]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Remove the pipelined parameter from get_fence()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
d9e86c0e
CW
45static void i915_gem_clear_fence_reg(struct drm_device *dev,
46 struct drm_i915_fence_reg *reg);
05394f39
CW
47static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
71acb5eb 49 struct drm_i915_gem_pwrite *args,
05394f39
CW
50 struct drm_file *file);
51static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 52
17250b71 53static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 54 struct shrink_control *sc);
8c59967c 55static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 56
73aa808f
CW
57/* some bookkeeping */
58static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
59 size_t size)
60{
61 dev_priv->mm.object_count++;
62 dev_priv->mm.object_memory += size;
63}
64
65static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
68 dev_priv->mm.object_count--;
69 dev_priv->mm.object_memory -= size;
70}
71
21dd3734
CW
72static int
73i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
74{
75 struct drm_i915_private *dev_priv = dev->dev_private;
76 struct completion *x = &dev_priv->error_completion;
77 unsigned long flags;
78 int ret;
79
80 if (!atomic_read(&dev_priv->mm.wedged))
81 return 0;
82
83 ret = wait_for_completion_interruptible(x);
84 if (ret)
85 return ret;
86
21dd3734
CW
87 if (atomic_read(&dev_priv->mm.wedged)) {
88 /* GPU is hung, bump the completion count to account for
89 * the token we just consumed so that we never hit zero and
90 * end up waiting upon a subsequent completion event that
91 * will never happen.
92 */
93 spin_lock_irqsave(&x->wait.lock, flags);
94 x->done++;
95 spin_unlock_irqrestore(&x->wait.lock, flags);
96 }
97 return 0;
30dbf0c0
CW
98}
99
54cf91dc 100int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 101{
76c1dec1
CW
102 int ret;
103
21dd3734 104 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
105 if (ret)
106 return ret;
107
108 ret = mutex_lock_interruptible(&dev->struct_mutex);
109 if (ret)
110 return ret;
111
23bc5982 112 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
113 return 0;
114}
30dbf0c0 115
7d1c4804 116static inline bool
05394f39 117i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 118{
05394f39 119 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
120}
121
79e53945
JB
122int
123i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 124 struct drm_file *file)
79e53945
JB
125{
126 struct drm_i915_gem_init *args = data;
2021746e
CW
127
128 if (args->gtt_start >= args->gtt_end ||
129 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
130 return -EINVAL;
79e53945 131
f534bc0b
DV
132 /* GEM with user mode setting was never supported on ilk and later. */
133 if (INTEL_INFO(dev)->gen >= 5)
134 return -ENODEV;
135
79e53945 136 mutex_lock(&dev->struct_mutex);
644ec02b
DV
137 i915_gem_init_global_gtt(dev, args->gtt_start,
138 args->gtt_end, args->gtt_end);
673a394b
EA
139 mutex_unlock(&dev->struct_mutex);
140
2021746e 141 return 0;
673a394b
EA
142}
143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
73aa808f 148 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 149 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
150 struct drm_i915_gem_object *obj;
151 size_t pinned;
5a125c3c
EA
152
153 if (!(dev->driver->driver_features & DRIVER_GEM))
154 return -ENODEV;
155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
6299f992
CW
158 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
159 pinned += obj->gtt_space->size;
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
6299f992 162 args->aper_size = dev_priv->mm.gtt_total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
ff72145b
DA
168static int
169i915_gem_create(struct drm_file *file,
170 struct drm_device *dev,
171 uint64_t size,
172 uint32_t *handle_p)
673a394b 173{
05394f39 174 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
175 int ret;
176 u32 handle;
673a394b 177
ff72145b 178 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
179 if (size == 0)
180 return -EINVAL;
673a394b
EA
181
182 /* Allocate the new object */
ff72145b 183 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
184 if (obj == NULL)
185 return -ENOMEM;
186
05394f39 187 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 188 if (ret) {
05394f39
CW
189 drm_gem_object_release(&obj->base);
190 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 191 kfree(obj);
673a394b 192 return ret;
1dfd9754 193 }
673a394b 194
202f2fef 195 /* drop reference from allocate - handle holds it now */
05394f39 196 drm_gem_object_unreference(&obj->base);
202f2fef
CW
197 trace_i915_gem_object_create(obj);
198
ff72145b 199 *handle_p = handle;
673a394b
EA
200 return 0;
201}
202
ff72145b
DA
203int
204i915_gem_dumb_create(struct drm_file *file,
205 struct drm_device *dev,
206 struct drm_mode_create_dumb *args)
207{
208 /* have to work out size/pitch and return them */
ed0291fd 209 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
210 args->size = args->pitch * args->height;
211 return i915_gem_create(file, dev,
212 args->size, &args->handle);
213}
214
215int i915_gem_dumb_destroy(struct drm_file *file,
216 struct drm_device *dev,
217 uint32_t handle)
218{
219 return drm_gem_handle_delete(file, handle);
220}
221
222/**
223 * Creates a new mm object and returns a handle to it.
224 */
225int
226i915_gem_create_ioctl(struct drm_device *dev, void *data,
227 struct drm_file *file)
228{
229 struct drm_i915_gem_create *args = data;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
232}
233
05394f39 234static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 235{
05394f39 236 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
237
238 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 239 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
240}
241
8461d226
DV
242static inline int
243__copy_to_user_swizzled(char __user *cpu_vaddr,
244 const char *gpu_vaddr, int gpu_offset,
245 int length)
246{
247 int ret, cpu_offset = 0;
248
249 while (length > 0) {
250 int cacheline_end = ALIGN(gpu_offset + 1, 64);
251 int this_length = min(cacheline_end - gpu_offset, length);
252 int swizzled_gpu_offset = gpu_offset ^ 64;
253
254 ret = __copy_to_user(cpu_vaddr + cpu_offset,
255 gpu_vaddr + swizzled_gpu_offset,
256 this_length);
257 if (ret)
258 return ret + length;
259
260 cpu_offset += this_length;
261 gpu_offset += this_length;
262 length -= this_length;
263 }
264
265 return 0;
266}
267
8c59967c
DV
268static inline int
269__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
270 const char *cpu_vaddr,
271 int length)
272{
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
281 cpu_vaddr + cpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292}
293
d174bd64
DV
294/* Per-page copy function for the shmem pread fastpath.
295 * Flushes invalid cachelines before reading the target if
296 * needs_clflush is set. */
eb01459f 297static int
d174bd64
DV
298shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
299 char __user *user_data,
300 bool page_do_bit17_swizzling, bool needs_clflush)
301{
302 char *vaddr;
303 int ret;
304
e7e58eb5 305 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
306 return -EINVAL;
307
308 vaddr = kmap_atomic(page);
309 if (needs_clflush)
310 drm_clflush_virt_range(vaddr + shmem_page_offset,
311 page_length);
312 ret = __copy_to_user_inatomic(user_data,
313 vaddr + shmem_page_offset,
314 page_length);
315 kunmap_atomic(vaddr);
316
317 return ret;
318}
319
23c18c71
DV
320static void
321shmem_clflush_swizzled_range(char *addr, unsigned long length,
322 bool swizzled)
323{
e7e58eb5 324 if (unlikely(swizzled)) {
23c18c71
DV
325 unsigned long start = (unsigned long) addr;
326 unsigned long end = (unsigned long) addr + length;
327
328 /* For swizzling simply ensure that we always flush both
329 * channels. Lame, but simple and it works. Swizzled
330 * pwrite/pread is far from a hotpath - current userspace
331 * doesn't use it at all. */
332 start = round_down(start, 128);
333 end = round_up(end, 128);
334
335 drm_clflush_virt_range((void *)start, end - start);
336 } else {
337 drm_clflush_virt_range(addr, length);
338 }
339
340}
341
d174bd64
DV
342/* Only difference to the fast-path function is that this can handle bit17
343 * and uses non-atomic copy and kmap functions. */
344static int
345shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
346 char __user *user_data,
347 bool page_do_bit17_swizzling, bool needs_clflush)
348{
349 char *vaddr;
350 int ret;
351
352 vaddr = kmap(page);
353 if (needs_clflush)
23c18c71
DV
354 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
355 page_length,
356 page_do_bit17_swizzling);
d174bd64
DV
357
358 if (page_do_bit17_swizzling)
359 ret = __copy_to_user_swizzled(user_data,
360 vaddr, shmem_page_offset,
361 page_length);
362 else
363 ret = __copy_to_user(user_data,
364 vaddr + shmem_page_offset,
365 page_length);
366 kunmap(page);
367
368 return ret;
369}
370
eb01459f 371static int
dbf7bff0
DV
372i915_gem_shmem_pread(struct drm_device *dev,
373 struct drm_i915_gem_object *obj,
374 struct drm_i915_gem_pread *args,
375 struct drm_file *file)
eb01459f 376{
05394f39 377 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 378 char __user *user_data;
eb01459f 379 ssize_t remain;
8461d226 380 loff_t offset;
eb2c0c81 381 int shmem_page_offset, page_length, ret = 0;
8461d226 382 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 383 int hit_slowpath = 0;
96d79b52 384 int prefaulted = 0;
8489731c 385 int needs_clflush = 0;
692a576b 386 int release_page;
eb01459f 387
8461d226 388 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
389 remain = args->size;
390
8461d226 391 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 392
8489731c
DV
393 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
394 /* If we're not in the cpu read domain, set ourself into the gtt
395 * read domain and manually flush cachelines (if required). This
396 * optimizes for the case when the gpu will dirty the data
397 * anyway again before the next pread happens. */
398 if (obj->cache_level == I915_CACHE_NONE)
399 needs_clflush = 1;
400 ret = i915_gem_object_set_to_gtt_domain(obj, false);
401 if (ret)
402 return ret;
403 }
eb01459f 404
8461d226 405 offset = args->offset;
eb01459f
EA
406
407 while (remain > 0) {
e5281ccd
CW
408 struct page *page;
409
eb01459f
EA
410 /* Operation in this page
411 *
eb01459f 412 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
413 * page_length = bytes to copy for this page
414 */
c8cbbb8b 415 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
416 page_length = remain;
417 if ((shmem_page_offset + page_length) > PAGE_SIZE)
418 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 419
692a576b
DV
420 if (obj->pages) {
421 page = obj->pages[offset >> PAGE_SHIFT];
422 release_page = 0;
423 } else {
424 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
425 if (IS_ERR(page)) {
426 ret = PTR_ERR(page);
427 goto out;
428 }
429 release_page = 1;
b65552f0 430 }
e5281ccd 431
8461d226
DV
432 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
433 (page_to_phys(page) & (1 << 17)) != 0;
434
d174bd64
DV
435 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
436 user_data, page_do_bit17_swizzling,
437 needs_clflush);
438 if (ret == 0)
439 goto next_page;
dbf7bff0
DV
440
441 hit_slowpath = 1;
692a576b 442 page_cache_get(page);
dbf7bff0
DV
443 mutex_unlock(&dev->struct_mutex);
444
96d79b52 445 if (!prefaulted) {
f56f821f 446 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
447 /* Userspace is tricking us, but we've already clobbered
448 * its pages with the prefault and promised to write the
449 * data up to the first fault. Hence ignore any errors
450 * and just continue. */
451 (void)ret;
452 prefaulted = 1;
453 }
eb01459f 454
d174bd64
DV
455 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
456 user_data, page_do_bit17_swizzling,
457 needs_clflush);
eb01459f 458
dbf7bff0 459 mutex_lock(&dev->struct_mutex);
e5281ccd 460 page_cache_release(page);
dbf7bff0 461next_page:
e5281ccd 462 mark_page_accessed(page);
692a576b
DV
463 if (release_page)
464 page_cache_release(page);
e5281ccd 465
8461d226
DV
466 if (ret) {
467 ret = -EFAULT;
468 goto out;
469 }
470
eb01459f 471 remain -= page_length;
8461d226 472 user_data += page_length;
eb01459f
EA
473 offset += page_length;
474 }
475
4f27b75d 476out:
dbf7bff0
DV
477 if (hit_slowpath) {
478 /* Fixup: Kill any reinstated backing storage pages */
479 if (obj->madv == __I915_MADV_PURGED)
480 i915_gem_object_truncate(obj);
481 }
eb01459f
EA
482
483 return ret;
484}
485
673a394b
EA
486/**
487 * Reads data from the object referenced by handle.
488 *
489 * On error, the contents of *data are undefined.
490 */
491int
492i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 493 struct drm_file *file)
673a394b
EA
494{
495 struct drm_i915_gem_pread *args = data;
05394f39 496 struct drm_i915_gem_object *obj;
35b62a89 497 int ret = 0;
673a394b 498
51311d0a
CW
499 if (args->size == 0)
500 return 0;
501
502 if (!access_ok(VERIFY_WRITE,
503 (char __user *)(uintptr_t)args->data_ptr,
504 args->size))
505 return -EFAULT;
506
4f27b75d 507 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 508 if (ret)
4f27b75d 509 return ret;
673a394b 510
05394f39 511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 512 if (&obj->base == NULL) {
1d7cfea1
CW
513 ret = -ENOENT;
514 goto unlock;
4f27b75d 515 }
673a394b 516
7dcd2499 517 /* Bounds check source. */
05394f39
CW
518 if (args->offset > obj->base.size ||
519 args->size > obj->base.size - args->offset) {
ce9d419d 520 ret = -EINVAL;
35b62a89 521 goto out;
ce9d419d
CW
522 }
523
db53a302
CW
524 trace_i915_gem_object_pread(obj, args->offset, args->size);
525
dbf7bff0 526 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 527
35b62a89 528out:
05394f39 529 drm_gem_object_unreference(&obj->base);
1d7cfea1 530unlock:
4f27b75d 531 mutex_unlock(&dev->struct_mutex);
eb01459f 532 return ret;
673a394b
EA
533}
534
0839ccb8
KP
535/* This is the fast write path which cannot handle
536 * page faults in the source data
9b7530cc 537 */
0839ccb8
KP
538
539static inline int
540fast_user_write(struct io_mapping *mapping,
541 loff_t page_base, int page_offset,
542 char __user *user_data,
543 int length)
9b7530cc 544{
9b7530cc 545 char *vaddr_atomic;
0839ccb8 546 unsigned long unwritten;
9b7530cc 547
3e4d3af5 548 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
549 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
550 user_data, length);
3e4d3af5 551 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 552 return unwritten;
0839ccb8
KP
553}
554
3de09aa3
EA
555/**
556 * This is the fast pwrite path, where we copy the data directly from the
557 * user into the GTT, uncached.
558 */
673a394b 559static int
05394f39
CW
560i915_gem_gtt_pwrite_fast(struct drm_device *dev,
561 struct drm_i915_gem_object *obj,
3de09aa3 562 struct drm_i915_gem_pwrite *args,
05394f39 563 struct drm_file *file)
673a394b 564{
0839ccb8 565 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 566 ssize_t remain;
0839ccb8 567 loff_t offset, page_base;
673a394b 568 char __user *user_data;
935aaa69
DV
569 int page_offset, page_length, ret;
570
571 ret = i915_gem_object_pin(obj, 0, true);
572 if (ret)
573 goto out;
574
575 ret = i915_gem_object_set_to_gtt_domain(obj, true);
576 if (ret)
577 goto out_unpin;
578
579 ret = i915_gem_object_put_fence(obj);
580 if (ret)
581 goto out_unpin;
673a394b
EA
582
583 user_data = (char __user *) (uintptr_t) args->data_ptr;
584 remain = args->size;
673a394b 585
05394f39 586 offset = obj->gtt_offset + args->offset;
673a394b
EA
587
588 while (remain > 0) {
589 /* Operation in this page
590 *
0839ccb8
KP
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
673a394b 594 */
c8cbbb8b
CW
595 page_base = offset & PAGE_MASK;
596 page_offset = offset_in_page(offset);
0839ccb8
KP
597 page_length = remain;
598 if ((page_offset + remain) > PAGE_SIZE)
599 page_length = PAGE_SIZE - page_offset;
600
0839ccb8 601 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
602 * source page isn't available. Return the error and we'll
603 * retry in the slow path.
0839ccb8 604 */
fbd5a26d 605 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
606 page_offset, user_data, page_length)) {
607 ret = -EFAULT;
608 goto out_unpin;
609 }
673a394b 610
0839ccb8
KP
611 remain -= page_length;
612 user_data += page_length;
613 offset += page_length;
673a394b 614 }
673a394b 615
935aaa69
DV
616out_unpin:
617 i915_gem_object_unpin(obj);
618out:
3de09aa3 619 return ret;
673a394b
EA
620}
621
d174bd64
DV
622/* Per-page copy function for the shmem pwrite fastpath.
623 * Flushes invalid cachelines before writing to the target if
624 * needs_clflush_before is set and flushes out any written cachelines after
625 * writing if needs_clflush is set. */
3043c60c 626static int
d174bd64
DV
627shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
628 char __user *user_data,
629 bool page_do_bit17_swizzling,
630 bool needs_clflush_before,
631 bool needs_clflush_after)
673a394b 632{
d174bd64 633 char *vaddr;
673a394b 634 int ret;
3de09aa3 635
e7e58eb5 636 if (unlikely(page_do_bit17_swizzling))
d174bd64 637 return -EINVAL;
3de09aa3 638
d174bd64
DV
639 vaddr = kmap_atomic(page);
640 if (needs_clflush_before)
641 drm_clflush_virt_range(vaddr + shmem_page_offset,
642 page_length);
643 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
644 user_data,
645 page_length);
646 if (needs_clflush_after)
647 drm_clflush_virt_range(vaddr + shmem_page_offset,
648 page_length);
649 kunmap_atomic(vaddr);
3de09aa3
EA
650
651 return ret;
652}
653
d174bd64
DV
654/* Only difference to the fast-path function is that this can handle bit17
655 * and uses non-atomic copy and kmap functions. */
3043c60c 656static int
d174bd64
DV
657shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
658 char __user *user_data,
659 bool page_do_bit17_swizzling,
660 bool needs_clflush_before,
661 bool needs_clflush_after)
673a394b 662{
d174bd64
DV
663 char *vaddr;
664 int ret;
e5281ccd 665
d174bd64 666 vaddr = kmap(page);
e7e58eb5 667 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
668 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
669 page_length,
670 page_do_bit17_swizzling);
d174bd64
DV
671 if (page_do_bit17_swizzling)
672 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
673 user_data,
674 page_length);
d174bd64
DV
675 else
676 ret = __copy_from_user(vaddr + shmem_page_offset,
677 user_data,
678 page_length);
679 if (needs_clflush_after)
23c18c71
DV
680 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
681 page_length,
682 page_do_bit17_swizzling);
d174bd64 683 kunmap(page);
40123c1f 684
d174bd64 685 return ret;
40123c1f
EA
686}
687
40123c1f 688static int
e244a443
DV
689i915_gem_shmem_pwrite(struct drm_device *dev,
690 struct drm_i915_gem_object *obj,
691 struct drm_i915_gem_pwrite *args,
692 struct drm_file *file)
40123c1f 693{
05394f39 694 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 695 ssize_t remain;
8c59967c
DV
696 loff_t offset;
697 char __user *user_data;
eb2c0c81 698 int shmem_page_offset, page_length, ret = 0;
8c59967c 699 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 700 int hit_slowpath = 0;
58642885
DV
701 int needs_clflush_after = 0;
702 int needs_clflush_before = 0;
692a576b 703 int release_page;
40123c1f 704
8c59967c 705 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
706 remain = args->size;
707
8c59967c 708 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 709
58642885
DV
710 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
711 /* If we're not in the cpu write domain, set ourself into the gtt
712 * write domain and manually flush cachelines (if required). This
713 * optimizes for the case when the gpu will use the data
714 * right away and we therefore have to clflush anyway. */
715 if (obj->cache_level == I915_CACHE_NONE)
716 needs_clflush_after = 1;
717 ret = i915_gem_object_set_to_gtt_domain(obj, true);
718 if (ret)
719 return ret;
720 }
721 /* Same trick applies for invalidate partially written cachelines before
722 * writing. */
723 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
724 && obj->cache_level == I915_CACHE_NONE)
725 needs_clflush_before = 1;
726
673a394b 727 offset = args->offset;
05394f39 728 obj->dirty = 1;
673a394b 729
40123c1f 730 while (remain > 0) {
e5281ccd 731 struct page *page;
58642885 732 int partial_cacheline_write;
e5281ccd 733
40123c1f
EA
734 /* Operation in this page
735 *
40123c1f 736 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
737 * page_length = bytes to copy for this page
738 */
c8cbbb8b 739 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
740
741 page_length = remain;
742 if ((shmem_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 744
58642885
DV
745 /* If we don't overwrite a cacheline completely we need to be
746 * careful to have up-to-date data by first clflushing. Don't
747 * overcomplicate things and flush the entire patch. */
748 partial_cacheline_write = needs_clflush_before &&
749 ((shmem_page_offset | page_length)
750 & (boot_cpu_data.x86_clflush_size - 1));
751
692a576b
DV
752 if (obj->pages) {
753 page = obj->pages[offset >> PAGE_SHIFT];
754 release_page = 0;
755 } else {
756 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
757 if (IS_ERR(page)) {
758 ret = PTR_ERR(page);
759 goto out;
760 }
761 release_page = 1;
e5281ccd
CW
762 }
763
8c59967c
DV
764 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
765 (page_to_phys(page) & (1 << 17)) != 0;
766
d174bd64
DV
767 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
768 user_data, page_do_bit17_swizzling,
769 partial_cacheline_write,
770 needs_clflush_after);
771 if (ret == 0)
772 goto next_page;
e244a443
DV
773
774 hit_slowpath = 1;
692a576b 775 page_cache_get(page);
e244a443
DV
776 mutex_unlock(&dev->struct_mutex);
777
d174bd64
DV
778 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
779 user_data, page_do_bit17_swizzling,
780 partial_cacheline_write,
781 needs_clflush_after);
40123c1f 782
e244a443 783 mutex_lock(&dev->struct_mutex);
692a576b 784 page_cache_release(page);
e244a443 785next_page:
e5281ccd
CW
786 set_page_dirty(page);
787 mark_page_accessed(page);
692a576b
DV
788 if (release_page)
789 page_cache_release(page);
e5281ccd 790
8c59967c
DV
791 if (ret) {
792 ret = -EFAULT;
793 goto out;
794 }
795
40123c1f 796 remain -= page_length;
8c59967c 797 user_data += page_length;
40123c1f 798 offset += page_length;
673a394b
EA
799 }
800
fbd5a26d 801out:
e244a443
DV
802 if (hit_slowpath) {
803 /* Fixup: Kill any reinstated backing storage pages */
804 if (obj->madv == __I915_MADV_PURGED)
805 i915_gem_object_truncate(obj);
806 /* and flush dirty cachelines in case the object isn't in the cpu write
807 * domain anymore. */
808 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
809 i915_gem_clflush_object(obj);
810 intel_gtt_chipset_flush();
811 }
8c59967c 812 }
673a394b 813
58642885
DV
814 if (needs_clflush_after)
815 intel_gtt_chipset_flush();
816
40123c1f 817 return ret;
673a394b
EA
818}
819
820/**
821 * Writes data to the object referenced by handle.
822 *
823 * On error, the contents of the buffer that were to be modified are undefined.
824 */
825int
826i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 827 struct drm_file *file)
673a394b
EA
828{
829 struct drm_i915_gem_pwrite *args = data;
05394f39 830 struct drm_i915_gem_object *obj;
51311d0a
CW
831 int ret;
832
833 if (args->size == 0)
834 return 0;
835
836 if (!access_ok(VERIFY_READ,
837 (char __user *)(uintptr_t)args->data_ptr,
838 args->size))
839 return -EFAULT;
840
f56f821f
DV
841 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
842 args->size);
51311d0a
CW
843 if (ret)
844 return -EFAULT;
673a394b 845
fbd5a26d 846 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 847 if (ret)
fbd5a26d 848 return ret;
1d7cfea1 849
05394f39 850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 851 if (&obj->base == NULL) {
1d7cfea1
CW
852 ret = -ENOENT;
853 goto unlock;
fbd5a26d 854 }
673a394b 855
7dcd2499 856 /* Bounds check destination. */
05394f39
CW
857 if (args->offset > obj->base.size ||
858 args->size > obj->base.size - args->offset) {
ce9d419d 859 ret = -EINVAL;
35b62a89 860 goto out;
ce9d419d
CW
861 }
862
db53a302
CW
863 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
864
935aaa69 865 ret = -EFAULT;
673a394b
EA
866 /* We can only do the GTT pwrite on untiled buffers, as otherwise
867 * it would end up going through the fenced access, and we'll get
868 * different detiling behavior between reading and writing.
869 * pread/pwrite currently are reading and writing from the CPU
870 * perspective, requiring manual detiling by the client.
871 */
5c0480f2 872 if (obj->phys_obj) {
fbd5a26d 873 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
874 goto out;
875 }
876
877 if (obj->gtt_space &&
3ae53783 878 obj->cache_level == I915_CACHE_NONE &&
c07496fa 879 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 880 obj->map_and_fenceable &&
5c0480f2 881 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 882 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
883 /* Note that the gtt paths might fail with non-page-backed user
884 * pointers (e.g. gtt mappings when moving data between
885 * textures). Fallback to the shmem path in that case. */
fbd5a26d 886 }
673a394b 887
5c0480f2 888 if (ret == -EFAULT)
935aaa69 889 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 890
35b62a89 891out:
05394f39 892 drm_gem_object_unreference(&obj->base);
1d7cfea1 893unlock:
fbd5a26d 894 mutex_unlock(&dev->struct_mutex);
673a394b
EA
895 return ret;
896}
897
898/**
2ef7eeaa
EA
899 * Called when user space prepares to use an object with the CPU, either
900 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
901 */
902int
903i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 904 struct drm_file *file)
673a394b
EA
905{
906 struct drm_i915_gem_set_domain *args = data;
05394f39 907 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
908 uint32_t read_domains = args->read_domains;
909 uint32_t write_domain = args->write_domain;
673a394b
EA
910 int ret;
911
912 if (!(dev->driver->driver_features & DRIVER_GEM))
913 return -ENODEV;
914
2ef7eeaa 915 /* Only handle setting domains to types used by the CPU. */
21d509e3 916 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
917 return -EINVAL;
918
21d509e3 919 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
920 return -EINVAL;
921
922 /* Having something in the write domain implies it's in the read
923 * domain, and only that read domain. Enforce that in the request.
924 */
925 if (write_domain != 0 && read_domains != write_domain)
926 return -EINVAL;
927
76c1dec1 928 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 929 if (ret)
76c1dec1 930 return ret;
1d7cfea1 931
05394f39 932 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 933 if (&obj->base == NULL) {
1d7cfea1
CW
934 ret = -ENOENT;
935 goto unlock;
76c1dec1 936 }
673a394b 937
2ef7eeaa
EA
938 if (read_domains & I915_GEM_DOMAIN_GTT) {
939 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
940
941 /* Silently promote "you're not bound, there was nothing to do"
942 * to success, since the client was just asking us to
943 * make sure everything was done.
944 */
945 if (ret == -EINVAL)
946 ret = 0;
2ef7eeaa 947 } else {
e47c68e9 948 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
949 }
950
05394f39 951 drm_gem_object_unreference(&obj->base);
1d7cfea1 952unlock:
673a394b
EA
953 mutex_unlock(&dev->struct_mutex);
954 return ret;
955}
956
957/**
958 * Called when user space has done writes to this buffer
959 */
960int
961i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 962 struct drm_file *file)
673a394b
EA
963{
964 struct drm_i915_gem_sw_finish *args = data;
05394f39 965 struct drm_i915_gem_object *obj;
673a394b
EA
966 int ret = 0;
967
968 if (!(dev->driver->driver_features & DRIVER_GEM))
969 return -ENODEV;
970
76c1dec1 971 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 972 if (ret)
76c1dec1 973 return ret;
1d7cfea1 974
05394f39 975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 976 if (&obj->base == NULL) {
1d7cfea1
CW
977 ret = -ENOENT;
978 goto unlock;
673a394b
EA
979 }
980
673a394b 981 /* Pinned buffers may be scanout, so flush the cache */
05394f39 982 if (obj->pin_count)
e47c68e9
EA
983 i915_gem_object_flush_cpu_write_domain(obj);
984
05394f39 985 drm_gem_object_unreference(&obj->base);
1d7cfea1 986unlock:
673a394b
EA
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989}
990
991/**
992 * Maps the contents of an object, returning the address it is mapped
993 * into.
994 *
995 * While the mapping holds a reference on the contents of the object, it doesn't
996 * imply a ref on the object itself.
997 */
998int
999i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1000 struct drm_file *file)
673a394b
EA
1001{
1002 struct drm_i915_gem_mmap *args = data;
1003 struct drm_gem_object *obj;
673a394b
EA
1004 unsigned long addr;
1005
1006 if (!(dev->driver->driver_features & DRIVER_GEM))
1007 return -ENODEV;
1008
05394f39 1009 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1010 if (obj == NULL)
bf79cb91 1011 return -ENOENT;
673a394b 1012
673a394b
EA
1013 down_write(&current->mm->mmap_sem);
1014 addr = do_mmap(obj->filp, 0, args->size,
1015 PROT_READ | PROT_WRITE, MAP_SHARED,
1016 args->offset);
1017 up_write(&current->mm->mmap_sem);
bc9025bd 1018 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1019 if (IS_ERR((void *)addr))
1020 return addr;
1021
1022 args->addr_ptr = (uint64_t) addr;
1023
1024 return 0;
1025}
1026
de151cf6
JB
1027/**
1028 * i915_gem_fault - fault a page into the GTT
1029 * vma: VMA in question
1030 * vmf: fault info
1031 *
1032 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1033 * from userspace. The fault handler takes care of binding the object to
1034 * the GTT (if needed), allocating and programming a fence register (again,
1035 * only if needed based on whether the old reg is still valid or the object
1036 * is tiled) and inserting a new PTE into the faulting process.
1037 *
1038 * Note that the faulting process may involve evicting existing objects
1039 * from the GTT and/or fence registers to make room. So performance may
1040 * suffer if the GTT working set is large or there are few fence registers
1041 * left.
1042 */
1043int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1044{
05394f39
CW
1045 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1046 struct drm_device *dev = obj->base.dev;
7d1c4804 1047 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1048 pgoff_t page_offset;
1049 unsigned long pfn;
1050 int ret = 0;
0f973f27 1051 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1052
1053 /* We don't use vmf->pgoff since that has the fake offset */
1054 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1055 PAGE_SHIFT;
1056
d9bc7e9f
CW
1057 ret = i915_mutex_lock_interruptible(dev);
1058 if (ret)
1059 goto out;
a00b10c3 1060
db53a302
CW
1061 trace_i915_gem_object_fault(obj, page_offset, true, write);
1062
d9bc7e9f 1063 /* Now bind it into the GTT if needed */
919926ae
CW
1064 if (!obj->map_and_fenceable) {
1065 ret = i915_gem_object_unbind(obj);
1066 if (ret)
1067 goto unlock;
a00b10c3 1068 }
05394f39 1069 if (!obj->gtt_space) {
75e9e915 1070 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1071 if (ret)
1072 goto unlock;
de151cf6 1073
e92d03bf
EA
1074 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1075 if (ret)
1076 goto unlock;
1077 }
4a684a41 1078
74898d7e
DV
1079 if (!obj->has_global_gtt_mapping)
1080 i915_gem_gtt_bind_object(obj, obj->cache_level);
1081
06d98131 1082 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1083 if (ret)
1084 goto unlock;
de151cf6 1085
05394f39
CW
1086 if (i915_gem_object_is_inactive(obj))
1087 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1088
6299f992
CW
1089 obj->fault_mappable = true;
1090
05394f39 1091 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1092 page_offset;
1093
1094 /* Finally, remap it using the new GTT offset */
1095 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1096unlock:
de151cf6 1097 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1098out:
de151cf6 1099 switch (ret) {
d9bc7e9f 1100 case -EIO:
045e769a 1101 case -EAGAIN:
d9bc7e9f
CW
1102 /* Give the error handler a chance to run and move the
1103 * objects off the GPU active list. Next time we service the
1104 * fault, we should be able to transition the page into the
1105 * GTT without touching the GPU (and so avoid further
1106 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1107 * with coherency, just lost writes.
1108 */
045e769a 1109 set_need_resched();
c715089f
CW
1110 case 0:
1111 case -ERESTARTSYS:
bed636ab 1112 case -EINTR:
c715089f 1113 return VM_FAULT_NOPAGE;
de151cf6 1114 case -ENOMEM:
de151cf6 1115 return VM_FAULT_OOM;
de151cf6 1116 default:
c715089f 1117 return VM_FAULT_SIGBUS;
de151cf6
JB
1118 }
1119}
1120
901782b2
CW
1121/**
1122 * i915_gem_release_mmap - remove physical page mappings
1123 * @obj: obj in question
1124 *
af901ca1 1125 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1126 * relinquish ownership of the pages back to the system.
1127 *
1128 * It is vital that we remove the page mapping if we have mapped a tiled
1129 * object through the GTT and then lose the fence register due to
1130 * resource pressure. Similarly if the object has been moved out of the
1131 * aperture, than pages mapped into userspace must be revoked. Removing the
1132 * mapping will then trigger a page fault on the next user access, allowing
1133 * fixup by i915_gem_fault().
1134 */
d05ca301 1135void
05394f39 1136i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1137{
6299f992
CW
1138 if (!obj->fault_mappable)
1139 return;
901782b2 1140
f6e47884
CW
1141 if (obj->base.dev->dev_mapping)
1142 unmap_mapping_range(obj->base.dev->dev_mapping,
1143 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1144 obj->base.size, 1);
fb7d516a 1145
6299f992 1146 obj->fault_mappable = false;
901782b2
CW
1147}
1148
92b88aeb 1149static uint32_t
e28f8711 1150i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1151{
e28f8711 1152 uint32_t gtt_size;
92b88aeb
CW
1153
1154 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1155 tiling_mode == I915_TILING_NONE)
1156 return size;
92b88aeb
CW
1157
1158 /* Previous chips need a power-of-two fence region when tiling */
1159 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1160 gtt_size = 1024*1024;
92b88aeb 1161 else
e28f8711 1162 gtt_size = 512*1024;
92b88aeb 1163
e28f8711
CW
1164 while (gtt_size < size)
1165 gtt_size <<= 1;
92b88aeb 1166
e28f8711 1167 return gtt_size;
92b88aeb
CW
1168}
1169
de151cf6
JB
1170/**
1171 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1172 * @obj: object to check
1173 *
1174 * Return the required GTT alignment for an object, taking into account
5e783301 1175 * potential fence register mapping.
de151cf6
JB
1176 */
1177static uint32_t
e28f8711
CW
1178i915_gem_get_gtt_alignment(struct drm_device *dev,
1179 uint32_t size,
1180 int tiling_mode)
de151cf6 1181{
de151cf6
JB
1182 /*
1183 * Minimum alignment is 4k (GTT page size), but might be greater
1184 * if a fence register is needed for the object.
1185 */
a00b10c3 1186 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1187 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1188 return 4096;
1189
a00b10c3
CW
1190 /*
1191 * Previous chips need to be aligned to the size of the smallest
1192 * fence register that can contain the object.
1193 */
e28f8711 1194 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1195}
1196
5e783301
DV
1197/**
1198 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1199 * unfenced object
e28f8711
CW
1200 * @dev: the device
1201 * @size: size of the object
1202 * @tiling_mode: tiling mode of the object
5e783301
DV
1203 *
1204 * Return the required GTT alignment for an object, only taking into account
1205 * unfenced tiled surface requirements.
1206 */
467cffba 1207uint32_t
e28f8711
CW
1208i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1209 uint32_t size,
1210 int tiling_mode)
5e783301 1211{
5e783301
DV
1212 /*
1213 * Minimum alignment is 4k (GTT page size) for sane hw.
1214 */
1215 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1216 tiling_mode == I915_TILING_NONE)
5e783301
DV
1217 return 4096;
1218
e28f8711
CW
1219 /* Previous hardware however needs to be aligned to a power-of-two
1220 * tile height. The simplest method for determining this is to reuse
1221 * the power-of-tile object size.
5e783301 1222 */
e28f8711 1223 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1224}
1225
de151cf6 1226int
ff72145b
DA
1227i915_gem_mmap_gtt(struct drm_file *file,
1228 struct drm_device *dev,
1229 uint32_t handle,
1230 uint64_t *offset)
de151cf6 1231{
da761a6e 1232 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1233 struct drm_i915_gem_object *obj;
de151cf6
JB
1234 int ret;
1235
1236 if (!(dev->driver->driver_features & DRIVER_GEM))
1237 return -ENODEV;
1238
76c1dec1 1239 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1240 if (ret)
76c1dec1 1241 return ret;
de151cf6 1242
ff72145b 1243 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1244 if (&obj->base == NULL) {
1d7cfea1
CW
1245 ret = -ENOENT;
1246 goto unlock;
1247 }
de151cf6 1248
05394f39 1249 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1250 ret = -E2BIG;
ff56b0bc 1251 goto out;
da761a6e
CW
1252 }
1253
05394f39 1254 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1255 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1256 ret = -EINVAL;
1257 goto out;
ab18282d
CW
1258 }
1259
05394f39 1260 if (!obj->base.map_list.map) {
b464e9a2 1261 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1262 if (ret)
1263 goto out;
de151cf6
JB
1264 }
1265
ff72145b 1266 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1267
1d7cfea1 1268out:
05394f39 1269 drm_gem_object_unreference(&obj->base);
1d7cfea1 1270unlock:
de151cf6 1271 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1272 return ret;
de151cf6
JB
1273}
1274
ff72145b
DA
1275/**
1276 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1277 * @dev: DRM device
1278 * @data: GTT mapping ioctl data
1279 * @file: GEM object info
1280 *
1281 * Simply returns the fake offset to userspace so it can mmap it.
1282 * The mmap call will end up in drm_gem_mmap(), which will set things
1283 * up so we can get faults in the handler above.
1284 *
1285 * The fault handler will take care of binding the object into the GTT
1286 * (since it may have been evicted to make room for something), allocating
1287 * a fence register, and mapping the appropriate aperture address into
1288 * userspace.
1289 */
1290int
1291i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293{
1294 struct drm_i915_gem_mmap_gtt *args = data;
1295
1296 if (!(dev->driver->driver_features & DRIVER_GEM))
1297 return -ENODEV;
1298
1299 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1300}
1301
1302
e5281ccd 1303static int
05394f39 1304i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1305 gfp_t gfpmask)
1306{
e5281ccd
CW
1307 int page_count, i;
1308 struct address_space *mapping;
1309 struct inode *inode;
1310 struct page *page;
1311
1312 /* Get the list of pages out of our struct file. They'll be pinned
1313 * at this point until we release them.
1314 */
05394f39
CW
1315 page_count = obj->base.size / PAGE_SIZE;
1316 BUG_ON(obj->pages != NULL);
1317 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1318 if (obj->pages == NULL)
e5281ccd
CW
1319 return -ENOMEM;
1320
05394f39 1321 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1322 mapping = inode->i_mapping;
5949eac4
HD
1323 gfpmask |= mapping_gfp_mask(mapping);
1324
e5281ccd 1325 for (i = 0; i < page_count; i++) {
5949eac4 1326 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1327 if (IS_ERR(page))
1328 goto err_pages;
1329
05394f39 1330 obj->pages[i] = page;
e5281ccd
CW
1331 }
1332
6dacfd2f 1333 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1334 i915_gem_object_do_bit_17_swizzle(obj);
1335
1336 return 0;
1337
1338err_pages:
1339 while (i--)
05394f39 1340 page_cache_release(obj->pages[i]);
e5281ccd 1341
05394f39
CW
1342 drm_free_large(obj->pages);
1343 obj->pages = NULL;
e5281ccd
CW
1344 return PTR_ERR(page);
1345}
1346
5cdf5881 1347static void
05394f39 1348i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1349{
05394f39 1350 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1351 int i;
1352
05394f39 1353 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1354
6dacfd2f 1355 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1356 i915_gem_object_save_bit_17_swizzle(obj);
1357
05394f39
CW
1358 if (obj->madv == I915_MADV_DONTNEED)
1359 obj->dirty = 0;
3ef94daa
CW
1360
1361 for (i = 0; i < page_count; i++) {
05394f39
CW
1362 if (obj->dirty)
1363 set_page_dirty(obj->pages[i]);
3ef94daa 1364
05394f39
CW
1365 if (obj->madv == I915_MADV_WILLNEED)
1366 mark_page_accessed(obj->pages[i]);
3ef94daa 1367
05394f39 1368 page_cache_release(obj->pages[i]);
3ef94daa 1369 }
05394f39 1370 obj->dirty = 0;
673a394b 1371
05394f39
CW
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
673a394b
EA
1374}
1375
54cf91dc 1376void
05394f39 1377i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1378 struct intel_ring_buffer *ring,
1379 u32 seqno)
673a394b 1380{
05394f39 1381 struct drm_device *dev = obj->base.dev;
69dc4987 1382 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1383
852835f3 1384 BUG_ON(ring == NULL);
05394f39 1385 obj->ring = ring;
673a394b
EA
1386
1387 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1388 if (!obj->active) {
1389 drm_gem_object_reference(&obj->base);
1390 obj->active = 1;
673a394b 1391 }
e35a41de 1392
673a394b 1393 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1394 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1395 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1396
05394f39 1397 obj->last_rendering_seqno = seqno;
caea7476 1398
7dd49065 1399 if (obj->fenced_gpu_access) {
caea7476
CW
1400 obj->last_fenced_seqno = seqno;
1401 obj->last_fenced_ring = ring;
1402
7dd49065
CW
1403 /* Bump MRU to take account of the delayed flush */
1404 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1405 struct drm_i915_fence_reg *reg;
1406
1407 reg = &dev_priv->fence_regs[obj->fence_reg];
1408 list_move_tail(&reg->lru_list,
1409 &dev_priv->mm.fence_list);
1410 }
caea7476
CW
1411 }
1412}
1413
1414static void
1415i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1416{
1417 list_del_init(&obj->ring_list);
1418 obj->last_rendering_seqno = 0;
15a13bbd 1419 obj->last_fenced_seqno = 0;
673a394b
EA
1420}
1421
ce44b0ea 1422static void
05394f39 1423i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1424{
05394f39 1425 struct drm_device *dev = obj->base.dev;
ce44b0ea 1426 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1427
05394f39
CW
1428 BUG_ON(!obj->active);
1429 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1430
1431 i915_gem_object_move_off_active(obj);
1432}
1433
1434static void
1435i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1436{
1437 struct drm_device *dev = obj->base.dev;
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439
1440 if (obj->pin_count != 0)
1441 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1442 else
1443 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1444
1445 BUG_ON(!list_empty(&obj->gpu_write_list));
1446 BUG_ON(!obj->active);
1447 obj->ring = NULL;
15a13bbd 1448 obj->last_fenced_ring = NULL;
caea7476
CW
1449
1450 i915_gem_object_move_off_active(obj);
1451 obj->fenced_gpu_access = false;
caea7476
CW
1452
1453 obj->active = 0;
87ca9c8a 1454 obj->pending_gpu_write = false;
caea7476
CW
1455 drm_gem_object_unreference(&obj->base);
1456
1457 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1458}
673a394b 1459
963b4836
CW
1460/* Immediately discard the backing storage */
1461static void
05394f39 1462i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1463{
bb6baf76 1464 struct inode *inode;
963b4836 1465
ae9fed6b
CW
1466 /* Our goal here is to return as much of the memory as
1467 * is possible back to the system as we are called from OOM.
1468 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1469 * backing pages, *now*.
ae9fed6b 1470 */
05394f39 1471 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1472 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1473
a14917ee
CW
1474 if (obj->base.map_list.map)
1475 drm_gem_free_mmap_offset(&obj->base);
1476
05394f39 1477 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1478}
1479
1480static inline int
05394f39 1481i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1482{
05394f39 1483 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1484}
1485
63560396 1486static void
db53a302
CW
1487i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1488 uint32_t flush_domains)
63560396 1489{
05394f39 1490 struct drm_i915_gem_object *obj, *next;
63560396 1491
05394f39 1492 list_for_each_entry_safe(obj, next,
64193406 1493 &ring->gpu_write_list,
63560396 1494 gpu_write_list) {
05394f39
CW
1495 if (obj->base.write_domain & flush_domains) {
1496 uint32_t old_write_domain = obj->base.write_domain;
63560396 1497
05394f39
CW
1498 obj->base.write_domain = 0;
1499 list_del_init(&obj->gpu_write_list);
1ec14ad3 1500 i915_gem_object_move_to_active(obj, ring,
db53a302 1501 i915_gem_next_request_seqno(ring));
63560396 1502
63560396 1503 trace_i915_gem_object_change_domain(obj,
05394f39 1504 obj->base.read_domains,
63560396
DV
1505 old_write_domain);
1506 }
1507 }
1508}
8187a2b7 1509
53d227f2
DV
1510static u32
1511i915_gem_get_seqno(struct drm_device *dev)
1512{
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 u32 seqno = dev_priv->next_seqno;
1515
1516 /* reserve 0 for non-seqno */
1517 if (++dev_priv->next_seqno == 0)
1518 dev_priv->next_seqno = 1;
1519
1520 return seqno;
1521}
1522
1523u32
1524i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1525{
1526 if (ring->outstanding_lazy_request == 0)
1527 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1528
1529 return ring->outstanding_lazy_request;
1530}
1531
3cce469c 1532int
db53a302 1533i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1534 struct drm_file *file,
db53a302 1535 struct drm_i915_gem_request *request)
673a394b 1536{
db53a302 1537 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1538 uint32_t seqno;
a71d8d94 1539 u32 request_ring_position;
673a394b 1540 int was_empty;
3cce469c
CW
1541 int ret;
1542
1543 BUG_ON(request == NULL);
53d227f2 1544 seqno = i915_gem_next_request_seqno(ring);
673a394b 1545
a71d8d94
CW
1546 /* Record the position of the start of the request so that
1547 * should we detect the updated seqno part-way through the
1548 * GPU processing the request, we never over-estimate the
1549 * position of the head.
1550 */
1551 request_ring_position = intel_ring_get_tail(ring);
1552
3cce469c
CW
1553 ret = ring->add_request(ring, &seqno);
1554 if (ret)
1555 return ret;
673a394b 1556
db53a302 1557 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1558
1559 request->seqno = seqno;
852835f3 1560 request->ring = ring;
a71d8d94 1561 request->tail = request_ring_position;
673a394b 1562 request->emitted_jiffies = jiffies;
852835f3
ZN
1563 was_empty = list_empty(&ring->request_list);
1564 list_add_tail(&request->list, &ring->request_list);
1565
db53a302
CW
1566 if (file) {
1567 struct drm_i915_file_private *file_priv = file->driver_priv;
1568
1c25595f 1569 spin_lock(&file_priv->mm.lock);
f787a5f5 1570 request->file_priv = file_priv;
b962442e 1571 list_add_tail(&request->client_list,
f787a5f5 1572 &file_priv->mm.request_list);
1c25595f 1573 spin_unlock(&file_priv->mm.lock);
b962442e 1574 }
673a394b 1575
5391d0cf 1576 ring->outstanding_lazy_request = 0;
db53a302 1577
f65d9421 1578 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1579 if (i915_enable_hangcheck) {
1580 mod_timer(&dev_priv->hangcheck_timer,
1581 jiffies +
1582 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1583 }
f65d9421 1584 if (was_empty)
b3b079db
CW
1585 queue_delayed_work(dev_priv->wq,
1586 &dev_priv->mm.retire_work, HZ);
f65d9421 1587 }
3cce469c 1588 return 0;
673a394b
EA
1589}
1590
f787a5f5
CW
1591static inline void
1592i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1593{
1c25595f 1594 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1595
1c25595f
CW
1596 if (!file_priv)
1597 return;
1c5d22f7 1598
1c25595f 1599 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1600 if (request->file_priv) {
1601 list_del(&request->client_list);
1602 request->file_priv = NULL;
1603 }
1c25595f 1604 spin_unlock(&file_priv->mm.lock);
673a394b 1605}
673a394b 1606
dfaae392
CW
1607static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1608 struct intel_ring_buffer *ring)
9375e446 1609{
dfaae392
CW
1610 while (!list_empty(&ring->request_list)) {
1611 struct drm_i915_gem_request *request;
673a394b 1612
dfaae392
CW
1613 request = list_first_entry(&ring->request_list,
1614 struct drm_i915_gem_request,
1615 list);
de151cf6 1616
dfaae392 1617 list_del(&request->list);
f787a5f5 1618 i915_gem_request_remove_from_client(request);
dfaae392
CW
1619 kfree(request);
1620 }
673a394b 1621
dfaae392 1622 while (!list_empty(&ring->active_list)) {
05394f39 1623 struct drm_i915_gem_object *obj;
9375e446 1624
05394f39
CW
1625 obj = list_first_entry(&ring->active_list,
1626 struct drm_i915_gem_object,
1627 ring_list);
9375e446 1628
05394f39
CW
1629 obj->base.write_domain = 0;
1630 list_del_init(&obj->gpu_write_list);
1631 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1632 }
1633}
1634
312817a3
CW
1635static void i915_gem_reset_fences(struct drm_device *dev)
1636{
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638 int i;
1639
4b9de737 1640 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1641 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1642 struct drm_i915_gem_object *obj = reg->obj;
1643
1644 if (!obj)
1645 continue;
1646
1647 if (obj->tiling_mode)
1648 i915_gem_release_mmap(obj);
1649
d9e86c0e
CW
1650 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1651 reg->obj->fenced_gpu_access = false;
1652 reg->obj->last_fenced_seqno = 0;
1653 reg->obj->last_fenced_ring = NULL;
1654 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1655 }
1656}
1657
069efc1d 1658void i915_gem_reset(struct drm_device *dev)
673a394b 1659{
77f01230 1660 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1661 struct drm_i915_gem_object *obj;
1ec14ad3 1662 int i;
673a394b 1663
1ec14ad3
CW
1664 for (i = 0; i < I915_NUM_RINGS; i++)
1665 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1666
1667 /* Remove anything from the flushing lists. The GPU cache is likely
1668 * to be lost on reset along with the data, so simply move the
1669 * lost bo to the inactive list.
1670 */
1671 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1672 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1673 struct drm_i915_gem_object,
1674 mm_list);
dfaae392 1675
05394f39
CW
1676 obj->base.write_domain = 0;
1677 list_del_init(&obj->gpu_write_list);
1678 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1679 }
1680
1681 /* Move everything out of the GPU domains to ensure we do any
1682 * necessary invalidation upon reuse.
1683 */
05394f39 1684 list_for_each_entry(obj,
77f01230 1685 &dev_priv->mm.inactive_list,
69dc4987 1686 mm_list)
77f01230 1687 {
05394f39 1688 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1689 }
069efc1d
CW
1690
1691 /* The fence registers are invalidated so clear them out */
312817a3 1692 i915_gem_reset_fences(dev);
673a394b
EA
1693}
1694
1695/**
1696 * This function clears the request list as sequence numbers are passed.
1697 */
a71d8d94 1698void
db53a302 1699i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1700{
673a394b 1701 uint32_t seqno;
1ec14ad3 1702 int i;
673a394b 1703
db53a302 1704 if (list_empty(&ring->request_list))
6c0594a3
KW
1705 return;
1706
db53a302 1707 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1708
78501eac 1709 seqno = ring->get_seqno(ring);
1ec14ad3 1710
076e2c0e 1711 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1712 if (seqno >= ring->sync_seqno[i])
1713 ring->sync_seqno[i] = 0;
1714
852835f3 1715 while (!list_empty(&ring->request_list)) {
673a394b 1716 struct drm_i915_gem_request *request;
673a394b 1717
852835f3 1718 request = list_first_entry(&ring->request_list,
673a394b
EA
1719 struct drm_i915_gem_request,
1720 list);
673a394b 1721
dfaae392 1722 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1723 break;
1724
db53a302 1725 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1726 /* We know the GPU must have read the request to have
1727 * sent us the seqno + interrupt, so use the position
1728 * of tail of the request to update the last known position
1729 * of the GPU head.
1730 */
1731 ring->last_retired_head = request->tail;
b84d5f0c
CW
1732
1733 list_del(&request->list);
f787a5f5 1734 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1735 kfree(request);
1736 }
673a394b 1737
b84d5f0c
CW
1738 /* Move any buffers on the active list that are no longer referenced
1739 * by the ringbuffer to the flushing/inactive lists as appropriate.
1740 */
1741 while (!list_empty(&ring->active_list)) {
05394f39 1742 struct drm_i915_gem_object *obj;
b84d5f0c 1743
0206e353 1744 obj = list_first_entry(&ring->active_list,
05394f39
CW
1745 struct drm_i915_gem_object,
1746 ring_list);
673a394b 1747
05394f39 1748 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1749 break;
b84d5f0c 1750
05394f39 1751 if (obj->base.write_domain != 0)
b84d5f0c
CW
1752 i915_gem_object_move_to_flushing(obj);
1753 else
1754 i915_gem_object_move_to_inactive(obj);
673a394b 1755 }
9d34e5db 1756
db53a302
CW
1757 if (unlikely(ring->trace_irq_seqno &&
1758 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1759 ring->irq_put(ring);
db53a302 1760 ring->trace_irq_seqno = 0;
9d34e5db 1761 }
23bc5982 1762
db53a302 1763 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1764}
1765
b09a1fec
CW
1766void
1767i915_gem_retire_requests(struct drm_device *dev)
1768{
1769 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1770 int i;
b09a1fec 1771
be72615b 1772 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1773 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1774
1775 /* We must be careful that during unbind() we do not
1776 * accidentally infinitely recurse into retire requests.
1777 * Currently:
1778 * retire -> free -> unbind -> wait -> retire_ring
1779 */
05394f39 1780 list_for_each_entry_safe(obj, next,
be72615b 1781 &dev_priv->mm.deferred_free_list,
69dc4987 1782 mm_list)
05394f39 1783 i915_gem_free_object_tail(obj);
be72615b
CW
1784 }
1785
1ec14ad3 1786 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1787 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1788}
1789
75ef9da2 1790static void
673a394b
EA
1791i915_gem_retire_work_handler(struct work_struct *work)
1792{
1793 drm_i915_private_t *dev_priv;
1794 struct drm_device *dev;
0a58705b
CW
1795 bool idle;
1796 int i;
673a394b
EA
1797
1798 dev_priv = container_of(work, drm_i915_private_t,
1799 mm.retire_work.work);
1800 dev = dev_priv->dev;
1801
891b48cf
CW
1802 /* Come back later if the device is busy... */
1803 if (!mutex_trylock(&dev->struct_mutex)) {
1804 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1805 return;
1806 }
1807
b09a1fec 1808 i915_gem_retire_requests(dev);
d1b851fc 1809
0a58705b
CW
1810 /* Send a periodic flush down the ring so we don't hold onto GEM
1811 * objects indefinitely.
1812 */
1813 idle = true;
1814 for (i = 0; i < I915_NUM_RINGS; i++) {
1815 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1816
1817 if (!list_empty(&ring->gpu_write_list)) {
1818 struct drm_i915_gem_request *request;
1819 int ret;
1820
db53a302
CW
1821 ret = i915_gem_flush_ring(ring,
1822 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1823 request = kzalloc(sizeof(*request), GFP_KERNEL);
1824 if (ret || request == NULL ||
db53a302 1825 i915_add_request(ring, NULL, request))
0a58705b
CW
1826 kfree(request);
1827 }
1828
1829 idle &= list_empty(&ring->request_list);
1830 }
1831
1832 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1833 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1834
673a394b
EA
1835 mutex_unlock(&dev->struct_mutex);
1836}
1837
db53a302
CW
1838/**
1839 * Waits for a sequence number to be signaled, and cleans up the
1840 * request and object lists appropriately for that event.
1841 */
5a5a0c64 1842int
db53a302 1843i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1844 uint32_t seqno,
1845 bool do_retire)
673a394b 1846{
db53a302 1847 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1848 u32 ier;
673a394b
EA
1849 int ret = 0;
1850
1851 BUG_ON(seqno == 0);
1852
d9bc7e9f
CW
1853 if (atomic_read(&dev_priv->mm.wedged)) {
1854 struct completion *x = &dev_priv->error_completion;
1855 bool recovery_complete;
1856 unsigned long flags;
1857
1858 /* Give the error handler a chance to run. */
1859 spin_lock_irqsave(&x->wait.lock, flags);
1860 recovery_complete = x->done > 0;
1861 spin_unlock_irqrestore(&x->wait.lock, flags);
1862
1863 return recovery_complete ? -EIO : -EAGAIN;
1864 }
30dbf0c0 1865
5d97eb69 1866 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1867 struct drm_i915_gem_request *request;
1868
1869 request = kzalloc(sizeof(*request), GFP_KERNEL);
1870 if (request == NULL)
e35a41de 1871 return -ENOMEM;
3cce469c 1872
db53a302 1873 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1874 if (ret) {
1875 kfree(request);
1876 return ret;
1877 }
1878
1879 seqno = request->seqno;
e35a41de 1880 }
ffed1d09 1881
78501eac 1882 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1883 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d 1884 ier = I915_READ(DEIER) | I915_READ(GTIER);
23e3f9b3
JB
1885 else if (IS_VALLEYVIEW(ring->dev))
1886 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
036a4a7d
ZW
1887 else
1888 ier = I915_READ(IER);
802c7eb6
JB
1889 if (!ier) {
1890 DRM_ERROR("something (likely vbetool) disabled "
1891 "interrupts, re-enabling\n");
f01c22fd
CW
1892 ring->dev->driver->irq_preinstall(ring->dev);
1893 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1894 }
1895
db53a302 1896 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1897
b2223497 1898 ring->waiting_seqno = seqno;
b13c2b96 1899 if (ring->irq_get(ring)) {
ce453d81 1900 if (dev_priv->mm.interruptible)
b13c2b96
CW
1901 ret = wait_event_interruptible(ring->irq_queue,
1902 i915_seqno_passed(ring->get_seqno(ring), seqno)
1903 || atomic_read(&dev_priv->mm.wedged));
1904 else
1905 wait_event(ring->irq_queue,
1906 i915_seqno_passed(ring->get_seqno(ring), seqno)
1907 || atomic_read(&dev_priv->mm.wedged));
1908
1909 ring->irq_put(ring);
e959b5db
EA
1910 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1911 seqno) ||
1912 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1913 ret = -EBUSY;
b2223497 1914 ring->waiting_seqno = 0;
1c5d22f7 1915
db53a302 1916 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1917 }
ba1234d1 1918 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1919 ret = -EAGAIN;
673a394b 1920
673a394b
EA
1921 /* Directly dispatch request retiring. While we have the work queue
1922 * to handle this, the waiter on a request often wants an associated
1923 * buffer to have made it to the inactive list, and we would need
1924 * a separate wait queue to handle that.
1925 */
b93f9cf1 1926 if (ret == 0 && do_retire)
db53a302 1927 i915_gem_retire_requests_ring(ring);
673a394b
EA
1928
1929 return ret;
1930}
1931
673a394b
EA
1932/**
1933 * Ensures that all rendering to the object has completed and the object is
1934 * safe to unbind from the GTT or access from the CPU.
1935 */
54cf91dc 1936int
ce453d81 1937i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1938{
673a394b
EA
1939 int ret;
1940
e47c68e9
EA
1941 /* This function only exists to support waiting for existing rendering,
1942 * not for emitting required flushes.
673a394b 1943 */
05394f39 1944 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1945
1946 /* If there is rendering queued on the buffer being evicted, wait for
1947 * it.
1948 */
05394f39 1949 if (obj->active) {
b93f9cf1
BW
1950 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1951 true);
2cf34d7b 1952 if (ret)
673a394b
EA
1953 return ret;
1954 }
1955
1956 return 0;
1957}
1958
5816d648
BW
1959/**
1960 * i915_gem_object_sync - sync an object to a ring.
1961 *
1962 * @obj: object which may be in use on another ring.
1963 * @to: ring we wish to use the object on. May be NULL.
1964 *
1965 * This code is meant to abstract object synchronization with the GPU.
1966 * Calling with NULL implies synchronizing the object with the CPU
1967 * rather than a particular GPU ring.
1968 *
1969 * Returns 0 if successful, else propagates up the lower layer error.
1970 */
2911a35b
BW
1971int
1972i915_gem_object_sync(struct drm_i915_gem_object *obj,
1973 struct intel_ring_buffer *to)
1974{
1975 struct intel_ring_buffer *from = obj->ring;
1976 u32 seqno;
1977 int ret, idx;
1978
1979 if (from == NULL || to == from)
1980 return 0;
1981
5816d648 1982 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
1983 return i915_gem_object_wait_rendering(obj);
1984
1985 idx = intel_ring_sync_index(from, to);
1986
1987 seqno = obj->last_rendering_seqno;
1988 if (seqno <= from->sync_seqno[idx])
1989 return 0;
1990
1991 if (seqno == from->outstanding_lazy_request) {
1992 struct drm_i915_gem_request *request;
1993
1994 request = kzalloc(sizeof(*request), GFP_KERNEL);
1995 if (request == NULL)
1996 return -ENOMEM;
1997
1998 ret = i915_add_request(from, NULL, request);
1999 if (ret) {
2000 kfree(request);
2001 return ret;
2002 }
2003
2004 seqno = request->seqno;
2005 }
2006
2911a35b 2007
1500f7ea 2008 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2009 if (!ret)
2010 from->sync_seqno[idx] = seqno;
2911a35b 2011
e3a5a225 2012 return ret;
2911a35b
BW
2013}
2014
b5ffc9bc
CW
2015static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2016{
2017 u32 old_write_domain, old_read_domains;
2018
b5ffc9bc
CW
2019 /* Act a barrier for all accesses through the GTT */
2020 mb();
2021
2022 /* Force a pagefault for domain tracking on next user access */
2023 i915_gem_release_mmap(obj);
2024
b97c3d9c
KP
2025 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2026 return;
2027
b5ffc9bc
CW
2028 old_read_domains = obj->base.read_domains;
2029 old_write_domain = obj->base.write_domain;
2030
2031 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2032 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2033
2034 trace_i915_gem_object_change_domain(obj,
2035 old_read_domains,
2036 old_write_domain);
2037}
2038
673a394b
EA
2039/**
2040 * Unbinds an object from the GTT aperture.
2041 */
0f973f27 2042int
05394f39 2043i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2044{
7bddb01f 2045 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2046 int ret = 0;
2047
05394f39 2048 if (obj->gtt_space == NULL)
673a394b
EA
2049 return 0;
2050
05394f39 2051 if (obj->pin_count != 0) {
673a394b
EA
2052 DRM_ERROR("Attempting to unbind pinned buffer\n");
2053 return -EINVAL;
2054 }
2055
a8198eea
CW
2056 ret = i915_gem_object_finish_gpu(obj);
2057 if (ret == -ERESTARTSYS)
2058 return ret;
2059 /* Continue on if we fail due to EIO, the GPU is hung so we
2060 * should be safe and we need to cleanup or else we might
2061 * cause memory corruption through use-after-free.
2062 */
2063
b5ffc9bc 2064 i915_gem_object_finish_gtt(obj);
5323fd04 2065
673a394b
EA
2066 /* Move the object to the CPU domain to ensure that
2067 * any possible CPU writes while it's not in the GTT
a8198eea 2068 * are flushed when we go to remap it.
673a394b 2069 */
a8198eea
CW
2070 if (ret == 0)
2071 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2072 if (ret == -ERESTARTSYS)
673a394b 2073 return ret;
812ed492 2074 if (ret) {
a8198eea
CW
2075 /* In the event of a disaster, abandon all caches and
2076 * hope for the best.
2077 */
812ed492 2078 i915_gem_clflush_object(obj);
05394f39 2079 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2080 }
673a394b 2081
96b47b65 2082 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2083 ret = i915_gem_object_put_fence(obj);
2084 if (ret == -ERESTARTSYS)
2085 return ret;
96b47b65 2086
db53a302
CW
2087 trace_i915_gem_object_unbind(obj);
2088
74898d7e
DV
2089 if (obj->has_global_gtt_mapping)
2090 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2091 if (obj->has_aliasing_ppgtt_mapping) {
2092 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2093 obj->has_aliasing_ppgtt_mapping = 0;
2094 }
74163907 2095 i915_gem_gtt_finish_object(obj);
7bddb01f 2096
e5281ccd 2097 i915_gem_object_put_pages_gtt(obj);
673a394b 2098
6299f992 2099 list_del_init(&obj->gtt_list);
05394f39 2100 list_del_init(&obj->mm_list);
75e9e915 2101 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2102 obj->map_and_fenceable = true;
673a394b 2103
05394f39
CW
2104 drm_mm_put_block(obj->gtt_space);
2105 obj->gtt_space = NULL;
2106 obj->gtt_offset = 0;
673a394b 2107
05394f39 2108 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2109 i915_gem_object_truncate(obj);
2110
8dc1775d 2111 return ret;
673a394b
EA
2112}
2113
88241785 2114int
db53a302 2115i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2116 uint32_t invalidate_domains,
2117 uint32_t flush_domains)
2118{
88241785
CW
2119 int ret;
2120
36d527de
CW
2121 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2122 return 0;
2123
db53a302
CW
2124 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2125
88241785
CW
2126 ret = ring->flush(ring, invalidate_domains, flush_domains);
2127 if (ret)
2128 return ret;
2129
36d527de
CW
2130 if (flush_domains & I915_GEM_GPU_DOMAINS)
2131 i915_gem_process_flushing_list(ring, flush_domains);
2132
88241785 2133 return 0;
54cf91dc
CW
2134}
2135
b93f9cf1 2136static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2137{
88241785
CW
2138 int ret;
2139
395b70be 2140 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2141 return 0;
2142
88241785 2143 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2144 ret = i915_gem_flush_ring(ring,
0ac74c6b 2145 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2146 if (ret)
2147 return ret;
2148 }
2149
b93f9cf1
BW
2150 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2151 do_retire);
a56ba56c
CW
2152}
2153
b93f9cf1 2154int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2155{
2156 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2157 int ret, i;
4df2faf4 2158
4df2faf4 2159 /* Flush everything onto the inactive list. */
1ec14ad3 2160 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2161 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2162 if (ret)
2163 return ret;
2164 }
4df2faf4 2165
8a1a49f9 2166 return 0;
4df2faf4
DV
2167}
2168
c6642782
DV
2169static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2170 struct intel_ring_buffer *pipelined)
4e901fdc 2171{
05394f39 2172 struct drm_device *dev = obj->base.dev;
4e901fdc 2173 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2174 u32 size = obj->gtt_space->size;
2175 int regnum = obj->fence_reg;
4e901fdc
EA
2176 uint64_t val;
2177
05394f39 2178 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2179 0xfffff000) << 32;
05394f39
CW
2180 val |= obj->gtt_offset & 0xfffff000;
2181 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2182 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2183
05394f39 2184 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2185 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2186 val |= I965_FENCE_REG_VALID;
2187
c6642782
DV
2188 if (pipelined) {
2189 int ret = intel_ring_begin(pipelined, 6);
2190 if (ret)
2191 return ret;
2192
2193 intel_ring_emit(pipelined, MI_NOOP);
2194 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2195 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2196 intel_ring_emit(pipelined, (u32)val);
2197 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2198 intel_ring_emit(pipelined, (u32)(val >> 32));
2199 intel_ring_advance(pipelined);
2200 } else
2201 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2202
2203 return 0;
4e901fdc
EA
2204}
2205
c6642782
DV
2206static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2207 struct intel_ring_buffer *pipelined)
de151cf6 2208{
05394f39 2209 struct drm_device *dev = obj->base.dev;
de151cf6 2210 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2211 u32 size = obj->gtt_space->size;
2212 int regnum = obj->fence_reg;
de151cf6
JB
2213 uint64_t val;
2214
05394f39 2215 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2216 0xfffff000) << 32;
05394f39
CW
2217 val |= obj->gtt_offset & 0xfffff000;
2218 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2219 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2220 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2221 val |= I965_FENCE_REG_VALID;
2222
c6642782
DV
2223 if (pipelined) {
2224 int ret = intel_ring_begin(pipelined, 6);
2225 if (ret)
2226 return ret;
2227
2228 intel_ring_emit(pipelined, MI_NOOP);
2229 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2230 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2231 intel_ring_emit(pipelined, (u32)val);
2232 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2233 intel_ring_emit(pipelined, (u32)(val >> 32));
2234 intel_ring_advance(pipelined);
2235 } else
2236 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2237
2238 return 0;
de151cf6
JB
2239}
2240
c6642782
DV
2241static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2242 struct intel_ring_buffer *pipelined)
de151cf6 2243{
05394f39 2244 struct drm_device *dev = obj->base.dev;
de151cf6 2245 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2246 u32 size = obj->gtt_space->size;
c6642782 2247 u32 fence_reg, val, pitch_val;
0f973f27 2248 int tile_width;
de151cf6 2249
c6642782
DV
2250 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2251 (size & -size) != size ||
2252 (obj->gtt_offset & (size - 1)),
2253 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2254 obj->gtt_offset, obj->map_and_fenceable, size))
2255 return -EINVAL;
de151cf6 2256
c6642782 2257 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2258 tile_width = 128;
de151cf6 2259 else
0f973f27
JB
2260 tile_width = 512;
2261
2262 /* Note: pitch better be a power of two tile widths */
05394f39 2263 pitch_val = obj->stride / tile_width;
0f973f27 2264 pitch_val = ffs(pitch_val) - 1;
de151cf6 2265
05394f39
CW
2266 val = obj->gtt_offset;
2267 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2268 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2269 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2270 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2271 val |= I830_FENCE_REG_VALID;
2272
05394f39 2273 fence_reg = obj->fence_reg;
a00b10c3
CW
2274 if (fence_reg < 8)
2275 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2276 else
a00b10c3 2277 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2278
2279 if (pipelined) {
2280 int ret = intel_ring_begin(pipelined, 4);
2281 if (ret)
2282 return ret;
2283
2284 intel_ring_emit(pipelined, MI_NOOP);
2285 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2286 intel_ring_emit(pipelined, fence_reg);
2287 intel_ring_emit(pipelined, val);
2288 intel_ring_advance(pipelined);
2289 } else
2290 I915_WRITE(fence_reg, val);
2291
2292 return 0;
de151cf6
JB
2293}
2294
c6642782
DV
2295static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2296 struct intel_ring_buffer *pipelined)
de151cf6 2297{
05394f39 2298 struct drm_device *dev = obj->base.dev;
de151cf6 2299 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2300 u32 size = obj->gtt_space->size;
2301 int regnum = obj->fence_reg;
de151cf6
JB
2302 uint32_t val;
2303 uint32_t pitch_val;
2304
c6642782
DV
2305 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2306 (size & -size) != size ||
2307 (obj->gtt_offset & (size - 1)),
2308 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2309 obj->gtt_offset, size))
2310 return -EINVAL;
de151cf6 2311
05394f39 2312 pitch_val = obj->stride / 128;
e76a16de 2313 pitch_val = ffs(pitch_val) - 1;
e76a16de 2314
05394f39
CW
2315 val = obj->gtt_offset;
2316 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2317 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2318 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2319 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2320 val |= I830_FENCE_REG_VALID;
2321
c6642782
DV
2322 if (pipelined) {
2323 int ret = intel_ring_begin(pipelined, 4);
2324 if (ret)
2325 return ret;
2326
2327 intel_ring_emit(pipelined, MI_NOOP);
2328 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2329 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2330 intel_ring_emit(pipelined, val);
2331 intel_ring_advance(pipelined);
2332 } else
2333 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2334
2335 return 0;
de151cf6
JB
2336}
2337
d9e86c0e
CW
2338static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2339{
2340 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2341}
2342
2343static int
2344i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2345 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2346{
2347 int ret;
2348
2349 if (obj->fenced_gpu_access) {
88241785 2350 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2351 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2352 0, obj->base.write_domain);
2353 if (ret)
2354 return ret;
2355 }
d9e86c0e
CW
2356
2357 obj->fenced_gpu_access = false;
2358 }
2359
2360 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2361 if (!ring_passed_seqno(obj->last_fenced_ring,
2362 obj->last_fenced_seqno)) {
db53a302 2363 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2364 obj->last_fenced_seqno,
2365 true);
d9e86c0e
CW
2366 if (ret)
2367 return ret;
2368 }
2369
2370 obj->last_fenced_seqno = 0;
2371 obj->last_fenced_ring = NULL;
2372 }
2373
63256ec5
CW
2374 /* Ensure that all CPU reads are completed before installing a fence
2375 * and all writes before removing the fence.
2376 */
2377 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2378 mb();
2379
d9e86c0e
CW
2380 return 0;
2381}
2382
2383int
2384i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2385{
2386 int ret;
2387
2388 if (obj->tiling_mode)
2389 i915_gem_release_mmap(obj);
2390
ce453d81 2391 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2392 if (ret)
2393 return ret;
2394
2395 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2397
2398 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2399 i915_gem_clear_fence_reg(obj->base.dev,
2400 &dev_priv->fence_regs[obj->fence_reg]);
2401
2402 obj->fence_reg = I915_FENCE_REG_NONE;
2403 }
2404
2405 return 0;
2406}
2407
2408static struct drm_i915_fence_reg *
2409i915_find_fence_reg(struct drm_device *dev,
2410 struct intel_ring_buffer *pipelined)
ae3db24a 2411{
ae3db24a 2412 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2413 struct drm_i915_fence_reg *reg, *first, *avail;
2414 int i;
ae3db24a
DV
2415
2416 /* First try to find a free reg */
d9e86c0e 2417 avail = NULL;
ae3db24a
DV
2418 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2419 reg = &dev_priv->fence_regs[i];
2420 if (!reg->obj)
d9e86c0e 2421 return reg;
ae3db24a 2422
1690e1eb 2423 if (!reg->pin_count)
d9e86c0e 2424 avail = reg;
ae3db24a
DV
2425 }
2426
d9e86c0e
CW
2427 if (avail == NULL)
2428 return NULL;
ae3db24a
DV
2429
2430 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2431 avail = first = NULL;
2432 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2433 if (reg->pin_count)
ae3db24a
DV
2434 continue;
2435
d9e86c0e
CW
2436 if (first == NULL)
2437 first = reg;
2438
2439 if (!pipelined ||
2440 !reg->obj->last_fenced_ring ||
2441 reg->obj->last_fenced_ring == pipelined) {
2442 avail = reg;
2443 break;
2444 }
ae3db24a
DV
2445 }
2446
d9e86c0e
CW
2447 if (avail == NULL)
2448 avail = first;
ae3db24a 2449
a00b10c3 2450 return avail;
ae3db24a
DV
2451}
2452
de151cf6 2453/**
9a5a53b3 2454 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2455 * @obj: object to map through a fence reg
2456 *
2457 * When mapping objects through the GTT, userspace wants to be able to write
2458 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2459 * This function walks the fence regs looking for a free one for @obj,
2460 * stealing one if it can't find any.
2461 *
2462 * It then sets up the reg based on the object's properties: address, pitch
2463 * and tiling format.
9a5a53b3
CW
2464 *
2465 * For an untiled surface, this removes any existing fence.
de151cf6 2466 */
8c4b8c3f 2467int
06d98131 2468i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2469{
05394f39 2470 struct drm_device *dev = obj->base.dev;
79e53945 2471 struct drm_i915_private *dev_priv = dev->dev_private;
06d98131 2472 struct intel_ring_buffer *pipelined;
d9e86c0e 2473 struct drm_i915_fence_reg *reg;
ae3db24a 2474 int ret;
de151cf6 2475
9a5a53b3
CW
2476 if (obj->tiling_mode == I915_TILING_NONE)
2477 return i915_gem_object_put_fence(obj);
2478
6bda10d1
CW
2479 /* XXX disable pipelining. There are bugs. Shocking. */
2480 pipelined = NULL;
2481
d9e86c0e 2482 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2483 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2484 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2485 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2486
29c5a587
CW
2487 if (obj->tiling_changed) {
2488 ret = i915_gem_object_flush_fence(obj, pipelined);
2489 if (ret)
2490 return ret;
2491
2492 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2493 pipelined = NULL;
2494
2495 if (pipelined) {
2496 reg->setup_seqno =
2497 i915_gem_next_request_seqno(pipelined);
2498 obj->last_fenced_seqno = reg->setup_seqno;
2499 obj->last_fenced_ring = pipelined;
2500 }
2501
2502 goto update;
2503 }
d9e86c0e
CW
2504
2505 if (!pipelined) {
2506 if (reg->setup_seqno) {
2507 if (!ring_passed_seqno(obj->last_fenced_ring,
2508 reg->setup_seqno)) {
db53a302 2509 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2510 reg->setup_seqno,
2511 true);
d9e86c0e
CW
2512 if (ret)
2513 return ret;
2514 }
2515
2516 reg->setup_seqno = 0;
2517 }
2518 } else if (obj->last_fenced_ring &&
2519 obj->last_fenced_ring != pipelined) {
ce453d81 2520 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2521 if (ret)
2522 return ret;
d9e86c0e
CW
2523 }
2524
a09ba7fa
EA
2525 return 0;
2526 }
2527
d9e86c0e
CW
2528 reg = i915_find_fence_reg(dev, pipelined);
2529 if (reg == NULL)
39965b37 2530 return -EDEADLK;
de151cf6 2531
ce453d81 2532 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2533 if (ret)
ae3db24a 2534 return ret;
de151cf6 2535
d9e86c0e
CW
2536 if (reg->obj) {
2537 struct drm_i915_gem_object *old = reg->obj;
2538
2539 drm_gem_object_reference(&old->base);
2540
2541 if (old->tiling_mode)
2542 i915_gem_release_mmap(old);
2543
ce453d81 2544 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2545 if (ret) {
2546 drm_gem_object_unreference(&old->base);
2547 return ret;
2548 }
2549
2550 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2551 pipelined = NULL;
2552
2553 old->fence_reg = I915_FENCE_REG_NONE;
2554 old->last_fenced_ring = pipelined;
2555 old->last_fenced_seqno =
db53a302 2556 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2557
2558 drm_gem_object_unreference(&old->base);
2559 } else if (obj->last_fenced_seqno == 0)
2560 pipelined = NULL;
a09ba7fa 2561
de151cf6 2562 reg->obj = obj;
d9e86c0e
CW
2563 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2564 obj->fence_reg = reg - dev_priv->fence_regs;
2565 obj->last_fenced_ring = pipelined;
de151cf6 2566
d9e86c0e 2567 reg->setup_seqno =
db53a302 2568 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2569 obj->last_fenced_seqno = reg->setup_seqno;
2570
2571update:
2572 obj->tiling_changed = false;
e259befd 2573 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2574 case 7:
e259befd 2575 case 6:
c6642782 2576 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2577 break;
2578 case 5:
2579 case 4:
c6642782 2580 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2581 break;
2582 case 3:
c6642782 2583 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2584 break;
2585 case 2:
c6642782 2586 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2587 break;
2588 }
d9ddcb96 2589
c6642782 2590 return ret;
de151cf6
JB
2591}
2592
2593/**
2594 * i915_gem_clear_fence_reg - clear out fence register info
2595 * @obj: object to clear
2596 *
2597 * Zeroes out the fence register itself and clears out the associated
05394f39 2598 * data structures in dev_priv and obj.
de151cf6
JB
2599 */
2600static void
d9e86c0e
CW
2601i915_gem_clear_fence_reg(struct drm_device *dev,
2602 struct drm_i915_fence_reg *reg)
de151cf6 2603{
79e53945 2604 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2605 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2606
e259befd 2607 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2608 case 7:
e259befd 2609 case 6:
d9e86c0e 2610 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2611 break;
2612 case 5:
2613 case 4:
d9e86c0e 2614 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2615 break;
2616 case 3:
d9e86c0e
CW
2617 if (fence_reg >= 8)
2618 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2619 else
e259befd 2620 case 2:
d9e86c0e 2621 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2622
2623 I915_WRITE(fence_reg, 0);
e259befd 2624 break;
dc529a4f 2625 }
de151cf6 2626
007cc8ac 2627 list_del_init(&reg->lru_list);
d9e86c0e
CW
2628 reg->obj = NULL;
2629 reg->setup_seqno = 0;
1690e1eb 2630 reg->pin_count = 0;
52dc7d32
CW
2631}
2632
673a394b
EA
2633/**
2634 * Finds free space in the GTT aperture and binds the object there.
2635 */
2636static int
05394f39 2637i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2638 unsigned alignment,
75e9e915 2639 bool map_and_fenceable)
673a394b 2640{
05394f39 2641 struct drm_device *dev = obj->base.dev;
673a394b 2642 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2643 struct drm_mm_node *free_space;
a00b10c3 2644 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2645 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2646 bool mappable, fenceable;
07f73f69 2647 int ret;
673a394b 2648
05394f39 2649 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2650 DRM_ERROR("Attempting to bind a purgeable object\n");
2651 return -EINVAL;
2652 }
2653
e28f8711
CW
2654 fence_size = i915_gem_get_gtt_size(dev,
2655 obj->base.size,
2656 obj->tiling_mode);
2657 fence_alignment = i915_gem_get_gtt_alignment(dev,
2658 obj->base.size,
2659 obj->tiling_mode);
2660 unfenced_alignment =
2661 i915_gem_get_unfenced_gtt_alignment(dev,
2662 obj->base.size,
2663 obj->tiling_mode);
a00b10c3 2664
673a394b 2665 if (alignment == 0)
5e783301
DV
2666 alignment = map_and_fenceable ? fence_alignment :
2667 unfenced_alignment;
75e9e915 2668 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2669 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2670 return -EINVAL;
2671 }
2672
05394f39 2673 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2674
654fc607
CW
2675 /* If the object is bigger than the entire aperture, reject it early
2676 * before evicting everything in a vain attempt to find space.
2677 */
05394f39 2678 if (obj->base.size >
75e9e915 2679 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2680 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2681 return -E2BIG;
2682 }
2683
673a394b 2684 search_free:
75e9e915 2685 if (map_and_fenceable)
920afa77
DV
2686 free_space =
2687 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2688 size, alignment, 0,
920afa77
DV
2689 dev_priv->mm.gtt_mappable_end,
2690 0);
2691 else
2692 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2693 size, alignment, 0);
920afa77
DV
2694
2695 if (free_space != NULL) {
75e9e915 2696 if (map_and_fenceable)
05394f39 2697 obj->gtt_space =
920afa77 2698 drm_mm_get_block_range_generic(free_space,
a00b10c3 2699 size, alignment, 0,
920afa77
DV
2700 dev_priv->mm.gtt_mappable_end,
2701 0);
2702 else
05394f39 2703 obj->gtt_space =
a00b10c3 2704 drm_mm_get_block(free_space, size, alignment);
920afa77 2705 }
05394f39 2706 if (obj->gtt_space == NULL) {
673a394b
EA
2707 /* If the gtt is empty and we're still having trouble
2708 * fitting our object in, we're out of memory.
2709 */
75e9e915
DV
2710 ret = i915_gem_evict_something(dev, size, alignment,
2711 map_and_fenceable);
9731129c 2712 if (ret)
673a394b 2713 return ret;
9731129c 2714
673a394b
EA
2715 goto search_free;
2716 }
2717
e5281ccd 2718 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2719 if (ret) {
05394f39
CW
2720 drm_mm_put_block(obj->gtt_space);
2721 obj->gtt_space = NULL;
07f73f69
CW
2722
2723 if (ret == -ENOMEM) {
809b6334
CW
2724 /* first try to reclaim some memory by clearing the GTT */
2725 ret = i915_gem_evict_everything(dev, false);
07f73f69 2726 if (ret) {
07f73f69 2727 /* now try to shrink everyone else */
4bdadb97
CW
2728 if (gfpmask) {
2729 gfpmask = 0;
2730 goto search_free;
07f73f69
CW
2731 }
2732
809b6334 2733 return -ENOMEM;
07f73f69
CW
2734 }
2735
2736 goto search_free;
2737 }
2738
673a394b
EA
2739 return ret;
2740 }
2741
74163907 2742 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2743 if (ret) {
e5281ccd 2744 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2745 drm_mm_put_block(obj->gtt_space);
2746 obj->gtt_space = NULL;
07f73f69 2747
809b6334 2748 if (i915_gem_evict_everything(dev, false))
07f73f69 2749 return ret;
07f73f69
CW
2750
2751 goto search_free;
673a394b 2752 }
673a394b 2753
0ebb9829
DV
2754 if (!dev_priv->mm.aliasing_ppgtt)
2755 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2756
6299f992 2757 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2758 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2759
673a394b
EA
2760 /* Assert that the object is not currently in any GPU domain. As it
2761 * wasn't in the GTT, there shouldn't be any way it could have been in
2762 * a GPU cache
2763 */
05394f39
CW
2764 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2765 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2766
6299f992 2767 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2768
75e9e915 2769 fenceable =
05394f39 2770 obj->gtt_space->size == fence_size &&
0206e353 2771 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2772
75e9e915 2773 mappable =
05394f39 2774 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2775
05394f39 2776 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2777
db53a302 2778 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2779 return 0;
2780}
2781
2782void
05394f39 2783i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2784{
673a394b
EA
2785 /* If we don't have a page list set up, then we're not pinned
2786 * to GPU, and we can ignore the cache flush because it'll happen
2787 * again at bind time.
2788 */
05394f39 2789 if (obj->pages == NULL)
673a394b
EA
2790 return;
2791
9c23f7fc
CW
2792 /* If the GPU is snooping the contents of the CPU cache,
2793 * we do not need to manually clear the CPU cache lines. However,
2794 * the caches are only snooped when the render cache is
2795 * flushed/invalidated. As we always have to emit invalidations
2796 * and flushes when moving into and out of the RENDER domain, correct
2797 * snooping behaviour occurs naturally as the result of our domain
2798 * tracking.
2799 */
2800 if (obj->cache_level != I915_CACHE_NONE)
2801 return;
2802
1c5d22f7 2803 trace_i915_gem_object_clflush(obj);
cfa16a0d 2804
05394f39 2805 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2806}
2807
e47c68e9 2808/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2809static int
3619df03 2810i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2811{
05394f39 2812 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2813 return 0;
e47c68e9
EA
2814
2815 /* Queue the GPU write cache flushing we need. */
db53a302 2816 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2817}
2818
2819/** Flushes the GTT write domain for the object if it's dirty. */
2820static void
05394f39 2821i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2822{
1c5d22f7
CW
2823 uint32_t old_write_domain;
2824
05394f39 2825 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2826 return;
2827
63256ec5 2828 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2829 * to it immediately go to main memory as far as we know, so there's
2830 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2831 *
2832 * However, we do have to enforce the order so that all writes through
2833 * the GTT land before any writes to the device, such as updates to
2834 * the GATT itself.
e47c68e9 2835 */
63256ec5
CW
2836 wmb();
2837
05394f39
CW
2838 old_write_domain = obj->base.write_domain;
2839 obj->base.write_domain = 0;
1c5d22f7
CW
2840
2841 trace_i915_gem_object_change_domain(obj,
05394f39 2842 obj->base.read_domains,
1c5d22f7 2843 old_write_domain);
e47c68e9
EA
2844}
2845
2846/** Flushes the CPU write domain for the object if it's dirty. */
2847static void
05394f39 2848i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2849{
1c5d22f7 2850 uint32_t old_write_domain;
e47c68e9 2851
05394f39 2852 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2853 return;
2854
2855 i915_gem_clflush_object(obj);
40ce6575 2856 intel_gtt_chipset_flush();
05394f39
CW
2857 old_write_domain = obj->base.write_domain;
2858 obj->base.write_domain = 0;
1c5d22f7
CW
2859
2860 trace_i915_gem_object_change_domain(obj,
05394f39 2861 obj->base.read_domains,
1c5d22f7 2862 old_write_domain);
e47c68e9
EA
2863}
2864
2ef7eeaa
EA
2865/**
2866 * Moves a single object to the GTT read, and possibly write domain.
2867 *
2868 * This function returns when the move is complete, including waiting on
2869 * flushes to occur.
2870 */
79e53945 2871int
2021746e 2872i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2873{
1c5d22f7 2874 uint32_t old_write_domain, old_read_domains;
e47c68e9 2875 int ret;
2ef7eeaa 2876
02354392 2877 /* Not valid to be called on unbound objects. */
05394f39 2878 if (obj->gtt_space == NULL)
02354392
EA
2879 return -EINVAL;
2880
8d7e3de1
CW
2881 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2882 return 0;
2883
88241785
CW
2884 ret = i915_gem_object_flush_gpu_write_domain(obj);
2885 if (ret)
2886 return ret;
2887
87ca9c8a 2888 if (obj->pending_gpu_write || write) {
ce453d81 2889 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2890 if (ret)
2891 return ret;
2892 }
2dafb1e0 2893
7213342d 2894 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2895
05394f39
CW
2896 old_write_domain = obj->base.write_domain;
2897 old_read_domains = obj->base.read_domains;
1c5d22f7 2898
e47c68e9
EA
2899 /* It should now be out of any other write domains, and we can update
2900 * the domain values for our changes.
2901 */
05394f39
CW
2902 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2903 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2904 if (write) {
05394f39
CW
2905 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2906 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2907 obj->dirty = 1;
2ef7eeaa
EA
2908 }
2909
1c5d22f7
CW
2910 trace_i915_gem_object_change_domain(obj,
2911 old_read_domains,
2912 old_write_domain);
2913
e47c68e9
EA
2914 return 0;
2915}
2916
e4ffd173
CW
2917int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2918 enum i915_cache_level cache_level)
2919{
7bddb01f
DV
2920 struct drm_device *dev = obj->base.dev;
2921 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2922 int ret;
2923
2924 if (obj->cache_level == cache_level)
2925 return 0;
2926
2927 if (obj->pin_count) {
2928 DRM_DEBUG("can not change the cache level of pinned objects\n");
2929 return -EBUSY;
2930 }
2931
2932 if (obj->gtt_space) {
2933 ret = i915_gem_object_finish_gpu(obj);
2934 if (ret)
2935 return ret;
2936
2937 i915_gem_object_finish_gtt(obj);
2938
2939 /* Before SandyBridge, you could not use tiling or fence
2940 * registers with snooped memory, so relinquish any fences
2941 * currently pointing to our region in the aperture.
2942 */
2943 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2944 ret = i915_gem_object_put_fence(obj);
2945 if (ret)
2946 return ret;
2947 }
2948
74898d7e
DV
2949 if (obj->has_global_gtt_mapping)
2950 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2951 if (obj->has_aliasing_ppgtt_mapping)
2952 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2953 obj, cache_level);
e4ffd173
CW
2954 }
2955
2956 if (cache_level == I915_CACHE_NONE) {
2957 u32 old_read_domains, old_write_domain;
2958
2959 /* If we're coming from LLC cached, then we haven't
2960 * actually been tracking whether the data is in the
2961 * CPU cache or not, since we only allow one bit set
2962 * in obj->write_domain and have been skipping the clflushes.
2963 * Just set it to the CPU cache for now.
2964 */
2965 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2966 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2967
2968 old_read_domains = obj->base.read_domains;
2969 old_write_domain = obj->base.write_domain;
2970
2971 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2972 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2973
2974 trace_i915_gem_object_change_domain(obj,
2975 old_read_domains,
2976 old_write_domain);
2977 }
2978
2979 obj->cache_level = cache_level;
2980 return 0;
2981}
2982
b9241ea3 2983/*
2da3b9b9
CW
2984 * Prepare buffer for display plane (scanout, cursors, etc).
2985 * Can be called from an uninterruptible phase (modesetting) and allows
2986 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2987 */
2988int
2da3b9b9
CW
2989i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2990 u32 alignment,
919926ae 2991 struct intel_ring_buffer *pipelined)
b9241ea3 2992{
2da3b9b9 2993 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2994 int ret;
2995
88241785
CW
2996 ret = i915_gem_object_flush_gpu_write_domain(obj);
2997 if (ret)
2998 return ret;
2999
0be73284 3000 if (pipelined != obj->ring) {
2911a35b
BW
3001 ret = i915_gem_object_sync(obj, pipelined);
3002 if (ret)
b9241ea3
ZW
3003 return ret;
3004 }
3005
a7ef0640
EA
3006 /* The display engine is not coherent with the LLC cache on gen6. As
3007 * a result, we make sure that the pinning that is about to occur is
3008 * done with uncached PTEs. This is lowest common denominator for all
3009 * chipsets.
3010 *
3011 * However for gen6+, we could do better by using the GFDT bit instead
3012 * of uncaching, which would allow us to flush all the LLC-cached data
3013 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3014 */
3015 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3016 if (ret)
3017 return ret;
3018
2da3b9b9
CW
3019 /* As the user may map the buffer once pinned in the display plane
3020 * (e.g. libkms for the bootup splash), we have to ensure that we
3021 * always use map_and_fenceable for all scanout buffers.
3022 */
3023 ret = i915_gem_object_pin(obj, alignment, true);
3024 if (ret)
3025 return ret;
3026
b118c1e3
CW
3027 i915_gem_object_flush_cpu_write_domain(obj);
3028
2da3b9b9 3029 old_write_domain = obj->base.write_domain;
05394f39 3030 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3031
3032 /* It should now be out of any other write domains, and we can update
3033 * the domain values for our changes.
3034 */
3035 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3036 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3037
3038 trace_i915_gem_object_change_domain(obj,
3039 old_read_domains,
2da3b9b9 3040 old_write_domain);
b9241ea3
ZW
3041
3042 return 0;
3043}
3044
85345517 3045int
a8198eea 3046i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3047{
88241785
CW
3048 int ret;
3049
a8198eea 3050 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3051 return 0;
3052
88241785 3053 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3054 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3055 if (ret)
3056 return ret;
3057 }
85345517 3058
c501ae7f
CW
3059 ret = i915_gem_object_wait_rendering(obj);
3060 if (ret)
3061 return ret;
3062
a8198eea
CW
3063 /* Ensure that we invalidate the GPU's caches and TLBs. */
3064 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3065 return 0;
85345517
CW
3066}
3067
e47c68e9
EA
3068/**
3069 * Moves a single object to the CPU read, and possibly write domain.
3070 *
3071 * This function returns when the move is complete, including waiting on
3072 * flushes to occur.
3073 */
dabdfe02 3074int
919926ae 3075i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3076{
1c5d22f7 3077 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3078 int ret;
3079
8d7e3de1
CW
3080 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3081 return 0;
3082
88241785
CW
3083 ret = i915_gem_object_flush_gpu_write_domain(obj);
3084 if (ret)
3085 return ret;
3086
f8413190
CW
3087 if (write || obj->pending_gpu_write) {
3088 ret = i915_gem_object_wait_rendering(obj);
3089 if (ret)
3090 return ret;
3091 }
2ef7eeaa 3092
e47c68e9 3093 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3094
05394f39
CW
3095 old_write_domain = obj->base.write_domain;
3096 old_read_domains = obj->base.read_domains;
1c5d22f7 3097
e47c68e9 3098 /* Flush the CPU cache if it's still invalid. */
05394f39 3099 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3100 i915_gem_clflush_object(obj);
2ef7eeaa 3101
05394f39 3102 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3103 }
3104
3105 /* It should now be out of any other write domains, and we can update
3106 * the domain values for our changes.
3107 */
05394f39 3108 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3109
3110 /* If we're writing through the CPU, then the GPU read domains will
3111 * need to be invalidated at next use.
3112 */
3113 if (write) {
05394f39
CW
3114 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3115 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3116 }
2ef7eeaa 3117
1c5d22f7
CW
3118 trace_i915_gem_object_change_domain(obj,
3119 old_read_domains,
3120 old_write_domain);
3121
2ef7eeaa
EA
3122 return 0;
3123}
3124
673a394b
EA
3125/* Throttle our rendering by waiting until the ring has completed our requests
3126 * emitted over 20 msec ago.
3127 *
b962442e
EA
3128 * Note that if we were to use the current jiffies each time around the loop,
3129 * we wouldn't escape the function with any frames outstanding if the time to
3130 * render a frame was over 20ms.
3131 *
673a394b
EA
3132 * This should get us reasonable parallelism between CPU and GPU but also
3133 * relatively low latency when blocking on a particular request to finish.
3134 */
40a5f0de 3135static int
f787a5f5 3136i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3137{
f787a5f5
CW
3138 struct drm_i915_private *dev_priv = dev->dev_private;
3139 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3140 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3141 struct drm_i915_gem_request *request;
3142 struct intel_ring_buffer *ring = NULL;
3143 u32 seqno = 0;
3144 int ret;
93533c29 3145
e110e8d6
CW
3146 if (atomic_read(&dev_priv->mm.wedged))
3147 return -EIO;
3148
1c25595f 3149 spin_lock(&file_priv->mm.lock);
f787a5f5 3150 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3151 if (time_after_eq(request->emitted_jiffies, recent_enough))
3152 break;
40a5f0de 3153
f787a5f5
CW
3154 ring = request->ring;
3155 seqno = request->seqno;
b962442e 3156 }
1c25595f 3157 spin_unlock(&file_priv->mm.lock);
40a5f0de 3158
f787a5f5
CW
3159 if (seqno == 0)
3160 return 0;
2bc43b5c 3161
f787a5f5 3162 ret = 0;
78501eac 3163 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3164 /* And wait for the seqno passing without holding any locks and
3165 * causing extra latency for others. This is safe as the irq
3166 * generation is designed to be run atomically and so is
3167 * lockless.
3168 */
b13c2b96
CW
3169 if (ring->irq_get(ring)) {
3170 ret = wait_event_interruptible(ring->irq_queue,
3171 i915_seqno_passed(ring->get_seqno(ring), seqno)
3172 || atomic_read(&dev_priv->mm.wedged));
3173 ring->irq_put(ring);
40a5f0de 3174
b13c2b96
CW
3175 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3176 ret = -EIO;
e959b5db
EA
3177 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3178 seqno) ||
7ea29b13
EA
3179 atomic_read(&dev_priv->mm.wedged), 3000)) {
3180 ret = -EBUSY;
b13c2b96 3181 }
40a5f0de
EA
3182 }
3183
f787a5f5
CW
3184 if (ret == 0)
3185 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3186
3187 return ret;
3188}
3189
673a394b 3190int
05394f39
CW
3191i915_gem_object_pin(struct drm_i915_gem_object *obj,
3192 uint32_t alignment,
75e9e915 3193 bool map_and_fenceable)
673a394b 3194{
05394f39 3195 struct drm_device *dev = obj->base.dev;
f13d3f73 3196 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3197 int ret;
3198
05394f39 3199 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3200 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3201
05394f39
CW
3202 if (obj->gtt_space != NULL) {
3203 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3204 (map_and_fenceable && !obj->map_and_fenceable)) {
3205 WARN(obj->pin_count,
ae7d49d8 3206 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3207 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3208 " obj->map_and_fenceable=%d\n",
05394f39 3209 obj->gtt_offset, alignment,
75e9e915 3210 map_and_fenceable,
05394f39 3211 obj->map_and_fenceable);
ac0c6b5a
CW
3212 ret = i915_gem_object_unbind(obj);
3213 if (ret)
3214 return ret;
3215 }
3216 }
3217
05394f39 3218 if (obj->gtt_space == NULL) {
a00b10c3 3219 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3220 map_and_fenceable);
9731129c 3221 if (ret)
673a394b 3222 return ret;
22c344e9 3223 }
76446cac 3224
74898d7e
DV
3225 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3226 i915_gem_gtt_bind_object(obj, obj->cache_level);
3227
05394f39 3228 if (obj->pin_count++ == 0) {
05394f39
CW
3229 if (!obj->active)
3230 list_move_tail(&obj->mm_list,
f13d3f73 3231 &dev_priv->mm.pinned_list);
673a394b 3232 }
6299f992 3233 obj->pin_mappable |= map_and_fenceable;
673a394b 3234
23bc5982 3235 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3236 return 0;
3237}
3238
3239void
05394f39 3240i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3241{
05394f39 3242 struct drm_device *dev = obj->base.dev;
673a394b 3243 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3244
23bc5982 3245 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3246 BUG_ON(obj->pin_count == 0);
3247 BUG_ON(obj->gtt_space == NULL);
673a394b 3248
05394f39
CW
3249 if (--obj->pin_count == 0) {
3250 if (!obj->active)
3251 list_move_tail(&obj->mm_list,
673a394b 3252 &dev_priv->mm.inactive_list);
6299f992 3253 obj->pin_mappable = false;
673a394b 3254 }
23bc5982 3255 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3256}
3257
3258int
3259i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3260 struct drm_file *file)
673a394b
EA
3261{
3262 struct drm_i915_gem_pin *args = data;
05394f39 3263 struct drm_i915_gem_object *obj;
673a394b
EA
3264 int ret;
3265
1d7cfea1
CW
3266 ret = i915_mutex_lock_interruptible(dev);
3267 if (ret)
3268 return ret;
673a394b 3269
05394f39 3270 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3271 if (&obj->base == NULL) {
1d7cfea1
CW
3272 ret = -ENOENT;
3273 goto unlock;
673a394b 3274 }
673a394b 3275
05394f39 3276 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3277 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3278 ret = -EINVAL;
3279 goto out;
3ef94daa
CW
3280 }
3281
05394f39 3282 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3283 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3284 args->handle);
1d7cfea1
CW
3285 ret = -EINVAL;
3286 goto out;
79e53945
JB
3287 }
3288
05394f39
CW
3289 obj->user_pin_count++;
3290 obj->pin_filp = file;
3291 if (obj->user_pin_count == 1) {
75e9e915 3292 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3293 if (ret)
3294 goto out;
673a394b
EA
3295 }
3296
3297 /* XXX - flush the CPU caches for pinned objects
3298 * as the X server doesn't manage domains yet
3299 */
e47c68e9 3300 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3301 args->offset = obj->gtt_offset;
1d7cfea1 3302out:
05394f39 3303 drm_gem_object_unreference(&obj->base);
1d7cfea1 3304unlock:
673a394b 3305 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3306 return ret;
673a394b
EA
3307}
3308
3309int
3310i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3311 struct drm_file *file)
673a394b
EA
3312{
3313 struct drm_i915_gem_pin *args = data;
05394f39 3314 struct drm_i915_gem_object *obj;
76c1dec1 3315 int ret;
673a394b 3316
1d7cfea1
CW
3317 ret = i915_mutex_lock_interruptible(dev);
3318 if (ret)
3319 return ret;
673a394b 3320
05394f39 3321 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3322 if (&obj->base == NULL) {
1d7cfea1
CW
3323 ret = -ENOENT;
3324 goto unlock;
673a394b 3325 }
76c1dec1 3326
05394f39 3327 if (obj->pin_filp != file) {
79e53945
JB
3328 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3329 args->handle);
1d7cfea1
CW
3330 ret = -EINVAL;
3331 goto out;
79e53945 3332 }
05394f39
CW
3333 obj->user_pin_count--;
3334 if (obj->user_pin_count == 0) {
3335 obj->pin_filp = NULL;
79e53945
JB
3336 i915_gem_object_unpin(obj);
3337 }
673a394b 3338
1d7cfea1 3339out:
05394f39 3340 drm_gem_object_unreference(&obj->base);
1d7cfea1 3341unlock:
673a394b 3342 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3343 return ret;
673a394b
EA
3344}
3345
3346int
3347i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3348 struct drm_file *file)
673a394b
EA
3349{
3350 struct drm_i915_gem_busy *args = data;
05394f39 3351 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3352 int ret;
3353
76c1dec1 3354 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3355 if (ret)
76c1dec1 3356 return ret;
673a394b 3357
05394f39 3358 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3359 if (&obj->base == NULL) {
1d7cfea1
CW
3360 ret = -ENOENT;
3361 goto unlock;
673a394b 3362 }
d1b851fc 3363
0be555b6
CW
3364 /* Count all active objects as busy, even if they are currently not used
3365 * by the gpu. Users of this interface expect objects to eventually
3366 * become non-busy without any further actions, therefore emit any
3367 * necessary flushes here.
c4de0a5d 3368 */
05394f39 3369 args->busy = obj->active;
0be555b6
CW
3370 if (args->busy) {
3371 /* Unconditionally flush objects, even when the gpu still uses this
3372 * object. Userspace calling this function indicates that it wants to
3373 * use this buffer rather sooner than later, so issuing the required
3374 * flush earlier is beneficial.
3375 */
1a1c6976 3376 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3377 ret = i915_gem_flush_ring(obj->ring,
88241785 3378 0, obj->base.write_domain);
1a1c6976
CW
3379 } else if (obj->ring->outstanding_lazy_request ==
3380 obj->last_rendering_seqno) {
3381 struct drm_i915_gem_request *request;
3382
7a194876
CW
3383 /* This ring is not being cleared by active usage,
3384 * so emit a request to do so.
3385 */
1a1c6976 3386 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3387 if (request) {
0206e353 3388 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3389 if (ret)
3390 kfree(request);
3391 } else
7a194876
CW
3392 ret = -ENOMEM;
3393 }
0be555b6
CW
3394
3395 /* Update the active list for the hardware's current position.
3396 * Otherwise this only updates on a delayed timer or when irqs
3397 * are actually unmasked, and our working set ends up being
3398 * larger than required.
3399 */
db53a302 3400 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3401
05394f39 3402 args->busy = obj->active;
0be555b6 3403 }
673a394b 3404
05394f39 3405 drm_gem_object_unreference(&obj->base);
1d7cfea1 3406unlock:
673a394b 3407 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3408 return ret;
673a394b
EA
3409}
3410
3411int
3412i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3413 struct drm_file *file_priv)
3414{
0206e353 3415 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3416}
3417
3ef94daa
CW
3418int
3419i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3420 struct drm_file *file_priv)
3421{
3422 struct drm_i915_gem_madvise *args = data;
05394f39 3423 struct drm_i915_gem_object *obj;
76c1dec1 3424 int ret;
3ef94daa
CW
3425
3426 switch (args->madv) {
3427 case I915_MADV_DONTNEED:
3428 case I915_MADV_WILLNEED:
3429 break;
3430 default:
3431 return -EINVAL;
3432 }
3433
1d7cfea1
CW
3434 ret = i915_mutex_lock_interruptible(dev);
3435 if (ret)
3436 return ret;
3437
05394f39 3438 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3439 if (&obj->base == NULL) {
1d7cfea1
CW
3440 ret = -ENOENT;
3441 goto unlock;
3ef94daa 3442 }
3ef94daa 3443
05394f39 3444 if (obj->pin_count) {
1d7cfea1
CW
3445 ret = -EINVAL;
3446 goto out;
3ef94daa
CW
3447 }
3448
05394f39
CW
3449 if (obj->madv != __I915_MADV_PURGED)
3450 obj->madv = args->madv;
3ef94daa 3451
2d7ef395 3452 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3453 if (i915_gem_object_is_purgeable(obj) &&
3454 obj->gtt_space == NULL)
2d7ef395
CW
3455 i915_gem_object_truncate(obj);
3456
05394f39 3457 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3458
1d7cfea1 3459out:
05394f39 3460 drm_gem_object_unreference(&obj->base);
1d7cfea1 3461unlock:
3ef94daa 3462 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3463 return ret;
3ef94daa
CW
3464}
3465
05394f39
CW
3466struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3467 size_t size)
ac52bc56 3468{
73aa808f 3469 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3470 struct drm_i915_gem_object *obj;
5949eac4 3471 struct address_space *mapping;
ac52bc56 3472
c397b908
DV
3473 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3474 if (obj == NULL)
3475 return NULL;
673a394b 3476
c397b908
DV
3477 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3478 kfree(obj);
3479 return NULL;
3480 }
673a394b 3481
5949eac4
HD
3482 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3483 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3484
73aa808f
CW
3485 i915_gem_info_add_obj(dev_priv, size);
3486
c397b908
DV
3487 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3488 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3489
3d29b842
ED
3490 if (HAS_LLC(dev)) {
3491 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3492 * cache) for about a 10% performance improvement
3493 * compared to uncached. Graphics requests other than
3494 * display scanout are coherent with the CPU in
3495 * accessing this cache. This means in this mode we
3496 * don't need to clflush on the CPU side, and on the
3497 * GPU side we only need to flush internal caches to
3498 * get data visible to the CPU.
3499 *
3500 * However, we maintain the display planes as UC, and so
3501 * need to rebind when first used as such.
3502 */
3503 obj->cache_level = I915_CACHE_LLC;
3504 } else
3505 obj->cache_level = I915_CACHE_NONE;
3506
62b8b215 3507 obj->base.driver_private = NULL;
c397b908 3508 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3509 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3510 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3511 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3512 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3513 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3514 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3515 /* Avoid an unnecessary call to unbind on the first bind. */
3516 obj->map_and_fenceable = true;
de151cf6 3517
05394f39 3518 return obj;
c397b908
DV
3519}
3520
3521int i915_gem_init_object(struct drm_gem_object *obj)
3522{
3523 BUG();
de151cf6 3524
673a394b
EA
3525 return 0;
3526}
3527
05394f39 3528static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3529{
05394f39 3530 struct drm_device *dev = obj->base.dev;
be72615b 3531 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3532 int ret;
673a394b 3533
be72615b
CW
3534 ret = i915_gem_object_unbind(obj);
3535 if (ret == -ERESTARTSYS) {
05394f39 3536 list_move(&obj->mm_list,
be72615b
CW
3537 &dev_priv->mm.deferred_free_list);
3538 return;
3539 }
673a394b 3540
26e12f89
CW
3541 trace_i915_gem_object_destroy(obj);
3542
05394f39 3543 if (obj->base.map_list.map)
b464e9a2 3544 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3545
05394f39
CW
3546 drm_gem_object_release(&obj->base);
3547 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3548
05394f39
CW
3549 kfree(obj->bit_17);
3550 kfree(obj);
673a394b
EA
3551}
3552
05394f39 3553void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3554{
05394f39
CW
3555 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3556 struct drm_device *dev = obj->base.dev;
be72615b 3557
05394f39 3558 while (obj->pin_count > 0)
be72615b
CW
3559 i915_gem_object_unpin(obj);
3560
05394f39 3561 if (obj->phys_obj)
be72615b
CW
3562 i915_gem_detach_phys_object(dev, obj);
3563
3564 i915_gem_free_object_tail(obj);
3565}
3566
29105ccc
CW
3567int
3568i915_gem_idle(struct drm_device *dev)
3569{
3570 drm_i915_private_t *dev_priv = dev->dev_private;
3571 int ret;
28dfe52a 3572
29105ccc 3573 mutex_lock(&dev->struct_mutex);
1c5d22f7 3574
87acb0a5 3575 if (dev_priv->mm.suspended) {
29105ccc
CW
3576 mutex_unlock(&dev->struct_mutex);
3577 return 0;
28dfe52a
EA
3578 }
3579
b93f9cf1 3580 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3581 if (ret) {
3582 mutex_unlock(&dev->struct_mutex);
673a394b 3583 return ret;
6dbe2772 3584 }
673a394b 3585
29105ccc
CW
3586 /* Under UMS, be paranoid and evict. */
3587 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3588 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3589 if (ret) {
3590 mutex_unlock(&dev->struct_mutex);
3591 return ret;
3592 }
3593 }
3594
312817a3
CW
3595 i915_gem_reset_fences(dev);
3596
29105ccc
CW
3597 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3598 * We need to replace this with a semaphore, or something.
3599 * And not confound mm.suspended!
3600 */
3601 dev_priv->mm.suspended = 1;
bc0c7f14 3602 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3603
3604 i915_kernel_lost_context(dev);
6dbe2772 3605 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3606
6dbe2772
KP
3607 mutex_unlock(&dev->struct_mutex);
3608
29105ccc
CW
3609 /* Cancel the retire work handler, which should be idle now. */
3610 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3611
673a394b
EA
3612 return 0;
3613}
3614
f691e2f4
DV
3615void i915_gem_init_swizzling(struct drm_device *dev)
3616{
3617 drm_i915_private_t *dev_priv = dev->dev_private;
3618
11782b02 3619 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3620 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3621 return;
3622
3623 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3624 DISP_TILE_SURFACE_SWIZZLING);
3625
11782b02
DV
3626 if (IS_GEN5(dev))
3627 return;
3628
f691e2f4
DV
3629 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3630 if (IS_GEN6(dev))
3631 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3632 else
3633 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3634}
e21af88d
DV
3635
3636void i915_gem_init_ppgtt(struct drm_device *dev)
3637{
3638 drm_i915_private_t *dev_priv = dev->dev_private;
3639 uint32_t pd_offset;
3640 struct intel_ring_buffer *ring;
55a254ac
DV
3641 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3642 uint32_t __iomem *pd_addr;
3643 uint32_t pd_entry;
e21af88d
DV
3644 int i;
3645
3646 if (!dev_priv->mm.aliasing_ppgtt)
3647 return;
3648
55a254ac
DV
3649
3650 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3651 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3652 dma_addr_t pt_addr;
3653
3654 if (dev_priv->mm.gtt->needs_dmar)
3655 pt_addr = ppgtt->pt_dma_addr[i];
3656 else
3657 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3658
3659 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3660 pd_entry |= GEN6_PDE_VALID;
3661
3662 writel(pd_entry, pd_addr + i);
3663 }
3664 readl(pd_addr);
3665
3666 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3667 pd_offset /= 64; /* in cachelines, */
3668 pd_offset <<= 16;
3669
3670 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3671 uint32_t ecochk, gab_ctl, ecobits;
3672
3673 ecobits = I915_READ(GAC_ECO_BITS);
3674 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3675
3676 gab_ctl = I915_READ(GAB_CTL);
3677 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3678
3679 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3680 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3681 ECOCHK_PPGTT_CACHE64B);
3682 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3683 } else if (INTEL_INFO(dev)->gen >= 7) {
3684 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3685 /* GFX_MODE is per-ring on gen7+ */
3686 }
3687
3688 for (i = 0; i < I915_NUM_RINGS; i++) {
3689 ring = &dev_priv->ring[i];
3690
3691 if (INTEL_INFO(dev)->gen >= 7)
3692 I915_WRITE(RING_MODE_GEN7(ring),
3693 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3694
3695 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3696 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3697 }
3698}
3699
8187a2b7 3700int
f691e2f4 3701i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3702{
3703 drm_i915_private_t *dev_priv = dev->dev_private;
3704 int ret;
68f95ba9 3705
f691e2f4
DV
3706 i915_gem_init_swizzling(dev);
3707
5c1143bb 3708 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3709 if (ret)
b6913e4b 3710 return ret;
68f95ba9
CW
3711
3712 if (HAS_BSD(dev)) {
5c1143bb 3713 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3714 if (ret)
3715 goto cleanup_render_ring;
d1b851fc 3716 }
68f95ba9 3717
549f7365
CW
3718 if (HAS_BLT(dev)) {
3719 ret = intel_init_blt_ring_buffer(dev);
3720 if (ret)
3721 goto cleanup_bsd_ring;
3722 }
3723
6f392d54
CW
3724 dev_priv->next_seqno = 1;
3725
e21af88d
DV
3726 i915_gem_init_ppgtt(dev);
3727
68f95ba9
CW
3728 return 0;
3729
549f7365 3730cleanup_bsd_ring:
1ec14ad3 3731 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3732cleanup_render_ring:
1ec14ad3 3733 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3734 return ret;
3735}
3736
3737void
3738i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3739{
3740 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3741 int i;
8187a2b7 3742
1ec14ad3
CW
3743 for (i = 0; i < I915_NUM_RINGS; i++)
3744 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3745}
3746
673a394b
EA
3747int
3748i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3749 struct drm_file *file_priv)
3750{
3751 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3752 int ret, i;
673a394b 3753
79e53945
JB
3754 if (drm_core_check_feature(dev, DRIVER_MODESET))
3755 return 0;
3756
ba1234d1 3757 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3758 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3759 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3760 }
3761
673a394b 3762 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3763 dev_priv->mm.suspended = 0;
3764
f691e2f4 3765 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3766 if (ret != 0) {
3767 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3768 return ret;
d816f6ac 3769 }
9bb2d6f9 3770
69dc4987 3771 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3772 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3773 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3774 for (i = 0; i < I915_NUM_RINGS; i++) {
3775 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3776 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3777 }
673a394b 3778 mutex_unlock(&dev->struct_mutex);
dbb19d30 3779
5f35308b
CW
3780 ret = drm_irq_install(dev);
3781 if (ret)
3782 goto cleanup_ringbuffer;
dbb19d30 3783
673a394b 3784 return 0;
5f35308b
CW
3785
3786cleanup_ringbuffer:
3787 mutex_lock(&dev->struct_mutex);
3788 i915_gem_cleanup_ringbuffer(dev);
3789 dev_priv->mm.suspended = 1;
3790 mutex_unlock(&dev->struct_mutex);
3791
3792 return ret;
673a394b
EA
3793}
3794
3795int
3796i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3797 struct drm_file *file_priv)
3798{
79e53945
JB
3799 if (drm_core_check_feature(dev, DRIVER_MODESET))
3800 return 0;
3801
dbb19d30 3802 drm_irq_uninstall(dev);
e6890f6f 3803 return i915_gem_idle(dev);
673a394b
EA
3804}
3805
3806void
3807i915_gem_lastclose(struct drm_device *dev)
3808{
3809 int ret;
673a394b 3810
e806b495
EA
3811 if (drm_core_check_feature(dev, DRIVER_MODESET))
3812 return;
3813
6dbe2772
KP
3814 ret = i915_gem_idle(dev);
3815 if (ret)
3816 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3817}
3818
64193406
CW
3819static void
3820init_ring_lists(struct intel_ring_buffer *ring)
3821{
3822 INIT_LIST_HEAD(&ring->active_list);
3823 INIT_LIST_HEAD(&ring->request_list);
3824 INIT_LIST_HEAD(&ring->gpu_write_list);
3825}
3826
673a394b
EA
3827void
3828i915_gem_load(struct drm_device *dev)
3829{
b5aa8a0f 3830 int i;
673a394b
EA
3831 drm_i915_private_t *dev_priv = dev->dev_private;
3832
69dc4987 3833 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3834 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3835 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3836 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3837 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3838 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3839 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3840 for (i = 0; i < I915_NUM_RINGS; i++)
3841 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3842 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3843 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3844 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3845 i915_gem_retire_work_handler);
30dbf0c0 3846 init_completion(&dev_priv->error_completion);
31169714 3847
94400120
DA
3848 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3849 if (IS_GEN3(dev)) {
3850 u32 tmp = I915_READ(MI_ARB_STATE);
3851 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3852 /* arb state is a masked write, so set bit + bit in mask */
3853 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3854 I915_WRITE(MI_ARB_STATE, tmp);
3855 }
3856 }
3857
72bfa19c
CW
3858 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3859
de151cf6 3860 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3861 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3862 dev_priv->fence_reg_start = 3;
de151cf6 3863
a6c45cf0 3864 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3865 dev_priv->num_fence_regs = 16;
3866 else
3867 dev_priv->num_fence_regs = 8;
3868
b5aa8a0f 3869 /* Initialize fence registers to zero */
10ed13e4
EA
3870 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3871 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3872 }
10ed13e4 3873
673a394b 3874 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3875 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3876
ce453d81
CW
3877 dev_priv->mm.interruptible = true;
3878
17250b71
CW
3879 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3880 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3881 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3882}
71acb5eb
DA
3883
3884/*
3885 * Create a physically contiguous memory object for this object
3886 * e.g. for cursor + overlay regs
3887 */
995b6762
CW
3888static int i915_gem_init_phys_object(struct drm_device *dev,
3889 int id, int size, int align)
71acb5eb
DA
3890{
3891 drm_i915_private_t *dev_priv = dev->dev_private;
3892 struct drm_i915_gem_phys_object *phys_obj;
3893 int ret;
3894
3895 if (dev_priv->mm.phys_objs[id - 1] || !size)
3896 return 0;
3897
9a298b2a 3898 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3899 if (!phys_obj)
3900 return -ENOMEM;
3901
3902 phys_obj->id = id;
3903
6eeefaf3 3904 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3905 if (!phys_obj->handle) {
3906 ret = -ENOMEM;
3907 goto kfree_obj;
3908 }
3909#ifdef CONFIG_X86
3910 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3911#endif
3912
3913 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3914
3915 return 0;
3916kfree_obj:
9a298b2a 3917 kfree(phys_obj);
71acb5eb
DA
3918 return ret;
3919}
3920
995b6762 3921static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3922{
3923 drm_i915_private_t *dev_priv = dev->dev_private;
3924 struct drm_i915_gem_phys_object *phys_obj;
3925
3926 if (!dev_priv->mm.phys_objs[id - 1])
3927 return;
3928
3929 phys_obj = dev_priv->mm.phys_objs[id - 1];
3930 if (phys_obj->cur_obj) {
3931 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3932 }
3933
3934#ifdef CONFIG_X86
3935 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3936#endif
3937 drm_pci_free(dev, phys_obj->handle);
3938 kfree(phys_obj);
3939 dev_priv->mm.phys_objs[id - 1] = NULL;
3940}
3941
3942void i915_gem_free_all_phys_object(struct drm_device *dev)
3943{
3944 int i;
3945
260883c8 3946 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3947 i915_gem_free_phys_object(dev, i);
3948}
3949
3950void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3951 struct drm_i915_gem_object *obj)
71acb5eb 3952{
05394f39 3953 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3954 char *vaddr;
71acb5eb 3955 int i;
71acb5eb
DA
3956 int page_count;
3957
05394f39 3958 if (!obj->phys_obj)
71acb5eb 3959 return;
05394f39 3960 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3961
05394f39 3962 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3963 for (i = 0; i < page_count; i++) {
5949eac4 3964 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3965 if (!IS_ERR(page)) {
3966 char *dst = kmap_atomic(page);
3967 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3968 kunmap_atomic(dst);
3969
3970 drm_clflush_pages(&page, 1);
3971
3972 set_page_dirty(page);
3973 mark_page_accessed(page);
3974 page_cache_release(page);
3975 }
71acb5eb 3976 }
40ce6575 3977 intel_gtt_chipset_flush();
d78b47b9 3978
05394f39
CW
3979 obj->phys_obj->cur_obj = NULL;
3980 obj->phys_obj = NULL;
71acb5eb
DA
3981}
3982
3983int
3984i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3985 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3986 int id,
3987 int align)
71acb5eb 3988{
05394f39 3989 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3990 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3991 int ret = 0;
3992 int page_count;
3993 int i;
3994
3995 if (id > I915_MAX_PHYS_OBJECT)
3996 return -EINVAL;
3997
05394f39
CW
3998 if (obj->phys_obj) {
3999 if (obj->phys_obj->id == id)
71acb5eb
DA
4000 return 0;
4001 i915_gem_detach_phys_object(dev, obj);
4002 }
4003
71acb5eb
DA
4004 /* create a new object */
4005 if (!dev_priv->mm.phys_objs[id - 1]) {
4006 ret = i915_gem_init_phys_object(dev, id,
05394f39 4007 obj->base.size, align);
71acb5eb 4008 if (ret) {
05394f39
CW
4009 DRM_ERROR("failed to init phys object %d size: %zu\n",
4010 id, obj->base.size);
e5281ccd 4011 return ret;
71acb5eb
DA
4012 }
4013 }
4014
4015 /* bind to the object */
05394f39
CW
4016 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4017 obj->phys_obj->cur_obj = obj;
71acb5eb 4018
05394f39 4019 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4020
4021 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4022 struct page *page;
4023 char *dst, *src;
4024
5949eac4 4025 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4026 if (IS_ERR(page))
4027 return PTR_ERR(page);
71acb5eb 4028
ff75b9bc 4029 src = kmap_atomic(page);
05394f39 4030 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4031 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4032 kunmap_atomic(src);
71acb5eb 4033
e5281ccd
CW
4034 mark_page_accessed(page);
4035 page_cache_release(page);
4036 }
d78b47b9 4037
71acb5eb 4038 return 0;
71acb5eb
DA
4039}
4040
4041static int
05394f39
CW
4042i915_gem_phys_pwrite(struct drm_device *dev,
4043 struct drm_i915_gem_object *obj,
71acb5eb
DA
4044 struct drm_i915_gem_pwrite *args,
4045 struct drm_file *file_priv)
4046{
05394f39 4047 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4048 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4049
b47b30cc
CW
4050 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4051 unsigned long unwritten;
4052
4053 /* The physical object once assigned is fixed for the lifetime
4054 * of the obj, so we can safely drop the lock and continue
4055 * to access vaddr.
4056 */
4057 mutex_unlock(&dev->struct_mutex);
4058 unwritten = copy_from_user(vaddr, user_data, args->size);
4059 mutex_lock(&dev->struct_mutex);
4060 if (unwritten)
4061 return -EFAULT;
4062 }
71acb5eb 4063
40ce6575 4064 intel_gtt_chipset_flush();
71acb5eb
DA
4065 return 0;
4066}
b962442e 4067
f787a5f5 4068void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4069{
f787a5f5 4070 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4071
4072 /* Clean up our request list when the client is going away, so that
4073 * later retire_requests won't dereference our soon-to-be-gone
4074 * file_priv.
4075 */
1c25595f 4076 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4077 while (!list_empty(&file_priv->mm.request_list)) {
4078 struct drm_i915_gem_request *request;
4079
4080 request = list_first_entry(&file_priv->mm.request_list,
4081 struct drm_i915_gem_request,
4082 client_list);
4083 list_del(&request->client_list);
4084 request->file_priv = NULL;
4085 }
1c25595f 4086 spin_unlock(&file_priv->mm.lock);
b962442e 4087}
31169714 4088
1637ef41
CW
4089static int
4090i915_gpu_is_active(struct drm_device *dev)
4091{
4092 drm_i915_private_t *dev_priv = dev->dev_private;
4093 int lists_empty;
4094
1637ef41 4095 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4096 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4097
4098 return !lists_empty;
4099}
4100
31169714 4101static int
1495f230 4102i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4103{
17250b71
CW
4104 struct drm_i915_private *dev_priv =
4105 container_of(shrinker,
4106 struct drm_i915_private,
4107 mm.inactive_shrinker);
4108 struct drm_device *dev = dev_priv->dev;
4109 struct drm_i915_gem_object *obj, *next;
1495f230 4110 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4111 int cnt;
4112
4113 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4114 return 0;
31169714
CW
4115
4116 /* "fast-path" to count number of available objects */
4117 if (nr_to_scan == 0) {
17250b71
CW
4118 cnt = 0;
4119 list_for_each_entry(obj,
4120 &dev_priv->mm.inactive_list,
4121 mm_list)
4122 cnt++;
4123 mutex_unlock(&dev->struct_mutex);
4124 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4125 }
4126
1637ef41 4127rescan:
31169714 4128 /* first scan for clean buffers */
17250b71 4129 i915_gem_retire_requests(dev);
31169714 4130
17250b71
CW
4131 list_for_each_entry_safe(obj, next,
4132 &dev_priv->mm.inactive_list,
4133 mm_list) {
4134 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4135 if (i915_gem_object_unbind(obj) == 0 &&
4136 --nr_to_scan == 0)
17250b71 4137 break;
31169714 4138 }
31169714
CW
4139 }
4140
4141 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4142 cnt = 0;
4143 list_for_each_entry_safe(obj, next,
4144 &dev_priv->mm.inactive_list,
4145 mm_list) {
2021746e
CW
4146 if (nr_to_scan &&
4147 i915_gem_object_unbind(obj) == 0)
17250b71 4148 nr_to_scan--;
2021746e 4149 else
17250b71
CW
4150 cnt++;
4151 }
4152
4153 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4154 /*
4155 * We are desperate for pages, so as a last resort, wait
4156 * for the GPU to finish and discard whatever we can.
4157 * This has a dramatic impact to reduce the number of
4158 * OOM-killer events whilst running the GPU aggressively.
4159 */
b93f9cf1 4160 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4161 goto rescan;
4162 }
17250b71
CW
4163 mutex_unlock(&dev->struct_mutex);
4164 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4165}