]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Wait for all pending operations to the fb before disabling the pipe
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
d9e86c0e
CW
45static void i915_gem_clear_fence_reg(struct drm_device *dev,
46 struct drm_i915_fence_reg *reg);
05394f39
CW
47static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
71acb5eb 49 struct drm_i915_gem_pwrite *args,
05394f39
CW
50 struct drm_file *file);
51static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 52
17250b71 53static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 54 struct shrink_control *sc);
8c59967c 55static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 56
73aa808f
CW
57/* some bookkeeping */
58static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
59 size_t size)
60{
61 dev_priv->mm.object_count++;
62 dev_priv->mm.object_memory += size;
63}
64
65static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
68 dev_priv->mm.object_count--;
69 dev_priv->mm.object_memory -= size;
70}
71
21dd3734
CW
72static int
73i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
74{
75 struct drm_i915_private *dev_priv = dev->dev_private;
76 struct completion *x = &dev_priv->error_completion;
77 unsigned long flags;
78 int ret;
79
80 if (!atomic_read(&dev_priv->mm.wedged))
81 return 0;
82
83 ret = wait_for_completion_interruptible(x);
84 if (ret)
85 return ret;
86
21dd3734
CW
87 if (atomic_read(&dev_priv->mm.wedged)) {
88 /* GPU is hung, bump the completion count to account for
89 * the token we just consumed so that we never hit zero and
90 * end up waiting upon a subsequent completion event that
91 * will never happen.
92 */
93 spin_lock_irqsave(&x->wait.lock, flags);
94 x->done++;
95 spin_unlock_irqrestore(&x->wait.lock, flags);
96 }
97 return 0;
30dbf0c0
CW
98}
99
54cf91dc 100int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 101{
76c1dec1
CW
102 int ret;
103
21dd3734 104 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
105 if (ret)
106 return ret;
107
108 ret = mutex_lock_interruptible(&dev->struct_mutex);
109 if (ret)
110 return ret;
111
23bc5982 112 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
113 return 0;
114}
30dbf0c0 115
7d1c4804 116static inline bool
05394f39 117i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 118{
05394f39 119 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
120}
121
79e53945
JB
122int
123i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 124 struct drm_file *file)
79e53945
JB
125{
126 struct drm_i915_gem_init *args = data;
2021746e
CW
127
128 if (args->gtt_start >= args->gtt_end ||
129 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
130 return -EINVAL;
79e53945 131
f534bc0b
DV
132 /* GEM with user mode setting was never supported on ilk and later. */
133 if (INTEL_INFO(dev)->gen >= 5)
134 return -ENODEV;
135
79e53945 136 mutex_lock(&dev->struct_mutex);
644ec02b
DV
137 i915_gem_init_global_gtt(dev, args->gtt_start,
138 args->gtt_end, args->gtt_end);
673a394b
EA
139 mutex_unlock(&dev->struct_mutex);
140
2021746e 141 return 0;
673a394b
EA
142}
143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
73aa808f 148 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 149 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
150 struct drm_i915_gem_object *obj;
151 size_t pinned;
5a125c3c
EA
152
153 if (!(dev->driver->driver_features & DRIVER_GEM))
154 return -ENODEV;
155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
6299f992
CW
158 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
159 pinned += obj->gtt_space->size;
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
6299f992 162 args->aper_size = dev_priv->mm.gtt_total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
ff72145b
DA
168static int
169i915_gem_create(struct drm_file *file,
170 struct drm_device *dev,
171 uint64_t size,
172 uint32_t *handle_p)
673a394b 173{
05394f39 174 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
175 int ret;
176 u32 handle;
673a394b 177
ff72145b 178 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
179 if (size == 0)
180 return -EINVAL;
673a394b
EA
181
182 /* Allocate the new object */
ff72145b 183 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
184 if (obj == NULL)
185 return -ENOMEM;
186
05394f39 187 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 188 if (ret) {
05394f39
CW
189 drm_gem_object_release(&obj->base);
190 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 191 kfree(obj);
673a394b 192 return ret;
1dfd9754 193 }
673a394b 194
202f2fef 195 /* drop reference from allocate - handle holds it now */
05394f39 196 drm_gem_object_unreference(&obj->base);
202f2fef
CW
197 trace_i915_gem_object_create(obj);
198
ff72145b 199 *handle_p = handle;
673a394b
EA
200 return 0;
201}
202
ff72145b
DA
203int
204i915_gem_dumb_create(struct drm_file *file,
205 struct drm_device *dev,
206 struct drm_mode_create_dumb *args)
207{
208 /* have to work out size/pitch and return them */
ed0291fd 209 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
210 args->size = args->pitch * args->height;
211 return i915_gem_create(file, dev,
212 args->size, &args->handle);
213}
214
215int i915_gem_dumb_destroy(struct drm_file *file,
216 struct drm_device *dev,
217 uint32_t handle)
218{
219 return drm_gem_handle_delete(file, handle);
220}
221
222/**
223 * Creates a new mm object and returns a handle to it.
224 */
225int
226i915_gem_create_ioctl(struct drm_device *dev, void *data,
227 struct drm_file *file)
228{
229 struct drm_i915_gem_create *args = data;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
232}
233
05394f39 234static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 235{
05394f39 236 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
237
238 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 239 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
240}
241
8461d226
DV
242static inline int
243__copy_to_user_swizzled(char __user *cpu_vaddr,
244 const char *gpu_vaddr, int gpu_offset,
245 int length)
246{
247 int ret, cpu_offset = 0;
248
249 while (length > 0) {
250 int cacheline_end = ALIGN(gpu_offset + 1, 64);
251 int this_length = min(cacheline_end - gpu_offset, length);
252 int swizzled_gpu_offset = gpu_offset ^ 64;
253
254 ret = __copy_to_user(cpu_vaddr + cpu_offset,
255 gpu_vaddr + swizzled_gpu_offset,
256 this_length);
257 if (ret)
258 return ret + length;
259
260 cpu_offset += this_length;
261 gpu_offset += this_length;
262 length -= this_length;
263 }
264
265 return 0;
266}
267
8c59967c
DV
268static inline int
269__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
270 const char *cpu_vaddr,
271 int length)
272{
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
281 cpu_vaddr + cpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292}
293
d174bd64
DV
294/* Per-page copy function for the shmem pread fastpath.
295 * Flushes invalid cachelines before reading the target if
296 * needs_clflush is set. */
eb01459f 297static int
d174bd64
DV
298shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
299 char __user *user_data,
300 bool page_do_bit17_swizzling, bool needs_clflush)
301{
302 char *vaddr;
303 int ret;
304
e7e58eb5 305 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
306 return -EINVAL;
307
308 vaddr = kmap_atomic(page);
309 if (needs_clflush)
310 drm_clflush_virt_range(vaddr + shmem_page_offset,
311 page_length);
312 ret = __copy_to_user_inatomic(user_data,
313 vaddr + shmem_page_offset,
314 page_length);
315 kunmap_atomic(vaddr);
316
317 return ret;
318}
319
23c18c71
DV
320static void
321shmem_clflush_swizzled_range(char *addr, unsigned long length,
322 bool swizzled)
323{
e7e58eb5 324 if (unlikely(swizzled)) {
23c18c71
DV
325 unsigned long start = (unsigned long) addr;
326 unsigned long end = (unsigned long) addr + length;
327
328 /* For swizzling simply ensure that we always flush both
329 * channels. Lame, but simple and it works. Swizzled
330 * pwrite/pread is far from a hotpath - current userspace
331 * doesn't use it at all. */
332 start = round_down(start, 128);
333 end = round_up(end, 128);
334
335 drm_clflush_virt_range((void *)start, end - start);
336 } else {
337 drm_clflush_virt_range(addr, length);
338 }
339
340}
341
d174bd64
DV
342/* Only difference to the fast-path function is that this can handle bit17
343 * and uses non-atomic copy and kmap functions. */
344static int
345shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
346 char __user *user_data,
347 bool page_do_bit17_swizzling, bool needs_clflush)
348{
349 char *vaddr;
350 int ret;
351
352 vaddr = kmap(page);
353 if (needs_clflush)
23c18c71
DV
354 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
355 page_length,
356 page_do_bit17_swizzling);
d174bd64
DV
357
358 if (page_do_bit17_swizzling)
359 ret = __copy_to_user_swizzled(user_data,
360 vaddr, shmem_page_offset,
361 page_length);
362 else
363 ret = __copy_to_user(user_data,
364 vaddr + shmem_page_offset,
365 page_length);
366 kunmap(page);
367
368 return ret;
369}
370
eb01459f 371static int
dbf7bff0
DV
372i915_gem_shmem_pread(struct drm_device *dev,
373 struct drm_i915_gem_object *obj,
374 struct drm_i915_gem_pread *args,
375 struct drm_file *file)
eb01459f 376{
05394f39 377 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 378 char __user *user_data;
eb01459f 379 ssize_t remain;
8461d226 380 loff_t offset;
eb2c0c81 381 int shmem_page_offset, page_length, ret = 0;
8461d226 382 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 383 int hit_slowpath = 0;
96d79b52 384 int prefaulted = 0;
8489731c 385 int needs_clflush = 0;
692a576b 386 int release_page;
eb01459f 387
8461d226 388 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
389 remain = args->size;
390
8461d226 391 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 392
8489731c
DV
393 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
394 /* If we're not in the cpu read domain, set ourself into the gtt
395 * read domain and manually flush cachelines (if required). This
396 * optimizes for the case when the gpu will dirty the data
397 * anyway again before the next pread happens. */
398 if (obj->cache_level == I915_CACHE_NONE)
399 needs_clflush = 1;
400 ret = i915_gem_object_set_to_gtt_domain(obj, false);
401 if (ret)
402 return ret;
403 }
eb01459f 404
8461d226 405 offset = args->offset;
eb01459f
EA
406
407 while (remain > 0) {
e5281ccd
CW
408 struct page *page;
409
eb01459f
EA
410 /* Operation in this page
411 *
eb01459f 412 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
413 * page_length = bytes to copy for this page
414 */
c8cbbb8b 415 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
416 page_length = remain;
417 if ((shmem_page_offset + page_length) > PAGE_SIZE)
418 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 419
692a576b
DV
420 if (obj->pages) {
421 page = obj->pages[offset >> PAGE_SHIFT];
422 release_page = 0;
423 } else {
424 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
425 if (IS_ERR(page)) {
426 ret = PTR_ERR(page);
427 goto out;
428 }
429 release_page = 1;
b65552f0 430 }
e5281ccd 431
8461d226
DV
432 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
433 (page_to_phys(page) & (1 << 17)) != 0;
434
d174bd64
DV
435 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
436 user_data, page_do_bit17_swizzling,
437 needs_clflush);
438 if (ret == 0)
439 goto next_page;
dbf7bff0
DV
440
441 hit_slowpath = 1;
692a576b 442 page_cache_get(page);
dbf7bff0
DV
443 mutex_unlock(&dev->struct_mutex);
444
96d79b52 445 if (!prefaulted) {
f56f821f 446 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
447 /* Userspace is tricking us, but we've already clobbered
448 * its pages with the prefault and promised to write the
449 * data up to the first fault. Hence ignore any errors
450 * and just continue. */
451 (void)ret;
452 prefaulted = 1;
453 }
eb01459f 454
d174bd64
DV
455 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
456 user_data, page_do_bit17_swizzling,
457 needs_clflush);
eb01459f 458
dbf7bff0 459 mutex_lock(&dev->struct_mutex);
e5281ccd 460 page_cache_release(page);
dbf7bff0 461next_page:
e5281ccd 462 mark_page_accessed(page);
692a576b
DV
463 if (release_page)
464 page_cache_release(page);
e5281ccd 465
8461d226
DV
466 if (ret) {
467 ret = -EFAULT;
468 goto out;
469 }
470
eb01459f 471 remain -= page_length;
8461d226 472 user_data += page_length;
eb01459f
EA
473 offset += page_length;
474 }
475
4f27b75d 476out:
dbf7bff0
DV
477 if (hit_slowpath) {
478 /* Fixup: Kill any reinstated backing storage pages */
479 if (obj->madv == __I915_MADV_PURGED)
480 i915_gem_object_truncate(obj);
481 }
eb01459f
EA
482
483 return ret;
484}
485
673a394b
EA
486/**
487 * Reads data from the object referenced by handle.
488 *
489 * On error, the contents of *data are undefined.
490 */
491int
492i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 493 struct drm_file *file)
673a394b
EA
494{
495 struct drm_i915_gem_pread *args = data;
05394f39 496 struct drm_i915_gem_object *obj;
35b62a89 497 int ret = 0;
673a394b 498
51311d0a
CW
499 if (args->size == 0)
500 return 0;
501
502 if (!access_ok(VERIFY_WRITE,
503 (char __user *)(uintptr_t)args->data_ptr,
504 args->size))
505 return -EFAULT;
506
4f27b75d 507 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 508 if (ret)
4f27b75d 509 return ret;
673a394b 510
05394f39 511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 512 if (&obj->base == NULL) {
1d7cfea1
CW
513 ret = -ENOENT;
514 goto unlock;
4f27b75d 515 }
673a394b 516
7dcd2499 517 /* Bounds check source. */
05394f39
CW
518 if (args->offset > obj->base.size ||
519 args->size > obj->base.size - args->offset) {
ce9d419d 520 ret = -EINVAL;
35b62a89 521 goto out;
ce9d419d
CW
522 }
523
db53a302
CW
524 trace_i915_gem_object_pread(obj, args->offset, args->size);
525
dbf7bff0 526 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 527
35b62a89 528out:
05394f39 529 drm_gem_object_unreference(&obj->base);
1d7cfea1 530unlock:
4f27b75d 531 mutex_unlock(&dev->struct_mutex);
eb01459f 532 return ret;
673a394b
EA
533}
534
0839ccb8
KP
535/* This is the fast write path which cannot handle
536 * page faults in the source data
9b7530cc 537 */
0839ccb8
KP
538
539static inline int
540fast_user_write(struct io_mapping *mapping,
541 loff_t page_base, int page_offset,
542 char __user *user_data,
543 int length)
9b7530cc 544{
9b7530cc 545 char *vaddr_atomic;
0839ccb8 546 unsigned long unwritten;
9b7530cc 547
3e4d3af5 548 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
549 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
550 user_data, length);
3e4d3af5 551 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 552 return unwritten;
0839ccb8
KP
553}
554
3de09aa3
EA
555/**
556 * This is the fast pwrite path, where we copy the data directly from the
557 * user into the GTT, uncached.
558 */
673a394b 559static int
05394f39
CW
560i915_gem_gtt_pwrite_fast(struct drm_device *dev,
561 struct drm_i915_gem_object *obj,
3de09aa3 562 struct drm_i915_gem_pwrite *args,
05394f39 563 struct drm_file *file)
673a394b 564{
0839ccb8 565 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 566 ssize_t remain;
0839ccb8 567 loff_t offset, page_base;
673a394b 568 char __user *user_data;
935aaa69
DV
569 int page_offset, page_length, ret;
570
571 ret = i915_gem_object_pin(obj, 0, true);
572 if (ret)
573 goto out;
574
575 ret = i915_gem_object_set_to_gtt_domain(obj, true);
576 if (ret)
577 goto out_unpin;
578
579 ret = i915_gem_object_put_fence(obj);
580 if (ret)
581 goto out_unpin;
673a394b
EA
582
583 user_data = (char __user *) (uintptr_t) args->data_ptr;
584 remain = args->size;
673a394b 585
05394f39 586 offset = obj->gtt_offset + args->offset;
673a394b
EA
587
588 while (remain > 0) {
589 /* Operation in this page
590 *
0839ccb8
KP
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
673a394b 594 */
c8cbbb8b
CW
595 page_base = offset & PAGE_MASK;
596 page_offset = offset_in_page(offset);
0839ccb8
KP
597 page_length = remain;
598 if ((page_offset + remain) > PAGE_SIZE)
599 page_length = PAGE_SIZE - page_offset;
600
0839ccb8 601 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
602 * source page isn't available. Return the error and we'll
603 * retry in the slow path.
0839ccb8 604 */
fbd5a26d 605 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
606 page_offset, user_data, page_length)) {
607 ret = -EFAULT;
608 goto out_unpin;
609 }
673a394b 610
0839ccb8
KP
611 remain -= page_length;
612 user_data += page_length;
613 offset += page_length;
673a394b 614 }
673a394b 615
935aaa69
DV
616out_unpin:
617 i915_gem_object_unpin(obj);
618out:
3de09aa3 619 return ret;
673a394b
EA
620}
621
d174bd64
DV
622/* Per-page copy function for the shmem pwrite fastpath.
623 * Flushes invalid cachelines before writing to the target if
624 * needs_clflush_before is set and flushes out any written cachelines after
625 * writing if needs_clflush is set. */
3043c60c 626static int
d174bd64
DV
627shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
628 char __user *user_data,
629 bool page_do_bit17_swizzling,
630 bool needs_clflush_before,
631 bool needs_clflush_after)
673a394b 632{
d174bd64 633 char *vaddr;
673a394b 634 int ret;
3de09aa3 635
e7e58eb5 636 if (unlikely(page_do_bit17_swizzling))
d174bd64 637 return -EINVAL;
3de09aa3 638
d174bd64
DV
639 vaddr = kmap_atomic(page);
640 if (needs_clflush_before)
641 drm_clflush_virt_range(vaddr + shmem_page_offset,
642 page_length);
643 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
644 user_data,
645 page_length);
646 if (needs_clflush_after)
647 drm_clflush_virt_range(vaddr + shmem_page_offset,
648 page_length);
649 kunmap_atomic(vaddr);
3de09aa3
EA
650
651 return ret;
652}
653
d174bd64
DV
654/* Only difference to the fast-path function is that this can handle bit17
655 * and uses non-atomic copy and kmap functions. */
3043c60c 656static int
d174bd64
DV
657shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
658 char __user *user_data,
659 bool page_do_bit17_swizzling,
660 bool needs_clflush_before,
661 bool needs_clflush_after)
673a394b 662{
d174bd64
DV
663 char *vaddr;
664 int ret;
e5281ccd 665
d174bd64 666 vaddr = kmap(page);
e7e58eb5 667 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
668 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
669 page_length,
670 page_do_bit17_swizzling);
d174bd64
DV
671 if (page_do_bit17_swizzling)
672 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
673 user_data,
674 page_length);
d174bd64
DV
675 else
676 ret = __copy_from_user(vaddr + shmem_page_offset,
677 user_data,
678 page_length);
679 if (needs_clflush_after)
23c18c71
DV
680 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
681 page_length,
682 page_do_bit17_swizzling);
d174bd64 683 kunmap(page);
40123c1f 684
d174bd64 685 return ret;
40123c1f
EA
686}
687
40123c1f 688static int
e244a443
DV
689i915_gem_shmem_pwrite(struct drm_device *dev,
690 struct drm_i915_gem_object *obj,
691 struct drm_i915_gem_pwrite *args,
692 struct drm_file *file)
40123c1f 693{
05394f39 694 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 695 ssize_t remain;
8c59967c
DV
696 loff_t offset;
697 char __user *user_data;
eb2c0c81 698 int shmem_page_offset, page_length, ret = 0;
8c59967c 699 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 700 int hit_slowpath = 0;
58642885
DV
701 int needs_clflush_after = 0;
702 int needs_clflush_before = 0;
692a576b 703 int release_page;
40123c1f 704
8c59967c 705 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
706 remain = args->size;
707
8c59967c 708 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 709
58642885
DV
710 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
711 /* If we're not in the cpu write domain, set ourself into the gtt
712 * write domain and manually flush cachelines (if required). This
713 * optimizes for the case when the gpu will use the data
714 * right away and we therefore have to clflush anyway. */
715 if (obj->cache_level == I915_CACHE_NONE)
716 needs_clflush_after = 1;
717 ret = i915_gem_object_set_to_gtt_domain(obj, true);
718 if (ret)
719 return ret;
720 }
721 /* Same trick applies for invalidate partially written cachelines before
722 * writing. */
723 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
724 && obj->cache_level == I915_CACHE_NONE)
725 needs_clflush_before = 1;
726
673a394b 727 offset = args->offset;
05394f39 728 obj->dirty = 1;
673a394b 729
40123c1f 730 while (remain > 0) {
e5281ccd 731 struct page *page;
58642885 732 int partial_cacheline_write;
e5281ccd 733
40123c1f
EA
734 /* Operation in this page
735 *
40123c1f 736 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
737 * page_length = bytes to copy for this page
738 */
c8cbbb8b 739 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
740
741 page_length = remain;
742 if ((shmem_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 744
58642885
DV
745 /* If we don't overwrite a cacheline completely we need to be
746 * careful to have up-to-date data by first clflushing. Don't
747 * overcomplicate things and flush the entire patch. */
748 partial_cacheline_write = needs_clflush_before &&
749 ((shmem_page_offset | page_length)
750 & (boot_cpu_data.x86_clflush_size - 1));
751
692a576b
DV
752 if (obj->pages) {
753 page = obj->pages[offset >> PAGE_SHIFT];
754 release_page = 0;
755 } else {
756 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
757 if (IS_ERR(page)) {
758 ret = PTR_ERR(page);
759 goto out;
760 }
761 release_page = 1;
e5281ccd
CW
762 }
763
8c59967c
DV
764 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
765 (page_to_phys(page) & (1 << 17)) != 0;
766
d174bd64
DV
767 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
768 user_data, page_do_bit17_swizzling,
769 partial_cacheline_write,
770 needs_clflush_after);
771 if (ret == 0)
772 goto next_page;
e244a443
DV
773
774 hit_slowpath = 1;
692a576b 775 page_cache_get(page);
e244a443
DV
776 mutex_unlock(&dev->struct_mutex);
777
d174bd64
DV
778 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
779 user_data, page_do_bit17_swizzling,
780 partial_cacheline_write,
781 needs_clflush_after);
40123c1f 782
e244a443 783 mutex_lock(&dev->struct_mutex);
692a576b 784 page_cache_release(page);
e244a443 785next_page:
e5281ccd
CW
786 set_page_dirty(page);
787 mark_page_accessed(page);
692a576b
DV
788 if (release_page)
789 page_cache_release(page);
e5281ccd 790
8c59967c
DV
791 if (ret) {
792 ret = -EFAULT;
793 goto out;
794 }
795
40123c1f 796 remain -= page_length;
8c59967c 797 user_data += page_length;
40123c1f 798 offset += page_length;
673a394b
EA
799 }
800
fbd5a26d 801out:
e244a443
DV
802 if (hit_slowpath) {
803 /* Fixup: Kill any reinstated backing storage pages */
804 if (obj->madv == __I915_MADV_PURGED)
805 i915_gem_object_truncate(obj);
806 /* and flush dirty cachelines in case the object isn't in the cpu write
807 * domain anymore. */
808 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
809 i915_gem_clflush_object(obj);
810 intel_gtt_chipset_flush();
811 }
8c59967c 812 }
673a394b 813
58642885
DV
814 if (needs_clflush_after)
815 intel_gtt_chipset_flush();
816
40123c1f 817 return ret;
673a394b
EA
818}
819
820/**
821 * Writes data to the object referenced by handle.
822 *
823 * On error, the contents of the buffer that were to be modified are undefined.
824 */
825int
826i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 827 struct drm_file *file)
673a394b
EA
828{
829 struct drm_i915_gem_pwrite *args = data;
05394f39 830 struct drm_i915_gem_object *obj;
51311d0a
CW
831 int ret;
832
833 if (args->size == 0)
834 return 0;
835
836 if (!access_ok(VERIFY_READ,
837 (char __user *)(uintptr_t)args->data_ptr,
838 args->size))
839 return -EFAULT;
840
f56f821f
DV
841 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
842 args->size);
51311d0a
CW
843 if (ret)
844 return -EFAULT;
673a394b 845
fbd5a26d 846 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 847 if (ret)
fbd5a26d 848 return ret;
1d7cfea1 849
05394f39 850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 851 if (&obj->base == NULL) {
1d7cfea1
CW
852 ret = -ENOENT;
853 goto unlock;
fbd5a26d 854 }
673a394b 855
7dcd2499 856 /* Bounds check destination. */
05394f39
CW
857 if (args->offset > obj->base.size ||
858 args->size > obj->base.size - args->offset) {
ce9d419d 859 ret = -EINVAL;
35b62a89 860 goto out;
ce9d419d
CW
861 }
862
db53a302
CW
863 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
864
935aaa69 865 ret = -EFAULT;
673a394b
EA
866 /* We can only do the GTT pwrite on untiled buffers, as otherwise
867 * it would end up going through the fenced access, and we'll get
868 * different detiling behavior between reading and writing.
869 * pread/pwrite currently are reading and writing from the CPU
870 * perspective, requiring manual detiling by the client.
871 */
5c0480f2 872 if (obj->phys_obj) {
fbd5a26d 873 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
874 goto out;
875 }
876
877 if (obj->gtt_space &&
3ae53783 878 obj->cache_level == I915_CACHE_NONE &&
c07496fa 879 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 880 obj->map_and_fenceable &&
5c0480f2 881 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 882 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
883 /* Note that the gtt paths might fail with non-page-backed user
884 * pointers (e.g. gtt mappings when moving data between
885 * textures). Fallback to the shmem path in that case. */
fbd5a26d 886 }
673a394b 887
5c0480f2 888 if (ret == -EFAULT)
935aaa69 889 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 890
35b62a89 891out:
05394f39 892 drm_gem_object_unreference(&obj->base);
1d7cfea1 893unlock:
fbd5a26d 894 mutex_unlock(&dev->struct_mutex);
673a394b
EA
895 return ret;
896}
897
898/**
2ef7eeaa
EA
899 * Called when user space prepares to use an object with the CPU, either
900 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
901 */
902int
903i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 904 struct drm_file *file)
673a394b
EA
905{
906 struct drm_i915_gem_set_domain *args = data;
05394f39 907 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
908 uint32_t read_domains = args->read_domains;
909 uint32_t write_domain = args->write_domain;
673a394b
EA
910 int ret;
911
912 if (!(dev->driver->driver_features & DRIVER_GEM))
913 return -ENODEV;
914
2ef7eeaa 915 /* Only handle setting domains to types used by the CPU. */
21d509e3 916 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
917 return -EINVAL;
918
21d509e3 919 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
920 return -EINVAL;
921
922 /* Having something in the write domain implies it's in the read
923 * domain, and only that read domain. Enforce that in the request.
924 */
925 if (write_domain != 0 && read_domains != write_domain)
926 return -EINVAL;
927
76c1dec1 928 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 929 if (ret)
76c1dec1 930 return ret;
1d7cfea1 931
05394f39 932 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 933 if (&obj->base == NULL) {
1d7cfea1
CW
934 ret = -ENOENT;
935 goto unlock;
76c1dec1 936 }
673a394b 937
2ef7eeaa
EA
938 if (read_domains & I915_GEM_DOMAIN_GTT) {
939 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
940
941 /* Silently promote "you're not bound, there was nothing to do"
942 * to success, since the client was just asking us to
943 * make sure everything was done.
944 */
945 if (ret == -EINVAL)
946 ret = 0;
2ef7eeaa 947 } else {
e47c68e9 948 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
949 }
950
05394f39 951 drm_gem_object_unreference(&obj->base);
1d7cfea1 952unlock:
673a394b
EA
953 mutex_unlock(&dev->struct_mutex);
954 return ret;
955}
956
957/**
958 * Called when user space has done writes to this buffer
959 */
960int
961i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 962 struct drm_file *file)
673a394b
EA
963{
964 struct drm_i915_gem_sw_finish *args = data;
05394f39 965 struct drm_i915_gem_object *obj;
673a394b
EA
966 int ret = 0;
967
968 if (!(dev->driver->driver_features & DRIVER_GEM))
969 return -ENODEV;
970
76c1dec1 971 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 972 if (ret)
76c1dec1 973 return ret;
1d7cfea1 974
05394f39 975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 976 if (&obj->base == NULL) {
1d7cfea1
CW
977 ret = -ENOENT;
978 goto unlock;
673a394b
EA
979 }
980
673a394b 981 /* Pinned buffers may be scanout, so flush the cache */
05394f39 982 if (obj->pin_count)
e47c68e9
EA
983 i915_gem_object_flush_cpu_write_domain(obj);
984
05394f39 985 drm_gem_object_unreference(&obj->base);
1d7cfea1 986unlock:
673a394b
EA
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989}
990
991/**
992 * Maps the contents of an object, returning the address it is mapped
993 * into.
994 *
995 * While the mapping holds a reference on the contents of the object, it doesn't
996 * imply a ref on the object itself.
997 */
998int
999i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1000 struct drm_file *file)
673a394b
EA
1001{
1002 struct drm_i915_gem_mmap *args = data;
1003 struct drm_gem_object *obj;
673a394b
EA
1004 unsigned long addr;
1005
1006 if (!(dev->driver->driver_features & DRIVER_GEM))
1007 return -ENODEV;
1008
05394f39 1009 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1010 if (obj == NULL)
bf79cb91 1011 return -ENOENT;
673a394b 1012
673a394b
EA
1013 down_write(&current->mm->mmap_sem);
1014 addr = do_mmap(obj->filp, 0, args->size,
1015 PROT_READ | PROT_WRITE, MAP_SHARED,
1016 args->offset);
1017 up_write(&current->mm->mmap_sem);
bc9025bd 1018 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1019 if (IS_ERR((void *)addr))
1020 return addr;
1021
1022 args->addr_ptr = (uint64_t) addr;
1023
1024 return 0;
1025}
1026
de151cf6
JB
1027/**
1028 * i915_gem_fault - fault a page into the GTT
1029 * vma: VMA in question
1030 * vmf: fault info
1031 *
1032 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1033 * from userspace. The fault handler takes care of binding the object to
1034 * the GTT (if needed), allocating and programming a fence register (again,
1035 * only if needed based on whether the old reg is still valid or the object
1036 * is tiled) and inserting a new PTE into the faulting process.
1037 *
1038 * Note that the faulting process may involve evicting existing objects
1039 * from the GTT and/or fence registers to make room. So performance may
1040 * suffer if the GTT working set is large or there are few fence registers
1041 * left.
1042 */
1043int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1044{
05394f39
CW
1045 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1046 struct drm_device *dev = obj->base.dev;
7d1c4804 1047 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1048 pgoff_t page_offset;
1049 unsigned long pfn;
1050 int ret = 0;
0f973f27 1051 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1052
1053 /* We don't use vmf->pgoff since that has the fake offset */
1054 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1055 PAGE_SHIFT;
1056
d9bc7e9f
CW
1057 ret = i915_mutex_lock_interruptible(dev);
1058 if (ret)
1059 goto out;
a00b10c3 1060
db53a302
CW
1061 trace_i915_gem_object_fault(obj, page_offset, true, write);
1062
d9bc7e9f 1063 /* Now bind it into the GTT if needed */
919926ae
CW
1064 if (!obj->map_and_fenceable) {
1065 ret = i915_gem_object_unbind(obj);
1066 if (ret)
1067 goto unlock;
a00b10c3 1068 }
05394f39 1069 if (!obj->gtt_space) {
75e9e915 1070 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1071 if (ret)
1072 goto unlock;
de151cf6 1073
e92d03bf
EA
1074 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1075 if (ret)
1076 goto unlock;
1077 }
4a684a41 1078
74898d7e
DV
1079 if (!obj->has_global_gtt_mapping)
1080 i915_gem_gtt_bind_object(obj, obj->cache_level);
1081
9a5a53b3 1082 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1083 if (ret)
1084 goto unlock;
de151cf6 1085
05394f39
CW
1086 if (i915_gem_object_is_inactive(obj))
1087 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1088
6299f992
CW
1089 obj->fault_mappable = true;
1090
05394f39 1091 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1092 page_offset;
1093
1094 /* Finally, remap it using the new GTT offset */
1095 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1096unlock:
de151cf6 1097 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1098out:
de151cf6 1099 switch (ret) {
d9bc7e9f 1100 case -EIO:
045e769a 1101 case -EAGAIN:
d9bc7e9f
CW
1102 /* Give the error handler a chance to run and move the
1103 * objects off the GPU active list. Next time we service the
1104 * fault, we should be able to transition the page into the
1105 * GTT without touching the GPU (and so avoid further
1106 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1107 * with coherency, just lost writes.
1108 */
045e769a 1109 set_need_resched();
c715089f
CW
1110 case 0:
1111 case -ERESTARTSYS:
bed636ab 1112 case -EINTR:
c715089f 1113 return VM_FAULT_NOPAGE;
de151cf6 1114 case -ENOMEM:
de151cf6 1115 return VM_FAULT_OOM;
de151cf6 1116 default:
c715089f 1117 return VM_FAULT_SIGBUS;
de151cf6
JB
1118 }
1119}
1120
901782b2
CW
1121/**
1122 * i915_gem_release_mmap - remove physical page mappings
1123 * @obj: obj in question
1124 *
af901ca1 1125 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1126 * relinquish ownership of the pages back to the system.
1127 *
1128 * It is vital that we remove the page mapping if we have mapped a tiled
1129 * object through the GTT and then lose the fence register due to
1130 * resource pressure. Similarly if the object has been moved out of the
1131 * aperture, than pages mapped into userspace must be revoked. Removing the
1132 * mapping will then trigger a page fault on the next user access, allowing
1133 * fixup by i915_gem_fault().
1134 */
d05ca301 1135void
05394f39 1136i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1137{
6299f992
CW
1138 if (!obj->fault_mappable)
1139 return;
901782b2 1140
f6e47884
CW
1141 if (obj->base.dev->dev_mapping)
1142 unmap_mapping_range(obj->base.dev->dev_mapping,
1143 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1144 obj->base.size, 1);
fb7d516a 1145
6299f992 1146 obj->fault_mappable = false;
901782b2
CW
1147}
1148
92b88aeb 1149static uint32_t
e28f8711 1150i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1151{
e28f8711 1152 uint32_t gtt_size;
92b88aeb
CW
1153
1154 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1155 tiling_mode == I915_TILING_NONE)
1156 return size;
92b88aeb
CW
1157
1158 /* Previous chips need a power-of-two fence region when tiling */
1159 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1160 gtt_size = 1024*1024;
92b88aeb 1161 else
e28f8711 1162 gtt_size = 512*1024;
92b88aeb 1163
e28f8711
CW
1164 while (gtt_size < size)
1165 gtt_size <<= 1;
92b88aeb 1166
e28f8711 1167 return gtt_size;
92b88aeb
CW
1168}
1169
de151cf6
JB
1170/**
1171 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1172 * @obj: object to check
1173 *
1174 * Return the required GTT alignment for an object, taking into account
5e783301 1175 * potential fence register mapping.
de151cf6
JB
1176 */
1177static uint32_t
e28f8711
CW
1178i915_gem_get_gtt_alignment(struct drm_device *dev,
1179 uint32_t size,
1180 int tiling_mode)
de151cf6 1181{
de151cf6
JB
1182 /*
1183 * Minimum alignment is 4k (GTT page size), but might be greater
1184 * if a fence register is needed for the object.
1185 */
a00b10c3 1186 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1187 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1188 return 4096;
1189
a00b10c3
CW
1190 /*
1191 * Previous chips need to be aligned to the size of the smallest
1192 * fence register that can contain the object.
1193 */
e28f8711 1194 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1195}
1196
5e783301
DV
1197/**
1198 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1199 * unfenced object
e28f8711
CW
1200 * @dev: the device
1201 * @size: size of the object
1202 * @tiling_mode: tiling mode of the object
5e783301
DV
1203 *
1204 * Return the required GTT alignment for an object, only taking into account
1205 * unfenced tiled surface requirements.
1206 */
467cffba 1207uint32_t
e28f8711
CW
1208i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1209 uint32_t size,
1210 int tiling_mode)
5e783301 1211{
5e783301
DV
1212 /*
1213 * Minimum alignment is 4k (GTT page size) for sane hw.
1214 */
1215 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1216 tiling_mode == I915_TILING_NONE)
5e783301
DV
1217 return 4096;
1218
e28f8711
CW
1219 /* Previous hardware however needs to be aligned to a power-of-two
1220 * tile height. The simplest method for determining this is to reuse
1221 * the power-of-tile object size.
5e783301 1222 */
e28f8711 1223 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1224}
1225
de151cf6 1226int
ff72145b
DA
1227i915_gem_mmap_gtt(struct drm_file *file,
1228 struct drm_device *dev,
1229 uint32_t handle,
1230 uint64_t *offset)
de151cf6 1231{
da761a6e 1232 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1233 struct drm_i915_gem_object *obj;
de151cf6
JB
1234 int ret;
1235
1236 if (!(dev->driver->driver_features & DRIVER_GEM))
1237 return -ENODEV;
1238
76c1dec1 1239 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1240 if (ret)
76c1dec1 1241 return ret;
de151cf6 1242
ff72145b 1243 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1244 if (&obj->base == NULL) {
1d7cfea1
CW
1245 ret = -ENOENT;
1246 goto unlock;
1247 }
de151cf6 1248
05394f39 1249 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1250 ret = -E2BIG;
ff56b0bc 1251 goto out;
da761a6e
CW
1252 }
1253
05394f39 1254 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1255 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1256 ret = -EINVAL;
1257 goto out;
ab18282d
CW
1258 }
1259
05394f39 1260 if (!obj->base.map_list.map) {
b464e9a2 1261 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1262 if (ret)
1263 goto out;
de151cf6
JB
1264 }
1265
ff72145b 1266 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1267
1d7cfea1 1268out:
05394f39 1269 drm_gem_object_unreference(&obj->base);
1d7cfea1 1270unlock:
de151cf6 1271 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1272 return ret;
de151cf6
JB
1273}
1274
ff72145b
DA
1275/**
1276 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1277 * @dev: DRM device
1278 * @data: GTT mapping ioctl data
1279 * @file: GEM object info
1280 *
1281 * Simply returns the fake offset to userspace so it can mmap it.
1282 * The mmap call will end up in drm_gem_mmap(), which will set things
1283 * up so we can get faults in the handler above.
1284 *
1285 * The fault handler will take care of binding the object into the GTT
1286 * (since it may have been evicted to make room for something), allocating
1287 * a fence register, and mapping the appropriate aperture address into
1288 * userspace.
1289 */
1290int
1291i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293{
1294 struct drm_i915_gem_mmap_gtt *args = data;
1295
1296 if (!(dev->driver->driver_features & DRIVER_GEM))
1297 return -ENODEV;
1298
1299 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1300}
1301
1302
e5281ccd 1303static int
05394f39 1304i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1305 gfp_t gfpmask)
1306{
e5281ccd
CW
1307 int page_count, i;
1308 struct address_space *mapping;
1309 struct inode *inode;
1310 struct page *page;
1311
1312 /* Get the list of pages out of our struct file. They'll be pinned
1313 * at this point until we release them.
1314 */
05394f39
CW
1315 page_count = obj->base.size / PAGE_SIZE;
1316 BUG_ON(obj->pages != NULL);
1317 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1318 if (obj->pages == NULL)
e5281ccd
CW
1319 return -ENOMEM;
1320
05394f39 1321 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1322 mapping = inode->i_mapping;
5949eac4
HD
1323 gfpmask |= mapping_gfp_mask(mapping);
1324
e5281ccd 1325 for (i = 0; i < page_count; i++) {
5949eac4 1326 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1327 if (IS_ERR(page))
1328 goto err_pages;
1329
05394f39 1330 obj->pages[i] = page;
e5281ccd
CW
1331 }
1332
6dacfd2f 1333 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1334 i915_gem_object_do_bit_17_swizzle(obj);
1335
1336 return 0;
1337
1338err_pages:
1339 while (i--)
05394f39 1340 page_cache_release(obj->pages[i]);
e5281ccd 1341
05394f39
CW
1342 drm_free_large(obj->pages);
1343 obj->pages = NULL;
e5281ccd
CW
1344 return PTR_ERR(page);
1345}
1346
5cdf5881 1347static void
05394f39 1348i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1349{
05394f39 1350 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1351 int i;
1352
05394f39 1353 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1354
6dacfd2f 1355 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1356 i915_gem_object_save_bit_17_swizzle(obj);
1357
05394f39
CW
1358 if (obj->madv == I915_MADV_DONTNEED)
1359 obj->dirty = 0;
3ef94daa
CW
1360
1361 for (i = 0; i < page_count; i++) {
05394f39
CW
1362 if (obj->dirty)
1363 set_page_dirty(obj->pages[i]);
3ef94daa 1364
05394f39
CW
1365 if (obj->madv == I915_MADV_WILLNEED)
1366 mark_page_accessed(obj->pages[i]);
3ef94daa 1367
05394f39 1368 page_cache_release(obj->pages[i]);
3ef94daa 1369 }
05394f39 1370 obj->dirty = 0;
673a394b 1371
05394f39
CW
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
673a394b
EA
1374}
1375
54cf91dc 1376void
05394f39 1377i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1378 struct intel_ring_buffer *ring,
1379 u32 seqno)
673a394b 1380{
05394f39 1381 struct drm_device *dev = obj->base.dev;
69dc4987 1382 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1383
852835f3 1384 BUG_ON(ring == NULL);
05394f39 1385 obj->ring = ring;
673a394b
EA
1386
1387 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1388 if (!obj->active) {
1389 drm_gem_object_reference(&obj->base);
1390 obj->active = 1;
673a394b 1391 }
e35a41de 1392
673a394b 1393 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1394 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1395 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1396
05394f39 1397 obj->last_rendering_seqno = seqno;
caea7476 1398
7dd49065 1399 if (obj->fenced_gpu_access) {
caea7476
CW
1400 obj->last_fenced_seqno = seqno;
1401 obj->last_fenced_ring = ring;
1402
7dd49065
CW
1403 /* Bump MRU to take account of the delayed flush */
1404 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1405 struct drm_i915_fence_reg *reg;
1406
1407 reg = &dev_priv->fence_regs[obj->fence_reg];
1408 list_move_tail(&reg->lru_list,
1409 &dev_priv->mm.fence_list);
1410 }
caea7476
CW
1411 }
1412}
1413
1414static void
1415i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1416{
1417 list_del_init(&obj->ring_list);
1418 obj->last_rendering_seqno = 0;
15a13bbd 1419 obj->last_fenced_seqno = 0;
673a394b
EA
1420}
1421
ce44b0ea 1422static void
05394f39 1423i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1424{
05394f39 1425 struct drm_device *dev = obj->base.dev;
ce44b0ea 1426 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1427
05394f39
CW
1428 BUG_ON(!obj->active);
1429 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1430
1431 i915_gem_object_move_off_active(obj);
1432}
1433
1434static void
1435i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1436{
1437 struct drm_device *dev = obj->base.dev;
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439
1440 if (obj->pin_count != 0)
1441 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1442 else
1443 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1444
1445 BUG_ON(!list_empty(&obj->gpu_write_list));
1446 BUG_ON(!obj->active);
1447 obj->ring = NULL;
15a13bbd 1448 obj->last_fenced_ring = NULL;
caea7476
CW
1449
1450 i915_gem_object_move_off_active(obj);
1451 obj->fenced_gpu_access = false;
caea7476
CW
1452
1453 obj->active = 0;
87ca9c8a 1454 obj->pending_gpu_write = false;
caea7476
CW
1455 drm_gem_object_unreference(&obj->base);
1456
1457 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1458}
673a394b 1459
963b4836
CW
1460/* Immediately discard the backing storage */
1461static void
05394f39 1462i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1463{
bb6baf76 1464 struct inode *inode;
963b4836 1465
ae9fed6b
CW
1466 /* Our goal here is to return as much of the memory as
1467 * is possible back to the system as we are called from OOM.
1468 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1469 * backing pages, *now*.
ae9fed6b 1470 */
05394f39 1471 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1472 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1473
a14917ee
CW
1474 if (obj->base.map_list.map)
1475 drm_gem_free_mmap_offset(&obj->base);
1476
05394f39 1477 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1478}
1479
1480static inline int
05394f39 1481i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1482{
05394f39 1483 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1484}
1485
63560396 1486static void
db53a302
CW
1487i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1488 uint32_t flush_domains)
63560396 1489{
05394f39 1490 struct drm_i915_gem_object *obj, *next;
63560396 1491
05394f39 1492 list_for_each_entry_safe(obj, next,
64193406 1493 &ring->gpu_write_list,
63560396 1494 gpu_write_list) {
05394f39
CW
1495 if (obj->base.write_domain & flush_domains) {
1496 uint32_t old_write_domain = obj->base.write_domain;
63560396 1497
05394f39
CW
1498 obj->base.write_domain = 0;
1499 list_del_init(&obj->gpu_write_list);
1ec14ad3 1500 i915_gem_object_move_to_active(obj, ring,
db53a302 1501 i915_gem_next_request_seqno(ring));
63560396 1502
63560396 1503 trace_i915_gem_object_change_domain(obj,
05394f39 1504 obj->base.read_domains,
63560396
DV
1505 old_write_domain);
1506 }
1507 }
1508}
8187a2b7 1509
53d227f2
DV
1510static u32
1511i915_gem_get_seqno(struct drm_device *dev)
1512{
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 u32 seqno = dev_priv->next_seqno;
1515
1516 /* reserve 0 for non-seqno */
1517 if (++dev_priv->next_seqno == 0)
1518 dev_priv->next_seqno = 1;
1519
1520 return seqno;
1521}
1522
1523u32
1524i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1525{
1526 if (ring->outstanding_lazy_request == 0)
1527 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1528
1529 return ring->outstanding_lazy_request;
1530}
1531
3cce469c 1532int
db53a302 1533i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1534 struct drm_file *file,
db53a302 1535 struct drm_i915_gem_request *request)
673a394b 1536{
db53a302 1537 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1538 uint32_t seqno;
a71d8d94 1539 u32 request_ring_position;
673a394b 1540 int was_empty;
3cce469c
CW
1541 int ret;
1542
1543 BUG_ON(request == NULL);
53d227f2 1544 seqno = i915_gem_next_request_seqno(ring);
673a394b 1545
a71d8d94
CW
1546 /* Record the position of the start of the request so that
1547 * should we detect the updated seqno part-way through the
1548 * GPU processing the request, we never over-estimate the
1549 * position of the head.
1550 */
1551 request_ring_position = intel_ring_get_tail(ring);
1552
3cce469c
CW
1553 ret = ring->add_request(ring, &seqno);
1554 if (ret)
1555 return ret;
673a394b 1556
db53a302 1557 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1558
1559 request->seqno = seqno;
852835f3 1560 request->ring = ring;
a71d8d94 1561 request->tail = request_ring_position;
673a394b 1562 request->emitted_jiffies = jiffies;
852835f3
ZN
1563 was_empty = list_empty(&ring->request_list);
1564 list_add_tail(&request->list, &ring->request_list);
1565
db53a302
CW
1566 if (file) {
1567 struct drm_i915_file_private *file_priv = file->driver_priv;
1568
1c25595f 1569 spin_lock(&file_priv->mm.lock);
f787a5f5 1570 request->file_priv = file_priv;
b962442e 1571 list_add_tail(&request->client_list,
f787a5f5 1572 &file_priv->mm.request_list);
1c25595f 1573 spin_unlock(&file_priv->mm.lock);
b962442e 1574 }
673a394b 1575
5391d0cf 1576 ring->outstanding_lazy_request = 0;
db53a302 1577
f65d9421 1578 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1579 if (i915_enable_hangcheck) {
1580 mod_timer(&dev_priv->hangcheck_timer,
1581 jiffies +
1582 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1583 }
f65d9421 1584 if (was_empty)
b3b079db
CW
1585 queue_delayed_work(dev_priv->wq,
1586 &dev_priv->mm.retire_work, HZ);
f65d9421 1587 }
3cce469c 1588 return 0;
673a394b
EA
1589}
1590
f787a5f5
CW
1591static inline void
1592i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1593{
1c25595f 1594 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1595
1c25595f
CW
1596 if (!file_priv)
1597 return;
1c5d22f7 1598
1c25595f 1599 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1600 if (request->file_priv) {
1601 list_del(&request->client_list);
1602 request->file_priv = NULL;
1603 }
1c25595f 1604 spin_unlock(&file_priv->mm.lock);
673a394b 1605}
673a394b 1606
dfaae392
CW
1607static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1608 struct intel_ring_buffer *ring)
9375e446 1609{
dfaae392
CW
1610 while (!list_empty(&ring->request_list)) {
1611 struct drm_i915_gem_request *request;
673a394b 1612
dfaae392
CW
1613 request = list_first_entry(&ring->request_list,
1614 struct drm_i915_gem_request,
1615 list);
de151cf6 1616
dfaae392 1617 list_del(&request->list);
f787a5f5 1618 i915_gem_request_remove_from_client(request);
dfaae392
CW
1619 kfree(request);
1620 }
673a394b 1621
dfaae392 1622 while (!list_empty(&ring->active_list)) {
05394f39 1623 struct drm_i915_gem_object *obj;
9375e446 1624
05394f39
CW
1625 obj = list_first_entry(&ring->active_list,
1626 struct drm_i915_gem_object,
1627 ring_list);
9375e446 1628
05394f39
CW
1629 obj->base.write_domain = 0;
1630 list_del_init(&obj->gpu_write_list);
1631 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1632 }
1633}
1634
312817a3
CW
1635static void i915_gem_reset_fences(struct drm_device *dev)
1636{
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638 int i;
1639
4b9de737 1640 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1641 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1642 struct drm_i915_gem_object *obj = reg->obj;
1643
1644 if (!obj)
1645 continue;
1646
1647 if (obj->tiling_mode)
1648 i915_gem_release_mmap(obj);
1649
d9e86c0e
CW
1650 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1651 reg->obj->fenced_gpu_access = false;
1652 reg->obj->last_fenced_seqno = 0;
1653 reg->obj->last_fenced_ring = NULL;
1654 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1655 }
1656}
1657
069efc1d 1658void i915_gem_reset(struct drm_device *dev)
673a394b 1659{
77f01230 1660 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1661 struct drm_i915_gem_object *obj;
1ec14ad3 1662 int i;
673a394b 1663
1ec14ad3
CW
1664 for (i = 0; i < I915_NUM_RINGS; i++)
1665 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1666
1667 /* Remove anything from the flushing lists. The GPU cache is likely
1668 * to be lost on reset along with the data, so simply move the
1669 * lost bo to the inactive list.
1670 */
1671 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1672 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1673 struct drm_i915_gem_object,
1674 mm_list);
dfaae392 1675
05394f39
CW
1676 obj->base.write_domain = 0;
1677 list_del_init(&obj->gpu_write_list);
1678 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1679 }
1680
1681 /* Move everything out of the GPU domains to ensure we do any
1682 * necessary invalidation upon reuse.
1683 */
05394f39 1684 list_for_each_entry(obj,
77f01230 1685 &dev_priv->mm.inactive_list,
69dc4987 1686 mm_list)
77f01230 1687 {
05394f39 1688 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1689 }
069efc1d
CW
1690
1691 /* The fence registers are invalidated so clear them out */
312817a3 1692 i915_gem_reset_fences(dev);
673a394b
EA
1693}
1694
1695/**
1696 * This function clears the request list as sequence numbers are passed.
1697 */
a71d8d94 1698void
db53a302 1699i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1700{
673a394b 1701 uint32_t seqno;
1ec14ad3 1702 int i;
673a394b 1703
db53a302 1704 if (list_empty(&ring->request_list))
6c0594a3
KW
1705 return;
1706
db53a302 1707 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1708
78501eac 1709 seqno = ring->get_seqno(ring);
1ec14ad3 1710
076e2c0e 1711 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1712 if (seqno >= ring->sync_seqno[i])
1713 ring->sync_seqno[i] = 0;
1714
852835f3 1715 while (!list_empty(&ring->request_list)) {
673a394b 1716 struct drm_i915_gem_request *request;
673a394b 1717
852835f3 1718 request = list_first_entry(&ring->request_list,
673a394b
EA
1719 struct drm_i915_gem_request,
1720 list);
673a394b 1721
dfaae392 1722 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1723 break;
1724
db53a302 1725 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1726 /* We know the GPU must have read the request to have
1727 * sent us the seqno + interrupt, so use the position
1728 * of tail of the request to update the last known position
1729 * of the GPU head.
1730 */
1731 ring->last_retired_head = request->tail;
b84d5f0c
CW
1732
1733 list_del(&request->list);
f787a5f5 1734 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1735 kfree(request);
1736 }
673a394b 1737
b84d5f0c
CW
1738 /* Move any buffers on the active list that are no longer referenced
1739 * by the ringbuffer to the flushing/inactive lists as appropriate.
1740 */
1741 while (!list_empty(&ring->active_list)) {
05394f39 1742 struct drm_i915_gem_object *obj;
b84d5f0c 1743
0206e353 1744 obj = list_first_entry(&ring->active_list,
05394f39
CW
1745 struct drm_i915_gem_object,
1746 ring_list);
673a394b 1747
05394f39 1748 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1749 break;
b84d5f0c 1750
05394f39 1751 if (obj->base.write_domain != 0)
b84d5f0c
CW
1752 i915_gem_object_move_to_flushing(obj);
1753 else
1754 i915_gem_object_move_to_inactive(obj);
673a394b 1755 }
9d34e5db 1756
db53a302
CW
1757 if (unlikely(ring->trace_irq_seqno &&
1758 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1759 ring->irq_put(ring);
db53a302 1760 ring->trace_irq_seqno = 0;
9d34e5db 1761 }
23bc5982 1762
db53a302 1763 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1764}
1765
b09a1fec
CW
1766void
1767i915_gem_retire_requests(struct drm_device *dev)
1768{
1769 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1770 int i;
b09a1fec 1771
be72615b 1772 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1773 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1774
1775 /* We must be careful that during unbind() we do not
1776 * accidentally infinitely recurse into retire requests.
1777 * Currently:
1778 * retire -> free -> unbind -> wait -> retire_ring
1779 */
05394f39 1780 list_for_each_entry_safe(obj, next,
be72615b 1781 &dev_priv->mm.deferred_free_list,
69dc4987 1782 mm_list)
05394f39 1783 i915_gem_free_object_tail(obj);
be72615b
CW
1784 }
1785
1ec14ad3 1786 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1787 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1788}
1789
75ef9da2 1790static void
673a394b
EA
1791i915_gem_retire_work_handler(struct work_struct *work)
1792{
1793 drm_i915_private_t *dev_priv;
1794 struct drm_device *dev;
0a58705b
CW
1795 bool idle;
1796 int i;
673a394b
EA
1797
1798 dev_priv = container_of(work, drm_i915_private_t,
1799 mm.retire_work.work);
1800 dev = dev_priv->dev;
1801
891b48cf
CW
1802 /* Come back later if the device is busy... */
1803 if (!mutex_trylock(&dev->struct_mutex)) {
1804 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1805 return;
1806 }
1807
b09a1fec 1808 i915_gem_retire_requests(dev);
d1b851fc 1809
0a58705b
CW
1810 /* Send a periodic flush down the ring so we don't hold onto GEM
1811 * objects indefinitely.
1812 */
1813 idle = true;
1814 for (i = 0; i < I915_NUM_RINGS; i++) {
1815 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1816
1817 if (!list_empty(&ring->gpu_write_list)) {
1818 struct drm_i915_gem_request *request;
1819 int ret;
1820
db53a302
CW
1821 ret = i915_gem_flush_ring(ring,
1822 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1823 request = kzalloc(sizeof(*request), GFP_KERNEL);
1824 if (ret || request == NULL ||
db53a302 1825 i915_add_request(ring, NULL, request))
0a58705b
CW
1826 kfree(request);
1827 }
1828
1829 idle &= list_empty(&ring->request_list);
1830 }
1831
1832 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1833 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1834
673a394b
EA
1835 mutex_unlock(&dev->struct_mutex);
1836}
1837
db53a302
CW
1838/**
1839 * Waits for a sequence number to be signaled, and cleans up the
1840 * request and object lists appropriately for that event.
1841 */
5a5a0c64 1842int
db53a302 1843i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1844 uint32_t seqno,
1845 bool do_retire)
673a394b 1846{
db53a302 1847 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1848 u32 ier;
673a394b
EA
1849 int ret = 0;
1850
1851 BUG_ON(seqno == 0);
1852
d9bc7e9f
CW
1853 if (atomic_read(&dev_priv->mm.wedged)) {
1854 struct completion *x = &dev_priv->error_completion;
1855 bool recovery_complete;
1856 unsigned long flags;
1857
1858 /* Give the error handler a chance to run. */
1859 spin_lock_irqsave(&x->wait.lock, flags);
1860 recovery_complete = x->done > 0;
1861 spin_unlock_irqrestore(&x->wait.lock, flags);
1862
1863 return recovery_complete ? -EIO : -EAGAIN;
1864 }
30dbf0c0 1865
5d97eb69 1866 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1867 struct drm_i915_gem_request *request;
1868
1869 request = kzalloc(sizeof(*request), GFP_KERNEL);
1870 if (request == NULL)
e35a41de 1871 return -ENOMEM;
3cce469c 1872
db53a302 1873 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1874 if (ret) {
1875 kfree(request);
1876 return ret;
1877 }
1878
1879 seqno = request->seqno;
e35a41de 1880 }
ffed1d09 1881
78501eac 1882 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1883 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d 1884 ier = I915_READ(DEIER) | I915_READ(GTIER);
23e3f9b3
JB
1885 else if (IS_VALLEYVIEW(ring->dev))
1886 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
036a4a7d
ZW
1887 else
1888 ier = I915_READ(IER);
802c7eb6
JB
1889 if (!ier) {
1890 DRM_ERROR("something (likely vbetool) disabled "
1891 "interrupts, re-enabling\n");
f01c22fd
CW
1892 ring->dev->driver->irq_preinstall(ring->dev);
1893 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1894 }
1895
db53a302 1896 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1897
b2223497 1898 ring->waiting_seqno = seqno;
b13c2b96 1899 if (ring->irq_get(ring)) {
ce453d81 1900 if (dev_priv->mm.interruptible)
b13c2b96
CW
1901 ret = wait_event_interruptible(ring->irq_queue,
1902 i915_seqno_passed(ring->get_seqno(ring), seqno)
1903 || atomic_read(&dev_priv->mm.wedged));
1904 else
1905 wait_event(ring->irq_queue,
1906 i915_seqno_passed(ring->get_seqno(ring), seqno)
1907 || atomic_read(&dev_priv->mm.wedged));
1908
1909 ring->irq_put(ring);
e959b5db
EA
1910 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1911 seqno) ||
1912 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1913 ret = -EBUSY;
b2223497 1914 ring->waiting_seqno = 0;
1c5d22f7 1915
db53a302 1916 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1917 }
ba1234d1 1918 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1919 ret = -EAGAIN;
673a394b 1920
673a394b
EA
1921 /* Directly dispatch request retiring. While we have the work queue
1922 * to handle this, the waiter on a request often wants an associated
1923 * buffer to have made it to the inactive list, and we would need
1924 * a separate wait queue to handle that.
1925 */
b93f9cf1 1926 if (ret == 0 && do_retire)
db53a302 1927 i915_gem_retire_requests_ring(ring);
673a394b
EA
1928
1929 return ret;
1930}
1931
673a394b
EA
1932/**
1933 * Ensures that all rendering to the object has completed and the object is
1934 * safe to unbind from the GTT or access from the CPU.
1935 */
54cf91dc 1936int
ce453d81 1937i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1938{
673a394b
EA
1939 int ret;
1940
e47c68e9
EA
1941 /* This function only exists to support waiting for existing rendering,
1942 * not for emitting required flushes.
673a394b 1943 */
05394f39 1944 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1945
1946 /* If there is rendering queued on the buffer being evicted, wait for
1947 * it.
1948 */
05394f39 1949 if (obj->active) {
b93f9cf1
BW
1950 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1951 true);
2cf34d7b 1952 if (ret)
673a394b
EA
1953 return ret;
1954 }
1955
1956 return 0;
1957}
1958
5816d648
BW
1959/**
1960 * i915_gem_object_sync - sync an object to a ring.
1961 *
1962 * @obj: object which may be in use on another ring.
1963 * @to: ring we wish to use the object on. May be NULL.
1964 *
1965 * This code is meant to abstract object synchronization with the GPU.
1966 * Calling with NULL implies synchronizing the object with the CPU
1967 * rather than a particular GPU ring.
1968 *
1969 * Returns 0 if successful, else propagates up the lower layer error.
1970 */
2911a35b
BW
1971int
1972i915_gem_object_sync(struct drm_i915_gem_object *obj,
1973 struct intel_ring_buffer *to)
1974{
1975 struct intel_ring_buffer *from = obj->ring;
1976 u32 seqno;
1977 int ret, idx;
1978
1979 if (from == NULL || to == from)
1980 return 0;
1981
5816d648 1982 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
1983 return i915_gem_object_wait_rendering(obj);
1984
1985 idx = intel_ring_sync_index(from, to);
1986
1987 seqno = obj->last_rendering_seqno;
1988 if (seqno <= from->sync_seqno[idx])
1989 return 0;
1990
1991 if (seqno == from->outstanding_lazy_request) {
1992 struct drm_i915_gem_request *request;
1993
1994 request = kzalloc(sizeof(*request), GFP_KERNEL);
1995 if (request == NULL)
1996 return -ENOMEM;
1997
1998 ret = i915_add_request(from, NULL, request);
1999 if (ret) {
2000 kfree(request);
2001 return ret;
2002 }
2003
2004 seqno = request->seqno;
2005 }
2006
2911a35b 2007
1500f7ea 2008 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2009 if (!ret)
2010 from->sync_seqno[idx] = seqno;
2911a35b 2011
e3a5a225 2012 return ret;
2911a35b
BW
2013}
2014
b5ffc9bc
CW
2015static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2016{
2017 u32 old_write_domain, old_read_domains;
2018
b5ffc9bc
CW
2019 /* Act a barrier for all accesses through the GTT */
2020 mb();
2021
2022 /* Force a pagefault for domain tracking on next user access */
2023 i915_gem_release_mmap(obj);
2024
b97c3d9c
KP
2025 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2026 return;
2027
b5ffc9bc
CW
2028 old_read_domains = obj->base.read_domains;
2029 old_write_domain = obj->base.write_domain;
2030
2031 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2032 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2033
2034 trace_i915_gem_object_change_domain(obj,
2035 old_read_domains,
2036 old_write_domain);
2037}
2038
673a394b
EA
2039/**
2040 * Unbinds an object from the GTT aperture.
2041 */
0f973f27 2042int
05394f39 2043i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2044{
7bddb01f 2045 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2046 int ret = 0;
2047
05394f39 2048 if (obj->gtt_space == NULL)
673a394b
EA
2049 return 0;
2050
05394f39 2051 if (obj->pin_count != 0) {
673a394b
EA
2052 DRM_ERROR("Attempting to unbind pinned buffer\n");
2053 return -EINVAL;
2054 }
2055
a8198eea
CW
2056 ret = i915_gem_object_finish_gpu(obj);
2057 if (ret == -ERESTARTSYS)
2058 return ret;
2059 /* Continue on if we fail due to EIO, the GPU is hung so we
2060 * should be safe and we need to cleanup or else we might
2061 * cause memory corruption through use-after-free.
2062 */
2063
b5ffc9bc 2064 i915_gem_object_finish_gtt(obj);
5323fd04 2065
673a394b
EA
2066 /* Move the object to the CPU domain to ensure that
2067 * any possible CPU writes while it's not in the GTT
a8198eea 2068 * are flushed when we go to remap it.
673a394b 2069 */
a8198eea
CW
2070 if (ret == 0)
2071 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2072 if (ret == -ERESTARTSYS)
673a394b 2073 return ret;
812ed492 2074 if (ret) {
a8198eea
CW
2075 /* In the event of a disaster, abandon all caches and
2076 * hope for the best.
2077 */
812ed492 2078 i915_gem_clflush_object(obj);
05394f39 2079 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2080 }
673a394b 2081
96b47b65 2082 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2083 ret = i915_gem_object_put_fence(obj);
2084 if (ret == -ERESTARTSYS)
2085 return ret;
96b47b65 2086
db53a302
CW
2087 trace_i915_gem_object_unbind(obj);
2088
74898d7e
DV
2089 if (obj->has_global_gtt_mapping)
2090 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2091 if (obj->has_aliasing_ppgtt_mapping) {
2092 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2093 obj->has_aliasing_ppgtt_mapping = 0;
2094 }
74163907 2095 i915_gem_gtt_finish_object(obj);
7bddb01f 2096
e5281ccd 2097 i915_gem_object_put_pages_gtt(obj);
673a394b 2098
6299f992 2099 list_del_init(&obj->gtt_list);
05394f39 2100 list_del_init(&obj->mm_list);
75e9e915 2101 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2102 obj->map_and_fenceable = true;
673a394b 2103
05394f39
CW
2104 drm_mm_put_block(obj->gtt_space);
2105 obj->gtt_space = NULL;
2106 obj->gtt_offset = 0;
673a394b 2107
05394f39 2108 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2109 i915_gem_object_truncate(obj);
2110
8dc1775d 2111 return ret;
673a394b
EA
2112}
2113
88241785 2114int
db53a302 2115i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2116 uint32_t invalidate_domains,
2117 uint32_t flush_domains)
2118{
88241785
CW
2119 int ret;
2120
36d527de
CW
2121 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2122 return 0;
2123
db53a302
CW
2124 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2125
88241785
CW
2126 ret = ring->flush(ring, invalidate_domains, flush_domains);
2127 if (ret)
2128 return ret;
2129
36d527de
CW
2130 if (flush_domains & I915_GEM_GPU_DOMAINS)
2131 i915_gem_process_flushing_list(ring, flush_domains);
2132
88241785 2133 return 0;
54cf91dc
CW
2134}
2135
b93f9cf1 2136static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2137{
88241785
CW
2138 int ret;
2139
395b70be 2140 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2141 return 0;
2142
88241785 2143 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2144 ret = i915_gem_flush_ring(ring,
0ac74c6b 2145 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2146 if (ret)
2147 return ret;
2148 }
2149
b93f9cf1
BW
2150 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2151 do_retire);
a56ba56c
CW
2152}
2153
b93f9cf1 2154int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2155{
2156 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2157 int ret, i;
4df2faf4 2158
4df2faf4 2159 /* Flush everything onto the inactive list. */
1ec14ad3 2160 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2161 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2162 if (ret)
2163 return ret;
2164 }
4df2faf4 2165
8a1a49f9 2166 return 0;
4df2faf4
DV
2167}
2168
c6642782
DV
2169static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2170 struct intel_ring_buffer *pipelined)
4e901fdc 2171{
05394f39 2172 struct drm_device *dev = obj->base.dev;
4e901fdc 2173 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2174 u32 size = obj->gtt_space->size;
2175 int regnum = obj->fence_reg;
4e901fdc
EA
2176 uint64_t val;
2177
05394f39 2178 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2179 0xfffff000) << 32;
05394f39
CW
2180 val |= obj->gtt_offset & 0xfffff000;
2181 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2182 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2183
05394f39 2184 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2185 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2186 val |= I965_FENCE_REG_VALID;
2187
c6642782
DV
2188 if (pipelined) {
2189 int ret = intel_ring_begin(pipelined, 6);
2190 if (ret)
2191 return ret;
2192
2193 intel_ring_emit(pipelined, MI_NOOP);
2194 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2195 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2196 intel_ring_emit(pipelined, (u32)val);
2197 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2198 intel_ring_emit(pipelined, (u32)(val >> 32));
2199 intel_ring_advance(pipelined);
2200 } else
2201 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2202
2203 return 0;
4e901fdc
EA
2204}
2205
c6642782
DV
2206static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2207 struct intel_ring_buffer *pipelined)
de151cf6 2208{
05394f39 2209 struct drm_device *dev = obj->base.dev;
de151cf6 2210 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2211 u32 size = obj->gtt_space->size;
2212 int regnum = obj->fence_reg;
de151cf6
JB
2213 uint64_t val;
2214
05394f39 2215 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2216 0xfffff000) << 32;
05394f39
CW
2217 val |= obj->gtt_offset & 0xfffff000;
2218 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2219 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2220 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2221 val |= I965_FENCE_REG_VALID;
2222
c6642782
DV
2223 if (pipelined) {
2224 int ret = intel_ring_begin(pipelined, 6);
2225 if (ret)
2226 return ret;
2227
2228 intel_ring_emit(pipelined, MI_NOOP);
2229 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2230 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2231 intel_ring_emit(pipelined, (u32)val);
2232 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2233 intel_ring_emit(pipelined, (u32)(val >> 32));
2234 intel_ring_advance(pipelined);
2235 } else
2236 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2237
2238 return 0;
de151cf6
JB
2239}
2240
c6642782
DV
2241static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2242 struct intel_ring_buffer *pipelined)
de151cf6 2243{
05394f39 2244 struct drm_device *dev = obj->base.dev;
de151cf6 2245 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2246 u32 size = obj->gtt_space->size;
c6642782 2247 u32 fence_reg, val, pitch_val;
0f973f27 2248 int tile_width;
de151cf6 2249
c6642782
DV
2250 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2251 (size & -size) != size ||
2252 (obj->gtt_offset & (size - 1)),
2253 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2254 obj->gtt_offset, obj->map_and_fenceable, size))
2255 return -EINVAL;
de151cf6 2256
c6642782 2257 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2258 tile_width = 128;
de151cf6 2259 else
0f973f27
JB
2260 tile_width = 512;
2261
2262 /* Note: pitch better be a power of two tile widths */
05394f39 2263 pitch_val = obj->stride / tile_width;
0f973f27 2264 pitch_val = ffs(pitch_val) - 1;
de151cf6 2265
05394f39
CW
2266 val = obj->gtt_offset;
2267 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2268 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2269 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2270 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2271 val |= I830_FENCE_REG_VALID;
2272
05394f39 2273 fence_reg = obj->fence_reg;
a00b10c3
CW
2274 if (fence_reg < 8)
2275 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2276 else
a00b10c3 2277 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2278
2279 if (pipelined) {
2280 int ret = intel_ring_begin(pipelined, 4);
2281 if (ret)
2282 return ret;
2283
2284 intel_ring_emit(pipelined, MI_NOOP);
2285 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2286 intel_ring_emit(pipelined, fence_reg);
2287 intel_ring_emit(pipelined, val);
2288 intel_ring_advance(pipelined);
2289 } else
2290 I915_WRITE(fence_reg, val);
2291
2292 return 0;
de151cf6
JB
2293}
2294
c6642782
DV
2295static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2296 struct intel_ring_buffer *pipelined)
de151cf6 2297{
05394f39 2298 struct drm_device *dev = obj->base.dev;
de151cf6 2299 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2300 u32 size = obj->gtt_space->size;
2301 int regnum = obj->fence_reg;
de151cf6
JB
2302 uint32_t val;
2303 uint32_t pitch_val;
2304
c6642782
DV
2305 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2306 (size & -size) != size ||
2307 (obj->gtt_offset & (size - 1)),
2308 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2309 obj->gtt_offset, size))
2310 return -EINVAL;
de151cf6 2311
05394f39 2312 pitch_val = obj->stride / 128;
e76a16de 2313 pitch_val = ffs(pitch_val) - 1;
e76a16de 2314
05394f39
CW
2315 val = obj->gtt_offset;
2316 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2317 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2318 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2319 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2320 val |= I830_FENCE_REG_VALID;
2321
c6642782
DV
2322 if (pipelined) {
2323 int ret = intel_ring_begin(pipelined, 4);
2324 if (ret)
2325 return ret;
2326
2327 intel_ring_emit(pipelined, MI_NOOP);
2328 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2329 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2330 intel_ring_emit(pipelined, val);
2331 intel_ring_advance(pipelined);
2332 } else
2333 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2334
2335 return 0;
de151cf6
JB
2336}
2337
d9e86c0e
CW
2338static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2339{
2340 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2341}
2342
2343static int
2344i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2345 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2346{
2347 int ret;
2348
2349 if (obj->fenced_gpu_access) {
88241785 2350 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2351 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2352 0, obj->base.write_domain);
2353 if (ret)
2354 return ret;
2355 }
d9e86c0e
CW
2356
2357 obj->fenced_gpu_access = false;
2358 }
2359
2360 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2361 if (!ring_passed_seqno(obj->last_fenced_ring,
2362 obj->last_fenced_seqno)) {
db53a302 2363 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2364 obj->last_fenced_seqno,
2365 true);
d9e86c0e
CW
2366 if (ret)
2367 return ret;
2368 }
2369
2370 obj->last_fenced_seqno = 0;
2371 obj->last_fenced_ring = NULL;
2372 }
2373
63256ec5
CW
2374 /* Ensure that all CPU reads are completed before installing a fence
2375 * and all writes before removing the fence.
2376 */
2377 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2378 mb();
2379
d9e86c0e
CW
2380 return 0;
2381}
2382
2383int
2384i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2385{
2386 int ret;
2387
2388 if (obj->tiling_mode)
2389 i915_gem_release_mmap(obj);
2390
ce453d81 2391 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2392 if (ret)
2393 return ret;
2394
2395 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2397
2398 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2399 i915_gem_clear_fence_reg(obj->base.dev,
2400 &dev_priv->fence_regs[obj->fence_reg]);
2401
2402 obj->fence_reg = I915_FENCE_REG_NONE;
2403 }
2404
2405 return 0;
2406}
2407
2408static struct drm_i915_fence_reg *
2409i915_find_fence_reg(struct drm_device *dev,
2410 struct intel_ring_buffer *pipelined)
ae3db24a 2411{
ae3db24a 2412 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2413 struct drm_i915_fence_reg *reg, *first, *avail;
2414 int i;
ae3db24a
DV
2415
2416 /* First try to find a free reg */
d9e86c0e 2417 avail = NULL;
ae3db24a
DV
2418 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2419 reg = &dev_priv->fence_regs[i];
2420 if (!reg->obj)
d9e86c0e 2421 return reg;
ae3db24a 2422
1690e1eb 2423 if (!reg->pin_count)
d9e86c0e 2424 avail = reg;
ae3db24a
DV
2425 }
2426
d9e86c0e
CW
2427 if (avail == NULL)
2428 return NULL;
ae3db24a
DV
2429
2430 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2431 avail = first = NULL;
2432 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2433 if (reg->pin_count)
ae3db24a
DV
2434 continue;
2435
d9e86c0e
CW
2436 if (first == NULL)
2437 first = reg;
2438
2439 if (!pipelined ||
2440 !reg->obj->last_fenced_ring ||
2441 reg->obj->last_fenced_ring == pipelined) {
2442 avail = reg;
2443 break;
2444 }
ae3db24a
DV
2445 }
2446
d9e86c0e
CW
2447 if (avail == NULL)
2448 avail = first;
ae3db24a 2449
a00b10c3 2450 return avail;
ae3db24a
DV
2451}
2452
de151cf6 2453/**
9a5a53b3 2454 * i915_gem_object_get_fence - set up fencing for an object
de151cf6 2455 * @obj: object to map through a fence reg
d9e86c0e 2456 * @pipelined: ring on which to queue the change, or NULL for CPU access
de151cf6
JB
2457 *
2458 * When mapping objects through the GTT, userspace wants to be able to write
2459 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2460 * This function walks the fence regs looking for a free one for @obj,
2461 * stealing one if it can't find any.
2462 *
2463 * It then sets up the reg based on the object's properties: address, pitch
2464 * and tiling format.
9a5a53b3
CW
2465 *
2466 * For an untiled surface, this removes any existing fence.
de151cf6 2467 */
8c4b8c3f 2468int
d9e86c0e 2469i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2470 struct intel_ring_buffer *pipelined)
de151cf6 2471{
05394f39 2472 struct drm_device *dev = obj->base.dev;
79e53945 2473 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2474 struct drm_i915_fence_reg *reg;
ae3db24a 2475 int ret;
de151cf6 2476
9a5a53b3
CW
2477 if (obj->tiling_mode == I915_TILING_NONE)
2478 return i915_gem_object_put_fence(obj);
2479
6bda10d1
CW
2480 /* XXX disable pipelining. There are bugs. Shocking. */
2481 pipelined = NULL;
2482
d9e86c0e 2483 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2484 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2485 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2486 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2487
29c5a587
CW
2488 if (obj->tiling_changed) {
2489 ret = i915_gem_object_flush_fence(obj, pipelined);
2490 if (ret)
2491 return ret;
2492
2493 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2494 pipelined = NULL;
2495
2496 if (pipelined) {
2497 reg->setup_seqno =
2498 i915_gem_next_request_seqno(pipelined);
2499 obj->last_fenced_seqno = reg->setup_seqno;
2500 obj->last_fenced_ring = pipelined;
2501 }
2502
2503 goto update;
2504 }
d9e86c0e
CW
2505
2506 if (!pipelined) {
2507 if (reg->setup_seqno) {
2508 if (!ring_passed_seqno(obj->last_fenced_ring,
2509 reg->setup_seqno)) {
db53a302 2510 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2511 reg->setup_seqno,
2512 true);
d9e86c0e
CW
2513 if (ret)
2514 return ret;
2515 }
2516
2517 reg->setup_seqno = 0;
2518 }
2519 } else if (obj->last_fenced_ring &&
2520 obj->last_fenced_ring != pipelined) {
ce453d81 2521 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2522 if (ret)
2523 return ret;
d9e86c0e
CW
2524 }
2525
a09ba7fa
EA
2526 return 0;
2527 }
2528
d9e86c0e
CW
2529 reg = i915_find_fence_reg(dev, pipelined);
2530 if (reg == NULL)
39965b37 2531 return -EDEADLK;
de151cf6 2532
ce453d81 2533 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2534 if (ret)
ae3db24a 2535 return ret;
de151cf6 2536
d9e86c0e
CW
2537 if (reg->obj) {
2538 struct drm_i915_gem_object *old = reg->obj;
2539
2540 drm_gem_object_reference(&old->base);
2541
2542 if (old->tiling_mode)
2543 i915_gem_release_mmap(old);
2544
ce453d81 2545 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2546 if (ret) {
2547 drm_gem_object_unreference(&old->base);
2548 return ret;
2549 }
2550
2551 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2552 pipelined = NULL;
2553
2554 old->fence_reg = I915_FENCE_REG_NONE;
2555 old->last_fenced_ring = pipelined;
2556 old->last_fenced_seqno =
db53a302 2557 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2558
2559 drm_gem_object_unreference(&old->base);
2560 } else if (obj->last_fenced_seqno == 0)
2561 pipelined = NULL;
a09ba7fa 2562
de151cf6 2563 reg->obj = obj;
d9e86c0e
CW
2564 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2565 obj->fence_reg = reg - dev_priv->fence_regs;
2566 obj->last_fenced_ring = pipelined;
de151cf6 2567
d9e86c0e 2568 reg->setup_seqno =
db53a302 2569 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2570 obj->last_fenced_seqno = reg->setup_seqno;
2571
2572update:
2573 obj->tiling_changed = false;
e259befd 2574 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2575 case 7:
e259befd 2576 case 6:
c6642782 2577 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2578 break;
2579 case 5:
2580 case 4:
c6642782 2581 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2582 break;
2583 case 3:
c6642782 2584 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2585 break;
2586 case 2:
c6642782 2587 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2588 break;
2589 }
d9ddcb96 2590
c6642782 2591 return ret;
de151cf6
JB
2592}
2593
2594/**
2595 * i915_gem_clear_fence_reg - clear out fence register info
2596 * @obj: object to clear
2597 *
2598 * Zeroes out the fence register itself and clears out the associated
05394f39 2599 * data structures in dev_priv and obj.
de151cf6
JB
2600 */
2601static void
d9e86c0e
CW
2602i915_gem_clear_fence_reg(struct drm_device *dev,
2603 struct drm_i915_fence_reg *reg)
de151cf6 2604{
79e53945 2605 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2606 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2607
e259befd 2608 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2609 case 7:
e259befd 2610 case 6:
d9e86c0e 2611 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2612 break;
2613 case 5:
2614 case 4:
d9e86c0e 2615 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2616 break;
2617 case 3:
d9e86c0e
CW
2618 if (fence_reg >= 8)
2619 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2620 else
e259befd 2621 case 2:
d9e86c0e 2622 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2623
2624 I915_WRITE(fence_reg, 0);
e259befd 2625 break;
dc529a4f 2626 }
de151cf6 2627
007cc8ac 2628 list_del_init(&reg->lru_list);
d9e86c0e
CW
2629 reg->obj = NULL;
2630 reg->setup_seqno = 0;
1690e1eb 2631 reg->pin_count = 0;
52dc7d32
CW
2632}
2633
673a394b
EA
2634/**
2635 * Finds free space in the GTT aperture and binds the object there.
2636 */
2637static int
05394f39 2638i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2639 unsigned alignment,
75e9e915 2640 bool map_and_fenceable)
673a394b 2641{
05394f39 2642 struct drm_device *dev = obj->base.dev;
673a394b 2643 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2644 struct drm_mm_node *free_space;
a00b10c3 2645 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2646 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2647 bool mappable, fenceable;
07f73f69 2648 int ret;
673a394b 2649
05394f39 2650 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2651 DRM_ERROR("Attempting to bind a purgeable object\n");
2652 return -EINVAL;
2653 }
2654
e28f8711
CW
2655 fence_size = i915_gem_get_gtt_size(dev,
2656 obj->base.size,
2657 obj->tiling_mode);
2658 fence_alignment = i915_gem_get_gtt_alignment(dev,
2659 obj->base.size,
2660 obj->tiling_mode);
2661 unfenced_alignment =
2662 i915_gem_get_unfenced_gtt_alignment(dev,
2663 obj->base.size,
2664 obj->tiling_mode);
a00b10c3 2665
673a394b 2666 if (alignment == 0)
5e783301
DV
2667 alignment = map_and_fenceable ? fence_alignment :
2668 unfenced_alignment;
75e9e915 2669 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2670 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2671 return -EINVAL;
2672 }
2673
05394f39 2674 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2675
654fc607
CW
2676 /* If the object is bigger than the entire aperture, reject it early
2677 * before evicting everything in a vain attempt to find space.
2678 */
05394f39 2679 if (obj->base.size >
75e9e915 2680 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2681 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2682 return -E2BIG;
2683 }
2684
673a394b 2685 search_free:
75e9e915 2686 if (map_and_fenceable)
920afa77
DV
2687 free_space =
2688 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2689 size, alignment, 0,
920afa77
DV
2690 dev_priv->mm.gtt_mappable_end,
2691 0);
2692 else
2693 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2694 size, alignment, 0);
920afa77
DV
2695
2696 if (free_space != NULL) {
75e9e915 2697 if (map_and_fenceable)
05394f39 2698 obj->gtt_space =
920afa77 2699 drm_mm_get_block_range_generic(free_space,
a00b10c3 2700 size, alignment, 0,
920afa77
DV
2701 dev_priv->mm.gtt_mappable_end,
2702 0);
2703 else
05394f39 2704 obj->gtt_space =
a00b10c3 2705 drm_mm_get_block(free_space, size, alignment);
920afa77 2706 }
05394f39 2707 if (obj->gtt_space == NULL) {
673a394b
EA
2708 /* If the gtt is empty and we're still having trouble
2709 * fitting our object in, we're out of memory.
2710 */
75e9e915
DV
2711 ret = i915_gem_evict_something(dev, size, alignment,
2712 map_and_fenceable);
9731129c 2713 if (ret)
673a394b 2714 return ret;
9731129c 2715
673a394b
EA
2716 goto search_free;
2717 }
2718
e5281ccd 2719 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2720 if (ret) {
05394f39
CW
2721 drm_mm_put_block(obj->gtt_space);
2722 obj->gtt_space = NULL;
07f73f69
CW
2723
2724 if (ret == -ENOMEM) {
809b6334
CW
2725 /* first try to reclaim some memory by clearing the GTT */
2726 ret = i915_gem_evict_everything(dev, false);
07f73f69 2727 if (ret) {
07f73f69 2728 /* now try to shrink everyone else */
4bdadb97
CW
2729 if (gfpmask) {
2730 gfpmask = 0;
2731 goto search_free;
07f73f69
CW
2732 }
2733
809b6334 2734 return -ENOMEM;
07f73f69
CW
2735 }
2736
2737 goto search_free;
2738 }
2739
673a394b
EA
2740 return ret;
2741 }
2742
74163907 2743 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2744 if (ret) {
e5281ccd 2745 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2746 drm_mm_put_block(obj->gtt_space);
2747 obj->gtt_space = NULL;
07f73f69 2748
809b6334 2749 if (i915_gem_evict_everything(dev, false))
07f73f69 2750 return ret;
07f73f69
CW
2751
2752 goto search_free;
673a394b 2753 }
673a394b 2754
0ebb9829
DV
2755 if (!dev_priv->mm.aliasing_ppgtt)
2756 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2757
6299f992 2758 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2759 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2760
673a394b
EA
2761 /* Assert that the object is not currently in any GPU domain. As it
2762 * wasn't in the GTT, there shouldn't be any way it could have been in
2763 * a GPU cache
2764 */
05394f39
CW
2765 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2766 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2767
6299f992 2768 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2769
75e9e915 2770 fenceable =
05394f39 2771 obj->gtt_space->size == fence_size &&
0206e353 2772 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2773
75e9e915 2774 mappable =
05394f39 2775 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2776
05394f39 2777 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2778
db53a302 2779 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2780 return 0;
2781}
2782
2783void
05394f39 2784i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2785{
673a394b
EA
2786 /* If we don't have a page list set up, then we're not pinned
2787 * to GPU, and we can ignore the cache flush because it'll happen
2788 * again at bind time.
2789 */
05394f39 2790 if (obj->pages == NULL)
673a394b
EA
2791 return;
2792
9c23f7fc
CW
2793 /* If the GPU is snooping the contents of the CPU cache,
2794 * we do not need to manually clear the CPU cache lines. However,
2795 * the caches are only snooped when the render cache is
2796 * flushed/invalidated. As we always have to emit invalidations
2797 * and flushes when moving into and out of the RENDER domain, correct
2798 * snooping behaviour occurs naturally as the result of our domain
2799 * tracking.
2800 */
2801 if (obj->cache_level != I915_CACHE_NONE)
2802 return;
2803
1c5d22f7 2804 trace_i915_gem_object_clflush(obj);
cfa16a0d 2805
05394f39 2806 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2807}
2808
e47c68e9 2809/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2810static int
3619df03 2811i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2812{
05394f39 2813 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2814 return 0;
e47c68e9
EA
2815
2816 /* Queue the GPU write cache flushing we need. */
db53a302 2817 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2818}
2819
2820/** Flushes the GTT write domain for the object if it's dirty. */
2821static void
05394f39 2822i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2823{
1c5d22f7
CW
2824 uint32_t old_write_domain;
2825
05394f39 2826 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2827 return;
2828
63256ec5 2829 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2830 * to it immediately go to main memory as far as we know, so there's
2831 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2832 *
2833 * However, we do have to enforce the order so that all writes through
2834 * the GTT land before any writes to the device, such as updates to
2835 * the GATT itself.
e47c68e9 2836 */
63256ec5
CW
2837 wmb();
2838
05394f39
CW
2839 old_write_domain = obj->base.write_domain;
2840 obj->base.write_domain = 0;
1c5d22f7
CW
2841
2842 trace_i915_gem_object_change_domain(obj,
05394f39 2843 obj->base.read_domains,
1c5d22f7 2844 old_write_domain);
e47c68e9
EA
2845}
2846
2847/** Flushes the CPU write domain for the object if it's dirty. */
2848static void
05394f39 2849i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2850{
1c5d22f7 2851 uint32_t old_write_domain;
e47c68e9 2852
05394f39 2853 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2854 return;
2855
2856 i915_gem_clflush_object(obj);
40ce6575 2857 intel_gtt_chipset_flush();
05394f39
CW
2858 old_write_domain = obj->base.write_domain;
2859 obj->base.write_domain = 0;
1c5d22f7
CW
2860
2861 trace_i915_gem_object_change_domain(obj,
05394f39 2862 obj->base.read_domains,
1c5d22f7 2863 old_write_domain);
e47c68e9
EA
2864}
2865
2ef7eeaa
EA
2866/**
2867 * Moves a single object to the GTT read, and possibly write domain.
2868 *
2869 * This function returns when the move is complete, including waiting on
2870 * flushes to occur.
2871 */
79e53945 2872int
2021746e 2873i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2874{
1c5d22f7 2875 uint32_t old_write_domain, old_read_domains;
e47c68e9 2876 int ret;
2ef7eeaa 2877
02354392 2878 /* Not valid to be called on unbound objects. */
05394f39 2879 if (obj->gtt_space == NULL)
02354392
EA
2880 return -EINVAL;
2881
8d7e3de1
CW
2882 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2883 return 0;
2884
88241785
CW
2885 ret = i915_gem_object_flush_gpu_write_domain(obj);
2886 if (ret)
2887 return ret;
2888
87ca9c8a 2889 if (obj->pending_gpu_write || write) {
ce453d81 2890 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2891 if (ret)
2892 return ret;
2893 }
2dafb1e0 2894
7213342d 2895 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2896
05394f39
CW
2897 old_write_domain = obj->base.write_domain;
2898 old_read_domains = obj->base.read_domains;
1c5d22f7 2899
e47c68e9
EA
2900 /* It should now be out of any other write domains, and we can update
2901 * the domain values for our changes.
2902 */
05394f39
CW
2903 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2904 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2905 if (write) {
05394f39
CW
2906 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2907 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2908 obj->dirty = 1;
2ef7eeaa
EA
2909 }
2910
1c5d22f7
CW
2911 trace_i915_gem_object_change_domain(obj,
2912 old_read_domains,
2913 old_write_domain);
2914
e47c68e9
EA
2915 return 0;
2916}
2917
e4ffd173
CW
2918int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2919 enum i915_cache_level cache_level)
2920{
7bddb01f
DV
2921 struct drm_device *dev = obj->base.dev;
2922 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2923 int ret;
2924
2925 if (obj->cache_level == cache_level)
2926 return 0;
2927
2928 if (obj->pin_count) {
2929 DRM_DEBUG("can not change the cache level of pinned objects\n");
2930 return -EBUSY;
2931 }
2932
2933 if (obj->gtt_space) {
2934 ret = i915_gem_object_finish_gpu(obj);
2935 if (ret)
2936 return ret;
2937
2938 i915_gem_object_finish_gtt(obj);
2939
2940 /* Before SandyBridge, you could not use tiling or fence
2941 * registers with snooped memory, so relinquish any fences
2942 * currently pointing to our region in the aperture.
2943 */
2944 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2945 ret = i915_gem_object_put_fence(obj);
2946 if (ret)
2947 return ret;
2948 }
2949
74898d7e
DV
2950 if (obj->has_global_gtt_mapping)
2951 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2952 if (obj->has_aliasing_ppgtt_mapping)
2953 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2954 obj, cache_level);
e4ffd173
CW
2955 }
2956
2957 if (cache_level == I915_CACHE_NONE) {
2958 u32 old_read_domains, old_write_domain;
2959
2960 /* If we're coming from LLC cached, then we haven't
2961 * actually been tracking whether the data is in the
2962 * CPU cache or not, since we only allow one bit set
2963 * in obj->write_domain and have been skipping the clflushes.
2964 * Just set it to the CPU cache for now.
2965 */
2966 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2967 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2968
2969 old_read_domains = obj->base.read_domains;
2970 old_write_domain = obj->base.write_domain;
2971
2972 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2973 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2974
2975 trace_i915_gem_object_change_domain(obj,
2976 old_read_domains,
2977 old_write_domain);
2978 }
2979
2980 obj->cache_level = cache_level;
2981 return 0;
2982}
2983
b9241ea3 2984/*
2da3b9b9
CW
2985 * Prepare buffer for display plane (scanout, cursors, etc).
2986 * Can be called from an uninterruptible phase (modesetting) and allows
2987 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2988 */
2989int
2da3b9b9
CW
2990i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2991 u32 alignment,
919926ae 2992 struct intel_ring_buffer *pipelined)
b9241ea3 2993{
2da3b9b9 2994 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2995 int ret;
2996
88241785
CW
2997 ret = i915_gem_object_flush_gpu_write_domain(obj);
2998 if (ret)
2999 return ret;
3000
0be73284 3001 if (pipelined != obj->ring) {
2911a35b
BW
3002 ret = i915_gem_object_sync(obj, pipelined);
3003 if (ret)
b9241ea3
ZW
3004 return ret;
3005 }
3006
a7ef0640
EA
3007 /* The display engine is not coherent with the LLC cache on gen6. As
3008 * a result, we make sure that the pinning that is about to occur is
3009 * done with uncached PTEs. This is lowest common denominator for all
3010 * chipsets.
3011 *
3012 * However for gen6+, we could do better by using the GFDT bit instead
3013 * of uncaching, which would allow us to flush all the LLC-cached data
3014 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3015 */
3016 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3017 if (ret)
3018 return ret;
3019
2da3b9b9
CW
3020 /* As the user may map the buffer once pinned in the display plane
3021 * (e.g. libkms for the bootup splash), we have to ensure that we
3022 * always use map_and_fenceable for all scanout buffers.
3023 */
3024 ret = i915_gem_object_pin(obj, alignment, true);
3025 if (ret)
3026 return ret;
3027
b118c1e3
CW
3028 i915_gem_object_flush_cpu_write_domain(obj);
3029
2da3b9b9 3030 old_write_domain = obj->base.write_domain;
05394f39 3031 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3032
3033 /* It should now be out of any other write domains, and we can update
3034 * the domain values for our changes.
3035 */
3036 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3037 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3038
3039 trace_i915_gem_object_change_domain(obj,
3040 old_read_domains,
2da3b9b9 3041 old_write_domain);
b9241ea3
ZW
3042
3043 return 0;
3044}
3045
85345517 3046int
a8198eea 3047i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3048{
88241785
CW
3049 int ret;
3050
a8198eea 3051 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3052 return 0;
3053
88241785 3054 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3055 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3056 if (ret)
3057 return ret;
3058 }
85345517 3059
c501ae7f
CW
3060 ret = i915_gem_object_wait_rendering(obj);
3061 if (ret)
3062 return ret;
3063
a8198eea
CW
3064 /* Ensure that we invalidate the GPU's caches and TLBs. */
3065 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3066 return 0;
85345517
CW
3067}
3068
e47c68e9
EA
3069/**
3070 * Moves a single object to the CPU read, and possibly write domain.
3071 *
3072 * This function returns when the move is complete, including waiting on
3073 * flushes to occur.
3074 */
dabdfe02 3075int
919926ae 3076i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3077{
1c5d22f7 3078 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3079 int ret;
3080
8d7e3de1
CW
3081 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3082 return 0;
3083
88241785
CW
3084 ret = i915_gem_object_flush_gpu_write_domain(obj);
3085 if (ret)
3086 return ret;
3087
f8413190
CW
3088 if (write || obj->pending_gpu_write) {
3089 ret = i915_gem_object_wait_rendering(obj);
3090 if (ret)
3091 return ret;
3092 }
2ef7eeaa 3093
e47c68e9 3094 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3095
05394f39
CW
3096 old_write_domain = obj->base.write_domain;
3097 old_read_domains = obj->base.read_domains;
1c5d22f7 3098
e47c68e9 3099 /* Flush the CPU cache if it's still invalid. */
05394f39 3100 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3101 i915_gem_clflush_object(obj);
2ef7eeaa 3102
05394f39 3103 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3104 }
3105
3106 /* It should now be out of any other write domains, and we can update
3107 * the domain values for our changes.
3108 */
05394f39 3109 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3110
3111 /* If we're writing through the CPU, then the GPU read domains will
3112 * need to be invalidated at next use.
3113 */
3114 if (write) {
05394f39
CW
3115 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3116 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3117 }
2ef7eeaa 3118
1c5d22f7
CW
3119 trace_i915_gem_object_change_domain(obj,
3120 old_read_domains,
3121 old_write_domain);
3122
2ef7eeaa
EA
3123 return 0;
3124}
3125
673a394b
EA
3126/* Throttle our rendering by waiting until the ring has completed our requests
3127 * emitted over 20 msec ago.
3128 *
b962442e
EA
3129 * Note that if we were to use the current jiffies each time around the loop,
3130 * we wouldn't escape the function with any frames outstanding if the time to
3131 * render a frame was over 20ms.
3132 *
673a394b
EA
3133 * This should get us reasonable parallelism between CPU and GPU but also
3134 * relatively low latency when blocking on a particular request to finish.
3135 */
40a5f0de 3136static int
f787a5f5 3137i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3138{
f787a5f5
CW
3139 struct drm_i915_private *dev_priv = dev->dev_private;
3140 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3141 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3142 struct drm_i915_gem_request *request;
3143 struct intel_ring_buffer *ring = NULL;
3144 u32 seqno = 0;
3145 int ret;
93533c29 3146
e110e8d6
CW
3147 if (atomic_read(&dev_priv->mm.wedged))
3148 return -EIO;
3149
1c25595f 3150 spin_lock(&file_priv->mm.lock);
f787a5f5 3151 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3152 if (time_after_eq(request->emitted_jiffies, recent_enough))
3153 break;
40a5f0de 3154
f787a5f5
CW
3155 ring = request->ring;
3156 seqno = request->seqno;
b962442e 3157 }
1c25595f 3158 spin_unlock(&file_priv->mm.lock);
40a5f0de 3159
f787a5f5
CW
3160 if (seqno == 0)
3161 return 0;
2bc43b5c 3162
f787a5f5 3163 ret = 0;
78501eac 3164 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3165 /* And wait for the seqno passing without holding any locks and
3166 * causing extra latency for others. This is safe as the irq
3167 * generation is designed to be run atomically and so is
3168 * lockless.
3169 */
b13c2b96
CW
3170 if (ring->irq_get(ring)) {
3171 ret = wait_event_interruptible(ring->irq_queue,
3172 i915_seqno_passed(ring->get_seqno(ring), seqno)
3173 || atomic_read(&dev_priv->mm.wedged));
3174 ring->irq_put(ring);
40a5f0de 3175
b13c2b96
CW
3176 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3177 ret = -EIO;
e959b5db
EA
3178 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3179 seqno) ||
7ea29b13
EA
3180 atomic_read(&dev_priv->mm.wedged), 3000)) {
3181 ret = -EBUSY;
b13c2b96 3182 }
40a5f0de
EA
3183 }
3184
f787a5f5
CW
3185 if (ret == 0)
3186 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3187
3188 return ret;
3189}
3190
673a394b 3191int
05394f39
CW
3192i915_gem_object_pin(struct drm_i915_gem_object *obj,
3193 uint32_t alignment,
75e9e915 3194 bool map_and_fenceable)
673a394b 3195{
05394f39 3196 struct drm_device *dev = obj->base.dev;
f13d3f73 3197 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3198 int ret;
3199
05394f39 3200 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3201 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3202
05394f39
CW
3203 if (obj->gtt_space != NULL) {
3204 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3205 (map_and_fenceable && !obj->map_and_fenceable)) {
3206 WARN(obj->pin_count,
ae7d49d8 3207 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3208 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3209 " obj->map_and_fenceable=%d\n",
05394f39 3210 obj->gtt_offset, alignment,
75e9e915 3211 map_and_fenceable,
05394f39 3212 obj->map_and_fenceable);
ac0c6b5a
CW
3213 ret = i915_gem_object_unbind(obj);
3214 if (ret)
3215 return ret;
3216 }
3217 }
3218
05394f39 3219 if (obj->gtt_space == NULL) {
a00b10c3 3220 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3221 map_and_fenceable);
9731129c 3222 if (ret)
673a394b 3223 return ret;
22c344e9 3224 }
76446cac 3225
74898d7e
DV
3226 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3227 i915_gem_gtt_bind_object(obj, obj->cache_level);
3228
05394f39 3229 if (obj->pin_count++ == 0) {
05394f39
CW
3230 if (!obj->active)
3231 list_move_tail(&obj->mm_list,
f13d3f73 3232 &dev_priv->mm.pinned_list);
673a394b 3233 }
6299f992 3234 obj->pin_mappable |= map_and_fenceable;
673a394b 3235
23bc5982 3236 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3237 return 0;
3238}
3239
3240void
05394f39 3241i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3242{
05394f39 3243 struct drm_device *dev = obj->base.dev;
673a394b 3244 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3245
23bc5982 3246 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3247 BUG_ON(obj->pin_count == 0);
3248 BUG_ON(obj->gtt_space == NULL);
673a394b 3249
05394f39
CW
3250 if (--obj->pin_count == 0) {
3251 if (!obj->active)
3252 list_move_tail(&obj->mm_list,
673a394b 3253 &dev_priv->mm.inactive_list);
6299f992 3254 obj->pin_mappable = false;
673a394b 3255 }
23bc5982 3256 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3257}
3258
3259int
3260i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3261 struct drm_file *file)
673a394b
EA
3262{
3263 struct drm_i915_gem_pin *args = data;
05394f39 3264 struct drm_i915_gem_object *obj;
673a394b
EA
3265 int ret;
3266
1d7cfea1
CW
3267 ret = i915_mutex_lock_interruptible(dev);
3268 if (ret)
3269 return ret;
673a394b 3270
05394f39 3271 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3272 if (&obj->base == NULL) {
1d7cfea1
CW
3273 ret = -ENOENT;
3274 goto unlock;
673a394b 3275 }
673a394b 3276
05394f39 3277 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3278 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3279 ret = -EINVAL;
3280 goto out;
3ef94daa
CW
3281 }
3282
05394f39 3283 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3284 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3285 args->handle);
1d7cfea1
CW
3286 ret = -EINVAL;
3287 goto out;
79e53945
JB
3288 }
3289
05394f39
CW
3290 obj->user_pin_count++;
3291 obj->pin_filp = file;
3292 if (obj->user_pin_count == 1) {
75e9e915 3293 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3294 if (ret)
3295 goto out;
673a394b
EA
3296 }
3297
3298 /* XXX - flush the CPU caches for pinned objects
3299 * as the X server doesn't manage domains yet
3300 */
e47c68e9 3301 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3302 args->offset = obj->gtt_offset;
1d7cfea1 3303out:
05394f39 3304 drm_gem_object_unreference(&obj->base);
1d7cfea1 3305unlock:
673a394b 3306 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3307 return ret;
673a394b
EA
3308}
3309
3310int
3311i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3312 struct drm_file *file)
673a394b
EA
3313{
3314 struct drm_i915_gem_pin *args = data;
05394f39 3315 struct drm_i915_gem_object *obj;
76c1dec1 3316 int ret;
673a394b 3317
1d7cfea1
CW
3318 ret = i915_mutex_lock_interruptible(dev);
3319 if (ret)
3320 return ret;
673a394b 3321
05394f39 3322 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3323 if (&obj->base == NULL) {
1d7cfea1
CW
3324 ret = -ENOENT;
3325 goto unlock;
673a394b 3326 }
76c1dec1 3327
05394f39 3328 if (obj->pin_filp != file) {
79e53945
JB
3329 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3330 args->handle);
1d7cfea1
CW
3331 ret = -EINVAL;
3332 goto out;
79e53945 3333 }
05394f39
CW
3334 obj->user_pin_count--;
3335 if (obj->user_pin_count == 0) {
3336 obj->pin_filp = NULL;
79e53945
JB
3337 i915_gem_object_unpin(obj);
3338 }
673a394b 3339
1d7cfea1 3340out:
05394f39 3341 drm_gem_object_unreference(&obj->base);
1d7cfea1 3342unlock:
673a394b 3343 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3344 return ret;
673a394b
EA
3345}
3346
3347int
3348i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3349 struct drm_file *file)
673a394b
EA
3350{
3351 struct drm_i915_gem_busy *args = data;
05394f39 3352 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3353 int ret;
3354
76c1dec1 3355 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3356 if (ret)
76c1dec1 3357 return ret;
673a394b 3358
05394f39 3359 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3360 if (&obj->base == NULL) {
1d7cfea1
CW
3361 ret = -ENOENT;
3362 goto unlock;
673a394b 3363 }
d1b851fc 3364
0be555b6
CW
3365 /* Count all active objects as busy, even if they are currently not used
3366 * by the gpu. Users of this interface expect objects to eventually
3367 * become non-busy without any further actions, therefore emit any
3368 * necessary flushes here.
c4de0a5d 3369 */
05394f39 3370 args->busy = obj->active;
0be555b6
CW
3371 if (args->busy) {
3372 /* Unconditionally flush objects, even when the gpu still uses this
3373 * object. Userspace calling this function indicates that it wants to
3374 * use this buffer rather sooner than later, so issuing the required
3375 * flush earlier is beneficial.
3376 */
1a1c6976 3377 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3378 ret = i915_gem_flush_ring(obj->ring,
88241785 3379 0, obj->base.write_domain);
1a1c6976
CW
3380 } else if (obj->ring->outstanding_lazy_request ==
3381 obj->last_rendering_seqno) {
3382 struct drm_i915_gem_request *request;
3383
7a194876
CW
3384 /* This ring is not being cleared by active usage,
3385 * so emit a request to do so.
3386 */
1a1c6976 3387 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3388 if (request) {
0206e353 3389 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3390 if (ret)
3391 kfree(request);
3392 } else
7a194876
CW
3393 ret = -ENOMEM;
3394 }
0be555b6
CW
3395
3396 /* Update the active list for the hardware's current position.
3397 * Otherwise this only updates on a delayed timer or when irqs
3398 * are actually unmasked, and our working set ends up being
3399 * larger than required.
3400 */
db53a302 3401 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3402
05394f39 3403 args->busy = obj->active;
0be555b6 3404 }
673a394b 3405
05394f39 3406 drm_gem_object_unreference(&obj->base);
1d7cfea1 3407unlock:
673a394b 3408 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3409 return ret;
673a394b
EA
3410}
3411
3412int
3413i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3414 struct drm_file *file_priv)
3415{
0206e353 3416 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3417}
3418
3ef94daa
CW
3419int
3420i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3421 struct drm_file *file_priv)
3422{
3423 struct drm_i915_gem_madvise *args = data;
05394f39 3424 struct drm_i915_gem_object *obj;
76c1dec1 3425 int ret;
3ef94daa
CW
3426
3427 switch (args->madv) {
3428 case I915_MADV_DONTNEED:
3429 case I915_MADV_WILLNEED:
3430 break;
3431 default:
3432 return -EINVAL;
3433 }
3434
1d7cfea1
CW
3435 ret = i915_mutex_lock_interruptible(dev);
3436 if (ret)
3437 return ret;
3438
05394f39 3439 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3440 if (&obj->base == NULL) {
1d7cfea1
CW
3441 ret = -ENOENT;
3442 goto unlock;
3ef94daa 3443 }
3ef94daa 3444
05394f39 3445 if (obj->pin_count) {
1d7cfea1
CW
3446 ret = -EINVAL;
3447 goto out;
3ef94daa
CW
3448 }
3449
05394f39
CW
3450 if (obj->madv != __I915_MADV_PURGED)
3451 obj->madv = args->madv;
3ef94daa 3452
2d7ef395 3453 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3454 if (i915_gem_object_is_purgeable(obj) &&
3455 obj->gtt_space == NULL)
2d7ef395
CW
3456 i915_gem_object_truncate(obj);
3457
05394f39 3458 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3459
1d7cfea1 3460out:
05394f39 3461 drm_gem_object_unreference(&obj->base);
1d7cfea1 3462unlock:
3ef94daa 3463 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3464 return ret;
3ef94daa
CW
3465}
3466
05394f39
CW
3467struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3468 size_t size)
ac52bc56 3469{
73aa808f 3470 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3471 struct drm_i915_gem_object *obj;
5949eac4 3472 struct address_space *mapping;
ac52bc56 3473
c397b908
DV
3474 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3475 if (obj == NULL)
3476 return NULL;
673a394b 3477
c397b908
DV
3478 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3479 kfree(obj);
3480 return NULL;
3481 }
673a394b 3482
5949eac4
HD
3483 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3484 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3485
73aa808f
CW
3486 i915_gem_info_add_obj(dev_priv, size);
3487
c397b908
DV
3488 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3489 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3490
3d29b842
ED
3491 if (HAS_LLC(dev)) {
3492 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3493 * cache) for about a 10% performance improvement
3494 * compared to uncached. Graphics requests other than
3495 * display scanout are coherent with the CPU in
3496 * accessing this cache. This means in this mode we
3497 * don't need to clflush on the CPU side, and on the
3498 * GPU side we only need to flush internal caches to
3499 * get data visible to the CPU.
3500 *
3501 * However, we maintain the display planes as UC, and so
3502 * need to rebind when first used as such.
3503 */
3504 obj->cache_level = I915_CACHE_LLC;
3505 } else
3506 obj->cache_level = I915_CACHE_NONE;
3507
62b8b215 3508 obj->base.driver_private = NULL;
c397b908 3509 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3510 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3511 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3512 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3513 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3514 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3515 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3516 /* Avoid an unnecessary call to unbind on the first bind. */
3517 obj->map_and_fenceable = true;
de151cf6 3518
05394f39 3519 return obj;
c397b908
DV
3520}
3521
3522int i915_gem_init_object(struct drm_gem_object *obj)
3523{
3524 BUG();
de151cf6 3525
673a394b
EA
3526 return 0;
3527}
3528
05394f39 3529static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3530{
05394f39 3531 struct drm_device *dev = obj->base.dev;
be72615b 3532 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3533 int ret;
673a394b 3534
be72615b
CW
3535 ret = i915_gem_object_unbind(obj);
3536 if (ret == -ERESTARTSYS) {
05394f39 3537 list_move(&obj->mm_list,
be72615b
CW
3538 &dev_priv->mm.deferred_free_list);
3539 return;
3540 }
673a394b 3541
26e12f89
CW
3542 trace_i915_gem_object_destroy(obj);
3543
05394f39 3544 if (obj->base.map_list.map)
b464e9a2 3545 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3546
05394f39
CW
3547 drm_gem_object_release(&obj->base);
3548 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3549
05394f39
CW
3550 kfree(obj->bit_17);
3551 kfree(obj);
673a394b
EA
3552}
3553
05394f39 3554void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3555{
05394f39
CW
3556 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3557 struct drm_device *dev = obj->base.dev;
be72615b 3558
05394f39 3559 while (obj->pin_count > 0)
be72615b
CW
3560 i915_gem_object_unpin(obj);
3561
05394f39 3562 if (obj->phys_obj)
be72615b
CW
3563 i915_gem_detach_phys_object(dev, obj);
3564
3565 i915_gem_free_object_tail(obj);
3566}
3567
29105ccc
CW
3568int
3569i915_gem_idle(struct drm_device *dev)
3570{
3571 drm_i915_private_t *dev_priv = dev->dev_private;
3572 int ret;
28dfe52a 3573
29105ccc 3574 mutex_lock(&dev->struct_mutex);
1c5d22f7 3575
87acb0a5 3576 if (dev_priv->mm.suspended) {
29105ccc
CW
3577 mutex_unlock(&dev->struct_mutex);
3578 return 0;
28dfe52a
EA
3579 }
3580
b93f9cf1 3581 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3582 if (ret) {
3583 mutex_unlock(&dev->struct_mutex);
673a394b 3584 return ret;
6dbe2772 3585 }
673a394b 3586
29105ccc
CW
3587 /* Under UMS, be paranoid and evict. */
3588 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3589 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3590 if (ret) {
3591 mutex_unlock(&dev->struct_mutex);
3592 return ret;
3593 }
3594 }
3595
312817a3
CW
3596 i915_gem_reset_fences(dev);
3597
29105ccc
CW
3598 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3599 * We need to replace this with a semaphore, or something.
3600 * And not confound mm.suspended!
3601 */
3602 dev_priv->mm.suspended = 1;
bc0c7f14 3603 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3604
3605 i915_kernel_lost_context(dev);
6dbe2772 3606 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3607
6dbe2772
KP
3608 mutex_unlock(&dev->struct_mutex);
3609
29105ccc
CW
3610 /* Cancel the retire work handler, which should be idle now. */
3611 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3612
673a394b
EA
3613 return 0;
3614}
3615
f691e2f4
DV
3616void i915_gem_init_swizzling(struct drm_device *dev)
3617{
3618 drm_i915_private_t *dev_priv = dev->dev_private;
3619
11782b02 3620 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3621 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3622 return;
3623
3624 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3625 DISP_TILE_SURFACE_SWIZZLING);
3626
11782b02
DV
3627 if (IS_GEN5(dev))
3628 return;
3629
f691e2f4
DV
3630 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3631 if (IS_GEN6(dev))
3632 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3633 else
3634 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3635}
e21af88d
DV
3636
3637void i915_gem_init_ppgtt(struct drm_device *dev)
3638{
3639 drm_i915_private_t *dev_priv = dev->dev_private;
3640 uint32_t pd_offset;
3641 struct intel_ring_buffer *ring;
55a254ac
DV
3642 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3643 uint32_t __iomem *pd_addr;
3644 uint32_t pd_entry;
e21af88d
DV
3645 int i;
3646
3647 if (!dev_priv->mm.aliasing_ppgtt)
3648 return;
3649
55a254ac
DV
3650
3651 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3652 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3653 dma_addr_t pt_addr;
3654
3655 if (dev_priv->mm.gtt->needs_dmar)
3656 pt_addr = ppgtt->pt_dma_addr[i];
3657 else
3658 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3659
3660 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3661 pd_entry |= GEN6_PDE_VALID;
3662
3663 writel(pd_entry, pd_addr + i);
3664 }
3665 readl(pd_addr);
3666
3667 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3668 pd_offset /= 64; /* in cachelines, */
3669 pd_offset <<= 16;
3670
3671 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3672 uint32_t ecochk, gab_ctl, ecobits;
3673
3674 ecobits = I915_READ(GAC_ECO_BITS);
3675 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3676
3677 gab_ctl = I915_READ(GAB_CTL);
3678 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3679
3680 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3681 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3682 ECOCHK_PPGTT_CACHE64B);
3683 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3684 } else if (INTEL_INFO(dev)->gen >= 7) {
3685 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3686 /* GFX_MODE is per-ring on gen7+ */
3687 }
3688
3689 for (i = 0; i < I915_NUM_RINGS; i++) {
3690 ring = &dev_priv->ring[i];
3691
3692 if (INTEL_INFO(dev)->gen >= 7)
3693 I915_WRITE(RING_MODE_GEN7(ring),
3694 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3695
3696 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3697 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3698 }
3699}
3700
8187a2b7 3701int
f691e2f4 3702i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3703{
3704 drm_i915_private_t *dev_priv = dev->dev_private;
3705 int ret;
68f95ba9 3706
f691e2f4
DV
3707 i915_gem_init_swizzling(dev);
3708
5c1143bb 3709 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3710 if (ret)
b6913e4b 3711 return ret;
68f95ba9
CW
3712
3713 if (HAS_BSD(dev)) {
5c1143bb 3714 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3715 if (ret)
3716 goto cleanup_render_ring;
d1b851fc 3717 }
68f95ba9 3718
549f7365
CW
3719 if (HAS_BLT(dev)) {
3720 ret = intel_init_blt_ring_buffer(dev);
3721 if (ret)
3722 goto cleanup_bsd_ring;
3723 }
3724
6f392d54
CW
3725 dev_priv->next_seqno = 1;
3726
e21af88d
DV
3727 i915_gem_init_ppgtt(dev);
3728
68f95ba9
CW
3729 return 0;
3730
549f7365 3731cleanup_bsd_ring:
1ec14ad3 3732 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3733cleanup_render_ring:
1ec14ad3 3734 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3735 return ret;
3736}
3737
3738void
3739i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3740{
3741 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3742 int i;
8187a2b7 3743
1ec14ad3
CW
3744 for (i = 0; i < I915_NUM_RINGS; i++)
3745 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3746}
3747
673a394b
EA
3748int
3749i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3750 struct drm_file *file_priv)
3751{
3752 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3753 int ret, i;
673a394b 3754
79e53945
JB
3755 if (drm_core_check_feature(dev, DRIVER_MODESET))
3756 return 0;
3757
ba1234d1 3758 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3759 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3760 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3761 }
3762
673a394b 3763 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3764 dev_priv->mm.suspended = 0;
3765
f691e2f4 3766 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3767 if (ret != 0) {
3768 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3769 return ret;
d816f6ac 3770 }
9bb2d6f9 3771
69dc4987 3772 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3773 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3774 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3775 for (i = 0; i < I915_NUM_RINGS; i++) {
3776 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3777 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3778 }
673a394b 3779 mutex_unlock(&dev->struct_mutex);
dbb19d30 3780
5f35308b
CW
3781 ret = drm_irq_install(dev);
3782 if (ret)
3783 goto cleanup_ringbuffer;
dbb19d30 3784
673a394b 3785 return 0;
5f35308b
CW
3786
3787cleanup_ringbuffer:
3788 mutex_lock(&dev->struct_mutex);
3789 i915_gem_cleanup_ringbuffer(dev);
3790 dev_priv->mm.suspended = 1;
3791 mutex_unlock(&dev->struct_mutex);
3792
3793 return ret;
673a394b
EA
3794}
3795
3796int
3797i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3798 struct drm_file *file_priv)
3799{
79e53945
JB
3800 if (drm_core_check_feature(dev, DRIVER_MODESET))
3801 return 0;
3802
dbb19d30 3803 drm_irq_uninstall(dev);
e6890f6f 3804 return i915_gem_idle(dev);
673a394b
EA
3805}
3806
3807void
3808i915_gem_lastclose(struct drm_device *dev)
3809{
3810 int ret;
673a394b 3811
e806b495
EA
3812 if (drm_core_check_feature(dev, DRIVER_MODESET))
3813 return;
3814
6dbe2772
KP
3815 ret = i915_gem_idle(dev);
3816 if (ret)
3817 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3818}
3819
64193406
CW
3820static void
3821init_ring_lists(struct intel_ring_buffer *ring)
3822{
3823 INIT_LIST_HEAD(&ring->active_list);
3824 INIT_LIST_HEAD(&ring->request_list);
3825 INIT_LIST_HEAD(&ring->gpu_write_list);
3826}
3827
673a394b
EA
3828void
3829i915_gem_load(struct drm_device *dev)
3830{
b5aa8a0f 3831 int i;
673a394b
EA
3832 drm_i915_private_t *dev_priv = dev->dev_private;
3833
69dc4987 3834 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3835 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3836 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3837 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3838 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3839 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3840 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3841 for (i = 0; i < I915_NUM_RINGS; i++)
3842 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3843 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3844 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3845 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3846 i915_gem_retire_work_handler);
30dbf0c0 3847 init_completion(&dev_priv->error_completion);
31169714 3848
94400120
DA
3849 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3850 if (IS_GEN3(dev)) {
3851 u32 tmp = I915_READ(MI_ARB_STATE);
3852 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3853 /* arb state is a masked write, so set bit + bit in mask */
3854 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3855 I915_WRITE(MI_ARB_STATE, tmp);
3856 }
3857 }
3858
72bfa19c
CW
3859 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3860
de151cf6 3861 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3862 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3863 dev_priv->fence_reg_start = 3;
de151cf6 3864
a6c45cf0 3865 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3866 dev_priv->num_fence_regs = 16;
3867 else
3868 dev_priv->num_fence_regs = 8;
3869
b5aa8a0f 3870 /* Initialize fence registers to zero */
10ed13e4
EA
3871 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3872 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3873 }
10ed13e4 3874
673a394b 3875 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3876 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3877
ce453d81
CW
3878 dev_priv->mm.interruptible = true;
3879
17250b71
CW
3880 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3881 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3882 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3883}
71acb5eb
DA
3884
3885/*
3886 * Create a physically contiguous memory object for this object
3887 * e.g. for cursor + overlay regs
3888 */
995b6762
CW
3889static int i915_gem_init_phys_object(struct drm_device *dev,
3890 int id, int size, int align)
71acb5eb
DA
3891{
3892 drm_i915_private_t *dev_priv = dev->dev_private;
3893 struct drm_i915_gem_phys_object *phys_obj;
3894 int ret;
3895
3896 if (dev_priv->mm.phys_objs[id - 1] || !size)
3897 return 0;
3898
9a298b2a 3899 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3900 if (!phys_obj)
3901 return -ENOMEM;
3902
3903 phys_obj->id = id;
3904
6eeefaf3 3905 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3906 if (!phys_obj->handle) {
3907 ret = -ENOMEM;
3908 goto kfree_obj;
3909 }
3910#ifdef CONFIG_X86
3911 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3912#endif
3913
3914 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3915
3916 return 0;
3917kfree_obj:
9a298b2a 3918 kfree(phys_obj);
71acb5eb
DA
3919 return ret;
3920}
3921
995b6762 3922static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3923{
3924 drm_i915_private_t *dev_priv = dev->dev_private;
3925 struct drm_i915_gem_phys_object *phys_obj;
3926
3927 if (!dev_priv->mm.phys_objs[id - 1])
3928 return;
3929
3930 phys_obj = dev_priv->mm.phys_objs[id - 1];
3931 if (phys_obj->cur_obj) {
3932 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3933 }
3934
3935#ifdef CONFIG_X86
3936 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3937#endif
3938 drm_pci_free(dev, phys_obj->handle);
3939 kfree(phys_obj);
3940 dev_priv->mm.phys_objs[id - 1] = NULL;
3941}
3942
3943void i915_gem_free_all_phys_object(struct drm_device *dev)
3944{
3945 int i;
3946
260883c8 3947 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3948 i915_gem_free_phys_object(dev, i);
3949}
3950
3951void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3952 struct drm_i915_gem_object *obj)
71acb5eb 3953{
05394f39 3954 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3955 char *vaddr;
71acb5eb 3956 int i;
71acb5eb
DA
3957 int page_count;
3958
05394f39 3959 if (!obj->phys_obj)
71acb5eb 3960 return;
05394f39 3961 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3962
05394f39 3963 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3964 for (i = 0; i < page_count; i++) {
5949eac4 3965 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3966 if (!IS_ERR(page)) {
3967 char *dst = kmap_atomic(page);
3968 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3969 kunmap_atomic(dst);
3970
3971 drm_clflush_pages(&page, 1);
3972
3973 set_page_dirty(page);
3974 mark_page_accessed(page);
3975 page_cache_release(page);
3976 }
71acb5eb 3977 }
40ce6575 3978 intel_gtt_chipset_flush();
d78b47b9 3979
05394f39
CW
3980 obj->phys_obj->cur_obj = NULL;
3981 obj->phys_obj = NULL;
71acb5eb
DA
3982}
3983
3984int
3985i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3986 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3987 int id,
3988 int align)
71acb5eb 3989{
05394f39 3990 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3991 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3992 int ret = 0;
3993 int page_count;
3994 int i;
3995
3996 if (id > I915_MAX_PHYS_OBJECT)
3997 return -EINVAL;
3998
05394f39
CW
3999 if (obj->phys_obj) {
4000 if (obj->phys_obj->id == id)
71acb5eb
DA
4001 return 0;
4002 i915_gem_detach_phys_object(dev, obj);
4003 }
4004
71acb5eb
DA
4005 /* create a new object */
4006 if (!dev_priv->mm.phys_objs[id - 1]) {
4007 ret = i915_gem_init_phys_object(dev, id,
05394f39 4008 obj->base.size, align);
71acb5eb 4009 if (ret) {
05394f39
CW
4010 DRM_ERROR("failed to init phys object %d size: %zu\n",
4011 id, obj->base.size);
e5281ccd 4012 return ret;
71acb5eb
DA
4013 }
4014 }
4015
4016 /* bind to the object */
05394f39
CW
4017 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4018 obj->phys_obj->cur_obj = obj;
71acb5eb 4019
05394f39 4020 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4021
4022 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4023 struct page *page;
4024 char *dst, *src;
4025
5949eac4 4026 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4027 if (IS_ERR(page))
4028 return PTR_ERR(page);
71acb5eb 4029
ff75b9bc 4030 src = kmap_atomic(page);
05394f39 4031 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4032 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4033 kunmap_atomic(src);
71acb5eb 4034
e5281ccd
CW
4035 mark_page_accessed(page);
4036 page_cache_release(page);
4037 }
d78b47b9 4038
71acb5eb 4039 return 0;
71acb5eb
DA
4040}
4041
4042static int
05394f39
CW
4043i915_gem_phys_pwrite(struct drm_device *dev,
4044 struct drm_i915_gem_object *obj,
71acb5eb
DA
4045 struct drm_i915_gem_pwrite *args,
4046 struct drm_file *file_priv)
4047{
05394f39 4048 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4049 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4050
b47b30cc
CW
4051 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4052 unsigned long unwritten;
4053
4054 /* The physical object once assigned is fixed for the lifetime
4055 * of the obj, so we can safely drop the lock and continue
4056 * to access vaddr.
4057 */
4058 mutex_unlock(&dev->struct_mutex);
4059 unwritten = copy_from_user(vaddr, user_data, args->size);
4060 mutex_lock(&dev->struct_mutex);
4061 if (unwritten)
4062 return -EFAULT;
4063 }
71acb5eb 4064
40ce6575 4065 intel_gtt_chipset_flush();
71acb5eb
DA
4066 return 0;
4067}
b962442e 4068
f787a5f5 4069void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4070{
f787a5f5 4071 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4072
4073 /* Clean up our request list when the client is going away, so that
4074 * later retire_requests won't dereference our soon-to-be-gone
4075 * file_priv.
4076 */
1c25595f 4077 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4078 while (!list_empty(&file_priv->mm.request_list)) {
4079 struct drm_i915_gem_request *request;
4080
4081 request = list_first_entry(&file_priv->mm.request_list,
4082 struct drm_i915_gem_request,
4083 client_list);
4084 list_del(&request->client_list);
4085 request->file_priv = NULL;
4086 }
1c25595f 4087 spin_unlock(&file_priv->mm.lock);
b962442e 4088}
31169714 4089
1637ef41
CW
4090static int
4091i915_gpu_is_active(struct drm_device *dev)
4092{
4093 drm_i915_private_t *dev_priv = dev->dev_private;
4094 int lists_empty;
4095
1637ef41 4096 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4097 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4098
4099 return !lists_empty;
4100}
4101
31169714 4102static int
1495f230 4103i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4104{
17250b71
CW
4105 struct drm_i915_private *dev_priv =
4106 container_of(shrinker,
4107 struct drm_i915_private,
4108 mm.inactive_shrinker);
4109 struct drm_device *dev = dev_priv->dev;
4110 struct drm_i915_gem_object *obj, *next;
1495f230 4111 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4112 int cnt;
4113
4114 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4115 return 0;
31169714
CW
4116
4117 /* "fast-path" to count number of available objects */
4118 if (nr_to_scan == 0) {
17250b71
CW
4119 cnt = 0;
4120 list_for_each_entry(obj,
4121 &dev_priv->mm.inactive_list,
4122 mm_list)
4123 cnt++;
4124 mutex_unlock(&dev->struct_mutex);
4125 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4126 }
4127
1637ef41 4128rescan:
31169714 4129 /* first scan for clean buffers */
17250b71 4130 i915_gem_retire_requests(dev);
31169714 4131
17250b71
CW
4132 list_for_each_entry_safe(obj, next,
4133 &dev_priv->mm.inactive_list,
4134 mm_list) {
4135 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4136 if (i915_gem_object_unbind(obj) == 0 &&
4137 --nr_to_scan == 0)
17250b71 4138 break;
31169714 4139 }
31169714
CW
4140 }
4141
4142 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4143 cnt = 0;
4144 list_for_each_entry_safe(obj, next,
4145 &dev_priv->mm.inactive_list,
4146 mm_list) {
2021746e
CW
4147 if (nr_to_scan &&
4148 i915_gem_object_unbind(obj) == 0)
17250b71 4149 nr_to_scan--;
2021746e 4150 else
17250b71
CW
4151 cnt++;
4152 }
4153
4154 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4155 /*
4156 * We are desperate for pages, so as a last resort, wait
4157 * for the GPU to finish and discard whatever we can.
4158 * This has a dramatic impact to reduce the number of
4159 * OOM-killer events whilst running the GPU aggressively.
4160 */
b93f9cf1 4161 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4162 goto rescan;
4163 }
17250b71
CW
4164 mutex_unlock(&dev->struct_mutex);
4165 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4166}