg, page, PAGE_SIZE, 0);
2254 sg = sg_next(sg);
2255 continue;
2256 }
2257#endif
90797e6d
ID
2258 if (!i || page_to_pfn(page) != last_pfn + 1) {
2259 if (i)
2260 sg = sg_next(sg);
2261 st->nents++;
2262 sg_set_page(sg, page, PAGE_SIZE, 0);
2263 } else {
2264 sg->length += PAGE_SIZE;
2265 }
2266 last_pfn = page_to_pfn(page);
3bbbe706
DV
2267
2268 /* Check that the i965g/gm workaround works. */
2269 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2270 }
426729dc
KRW
2271#ifdef CONFIG_SWIOTLB
2272 if (!swiotlb_nr_tbl())
2273#endif
2274 sg_mark_end(sg);
74ce6b6c
CW
2275 obj->pages = st;
2276
6dacfd2f 2277 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2278 i915_gem_object_do_bit_17_swizzle(obj);
2279
656bfa3a
DV
2280 if (obj->tiling_mode != I915_TILING_NONE &&
2281 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2282 i915_gem_object_pin_pages(obj);
2283
e5281ccd
CW
2284 return 0;
2285
2286err_pages:
90797e6d
ID
2287 sg_mark_end(sg);
2288 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2289 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2290 sg_free_table(st);
2291 kfree(st);
0820baf3
CW
2292
2293 /* shmemfs first checks if there is enough memory to allocate the page
2294 * and reports ENOSPC should there be insufficient, along with the usual
2295 * ENOMEM for a genuine allocation failure.
2296 *
2297 * We use ENOSPC in our driver to mean that we have run out of aperture
2298 * space and so want to translate the error from shmemfs back to our
2299 * usual understanding of ENOMEM.
2300 */
2301 if (PTR_ERR(page) == -ENOSPC)
2302 return -ENOMEM;
2303 else
2304 return PTR_ERR(page);
673a394b
EA
2305}
2306
37e680a1
CW
2307/* Ensure that the associated pages are gathered from the backing storage
2308 * and pinned into our object. i915_gem_object_get_pages() may be called
2309 * multiple times before they are released by a single call to
2310 * i915_gem_object_put_pages() - once the pages are no longer referenced
2311 * either as a result of memory pressure (reaping pages under the shrinker)
2312 * or as the object is itself released.
2313 */
2314int
2315i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2316{
2317 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2318 const struct drm_i915_gem_object_ops *ops = obj->ops;
2319 int ret;
2320
2f745ad3 2321 if (obj->pages)
37e680a1
CW
2322 return 0;
2323
43e28f09 2324 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2325 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2326 return -EFAULT;
43e28f09
CW
2327 }
2328
a5570178
CW
2329 BUG_ON(obj->pages_pin_count);
2330
37e680a1
CW
2331 ret = ops->get_pages(obj);
2332 if (ret)
2333 return ret;
2334
35c20a60 2335 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2336
2337 obj->get_page.sg = obj->pages->sgl;
2338 obj->get_page.last = 0;
2339
37e680a1 2340 return 0;
673a394b
EA
2341}
2342
b4716185 2343void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2344 struct drm_i915_gem_request *req)
673a394b 2345{
b4716185 2346 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2347 struct intel_engine_cs *ring;
2348
2349 ring = i915_gem_request_get_ring(req);
673a394b
EA
2350
2351 /* Add a reference if we're newly entering the active list. */
b4716185 2352 if (obj->active == 0)
05394f39 2353 drm_gem_object_reference(&obj->base);
b4716185 2354 obj->active |= intel_ring_flag(ring);
e35a41de 2355
b4716185 2356 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2357 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2358
b4716185 2359 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2360}
2361
b4716185
CW
2362static void
2363i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2364{
b4716185
CW
2365 RQ_BUG_ON(obj->last_write_req == NULL);
2366 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2367
2368 i915_gem_request_assign(&obj->last_write_req, NULL);
2369 intel_fb_obj_flush(obj, true);
e2d05a8b
BW
2370}
2371
caea7476 2372static void
b4716185 2373i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2374{
feb822cf 2375 struct i915_vma *vma;
ce44b0ea 2376
b4716185
CW
2377 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2378 RQ_BUG_ON(!(obj->active & (1 << ring)));
2379
2380 list_del_init(&obj->ring_list[ring]);
2381 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2382
2383 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2384 i915_gem_object_retire__write(obj);
2385
2386 obj->active &= ~(1 << ring);
2387 if (obj->active)
2388 return;
caea7476 2389
fe14d5f4
TU
2390 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2391 if (!list_empty(&vma->mm_list))
2392 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2393 }
caea7476 2394
97b2a6a1 2395 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2396 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2397}
2398
9d773091 2399static int
fca26bb4 2400i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2401{
9d773091 2402 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2403 struct intel_engine_cs *ring;
9d773091 2404 int ret, i, j;
53d227f2 2405
107f27a5 2406 /* Carefully retire all requests without writing to the rings */
9d773091 2407 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2408 ret = intel_ring_idle(ring);
2409 if (ret)
2410 return ret;
9d773091 2411 }
9d773091 2412 i915_gem_retire_requests(dev);
107f27a5
CW
2413
2414 /* Finally reset hw state */
9d773091 2415 for_each_ring(ring, dev_priv, i) {
fca26bb4 2416 intel_ring_init_seqno(ring, seqno);
498d2ac1 2417
ebc348b2
BW
2418 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2419 ring->semaphore.sync_seqno[j] = 0;
9d773091 2420 }
53d227f2 2421
9d773091 2422 return 0;
53d227f2
DV
2423}
2424
fca26bb4
MK
2425int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2426{
2427 struct drm_i915_private *dev_priv = dev->dev_private;
2428 int ret;
2429
2430 if (seqno == 0)
2431 return -EINVAL;
2432
2433 /* HWS page needs to be set less than what we
2434 * will inject to ring
2435 */
2436 ret = i915_gem_init_seqno(dev, seqno - 1);
2437 if (ret)
2438 return ret;
2439
2440 /* Carefully set the last_seqno value so that wrap
2441 * detection still works
2442 */
2443 dev_priv->next_seqno = seqno;
2444 dev_priv->last_seqno = seqno - 1;
2445 if (dev_priv->last_seqno == 0)
2446 dev_priv->last_seqno--;
2447
2448 return 0;
2449}
2450
9d773091
CW
2451int
2452i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2453{
9d773091
CW
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455
2456 /* reserve 0 for non-seqno */
2457 if (dev_priv->next_seqno == 0) {
fca26bb4 2458 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2459 if (ret)
2460 return ret;
53d227f2 2461
9d773091
CW
2462 dev_priv->next_seqno = 1;
2463 }
53d227f2 2464
f72b3435 2465 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2466 return 0;
53d227f2
DV
2467}
2468
bf7dc5b7
JH
2469/*
2470 * NB: This function is not allowed to fail. Doing so would mean the the
2471 * request is not being tracked for completion but the work itself is
2472 * going to happen on the hardware. This would be a Bad Thing(tm).
2473 */
75289874 2474void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2475 struct drm_i915_gem_object *obj,
2476 bool flush_caches)
673a394b 2477{
75289874
JH
2478 struct intel_engine_cs *ring;
2479 struct drm_i915_private *dev_priv;
48e29f55 2480 struct intel_ringbuffer *ringbuf;
6d3d8274 2481 u32 request_start;
3cce469c
CW
2482 int ret;
2483
48e29f55 2484 if (WARN_ON(request == NULL))
bf7dc5b7 2485 return;
48e29f55 2486
75289874
JH
2487 ring = request->ring;
2488 dev_priv = ring->dev->dev_private;
2489 ringbuf = request->ringbuf;
2490
29b1b415
JH
2491 /*
2492 * To ensure that this call will not fail, space for its emissions
2493 * should already have been reserved in the ring buffer. Let the ring
2494 * know that it is time to use that space up.
2495 */
2496 intel_ring_reserved_space_use(ringbuf);
2497
48e29f55 2498 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2499 /*
2500 * Emit any outstanding flushes - execbuf can fail to emit the flush
2501 * after having emitted the batchbuffer command. Hence we need to fix
2502 * things up similar to emitting the lazy request. The difference here
2503 * is that the flush _must_ happen before the next request, no matter
2504 * what.
2505 */
5b4a60c2
JH
2506 if (flush_caches) {
2507 if (i915.enable_execlists)
4866d729 2508 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2509 else
4866d729 2510 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2511 /* Not allowed to fail! */
2512 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2513 }
cc889e0f 2514
a71d8d94
CW
2515 /* Record the position of the start of the request so that
2516 * should we detect the updated seqno part-way through the
2517 * GPU processing the request, we never over-estimate the
2518 * position of the head.
2519 */
6d3d8274 2520 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2521
bf7dc5b7 2522 if (i915.enable_execlists)
c4e76638 2523 ret = ring->emit_request(request);
bf7dc5b7 2524 else {
ee044a88 2525 ret = ring->add_request(request);
53292cdb
MT
2526
2527 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2528 }
bf7dc5b7
JH
2529 /* Not allowed to fail! */
2530 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2531
7d736f4f 2532 request->head = request_start;
7d736f4f
MK
2533
2534 /* Whilst this request exists, batch_obj will be on the
2535 * active_list, and so will hold the active reference. Only when this
2536 * request is retired will the the batch_obj be moved onto the
2537 * inactive_list and lose its active reference. Hence we do not need
2538 * to explicitly hold another reference here.
2539 */
9a7e0c2a 2540 request->batch_obj = obj;
0e50e96b 2541
673a394b 2542 request->emitted_jiffies = jiffies;
852835f3 2543 list_add_tail(&request->list, &ring->request_list);
673a394b 2544
74328ee5 2545 trace_i915_gem_request_add(request);
db53a302 2546
87255483 2547 i915_queue_hangcheck(ring->dev);
10cd45b6 2548
87255483
DV
2549 queue_delayed_work(dev_priv->wq,
2550 &dev_priv->mm.retire_work,
2551 round_jiffies_up_relative(HZ));
2552 intel_mark_busy(dev_priv->dev);
cc889e0f 2553
29b1b415
JH
2554 /* Sanity check that the reserved size was large enough. */
2555 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2556}
2557
939fd762 2558static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2559 const struct intel_context *ctx)
be62acb4 2560{
44e2c070 2561 unsigned long elapsed;
be62acb4 2562
44e2c070
MK
2563 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2564
2565 if (ctx->hang_stats.banned)
be62acb4
MK
2566 return true;
2567
676fa572
CW
2568 if (ctx->hang_stats.ban_period_seconds &&
2569 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2570 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2571 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2572 return true;
88b4aa87
MK
2573 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2574 if (i915_stop_ring_allow_warn(dev_priv))
2575 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2576 return true;
3fac8978 2577 }
be62acb4
MK
2578 }
2579
2580 return false;
2581}
2582
939fd762 2583static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2584 struct intel_context *ctx,
b6b0fac0 2585 const bool guilty)
aa60c664 2586{
44e2c070
MK
2587 struct i915_ctx_hang_stats *hs;
2588
2589 if (WARN_ON(!ctx))
2590 return;
aa60c664 2591
44e2c070
MK
2592 hs = &ctx->hang_stats;
2593
2594 if (guilty) {
939fd762 2595 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2596 hs->batch_active++;
2597 hs->guilty_ts = get_seconds();
2598 } else {
2599 hs->batch_pending++;
aa60c664
MK
2600 }
2601}
2602
abfe262a
JH
2603void i915_gem_request_free(struct kref *req_ref)
2604{
2605 struct drm_i915_gem_request *req = container_of(req_ref,
2606 typeof(*req), ref);
2607 struct intel_context *ctx = req->ctx;
2608
fcfa423c
JH
2609 if (req->file_priv)
2610 i915_gem_request_remove_from_client(req);
2611
0794aed3
TD
2612 if (ctx) {
2613 if (i915.enable_execlists) {
abfe262a 2614 struct intel_engine_cs *ring = req->ring;
0e50e96b 2615
0794aed3
TD
2616 if (ctx != ring->default_context)
2617 intel_lr_context_unpin(ring, ctx);
2618 }
abfe262a 2619
dcb4c12a
OM
2620 i915_gem_context_unreference(ctx);
2621 }
abfe262a 2622
efab6d8d 2623 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2624}
2625
6689cb2b 2626int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2627 struct intel_context *ctx,
2628 struct drm_i915_gem_request **req_out)
6689cb2b 2629{
efab6d8d 2630 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2631 struct drm_i915_gem_request *req;
6689cb2b 2632 int ret;
6689cb2b 2633
217e46b5
JH
2634 if (!req_out)
2635 return -EINVAL;
2636
bccca494 2637 *req_out = NULL;
6689cb2b 2638
eed29a5b
DV
2639 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2640 if (req == NULL)
6689cb2b
JH
2641 return -ENOMEM;
2642
eed29a5b 2643 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2644 if (ret)
2645 goto err;
6689cb2b 2646
40e895ce
JH
2647 kref_init(&req->ref);
2648 req->i915 = dev_priv;
eed29a5b 2649 req->ring = ring;
40e895ce
JH
2650 req->ctx = ctx;
2651 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2652
2653 if (i915.enable_execlists)
40e895ce 2654 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2655 else
eed29a5b 2656 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2657 if (ret) {
2658 i915_gem_context_unreference(req->ctx);
9a0c1e27 2659 goto err;
40e895ce 2660 }
6689cb2b 2661
29b1b415
JH
2662 /*
2663 * Reserve space in the ring buffer for all the commands required to
2664 * eventually emit this request. This is to guarantee that the
2665 * i915_add_request() call can't fail. Note that the reserve may need
2666 * to be redone if the request is not actually submitted straight
2667 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2668 */
ccd98fe4
JH
2669 if (i915.enable_execlists)
2670 ret = intel_logical_ring_reserve_space(req);
2671 else
2672 ret = intel_ring_reserve_space(req);
2673 if (ret) {
2674 /*
2675 * At this point, the request is fully allocated even if not
2676 * fully prepared. Thus it can be cleaned up using the proper
2677 * free code.
2678 */
2679 i915_gem_request_cancel(req);
2680 return ret;
2681 }
29b1b415 2682
bccca494 2683 *req_out = req;
6689cb2b 2684 return 0;
9a0c1e27
CW
2685
2686err:
2687 kmem_cache_free(dev_priv->requests, req);
2688 return ret;
0e50e96b
MK
2689}
2690
29b1b415
JH
2691void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2692{
2693 intel_ring_reserved_space_cancel(req->ringbuf);
2694
2695 i915_gem_request_unreference(req);
2696}
2697
8d9fc7fd 2698struct drm_i915_gem_request *
a4872ba6 2699i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2700{
4db080f9
CW
2701 struct drm_i915_gem_request *request;
2702
2703 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2704 if (i915_gem_request_completed(request, false))
4db080f9 2705 continue;
aa60c664 2706
b6b0fac0 2707 return request;
4db080f9 2708 }
b6b0fac0
MK
2709
2710 return NULL;
2711}
2712
2713static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2714 struct intel_engine_cs *ring)
b6b0fac0
MK
2715{
2716 struct drm_i915_gem_request *request;
2717 bool ring_hung;
2718
8d9fc7fd 2719 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2720
2721 if (request == NULL)
2722 return;
2723
2724 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2725
939fd762 2726 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2727
2728 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2729 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2730}
aa60c664 2731
4db080f9 2732static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2733 struct intel_engine_cs *ring)
4db080f9 2734{
dfaae392 2735 while (!list_empty(&ring->active_list)) {
05394f39 2736 struct drm_i915_gem_object *obj;
9375e446 2737
05394f39
CW
2738 obj = list_first_entry(&ring->active_list,
2739 struct drm_i915_gem_object,
b4716185 2740 ring_list[ring->id]);
9375e446 2741
b4716185 2742 i915_gem_object_retire__read(obj, ring->id);
673a394b 2743 }
1d62beea 2744
dcb4c12a
OM
2745 /*
2746 * Clear the execlists queue up before freeing the requests, as those
2747 * are the ones that keep the context and ringbuffer backing objects
2748 * pinned in place.
2749 */
2750 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2751 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2752
2753 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2754 struct drm_i915_gem_request,
dcb4c12a
OM
2755 execlist_link);
2756 list_del(&submit_req->execlist_link);
1197b4f2
MK
2757
2758 if (submit_req->ctx != ring->default_context)
2759 intel_lr_context_unpin(ring, submit_req->ctx);
2760
b3a38998 2761 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2762 }
2763
1d62beea
BW
2764 /*
2765 * We must free the requests after all the corresponding objects have
2766 * been moved off active lists. Which is the same order as the normal
2767 * retire_requests function does. This is important if object hold
2768 * implicit references on things like e.g. ppgtt address spaces through
2769 * the request.
2770 */
2771 while (!list_empty(&ring->request_list)) {
2772 struct drm_i915_gem_request *request;
2773
2774 request = list_first_entry(&ring->request_list,
2775 struct drm_i915_gem_request,
2776 list);
2777
b4716185 2778 i915_gem_request_retire(request);
1d62beea 2779 }
673a394b
EA
2780}
2781
19b2dbde 2782void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2783{
2784 struct drm_i915_private *dev_priv = dev->dev_private;
2785 int i;
2786
4b9de737 2787 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2788 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2789
94a335db
DV
2790 /*
2791 * Commit delayed tiling changes if we have an object still
2792 * attached to the fence, otherwise just clear the fence.
2793 */
2794 if (reg->obj) {
2795 i915_gem_object_update_fence(reg->obj, reg,
2796 reg->obj->tiling_mode);
2797 } else {
2798 i915_gem_write_fence(dev, i, NULL);
2799 }
312817a3
CW
2800 }
2801}
2802
069efc1d 2803void i915_gem_reset(struct drm_device *dev)
673a394b 2804{
77f01230 2805 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2806 struct intel_engine_cs *ring;
1ec14ad3 2807 int i;
673a394b 2808
4db080f9
CW
2809 /*
2810 * Before we free the objects from the requests, we need to inspect
2811 * them for finding the guilty party. As the requests only borrow
2812 * their reference to the objects, the inspection must be done first.
2813 */
2814 for_each_ring(ring, dev_priv, i)
2815 i915_gem_reset_ring_status(dev_priv, ring);
2816
b4519513 2817 for_each_ring(ring, dev_priv, i)
4db080f9 2818 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2819
acce9ffa
BW
2820 i915_gem_context_reset(dev);
2821
19b2dbde 2822 i915_gem_restore_fences(dev);
b4716185
CW
2823
2824 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2825}
2826
2827/**
2828 * This function clears the request list as sequence numbers are passed.
2829 */
1cf0ba14 2830void
a4872ba6 2831i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2832{
db53a302 2833 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2834
832a3aad
CW
2835 /* Retire requests first as we use it above for the early return.
2836 * If we retire requests last, we may use a later seqno and so clear
2837 * the requests lists without clearing the active list, leading to
2838 * confusion.
e9103038 2839 */
852835f3 2840 while (!list_empty(&ring->request_list)) {
673a394b 2841 struct drm_i915_gem_request *request;
673a394b 2842
852835f3 2843 request = list_first_entry(&ring->request_list,
673a394b
EA
2844 struct drm_i915_gem_request,
2845 list);
673a394b 2846
1b5a433a 2847 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2848 break;
2849
b4716185 2850 i915_gem_request_retire(request);
b84d5f0c 2851 }
673a394b 2852
832a3aad
CW
2853 /* Move any buffers on the active list that are no longer referenced
2854 * by the ringbuffer to the flushing/inactive lists as appropriate,
2855 * before we free the context associated with the requests.
2856 */
2857 while (!list_empty(&ring->active_list)) {
2858 struct drm_i915_gem_object *obj;
2859
2860 obj = list_first_entry(&ring->active_list,
2861 struct drm_i915_gem_object,
b4716185 2862 ring_list[ring->id]);
832a3aad 2863
b4716185 2864 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2865 break;
2866
b4716185 2867 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2868 }
2869
581c26e8
JH
2870 if (unlikely(ring->trace_irq_req &&
2871 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2872 ring->irq_put(ring);
581c26e8 2873 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2874 }
23bc5982 2875
db53a302 2876 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2877}
2878
b29c19b6 2879bool
b09a1fec
CW
2880i915_gem_retire_requests(struct drm_device *dev)
2881{
3e31c6c0 2882 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2883 struct intel_engine_cs *ring;
b29c19b6 2884 bool idle = true;
1ec14ad3 2885 int i;
b09a1fec 2886
b29c19b6 2887 for_each_ring(ring, dev_priv, i) {
b4519513 2888 i915_gem_retire_requests_ring(ring);
b29c19b6 2889 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2890 if (i915.enable_execlists) {
2891 unsigned long flags;
2892
2893 spin_lock_irqsave(&ring->execlist_lock, flags);
2894 idle &= list_empty(&ring->execlist_queue);
2895 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2896
2897 intel_execlists_retire_requests(ring);
2898 }
b29c19b6
CW
2899 }
2900
2901 if (idle)
2902 mod_delayed_work(dev_priv->wq,
2903 &dev_priv->mm.idle_work,
2904 msecs_to_jiffies(100));
2905
2906 return idle;
b09a1fec
CW
2907}
2908
75ef9da2 2909static void
673a394b
EA
2910i915_gem_retire_work_handler(struct work_struct *work)
2911{
b29c19b6
CW
2912 struct drm_i915_private *dev_priv =
2913 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2914 struct drm_device *dev = dev_priv->dev;
0a58705b 2915 bool idle;
673a394b 2916
891b48cf 2917 /* Come back later if the device is busy... */
b29c19b6
CW
2918 idle = false;
2919 if (mutex_trylock(&dev->struct_mutex)) {
2920 idle = i915_gem_retire_requests(dev);
2921 mutex_unlock(&dev->struct_mutex);
673a394b 2922 }
b29c19b6 2923 if (!idle)
bcb45086
CW
2924 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2925 round_jiffies_up_relative(HZ));
b29c19b6 2926}
0a58705b 2927
b29c19b6
CW
2928static void
2929i915_gem_idle_work_handler(struct work_struct *work)
2930{
2931 struct drm_i915_private *dev_priv =
2932 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2933 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2934 struct intel_engine_cs *ring;
2935 int i;
b29c19b6 2936
423795cb
CW
2937 for_each_ring(ring, dev_priv, i)
2938 if (!list_empty(&ring->request_list))
2939 return;
35c94185
CW
2940
2941 intel_mark_idle(dev);
2942
2943 if (mutex_trylock(&dev->struct_mutex)) {
2944 struct intel_engine_cs *ring;
2945 int i;
2946
2947 for_each_ring(ring, dev_priv, i)
2948 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2949
35c94185
CW
2950 mutex_unlock(&dev->struct_mutex);
2951 }
673a394b
EA
2952}
2953
30dfebf3
DV
2954/**
2955 * Ensures that an object will eventually get non-busy by flushing any required
2956 * write domains, emitting any outstanding lazy request and retiring and
2957 * completed requests.
2958 */
2959static int
2960i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2961{
a5ac0f90 2962 int i;
b4716185
CW
2963
2964 if (!obj->active)
2965 return 0;
30dfebf3 2966
b4716185
CW
2967 for (i = 0; i < I915_NUM_RINGS; i++) {
2968 struct drm_i915_gem_request *req;
41c52415 2969
b4716185
CW
2970 req = obj->last_read_req[i];
2971 if (req == NULL)
2972 continue;
2973
2974 if (list_empty(&req->list))
2975 goto retire;
2976
b4716185
CW
2977 if (i915_gem_request_completed(req, true)) {
2978 __i915_gem_request_retire__upto(req);
2979retire:
2980 i915_gem_object_retire__read(obj, i);
2981 }
30dfebf3
DV
2982 }
2983
2984 return 0;
2985}
2986
23ba4fd0
BW
2987/**
2988 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2989 * @DRM_IOCTL_ARGS: standard ioctl arguments
2990 *
2991 * Returns 0 if successful, else an error is returned with the remaining time in
2992 * the timeout parameter.
2993 * -ETIME: object is still busy after timeout
2994 * -ERESTARTSYS: signal interrupted the wait
2995 * -ENONENT: object doesn't exist
2996 * Also possible, but rare:
2997 * -EAGAIN: GPU wedged
2998 * -ENOMEM: damn
2999 * -ENODEV: Internal IRQ fail
3000 * -E?: The add request failed
3001 *
3002 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3003 * non-zero timeout parameter the wait ioctl will wait for the given number of
3004 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3005 * without holding struct_mutex the object may become re-busied before this
3006 * function completes. A similar but shorter * race condition exists in the busy
3007 * ioctl
3008 */
3009int
3010i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3011{
3e31c6c0 3012 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3013 struct drm_i915_gem_wait *args = data;
3014 struct drm_i915_gem_object *obj;
b4716185 3015 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3016 unsigned reset_counter;
b4716185
CW
3017 int i, n = 0;
3018 int ret;
23ba4fd0 3019
11b5d511
DV
3020 if (args->flags != 0)
3021 return -EINVAL;
3022
23ba4fd0
BW
3023 ret = i915_mutex_lock_interruptible(dev);
3024 if (ret)
3025 return ret;
3026
3027 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3028 if (&obj->base == NULL) {
3029 mutex_unlock(&dev->struct_mutex);
3030 return -ENOENT;
3031 }
3032
30dfebf3
DV
3033 /* Need to make sure the object gets inactive eventually. */
3034 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3035 if (ret)
3036 goto out;
3037
b4716185 3038 if (!obj->active)
97b2a6a1 3039 goto out;
23ba4fd0 3040
23ba4fd0 3041 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3042 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3043 */
762e4583 3044 if (args->timeout_ns == 0) {
23ba4fd0
BW
3045 ret = -ETIME;
3046 goto out;
3047 }
3048
3049 drm_gem_object_unreference(&obj->base);
f69061be 3050 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3051
3052 for (i = 0; i < I915_NUM_RINGS; i++) {
3053 if (obj->last_read_req[i] == NULL)
3054 continue;
3055
3056 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3057 }
3058
23ba4fd0
BW
3059 mutex_unlock(&dev->struct_mutex);
3060
b4716185
CW
3061 for (i = 0; i < n; i++) {
3062 if (ret == 0)
3063 ret = __i915_wait_request(req[i], reset_counter, true,
3064 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3065 file->driver_priv);
3066 i915_gem_request_unreference__unlocked(req[i]);
3067 }
ff865885 3068 return ret;
23ba4fd0
BW
3069
3070out:
3071 drm_gem_object_unreference(&obj->base);
3072 mutex_unlock(&dev->struct_mutex);
3073 return ret;
3074}
3075
b4716185
CW
3076static int
3077__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3078 struct intel_engine_cs *to,
91af127f
JH
3079 struct drm_i915_gem_request *from_req,
3080 struct drm_i915_gem_request **to_req)
b4716185
CW
3081{
3082 struct intel_engine_cs *from;
3083 int ret;
3084
91af127f 3085 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3086 if (to == from)
3087 return 0;
3088
91af127f 3089 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3090 return 0;
3091
b4716185 3092 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3093 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3094 ret = __i915_wait_request(from_req,
a6f766f3
CW
3095 atomic_read(&i915->gpu_error.reset_counter),
3096 i915->mm.interruptible,
3097 NULL,
3098 &i915->rps.semaphores);
b4716185
CW
3099 if (ret)
3100 return ret;
3101
91af127f 3102 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3103 } else {
3104 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3105 u32 seqno = i915_gem_request_get_seqno(from_req);
3106
3107 WARN_ON(!to_req);
b4716185
CW
3108
3109 if (seqno <= from->semaphore.sync_seqno[idx])
3110 return 0;
3111
91af127f
JH
3112 if (*to_req == NULL) {
3113 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3114 if (ret)
3115 return ret;
3116 }
3117
599d924c
JH
3118 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3119 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3120 if (ret)
3121 return ret;
3122
3123 /* We use last_read_req because sync_to()
3124 * might have just caused seqno wrap under
3125 * the radar.
3126 */
3127 from->semaphore.sync_seqno[idx] =
3128 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3129 }
3130
3131 return 0;
3132}
3133
5816d648
BW
3134/**
3135 * i915_gem_object_sync - sync an object to a ring.
3136 *
3137 * @obj: object which may be in use on another ring.
3138 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3139 * @to_req: request we wish to use the object for. See below.
3140 * This will be allocated and returned if a request is
3141 * required but not passed in.
5816d648
BW
3142 *
3143 * This code is meant to abstract object synchronization with the GPU.
3144 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3145 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3146 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3147 * into a buffer at any time, but multiple readers. To ensure each has
3148 * a coherent view of memory, we must:
3149 *
3150 * - If there is an outstanding write request to the object, the new
3151 * request must wait for it to complete (either CPU or in hw, requests
3152 * on the same ring will be naturally ordered).
3153 *
3154 * - If we are a write request (pending_write_domain is set), the new
3155 * request must wait for outstanding read requests to complete.
5816d648 3156 *
91af127f
JH
3157 * For CPU synchronisation (NULL to) no request is required. For syncing with
3158 * rings to_req must be non-NULL. However, a request does not have to be
3159 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3160 * request will be allocated automatically and returned through *to_req. Note
3161 * that it is not guaranteed that commands will be emitted (because the system
3162 * might already be idle). Hence there is no need to create a request that
3163 * might never have any work submitted. Note further that if a request is
3164 * returned in *to_req, it is the responsibility of the caller to submit
3165 * that request (after potentially adding more work to it).
3166 *
5816d648
BW
3167 * Returns 0 if successful, else propagates up the lower layer error.
3168 */
2911a35b
BW
3169int
3170i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3171 struct intel_engine_cs *to,
3172 struct drm_i915_gem_request **to_req)
2911a35b 3173{
b4716185
CW
3174 const bool readonly = obj->base.pending_write_domain == 0;
3175 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3176 int ret, i, n;
41c52415 3177
b4716185 3178 if (!obj->active)
2911a35b
BW
3179 return 0;
3180
b4716185
CW
3181 if (to == NULL)
3182 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3183
b4716185
CW
3184 n = 0;
3185 if (readonly) {
3186 if (obj->last_write_req)
3187 req[n++] = obj->last_write_req;
3188 } else {
3189 for (i = 0; i < I915_NUM_RINGS; i++)
3190 if (obj->last_read_req[i])
3191 req[n++] = obj->last_read_req[i];
3192 }
3193 for (i = 0; i < n; i++) {
91af127f 3194 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3195 if (ret)
3196 return ret;
3197 }
2911a35b 3198
b4716185 3199 return 0;
2911a35b
BW
3200}
3201
b5ffc9bc
CW
3202static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3203{
3204 u32 old_write_domain, old_read_domains;
3205
b5ffc9bc
CW
3206 /* Force a pagefault for domain tracking on next user access */
3207 i915_gem_release_mmap(obj);
3208
b97c3d9c
KP
3209 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3210 return;
3211
97c809fd
CW
3212 /* Wait for any direct GTT access to complete */
3213 mb();
3214
b5ffc9bc
CW
3215 old_read_domains = obj->base.read_domains;
3216 old_write_domain = obj->base.write_domain;
3217
3218 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3219 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3220
3221 trace_i915_gem_object_change_domain(obj,
3222 old_read_domains,
3223 old_write_domain);
3224}
3225
07fe0b12 3226int i915_vma_unbind(struct i915_vma *vma)
673a394b 3227{
07fe0b12 3228 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3229 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3230 int ret;
673a394b 3231
07fe0b12 3232 if (list_empty(&vma->vma_link))
673a394b
EA
3233 return 0;
3234
0ff501cb
DV
3235 if (!drm_mm_node_allocated(&vma->node)) {
3236 i915_gem_vma_destroy(vma);
0ff501cb
DV
3237 return 0;
3238 }
433544bd 3239
d7f46fc4 3240 if (vma->pin_count)
31d8d651 3241 return -EBUSY;
673a394b 3242
c4670ad0
CW
3243 BUG_ON(obj->pages == NULL);
3244
2e2f351d 3245 ret = i915_gem_object_wait_rendering(obj, false);
1488fc08 3246 if (ret)
a8198eea
CW
3247 return ret;
3248 /* Continue on if we fail due to EIO, the GPU is hung so we
3249 * should be safe and we need to cleanup or else we might
3250 * cause memory corruption through use-after-free.
3251 */
3252
fe14d5f4
TU
3253 if (i915_is_ggtt(vma->vm) &&
3254 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3255 i915_gem_object_finish_gtt(obj);
5323fd04 3256
8b1bc9b4
DV
3257 /* release the fence reg _after_ flushing */
3258 ret = i915_gem_object_put_fence(obj);
3259 if (ret)
3260 return ret;
3261 }
96b47b65 3262
07fe0b12 3263 trace_i915_vma_unbind(vma);
db53a302 3264
777dc5bb 3265 vma->vm->unbind_vma(vma);
5e562f1d 3266 vma->bound = 0;
6f65e29a 3267
64bf9303 3268 list_del_init(&vma->mm_list);
fe14d5f4
TU
3269 if (i915_is_ggtt(vma->vm)) {
3270 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3271 obj->map_and_fenceable = false;
3272 } else if (vma->ggtt_view.pages) {
3273 sg_free_table(vma->ggtt_view.pages);
3274 kfree(vma->ggtt_view.pages);
3275 vma->ggtt_view.pages = NULL;
3276 }
3277 }
673a394b 3278
2f633156
BW
3279 drm_mm_remove_node(&vma->node);
3280 i915_gem_vma_destroy(vma);
3281
3282 /* Since the unbound list is global, only move to that list if
b93dab6e 3283 * no more VMAs exist. */
9490edb5
AR
3284 if (list_empty(&obj->vma_list)) {
3285 i915_gem_gtt_finish_object(obj);
2f633156 3286 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3287 }
673a394b 3288
70903c3b
CW
3289 /* And finally now the object is completely decoupled from this vma,
3290 * we can drop its hold on the backing storage and allow it to be
3291 * reaped by the shrinker.
3292 */
3293 i915_gem_object_unpin_pages(obj);
3294
88241785 3295 return 0;
54cf91dc
CW
3296}
3297
b2da9fe5 3298int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3299{
3e31c6c0 3300 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3301 struct intel_engine_cs *ring;
1ec14ad3 3302 int ret, i;
4df2faf4 3303
4df2faf4 3304 /* Flush everything onto the inactive list. */
b4519513 3305 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3306 if (!i915.enable_execlists) {
73cfa865
JH
3307 struct drm_i915_gem_request *req;
3308
3309 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3310 if (ret)
3311 return ret;
73cfa865 3312
ba01cc93 3313 ret = i915_switch_context(req);
73cfa865
JH
3314 if (ret) {
3315 i915_gem_request_cancel(req);
3316 return ret;
3317 }
3318
75289874 3319 i915_add_request_no_flush(req);
ecdb5fd8 3320 }
b6c7488d 3321
3e960501 3322 ret = intel_ring_idle(ring);
1ec14ad3
CW
3323 if (ret)
3324 return ret;
3325 }
4df2faf4 3326
b4716185 3327 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3328 return 0;
4df2faf4
DV
3329}
3330
9ce079e4
CW
3331static void i965_write_fence_reg(struct drm_device *dev, int reg,
3332 struct drm_i915_gem_object *obj)
de151cf6 3333{
3e31c6c0 3334 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3335 int fence_reg;
3336 int fence_pitch_shift;
de151cf6 3337
56c844e5
ID
3338 if (INTEL_INFO(dev)->gen >= 6) {
3339 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3340 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3341 } else {
3342 fence_reg = FENCE_REG_965_0;
3343 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3344 }
3345
d18b9619
CW
3346 fence_reg += reg * 8;
3347
3348 /* To w/a incoherency with non-atomic 64-bit register updates,
3349 * we split the 64-bit update into two 32-bit writes. In order
3350 * for a partial fence not to be evaluated between writes, we
3351 * precede the update with write to turn off the fence register,
3352 * and only enable the fence as the last step.
3353 *
3354 * For extra levels of paranoia, we make sure each step lands
3355 * before applying the next step.
3356 */
3357 I915_WRITE(fence_reg, 0);
3358 POSTING_READ(fence_reg);
3359
9ce079e4 3360 if (obj) {
f343c5f6 3361 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3362 uint64_t val;
de151cf6 3363
af1a7301
BP
3364 /* Adjust fence size to match tiled area */
3365 if (obj->tiling_mode != I915_TILING_NONE) {
3366 uint32_t row_size = obj->stride *
3367 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3368 size = (size / row_size) * row_size;
3369 }
3370
f343c5f6 3371 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3372 0xfffff000) << 32;
f343c5f6 3373 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3374 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3375 if (obj->tiling_mode == I915_TILING_Y)
3376 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3377 val |= I965_FENCE_REG_VALID;
c6642782 3378
d18b9619
CW
3379 I915_WRITE(fence_reg + 4, val >> 32);
3380 POSTING_READ(fence_reg + 4);
3381
3382 I915_WRITE(fence_reg + 0, val);
3383 POSTING_READ(fence_reg);
3384 } else {
3385 I915_WRITE(fence_reg + 4, 0);
3386 POSTING_READ(fence_reg + 4);
3387 }
de151cf6
JB
3388}
3389
9ce079e4
CW
3390static void i915_write_fence_reg(struct drm_device *dev, int reg,
3391 struct drm_i915_gem_object *obj)
de151cf6 3392{
3e31c6c0 3393 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3394 u32 val;
de151cf6 3395
9ce079e4 3396 if (obj) {
f343c5f6 3397 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3398 int pitch_val;
3399 int tile_width;
c6642782 3400
f343c5f6 3401 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3402 (size & -size) != size ||
f343c5f6
BW
3403 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3404 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3405 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3406
9ce079e4
CW
3407 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3408 tile_width = 128;
3409 else
3410 tile_width = 512;
3411
3412 /* Note: pitch better be a power of two tile widths */
3413 pitch_val = obj->stride / tile_width;
3414 pitch_val = ffs(pitch_val) - 1;
3415
f343c5f6 3416 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3417 if (obj->tiling_mode == I915_TILING_Y)
3418 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3419 val |= I915_FENCE_SIZE_BITS(size);
3420 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3421 val |= I830_FENCE_REG_VALID;
3422 } else
3423 val = 0;
3424
3425 if (reg < 8)
3426 reg = FENCE_REG_830_0 + reg * 4;
3427 else
3428 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3429
3430 I915_WRITE(reg, val);
3431 POSTING_READ(reg);
de151cf6
JB
3432}
3433
9ce079e4
CW
3434static void i830_write_fence_reg(struct drm_device *dev, int reg,
3435 struct drm_i915_gem_object *obj)
de151cf6 3436{
3e31c6c0 3437 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3438 uint32_t val;
de151cf6 3439
9ce079e4 3440 if (obj) {
f343c5f6 3441 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3442 uint32_t pitch_val;
de151cf6 3443
f343c5f6 3444 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3445 (size & -size) != size ||
f343c5f6
BW
3446 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3447 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3448 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3449
9ce079e4
CW
3450 pitch_val = obj->stride / 128;
3451 pitch_val = ffs(pitch_val) - 1;
de151cf6 3452
f343c5f6 3453 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3454 if (obj->tiling_mode == I915_TILING_Y)
3455 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3456 val |= I830_FENCE_SIZE_BITS(size);
3457 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3458 val |= I830_FENCE_REG_VALID;
3459 } else
3460 val = 0;
c6642782 3461
9ce079e4
CW
3462 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3463 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3464}
3465
d0a57789
CW
3466inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3467{
3468 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3469}
3470
9ce079e4
CW
3471static void i915_gem_write_fence(struct drm_device *dev, int reg,
3472 struct drm_i915_gem_object *obj)
3473{
d0a57789
CW
3474 struct drm_i915_private *dev_priv = dev->dev_private;
3475
3476 /* Ensure that all CPU reads are completed before installing a fence
3477 * and all writes before removing the fence.
3478 */
3479 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3480 mb();
3481
94a335db
DV
3482 WARN(obj && (!obj->stride || !obj->tiling_mode),
3483 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3484 obj->stride, obj->tiling_mode);
3485
ce38ab05
RV
3486 if (IS_GEN2(dev))
3487 i830_write_fence_reg(dev, reg, obj);
3488 else if (IS_GEN3(dev))
3489 i915_write_fence_reg(dev, reg, obj);
3490 else if (INTEL_INFO(dev)->gen >= 4)
3491 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3492
3493 /* And similarly be paranoid that no direct access to this region
3494 * is reordered to before the fence is installed.
3495 */
3496 if (i915_gem_object_needs_mb(obj))
3497 mb();
de151cf6
JB
3498}
3499
61050808
CW
3500static inline int fence_number(struct drm_i915_private *dev_priv,
3501 struct drm_i915_fence_reg *fence)
3502{
3503 return fence - dev_priv->fence_regs;
3504}
3505
3506static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3507 struct drm_i915_fence_reg *fence,
3508 bool enable)
3509{
2dc8aae0 3510 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3511 int reg = fence_number(dev_priv, fence);
3512
3513 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3514
3515 if (enable) {
46a0b638 3516 obj->fence_reg = reg;
61050808
CW
3517 fence->obj = obj;
3518 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3519 } else {
3520 obj->fence_reg = I915_FENCE_REG_NONE;
3521 fence->obj = NULL;
3522 list_del_init(&fence->lru_list);
3523 }
94a335db 3524 obj->fence_dirty = false;
61050808
CW
3525}
3526
d9e86c0e 3527static int
d0a57789 3528i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3529{
97b2a6a1 3530 if (obj->last_fenced_req) {
a4b3a571 3531 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3532 if (ret)
3533 return ret;
d9e86c0e 3534
97b2a6a1 3535 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3536 }
3537
3538 return 0;
3539}
3540
3541int
3542i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3543{
61050808 3544 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3545 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3546 int ret;
3547
d0a57789 3548 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3549 if (ret)
3550 return ret;
3551
61050808
CW
3552 if (obj->fence_reg == I915_FENCE_REG_NONE)
3553 return 0;
d9e86c0e 3554
f9c513e9
CW
3555 fence = &dev_priv->fence_regs[obj->fence_reg];
3556
aff10b30
DV
3557 if (WARN_ON(fence->pin_count))
3558 return -EBUSY;
3559
61050808 3560 i915_gem_object_fence_lost(obj);
f9c513e9 3561 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3562
3563 return 0;
3564}
3565
3566static struct drm_i915_fence_reg *
a360bb1a 3567i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3568{
ae3db24a 3569 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3570 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3571 int i;
ae3db24a
DV
3572
3573 /* First try to find a free reg */
d9e86c0e 3574 avail = NULL;
ae3db24a
DV
3575 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3576 reg = &dev_priv->fence_regs[i];
3577 if (!reg->obj)
d9e86c0e 3578 return reg;
ae3db24a 3579
1690e1eb 3580 if (!reg->pin_count)
d9e86c0e 3581 avail = reg;
ae3db24a
DV
3582 }
3583
d9e86c0e 3584 if (avail == NULL)
5dce5b93 3585 goto deadlock;
ae3db24a
DV
3586
3587 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3588 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3589 if (reg->pin_count)
ae3db24a
DV
3590 continue;
3591
8fe301ad 3592 return reg;
ae3db24a
DV
3593 }
3594
5dce5b93
CW
3595deadlock:
3596 /* Wait for completion of pending flips which consume fences */
3597 if (intel_has_pending_fb_unpin(dev))
3598 return ERR_PTR(-EAGAIN);
3599
3600 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3601}
3602
de151cf6 3603/**
9a5a53b3 3604 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3605 * @obj: object to map through a fence reg
3606 *
3607 * When mapping objects through the GTT, userspace wants to be able to write
3608 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3609 * This function walks the fence regs looking for a free one for @obj,
3610 * stealing one if it can't find any.
3611 *
3612 * It then sets up the reg based on the object's properties: address, pitch
3613 * and tiling format.
9a5a53b3
CW
3614 *
3615 * For an untiled surface, this removes any existing fence.
de151cf6 3616 */
8c4b8c3f 3617int
06d98131 3618i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3619{
05394f39 3620 struct drm_device *dev = obj->base.dev;
79e53945 3621 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3622 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3623 struct drm_i915_fence_reg *reg;
ae3db24a 3624 int ret;
de151cf6 3625
14415745
CW
3626 /* Have we updated the tiling parameters upon the object and so
3627 * will need to serialise the write to the associated fence register?
3628 */
5d82e3e6 3629 if (obj->fence_dirty) {
d0a57789 3630 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3631 if (ret)
3632 return ret;
3633 }
9a5a53b3 3634
d9e86c0e 3635 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3636 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3637 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3638 if (!obj->fence_dirty) {
14415745
CW
3639 list_move_tail(&reg->lru_list,
3640 &dev_priv->mm.fence_list);
3641 return 0;
3642 }
3643 } else if (enable) {
e6a84468
CW
3644 if (WARN_ON(!obj->map_and_fenceable))
3645 return -EINVAL;
3646
14415745 3647 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3648 if (IS_ERR(reg))
3649 return PTR_ERR(reg);
d9e86c0e 3650
14415745
CW
3651 if (reg->obj) {
3652 struct drm_i915_gem_object *old = reg->obj;
3653
d0a57789 3654 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3655 if (ret)
3656 return ret;
3657
14415745 3658 i915_gem_object_fence_lost(old);
29c5a587 3659 }
14415745 3660 } else
a09ba7fa 3661 return 0;
a09ba7fa 3662
14415745 3663 i915_gem_object_update_fence(obj, reg, enable);
14415745 3664
9ce079e4 3665 return 0;
de151cf6
JB
3666}
3667
4144f9b5 3668static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3669 unsigned long cache_level)
3670{
4144f9b5 3671 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3672 struct drm_mm_node *other;
3673
4144f9b5
CW
3674 /*
3675 * On some machines we have to be careful when putting differing types
3676 * of snoopable memory together to avoid the prefetcher crossing memory
3677 * domains and dying. During vm initialisation, we decide whether or not
3678 * these constraints apply and set the drm_mm.color_adjust
3679 * appropriately.
42d6ab48 3680 */
4144f9b5 3681 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3682 return true;
3683
c6cfb325 3684 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3685 return true;
3686
3687 if (list_empty(&gtt_space->node_list))
3688 return true;
3689
3690 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3691 if (other->allocated && !other->hole_follows && other->color != cache_level)
3692 return false;
3693
3694 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3695 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3696 return false;
3697
3698 return true;
3699}
3700
673a394b 3701/**
91e6711e
JL
3702 * Finds free space in the GTT aperture and binds the object or a view of it
3703 * there.
673a394b 3704 */
262de145 3705static struct i915_vma *
07fe0b12
BW
3706i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3707 struct i915_address_space *vm,
ec7adb6e 3708 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3709 unsigned alignment,
ec7adb6e 3710 uint64_t flags)
673a394b 3711{
05394f39 3712 struct drm_device *dev = obj->base.dev;
3e31c6c0 3713 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3714 u32 size, fence_size, fence_alignment, unfenced_alignment;
c44ef60e 3715 u64 start =
d23db88c 3716 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
c44ef60e 3717 u64 end =
1ec9e26d 3718 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3719 struct i915_vma *vma;
07f73f69 3720 int ret;
673a394b 3721
91e6711e
JL
3722 if (i915_is_ggtt(vm)) {
3723 u32 view_size;
3724
3725 if (WARN_ON(!ggtt_view))
3726 return ERR_PTR(-EINVAL);
ec7adb6e 3727
91e6711e
JL
3728 view_size = i915_ggtt_view_size(obj, ggtt_view);
3729
3730 fence_size = i915_gem_get_gtt_size(dev,
3731 view_size,
3732 obj->tiling_mode);
3733 fence_alignment = i915_gem_get_gtt_alignment(dev,
3734 view_size,
3735 obj->tiling_mode,
3736 true);
3737 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3738 view_size,
3739 obj->tiling_mode,
3740 false);
3741 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3742 } else {
3743 fence_size = i915_gem_get_gtt_size(dev,
3744 obj->base.size,
3745 obj->tiling_mode);
3746 fence_alignment = i915_gem_get_gtt_alignment(dev,
3747 obj->base.size,
3748 obj->tiling_mode,
3749 true);
3750 unfenced_alignment =
3751 i915_gem_get_gtt_alignment(dev,
3752 obj->base.size,
3753 obj->tiling_mode,
3754 false);
3755 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3756 }
a00b10c3 3757
673a394b 3758 if (alignment == 0)
1ec9e26d 3759 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3760 unfenced_alignment;
1ec9e26d 3761 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3762 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3763 ggtt_view ? ggtt_view->type : 0,
3764 alignment);
262de145 3765 return ERR_PTR(-EINVAL);
673a394b
EA
3766 }
3767
91e6711e
JL
3768 /* If binding the object/GGTT view requires more space than the entire
3769 * aperture has, reject it early before evicting everything in a vain
3770 * attempt to find space.
654fc607 3771 */
91e6711e 3772 if (size > end) {
c44ef60e 3773 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
91e6711e
JL
3774 ggtt_view ? ggtt_view->type : 0,
3775 size,
1ec9e26d 3776 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3777 end);
262de145 3778 return ERR_PTR(-E2BIG);
654fc607
CW
3779 }
3780
37e680a1 3781 ret = i915_gem_object_get_pages(obj);
6c085a72 3782 if (ret)
262de145 3783 return ERR_PTR(ret);
6c085a72 3784
fbdda6fb
CW
3785 i915_gem_object_pin_pages(obj);
3786
ec7adb6e
JL
3787 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3788 i915_gem_obj_lookup_or_create_vma(obj, vm);
3789
262de145 3790 if (IS_ERR(vma))
bc6bc15b 3791 goto err_unpin;
2f633156 3792
0a9ae0d7 3793search_free:
07fe0b12 3794 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3795 size, alignment,
d23db88c
CW
3796 obj->cache_level,
3797 start, end,
62347f9e
LK
3798 DRM_MM_SEARCH_DEFAULT,
3799 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3800 if (ret) {
f6cd1f15 3801 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3802 obj->cache_level,
3803 start, end,
3804 flags);
dc9dd7a2
CW
3805 if (ret == 0)
3806 goto search_free;
9731129c 3807
bc6bc15b 3808 goto err_free_vma;
673a394b 3809 }
4144f9b5 3810 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3811 ret = -EINVAL;
bc6bc15b 3812 goto err_remove_node;
673a394b
EA
3813 }
3814
74163907 3815 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3816 if (ret)
bc6bc15b 3817 goto err_remove_node;
673a394b 3818
fe14d5f4 3819 trace_i915_vma_bind(vma, flags);
0875546c 3820 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
3821 if (ret)
3822 goto err_finish_gtt;
3823
35c20a60 3824 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3825 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3826
262de145 3827 return vma;
2f633156 3828
fe14d5f4
TU
3829err_finish_gtt:
3830 i915_gem_gtt_finish_object(obj);
bc6bc15b 3831err_remove_node:
6286ef9b 3832 drm_mm_remove_node(&vma->node);
bc6bc15b 3833err_free_vma:
2f633156 3834 i915_gem_vma_destroy(vma);
262de145 3835 vma = ERR_PTR(ret);
bc6bc15b 3836err_unpin:
2f633156 3837 i915_gem_object_unpin_pages(obj);
262de145 3838 return vma;
673a394b
EA
3839}
3840
000433b6 3841bool
2c22569b
CW
3842i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3843 bool force)
673a394b 3844{
673a394b
EA
3845 /* If we don't have a page list set up, then we're not pinned
3846 * to GPU, and we can ignore the cache flush because it'll happen
3847 * again at bind time.
3848 */
05394f39 3849 if (obj->pages == NULL)
000433b6 3850 return false;
673a394b 3851
769ce464
ID
3852 /*
3853 * Stolen memory is always coherent with the GPU as it is explicitly
3854 * marked as wc by the system, or the system is cache-coherent.
3855 */
6a2c4232 3856 if (obj->stolen || obj->phys_handle)
000433b6 3857 return false;
769ce464 3858
9c23f7fc
CW
3859 /* If the GPU is snooping the contents of the CPU cache,
3860 * we do not need to manually clear the CPU cache lines. However,
3861 * the caches are only snooped when the render cache is
3862 * flushed/invalidated. As we always have to emit invalidations
3863 * and flushes when moving into and out of the RENDER domain, correct
3864 * snooping behaviour occurs naturally as the result of our domain
3865 * tracking.
3866 */
0f71979a
CW
3867 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3868 obj->cache_dirty = true;
000433b6 3869 return false;
0f71979a 3870 }
9c23f7fc 3871
1c5d22f7 3872 trace_i915_gem_object_clflush(obj);
9da3da66 3873 drm_clflush_sg(obj->pages);
0f71979a 3874 obj->cache_dirty = false;
000433b6
CW
3875
3876 return true;
e47c68e9
EA
3877}
3878
3879/** Flushes the GTT write domain for the object if it's dirty. */
3880static void
05394f39 3881i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3882{
1c5d22f7
CW
3883 uint32_t old_write_domain;
3884
05394f39 3885 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3886 return;
3887
63256ec5 3888 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3889 * to it immediately go to main memory as far as we know, so there's
3890 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3891 *
3892 * However, we do have to enforce the order so that all writes through
3893 * the GTT land before any writes to the device, such as updates to
3894 * the GATT itself.
e47c68e9 3895 */
63256ec5
CW
3896 wmb();
3897
05394f39
CW
3898 old_write_domain = obj->base.write_domain;
3899 obj->base.write_domain = 0;
1c5d22f7 3900
f99d7069
DV
3901 intel_fb_obj_flush(obj, false);
3902
1c5d22f7 3903 trace_i915_gem_object_change_domain(obj,
05394f39 3904 obj->base.read_domains,
1c5d22f7 3905 old_write_domain);
e47c68e9
EA
3906}
3907
3908/** Flushes the CPU write domain for the object if it's dirty. */
3909static void
e62b59e4 3910i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3911{
1c5d22f7 3912 uint32_t old_write_domain;
e47c68e9 3913
05394f39 3914 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3915 return;
3916
e62b59e4 3917 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3918 i915_gem_chipset_flush(obj->base.dev);
3919
05394f39
CW
3920 old_write_domain = obj->base.write_domain;
3921 obj->base.write_domain = 0;
1c5d22f7 3922
f99d7069
DV
3923 intel_fb_obj_flush(obj, false);
3924
1c5d22f7 3925 trace_i915_gem_object_change_domain(obj,
05394f39 3926 obj->base.read_domains,
1c5d22f7 3927 old_write_domain);
e47c68e9
EA
3928}
3929
2ef7eeaa
EA
3930/**
3931 * Moves a single object to the GTT read, and possibly write domain.
3932 *
3933 * This function returns when the move is complete, including waiting on
3934 * flushes to occur.
3935 */
79e53945 3936int
2021746e 3937i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3938{
1c5d22f7 3939 uint32_t old_write_domain, old_read_domains;
43566ded 3940 struct i915_vma *vma;
e47c68e9 3941 int ret;
2ef7eeaa 3942
8d7e3de1
CW
3943 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3944 return 0;
3945
0201f1ec 3946 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3947 if (ret)
3948 return ret;
3949
43566ded
CW
3950 /* Flush and acquire obj->pages so that we are coherent through
3951 * direct access in memory with previous cached writes through
3952 * shmemfs and that our cache domain tracking remains valid.
3953 * For example, if the obj->filp was moved to swap without us
3954 * being notified and releasing the pages, we would mistakenly
3955 * continue to assume that the obj remained out of the CPU cached
3956 * domain.
3957 */
3958 ret = i915_gem_object_get_pages(obj);
3959 if (ret)
3960 return ret;
3961
e62b59e4 3962 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3963
d0a57789
CW
3964 /* Serialise direct access to this object with the barriers for
3965 * coherent writes from the GPU, by effectively invalidating the
3966 * GTT domain upon first access.
3967 */
3968 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3969 mb();
3970
05394f39
CW
3971 old_write_domain = obj->base.write_domain;
3972 old_read_domains = obj->base.read_domains;
1c5d22f7 3973
e47c68e9
EA
3974 /* It should now be out of any other write domains, and we can update
3975 * the domain values for our changes.
3976 */
05394f39
CW
3977 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3978 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3979 if (write) {
05394f39
CW
3980 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3981 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3982 obj->dirty = 1;
2ef7eeaa
EA
3983 }
3984
f99d7069 3985 if (write)
77a0d1ca 3986 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
f99d7069 3987
1c5d22f7
CW
3988 trace_i915_gem_object_change_domain(obj,
3989 old_read_domains,
3990 old_write_domain);
3991
8325a09d 3992 /* And bump the LRU for this access */
43566ded
CW
3993 vma = i915_gem_obj_to_ggtt(obj);
3994 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3995 list_move_tail(&vma->mm_list,
43566ded 3996 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3997
e47c68e9
EA
3998 return 0;
3999}
4000
e4ffd173
CW
4001int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4002 enum i915_cache_level cache_level)
4003{
7bddb01f 4004 struct drm_device *dev = obj->base.dev;
df6f783a 4005 struct i915_vma *vma, *next;
e4ffd173
CW
4006 int ret;
4007
4008 if (obj->cache_level == cache_level)
4009 return 0;
4010
d7f46fc4 4011 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
4012 DRM_DEBUG("can not change the cache level of pinned objects\n");
4013 return -EBUSY;
4014 }
4015
df6f783a 4016 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 4017 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 4018 ret = i915_vma_unbind(vma);
3089c6f2
BW
4019 if (ret)
4020 return ret;
3089c6f2 4021 }
42d6ab48
CW
4022 }
4023
3089c6f2 4024 if (i915_gem_obj_bound_any(obj)) {
2e2f351d 4025 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
4026 if (ret)
4027 return ret;
4028
4029 i915_gem_object_finish_gtt(obj);
4030
4031 /* Before SandyBridge, you could not use tiling or fence
4032 * registers with snooped memory, so relinquish any fences
4033 * currently pointing to our region in the aperture.
4034 */
42d6ab48 4035 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
4036 ret = i915_gem_object_put_fence(obj);
4037 if (ret)
4038 return ret;
4039 }
4040
6f65e29a 4041 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
4042 if (drm_mm_node_allocated(&vma->node)) {
4043 ret = i915_vma_bind(vma, cache_level,
0875546c 4044 PIN_UPDATE);
fe14d5f4
TU
4045 if (ret)
4046 return ret;
4047 }
e4ffd173
CW
4048 }
4049
2c22569b
CW
4050 list_for_each_entry(vma, &obj->vma_list, vma_link)
4051 vma->node.color = cache_level;
4052 obj->cache_level = cache_level;
4053
0f71979a
CW
4054 if (obj->cache_dirty &&
4055 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4056 cpu_write_needs_clflush(obj)) {
4057 if (i915_gem_clflush_object(obj, true))
4058 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
4059 }
4060
e4ffd173
CW
4061 return 0;
4062}
4063
199adf40
BW
4064int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4065 struct drm_file *file)
e6994aee 4066{
199adf40 4067 struct drm_i915_gem_caching *args = data;
e6994aee 4068 struct drm_i915_gem_object *obj;
e6994aee
CW
4069
4070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
4071 if (&obj->base == NULL)
4072 return -ENOENT;
e6994aee 4073
651d794f
CW
4074 switch (obj->cache_level) {
4075 case I915_CACHE_LLC:
4076 case I915_CACHE_L3_LLC:
4077 args->caching = I915_CACHING_CACHED;
4078 break;
4079
4257d3ba
CW
4080 case I915_CACHE_WT:
4081 args->caching = I915_CACHING_DISPLAY;
4082 break;
4083
651d794f
CW
4084 default:
4085 args->caching = I915_CACHING_NONE;
4086 break;
4087 }
e6994aee 4088
432be69d
CW
4089 drm_gem_object_unreference_unlocked(&obj->base);
4090 return 0;
e6994aee
CW
4091}
4092
199adf40
BW
4093int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4094 struct drm_file *file)
e6994aee 4095{
199adf40 4096 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4097 struct drm_i915_gem_object *obj;
4098 enum i915_cache_level level;
4099 int ret;
4100
199adf40
BW
4101 switch (args->caching) {
4102 case I915_CACHING_NONE:
e6994aee
CW
4103 level = I915_CACHE_NONE;
4104 break;
199adf40 4105 case I915_CACHING_CACHED:
e6994aee
CW
4106 level = I915_CACHE_LLC;
4107 break;
4257d3ba
CW
4108 case I915_CACHING_DISPLAY:
4109 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4110 break;
e6994aee
CW
4111 default:
4112 return -EINVAL;
4113 }
4114
3bc2913e
BW
4115 ret = i915_mutex_lock_interruptible(dev);
4116 if (ret)
4117 return ret;
4118
e6994aee
CW
4119 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4120 if (&obj->base == NULL) {
4121 ret = -ENOENT;
4122 goto unlock;
4123 }
4124
4125 ret = i915_gem_object_set_cache_level(obj, level);
4126
4127 drm_gem_object_unreference(&obj->base);
4128unlock:
4129 mutex_unlock(&dev->struct_mutex);
4130 return ret;
4131}
4132
b9241ea3 4133/*
2da3b9b9
CW
4134 * Prepare buffer for display plane (scanout, cursors, etc).
4135 * Can be called from an uninterruptible phase (modesetting) and allows
4136 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4137 */
4138int
2da3b9b9
CW
4139i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4140 u32 alignment,
e6617330 4141 struct intel_engine_cs *pipelined,
91af127f 4142 struct drm_i915_gem_request **pipelined_request,
e6617330 4143 const struct i915_ggtt_view *view)
b9241ea3 4144{
2da3b9b9 4145 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4146 int ret;
4147
91af127f 4148 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
b4716185
CW
4149 if (ret)
4150 return ret;
b9241ea3 4151
cc98b413
CW
4152 /* Mark the pin_display early so that we account for the
4153 * display coherency whilst setting up the cache domains.
4154 */
8a0c39b1 4155 obj->pin_display++;
cc98b413 4156
a7ef0640
EA
4157 /* The display engine is not coherent with the LLC cache on gen6. As
4158 * a result, we make sure that the pinning that is about to occur is
4159 * done with uncached PTEs. This is lowest common denominator for all
4160 * chipsets.
4161 *
4162 * However for gen6+, we could do better by using the GFDT bit instead
4163 * of uncaching, which would allow us to flush all the LLC-cached data
4164 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4165 */
651d794f
CW
4166 ret = i915_gem_object_set_cache_level(obj,
4167 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4168 if (ret)
cc98b413 4169 goto err_unpin_display;
a7ef0640 4170
2da3b9b9
CW
4171 /* As the user may map the buffer once pinned in the display plane
4172 * (e.g. libkms for the bootup splash), we have to ensure that we
4173 * always use map_and_fenceable for all scanout buffers.
4174 */
50470bb0
TU
4175 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4176 view->type == I915_GGTT_VIEW_NORMAL ?
4177 PIN_MAPPABLE : 0);
2da3b9b9 4178 if (ret)
cc98b413 4179 goto err_unpin_display;
2da3b9b9 4180
e62b59e4 4181 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4182
2da3b9b9 4183 old_write_domain = obj->base.write_domain;
05394f39 4184 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4185
4186 /* It should now be out of any other write domains, and we can update
4187 * the domain values for our changes.
4188 */
e5f1d962 4189 obj->base.write_domain = 0;
05394f39 4190 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4191
4192 trace_i915_gem_object_change_domain(obj,
4193 old_read_domains,
2da3b9b9 4194 old_write_domain);
b9241ea3
ZW
4195
4196 return 0;
cc98b413
CW
4197
4198err_unpin_display:
8a0c39b1 4199 obj->pin_display--;
cc98b413
CW
4200 return ret;
4201}
4202
4203void
e6617330
TU
4204i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4205 const struct i915_ggtt_view *view)
cc98b413 4206{
8a0c39b1
TU
4207 if (WARN_ON(obj->pin_display == 0))
4208 return;
4209
e6617330
TU
4210 i915_gem_object_ggtt_unpin_view(obj, view);
4211
8a0c39b1 4212 obj->pin_display--;
b9241ea3
ZW
4213}
4214
e47c68e9
EA
4215/**
4216 * Moves a single object to the CPU read, and possibly write domain.
4217 *
4218 * This function returns when the move is complete, including waiting on
4219 * flushes to occur.
4220 */
dabdfe02 4221int
919926ae 4222i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4223{
1c5d22f7 4224 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4225 int ret;
4226
8d7e3de1
CW
4227 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4228 return 0;
4229
0201f1ec 4230 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4231 if (ret)
4232 return ret;
4233
e47c68e9 4234 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4235
05394f39
CW
4236 old_write_domain = obj->base.write_domain;
4237 old_read_domains = obj->base.read_domains;
1c5d22f7 4238
e47c68e9 4239 /* Flush the CPU cache if it's still invalid. */
05394f39 4240 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4241 i915_gem_clflush_object(obj, false);
2ef7eeaa 4242
05394f39 4243 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4244 }
4245
4246 /* It should now be out of any other write domains, and we can update
4247 * the domain values for our changes.
4248 */
05394f39 4249 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4250
4251 /* If we're writing through the CPU, then the GPU read domains will
4252 * need to be invalidated at next use.
4253 */
4254 if (write) {
05394f39
CW
4255 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4256 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4257 }
2ef7eeaa 4258
f99d7069 4259 if (write)
77a0d1ca 4260 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
f99d7069 4261
1c5d22f7
CW
4262 trace_i915_gem_object_change_domain(obj,
4263 old_read_domains,
4264 old_write_domain);
4265
2ef7eeaa
EA
4266 return 0;
4267}
4268
673a394b
EA
4269/* Throttle our rendering by waiting until the ring has completed our requests
4270 * emitted over 20 msec ago.
4271 *
b962442e
EA
4272 * Note that if we were to use the current jiffies each time around the loop,
4273 * we wouldn't escape the function with any frames outstanding if the time to
4274 * render a frame was over 20ms.
4275 *
673a394b
EA
4276 * This should get us reasonable parallelism between CPU and GPU but also
4277 * relatively low latency when blocking on a particular request to finish.
4278 */
40a5f0de 4279static int
f787a5f5 4280i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4281{
f787a5f5
CW
4282 struct drm_i915_private *dev_priv = dev->dev_private;
4283 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4284 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4285 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4286 unsigned reset_counter;
f787a5f5 4287 int ret;
93533c29 4288
308887aa
DV
4289 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4290 if (ret)
4291 return ret;
4292
4293 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4294 if (ret)
4295 return ret;
e110e8d6 4296
1c25595f 4297 spin_lock(&file_priv->mm.lock);
f787a5f5 4298 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4299 if (time_after_eq(request->emitted_jiffies, recent_enough))
4300 break;
40a5f0de 4301
fcfa423c
JH
4302 /*
4303 * Note that the request might not have been submitted yet.
4304 * In which case emitted_jiffies will be zero.
4305 */
4306 if (!request->emitted_jiffies)
4307 continue;
4308
54fb2411 4309 target = request;
b962442e 4310 }
f69061be 4311 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4312 if (target)
4313 i915_gem_request_reference(target);
1c25595f 4314 spin_unlock(&file_priv->mm.lock);
40a5f0de 4315
54fb2411 4316 if (target == NULL)
f787a5f5 4317 return 0;
2bc43b5c 4318
9c654818 4319 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4320 if (ret == 0)
4321 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4322
41037f9f 4323 i915_gem_request_unreference__unlocked(target);
ff865885 4324
40a5f0de
EA
4325 return ret;
4326}
4327
d23db88c
CW
4328static bool
4329i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4330{
4331 struct drm_i915_gem_object *obj = vma->obj;
4332
4333 if (alignment &&
4334 vma->node.start & (alignment - 1))
4335 return true;
4336
4337 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4338 return true;
4339
4340 if (flags & PIN_OFFSET_BIAS &&
4341 vma->node.start < (flags & PIN_OFFSET_MASK))
4342 return true;
4343
4344 return false;
4345}
4346
ec7adb6e
JL
4347static int
4348i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4349 struct i915_address_space *vm,
4350 const struct i915_ggtt_view *ggtt_view,
4351 uint32_t alignment,
4352 uint64_t flags)
673a394b 4353{
6e7186af 4354 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4355 struct i915_vma *vma;
ef79e17c 4356 unsigned bound;
673a394b
EA
4357 int ret;
4358
6e7186af
BW
4359 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4360 return -ENODEV;
4361
bf3d149b 4362 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4363 return -EINVAL;
07fe0b12 4364
c826c449
CW
4365 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4366 return -EINVAL;
4367
ec7adb6e
JL
4368 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4369 return -EINVAL;
4370
4371 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4372 i915_gem_obj_to_vma(obj, vm);
4373
4374 if (IS_ERR(vma))
4375 return PTR_ERR(vma);
4376
07fe0b12 4377 if (vma) {
d7f46fc4
BW
4378 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4379 return -EBUSY;
4380
d23db88c 4381 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4382 unsigned long offset;
9abc4648 4383 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4384 i915_gem_obj_offset(obj, vm);
d7f46fc4 4385 WARN(vma->pin_count,
ec7adb6e 4386 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4387 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4388 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4389 ggtt_view ? "ggtt" : "ppgtt",
4390 offset,
fe14d5f4 4391 alignment,
d23db88c 4392 !!(flags & PIN_MAPPABLE),
05394f39 4393 obj->map_and_fenceable);
07fe0b12 4394 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4395 if (ret)
4396 return ret;
8ea99c92
DV
4397
4398 vma = NULL;
ac0c6b5a
CW
4399 }
4400 }
4401
ef79e17c 4402 bound = vma ? vma->bound : 0;
8ea99c92 4403 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4404 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4405 flags);
262de145
DV
4406 if (IS_ERR(vma))
4407 return PTR_ERR(vma);
0875546c
DV
4408 } else {
4409 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4410 if (ret)
4411 return ret;
4412 }
74898d7e 4413
91e6711e
JL
4414 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4415 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4416 bool mappable, fenceable;
4417 u32 fence_size, fence_alignment;
4418
4419 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4420 obj->base.size,
4421 obj->tiling_mode);
4422 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4423 obj->base.size,
4424 obj->tiling_mode,
4425 true);
4426
4427 fenceable = (vma->node.size == fence_size &&
4428 (vma->node.start & (fence_alignment - 1)) == 0);
4429
e8dec1dd 4430 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4431 dev_priv->gtt.mappable_end);
4432
4433 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4434
91e6711e
JL
4435 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4436 }
ef79e17c 4437
8ea99c92 4438 vma->pin_count++;
673a394b
EA
4439 return 0;
4440}
4441
ec7adb6e
JL
4442int
4443i915_gem_object_pin(struct drm_i915_gem_object *obj,
4444 struct i915_address_space *vm,
4445 uint32_t alignment,
4446 uint64_t flags)
4447{
4448 return i915_gem_object_do_pin(obj, vm,
4449 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4450 alignment, flags);
4451}
4452
4453int
4454i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4455 const struct i915_ggtt_view *view,
4456 uint32_t alignment,
4457 uint64_t flags)
4458{
4459 if (WARN_ONCE(!view, "no view specified"))
4460 return -EINVAL;
4461
4462 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4463 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4464}
4465
673a394b 4466void
e6617330
TU
4467i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4468 const struct i915_ggtt_view *view)
673a394b 4469{
e6617330 4470 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4471
d7f46fc4 4472 BUG_ON(!vma);
e6617330 4473 WARN_ON(vma->pin_count == 0);
9abc4648 4474 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4475
30154650 4476 --vma->pin_count;
673a394b
EA
4477}
4478
d8ffa60b
DV
4479bool
4480i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4481{
4482 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4483 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4484 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4485
4486 WARN_ON(!ggtt_vma ||
4487 dev_priv->fence_regs[obj->fence_reg].pin_count >
4488 ggtt_vma->pin_count);
4489 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4490 return true;
4491 } else
4492 return false;
4493}
4494
4495void
4496i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4497{
4498 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4499 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4500 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4501 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4502 }
4503}
4504
673a394b
EA
4505int
4506i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4507 struct drm_file *file)
673a394b
EA
4508{
4509 struct drm_i915_gem_busy *args = data;
05394f39 4510 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4511 int ret;
4512
76c1dec1 4513 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4514 if (ret)
76c1dec1 4515 return ret;
673a394b 4516
05394f39 4517 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4518 if (&obj->base == NULL) {
1d7cfea1
CW
4519 ret = -ENOENT;
4520 goto unlock;
673a394b 4521 }
d1b851fc 4522
0be555b6
CW
4523 /* Count all active objects as busy, even if they are currently not used
4524 * by the gpu. Users of this interface expect objects to eventually
4525 * become non-busy without any further actions, therefore emit any
4526 * necessary flushes here.
c4de0a5d 4527 */
30dfebf3 4528 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4529 if (ret)
4530 goto unref;
0be555b6 4531
b4716185
CW
4532 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4533 args->busy = obj->active << 16;
4534 if (obj->last_write_req)
4535 args->busy |= obj->last_write_req->ring->id;
673a394b 4536
b4716185 4537unref:
05394f39 4538 drm_gem_object_unreference(&obj->base);
1d7cfea1 4539unlock:
673a394b 4540 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4541 return ret;
673a394b
EA
4542}
4543
4544int
4545i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4546 struct drm_file *file_priv)
4547{
0206e353 4548 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4549}
4550
3ef94daa
CW
4551int
4552i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4553 struct drm_file *file_priv)
4554{
656bfa3a 4555 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4556 struct drm_i915_gem_madvise *args = data;
05394f39 4557 struct drm_i915_gem_object *obj;
76c1dec1 4558 int ret;
3ef94daa
CW
4559
4560 switch (args->madv) {
4561 case I915_MADV_DONTNEED:
4562 case I915_MADV_WILLNEED:
4563 break;
4564 default:
4565 return -EINVAL;
4566 }
4567
1d7cfea1
CW
4568 ret = i915_mutex_lock_interruptible(dev);
4569 if (ret)
4570 return ret;
4571
05394f39 4572 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4573 if (&obj->base == NULL) {
1d7cfea1
CW
4574 ret = -ENOENT;
4575 goto unlock;
3ef94daa 4576 }
3ef94daa 4577
d7f46fc4 4578 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4579 ret = -EINVAL;
4580 goto out;
3ef94daa
CW
4581 }
4582
656bfa3a
DV
4583 if (obj->pages &&
4584 obj->tiling_mode != I915_TILING_NONE &&
4585 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4586 if (obj->madv == I915_MADV_WILLNEED)
4587 i915_gem_object_unpin_pages(obj);
4588 if (args->madv == I915_MADV_WILLNEED)
4589 i915_gem_object_pin_pages(obj);
4590 }
4591
05394f39
CW
4592 if (obj->madv != __I915_MADV_PURGED)
4593 obj->madv = args->madv;
3ef94daa 4594
6c085a72 4595 /* if the object is no longer attached, discard its backing storage */
be6a0376 4596 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4597 i915_gem_object_truncate(obj);
4598
05394f39 4599 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4600
1d7cfea1 4601out:
05394f39 4602 drm_gem_object_unreference(&obj->base);
1d7cfea1 4603unlock:
3ef94daa 4604 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4605 return ret;
3ef94daa
CW
4606}
4607
37e680a1
CW
4608void i915_gem_object_init(struct drm_i915_gem_object *obj,
4609 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4610{
b4716185
CW
4611 int i;
4612
35c20a60 4613 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4614 for (i = 0; i < I915_NUM_RINGS; i++)
4615 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4616 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4617 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4618 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4619
37e680a1
CW
4620 obj->ops = ops;
4621
0327d6ba
CW
4622 obj->fence_reg = I915_FENCE_REG_NONE;
4623 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4624
4625 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4626}
4627
37e680a1
CW
4628static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4629 .get_pages = i915_gem_object_get_pages_gtt,
4630 .put_pages = i915_gem_object_put_pages_gtt,
4631};
4632
05394f39
CW
4633struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4634 size_t size)
ac52bc56 4635{
c397b908 4636 struct drm_i915_gem_object *obj;
5949eac4 4637 struct address_space *mapping;
1a240d4d 4638 gfp_t mask;
ac52bc56 4639
42dcedd4 4640 obj = i915_gem_object_alloc(dev);
c397b908
DV
4641 if (obj == NULL)
4642 return NULL;
673a394b 4643
c397b908 4644 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4645 i915_gem_object_free(obj);
c397b908
DV
4646 return NULL;
4647 }
673a394b 4648
bed1ea95
CW
4649 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4650 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4651 /* 965gm cannot relocate objects above 4GiB. */
4652 mask &= ~__GFP_HIGHMEM;
4653 mask |= __GFP_DMA32;
4654 }
4655
496ad9aa 4656 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4657 mapping_set_gfp_mask(mapping, mask);
5949eac4 4658
37e680a1 4659 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4660
c397b908
DV
4661 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4662 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4663
3d29b842
ED
4664 if (HAS_LLC(dev)) {
4665 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4666 * cache) for about a 10% performance improvement
4667 * compared to uncached. Graphics requests other than
4668 * display scanout are coherent with the CPU in
4669 * accessing this cache. This means in this mode we
4670 * don't need to clflush on the CPU side, and on the
4671 * GPU side we only need to flush internal caches to
4672 * get data visible to the CPU.
4673 *
4674 * However, we maintain the display planes as UC, and so
4675 * need to rebind when first used as such.
4676 */
4677 obj->cache_level = I915_CACHE_LLC;
4678 } else
4679 obj->cache_level = I915_CACHE_NONE;
4680
d861e338
DV
4681 trace_i915_gem_object_create(obj);
4682
05394f39 4683 return obj;
c397b908
DV
4684}
4685
340fbd8c
CW
4686static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4687{
4688 /* If we are the last user of the backing storage (be it shmemfs
4689 * pages or stolen etc), we know that the pages are going to be
4690 * immediately released. In this case, we can then skip copying
4691 * back the contents from the GPU.
4692 */
4693
4694 if (obj->madv != I915_MADV_WILLNEED)
4695 return false;
4696
4697 if (obj->base.filp == NULL)
4698 return true;
4699
4700 /* At first glance, this looks racy, but then again so would be
4701 * userspace racing mmap against close. However, the first external
4702 * reference to the filp can only be obtained through the
4703 * i915_gem_mmap_ioctl() which safeguards us against the user
4704 * acquiring such a reference whilst we are in the middle of
4705 * freeing the object.
4706 */
4707 return atomic_long_read(&obj->base.filp->f_count) == 1;
4708}
4709
1488fc08 4710void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4711{
1488fc08 4712 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4713 struct drm_device *dev = obj->base.dev;
3e31c6c0 4714 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4715 struct i915_vma *vma, *next;
673a394b 4716
f65c9168
PZ
4717 intel_runtime_pm_get(dev_priv);
4718
26e12f89
CW
4719 trace_i915_gem_object_destroy(obj);
4720
07fe0b12 4721 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4722 int ret;
4723
4724 vma->pin_count = 0;
4725 ret = i915_vma_unbind(vma);
07fe0b12
BW
4726 if (WARN_ON(ret == -ERESTARTSYS)) {
4727 bool was_interruptible;
1488fc08 4728
07fe0b12
BW
4729 was_interruptible = dev_priv->mm.interruptible;
4730 dev_priv->mm.interruptible = false;
1488fc08 4731
07fe0b12 4732 WARN_ON(i915_vma_unbind(vma));
1488fc08 4733
07fe0b12
BW
4734 dev_priv->mm.interruptible = was_interruptible;
4735 }
1488fc08
CW
4736 }
4737
1d64ae71
BW
4738 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4739 * before progressing. */
4740 if (obj->stolen)
4741 i915_gem_object_unpin_pages(obj);
4742
a071fa00
DV
4743 WARN_ON(obj->frontbuffer_bits);
4744
656bfa3a
DV
4745 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4746 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4747 obj->tiling_mode != I915_TILING_NONE)
4748 i915_gem_object_unpin_pages(obj);
4749
401c29f6
BW
4750 if (WARN_ON(obj->pages_pin_count))
4751 obj->pages_pin_count = 0;
340fbd8c 4752 if (discard_backing_storage(obj))
5537252b 4753 obj->madv = I915_MADV_DONTNEED;
37e680a1 4754 i915_gem_object_put_pages(obj);
d8cb5086 4755 i915_gem_object_free_mmap_offset(obj);
de151cf6 4756
9da3da66
CW
4757 BUG_ON(obj->pages);
4758
2f745ad3
CW
4759 if (obj->base.import_attach)
4760 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4761
5cc9ed4b
CW
4762 if (obj->ops->release)
4763 obj->ops->release(obj);
4764
05394f39
CW
4765 drm_gem_object_release(&obj->base);
4766 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4767
05394f39 4768 kfree(obj->bit_17);
42dcedd4 4769 i915_gem_object_free(obj);
f65c9168
PZ
4770
4771 intel_runtime_pm_put(dev_priv);
673a394b
EA
4772}
4773
ec7adb6e
JL
4774struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4775 struct i915_address_space *vm)
e656a6cb
DV
4776{
4777 struct i915_vma *vma;
ec7adb6e
JL
4778 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4779 if (i915_is_ggtt(vma->vm) &&
4780 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4781 continue;
4782 if (vma->vm == vm)
e656a6cb 4783 return vma;
ec7adb6e
JL
4784 }
4785 return NULL;
4786}
4787
4788struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4789 const struct i915_ggtt_view *view)
4790{
4791 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4792 struct i915_vma *vma;
e656a6cb 4793
ec7adb6e
JL
4794 if (WARN_ONCE(!view, "no view specified"))
4795 return ERR_PTR(-EINVAL);
4796
4797 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4798 if (vma->vm == ggtt &&
4799 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4800 return vma;
e656a6cb
DV
4801 return NULL;
4802}
4803
2f633156
BW
4804void i915_gem_vma_destroy(struct i915_vma *vma)
4805{
b9d06dd9 4806 struct i915_address_space *vm = NULL;
2f633156 4807 WARN_ON(vma->node.allocated);
aaa05667
CW
4808
4809 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4810 if (!list_empty(&vma->exec_list))
4811 return;
4812
b9d06dd9 4813 vm = vma->vm;
b9d06dd9 4814
841cd773
DV
4815 if (!i915_is_ggtt(vm))
4816 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4817
8b9c2b94 4818 list_del(&vma->vma_link);
b93dab6e 4819
e20d2ab7 4820 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4821}
4822
e3efda49
CW
4823static void
4824i915_gem_stop_ringbuffers(struct drm_device *dev)
4825{
4826 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4827 struct intel_engine_cs *ring;
e3efda49
CW
4828 int i;
4829
4830 for_each_ring(ring, dev_priv, i)
a83014d3 4831 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4832}
4833
29105ccc 4834int
45c5f202 4835i915_gem_suspend(struct drm_device *dev)
29105ccc 4836{
3e31c6c0 4837 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4838 int ret = 0;
28dfe52a 4839
45c5f202 4840 mutex_lock(&dev->struct_mutex);
b2da9fe5 4841 ret = i915_gpu_idle(dev);
f7403347 4842 if (ret)
45c5f202 4843 goto err;
f7403347 4844
b2da9fe5 4845 i915_gem_retire_requests(dev);
673a394b 4846
e3efda49 4847 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4848 mutex_unlock(&dev->struct_mutex);
4849
737b1506 4850 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4851 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4852 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4853
bdcf120b
CW
4854 /* Assert that we sucessfully flushed all the work and
4855 * reset the GPU back to its idle, low power state.
4856 */
4857 WARN_ON(dev_priv->mm.busy);
4858
673a394b 4859 return 0;
45c5f202
CW
4860
4861err:
4862 mutex_unlock(&dev->struct_mutex);
4863 return ret;
673a394b
EA
4864}
4865
6909a666 4866int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4867{
6909a666 4868 struct intel_engine_cs *ring = req->ring;
c3787e2e 4869 struct drm_device *dev = ring->dev;
3e31c6c0 4870 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4871 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4872 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4873 int i, ret;
b9524a1e 4874
040d2baa 4875 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4876 return 0;
b9524a1e 4877
5fb9de1a 4878 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4879 if (ret)
4880 return ret;
b9524a1e 4881
c3787e2e
BW
4882 /*
4883 * Note: We do not worry about the concurrent register cacheline hang
4884 * here because no other code should access these registers other than
4885 * at initialization time.
4886 */
b9524a1e 4887 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4888 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4889 intel_ring_emit(ring, reg_base + i);
4890 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4891 }
4892
c3787e2e 4893 intel_ring_advance(ring);
b9524a1e 4894
c3787e2e 4895 return ret;
b9524a1e
BW
4896}
4897
f691e2f4
DV
4898void i915_gem_init_swizzling(struct drm_device *dev)
4899{
3e31c6c0 4900 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4901
11782b02 4902 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4903 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4904 return;
4905
4906 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4907 DISP_TILE_SURFACE_SWIZZLING);
4908
11782b02
DV
4909 if (IS_GEN5(dev))
4910 return;
4911
f691e2f4
DV
4912 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4913 if (IS_GEN6(dev))
6b26c86d 4914 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4915 else if (IS_GEN7(dev))
6b26c86d 4916 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4917 else if (IS_GEN8(dev))
4918 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4919 else
4920 BUG();
f691e2f4 4921}
e21af88d 4922
67b1b571
CW
4923static bool
4924intel_enable_blt(struct drm_device *dev)
4925{
4926 if (!HAS_BLT(dev))
4927 return false;
4928
4929 /* The blitter was dysfunctional on early prototypes */
4930 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4931 DRM_INFO("BLT not supported on this pre-production hardware;"
4932 " graphics performance will be degraded.\n");
4933 return false;
4934 }
4935
4936 return true;
4937}
4938
81e7f200
VS
4939static void init_unused_ring(struct drm_device *dev, u32 base)
4940{
4941 struct drm_i915_private *dev_priv = dev->dev_private;
4942
4943 I915_WRITE(RING_CTL(base), 0);
4944 I915_WRITE(RING_HEAD(base), 0);
4945 I915_WRITE(RING_TAIL(base), 0);
4946 I915_WRITE(RING_START(base), 0);
4947}
4948
4949static void init_unused_rings(struct drm_device *dev)
4950{
4951 if (IS_I830(dev)) {
4952 init_unused_ring(dev, PRB1_BASE);
4953 init_unused_ring(dev, SRB0_BASE);
4954 init_unused_ring(dev, SRB1_BASE);
4955 init_unused_ring(dev, SRB2_BASE);
4956 init_unused_ring(dev, SRB3_BASE);
4957 } else if (IS_GEN2(dev)) {
4958 init_unused_ring(dev, SRB0_BASE);
4959 init_unused_ring(dev, SRB1_BASE);
4960 } else if (IS_GEN3(dev)) {
4961 init_unused_ring(dev, PRB1_BASE);
4962 init_unused_ring(dev, PRB2_BASE);
4963 }
4964}
4965
a83014d3 4966int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4967{
4fc7c971 4968 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4969 int ret;
68f95ba9 4970
5c1143bb 4971 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4972 if (ret)
b6913e4b 4973 return ret;
68f95ba9
CW
4974
4975 if (HAS_BSD(dev)) {
5c1143bb 4976 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4977 if (ret)
4978 goto cleanup_render_ring;
d1b851fc 4979 }
68f95ba9 4980
67b1b571 4981 if (intel_enable_blt(dev)) {
549f7365
CW
4982 ret = intel_init_blt_ring_buffer(dev);
4983 if (ret)
4984 goto cleanup_bsd_ring;
4985 }
4986
9a8a2213
BW
4987 if (HAS_VEBOX(dev)) {
4988 ret = intel_init_vebox_ring_buffer(dev);
4989 if (ret)
4990 goto cleanup_blt_ring;
4991 }
4992
845f74a7
ZY
4993 if (HAS_BSD2(dev)) {
4994 ret = intel_init_bsd2_ring_buffer(dev);
4995 if (ret)
4996 goto cleanup_vebox_ring;
4997 }
9a8a2213 4998
99433931 4999 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 5000 if (ret)
845f74a7 5001 goto cleanup_bsd2_ring;
4fc7c971
BW
5002
5003 return 0;
5004
845f74a7
ZY
5005cleanup_bsd2_ring:
5006 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
5007cleanup_vebox_ring:
5008 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
5009cleanup_blt_ring:
5010 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5011cleanup_bsd_ring:
5012 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5013cleanup_render_ring:
5014 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5015
5016 return ret;
5017}
5018
5019int
5020i915_gem_init_hw(struct drm_device *dev)
5021{
3e31c6c0 5022 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 5023 struct intel_engine_cs *ring;
4ad2fd88 5024 int ret, i, j;
4fc7c971
BW
5025
5026 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5027 return -EIO;
5028
5e4f5189
CW
5029 /* Double layer security blanket, see i915_gem_init() */
5030 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5031
59124506 5032 if (dev_priv->ellc_size)
05e21cc4 5033 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5034
0bf21347
VS
5035 if (IS_HASWELL(dev))
5036 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5037 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5038
88a2b2a3 5039 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
5040 if (IS_IVYBRIDGE(dev)) {
5041 u32 temp = I915_READ(GEN7_MSG_CTL);
5042 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5043 I915_WRITE(GEN7_MSG_CTL, temp);
5044 } else if (INTEL_INFO(dev)->gen >= 7) {
5045 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5046 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5047 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5048 }
88a2b2a3
BW
5049 }
5050
4fc7c971
BW
5051 i915_gem_init_swizzling(dev);
5052
d5abdfda
DV
5053 /*
5054 * At least 830 can leave some of the unused rings
5055 * "active" (ie. head != tail) after resume which
5056 * will prevent c3 entry. Makes sure all unused rings
5057 * are totally idle.
5058 */
5059 init_unused_rings(dev);
5060
90638cc1
JH
5061 BUG_ON(!dev_priv->ring[RCS].default_context);
5062
4ad2fd88
JH
5063 ret = i915_ppgtt_init_hw(dev);
5064 if (ret) {
5065 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5066 goto out;
5067 }
5068
5069 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
5070 for_each_ring(ring, dev_priv, i) {
5071 ret = ring->init_hw(ring);
5072 if (ret)
5e4f5189 5073 goto out;
35a57ffb 5074 }
99433931 5075
4ad2fd88
JH
5076 /* Now it is safe to go back round and do everything else: */
5077 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
5078 struct drm_i915_gem_request *req;
5079
90638cc1
JH
5080 WARN_ON(!ring->default_context);
5081
dc4be607
JH
5082 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5083 if (ret) {
5084 i915_gem_cleanup_ringbuffer(dev);
5085 goto out;
5086 }
5087
4ad2fd88
JH
5088 if (ring->id == RCS) {
5089 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 5090 i915_gem_l3_remap(req, j);
4ad2fd88 5091 }
c3787e2e 5092
b3dd6b96 5093 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
5094 if (ret && ret != -EIO) {
5095 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 5096 i915_gem_request_cancel(req);
4ad2fd88
JH
5097 i915_gem_cleanup_ringbuffer(dev);
5098 goto out;
5099 }
82460d97 5100
b3dd6b96 5101 ret = i915_gem_context_enable(req);
90638cc1
JH
5102 if (ret && ret != -EIO) {
5103 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 5104 i915_gem_request_cancel(req);
90638cc1
JH
5105 i915_gem_cleanup_ringbuffer(dev);
5106 goto out;
5107 }
dc4be607 5108
75289874 5109 i915_add_request_no_flush(req);
b7c36d25 5110 }
e21af88d 5111
5e4f5189
CW
5112out:
5113 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5114 return ret;
8187a2b7
ZN
5115}
5116
1070a42b
CW
5117int i915_gem_init(struct drm_device *dev)
5118{
5119 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5120 int ret;
5121
127f1003
OM
5122 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5123 i915.enable_execlists);
5124
1070a42b 5125 mutex_lock(&dev->struct_mutex);
d62b4892
JB
5126
5127 if (IS_VALLEYVIEW(dev)) {
5128 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
5129 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5130 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5131 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
5132 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5133 }
5134
a83014d3 5135 if (!i915.enable_execlists) {
f3dc74c0 5136 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
5137 dev_priv->gt.init_rings = i915_gem_init_rings;
5138 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5139 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 5140 } else {
f3dc74c0 5141 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
5142 dev_priv->gt.init_rings = intel_logical_rings_init;
5143 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5144 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
5145 }
5146
5e4f5189
CW
5147 /* This is just a security blanket to placate dragons.
5148 * On some systems, we very sporadically observe that the first TLBs
5149 * used by the CS may be stale, despite us poking the TLB reset. If
5150 * we hold the forcewake during initialisation these problems
5151 * just magically go away.
5152 */
5153 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5154
6c5566a8 5155 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
5156 if (ret)
5157 goto out_unlock;
6c5566a8 5158
d7e5008f 5159 i915_gem_init_global_gtt(dev);
d62b4892 5160
2fa48d8d 5161 ret = i915_gem_context_init(dev);
7bcc3777
JN
5162 if (ret)
5163 goto out_unlock;
2fa48d8d 5164
35a57ffb
DV
5165 ret = dev_priv->gt.init_rings(dev);
5166 if (ret)
7bcc3777 5167 goto out_unlock;
2fa48d8d 5168
1070a42b 5169 ret = i915_gem_init_hw(dev);
60990320
CW
5170 if (ret == -EIO) {
5171 /* Allow ring initialisation to fail by marking the GPU as
5172 * wedged. But we only want to do this where the GPU is angry,
5173 * for all other failure, such as an allocation failure, bail.
5174 */
5175 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5176 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5177 ret = 0;
1070a42b 5178 }
7bcc3777
JN
5179
5180out_unlock:
5e4f5189 5181 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5182 mutex_unlock(&dev->struct_mutex);
1070a42b 5183
60990320 5184 return ret;
1070a42b
CW
5185}
5186
8187a2b7
ZN
5187void
5188i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5189{
3e31c6c0 5190 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5191 struct intel_engine_cs *ring;
1ec14ad3 5192 int i;
8187a2b7 5193
b4519513 5194 for_each_ring(ring, dev_priv, i)
a83014d3 5195 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
5196}
5197
64193406 5198static void
a4872ba6 5199init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5200{
5201 INIT_LIST_HEAD(&ring->active_list);
5202 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5203}
5204
7e0d96bc
BW
5205void i915_init_vm(struct drm_i915_private *dev_priv,
5206 struct i915_address_space *vm)
fc8c067e 5207{
7e0d96bc
BW
5208 if (!i915_is_ggtt(vm))
5209 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
5210 vm->dev = dev_priv->dev;
5211 INIT_LIST_HEAD(&vm->active_list);
5212 INIT_LIST_HEAD(&vm->inactive_list);
5213 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5214 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5215}
5216
673a394b
EA
5217void
5218i915_gem_load(struct drm_device *dev)
5219{
3e31c6c0 5220 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5221 int i;
5222
efab6d8d 5223 dev_priv->objects =
42dcedd4
CW
5224 kmem_cache_create("i915_gem_object",
5225 sizeof(struct drm_i915_gem_object), 0,
5226 SLAB_HWCACHE_ALIGN,
5227 NULL);
e20d2ab7
CW
5228 dev_priv->vmas =
5229 kmem_cache_create("i915_gem_vma",
5230 sizeof(struct i915_vma), 0,
5231 SLAB_HWCACHE_ALIGN,
5232 NULL);
efab6d8d
CW
5233 dev_priv->requests =
5234 kmem_cache_create("i915_gem_request",
5235 sizeof(struct drm_i915_gem_request), 0,
5236 SLAB_HWCACHE_ALIGN,
5237 NULL);
673a394b 5238
fc8c067e
BW
5239 INIT_LIST_HEAD(&dev_priv->vm_list);
5240 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5241
a33afea5 5242 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5243 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5244 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5245 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5246 for (i = 0; i < I915_NUM_RINGS; i++)
5247 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5248 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5249 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5250 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5251 i915_gem_retire_work_handler);
b29c19b6
CW
5252 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5253 i915_gem_idle_work_handler);
1f83fee0 5254 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5255
72bfa19c
CW
5256 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5257
42b5aeab
VS
5258 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5259 dev_priv->num_fence_regs = 32;
5260 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5261 dev_priv->num_fence_regs = 16;
5262 else
5263 dev_priv->num_fence_regs = 8;
5264
eb82289a
YZ
5265 if (intel_vgpu_active(dev))
5266 dev_priv->num_fence_regs =
5267 I915_READ(vgtif_reg(avail_rs.fence_num));
5268
b5aa8a0f 5269 /* Initialize fence registers to zero */
19b2dbde
CW
5270 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5271 i915_gem_restore_fences(dev);
10ed13e4 5272
673a394b 5273 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5274 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5275
ce453d81
CW
5276 dev_priv->mm.interruptible = true;
5277
be6a0376 5278 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5279
5280 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5281}
71acb5eb 5282
f787a5f5 5283void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5284{
f787a5f5 5285 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5286
5287 /* Clean up our request list when the client is going away, so that
5288 * later retire_requests won't dereference our soon-to-be-gone
5289 * file_priv.
5290 */
1c25595f 5291 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5292 while (!list_empty(&file_priv->mm.request_list)) {
5293 struct drm_i915_gem_request *request;
5294
5295 request = list_first_entry(&file_priv->mm.request_list,
5296 struct drm_i915_gem_request,
5297 client_list);
5298 list_del(&request->client_list);
5299 request->file_priv = NULL;
5300 }
1c25595f 5301 spin_unlock(&file_priv->mm.lock);
b29c19b6 5302
2e1b8730 5303 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5304 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5305 list_del(&file_priv->rps.link);
8d3afd7d 5306 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5307 }
b29c19b6
CW
5308}
5309
5310int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5311{
5312 struct drm_i915_file_private *file_priv;
e422b888 5313 int ret;
b29c19b6
CW
5314
5315 DRM_DEBUG_DRIVER("\n");
5316
5317 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5318 if (!file_priv)
5319 return -ENOMEM;
5320
5321 file->driver_priv = file_priv;
5322 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5323 file_priv->file = file;
2e1b8730 5324 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5325
5326 spin_lock_init(&file_priv->mm.lock);
5327 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5328
e422b888
BW
5329 ret = i915_gem_context_open(dev, file);
5330 if (ret)
5331 kfree(file_priv);
b29c19b6 5332
e422b888 5333 return ret;
b29c19b6
CW
5334}
5335
b680c37a
DV
5336/**
5337 * i915_gem_track_fb - update frontbuffer tracking
5338 * old: current GEM buffer for the frontbuffer slots
5339 * new: new GEM buffer for the frontbuffer slots
5340 * frontbuffer_bits: bitmask of frontbuffer slots
5341 *
5342 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5343 * from @old and setting them in @new. Both @old and @new can be NULL.
5344 */
a071fa00
DV
5345void i915_gem_track_fb(struct drm_i915_gem_object *old,
5346 struct drm_i915_gem_object *new,
5347 unsigned frontbuffer_bits)
5348{
5349 if (old) {
5350 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5351 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5352 old->frontbuffer_bits &= ~frontbuffer_bits;
5353 }
5354
5355 if (new) {
5356 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5357 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5358 new->frontbuffer_bits |= frontbuffer_bits;
5359 }
5360}
5361
a70a3148 5362/* All the new VM stuff */
ec7adb6e
JL
5363unsigned long
5364i915_gem_obj_offset(struct drm_i915_gem_object *o,
5365 struct i915_address_space *vm)
a70a3148
BW
5366{
5367 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5368 struct i915_vma *vma;
5369
896ab1a5 5370 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5371
a70a3148 5372 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5373 if (i915_is_ggtt(vma->vm) &&
5374 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5375 continue;
5376 if (vma->vm == vm)
a70a3148 5377 return vma->node.start;
a70a3148 5378 }
ec7adb6e 5379
f25748ea
DV
5380 WARN(1, "%s vma for this object not found.\n",
5381 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5382 return -1;
5383}
5384
ec7adb6e
JL
5385unsigned long
5386i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5387 const struct i915_ggtt_view *view)
a70a3148 5388{
ec7adb6e 5389 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5390 struct i915_vma *vma;
5391
5392 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5393 if (vma->vm == ggtt &&
5394 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5395 return vma->node.start;
5396
5678ad73 5397 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5398 return -1;
5399}
5400
5401bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5402 struct i915_address_space *vm)
5403{
5404 struct i915_vma *vma;
5405
5406 list_for_each_entry(vma, &o->vma_list, vma_link) {
5407 if (i915_is_ggtt(vma->vm) &&
5408 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5409 continue;
5410 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5411 return true;
5412 }
5413
5414 return false;
5415}
5416
5417bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5418 const struct i915_ggtt_view *view)
ec7adb6e
JL
5419{
5420 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5421 struct i915_vma *vma;
5422
5423 list_for_each_entry(vma, &o->vma_list, vma_link)
5424 if (vma->vm == ggtt &&
9abc4648 5425 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5426 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5427 return true;
5428
5429 return false;
5430}
5431
5432bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5433{
5a1d5eb0 5434 struct i915_vma *vma;
a70a3148 5435
5a1d5eb0
CW
5436 list_for_each_entry(vma, &o->vma_list, vma_link)
5437 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5438 return true;
5439
5440 return false;
5441}
5442
5443unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5444 struct i915_address_space *vm)
5445{
5446 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5447 struct i915_vma *vma;
5448
896ab1a5 5449 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5450
5451 BUG_ON(list_empty(&o->vma_list));
5452
ec7adb6e
JL
5453 list_for_each_entry(vma, &o->vma_list, vma_link) {
5454 if (i915_is_ggtt(vma->vm) &&
5455 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5456 continue;
a70a3148
BW
5457 if (vma->vm == vm)
5458 return vma->node.size;
ec7adb6e 5459 }
a70a3148
BW
5460 return 0;
5461}
5462
ec7adb6e 5463bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5464{
5465 struct i915_vma *vma;
a6631ae1 5466 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5467 if (vma->pin_count > 0)
5468 return true;
a6631ae1 5469
ec7adb6e 5470 return false;
5c2abbea 5471}
ec7adb6e 5472