]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/audio: remove duplicated include from intel_audio.c
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
c8725f3d
CW
46static void
47i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c 154
6299f992 155 pinned = 0;
73aa808f 156 mutex_lock(&dev->struct_mutex);
35c20a60 157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 158 if (i915_gem_obj_is_pinned(obj))
f343c5f6 159 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
853ba5d2 162 args->aper_size = dev_priv->gtt.base.total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
6a2c4232
CW
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 170{
6a2c4232
CW
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
00731155 176
6a2c4232
CW
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
00731155 211
6a2c4232
CW
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232
CW
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
6a2c4232 260 page_cache_release(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
063e4e6b 353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
00731155 371 i915_gem_chipset_flush(dev);
063e4e6b
PZ
372
373out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 387 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
ff72145b 405 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
406 if (obj == NULL)
407 return -ENOMEM;
408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
433 */
434int
435i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437{
438 struct drm_i915_gem_create *args = data;
63ed2cb2 439
ff72145b 440 return i915_gem_create(file, dev,
da6b51d0 441 args->size, &args->handle);
ff72145b
DA
442}
443
8461d226
DV
444static inline int
445__copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448{
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468}
469
8c59967c 470static inline int
4f0c7cfb
BW
471__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
8c59967c
DV
473 int length)
474{
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494}
495
4c914c0c
BV
496/*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503{
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
c8725f3d
CW
521
522 i915_gem_object_retire(obj);
4c914c0c
BV
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532}
533
d174bd64
DV
534/* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
eb01459f 537static int
d174bd64
DV
538shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541{
542 char *vaddr;
543 int ret;
544
e7e58eb5 545 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
f60d7f0c 557 return ret ? -EFAULT : 0;
d174bd64
DV
558}
559
23c18c71
DV
560static void
561shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563{
e7e58eb5 564 if (unlikely(swizzled)) {
23c18c71
DV
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580}
581
d174bd64
DV
582/* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584static int
585shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588{
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
23c18c71
DV
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
d174bd64
DV
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
f60d7f0c 608 return ret ? - EFAULT : 0;
d174bd64
DV
609}
610
eb01459f 611static int
dbf7bff0
DV
612i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
eb01459f 616{
8461d226 617 char __user *user_data;
eb01459f 618 ssize_t remain;
8461d226 619 loff_t offset;
eb2c0c81 620 int shmem_page_offset, page_length, ret = 0;
8461d226 621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 622 int prefaulted = 0;
8489731c 623 int needs_clflush = 0;
67d5a50c 624 struct sg_page_iter sg_iter;
eb01459f 625
2bb4629a 626 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
627 remain = args->size;
628
8461d226 629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 630
4c914c0c 631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
632 if (ret)
633 return ret;
634
8461d226 635 offset = args->offset;
eb01459f 636
67d5a50c
ID
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
2db76d7c 639 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
640
641 if (remain <= 0)
642 break;
643
eb01459f
EA
644 /* Operation in this page
645 *
eb01459f 646 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
647 * page_length = bytes to copy for this page
648 */
c8cbbb8b 649 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 653
8461d226
DV
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
d174bd64
DV
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
dbf7bff0 662
dbf7bff0
DV
663 mutex_unlock(&dev->struct_mutex);
664
d330a953 665 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 666 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
eb01459f 674
d174bd64
DV
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
eb01459f 678
dbf7bff0 679 mutex_lock(&dev->struct_mutex);
f60d7f0c 680
f60d7f0c 681 if (ret)
8461d226 682 goto out;
8461d226 683
17793c9a 684next_page:
eb01459f 685 remain -= page_length;
8461d226 686 user_data += page_length;
eb01459f
EA
687 offset += page_length;
688 }
689
4f27b75d 690out:
f60d7f0c
CW
691 i915_gem_object_unpin_pages(obj);
692
eb01459f
EA
693 return ret;
694}
695
673a394b
EA
696/**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701int
702i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 703 struct drm_file *file)
673a394b
EA
704{
705 struct drm_i915_gem_pread *args = data;
05394f39 706 struct drm_i915_gem_object *obj;
35b62a89 707 int ret = 0;
673a394b 708
51311d0a
CW
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
2bb4629a 713 to_user_ptr(args->data_ptr),
51311d0a
CW
714 args->size))
715 return -EFAULT;
716
4f27b75d 717 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 718 if (ret)
4f27b75d 719 return ret;
673a394b 720
05394f39 721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 722 if (&obj->base == NULL) {
1d7cfea1
CW
723 ret = -ENOENT;
724 goto unlock;
4f27b75d 725 }
673a394b 726
7dcd2499 727 /* Bounds check source. */
05394f39
CW
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
ce9d419d 730 ret = -EINVAL;
35b62a89 731 goto out;
ce9d419d
CW
732 }
733
1286ff73
DV
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
db53a302
CW
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
dbf7bff0 744 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 745
35b62a89 746out:
05394f39 747 drm_gem_object_unreference(&obj->base);
1d7cfea1 748unlock:
4f27b75d 749 mutex_unlock(&dev->struct_mutex);
eb01459f 750 return ret;
673a394b
EA
751}
752
0839ccb8
KP
753/* This is the fast write path which cannot handle
754 * page faults in the source data
9b7530cc 755 */
0839ccb8
KP
756
757static inline int
758fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
9b7530cc 762{
4f0c7cfb
BW
763 void __iomem *vaddr_atomic;
764 void *vaddr;
0839ccb8 765 unsigned long unwritten;
9b7530cc 766
3e4d3af5 767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 771 user_data, length);
3e4d3af5 772 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 773 return unwritten;
0839ccb8
KP
774}
775
3de09aa3
EA
776/**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
673a394b 780static int
05394f39
CW
781i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
3de09aa3 783 struct drm_i915_gem_pwrite *args,
05394f39 784 struct drm_file *file)
673a394b 785{
3e31c6c0 786 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 787 ssize_t remain;
0839ccb8 788 loff_t offset, page_base;
673a394b 789 char __user *user_data;
935aaa69
DV
790 int page_offset, page_length, ret;
791
1ec9e26d 792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
673a394b 803
2bb4629a 804 user_data = to_user_ptr(args->data_ptr);
673a394b 805 remain = args->size;
673a394b 806
f343c5f6 807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 808
063e4e6b
PZ
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
673a394b
EA
811 while (remain > 0) {
812 /* Operation in this page
813 *
0839ccb8
KP
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
673a394b 817 */
c8cbbb8b
CW
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
0839ccb8
KP
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
0839ccb8 824 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
0839ccb8 827 */
5d4545ae 828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
063e4e6b 831 goto out_flush;
935aaa69 832 }
673a394b 833
0839ccb8
KP
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
673a394b 837 }
673a394b 838
063e4e6b
PZ
839out_flush:
840 intel_fb_obj_flush(obj, false);
935aaa69 841out_unpin:
d7f46fc4 842 i915_gem_object_ggtt_unpin(obj);
935aaa69 843out:
3de09aa3 844 return ret;
673a394b
EA
845}
846
d174bd64
DV
847/* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
3043c60c 851static int
d174bd64
DV
852shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
673a394b 857{
d174bd64 858 char *vaddr;
673a394b 859 int ret;
3de09aa3 860
e7e58eb5 861 if (unlikely(page_do_bit17_swizzling))
d174bd64 862 return -EINVAL;
3de09aa3 863
d174bd64
DV
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
c2831a94
CW
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
d174bd64
DV
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
3de09aa3 874
755d2218 875 return ret ? -EFAULT : 0;
3de09aa3
EA
876}
877
d174bd64
DV
878/* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
3043c60c 880static int
d174bd64
DV
881shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
673a394b 886{
d174bd64
DV
887 char *vaddr;
888 int ret;
e5281ccd 889
d174bd64 890 vaddr = kmap(page);
e7e58eb5 891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
d174bd64
DV
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
897 user_data,
898 page_length);
d174bd64
DV
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
23c18c71
DV
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
d174bd64 907 kunmap(page);
40123c1f 908
755d2218 909 return ret ? -EFAULT : 0;
40123c1f
EA
910}
911
40123c1f 912static int
e244a443
DV
913i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
40123c1f 917{
40123c1f 918 ssize_t remain;
8c59967c
DV
919 loff_t offset;
920 char __user *user_data;
eb2c0c81 921 int shmem_page_offset, page_length, ret = 0;
8c59967c 922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 923 int hit_slowpath = 0;
58642885
DV
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
67d5a50c 926 struct sg_page_iter sg_iter;
40123c1f 927
2bb4629a 928 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
929 remain = args->size;
930
8c59967c 931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 932
58642885
DV
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
2c22569b 938 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
c8725f3d
CW
942
943 i915_gem_object_retire(obj);
58642885 944 }
c76ce038
CW
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 950
755d2218
CW
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
063e4e6b
PZ
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
755d2218
CW
957 i915_gem_object_pin_pages(obj);
958
673a394b 959 offset = args->offset;
05394f39 960 obj->dirty = 1;
673a394b 961
67d5a50c
ID
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
2db76d7c 964 struct page *page = sg_page_iter_page(&sg_iter);
58642885 965 int partial_cacheline_write;
e5281ccd 966
9da3da66
CW
967 if (remain <= 0)
968 break;
969
40123c1f
EA
970 /* Operation in this page
971 *
40123c1f 972 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
973 * page_length = bytes to copy for this page
974 */
c8cbbb8b 975 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 980
58642885
DV
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
8c59967c
DV
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
d174bd64
DV
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
e244a443
DV
997
998 hit_slowpath = 1;
e244a443 999 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
40123c1f 1004
e244a443 1005 mutex_lock(&dev->struct_mutex);
755d2218 1006
755d2218 1007 if (ret)
8c59967c 1008 goto out;
8c59967c 1009
17793c9a 1010next_page:
40123c1f 1011 remain -= page_length;
8c59967c 1012 user_data += page_length;
40123c1f 1013 offset += page_length;
673a394b
EA
1014 }
1015
fbd5a26d 1016out:
755d2218
CW
1017 i915_gem_object_unpin_pages(obj);
1018
e244a443 1019 if (hit_slowpath) {
8dcf015e
DV
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
e244a443 1029 }
8c59967c 1030 }
673a394b 1031
58642885 1032 if (needs_clflush_after)
e76e9aeb 1033 i915_gem_chipset_flush(dev);
58642885 1034
063e4e6b 1035 intel_fb_obj_flush(obj, false);
40123c1f 1036 return ret;
673a394b
EA
1037}
1038
1039/**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044int
1045i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1046 struct drm_file *file)
673a394b 1047{
5d77d9c5 1048 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1049 struct drm_i915_gem_pwrite *args = data;
05394f39 1050 struct drm_i915_gem_object *obj;
51311d0a
CW
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
2bb4629a 1057 to_user_ptr(args->data_ptr),
51311d0a
CW
1058 args->size))
1059 return -EFAULT;
1060
d330a953 1061 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
673a394b 1067
5d77d9c5
ID
1068 intel_runtime_pm_get(dev_priv);
1069
fbd5a26d 1070 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1071 if (ret)
5d77d9c5 1072 goto put_rpm;
1d7cfea1 1073
05394f39 1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1075 if (&obj->base == NULL) {
1d7cfea1
CW
1076 ret = -ENOENT;
1077 goto unlock;
fbd5a26d 1078 }
673a394b 1079
7dcd2499 1080 /* Bounds check destination. */
05394f39
CW
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
ce9d419d 1083 ret = -EINVAL;
35b62a89 1084 goto out;
ce9d419d
CW
1085 }
1086
1286ff73
DV
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
db53a302
CW
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
935aaa69 1097 ret = -EFAULT;
673a394b
EA
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
2c22569b
CW
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
fbd5a26d 1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1111 }
673a394b 1112
6a2c4232
CW
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
5c0480f2 1119
35b62a89 1120out:
05394f39 1121 drm_gem_object_unreference(&obj->base);
1d7cfea1 1122unlock:
fbd5a26d 1123 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1124put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
673a394b
EA
1127 return ret;
1128}
1129
b361237b 1130int
33196ded 1131i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1132 bool interruptible)
1133{
1f83fee0 1134 if (i915_reset_in_progress(error)) {
b361237b
CW
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1f83fee0
DV
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
b361237b
CW
1142 return -EIO;
1143
6689c167
MA
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
b361237b
CW
1151 }
1152
1153 return 0;
1154}
1155
1156/*
b6660d59 1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1158 */
84c33a64 1159int
b6660d59 1160i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1161{
1162 int ret;
1163
b6660d59 1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1165
1166 ret = 0;
b6660d59 1167 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1168 ret = i915_add_request(req->ring);
b361237b
CW
1169
1170 return ret;
1171}
1172
094f9a54
CW
1173static void fake_irq(unsigned long data)
1174{
1175 wake_up_process((struct task_struct *)data);
1176}
1177
1178static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1179 struct intel_engine_cs *ring)
094f9a54
CW
1180{
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182}
1183
2def4ad9
CW
1184static int __i915_spin_request(struct drm_i915_gem_request *rq)
1185{
1186 unsigned long timeout;
1187
1188 if (i915_gem_request_get_ring(rq)->irq_refcount)
1189 return -EBUSY;
1190
1191 timeout = jiffies + 1;
1192 while (!need_resched()) {
1193 if (i915_gem_request_completed(rq, true))
1194 return 0;
1195
1196 if (time_after_eq(jiffies, timeout))
1197 break;
1198
1199 cpu_relax_lowlatency();
1200 }
1201 if (i915_gem_request_completed(rq, false))
1202 return 0;
1203
1204 return -EAGAIN;
1205}
1206
b361237b 1207/**
9c654818
JH
1208 * __i915_wait_request - wait until execution of request has finished
1209 * @req: duh!
1210 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1211 * @interruptible: do an interruptible wait (normally yes)
1212 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1213 *
f69061be
DV
1214 * Note: It is of utmost importance that the passed in seqno and reset_counter
1215 * values have been read by the caller in an smp safe manner. Where read-side
1216 * locks are involved, it is sufficient to read the reset_counter before
1217 * unlocking the lock that protects the seqno. For lockless tricks, the
1218 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1219 * inserted.
1220 *
9c654818 1221 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1222 * errno with remaining time filled in timeout argument.
1223 */
9c654818 1224int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1225 unsigned reset_counter,
b29c19b6 1226 bool interruptible,
5ed0bdf2 1227 s64 *timeout,
b29c19b6 1228 struct drm_i915_file_private *file_priv)
b361237b 1229{
9c654818 1230 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1231 struct drm_device *dev = ring->dev;
3e31c6c0 1232 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1233 const bool irq_test_in_progress =
1234 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1235 DEFINE_WAIT(wait);
47e9766d 1236 unsigned long timeout_expire;
5ed0bdf2 1237 s64 before, now;
b361237b
CW
1238 int ret;
1239
9df7575f 1240 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1241
1b5a433a 1242 if (i915_gem_request_completed(req, true))
b361237b
CW
1243 return 0;
1244
7bd0e226
DV
1245 timeout_expire = timeout ?
1246 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1247
7c27f525 1248 if (INTEL_INFO(dev)->gen >= 6)
1854d5ca 1249 gen6_rps_boost(dev_priv, file_priv);
b29c19b6 1250
094f9a54 1251 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1252 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1253 before = ktime_get_raw_ns();
2def4ad9
CW
1254
1255 /* Optimistic spin for the next jiffie before touching IRQs */
1256 ret = __i915_spin_request(req);
1257 if (ret == 0)
1258 goto out;
1259
1260 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1261 ret = -ENODEV;
1262 goto out;
1263 }
1264
094f9a54
CW
1265 for (;;) {
1266 struct timer_list timer;
b361237b 1267
094f9a54
CW
1268 prepare_to_wait(&ring->irq_queue, &wait,
1269 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1270
f69061be
DV
1271 /* We need to check whether any gpu reset happened in between
1272 * the caller grabbing the seqno and now ... */
094f9a54
CW
1273 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1274 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1275 * is truely gone. */
1276 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1277 if (ret == 0)
1278 ret = -EAGAIN;
1279 break;
1280 }
f69061be 1281
1b5a433a 1282 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1283 ret = 0;
1284 break;
1285 }
b361237b 1286
094f9a54
CW
1287 if (interruptible && signal_pending(current)) {
1288 ret = -ERESTARTSYS;
1289 break;
1290 }
1291
47e9766d 1292 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1293 ret = -ETIME;
1294 break;
1295 }
1296
1297 timer.function = NULL;
1298 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1299 unsigned long expire;
1300
094f9a54 1301 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1302 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1303 mod_timer(&timer, expire);
1304 }
1305
5035c275 1306 io_schedule();
094f9a54 1307
094f9a54
CW
1308 if (timer.function) {
1309 del_singleshot_timer_sync(&timer);
1310 destroy_timer_on_stack(&timer);
1311 }
1312 }
168c3f21
MK
1313 if (!irq_test_in_progress)
1314 ring->irq_put(ring);
094f9a54
CW
1315
1316 finish_wait(&ring->irq_queue, &wait);
b361237b 1317
2def4ad9
CW
1318out:
1319 now = ktime_get_raw_ns();
1320 trace_i915_gem_request_wait_end(req);
1321
b361237b 1322 if (timeout) {
5ed0bdf2
TG
1323 s64 tres = *timeout - (now - before);
1324
1325 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1326
1327 /*
1328 * Apparently ktime isn't accurate enough and occasionally has a
1329 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1330 * things up to make the test happy. We allow up to 1 jiffy.
1331 *
1332 * This is a regrssion from the timespec->ktime conversion.
1333 */
1334 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1335 *timeout = 0;
b361237b
CW
1336 }
1337
094f9a54 1338 return ret;
b361237b
CW
1339}
1340
1341/**
a4b3a571 1342 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1343 * request and object lists appropriately for that event.
1344 */
1345int
a4b3a571 1346i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1347{
a4b3a571
DV
1348 struct drm_device *dev;
1349 struct drm_i915_private *dev_priv;
1350 bool interruptible;
16e9a21f 1351 unsigned reset_counter;
b361237b
CW
1352 int ret;
1353
a4b3a571
DV
1354 BUG_ON(req == NULL);
1355
1356 dev = req->ring->dev;
1357 dev_priv = dev->dev_private;
1358 interruptible = dev_priv->mm.interruptible;
1359
b361237b 1360 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1361
33196ded 1362 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1363 if (ret)
1364 return ret;
1365
a4b3a571 1366 ret = i915_gem_check_olr(req);
b361237b
CW
1367 if (ret)
1368 return ret;
1369
16e9a21f 1370 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1371 i915_gem_request_reference(req);
9c654818
JH
1372 ret = __i915_wait_request(req, reset_counter,
1373 interruptible, NULL, NULL);
a4b3a571
DV
1374 i915_gem_request_unreference(req);
1375 return ret;
b361237b
CW
1376}
1377
d26e3af8 1378static int
8e639549 1379i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1380{
c8725f3d
CW
1381 if (!obj->active)
1382 return 0;
d26e3af8
CW
1383
1384 /* Manually manage the write flush as we may have not yet
1385 * retired the buffer.
1386 *
97b2a6a1
JH
1387 * Note that the last_write_req is always the earlier of
1388 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1389 * we know we have passed the last write.
1390 */
97b2a6a1 1391 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1392
1393 return 0;
1394}
1395
b361237b
CW
1396/**
1397 * Ensures that all rendering to the object has completed and the object is
1398 * safe to unbind from the GTT or access from the CPU.
1399 */
1400static __must_check int
1401i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1402 bool readonly)
1403{
97b2a6a1 1404 struct drm_i915_gem_request *req;
b361237b
CW
1405 int ret;
1406
97b2a6a1
JH
1407 req = readonly ? obj->last_write_req : obj->last_read_req;
1408 if (!req)
b361237b
CW
1409 return 0;
1410
a4b3a571 1411 ret = i915_wait_request(req);
b361237b
CW
1412 if (ret)
1413 return ret;
1414
8e639549 1415 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1416}
1417
3236f57a
CW
1418/* A nonblocking variant of the above wait. This is a highly dangerous routine
1419 * as the object state may change during this call.
1420 */
1421static __must_check int
1422i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1423 struct drm_i915_file_private *file_priv,
3236f57a
CW
1424 bool readonly)
1425{
97b2a6a1 1426 struct drm_i915_gem_request *req;
3236f57a
CW
1427 struct drm_device *dev = obj->base.dev;
1428 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1429 unsigned reset_counter;
3236f57a
CW
1430 int ret;
1431
1432 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1433 BUG_ON(!dev_priv->mm.interruptible);
1434
97b2a6a1
JH
1435 req = readonly ? obj->last_write_req : obj->last_read_req;
1436 if (!req)
3236f57a
CW
1437 return 0;
1438
33196ded 1439 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1440 if (ret)
1441 return ret;
1442
b6660d59 1443 ret = i915_gem_check_olr(req);
3236f57a
CW
1444 if (ret)
1445 return ret;
1446
f69061be 1447 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1448 i915_gem_request_reference(req);
3236f57a 1449 mutex_unlock(&dev->struct_mutex);
9c654818 1450 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1451 mutex_lock(&dev->struct_mutex);
ff865885 1452 i915_gem_request_unreference(req);
d26e3af8
CW
1453 if (ret)
1454 return ret;
3236f57a 1455
8e639549 1456 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1457}
1458
673a394b 1459/**
2ef7eeaa
EA
1460 * Called when user space prepares to use an object with the CPU, either
1461 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1462 */
1463int
1464i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1465 struct drm_file *file)
673a394b
EA
1466{
1467 struct drm_i915_gem_set_domain *args = data;
05394f39 1468 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1469 uint32_t read_domains = args->read_domains;
1470 uint32_t write_domain = args->write_domain;
673a394b
EA
1471 int ret;
1472
2ef7eeaa 1473 /* Only handle setting domains to types used by the CPU. */
21d509e3 1474 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1475 return -EINVAL;
1476
21d509e3 1477 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1478 return -EINVAL;
1479
1480 /* Having something in the write domain implies it's in the read
1481 * domain, and only that read domain. Enforce that in the request.
1482 */
1483 if (write_domain != 0 && read_domains != write_domain)
1484 return -EINVAL;
1485
76c1dec1 1486 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1487 if (ret)
76c1dec1 1488 return ret;
1d7cfea1 1489
05394f39 1490 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1491 if (&obj->base == NULL) {
1d7cfea1
CW
1492 ret = -ENOENT;
1493 goto unlock;
76c1dec1 1494 }
673a394b 1495
3236f57a
CW
1496 /* Try to flush the object off the GPU without holding the lock.
1497 * We will repeat the flush holding the lock in the normal manner
1498 * to catch cases where we are gazumped.
1499 */
6e4930f6
CW
1500 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1501 file->driver_priv,
1502 !write_domain);
3236f57a
CW
1503 if (ret)
1504 goto unref;
1505
43566ded 1506 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1507 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1508 else
e47c68e9 1509 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1510
3236f57a 1511unref:
05394f39 1512 drm_gem_object_unreference(&obj->base);
1d7cfea1 1513unlock:
673a394b
EA
1514 mutex_unlock(&dev->struct_mutex);
1515 return ret;
1516}
1517
1518/**
1519 * Called when user space has done writes to this buffer
1520 */
1521int
1522i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1523 struct drm_file *file)
673a394b
EA
1524{
1525 struct drm_i915_gem_sw_finish *args = data;
05394f39 1526 struct drm_i915_gem_object *obj;
673a394b
EA
1527 int ret = 0;
1528
76c1dec1 1529 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1530 if (ret)
76c1dec1 1531 return ret;
1d7cfea1 1532
05394f39 1533 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1534 if (&obj->base == NULL) {
1d7cfea1
CW
1535 ret = -ENOENT;
1536 goto unlock;
673a394b
EA
1537 }
1538
673a394b 1539 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1540 if (obj->pin_display)
e62b59e4 1541 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1542
05394f39 1543 drm_gem_object_unreference(&obj->base);
1d7cfea1 1544unlock:
673a394b
EA
1545 mutex_unlock(&dev->struct_mutex);
1546 return ret;
1547}
1548
1549/**
1550 * Maps the contents of an object, returning the address it is mapped
1551 * into.
1552 *
1553 * While the mapping holds a reference on the contents of the object, it doesn't
1554 * imply a ref on the object itself.
34367381
DV
1555 *
1556 * IMPORTANT:
1557 *
1558 * DRM driver writers who look a this function as an example for how to do GEM
1559 * mmap support, please don't implement mmap support like here. The modern way
1560 * to implement DRM mmap support is with an mmap offset ioctl (like
1561 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1562 * That way debug tooling like valgrind will understand what's going on, hiding
1563 * the mmap call in a driver private ioctl will break that. The i915 driver only
1564 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1565 */
1566int
1567i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1568 struct drm_file *file)
673a394b
EA
1569{
1570 struct drm_i915_gem_mmap *args = data;
1571 struct drm_gem_object *obj;
673a394b
EA
1572 unsigned long addr;
1573
1816f923
AG
1574 if (args->flags & ~(I915_MMAP_WC))
1575 return -EINVAL;
1576
1577 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1578 return -ENODEV;
1579
05394f39 1580 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1581 if (obj == NULL)
bf79cb91 1582 return -ENOENT;
673a394b 1583
1286ff73
DV
1584 /* prime objects have no backing filp to GEM mmap
1585 * pages from.
1586 */
1587 if (!obj->filp) {
1588 drm_gem_object_unreference_unlocked(obj);
1589 return -EINVAL;
1590 }
1591
6be5ceb0 1592 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1593 PROT_READ | PROT_WRITE, MAP_SHARED,
1594 args->offset);
1816f923
AG
1595 if (args->flags & I915_MMAP_WC) {
1596 struct mm_struct *mm = current->mm;
1597 struct vm_area_struct *vma;
1598
1599 down_write(&mm->mmap_sem);
1600 vma = find_vma(mm, addr);
1601 if (vma)
1602 vma->vm_page_prot =
1603 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1604 else
1605 addr = -ENOMEM;
1606 up_write(&mm->mmap_sem);
1607 }
bc9025bd 1608 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1609 if (IS_ERR((void *)addr))
1610 return addr;
1611
1612 args->addr_ptr = (uint64_t) addr;
1613
1614 return 0;
1615}
1616
de151cf6
JB
1617/**
1618 * i915_gem_fault - fault a page into the GTT
1619 * vma: VMA in question
1620 * vmf: fault info
1621 *
1622 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1623 * from userspace. The fault handler takes care of binding the object to
1624 * the GTT (if needed), allocating and programming a fence register (again,
1625 * only if needed based on whether the old reg is still valid or the object
1626 * is tiled) and inserting a new PTE into the faulting process.
1627 *
1628 * Note that the faulting process may involve evicting existing objects
1629 * from the GTT and/or fence registers to make room. So performance may
1630 * suffer if the GTT working set is large or there are few fence registers
1631 * left.
1632 */
1633int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1634{
05394f39
CW
1635 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1636 struct drm_device *dev = obj->base.dev;
3e31c6c0 1637 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1638 pgoff_t page_offset;
1639 unsigned long pfn;
1640 int ret = 0;
0f973f27 1641 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1642
f65c9168
PZ
1643 intel_runtime_pm_get(dev_priv);
1644
de151cf6
JB
1645 /* We don't use vmf->pgoff since that has the fake offset */
1646 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1647 PAGE_SHIFT;
1648
d9bc7e9f
CW
1649 ret = i915_mutex_lock_interruptible(dev);
1650 if (ret)
1651 goto out;
a00b10c3 1652
db53a302
CW
1653 trace_i915_gem_object_fault(obj, page_offset, true, write);
1654
6e4930f6
CW
1655 /* Try to flush the object off the GPU first without holding the lock.
1656 * Upon reacquiring the lock, we will perform our sanity checks and then
1657 * repeat the flush holding the lock in the normal manner to catch cases
1658 * where we are gazumped.
1659 */
1660 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1661 if (ret)
1662 goto unlock;
1663
eb119bd6
CW
1664 /* Access to snoopable pages through the GTT is incoherent. */
1665 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1666 ret = -EFAULT;
eb119bd6
CW
1667 goto unlock;
1668 }
1669
d9bc7e9f 1670 /* Now bind it into the GTT if needed */
1ec9e26d 1671 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1672 if (ret)
1673 goto unlock;
4a684a41 1674
c9839303
CW
1675 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1676 if (ret)
1677 goto unpin;
74898d7e 1678
06d98131 1679 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1680 if (ret)
c9839303 1681 goto unpin;
7d1c4804 1682
b90b91d8 1683 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1684 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1685 pfn >>= PAGE_SHIFT;
de151cf6 1686
b90b91d8 1687 if (!obj->fault_mappable) {
beff0d0f
VS
1688 unsigned long size = min_t(unsigned long,
1689 vma->vm_end - vma->vm_start,
1690 obj->base.size);
b90b91d8
CW
1691 int i;
1692
beff0d0f 1693 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1694 ret = vm_insert_pfn(vma,
1695 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1696 pfn + i);
1697 if (ret)
1698 break;
1699 }
1700
1701 obj->fault_mappable = true;
1702 } else
1703 ret = vm_insert_pfn(vma,
1704 (unsigned long)vmf->virtual_address,
1705 pfn + page_offset);
c9839303 1706unpin:
d7f46fc4 1707 i915_gem_object_ggtt_unpin(obj);
c715089f 1708unlock:
de151cf6 1709 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1710out:
de151cf6 1711 switch (ret) {
d9bc7e9f 1712 case -EIO:
2232f031
DV
1713 /*
1714 * We eat errors when the gpu is terminally wedged to avoid
1715 * userspace unduly crashing (gl has no provisions for mmaps to
1716 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1717 * and so needs to be reported.
1718 */
1719 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1720 ret = VM_FAULT_SIGBUS;
1721 break;
1722 }
045e769a 1723 case -EAGAIN:
571c608d
DV
1724 /*
1725 * EAGAIN means the gpu is hung and we'll wait for the error
1726 * handler to reset everything when re-faulting in
1727 * i915_mutex_lock_interruptible.
d9bc7e9f 1728 */
c715089f
CW
1729 case 0:
1730 case -ERESTARTSYS:
bed636ab 1731 case -EINTR:
e79e0fe3
DR
1732 case -EBUSY:
1733 /*
1734 * EBUSY is ok: this just means that another thread
1735 * already did the job.
1736 */
f65c9168
PZ
1737 ret = VM_FAULT_NOPAGE;
1738 break;
de151cf6 1739 case -ENOMEM:
f65c9168
PZ
1740 ret = VM_FAULT_OOM;
1741 break;
a7c2e1aa 1742 case -ENOSPC:
45d67817 1743 case -EFAULT:
f65c9168
PZ
1744 ret = VM_FAULT_SIGBUS;
1745 break;
de151cf6 1746 default:
a7c2e1aa 1747 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1748 ret = VM_FAULT_SIGBUS;
1749 break;
de151cf6 1750 }
f65c9168
PZ
1751
1752 intel_runtime_pm_put(dev_priv);
1753 return ret;
de151cf6
JB
1754}
1755
901782b2
CW
1756/**
1757 * i915_gem_release_mmap - remove physical page mappings
1758 * @obj: obj in question
1759 *
af901ca1 1760 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1761 * relinquish ownership of the pages back to the system.
1762 *
1763 * It is vital that we remove the page mapping if we have mapped a tiled
1764 * object through the GTT and then lose the fence register due to
1765 * resource pressure. Similarly if the object has been moved out of the
1766 * aperture, than pages mapped into userspace must be revoked. Removing the
1767 * mapping will then trigger a page fault on the next user access, allowing
1768 * fixup by i915_gem_fault().
1769 */
d05ca301 1770void
05394f39 1771i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1772{
6299f992
CW
1773 if (!obj->fault_mappable)
1774 return;
901782b2 1775
6796cb16
DH
1776 drm_vma_node_unmap(&obj->base.vma_node,
1777 obj->base.dev->anon_inode->i_mapping);
6299f992 1778 obj->fault_mappable = false;
901782b2
CW
1779}
1780
eedd10f4
CW
1781void
1782i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1783{
1784 struct drm_i915_gem_object *obj;
1785
1786 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1787 i915_gem_release_mmap(obj);
1788}
1789
0fa87796 1790uint32_t
e28f8711 1791i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1792{
e28f8711 1793 uint32_t gtt_size;
92b88aeb
CW
1794
1795 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1796 tiling_mode == I915_TILING_NONE)
1797 return size;
92b88aeb
CW
1798
1799 /* Previous chips need a power-of-two fence region when tiling */
1800 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1801 gtt_size = 1024*1024;
92b88aeb 1802 else
e28f8711 1803 gtt_size = 512*1024;
92b88aeb 1804
e28f8711
CW
1805 while (gtt_size < size)
1806 gtt_size <<= 1;
92b88aeb 1807
e28f8711 1808 return gtt_size;
92b88aeb
CW
1809}
1810
de151cf6
JB
1811/**
1812 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1813 * @obj: object to check
1814 *
1815 * Return the required GTT alignment for an object, taking into account
5e783301 1816 * potential fence register mapping.
de151cf6 1817 */
d865110c
ID
1818uint32_t
1819i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1820 int tiling_mode, bool fenced)
de151cf6 1821{
de151cf6
JB
1822 /*
1823 * Minimum alignment is 4k (GTT page size), but might be greater
1824 * if a fence register is needed for the object.
1825 */
d865110c 1826 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1827 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1828 return 4096;
1829
a00b10c3
CW
1830 /*
1831 * Previous chips need to be aligned to the size of the smallest
1832 * fence register that can contain the object.
1833 */
e28f8711 1834 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1835}
1836
d8cb5086
CW
1837static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1838{
1839 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1840 int ret;
1841
0de23977 1842 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1843 return 0;
1844
da494d7c
DV
1845 dev_priv->mm.shrinker_no_lock_stealing = true;
1846
d8cb5086
CW
1847 ret = drm_gem_create_mmap_offset(&obj->base);
1848 if (ret != -ENOSPC)
da494d7c 1849 goto out;
d8cb5086
CW
1850
1851 /* Badly fragmented mmap space? The only way we can recover
1852 * space is by destroying unwanted objects. We can't randomly release
1853 * mmap_offsets as userspace expects them to be persistent for the
1854 * lifetime of the objects. The closest we can is to release the
1855 * offsets on purgeable objects by truncating it and marking it purged,
1856 * which prevents userspace from ever using that object again.
1857 */
21ab4e74
CW
1858 i915_gem_shrink(dev_priv,
1859 obj->base.size >> PAGE_SHIFT,
1860 I915_SHRINK_BOUND |
1861 I915_SHRINK_UNBOUND |
1862 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1863 ret = drm_gem_create_mmap_offset(&obj->base);
1864 if (ret != -ENOSPC)
da494d7c 1865 goto out;
d8cb5086
CW
1866
1867 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1868 ret = drm_gem_create_mmap_offset(&obj->base);
1869out:
1870 dev_priv->mm.shrinker_no_lock_stealing = false;
1871
1872 return ret;
d8cb5086
CW
1873}
1874
1875static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1876{
d8cb5086
CW
1877 drm_gem_free_mmap_offset(&obj->base);
1878}
1879
da6b51d0 1880int
ff72145b
DA
1881i915_gem_mmap_gtt(struct drm_file *file,
1882 struct drm_device *dev,
da6b51d0 1883 uint32_t handle,
ff72145b 1884 uint64_t *offset)
de151cf6 1885{
da761a6e 1886 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1887 struct drm_i915_gem_object *obj;
de151cf6
JB
1888 int ret;
1889
76c1dec1 1890 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1891 if (ret)
76c1dec1 1892 return ret;
de151cf6 1893
ff72145b 1894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1895 if (&obj->base == NULL) {
1d7cfea1
CW
1896 ret = -ENOENT;
1897 goto unlock;
1898 }
de151cf6 1899
5d4545ae 1900 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1901 ret = -E2BIG;
ff56b0bc 1902 goto out;
da761a6e
CW
1903 }
1904
05394f39 1905 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1906 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1907 ret = -EFAULT;
1d7cfea1 1908 goto out;
ab18282d
CW
1909 }
1910
d8cb5086
CW
1911 ret = i915_gem_object_create_mmap_offset(obj);
1912 if (ret)
1913 goto out;
de151cf6 1914
0de23977 1915 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1916
1d7cfea1 1917out:
05394f39 1918 drm_gem_object_unreference(&obj->base);
1d7cfea1 1919unlock:
de151cf6 1920 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1921 return ret;
de151cf6
JB
1922}
1923
ff72145b
DA
1924/**
1925 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1926 * @dev: DRM device
1927 * @data: GTT mapping ioctl data
1928 * @file: GEM object info
1929 *
1930 * Simply returns the fake offset to userspace so it can mmap it.
1931 * The mmap call will end up in drm_gem_mmap(), which will set things
1932 * up so we can get faults in the handler above.
1933 *
1934 * The fault handler will take care of binding the object into the GTT
1935 * (since it may have been evicted to make room for something), allocating
1936 * a fence register, and mapping the appropriate aperture address into
1937 * userspace.
1938 */
1939int
1940i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1941 struct drm_file *file)
1942{
1943 struct drm_i915_gem_mmap_gtt *args = data;
1944
da6b51d0 1945 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
1946}
1947
225067ee
DV
1948/* Immediately discard the backing storage */
1949static void
1950i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1951{
4d6294bf 1952 i915_gem_object_free_mmap_offset(obj);
1286ff73 1953
4d6294bf
CW
1954 if (obj->base.filp == NULL)
1955 return;
e5281ccd 1956
225067ee
DV
1957 /* Our goal here is to return as much of the memory as
1958 * is possible back to the system as we are called from OOM.
1959 * To do this we must instruct the shmfs to drop all of its
1960 * backing pages, *now*.
1961 */
5537252b 1962 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1963 obj->madv = __I915_MADV_PURGED;
1964}
e5281ccd 1965
5537252b
CW
1966/* Try to discard unwanted pages */
1967static void
1968i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1969{
5537252b
CW
1970 struct address_space *mapping;
1971
1972 switch (obj->madv) {
1973 case I915_MADV_DONTNEED:
1974 i915_gem_object_truncate(obj);
1975 case __I915_MADV_PURGED:
1976 return;
1977 }
1978
1979 if (obj->base.filp == NULL)
1980 return;
1981
1982 mapping = file_inode(obj->base.filp)->i_mapping,
1983 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1984}
1985
5cdf5881 1986static void
05394f39 1987i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1988{
90797e6d
ID
1989 struct sg_page_iter sg_iter;
1990 int ret;
1286ff73 1991
05394f39 1992 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1993
6c085a72
CW
1994 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1995 if (ret) {
1996 /* In the event of a disaster, abandon all caches and
1997 * hope for the best.
1998 */
1999 WARN_ON(ret != -EIO);
2c22569b 2000 i915_gem_clflush_object(obj, true);
6c085a72
CW
2001 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2002 }
2003
6dacfd2f 2004 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2005 i915_gem_object_save_bit_17_swizzle(obj);
2006
05394f39
CW
2007 if (obj->madv == I915_MADV_DONTNEED)
2008 obj->dirty = 0;
3ef94daa 2009
90797e6d 2010 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2011 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2012
05394f39 2013 if (obj->dirty)
9da3da66 2014 set_page_dirty(page);
3ef94daa 2015
05394f39 2016 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2017 mark_page_accessed(page);
3ef94daa 2018
9da3da66 2019 page_cache_release(page);
3ef94daa 2020 }
05394f39 2021 obj->dirty = 0;
673a394b 2022
9da3da66
CW
2023 sg_free_table(obj->pages);
2024 kfree(obj->pages);
37e680a1 2025}
6c085a72 2026
dd624afd 2027int
37e680a1
CW
2028i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2029{
2030 const struct drm_i915_gem_object_ops *ops = obj->ops;
2031
2f745ad3 2032 if (obj->pages == NULL)
37e680a1
CW
2033 return 0;
2034
a5570178
CW
2035 if (obj->pages_pin_count)
2036 return -EBUSY;
2037
9843877d 2038 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2039
a2165e31
CW
2040 /* ->put_pages might need to allocate memory for the bit17 swizzle
2041 * array, hence protect them from being reaped by removing them from gtt
2042 * lists early. */
35c20a60 2043 list_del(&obj->global_list);
a2165e31 2044
37e680a1 2045 ops->put_pages(obj);
05394f39 2046 obj->pages = NULL;
37e680a1 2047
5537252b 2048 i915_gem_object_invalidate(obj);
6c085a72
CW
2049
2050 return 0;
2051}
2052
37e680a1 2053static int
6c085a72 2054i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2055{
6c085a72 2056 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2057 int page_count, i;
2058 struct address_space *mapping;
9da3da66
CW
2059 struct sg_table *st;
2060 struct scatterlist *sg;
90797e6d 2061 struct sg_page_iter sg_iter;
e5281ccd 2062 struct page *page;
90797e6d 2063 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2064 gfp_t gfp;
e5281ccd 2065
6c085a72
CW
2066 /* Assert that the object is not currently in any GPU domain. As it
2067 * wasn't in the GTT, there shouldn't be any way it could have been in
2068 * a GPU cache
2069 */
2070 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2071 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2072
9da3da66
CW
2073 st = kmalloc(sizeof(*st), GFP_KERNEL);
2074 if (st == NULL)
2075 return -ENOMEM;
2076
05394f39 2077 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2078 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2079 kfree(st);
e5281ccd 2080 return -ENOMEM;
9da3da66 2081 }
e5281ccd 2082
9da3da66
CW
2083 /* Get the list of pages out of our struct file. They'll be pinned
2084 * at this point until we release them.
2085 *
2086 * Fail silently without starting the shrinker
2087 */
496ad9aa 2088 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2089 gfp = mapping_gfp_mask(mapping);
caf49191 2090 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2091 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2092 sg = st->sgl;
2093 st->nents = 0;
2094 for (i = 0; i < page_count; i++) {
6c085a72
CW
2095 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2096 if (IS_ERR(page)) {
21ab4e74
CW
2097 i915_gem_shrink(dev_priv,
2098 page_count,
2099 I915_SHRINK_BOUND |
2100 I915_SHRINK_UNBOUND |
2101 I915_SHRINK_PURGEABLE);
6c085a72
CW
2102 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2103 }
2104 if (IS_ERR(page)) {
2105 /* We've tried hard to allocate the memory by reaping
2106 * our own buffer, now let the real VM do its job and
2107 * go down in flames if truly OOM.
2108 */
6c085a72 2109 i915_gem_shrink_all(dev_priv);
f461d1be 2110 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2111 if (IS_ERR(page))
2112 goto err_pages;
6c085a72 2113 }
426729dc
KRW
2114#ifdef CONFIG_SWIOTLB
2115 if (swiotlb_nr_tbl()) {
2116 st->nents++;
2117 sg_set_page(sg, page, PAGE_SIZE, 0);
2118 sg = sg_next(sg);
2119 continue;
2120 }
2121#endif
90797e6d
ID
2122 if (!i || page_to_pfn(page) != last_pfn + 1) {
2123 if (i)
2124 sg = sg_next(sg);
2125 st->nents++;
2126 sg_set_page(sg, page, PAGE_SIZE, 0);
2127 } else {
2128 sg->length += PAGE_SIZE;
2129 }
2130 last_pfn = page_to_pfn(page);
3bbbe706
DV
2131
2132 /* Check that the i965g/gm workaround works. */
2133 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2134 }
426729dc
KRW
2135#ifdef CONFIG_SWIOTLB
2136 if (!swiotlb_nr_tbl())
2137#endif
2138 sg_mark_end(sg);
74ce6b6c
CW
2139 obj->pages = st;
2140
6dacfd2f 2141 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2142 i915_gem_object_do_bit_17_swizzle(obj);
2143
656bfa3a
DV
2144 if (obj->tiling_mode != I915_TILING_NONE &&
2145 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2146 i915_gem_object_pin_pages(obj);
2147
e5281ccd
CW
2148 return 0;
2149
2150err_pages:
90797e6d
ID
2151 sg_mark_end(sg);
2152 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2153 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2154 sg_free_table(st);
2155 kfree(st);
0820baf3
CW
2156
2157 /* shmemfs first checks if there is enough memory to allocate the page
2158 * and reports ENOSPC should there be insufficient, along with the usual
2159 * ENOMEM for a genuine allocation failure.
2160 *
2161 * We use ENOSPC in our driver to mean that we have run out of aperture
2162 * space and so want to translate the error from shmemfs back to our
2163 * usual understanding of ENOMEM.
2164 */
2165 if (PTR_ERR(page) == -ENOSPC)
2166 return -ENOMEM;
2167 else
2168 return PTR_ERR(page);
673a394b
EA
2169}
2170
37e680a1
CW
2171/* Ensure that the associated pages are gathered from the backing storage
2172 * and pinned into our object. i915_gem_object_get_pages() may be called
2173 * multiple times before they are released by a single call to
2174 * i915_gem_object_put_pages() - once the pages are no longer referenced
2175 * either as a result of memory pressure (reaping pages under the shrinker)
2176 * or as the object is itself released.
2177 */
2178int
2179i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2180{
2181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182 const struct drm_i915_gem_object_ops *ops = obj->ops;
2183 int ret;
2184
2f745ad3 2185 if (obj->pages)
37e680a1
CW
2186 return 0;
2187
43e28f09 2188 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2189 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2190 return -EFAULT;
43e28f09
CW
2191 }
2192
a5570178
CW
2193 BUG_ON(obj->pages_pin_count);
2194
37e680a1
CW
2195 ret = ops->get_pages(obj);
2196 if (ret)
2197 return ret;
2198
35c20a60 2199 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2200
2201 obj->get_page.sg = obj->pages->sgl;
2202 obj->get_page.last = 0;
2203
37e680a1 2204 return 0;
673a394b
EA
2205}
2206
e2d05a8b 2207static void
05394f39 2208i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2209 struct intel_engine_cs *ring)
673a394b 2210{
41c52415
JH
2211 struct drm_i915_gem_request *req;
2212 struct intel_engine_cs *old_ring;
617dbe27 2213
852835f3 2214 BUG_ON(ring == NULL);
41c52415
JH
2215
2216 req = intel_ring_get_request(ring);
2217 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2218
2219 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2220 /* Keep the request relative to the current ring */
2221 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2222 }
673a394b
EA
2223
2224 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2225 if (!obj->active) {
2226 drm_gem_object_reference(&obj->base);
2227 obj->active = 1;
673a394b 2228 }
e35a41de 2229
05394f39 2230 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2231
97b2a6a1 2232 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2233}
2234
e2d05a8b 2235void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2236 struct intel_engine_cs *ring)
e2d05a8b
BW
2237{
2238 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2239 return i915_gem_object_move_to_active(vma->obj, ring);
2240}
2241
caea7476 2242static void
caea7476 2243i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2244{
feb822cf 2245 struct i915_vma *vma;
ce44b0ea 2246
65ce3027 2247 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2248 BUG_ON(!obj->active);
caea7476 2249
fe14d5f4
TU
2250 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2251 if (!list_empty(&vma->mm_list))
2252 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2253 }
caea7476 2254
f99d7069
DV
2255 intel_fb_obj_flush(obj, true);
2256
65ce3027 2257 list_del_init(&obj->ring_list);
caea7476 2258
97b2a6a1
JH
2259 i915_gem_request_assign(&obj->last_read_req, NULL);
2260 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2261 obj->base.write_domain = 0;
2262
97b2a6a1 2263 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2264
2265 obj->active = 0;
2266 drm_gem_object_unreference(&obj->base);
2267
2268 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2269}
673a394b 2270
c8725f3d
CW
2271static void
2272i915_gem_object_retire(struct drm_i915_gem_object *obj)
2273{
41c52415 2274 if (obj->last_read_req == NULL)
c8725f3d
CW
2275 return;
2276
1b5a433a 2277 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2278 i915_gem_object_move_to_inactive(obj);
2279}
2280
9d773091 2281static int
fca26bb4 2282i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2283{
9d773091 2284 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2285 struct intel_engine_cs *ring;
9d773091 2286 int ret, i, j;
53d227f2 2287
107f27a5 2288 /* Carefully retire all requests without writing to the rings */
9d773091 2289 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2290 ret = intel_ring_idle(ring);
2291 if (ret)
2292 return ret;
9d773091 2293 }
9d773091 2294 i915_gem_retire_requests(dev);
107f27a5
CW
2295
2296 /* Finally reset hw state */
9d773091 2297 for_each_ring(ring, dev_priv, i) {
fca26bb4 2298 intel_ring_init_seqno(ring, seqno);
498d2ac1 2299
ebc348b2
BW
2300 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2301 ring->semaphore.sync_seqno[j] = 0;
9d773091 2302 }
53d227f2 2303
9d773091 2304 return 0;
53d227f2
DV
2305}
2306
fca26bb4
MK
2307int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2308{
2309 struct drm_i915_private *dev_priv = dev->dev_private;
2310 int ret;
2311
2312 if (seqno == 0)
2313 return -EINVAL;
2314
2315 /* HWS page needs to be set less than what we
2316 * will inject to ring
2317 */
2318 ret = i915_gem_init_seqno(dev, seqno - 1);
2319 if (ret)
2320 return ret;
2321
2322 /* Carefully set the last_seqno value so that wrap
2323 * detection still works
2324 */
2325 dev_priv->next_seqno = seqno;
2326 dev_priv->last_seqno = seqno - 1;
2327 if (dev_priv->last_seqno == 0)
2328 dev_priv->last_seqno--;
2329
2330 return 0;
2331}
2332
9d773091
CW
2333int
2334i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2335{
9d773091
CW
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337
2338 /* reserve 0 for non-seqno */
2339 if (dev_priv->next_seqno == 0) {
fca26bb4 2340 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2341 if (ret)
2342 return ret;
53d227f2 2343
9d773091
CW
2344 dev_priv->next_seqno = 1;
2345 }
53d227f2 2346
f72b3435 2347 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2348 return 0;
53d227f2
DV
2349}
2350
a4872ba6 2351int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2352 struct drm_file *file,
9400ae5c 2353 struct drm_i915_gem_object *obj)
673a394b 2354{
3e31c6c0 2355 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2356 struct drm_i915_gem_request *request;
48e29f55 2357 struct intel_ringbuffer *ringbuf;
6d3d8274 2358 u32 request_start;
3cce469c
CW
2359 int ret;
2360
6259cead 2361 request = ring->outstanding_lazy_request;
48e29f55
OM
2362 if (WARN_ON(request == NULL))
2363 return -ENOMEM;
2364
2365 if (i915.enable_execlists) {
21076372 2366 ringbuf = request->ctx->engine[ring->id].ringbuf;
48e29f55
OM
2367 } else
2368 ringbuf = ring->buffer;
2369
2370 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2371 /*
2372 * Emit any outstanding flushes - execbuf can fail to emit the flush
2373 * after having emitted the batchbuffer command. Hence we need to fix
2374 * things up similar to emitting the lazy request. The difference here
2375 * is that the flush _must_ happen before the next request, no matter
2376 * what.
2377 */
48e29f55 2378 if (i915.enable_execlists) {
21076372 2379 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
48e29f55
OM
2380 if (ret)
2381 return ret;
2382 } else {
2383 ret = intel_ring_flush_all_caches(ring);
2384 if (ret)
2385 return ret;
2386 }
cc889e0f 2387
a71d8d94
CW
2388 /* Record the position of the start of the request so that
2389 * should we detect the updated seqno part-way through the
2390 * GPU processing the request, we never over-estimate the
2391 * position of the head.
2392 */
6d3d8274 2393 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2394
48e29f55 2395 if (i915.enable_execlists) {
72f95afa 2396 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2397 if (ret)
2398 return ret;
2399 } else {
2400 ret = ring->add_request(ring);
2401 if (ret)
2402 return ret;
2403 }
673a394b 2404
7d736f4f 2405 request->head = request_start;
6d3d8274 2406 request->tail = intel_ring_get_tail(ringbuf);
7d736f4f
MK
2407
2408 /* Whilst this request exists, batch_obj will be on the
2409 * active_list, and so will hold the active reference. Only when this
2410 * request is retired will the the batch_obj be moved onto the
2411 * inactive_list and lose its active reference. Hence we do not need
2412 * to explicitly hold another reference here.
2413 */
9a7e0c2a 2414 request->batch_obj = obj;
0e50e96b 2415
48e29f55
OM
2416 if (!i915.enable_execlists) {
2417 /* Hold a reference to the current context so that we can inspect
2418 * it later in case a hangcheck error event fires.
2419 */
2420 request->ctx = ring->last_context;
2421 if (request->ctx)
2422 i915_gem_context_reference(request->ctx);
2423 }
0e50e96b 2424
673a394b 2425 request->emitted_jiffies = jiffies;
852835f3 2426 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2427 request->file_priv = NULL;
852835f3 2428
db53a302
CW
2429 if (file) {
2430 struct drm_i915_file_private *file_priv = file->driver_priv;
2431
1c25595f 2432 spin_lock(&file_priv->mm.lock);
f787a5f5 2433 request->file_priv = file_priv;
b962442e 2434 list_add_tail(&request->client_list,
f787a5f5 2435 &file_priv->mm.request_list);
1c25595f 2436 spin_unlock(&file_priv->mm.lock);
071c92de
MK
2437
2438 request->pid = get_pid(task_pid(current));
b962442e 2439 }
673a394b 2440
74328ee5 2441 trace_i915_gem_request_add(request);
6259cead 2442 ring->outstanding_lazy_request = NULL;
db53a302 2443
87255483 2444 i915_queue_hangcheck(ring->dev);
10cd45b6 2445
87255483
DV
2446 queue_delayed_work(dev_priv->wq,
2447 &dev_priv->mm.retire_work,
2448 round_jiffies_up_relative(HZ));
2449 intel_mark_busy(dev_priv->dev);
cc889e0f 2450
3cce469c 2451 return 0;
673a394b
EA
2452}
2453
f787a5f5
CW
2454static inline void
2455i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2456{
1c25595f 2457 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2458
1c25595f
CW
2459 if (!file_priv)
2460 return;
1c5d22f7 2461
1c25595f 2462 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2463 list_del(&request->client_list);
2464 request->file_priv = NULL;
1c25595f 2465 spin_unlock(&file_priv->mm.lock);
673a394b 2466}
673a394b 2467
939fd762 2468static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2469 const struct intel_context *ctx)
be62acb4 2470{
44e2c070 2471 unsigned long elapsed;
be62acb4 2472
44e2c070
MK
2473 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2474
2475 if (ctx->hang_stats.banned)
be62acb4
MK
2476 return true;
2477
676fa572
CW
2478 if (ctx->hang_stats.ban_period_seconds &&
2479 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2480 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2481 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2482 return true;
88b4aa87
MK
2483 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2484 if (i915_stop_ring_allow_warn(dev_priv))
2485 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2486 return true;
3fac8978 2487 }
be62acb4
MK
2488 }
2489
2490 return false;
2491}
2492
939fd762 2493static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2494 struct intel_context *ctx,
b6b0fac0 2495 const bool guilty)
aa60c664 2496{
44e2c070
MK
2497 struct i915_ctx_hang_stats *hs;
2498
2499 if (WARN_ON(!ctx))
2500 return;
aa60c664 2501
44e2c070
MK
2502 hs = &ctx->hang_stats;
2503
2504 if (guilty) {
939fd762 2505 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2506 hs->batch_active++;
2507 hs->guilty_ts = get_seconds();
2508 } else {
2509 hs->batch_pending++;
aa60c664
MK
2510 }
2511}
2512
0e50e96b
MK
2513static void i915_gem_free_request(struct drm_i915_gem_request *request)
2514{
2515 list_del(&request->list);
2516 i915_gem_request_remove_from_client(request);
2517
071c92de
MK
2518 put_pid(request->pid);
2519
abfe262a
JH
2520 i915_gem_request_unreference(request);
2521}
2522
2523void i915_gem_request_free(struct kref *req_ref)
2524{
2525 struct drm_i915_gem_request *req = container_of(req_ref,
2526 typeof(*req), ref);
2527 struct intel_context *ctx = req->ctx;
2528
0794aed3
TD
2529 if (ctx) {
2530 if (i915.enable_execlists) {
abfe262a 2531 struct intel_engine_cs *ring = req->ring;
0e50e96b 2532
0794aed3
TD
2533 if (ctx != ring->default_context)
2534 intel_lr_context_unpin(ring, ctx);
2535 }
abfe262a 2536
dcb4c12a
OM
2537 i915_gem_context_unreference(ctx);
2538 }
abfe262a 2539
efab6d8d 2540 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2541}
2542
6689cb2b
JH
2543int i915_gem_request_alloc(struct intel_engine_cs *ring,
2544 struct intel_context *ctx)
2545{
efab6d8d
CW
2546 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2547 struct drm_i915_gem_request *rq;
6689cb2b 2548 int ret;
6689cb2b
JH
2549
2550 if (ring->outstanding_lazy_request)
2551 return 0;
2552
efab6d8d
CW
2553 rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2554 if (rq == NULL)
6689cb2b
JH
2555 return -ENOMEM;
2556
efab6d8d
CW
2557 kref_init(&rq->ref);
2558 rq->i915 = dev_priv;
2559
2560 ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
6689cb2b 2561 if (ret) {
efab6d8d 2562 kfree(rq);
6689cb2b
JH
2563 return ret;
2564 }
2565
efab6d8d 2566 rq->ring = ring;
6689cb2b
JH
2567
2568 if (i915.enable_execlists)
efab6d8d 2569 ret = intel_logical_ring_alloc_request_extras(rq, ctx);
6689cb2b 2570 else
efab6d8d 2571 ret = intel_ring_alloc_request_extras(rq);
6689cb2b 2572 if (ret) {
efab6d8d 2573 kfree(rq);
6689cb2b
JH
2574 return ret;
2575 }
2576
efab6d8d 2577 ring->outstanding_lazy_request = rq;
6689cb2b
JH
2578 return 0;
2579}
2580
8d9fc7fd 2581struct drm_i915_gem_request *
a4872ba6 2582i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2583{
4db080f9
CW
2584 struct drm_i915_gem_request *request;
2585
2586 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2587 if (i915_gem_request_completed(request, false))
4db080f9 2588 continue;
aa60c664 2589
b6b0fac0 2590 return request;
4db080f9 2591 }
b6b0fac0
MK
2592
2593 return NULL;
2594}
2595
2596static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2597 struct intel_engine_cs *ring)
b6b0fac0
MK
2598{
2599 struct drm_i915_gem_request *request;
2600 bool ring_hung;
2601
8d9fc7fd 2602 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2603
2604 if (request == NULL)
2605 return;
2606
2607 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2608
939fd762 2609 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2610
2611 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2612 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2613}
aa60c664 2614
4db080f9 2615static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2616 struct intel_engine_cs *ring)
4db080f9 2617{
dfaae392 2618 while (!list_empty(&ring->active_list)) {
05394f39 2619 struct drm_i915_gem_object *obj;
9375e446 2620
05394f39
CW
2621 obj = list_first_entry(&ring->active_list,
2622 struct drm_i915_gem_object,
2623 ring_list);
9375e446 2624
05394f39 2625 i915_gem_object_move_to_inactive(obj);
673a394b 2626 }
1d62beea 2627
dcb4c12a
OM
2628 /*
2629 * Clear the execlists queue up before freeing the requests, as those
2630 * are the ones that keep the context and ringbuffer backing objects
2631 * pinned in place.
2632 */
2633 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2634 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2635
2636 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2637 struct drm_i915_gem_request,
dcb4c12a
OM
2638 execlist_link);
2639 list_del(&submit_req->execlist_link);
1197b4f2
MK
2640
2641 if (submit_req->ctx != ring->default_context)
2642 intel_lr_context_unpin(ring, submit_req->ctx);
2643
b3a38998 2644 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2645 }
2646
1d62beea
BW
2647 /*
2648 * We must free the requests after all the corresponding objects have
2649 * been moved off active lists. Which is the same order as the normal
2650 * retire_requests function does. This is important if object hold
2651 * implicit references on things like e.g. ppgtt address spaces through
2652 * the request.
2653 */
2654 while (!list_empty(&ring->request_list)) {
2655 struct drm_i915_gem_request *request;
2656
2657 request = list_first_entry(&ring->request_list,
2658 struct drm_i915_gem_request,
2659 list);
2660
2661 i915_gem_free_request(request);
2662 }
e3efda49 2663
6259cead
JH
2664 /* This may not have been flushed before the reset, so clean it now */
2665 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2666}
2667
19b2dbde 2668void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2669{
2670 struct drm_i915_private *dev_priv = dev->dev_private;
2671 int i;
2672
4b9de737 2673 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2674 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2675
94a335db
DV
2676 /*
2677 * Commit delayed tiling changes if we have an object still
2678 * attached to the fence, otherwise just clear the fence.
2679 */
2680 if (reg->obj) {
2681 i915_gem_object_update_fence(reg->obj, reg,
2682 reg->obj->tiling_mode);
2683 } else {
2684 i915_gem_write_fence(dev, i, NULL);
2685 }
312817a3
CW
2686 }
2687}
2688
069efc1d 2689void i915_gem_reset(struct drm_device *dev)
673a394b 2690{
77f01230 2691 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2692 struct intel_engine_cs *ring;
1ec14ad3 2693 int i;
673a394b 2694
4db080f9
CW
2695 /*
2696 * Before we free the objects from the requests, we need to inspect
2697 * them for finding the guilty party. As the requests only borrow
2698 * their reference to the objects, the inspection must be done first.
2699 */
2700 for_each_ring(ring, dev_priv, i)
2701 i915_gem_reset_ring_status(dev_priv, ring);
2702
b4519513 2703 for_each_ring(ring, dev_priv, i)
4db080f9 2704 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2705
acce9ffa
BW
2706 i915_gem_context_reset(dev);
2707
19b2dbde 2708 i915_gem_restore_fences(dev);
673a394b
EA
2709}
2710
2711/**
2712 * This function clears the request list as sequence numbers are passed.
2713 */
1cf0ba14 2714void
a4872ba6 2715i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2716{
db53a302 2717 if (list_empty(&ring->request_list))
6c0594a3
KW
2718 return;
2719
db53a302 2720 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2721
832a3aad
CW
2722 /* Retire requests first as we use it above for the early return.
2723 * If we retire requests last, we may use a later seqno and so clear
2724 * the requests lists without clearing the active list, leading to
2725 * confusion.
e9103038 2726 */
852835f3 2727 while (!list_empty(&ring->request_list)) {
673a394b 2728 struct drm_i915_gem_request *request;
673a394b 2729
852835f3 2730 request = list_first_entry(&ring->request_list,
673a394b
EA
2731 struct drm_i915_gem_request,
2732 list);
673a394b 2733
1b5a433a 2734 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2735 break;
2736
74328ee5 2737 trace_i915_gem_request_retire(request);
48e29f55 2738
a71d8d94
CW
2739 /* We know the GPU must have read the request to have
2740 * sent us the seqno + interrupt, so use the position
2741 * of tail of the request to update the last known position
2742 * of the GPU head.
2743 */
98e1bd4a 2744 request->ringbuf->last_retired_head = request->postfix;
b84d5f0c 2745
0e50e96b 2746 i915_gem_free_request(request);
b84d5f0c 2747 }
673a394b 2748
832a3aad
CW
2749 /* Move any buffers on the active list that are no longer referenced
2750 * by the ringbuffer to the flushing/inactive lists as appropriate,
2751 * before we free the context associated with the requests.
2752 */
2753 while (!list_empty(&ring->active_list)) {
2754 struct drm_i915_gem_object *obj;
2755
2756 obj = list_first_entry(&ring->active_list,
2757 struct drm_i915_gem_object,
2758 ring_list);
2759
2760 if (!i915_gem_request_completed(obj->last_read_req, true))
2761 break;
2762
2763 i915_gem_object_move_to_inactive(obj);
2764 }
2765
581c26e8
JH
2766 if (unlikely(ring->trace_irq_req &&
2767 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2768 ring->irq_put(ring);
581c26e8 2769 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2770 }
23bc5982 2771
db53a302 2772 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2773}
2774
b29c19b6 2775bool
b09a1fec
CW
2776i915_gem_retire_requests(struct drm_device *dev)
2777{
3e31c6c0 2778 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2779 struct intel_engine_cs *ring;
b29c19b6 2780 bool idle = true;
1ec14ad3 2781 int i;
b09a1fec 2782
b29c19b6 2783 for_each_ring(ring, dev_priv, i) {
b4519513 2784 i915_gem_retire_requests_ring(ring);
b29c19b6 2785 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2786 if (i915.enable_execlists) {
2787 unsigned long flags;
2788
2789 spin_lock_irqsave(&ring->execlist_lock, flags);
2790 idle &= list_empty(&ring->execlist_queue);
2791 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2792
2793 intel_execlists_retire_requests(ring);
2794 }
b29c19b6
CW
2795 }
2796
2797 if (idle)
2798 mod_delayed_work(dev_priv->wq,
2799 &dev_priv->mm.idle_work,
2800 msecs_to_jiffies(100));
2801
2802 return idle;
b09a1fec
CW
2803}
2804
75ef9da2 2805static void
673a394b
EA
2806i915_gem_retire_work_handler(struct work_struct *work)
2807{
b29c19b6
CW
2808 struct drm_i915_private *dev_priv =
2809 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2810 struct drm_device *dev = dev_priv->dev;
0a58705b 2811 bool idle;
673a394b 2812
891b48cf 2813 /* Come back later if the device is busy... */
b29c19b6
CW
2814 idle = false;
2815 if (mutex_trylock(&dev->struct_mutex)) {
2816 idle = i915_gem_retire_requests(dev);
2817 mutex_unlock(&dev->struct_mutex);
673a394b 2818 }
b29c19b6 2819 if (!idle)
bcb45086
CW
2820 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2821 round_jiffies_up_relative(HZ));
b29c19b6 2822}
0a58705b 2823
b29c19b6
CW
2824static void
2825i915_gem_idle_work_handler(struct work_struct *work)
2826{
2827 struct drm_i915_private *dev_priv =
2828 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2829 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2830 struct intel_engine_cs *ring;
2831 int i;
2832
2833 for_each_ring(ring, dev_priv, i)
2834 if (!list_empty(&ring->request_list))
2835 return;
35c94185
CW
2836
2837 intel_mark_idle(dev);
2838
2839 if (mutex_trylock(&dev->struct_mutex)) {
2840 struct intel_engine_cs *ring;
2841 int i;
2842
2843 for_each_ring(ring, dev_priv, i)
2844 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2845
35c94185
CW
2846 mutex_unlock(&dev->struct_mutex);
2847 }
673a394b
EA
2848}
2849
30dfebf3
DV
2850/**
2851 * Ensures that an object will eventually get non-busy by flushing any required
2852 * write domains, emitting any outstanding lazy request and retiring and
2853 * completed requests.
2854 */
2855static int
2856i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2857{
41c52415 2858 struct intel_engine_cs *ring;
30dfebf3
DV
2859 int ret;
2860
2861 if (obj->active) {
41c52415
JH
2862 ring = i915_gem_request_get_ring(obj->last_read_req);
2863
b6660d59 2864 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2865 if (ret)
2866 return ret;
2867
41c52415 2868 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2869 }
2870
2871 return 0;
2872}
2873
23ba4fd0
BW
2874/**
2875 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2876 * @DRM_IOCTL_ARGS: standard ioctl arguments
2877 *
2878 * Returns 0 if successful, else an error is returned with the remaining time in
2879 * the timeout parameter.
2880 * -ETIME: object is still busy after timeout
2881 * -ERESTARTSYS: signal interrupted the wait
2882 * -ENONENT: object doesn't exist
2883 * Also possible, but rare:
2884 * -EAGAIN: GPU wedged
2885 * -ENOMEM: damn
2886 * -ENODEV: Internal IRQ fail
2887 * -E?: The add request failed
2888 *
2889 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2890 * non-zero timeout parameter the wait ioctl will wait for the given number of
2891 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2892 * without holding struct_mutex the object may become re-busied before this
2893 * function completes. A similar but shorter * race condition exists in the busy
2894 * ioctl
2895 */
2896int
2897i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2898{
3e31c6c0 2899 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2900 struct drm_i915_gem_wait *args = data;
2901 struct drm_i915_gem_object *obj;
ff865885 2902 struct drm_i915_gem_request *req;
f69061be 2903 unsigned reset_counter;
23ba4fd0
BW
2904 int ret = 0;
2905
11b5d511
DV
2906 if (args->flags != 0)
2907 return -EINVAL;
2908
23ba4fd0
BW
2909 ret = i915_mutex_lock_interruptible(dev);
2910 if (ret)
2911 return ret;
2912
2913 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2914 if (&obj->base == NULL) {
2915 mutex_unlock(&dev->struct_mutex);
2916 return -ENOENT;
2917 }
2918
30dfebf3
DV
2919 /* Need to make sure the object gets inactive eventually. */
2920 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2921 if (ret)
2922 goto out;
2923
97b2a6a1
JH
2924 if (!obj->active || !obj->last_read_req)
2925 goto out;
23ba4fd0 2926
ff865885 2927 req = obj->last_read_req;
23ba4fd0 2928
23ba4fd0 2929 /* Do this after OLR check to make sure we make forward progress polling
762e4583 2930 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 2931 */
762e4583 2932 if (args->timeout_ns == 0) {
23ba4fd0
BW
2933 ret = -ETIME;
2934 goto out;
2935 }
2936
2937 drm_gem_object_unreference(&obj->base);
f69061be 2938 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2939 i915_gem_request_reference(req);
23ba4fd0
BW
2940 mutex_unlock(&dev->struct_mutex);
2941
762e4583
CW
2942 ret = __i915_wait_request(req, reset_counter, true,
2943 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
9c654818 2944 file->driver_priv);
41037f9f 2945 i915_gem_request_unreference__unlocked(req);
ff865885 2946 return ret;
23ba4fd0
BW
2947
2948out:
2949 drm_gem_object_unreference(&obj->base);
2950 mutex_unlock(&dev->struct_mutex);
2951 return ret;
2952}
2953
5816d648
BW
2954/**
2955 * i915_gem_object_sync - sync an object to a ring.
2956 *
2957 * @obj: object which may be in use on another ring.
2958 * @to: ring we wish to use the object on. May be NULL.
2959 *
2960 * This code is meant to abstract object synchronization with the GPU.
2961 * Calling with NULL implies synchronizing the object with the CPU
2962 * rather than a particular GPU ring.
2963 *
2964 * Returns 0 if successful, else propagates up the lower layer error.
2965 */
2911a35b
BW
2966int
2967i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2968 struct intel_engine_cs *to)
2911a35b 2969{
41c52415 2970 struct intel_engine_cs *from;
2911a35b
BW
2971 u32 seqno;
2972 int ret, idx;
2973
41c52415
JH
2974 from = i915_gem_request_get_ring(obj->last_read_req);
2975
2911a35b
BW
2976 if (from == NULL || to == from)
2977 return 0;
2978
5816d648 2979 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2980 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2981
2982 idx = intel_ring_sync_index(from, to);
2983
97b2a6a1 2984 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2985 /* Optimization: Avoid semaphore sync when we are sure we already
2986 * waited for an object with higher seqno */
ebc348b2 2987 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2988 return 0;
2989
b6660d59 2990 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
2991 if (ret)
2992 return ret;
2911a35b 2993
74328ee5 2994 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 2995 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2996 if (!ret)
97b2a6a1 2997 /* We use last_read_req because sync_to()
7b01e260
MK
2998 * might have just caused seqno wrap under
2999 * the radar.
3000 */
97b2a6a1
JH
3001 from->semaphore.sync_seqno[idx] =
3002 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3003
e3a5a225 3004 return ret;
2911a35b
BW
3005}
3006
b5ffc9bc
CW
3007static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3008{
3009 u32 old_write_domain, old_read_domains;
3010
b5ffc9bc
CW
3011 /* Force a pagefault for domain tracking on next user access */
3012 i915_gem_release_mmap(obj);
3013
b97c3d9c
KP
3014 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3015 return;
3016
97c809fd
CW
3017 /* Wait for any direct GTT access to complete */
3018 mb();
3019
b5ffc9bc
CW
3020 old_read_domains = obj->base.read_domains;
3021 old_write_domain = obj->base.write_domain;
3022
3023 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3024 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3025
3026 trace_i915_gem_object_change_domain(obj,
3027 old_read_domains,
3028 old_write_domain);
3029}
3030
07fe0b12 3031int i915_vma_unbind(struct i915_vma *vma)
673a394b 3032{
07fe0b12 3033 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3034 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3035 int ret;
673a394b 3036
07fe0b12 3037 if (list_empty(&vma->vma_link))
673a394b
EA
3038 return 0;
3039
0ff501cb
DV
3040 if (!drm_mm_node_allocated(&vma->node)) {
3041 i915_gem_vma_destroy(vma);
0ff501cb
DV
3042 return 0;
3043 }
433544bd 3044
d7f46fc4 3045 if (vma->pin_count)
31d8d651 3046 return -EBUSY;
673a394b 3047
c4670ad0
CW
3048 BUG_ON(obj->pages == NULL);
3049
a8198eea 3050 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3051 if (ret)
a8198eea
CW
3052 return ret;
3053 /* Continue on if we fail due to EIO, the GPU is hung so we
3054 * should be safe and we need to cleanup or else we might
3055 * cause memory corruption through use-after-free.
3056 */
3057
fe14d5f4
TU
3058 if (i915_is_ggtt(vma->vm) &&
3059 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3060 i915_gem_object_finish_gtt(obj);
5323fd04 3061
8b1bc9b4
DV
3062 /* release the fence reg _after_ flushing */
3063 ret = i915_gem_object_put_fence(obj);
3064 if (ret)
3065 return ret;
3066 }
96b47b65 3067
07fe0b12 3068 trace_i915_vma_unbind(vma);
db53a302 3069
6f65e29a
BW
3070 vma->unbind_vma(vma);
3071
64bf9303 3072 list_del_init(&vma->mm_list);
fe14d5f4
TU
3073 if (i915_is_ggtt(vma->vm)) {
3074 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3075 obj->map_and_fenceable = false;
3076 } else if (vma->ggtt_view.pages) {
3077 sg_free_table(vma->ggtt_view.pages);
3078 kfree(vma->ggtt_view.pages);
3079 vma->ggtt_view.pages = NULL;
3080 }
3081 }
673a394b 3082
2f633156
BW
3083 drm_mm_remove_node(&vma->node);
3084 i915_gem_vma_destroy(vma);
3085
3086 /* Since the unbound list is global, only move to that list if
b93dab6e 3087 * no more VMAs exist. */
9490edb5 3088 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3089 /* Throw away the active reference before
3090 * moving to the unbound list. */
3091 i915_gem_object_retire(obj);
3092
9490edb5 3093 i915_gem_gtt_finish_object(obj);
2f633156 3094 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3095 }
673a394b 3096
70903c3b
CW
3097 /* And finally now the object is completely decoupled from this vma,
3098 * we can drop its hold on the backing storage and allow it to be
3099 * reaped by the shrinker.
3100 */
3101 i915_gem_object_unpin_pages(obj);
3102
88241785 3103 return 0;
54cf91dc
CW
3104}
3105
b2da9fe5 3106int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3107{
3e31c6c0 3108 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3109 struct intel_engine_cs *ring;
1ec14ad3 3110 int ret, i;
4df2faf4 3111
4df2faf4 3112 /* Flush everything onto the inactive list. */
b4519513 3113 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3114 if (!i915.enable_execlists) {
3115 ret = i915_switch_context(ring, ring->default_context);
3116 if (ret)
3117 return ret;
3118 }
b6c7488d 3119
3e960501 3120 ret = intel_ring_idle(ring);
1ec14ad3
CW
3121 if (ret)
3122 return ret;
3123 }
4df2faf4 3124
8a1a49f9 3125 return 0;
4df2faf4
DV
3126}
3127
9ce079e4
CW
3128static void i965_write_fence_reg(struct drm_device *dev, int reg,
3129 struct drm_i915_gem_object *obj)
de151cf6 3130{
3e31c6c0 3131 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3132 int fence_reg;
3133 int fence_pitch_shift;
de151cf6 3134
56c844e5
ID
3135 if (INTEL_INFO(dev)->gen >= 6) {
3136 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3137 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3138 } else {
3139 fence_reg = FENCE_REG_965_0;
3140 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3141 }
3142
d18b9619
CW
3143 fence_reg += reg * 8;
3144
3145 /* To w/a incoherency with non-atomic 64-bit register updates,
3146 * we split the 64-bit update into two 32-bit writes. In order
3147 * for a partial fence not to be evaluated between writes, we
3148 * precede the update with write to turn off the fence register,
3149 * and only enable the fence as the last step.
3150 *
3151 * For extra levels of paranoia, we make sure each step lands
3152 * before applying the next step.
3153 */
3154 I915_WRITE(fence_reg, 0);
3155 POSTING_READ(fence_reg);
3156
9ce079e4 3157 if (obj) {
f343c5f6 3158 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3159 uint64_t val;
de151cf6 3160
af1a7301
BP
3161 /* Adjust fence size to match tiled area */
3162 if (obj->tiling_mode != I915_TILING_NONE) {
3163 uint32_t row_size = obj->stride *
3164 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3165 size = (size / row_size) * row_size;
3166 }
3167
f343c5f6 3168 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3169 0xfffff000) << 32;
f343c5f6 3170 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3171 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3172 if (obj->tiling_mode == I915_TILING_Y)
3173 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3174 val |= I965_FENCE_REG_VALID;
c6642782 3175
d18b9619
CW
3176 I915_WRITE(fence_reg + 4, val >> 32);
3177 POSTING_READ(fence_reg + 4);
3178
3179 I915_WRITE(fence_reg + 0, val);
3180 POSTING_READ(fence_reg);
3181 } else {
3182 I915_WRITE(fence_reg + 4, 0);
3183 POSTING_READ(fence_reg + 4);
3184 }
de151cf6
JB
3185}
3186
9ce079e4
CW
3187static void i915_write_fence_reg(struct drm_device *dev, int reg,
3188 struct drm_i915_gem_object *obj)
de151cf6 3189{
3e31c6c0 3190 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3191 u32 val;
de151cf6 3192
9ce079e4 3193 if (obj) {
f343c5f6 3194 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3195 int pitch_val;
3196 int tile_width;
c6642782 3197
f343c5f6 3198 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3199 (size & -size) != size ||
f343c5f6
BW
3200 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3201 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3202 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3203
9ce079e4
CW
3204 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3205 tile_width = 128;
3206 else
3207 tile_width = 512;
3208
3209 /* Note: pitch better be a power of two tile widths */
3210 pitch_val = obj->stride / tile_width;
3211 pitch_val = ffs(pitch_val) - 1;
3212
f343c5f6 3213 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3214 if (obj->tiling_mode == I915_TILING_Y)
3215 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3216 val |= I915_FENCE_SIZE_BITS(size);
3217 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3218 val |= I830_FENCE_REG_VALID;
3219 } else
3220 val = 0;
3221
3222 if (reg < 8)
3223 reg = FENCE_REG_830_0 + reg * 4;
3224 else
3225 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3226
3227 I915_WRITE(reg, val);
3228 POSTING_READ(reg);
de151cf6
JB
3229}
3230
9ce079e4
CW
3231static void i830_write_fence_reg(struct drm_device *dev, int reg,
3232 struct drm_i915_gem_object *obj)
de151cf6 3233{
3e31c6c0 3234 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3235 uint32_t val;
de151cf6 3236
9ce079e4 3237 if (obj) {
f343c5f6 3238 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3239 uint32_t pitch_val;
de151cf6 3240
f343c5f6 3241 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3242 (size & -size) != size ||
f343c5f6
BW
3243 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3244 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3245 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3246
9ce079e4
CW
3247 pitch_val = obj->stride / 128;
3248 pitch_val = ffs(pitch_val) - 1;
de151cf6 3249
f343c5f6 3250 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3251 if (obj->tiling_mode == I915_TILING_Y)
3252 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3253 val |= I830_FENCE_SIZE_BITS(size);
3254 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3255 val |= I830_FENCE_REG_VALID;
3256 } else
3257 val = 0;
c6642782 3258
9ce079e4
CW
3259 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3260 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3261}
3262
d0a57789
CW
3263inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3264{
3265 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3266}
3267
9ce079e4
CW
3268static void i915_gem_write_fence(struct drm_device *dev, int reg,
3269 struct drm_i915_gem_object *obj)
3270{
d0a57789
CW
3271 struct drm_i915_private *dev_priv = dev->dev_private;
3272
3273 /* Ensure that all CPU reads are completed before installing a fence
3274 * and all writes before removing the fence.
3275 */
3276 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3277 mb();
3278
94a335db
DV
3279 WARN(obj && (!obj->stride || !obj->tiling_mode),
3280 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3281 obj->stride, obj->tiling_mode);
3282
ce38ab05
RV
3283 if (IS_GEN2(dev))
3284 i830_write_fence_reg(dev, reg, obj);
3285 else if (IS_GEN3(dev))
3286 i915_write_fence_reg(dev, reg, obj);
3287 else if (INTEL_INFO(dev)->gen >= 4)
3288 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3289
3290 /* And similarly be paranoid that no direct access to this region
3291 * is reordered to before the fence is installed.
3292 */
3293 if (i915_gem_object_needs_mb(obj))
3294 mb();
de151cf6
JB
3295}
3296
61050808
CW
3297static inline int fence_number(struct drm_i915_private *dev_priv,
3298 struct drm_i915_fence_reg *fence)
3299{
3300 return fence - dev_priv->fence_regs;
3301}
3302
3303static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3304 struct drm_i915_fence_reg *fence,
3305 bool enable)
3306{
2dc8aae0 3307 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3308 int reg = fence_number(dev_priv, fence);
3309
3310 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3311
3312 if (enable) {
46a0b638 3313 obj->fence_reg = reg;
61050808
CW
3314 fence->obj = obj;
3315 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3316 } else {
3317 obj->fence_reg = I915_FENCE_REG_NONE;
3318 fence->obj = NULL;
3319 list_del_init(&fence->lru_list);
3320 }
94a335db 3321 obj->fence_dirty = false;
61050808
CW
3322}
3323
d9e86c0e 3324static int
d0a57789 3325i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3326{
97b2a6a1 3327 if (obj->last_fenced_req) {
a4b3a571 3328 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3329 if (ret)
3330 return ret;
d9e86c0e 3331
97b2a6a1 3332 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3333 }
3334
3335 return 0;
3336}
3337
3338int
3339i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3340{
61050808 3341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3342 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3343 int ret;
3344
d0a57789 3345 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3346 if (ret)
3347 return ret;
3348
61050808
CW
3349 if (obj->fence_reg == I915_FENCE_REG_NONE)
3350 return 0;
d9e86c0e 3351
f9c513e9
CW
3352 fence = &dev_priv->fence_regs[obj->fence_reg];
3353
aff10b30
DV
3354 if (WARN_ON(fence->pin_count))
3355 return -EBUSY;
3356
61050808 3357 i915_gem_object_fence_lost(obj);
f9c513e9 3358 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3359
3360 return 0;
3361}
3362
3363static struct drm_i915_fence_reg *
a360bb1a 3364i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3365{
ae3db24a 3366 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3367 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3368 int i;
ae3db24a
DV
3369
3370 /* First try to find a free reg */
d9e86c0e 3371 avail = NULL;
ae3db24a
DV
3372 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3373 reg = &dev_priv->fence_regs[i];
3374 if (!reg->obj)
d9e86c0e 3375 return reg;
ae3db24a 3376
1690e1eb 3377 if (!reg->pin_count)
d9e86c0e 3378 avail = reg;
ae3db24a
DV
3379 }
3380
d9e86c0e 3381 if (avail == NULL)
5dce5b93 3382 goto deadlock;
ae3db24a
DV
3383
3384 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3385 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3386 if (reg->pin_count)
ae3db24a
DV
3387 continue;
3388
8fe301ad 3389 return reg;
ae3db24a
DV
3390 }
3391
5dce5b93
CW
3392deadlock:
3393 /* Wait for completion of pending flips which consume fences */
3394 if (intel_has_pending_fb_unpin(dev))
3395 return ERR_PTR(-EAGAIN);
3396
3397 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3398}
3399
de151cf6 3400/**
9a5a53b3 3401 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3402 * @obj: object to map through a fence reg
3403 *
3404 * When mapping objects through the GTT, userspace wants to be able to write
3405 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3406 * This function walks the fence regs looking for a free one for @obj,
3407 * stealing one if it can't find any.
3408 *
3409 * It then sets up the reg based on the object's properties: address, pitch
3410 * and tiling format.
9a5a53b3
CW
3411 *
3412 * For an untiled surface, this removes any existing fence.
de151cf6 3413 */
8c4b8c3f 3414int
06d98131 3415i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3416{
05394f39 3417 struct drm_device *dev = obj->base.dev;
79e53945 3418 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3419 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3420 struct drm_i915_fence_reg *reg;
ae3db24a 3421 int ret;
de151cf6 3422
14415745
CW
3423 /* Have we updated the tiling parameters upon the object and so
3424 * will need to serialise the write to the associated fence register?
3425 */
5d82e3e6 3426 if (obj->fence_dirty) {
d0a57789 3427 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3428 if (ret)
3429 return ret;
3430 }
9a5a53b3 3431
d9e86c0e 3432 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3433 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3434 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3435 if (!obj->fence_dirty) {
14415745
CW
3436 list_move_tail(&reg->lru_list,
3437 &dev_priv->mm.fence_list);
3438 return 0;
3439 }
3440 } else if (enable) {
e6a84468
CW
3441 if (WARN_ON(!obj->map_and_fenceable))
3442 return -EINVAL;
3443
14415745 3444 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3445 if (IS_ERR(reg))
3446 return PTR_ERR(reg);
d9e86c0e 3447
14415745
CW
3448 if (reg->obj) {
3449 struct drm_i915_gem_object *old = reg->obj;
3450
d0a57789 3451 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3452 if (ret)
3453 return ret;
3454
14415745 3455 i915_gem_object_fence_lost(old);
29c5a587 3456 }
14415745 3457 } else
a09ba7fa 3458 return 0;
a09ba7fa 3459
14415745 3460 i915_gem_object_update_fence(obj, reg, enable);
14415745 3461
9ce079e4 3462 return 0;
de151cf6
JB
3463}
3464
4144f9b5 3465static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3466 unsigned long cache_level)
3467{
4144f9b5 3468 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3469 struct drm_mm_node *other;
3470
4144f9b5
CW
3471 /*
3472 * On some machines we have to be careful when putting differing types
3473 * of snoopable memory together to avoid the prefetcher crossing memory
3474 * domains and dying. During vm initialisation, we decide whether or not
3475 * these constraints apply and set the drm_mm.color_adjust
3476 * appropriately.
42d6ab48 3477 */
4144f9b5 3478 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3479 return true;
3480
c6cfb325 3481 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3482 return true;
3483
3484 if (list_empty(&gtt_space->node_list))
3485 return true;
3486
3487 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3488 if (other->allocated && !other->hole_follows && other->color != cache_level)
3489 return false;
3490
3491 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3492 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3493 return false;
3494
3495 return true;
3496}
3497
673a394b
EA
3498/**
3499 * Finds free space in the GTT aperture and binds the object there.
3500 */
262de145 3501static struct i915_vma *
07fe0b12
BW
3502i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3503 struct i915_address_space *vm,
ec7adb6e 3504 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3505 unsigned alignment,
ec7adb6e 3506 uint64_t flags)
673a394b 3507{
05394f39 3508 struct drm_device *dev = obj->base.dev;
3e31c6c0 3509 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3510 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3511 unsigned long start =
3512 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3513 unsigned long end =
1ec9e26d 3514 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3515 struct i915_vma *vma;
07f73f69 3516 int ret;
673a394b 3517
ec7adb6e
JL
3518 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3519 return ERR_PTR(-EINVAL);
3520
e28f8711
CW
3521 fence_size = i915_gem_get_gtt_size(dev,
3522 obj->base.size,
3523 obj->tiling_mode);
3524 fence_alignment = i915_gem_get_gtt_alignment(dev,
3525 obj->base.size,
d865110c 3526 obj->tiling_mode, true);
e28f8711 3527 unfenced_alignment =
d865110c 3528 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3529 obj->base.size,
3530 obj->tiling_mode, false);
a00b10c3 3531
673a394b 3532 if (alignment == 0)
1ec9e26d 3533 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3534 unfenced_alignment;
1ec9e26d 3535 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3536 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3537 return ERR_PTR(-EINVAL);
673a394b
EA
3538 }
3539
1ec9e26d 3540 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3541
654fc607
CW
3542 /* If the object is bigger than the entire aperture, reject it early
3543 * before evicting everything in a vain attempt to find space.
3544 */
d23db88c
CW
3545 if (obj->base.size > end) {
3546 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3547 obj->base.size,
1ec9e26d 3548 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3549 end);
262de145 3550 return ERR_PTR(-E2BIG);
654fc607
CW
3551 }
3552
37e680a1 3553 ret = i915_gem_object_get_pages(obj);
6c085a72 3554 if (ret)
262de145 3555 return ERR_PTR(ret);
6c085a72 3556
fbdda6fb
CW
3557 i915_gem_object_pin_pages(obj);
3558
ec7adb6e
JL
3559 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3560 i915_gem_obj_lookup_or_create_vma(obj, vm);
3561
262de145 3562 if (IS_ERR(vma))
bc6bc15b 3563 goto err_unpin;
2f633156 3564
0a9ae0d7 3565search_free:
07fe0b12 3566 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3567 size, alignment,
d23db88c
CW
3568 obj->cache_level,
3569 start, end,
62347f9e
LK
3570 DRM_MM_SEARCH_DEFAULT,
3571 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3572 if (ret) {
f6cd1f15 3573 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3574 obj->cache_level,
3575 start, end,
3576 flags);
dc9dd7a2
CW
3577 if (ret == 0)
3578 goto search_free;
9731129c 3579
bc6bc15b 3580 goto err_free_vma;
673a394b 3581 }
4144f9b5 3582 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3583 ret = -EINVAL;
bc6bc15b 3584 goto err_remove_node;
673a394b
EA
3585 }
3586
74163907 3587 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3588 if (ret)
bc6bc15b 3589 goto err_remove_node;
673a394b 3590
fe14d5f4
TU
3591 trace_i915_vma_bind(vma, flags);
3592 ret = i915_vma_bind(vma, obj->cache_level,
3593 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3594 if (ret)
3595 goto err_finish_gtt;
3596
35c20a60 3597 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3598 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3599
262de145 3600 return vma;
2f633156 3601
fe14d5f4
TU
3602err_finish_gtt:
3603 i915_gem_gtt_finish_object(obj);
bc6bc15b 3604err_remove_node:
6286ef9b 3605 drm_mm_remove_node(&vma->node);
bc6bc15b 3606err_free_vma:
2f633156 3607 i915_gem_vma_destroy(vma);
262de145 3608 vma = ERR_PTR(ret);
bc6bc15b 3609err_unpin:
2f633156 3610 i915_gem_object_unpin_pages(obj);
262de145 3611 return vma;
673a394b
EA
3612}
3613
000433b6 3614bool
2c22569b
CW
3615i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3616 bool force)
673a394b 3617{
673a394b
EA
3618 /* If we don't have a page list set up, then we're not pinned
3619 * to GPU, and we can ignore the cache flush because it'll happen
3620 * again at bind time.
3621 */
05394f39 3622 if (obj->pages == NULL)
000433b6 3623 return false;
673a394b 3624
769ce464
ID
3625 /*
3626 * Stolen memory is always coherent with the GPU as it is explicitly
3627 * marked as wc by the system, or the system is cache-coherent.
3628 */
6a2c4232 3629 if (obj->stolen || obj->phys_handle)
000433b6 3630 return false;
769ce464 3631
9c23f7fc
CW
3632 /* If the GPU is snooping the contents of the CPU cache,
3633 * we do not need to manually clear the CPU cache lines. However,
3634 * the caches are only snooped when the render cache is
3635 * flushed/invalidated. As we always have to emit invalidations
3636 * and flushes when moving into and out of the RENDER domain, correct
3637 * snooping behaviour occurs naturally as the result of our domain
3638 * tracking.
3639 */
0f71979a
CW
3640 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3641 obj->cache_dirty = true;
000433b6 3642 return false;
0f71979a 3643 }
9c23f7fc 3644
1c5d22f7 3645 trace_i915_gem_object_clflush(obj);
9da3da66 3646 drm_clflush_sg(obj->pages);
0f71979a 3647 obj->cache_dirty = false;
000433b6
CW
3648
3649 return true;
e47c68e9
EA
3650}
3651
3652/** Flushes the GTT write domain for the object if it's dirty. */
3653static void
05394f39 3654i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3655{
1c5d22f7
CW
3656 uint32_t old_write_domain;
3657
05394f39 3658 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3659 return;
3660
63256ec5 3661 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3662 * to it immediately go to main memory as far as we know, so there's
3663 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3664 *
3665 * However, we do have to enforce the order so that all writes through
3666 * the GTT land before any writes to the device, such as updates to
3667 * the GATT itself.
e47c68e9 3668 */
63256ec5
CW
3669 wmb();
3670
05394f39
CW
3671 old_write_domain = obj->base.write_domain;
3672 obj->base.write_domain = 0;
1c5d22f7 3673
f99d7069
DV
3674 intel_fb_obj_flush(obj, false);
3675
1c5d22f7 3676 trace_i915_gem_object_change_domain(obj,
05394f39 3677 obj->base.read_domains,
1c5d22f7 3678 old_write_domain);
e47c68e9
EA
3679}
3680
3681/** Flushes the CPU write domain for the object if it's dirty. */
3682static void
e62b59e4 3683i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3684{
1c5d22f7 3685 uint32_t old_write_domain;
e47c68e9 3686
05394f39 3687 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3688 return;
3689
e62b59e4 3690 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3691 i915_gem_chipset_flush(obj->base.dev);
3692
05394f39
CW
3693 old_write_domain = obj->base.write_domain;
3694 obj->base.write_domain = 0;
1c5d22f7 3695
f99d7069
DV
3696 intel_fb_obj_flush(obj, false);
3697
1c5d22f7 3698 trace_i915_gem_object_change_domain(obj,
05394f39 3699 obj->base.read_domains,
1c5d22f7 3700 old_write_domain);
e47c68e9
EA
3701}
3702
2ef7eeaa
EA
3703/**
3704 * Moves a single object to the GTT read, and possibly write domain.
3705 *
3706 * This function returns when the move is complete, including waiting on
3707 * flushes to occur.
3708 */
79e53945 3709int
2021746e 3710i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3711{
1c5d22f7 3712 uint32_t old_write_domain, old_read_domains;
43566ded 3713 struct i915_vma *vma;
e47c68e9 3714 int ret;
2ef7eeaa 3715
8d7e3de1
CW
3716 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3717 return 0;
3718
0201f1ec 3719 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3720 if (ret)
3721 return ret;
3722
c8725f3d 3723 i915_gem_object_retire(obj);
43566ded
CW
3724
3725 /* Flush and acquire obj->pages so that we are coherent through
3726 * direct access in memory with previous cached writes through
3727 * shmemfs and that our cache domain tracking remains valid.
3728 * For example, if the obj->filp was moved to swap without us
3729 * being notified and releasing the pages, we would mistakenly
3730 * continue to assume that the obj remained out of the CPU cached
3731 * domain.
3732 */
3733 ret = i915_gem_object_get_pages(obj);
3734 if (ret)
3735 return ret;
3736
e62b59e4 3737 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3738
d0a57789
CW
3739 /* Serialise direct access to this object with the barriers for
3740 * coherent writes from the GPU, by effectively invalidating the
3741 * GTT domain upon first access.
3742 */
3743 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3744 mb();
3745
05394f39
CW
3746 old_write_domain = obj->base.write_domain;
3747 old_read_domains = obj->base.read_domains;
1c5d22f7 3748
e47c68e9
EA
3749 /* It should now be out of any other write domains, and we can update
3750 * the domain values for our changes.
3751 */
05394f39
CW
3752 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3753 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3754 if (write) {
05394f39
CW
3755 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3756 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3757 obj->dirty = 1;
2ef7eeaa
EA
3758 }
3759
f99d7069 3760 if (write)
a4001f1b 3761 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
f99d7069 3762
1c5d22f7
CW
3763 trace_i915_gem_object_change_domain(obj,
3764 old_read_domains,
3765 old_write_domain);
3766
8325a09d 3767 /* And bump the LRU for this access */
43566ded
CW
3768 vma = i915_gem_obj_to_ggtt(obj);
3769 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3770 list_move_tail(&vma->mm_list,
43566ded 3771 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3772
e47c68e9
EA
3773 return 0;
3774}
3775
e4ffd173
CW
3776int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3777 enum i915_cache_level cache_level)
3778{
7bddb01f 3779 struct drm_device *dev = obj->base.dev;
df6f783a 3780 struct i915_vma *vma, *next;
e4ffd173
CW
3781 int ret;
3782
3783 if (obj->cache_level == cache_level)
3784 return 0;
3785
d7f46fc4 3786 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3787 DRM_DEBUG("can not change the cache level of pinned objects\n");
3788 return -EBUSY;
3789 }
3790
df6f783a 3791 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3792 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3793 ret = i915_vma_unbind(vma);
3089c6f2
BW
3794 if (ret)
3795 return ret;
3089c6f2 3796 }
42d6ab48
CW
3797 }
3798
3089c6f2 3799 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3800 ret = i915_gem_object_finish_gpu(obj);
3801 if (ret)
3802 return ret;
3803
3804 i915_gem_object_finish_gtt(obj);
3805
3806 /* Before SandyBridge, you could not use tiling or fence
3807 * registers with snooped memory, so relinquish any fences
3808 * currently pointing to our region in the aperture.
3809 */
42d6ab48 3810 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3811 ret = i915_gem_object_put_fence(obj);
3812 if (ret)
3813 return ret;
3814 }
3815
6f65e29a 3816 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3817 if (drm_mm_node_allocated(&vma->node)) {
3818 ret = i915_vma_bind(vma, cache_level,
3819 vma->bound & GLOBAL_BIND);
3820 if (ret)
3821 return ret;
3822 }
e4ffd173
CW
3823 }
3824
2c22569b
CW
3825 list_for_each_entry(vma, &obj->vma_list, vma_link)
3826 vma->node.color = cache_level;
3827 obj->cache_level = cache_level;
3828
0f71979a
CW
3829 if (obj->cache_dirty &&
3830 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3831 cpu_write_needs_clflush(obj)) {
3832 if (i915_gem_clflush_object(obj, true))
3833 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3834 }
3835
e4ffd173
CW
3836 return 0;
3837}
3838
199adf40
BW
3839int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3840 struct drm_file *file)
e6994aee 3841{
199adf40 3842 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3843 struct drm_i915_gem_object *obj;
3844 int ret;
3845
3846 ret = i915_mutex_lock_interruptible(dev);
3847 if (ret)
3848 return ret;
3849
3850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3851 if (&obj->base == NULL) {
3852 ret = -ENOENT;
3853 goto unlock;
3854 }
3855
651d794f
CW
3856 switch (obj->cache_level) {
3857 case I915_CACHE_LLC:
3858 case I915_CACHE_L3_LLC:
3859 args->caching = I915_CACHING_CACHED;
3860 break;
3861
4257d3ba
CW
3862 case I915_CACHE_WT:
3863 args->caching = I915_CACHING_DISPLAY;
3864 break;
3865
651d794f
CW
3866 default:
3867 args->caching = I915_CACHING_NONE;
3868 break;
3869 }
e6994aee
CW
3870
3871 drm_gem_object_unreference(&obj->base);
3872unlock:
3873 mutex_unlock(&dev->struct_mutex);
3874 return ret;
3875}
3876
199adf40
BW
3877int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3878 struct drm_file *file)
e6994aee 3879{
199adf40 3880 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3881 struct drm_i915_gem_object *obj;
3882 enum i915_cache_level level;
3883 int ret;
3884
199adf40
BW
3885 switch (args->caching) {
3886 case I915_CACHING_NONE:
e6994aee
CW
3887 level = I915_CACHE_NONE;
3888 break;
199adf40 3889 case I915_CACHING_CACHED:
e6994aee
CW
3890 level = I915_CACHE_LLC;
3891 break;
4257d3ba
CW
3892 case I915_CACHING_DISPLAY:
3893 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3894 break;
e6994aee
CW
3895 default:
3896 return -EINVAL;
3897 }
3898
3bc2913e
BW
3899 ret = i915_mutex_lock_interruptible(dev);
3900 if (ret)
3901 return ret;
3902
e6994aee
CW
3903 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3904 if (&obj->base == NULL) {
3905 ret = -ENOENT;
3906 goto unlock;
3907 }
3908
3909 ret = i915_gem_object_set_cache_level(obj, level);
3910
3911 drm_gem_object_unreference(&obj->base);
3912unlock:
3913 mutex_unlock(&dev->struct_mutex);
3914 return ret;
3915}
3916
cc98b413
CW
3917static bool is_pin_display(struct drm_i915_gem_object *obj)
3918{
19656430
OM
3919 struct i915_vma *vma;
3920
19656430
OM
3921 vma = i915_gem_obj_to_ggtt(obj);
3922 if (!vma)
3923 return false;
3924
4feb7659 3925 /* There are 2 sources that pin objects:
cc98b413
CW
3926 * 1. The display engine (scanouts, sprites, cursors);
3927 * 2. Reservations for execbuffer;
cc98b413
CW
3928 *
3929 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3930 * are only called outside of the reservation path.
cc98b413 3931 */
4feb7659 3932 return vma->pin_count;
cc98b413
CW
3933}
3934
b9241ea3 3935/*
2da3b9b9
CW
3936 * Prepare buffer for display plane (scanout, cursors, etc).
3937 * Can be called from an uninterruptible phase (modesetting) and allows
3938 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3939 */
3940int
2da3b9b9
CW
3941i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3942 u32 alignment,
e6617330
TU
3943 struct intel_engine_cs *pipelined,
3944 const struct i915_ggtt_view *view)
b9241ea3 3945{
2da3b9b9 3946 u32 old_read_domains, old_write_domain;
19656430 3947 bool was_pin_display;
b9241ea3
ZW
3948 int ret;
3949
41c52415 3950 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3951 ret = i915_gem_object_sync(obj, pipelined);
3952 if (ret)
b9241ea3
ZW
3953 return ret;
3954 }
3955
cc98b413
CW
3956 /* Mark the pin_display early so that we account for the
3957 * display coherency whilst setting up the cache domains.
3958 */
19656430 3959 was_pin_display = obj->pin_display;
cc98b413
CW
3960 obj->pin_display = true;
3961
a7ef0640
EA
3962 /* The display engine is not coherent with the LLC cache on gen6. As
3963 * a result, we make sure that the pinning that is about to occur is
3964 * done with uncached PTEs. This is lowest common denominator for all
3965 * chipsets.
3966 *
3967 * However for gen6+, we could do better by using the GFDT bit instead
3968 * of uncaching, which would allow us to flush all the LLC-cached data
3969 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3970 */
651d794f
CW
3971 ret = i915_gem_object_set_cache_level(obj,
3972 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3973 if (ret)
cc98b413 3974 goto err_unpin_display;
a7ef0640 3975
2da3b9b9
CW
3976 /* As the user may map the buffer once pinned in the display plane
3977 * (e.g. libkms for the bootup splash), we have to ensure that we
3978 * always use map_and_fenceable for all scanout buffers.
3979 */
50470bb0
TU
3980 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3981 view->type == I915_GGTT_VIEW_NORMAL ?
3982 PIN_MAPPABLE : 0);
2da3b9b9 3983 if (ret)
cc98b413 3984 goto err_unpin_display;
2da3b9b9 3985
e62b59e4 3986 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3987
2da3b9b9 3988 old_write_domain = obj->base.write_domain;
05394f39 3989 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3990
3991 /* It should now be out of any other write domains, and we can update
3992 * the domain values for our changes.
3993 */
e5f1d962 3994 obj->base.write_domain = 0;
05394f39 3995 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3996
3997 trace_i915_gem_object_change_domain(obj,
3998 old_read_domains,
2da3b9b9 3999 old_write_domain);
b9241ea3
ZW
4000
4001 return 0;
cc98b413
CW
4002
4003err_unpin_display:
19656430
OM
4004 WARN_ON(was_pin_display != is_pin_display(obj));
4005 obj->pin_display = was_pin_display;
cc98b413
CW
4006 return ret;
4007}
4008
4009void
e6617330
TU
4010i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4011 const struct i915_ggtt_view *view)
cc98b413 4012{
e6617330
TU
4013 i915_gem_object_ggtt_unpin_view(obj, view);
4014
cc98b413 4015 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4016}
4017
85345517 4018int
a8198eea 4019i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4020{
88241785
CW
4021 int ret;
4022
a8198eea 4023 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4024 return 0;
4025
0201f1ec 4026 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4027 if (ret)
4028 return ret;
4029
a8198eea
CW
4030 /* Ensure that we invalidate the GPU's caches and TLBs. */
4031 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4032 return 0;
85345517
CW
4033}
4034
e47c68e9
EA
4035/**
4036 * Moves a single object to the CPU read, and possibly write domain.
4037 *
4038 * This function returns when the move is complete, including waiting on
4039 * flushes to occur.
4040 */
dabdfe02 4041int
919926ae 4042i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4043{
1c5d22f7 4044 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4045 int ret;
4046
8d7e3de1
CW
4047 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4048 return 0;
4049
0201f1ec 4050 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4051 if (ret)
4052 return ret;
4053
c8725f3d 4054 i915_gem_object_retire(obj);
e47c68e9 4055 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4056
05394f39
CW
4057 old_write_domain = obj->base.write_domain;
4058 old_read_domains = obj->base.read_domains;
1c5d22f7 4059
e47c68e9 4060 /* Flush the CPU cache if it's still invalid. */
05394f39 4061 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4062 i915_gem_clflush_object(obj, false);
2ef7eeaa 4063
05394f39 4064 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4065 }
4066
4067 /* It should now be out of any other write domains, and we can update
4068 * the domain values for our changes.
4069 */
05394f39 4070 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4071
4072 /* If we're writing through the CPU, then the GPU read domains will
4073 * need to be invalidated at next use.
4074 */
4075 if (write) {
05394f39
CW
4076 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4077 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4078 }
2ef7eeaa 4079
f99d7069 4080 if (write)
a4001f1b 4081 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
f99d7069 4082
1c5d22f7
CW
4083 trace_i915_gem_object_change_domain(obj,
4084 old_read_domains,
4085 old_write_domain);
4086
2ef7eeaa
EA
4087 return 0;
4088}
4089
673a394b
EA
4090/* Throttle our rendering by waiting until the ring has completed our requests
4091 * emitted over 20 msec ago.
4092 *
b962442e
EA
4093 * Note that if we were to use the current jiffies each time around the loop,
4094 * we wouldn't escape the function with any frames outstanding if the time to
4095 * render a frame was over 20ms.
4096 *
673a394b
EA
4097 * This should get us reasonable parallelism between CPU and GPU but also
4098 * relatively low latency when blocking on a particular request to finish.
4099 */
40a5f0de 4100static int
f787a5f5 4101i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4102{
f787a5f5
CW
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4104 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4105 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4106 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4107 unsigned reset_counter;
f787a5f5 4108 int ret;
93533c29 4109
308887aa
DV
4110 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4111 if (ret)
4112 return ret;
4113
4114 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4115 if (ret)
4116 return ret;
e110e8d6 4117
1c25595f 4118 spin_lock(&file_priv->mm.lock);
f787a5f5 4119 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4120 if (time_after_eq(request->emitted_jiffies, recent_enough))
4121 break;
40a5f0de 4122
54fb2411 4123 target = request;
b962442e 4124 }
f69061be 4125 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4126 if (target)
4127 i915_gem_request_reference(target);
1c25595f 4128 spin_unlock(&file_priv->mm.lock);
40a5f0de 4129
54fb2411 4130 if (target == NULL)
f787a5f5 4131 return 0;
2bc43b5c 4132
9c654818 4133 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4134 if (ret == 0)
4135 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4136
41037f9f 4137 i915_gem_request_unreference__unlocked(target);
ff865885 4138
40a5f0de
EA
4139 return ret;
4140}
4141
d23db88c
CW
4142static bool
4143i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4144{
4145 struct drm_i915_gem_object *obj = vma->obj;
4146
4147 if (alignment &&
4148 vma->node.start & (alignment - 1))
4149 return true;
4150
4151 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4152 return true;
4153
4154 if (flags & PIN_OFFSET_BIAS &&
4155 vma->node.start < (flags & PIN_OFFSET_MASK))
4156 return true;
4157
4158 return false;
4159}
4160
ec7adb6e
JL
4161static int
4162i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4163 struct i915_address_space *vm,
4164 const struct i915_ggtt_view *ggtt_view,
4165 uint32_t alignment,
4166 uint64_t flags)
673a394b 4167{
6e7186af 4168 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4169 struct i915_vma *vma;
ef79e17c 4170 unsigned bound;
673a394b
EA
4171 int ret;
4172
6e7186af
BW
4173 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4174 return -ENODEV;
4175
bf3d149b 4176 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4177 return -EINVAL;
07fe0b12 4178
c826c449
CW
4179 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4180 return -EINVAL;
4181
ec7adb6e
JL
4182 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4183 return -EINVAL;
4184
4185 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4186 i915_gem_obj_to_vma(obj, vm);
4187
4188 if (IS_ERR(vma))
4189 return PTR_ERR(vma);
4190
07fe0b12 4191 if (vma) {
d7f46fc4
BW
4192 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4193 return -EBUSY;
4194
d23db88c 4195 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4196 unsigned long offset;
9abc4648 4197 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4198 i915_gem_obj_offset(obj, vm);
d7f46fc4 4199 WARN(vma->pin_count,
ec7adb6e 4200 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4201 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4202 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4203 ggtt_view ? "ggtt" : "ppgtt",
4204 offset,
fe14d5f4 4205 alignment,
d23db88c 4206 !!(flags & PIN_MAPPABLE),
05394f39 4207 obj->map_and_fenceable);
07fe0b12 4208 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4209 if (ret)
4210 return ret;
8ea99c92
DV
4211
4212 vma = NULL;
ac0c6b5a
CW
4213 }
4214 }
4215
ef79e17c 4216 bound = vma ? vma->bound : 0;
8ea99c92 4217 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
563222a7
BW
4218 /* In true PPGTT, bind has possibly changed PDEs, which
4219 * means we must do a context switch before the GPU can
4220 * accurately read some of the VMAs.
4221 */
ec7adb6e
JL
4222 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4223 flags);
262de145
DV
4224 if (IS_ERR(vma))
4225 return PTR_ERR(vma);
22c344e9 4226 }
76446cac 4227
fe14d5f4
TU
4228 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4229 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4230 if (ret)
4231 return ret;
4232 }
74898d7e 4233
ef79e17c
CW
4234 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4235 bool mappable, fenceable;
4236 u32 fence_size, fence_alignment;
4237
4238 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4239 obj->base.size,
4240 obj->tiling_mode);
4241 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4242 obj->base.size,
4243 obj->tiling_mode,
4244 true);
4245
4246 fenceable = (vma->node.size == fence_size &&
4247 (vma->node.start & (fence_alignment - 1)) == 0);
4248
e8dec1dd 4249 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4250 dev_priv->gtt.mappable_end);
4251
4252 obj->map_and_fenceable = mappable && fenceable;
4253 }
4254
4255 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4256
8ea99c92 4257 vma->pin_count++;
673a394b
EA
4258 return 0;
4259}
4260
ec7adb6e
JL
4261int
4262i915_gem_object_pin(struct drm_i915_gem_object *obj,
4263 struct i915_address_space *vm,
4264 uint32_t alignment,
4265 uint64_t flags)
4266{
4267 return i915_gem_object_do_pin(obj, vm,
4268 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4269 alignment, flags);
4270}
4271
4272int
4273i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4274 const struct i915_ggtt_view *view,
4275 uint32_t alignment,
4276 uint64_t flags)
4277{
4278 if (WARN_ONCE(!view, "no view specified"))
4279 return -EINVAL;
4280
4281 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4282 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4283}
4284
673a394b 4285void
e6617330
TU
4286i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4287 const struct i915_ggtt_view *view)
673a394b 4288{
e6617330 4289 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4290
d7f46fc4 4291 BUG_ON(!vma);
e6617330 4292 WARN_ON(vma->pin_count == 0);
9abc4648 4293 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4294
30154650 4295 --vma->pin_count;
673a394b
EA
4296}
4297
d8ffa60b
DV
4298bool
4299i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4300{
4301 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4302 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4303 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4304
4305 WARN_ON(!ggtt_vma ||
4306 dev_priv->fence_regs[obj->fence_reg].pin_count >
4307 ggtt_vma->pin_count);
4308 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4309 return true;
4310 } else
4311 return false;
4312}
4313
4314void
4315i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4316{
4317 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4318 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4319 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4320 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4321 }
4322}
4323
673a394b
EA
4324int
4325i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4326 struct drm_file *file)
673a394b
EA
4327{
4328 struct drm_i915_gem_busy *args = data;
05394f39 4329 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4330 int ret;
4331
76c1dec1 4332 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4333 if (ret)
76c1dec1 4334 return ret;
673a394b 4335
05394f39 4336 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4337 if (&obj->base == NULL) {
1d7cfea1
CW
4338 ret = -ENOENT;
4339 goto unlock;
673a394b 4340 }
d1b851fc 4341
0be555b6
CW
4342 /* Count all active objects as busy, even if they are currently not used
4343 * by the gpu. Users of this interface expect objects to eventually
4344 * become non-busy without any further actions, therefore emit any
4345 * necessary flushes here.
c4de0a5d 4346 */
30dfebf3 4347 ret = i915_gem_object_flush_active(obj);
0be555b6 4348
30dfebf3 4349 args->busy = obj->active;
41c52415
JH
4350 if (obj->last_read_req) {
4351 struct intel_engine_cs *ring;
e9808edd 4352 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4353 ring = i915_gem_request_get_ring(obj->last_read_req);
4354 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4355 }
673a394b 4356
05394f39 4357 drm_gem_object_unreference(&obj->base);
1d7cfea1 4358unlock:
673a394b 4359 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4360 return ret;
673a394b
EA
4361}
4362
4363int
4364i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4365 struct drm_file *file_priv)
4366{
0206e353 4367 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4368}
4369
3ef94daa
CW
4370int
4371i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4372 struct drm_file *file_priv)
4373{
656bfa3a 4374 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4375 struct drm_i915_gem_madvise *args = data;
05394f39 4376 struct drm_i915_gem_object *obj;
76c1dec1 4377 int ret;
3ef94daa
CW
4378
4379 switch (args->madv) {
4380 case I915_MADV_DONTNEED:
4381 case I915_MADV_WILLNEED:
4382 break;
4383 default:
4384 return -EINVAL;
4385 }
4386
1d7cfea1
CW
4387 ret = i915_mutex_lock_interruptible(dev);
4388 if (ret)
4389 return ret;
4390
05394f39 4391 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4392 if (&obj->base == NULL) {
1d7cfea1
CW
4393 ret = -ENOENT;
4394 goto unlock;
3ef94daa 4395 }
3ef94daa 4396
d7f46fc4 4397 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4398 ret = -EINVAL;
4399 goto out;
3ef94daa
CW
4400 }
4401
656bfa3a
DV
4402 if (obj->pages &&
4403 obj->tiling_mode != I915_TILING_NONE &&
4404 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4405 if (obj->madv == I915_MADV_WILLNEED)
4406 i915_gem_object_unpin_pages(obj);
4407 if (args->madv == I915_MADV_WILLNEED)
4408 i915_gem_object_pin_pages(obj);
4409 }
4410
05394f39
CW
4411 if (obj->madv != __I915_MADV_PURGED)
4412 obj->madv = args->madv;
3ef94daa 4413
6c085a72 4414 /* if the object is no longer attached, discard its backing storage */
be6a0376 4415 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4416 i915_gem_object_truncate(obj);
4417
05394f39 4418 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4419
1d7cfea1 4420out:
05394f39 4421 drm_gem_object_unreference(&obj->base);
1d7cfea1 4422unlock:
3ef94daa 4423 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4424 return ret;
3ef94daa
CW
4425}
4426
37e680a1
CW
4427void i915_gem_object_init(struct drm_i915_gem_object *obj,
4428 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4429{
35c20a60 4430 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4431 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4432 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4433 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4434 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4435
37e680a1
CW
4436 obj->ops = ops;
4437
0327d6ba
CW
4438 obj->fence_reg = I915_FENCE_REG_NONE;
4439 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4440
4441 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4442}
4443
37e680a1
CW
4444static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4445 .get_pages = i915_gem_object_get_pages_gtt,
4446 .put_pages = i915_gem_object_put_pages_gtt,
4447};
4448
05394f39
CW
4449struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4450 size_t size)
ac52bc56 4451{
c397b908 4452 struct drm_i915_gem_object *obj;
5949eac4 4453 struct address_space *mapping;
1a240d4d 4454 gfp_t mask;
ac52bc56 4455
42dcedd4 4456 obj = i915_gem_object_alloc(dev);
c397b908
DV
4457 if (obj == NULL)
4458 return NULL;
673a394b 4459
c397b908 4460 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4461 i915_gem_object_free(obj);
c397b908
DV
4462 return NULL;
4463 }
673a394b 4464
bed1ea95
CW
4465 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4466 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4467 /* 965gm cannot relocate objects above 4GiB. */
4468 mask &= ~__GFP_HIGHMEM;
4469 mask |= __GFP_DMA32;
4470 }
4471
496ad9aa 4472 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4473 mapping_set_gfp_mask(mapping, mask);
5949eac4 4474
37e680a1 4475 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4476
c397b908
DV
4477 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4478 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4479
3d29b842
ED
4480 if (HAS_LLC(dev)) {
4481 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4482 * cache) for about a 10% performance improvement
4483 * compared to uncached. Graphics requests other than
4484 * display scanout are coherent with the CPU in
4485 * accessing this cache. This means in this mode we
4486 * don't need to clflush on the CPU side, and on the
4487 * GPU side we only need to flush internal caches to
4488 * get data visible to the CPU.
4489 *
4490 * However, we maintain the display planes as UC, and so
4491 * need to rebind when first used as such.
4492 */
4493 obj->cache_level = I915_CACHE_LLC;
4494 } else
4495 obj->cache_level = I915_CACHE_NONE;
4496
d861e338
DV
4497 trace_i915_gem_object_create(obj);
4498
05394f39 4499 return obj;
c397b908
DV
4500}
4501
340fbd8c
CW
4502static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4503{
4504 /* If we are the last user of the backing storage (be it shmemfs
4505 * pages or stolen etc), we know that the pages are going to be
4506 * immediately released. In this case, we can then skip copying
4507 * back the contents from the GPU.
4508 */
4509
4510 if (obj->madv != I915_MADV_WILLNEED)
4511 return false;
4512
4513 if (obj->base.filp == NULL)
4514 return true;
4515
4516 /* At first glance, this looks racy, but then again so would be
4517 * userspace racing mmap against close. However, the first external
4518 * reference to the filp can only be obtained through the
4519 * i915_gem_mmap_ioctl() which safeguards us against the user
4520 * acquiring such a reference whilst we are in the middle of
4521 * freeing the object.
4522 */
4523 return atomic_long_read(&obj->base.filp->f_count) == 1;
4524}
4525
1488fc08 4526void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4527{
1488fc08 4528 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4529 struct drm_device *dev = obj->base.dev;
3e31c6c0 4530 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4531 struct i915_vma *vma, *next;
673a394b 4532
f65c9168
PZ
4533 intel_runtime_pm_get(dev_priv);
4534
26e12f89
CW
4535 trace_i915_gem_object_destroy(obj);
4536
07fe0b12 4537 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4538 int ret;
4539
4540 vma->pin_count = 0;
4541 ret = i915_vma_unbind(vma);
07fe0b12
BW
4542 if (WARN_ON(ret == -ERESTARTSYS)) {
4543 bool was_interruptible;
1488fc08 4544
07fe0b12
BW
4545 was_interruptible = dev_priv->mm.interruptible;
4546 dev_priv->mm.interruptible = false;
1488fc08 4547
07fe0b12 4548 WARN_ON(i915_vma_unbind(vma));
1488fc08 4549
07fe0b12
BW
4550 dev_priv->mm.interruptible = was_interruptible;
4551 }
1488fc08
CW
4552 }
4553
1d64ae71
BW
4554 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4555 * before progressing. */
4556 if (obj->stolen)
4557 i915_gem_object_unpin_pages(obj);
4558
a071fa00
DV
4559 WARN_ON(obj->frontbuffer_bits);
4560
656bfa3a
DV
4561 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4562 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4563 obj->tiling_mode != I915_TILING_NONE)
4564 i915_gem_object_unpin_pages(obj);
4565
401c29f6
BW
4566 if (WARN_ON(obj->pages_pin_count))
4567 obj->pages_pin_count = 0;
340fbd8c 4568 if (discard_backing_storage(obj))
5537252b 4569 obj->madv = I915_MADV_DONTNEED;
37e680a1 4570 i915_gem_object_put_pages(obj);
d8cb5086 4571 i915_gem_object_free_mmap_offset(obj);
de151cf6 4572
9da3da66
CW
4573 BUG_ON(obj->pages);
4574
2f745ad3
CW
4575 if (obj->base.import_attach)
4576 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4577
5cc9ed4b
CW
4578 if (obj->ops->release)
4579 obj->ops->release(obj);
4580
05394f39
CW
4581 drm_gem_object_release(&obj->base);
4582 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4583
05394f39 4584 kfree(obj->bit_17);
42dcedd4 4585 i915_gem_object_free(obj);
f65c9168
PZ
4586
4587 intel_runtime_pm_put(dev_priv);
673a394b
EA
4588}
4589
ec7adb6e
JL
4590struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4591 struct i915_address_space *vm)
e656a6cb
DV
4592{
4593 struct i915_vma *vma;
ec7adb6e
JL
4594 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4595 if (i915_is_ggtt(vma->vm) &&
4596 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4597 continue;
4598 if (vma->vm == vm)
e656a6cb 4599 return vma;
ec7adb6e
JL
4600 }
4601 return NULL;
4602}
4603
4604struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4605 const struct i915_ggtt_view *view)
4606{
4607 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4608 struct i915_vma *vma;
e656a6cb 4609
ec7adb6e
JL
4610 if (WARN_ONCE(!view, "no view specified"))
4611 return ERR_PTR(-EINVAL);
4612
4613 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4614 if (vma->vm == ggtt &&
4615 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4616 return vma;
e656a6cb
DV
4617 return NULL;
4618}
4619
2f633156
BW
4620void i915_gem_vma_destroy(struct i915_vma *vma)
4621{
b9d06dd9 4622 struct i915_address_space *vm = NULL;
2f633156 4623 WARN_ON(vma->node.allocated);
aaa05667
CW
4624
4625 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4626 if (!list_empty(&vma->exec_list))
4627 return;
4628
b9d06dd9 4629 vm = vma->vm;
b9d06dd9 4630
841cd773
DV
4631 if (!i915_is_ggtt(vm))
4632 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4633
8b9c2b94 4634 list_del(&vma->vma_link);
b93dab6e 4635
e20d2ab7 4636 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4637}
4638
e3efda49
CW
4639static void
4640i915_gem_stop_ringbuffers(struct drm_device *dev)
4641{
4642 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4643 struct intel_engine_cs *ring;
e3efda49
CW
4644 int i;
4645
4646 for_each_ring(ring, dev_priv, i)
a83014d3 4647 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4648}
4649
29105ccc 4650int
45c5f202 4651i915_gem_suspend(struct drm_device *dev)
29105ccc 4652{
3e31c6c0 4653 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4654 int ret = 0;
28dfe52a 4655
45c5f202 4656 mutex_lock(&dev->struct_mutex);
b2da9fe5 4657 ret = i915_gpu_idle(dev);
f7403347 4658 if (ret)
45c5f202 4659 goto err;
f7403347 4660
b2da9fe5 4661 i915_gem_retire_requests(dev);
673a394b 4662
e3efda49 4663 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4664 mutex_unlock(&dev->struct_mutex);
4665
737b1506 4666 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4667 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4668 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4669
bdcf120b
CW
4670 /* Assert that we sucessfully flushed all the work and
4671 * reset the GPU back to its idle, low power state.
4672 */
4673 WARN_ON(dev_priv->mm.busy);
4674
673a394b 4675 return 0;
45c5f202
CW
4676
4677err:
4678 mutex_unlock(&dev->struct_mutex);
4679 return ret;
673a394b
EA
4680}
4681
a4872ba6 4682int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4683{
c3787e2e 4684 struct drm_device *dev = ring->dev;
3e31c6c0 4685 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4686 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4687 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4688 int i, ret;
b9524a1e 4689
040d2baa 4690 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4691 return 0;
b9524a1e 4692
c3787e2e
BW
4693 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4694 if (ret)
4695 return ret;
b9524a1e 4696
c3787e2e
BW
4697 /*
4698 * Note: We do not worry about the concurrent register cacheline hang
4699 * here because no other code should access these registers other than
4700 * at initialization time.
4701 */
b9524a1e 4702 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4703 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4704 intel_ring_emit(ring, reg_base + i);
4705 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4706 }
4707
c3787e2e 4708 intel_ring_advance(ring);
b9524a1e 4709
c3787e2e 4710 return ret;
b9524a1e
BW
4711}
4712
f691e2f4
DV
4713void i915_gem_init_swizzling(struct drm_device *dev)
4714{
3e31c6c0 4715 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4716
11782b02 4717 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4718 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4719 return;
4720
4721 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4722 DISP_TILE_SURFACE_SWIZZLING);
4723
11782b02
DV
4724 if (IS_GEN5(dev))
4725 return;
4726
f691e2f4
DV
4727 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4728 if (IS_GEN6(dev))
6b26c86d 4729 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4730 else if (IS_GEN7(dev))
6b26c86d 4731 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4732 else if (IS_GEN8(dev))
4733 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4734 else
4735 BUG();
f691e2f4 4736}
e21af88d 4737
67b1b571
CW
4738static bool
4739intel_enable_blt(struct drm_device *dev)
4740{
4741 if (!HAS_BLT(dev))
4742 return false;
4743
4744 /* The blitter was dysfunctional on early prototypes */
4745 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4746 DRM_INFO("BLT not supported on this pre-production hardware;"
4747 " graphics performance will be degraded.\n");
4748 return false;
4749 }
4750
4751 return true;
4752}
4753
81e7f200
VS
4754static void init_unused_ring(struct drm_device *dev, u32 base)
4755{
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758 I915_WRITE(RING_CTL(base), 0);
4759 I915_WRITE(RING_HEAD(base), 0);
4760 I915_WRITE(RING_TAIL(base), 0);
4761 I915_WRITE(RING_START(base), 0);
4762}
4763
4764static void init_unused_rings(struct drm_device *dev)
4765{
4766 if (IS_I830(dev)) {
4767 init_unused_ring(dev, PRB1_BASE);
4768 init_unused_ring(dev, SRB0_BASE);
4769 init_unused_ring(dev, SRB1_BASE);
4770 init_unused_ring(dev, SRB2_BASE);
4771 init_unused_ring(dev, SRB3_BASE);
4772 } else if (IS_GEN2(dev)) {
4773 init_unused_ring(dev, SRB0_BASE);
4774 init_unused_ring(dev, SRB1_BASE);
4775 } else if (IS_GEN3(dev)) {
4776 init_unused_ring(dev, PRB1_BASE);
4777 init_unused_ring(dev, PRB2_BASE);
4778 }
4779}
4780
a83014d3 4781int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4782{
4fc7c971 4783 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4784 int ret;
68f95ba9 4785
5c1143bb 4786 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4787 if (ret)
b6913e4b 4788 return ret;
68f95ba9
CW
4789
4790 if (HAS_BSD(dev)) {
5c1143bb 4791 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4792 if (ret)
4793 goto cleanup_render_ring;
d1b851fc 4794 }
68f95ba9 4795
67b1b571 4796 if (intel_enable_blt(dev)) {
549f7365
CW
4797 ret = intel_init_blt_ring_buffer(dev);
4798 if (ret)
4799 goto cleanup_bsd_ring;
4800 }
4801
9a8a2213
BW
4802 if (HAS_VEBOX(dev)) {
4803 ret = intel_init_vebox_ring_buffer(dev);
4804 if (ret)
4805 goto cleanup_blt_ring;
4806 }
4807
845f74a7
ZY
4808 if (HAS_BSD2(dev)) {
4809 ret = intel_init_bsd2_ring_buffer(dev);
4810 if (ret)
4811 goto cleanup_vebox_ring;
4812 }
9a8a2213 4813
99433931 4814 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4815 if (ret)
845f74a7 4816 goto cleanup_bsd2_ring;
4fc7c971
BW
4817
4818 return 0;
4819
845f74a7
ZY
4820cleanup_bsd2_ring:
4821 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4822cleanup_vebox_ring:
4823 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4824cleanup_blt_ring:
4825 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4826cleanup_bsd_ring:
4827 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4828cleanup_render_ring:
4829 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4830
4831 return ret;
4832}
4833
4834int
4835i915_gem_init_hw(struct drm_device *dev)
4836{
3e31c6c0 4837 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4838 struct intel_engine_cs *ring;
35a85ac6 4839 int ret, i;
4fc7c971
BW
4840
4841 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4842 return -EIO;
4843
5e4f5189
CW
4844 /* Double layer security blanket, see i915_gem_init() */
4845 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4846
59124506 4847 if (dev_priv->ellc_size)
05e21cc4 4848 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4849
0bf21347
VS
4850 if (IS_HASWELL(dev))
4851 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4852 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4853
88a2b2a3 4854 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4855 if (IS_IVYBRIDGE(dev)) {
4856 u32 temp = I915_READ(GEN7_MSG_CTL);
4857 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4858 I915_WRITE(GEN7_MSG_CTL, temp);
4859 } else if (INTEL_INFO(dev)->gen >= 7) {
4860 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4861 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4862 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4863 }
88a2b2a3
BW
4864 }
4865
4fc7c971
BW
4866 i915_gem_init_swizzling(dev);
4867
d5abdfda
DV
4868 /*
4869 * At least 830 can leave some of the unused rings
4870 * "active" (ie. head != tail) after resume which
4871 * will prevent c3 entry. Makes sure all unused rings
4872 * are totally idle.
4873 */
4874 init_unused_rings(dev);
4875
35a57ffb
DV
4876 for_each_ring(ring, dev_priv, i) {
4877 ret = ring->init_hw(ring);
4878 if (ret)
5e4f5189 4879 goto out;
35a57ffb 4880 }
99433931 4881
c3787e2e
BW
4882 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4883 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4884
f48a0165 4885 ret = i915_ppgtt_init_hw(dev);
60990320 4886 if (ret && ret != -EIO) {
f48a0165 4887 DRM_ERROR("PPGTT enable failed %d\n", ret);
60990320 4888 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4889 }
4890
f48a0165 4891 ret = i915_gem_context_enable(dev_priv);
82460d97 4892 if (ret && ret != -EIO) {
f48a0165 4893 DRM_ERROR("Context enable failed %d\n", ret);
82460d97 4894 i915_gem_cleanup_ringbuffer(dev);
f48a0165 4895
5e4f5189 4896 goto out;
b7c36d25 4897 }
e21af88d 4898
5e4f5189
CW
4899out:
4900 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4901 return ret;
8187a2b7
ZN
4902}
4903
1070a42b
CW
4904int i915_gem_init(struct drm_device *dev)
4905{
4906 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4907 int ret;
4908
127f1003
OM
4909 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4910 i915.enable_execlists);
4911
1070a42b 4912 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4913
4914 if (IS_VALLEYVIEW(dev)) {
4915 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4916 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4917 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4918 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4919 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4920 }
4921
a83014d3 4922 if (!i915.enable_execlists) {
f3dc74c0 4923 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4924 dev_priv->gt.init_rings = i915_gem_init_rings;
4925 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4926 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4927 } else {
f3dc74c0 4928 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4929 dev_priv->gt.init_rings = intel_logical_rings_init;
4930 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4931 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4932 }
4933
5e4f5189
CW
4934 /* This is just a security blanket to placate dragons.
4935 * On some systems, we very sporadically observe that the first TLBs
4936 * used by the CS may be stale, despite us poking the TLB reset. If
4937 * we hold the forcewake during initialisation these problems
4938 * just magically go away.
4939 */
4940 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4941
6c5566a8 4942 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4943 if (ret)
4944 goto out_unlock;
6c5566a8 4945
d7e5008f 4946 i915_gem_init_global_gtt(dev);
d62b4892 4947
2fa48d8d 4948 ret = i915_gem_context_init(dev);
7bcc3777
JN
4949 if (ret)
4950 goto out_unlock;
2fa48d8d 4951
35a57ffb
DV
4952 ret = dev_priv->gt.init_rings(dev);
4953 if (ret)
7bcc3777 4954 goto out_unlock;
2fa48d8d 4955
1070a42b 4956 ret = i915_gem_init_hw(dev);
60990320
CW
4957 if (ret == -EIO) {
4958 /* Allow ring initialisation to fail by marking the GPU as
4959 * wedged. But we only want to do this where the GPU is angry,
4960 * for all other failure, such as an allocation failure, bail.
4961 */
4962 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4963 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4964 ret = 0;
1070a42b 4965 }
7bcc3777
JN
4966
4967out_unlock:
5e4f5189 4968 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4969 mutex_unlock(&dev->struct_mutex);
1070a42b 4970
60990320 4971 return ret;
1070a42b
CW
4972}
4973
8187a2b7
ZN
4974void
4975i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4976{
3e31c6c0 4977 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4978 struct intel_engine_cs *ring;
1ec14ad3 4979 int i;
8187a2b7 4980
b4519513 4981 for_each_ring(ring, dev_priv, i)
a83014d3 4982 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4983}
4984
64193406 4985static void
a4872ba6 4986init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4987{
4988 INIT_LIST_HEAD(&ring->active_list);
4989 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4990}
4991
7e0d96bc
BW
4992void i915_init_vm(struct drm_i915_private *dev_priv,
4993 struct i915_address_space *vm)
fc8c067e 4994{
7e0d96bc
BW
4995 if (!i915_is_ggtt(vm))
4996 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4997 vm->dev = dev_priv->dev;
4998 INIT_LIST_HEAD(&vm->active_list);
4999 INIT_LIST_HEAD(&vm->inactive_list);
5000 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5001 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5002}
5003
673a394b
EA
5004void
5005i915_gem_load(struct drm_device *dev)
5006{
3e31c6c0 5007 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5008 int i;
5009
efab6d8d 5010 dev_priv->objects =
42dcedd4
CW
5011 kmem_cache_create("i915_gem_object",
5012 sizeof(struct drm_i915_gem_object), 0,
5013 SLAB_HWCACHE_ALIGN,
5014 NULL);
e20d2ab7
CW
5015 dev_priv->vmas =
5016 kmem_cache_create("i915_gem_vma",
5017 sizeof(struct i915_vma), 0,
5018 SLAB_HWCACHE_ALIGN,
5019 NULL);
efab6d8d
CW
5020 dev_priv->requests =
5021 kmem_cache_create("i915_gem_request",
5022 sizeof(struct drm_i915_gem_request), 0,
5023 SLAB_HWCACHE_ALIGN,
5024 NULL);
673a394b 5025
fc8c067e
BW
5026 INIT_LIST_HEAD(&dev_priv->vm_list);
5027 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5028
a33afea5 5029 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5030 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5031 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5032 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5033 for (i = 0; i < I915_NUM_RINGS; i++)
5034 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5035 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5036 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5037 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5038 i915_gem_retire_work_handler);
b29c19b6
CW
5039 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5040 i915_gem_idle_work_handler);
1f83fee0 5041 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5042
72bfa19c
CW
5043 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5044
42b5aeab
VS
5045 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5046 dev_priv->num_fence_regs = 32;
5047 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5048 dev_priv->num_fence_regs = 16;
5049 else
5050 dev_priv->num_fence_regs = 8;
5051
eb82289a
YZ
5052 if (intel_vgpu_active(dev))
5053 dev_priv->num_fence_regs =
5054 I915_READ(vgtif_reg(avail_rs.fence_num));
5055
b5aa8a0f 5056 /* Initialize fence registers to zero */
19b2dbde
CW
5057 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058 i915_gem_restore_fences(dev);
10ed13e4 5059
673a394b 5060 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5061 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5062
ce453d81
CW
5063 dev_priv->mm.interruptible = true;
5064
be6a0376 5065 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5066
5067 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5068}
71acb5eb 5069
f787a5f5 5070void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5071{
f787a5f5 5072 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5073
5074 /* Clean up our request list when the client is going away, so that
5075 * later retire_requests won't dereference our soon-to-be-gone
5076 * file_priv.
5077 */
1c25595f 5078 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5079 while (!list_empty(&file_priv->mm.request_list)) {
5080 struct drm_i915_gem_request *request;
5081
5082 request = list_first_entry(&file_priv->mm.request_list,
5083 struct drm_i915_gem_request,
5084 client_list);
5085 list_del(&request->client_list);
5086 request->file_priv = NULL;
5087 }
1c25595f 5088 spin_unlock(&file_priv->mm.lock);
b29c19b6 5089
1854d5ca
CW
5090 if (!list_empty(&file_priv->rps_boost)) {
5091 mutex_lock(&to_i915(dev)->rps.hw_lock);
5092 list_del(&file_priv->rps_boost);
5093 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5094 }
b29c19b6
CW
5095}
5096
5097int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5098{
5099 struct drm_i915_file_private *file_priv;
e422b888 5100 int ret;
b29c19b6
CW
5101
5102 DRM_DEBUG_DRIVER("\n");
5103
5104 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5105 if (!file_priv)
5106 return -ENOMEM;
5107
5108 file->driver_priv = file_priv;
5109 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5110 file_priv->file = file;
1854d5ca 5111 INIT_LIST_HEAD(&file_priv->rps_boost);
b29c19b6
CW
5112
5113 spin_lock_init(&file_priv->mm.lock);
5114 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5115
e422b888
BW
5116 ret = i915_gem_context_open(dev, file);
5117 if (ret)
5118 kfree(file_priv);
b29c19b6 5119
e422b888 5120 return ret;
b29c19b6
CW
5121}
5122
b680c37a
DV
5123/**
5124 * i915_gem_track_fb - update frontbuffer tracking
5125 * old: current GEM buffer for the frontbuffer slots
5126 * new: new GEM buffer for the frontbuffer slots
5127 * frontbuffer_bits: bitmask of frontbuffer slots
5128 *
5129 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5130 * from @old and setting them in @new. Both @old and @new can be NULL.
5131 */
a071fa00
DV
5132void i915_gem_track_fb(struct drm_i915_gem_object *old,
5133 struct drm_i915_gem_object *new,
5134 unsigned frontbuffer_bits)
5135{
5136 if (old) {
5137 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5138 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5139 old->frontbuffer_bits &= ~frontbuffer_bits;
5140 }
5141
5142 if (new) {
5143 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5144 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5145 new->frontbuffer_bits |= frontbuffer_bits;
5146 }
5147}
5148
a70a3148 5149/* All the new VM stuff */
ec7adb6e
JL
5150unsigned long
5151i915_gem_obj_offset(struct drm_i915_gem_object *o,
5152 struct i915_address_space *vm)
a70a3148
BW
5153{
5154 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5155 struct i915_vma *vma;
5156
896ab1a5 5157 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5158
a70a3148 5159 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5160 if (i915_is_ggtt(vma->vm) &&
5161 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5162 continue;
5163 if (vma->vm == vm)
a70a3148 5164 return vma->node.start;
a70a3148 5165 }
ec7adb6e 5166
f25748ea
DV
5167 WARN(1, "%s vma for this object not found.\n",
5168 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5169 return -1;
5170}
5171
ec7adb6e
JL
5172unsigned long
5173i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5174 const struct i915_ggtt_view *view)
a70a3148 5175{
ec7adb6e 5176 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5177 struct i915_vma *vma;
5178
5179 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5180 if (vma->vm == ggtt &&
5181 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5182 return vma->node.start;
5183
5678ad73 5184 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5185 return -1;
5186}
5187
5188bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5189 struct i915_address_space *vm)
5190{
5191 struct i915_vma *vma;
5192
5193 list_for_each_entry(vma, &o->vma_list, vma_link) {
5194 if (i915_is_ggtt(vma->vm) &&
5195 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5196 continue;
5197 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5198 return true;
5199 }
5200
5201 return false;
5202}
5203
5204bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5205 const struct i915_ggtt_view *view)
ec7adb6e
JL
5206{
5207 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5208 struct i915_vma *vma;
5209
5210 list_for_each_entry(vma, &o->vma_list, vma_link)
5211 if (vma->vm == ggtt &&
9abc4648 5212 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5213 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5214 return true;
5215
5216 return false;
5217}
5218
5219bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5220{
5a1d5eb0 5221 struct i915_vma *vma;
a70a3148 5222
5a1d5eb0
CW
5223 list_for_each_entry(vma, &o->vma_list, vma_link)
5224 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5225 return true;
5226
5227 return false;
5228}
5229
5230unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5231 struct i915_address_space *vm)
5232{
5233 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5234 struct i915_vma *vma;
5235
896ab1a5 5236 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5237
5238 BUG_ON(list_empty(&o->vma_list));
5239
ec7adb6e
JL
5240 list_for_each_entry(vma, &o->vma_list, vma_link) {
5241 if (i915_is_ggtt(vma->vm) &&
5242 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5243 continue;
a70a3148
BW
5244 if (vma->vm == vm)
5245 return vma->node.size;
ec7adb6e 5246 }
a70a3148
BW
5247 return 0;
5248}
5249
ec7adb6e 5250bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5251{
5252 struct i915_vma *vma;
ec7adb6e
JL
5253 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5254 if (i915_is_ggtt(vma->vm) &&
5255 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5256 continue;
5257 if (vma->pin_count > 0)
5258 return true;
5259 }
5260 return false;
5c2abbea 5261}
ec7adb6e 5262