]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/ringbuffer: Check that we setup the ringbuffer
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6 53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
920afa77 54 unsigned alignment, bool mappable);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
31169714
CW
68static LIST_HEAD(shrink_list);
69static DEFINE_SPINLOCK(shrink_list_lock);
70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
fb7d516a 87 struct drm_gem_object *obj)
73aa808f 88{
fb7d516a 89 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 90 dev_priv->mm.gtt_count++;
fb7d516a
DV
91 dev_priv->mm.gtt_memory += obj->size;
92 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
93 dev_priv->mm.mappable_gtt_used +=
94 min_t(size_t, obj->size,
95 dev_priv->mm.gtt_mappable_end
96 - obj_priv->gtt_offset);
97 }
73aa808f
CW
98}
99
100static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
fb7d516a 101 struct drm_gem_object *obj)
73aa808f 102{
fb7d516a 103 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 104 dev_priv->mm.gtt_count--;
fb7d516a
DV
105 dev_priv->mm.gtt_memory -= obj->size;
106 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
107 dev_priv->mm.mappable_gtt_used -=
108 min_t(size_t, obj->size,
109 dev_priv->mm.gtt_mappable_end
110 - obj_priv->gtt_offset);
111 }
112}
113
114/**
115 * Update the mappable working set counters. Call _only_ when there is a change
116 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
117 * @mappable: new state the changed mappable flag (either pin_ or fault_).
118 */
119static void
120i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
121 struct drm_gem_object *obj,
122 bool mappable)
123{
124 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
125
126 if (mappable) {
127 if (obj_priv->pin_mappable && obj_priv->fault_mappable)
128 /* Combined state was already mappable. */
129 return;
130 dev_priv->mm.gtt_mappable_count++;
131 dev_priv->mm.gtt_mappable_memory += obj->size;
132 } else {
133 if (obj_priv->pin_mappable || obj_priv->fault_mappable)
134 /* Combined state still mappable. */
135 return;
136 dev_priv->mm.gtt_mappable_count--;
137 dev_priv->mm.gtt_mappable_memory -= obj->size;
138 }
73aa808f
CW
139}
140
141static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
fb7d516a
DV
142 struct drm_gem_object *obj,
143 bool mappable)
73aa808f 144{
fb7d516a 145 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 146 dev_priv->mm.pin_count++;
fb7d516a
DV
147 dev_priv->mm.pin_memory += obj->size;
148 if (mappable) {
149 obj_priv->pin_mappable = true;
150 i915_gem_info_update_mappable(dev_priv, obj, true);
151 }
73aa808f
CW
152}
153
154static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
fb7d516a 155 struct drm_gem_object *obj)
73aa808f 156{
fb7d516a 157 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 158 dev_priv->mm.pin_count--;
fb7d516a
DV
159 dev_priv->mm.pin_memory -= obj->size;
160 if (obj_priv->pin_mappable) {
161 obj_priv->pin_mappable = false;
162 i915_gem_info_update_mappable(dev_priv, obj, false);
163 }
73aa808f
CW
164}
165
30dbf0c0
CW
166int
167i915_gem_check_is_wedged(struct drm_device *dev)
168{
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 struct completion *x = &dev_priv->error_completion;
171 unsigned long flags;
172 int ret;
173
174 if (!atomic_read(&dev_priv->mm.wedged))
175 return 0;
176
177 ret = wait_for_completion_interruptible(x);
178 if (ret)
179 return ret;
180
181 /* Success, we reset the GPU! */
182 if (!atomic_read(&dev_priv->mm.wedged))
183 return 0;
184
185 /* GPU is hung, bump the completion count to account for
186 * the token we just consumed so that we never hit zero and
187 * end up waiting upon a subsequent completion event that
188 * will never happen.
189 */
190 spin_lock_irqsave(&x->wait.lock, flags);
191 x->done++;
192 spin_unlock_irqrestore(&x->wait.lock, flags);
193 return -EIO;
194}
195
76c1dec1
CW
196static int i915_mutex_lock_interruptible(struct drm_device *dev)
197{
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 int ret;
200
201 ret = i915_gem_check_is_wedged(dev);
202 if (ret)
203 return ret;
204
205 ret = mutex_lock_interruptible(&dev->struct_mutex);
206 if (ret)
207 return ret;
208
209 if (atomic_read(&dev_priv->mm.wedged)) {
210 mutex_unlock(&dev->struct_mutex);
211 return -EAGAIN;
212 }
213
23bc5982 214 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
215 return 0;
216}
30dbf0c0 217
7d1c4804
CW
218static inline bool
219i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
220{
221 return obj_priv->gtt_space &&
222 !obj_priv->active &&
223 obj_priv->pin_count == 0;
224}
225
73aa808f
CW
226int i915_gem_do_init(struct drm_device *dev,
227 unsigned long start,
53984635 228 unsigned long mappable_end,
79e53945 229 unsigned long end)
673a394b
EA
230{
231 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 232
79e53945
JB
233 if (start >= end ||
234 (start & (PAGE_SIZE - 1)) != 0 ||
235 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
236 return -EINVAL;
237 }
238
79e53945
JB
239 drm_mm_init(&dev_priv->mm.gtt_space, start,
240 end - start);
673a394b 241
73aa808f 242 dev_priv->mm.gtt_total = end - start;
fb7d516a 243 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 244 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
245
246 return 0;
247}
673a394b 248
79e53945
JB
249int
250i915_gem_init_ioctl(struct drm_device *dev, void *data,
251 struct drm_file *file_priv)
252{
253 struct drm_i915_gem_init *args = data;
254 int ret;
255
256 mutex_lock(&dev->struct_mutex);
53984635 257 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
258 mutex_unlock(&dev->struct_mutex);
259
79e53945 260 return ret;
673a394b
EA
261}
262
5a125c3c
EA
263int
264i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
265 struct drm_file *file_priv)
266{
73aa808f 267 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 268 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
269
270 if (!(dev->driver->driver_features & DRIVER_GEM))
271 return -ENODEV;
272
73aa808f
CW
273 mutex_lock(&dev->struct_mutex);
274 args->aper_size = dev_priv->mm.gtt_total;
275 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
276 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
277
278 return 0;
279}
280
673a394b
EA
281
282/**
283 * Creates a new mm object and returns a handle to it.
284 */
285int
286i915_gem_create_ioctl(struct drm_device *dev, void *data,
287 struct drm_file *file_priv)
288{
289 struct drm_i915_gem_create *args = data;
290 struct drm_gem_object *obj;
a1a2d1d3
PP
291 int ret;
292 u32 handle;
673a394b
EA
293
294 args->size = roundup(args->size, PAGE_SIZE);
295
296 /* Allocate the new object */
ac52bc56 297 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
298 if (obj == NULL)
299 return -ENOMEM;
300
301 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 302 if (ret) {
202f2fef
CW
303 drm_gem_object_release(obj);
304 i915_gem_info_remove_obj(dev->dev_private, obj->size);
305 kfree(obj);
673a394b 306 return ret;
1dfd9754 307 }
673a394b 308
202f2fef
CW
309 /* drop reference from allocate - handle holds it now */
310 drm_gem_object_unreference(obj);
311 trace_i915_gem_object_create(obj);
312
1dfd9754 313 args->handle = handle;
673a394b
EA
314 return 0;
315}
316
16e809ac
DV
317static bool
318i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
319{
320 struct drm_device *dev = obj->base.dev;
321 drm_i915_private_t *dev_priv = dev->dev_private;
322
323 return obj->gtt_space == NULL ||
324 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
325}
326
eb01459f
EA
327static inline int
328fast_shmem_read(struct page **pages,
329 loff_t page_base, int page_offset,
330 char __user *data,
331 int length)
332{
b5e4feb6 333 char *vaddr;
4f27b75d 334 int ret;
eb01459f 335
3e4d3af5 336 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
4f27b75d 337 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
3e4d3af5 338 kunmap_atomic(vaddr);
eb01459f 339
4f27b75d 340 return ret;
eb01459f
EA
341}
342
280b713b
EA
343static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
344{
345 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 346 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
347
348 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
349 obj_priv->tiling_mode != I915_TILING_NONE;
350}
351
99a03df5 352static inline void
40123c1f
EA
353slow_shmem_copy(struct page *dst_page,
354 int dst_offset,
355 struct page *src_page,
356 int src_offset,
357 int length)
358{
359 char *dst_vaddr, *src_vaddr;
360
99a03df5
CW
361 dst_vaddr = kmap(dst_page);
362 src_vaddr = kmap(src_page);
40123c1f
EA
363
364 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
365
99a03df5
CW
366 kunmap(src_page);
367 kunmap(dst_page);
40123c1f
EA
368}
369
99a03df5 370static inline void
280b713b
EA
371slow_shmem_bit17_copy(struct page *gpu_page,
372 int gpu_offset,
373 struct page *cpu_page,
374 int cpu_offset,
375 int length,
376 int is_read)
377{
378 char *gpu_vaddr, *cpu_vaddr;
379
380 /* Use the unswizzled path if this page isn't affected. */
381 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
382 if (is_read)
383 return slow_shmem_copy(cpu_page, cpu_offset,
384 gpu_page, gpu_offset, length);
385 else
386 return slow_shmem_copy(gpu_page, gpu_offset,
387 cpu_page, cpu_offset, length);
388 }
389
99a03df5
CW
390 gpu_vaddr = kmap(gpu_page);
391 cpu_vaddr = kmap(cpu_page);
280b713b
EA
392
393 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
394 * XORing with the other bits (A9 for Y, A9 and A10 for X)
395 */
396 while (length > 0) {
397 int cacheline_end = ALIGN(gpu_offset + 1, 64);
398 int this_length = min(cacheline_end - gpu_offset, length);
399 int swizzled_gpu_offset = gpu_offset ^ 64;
400
401 if (is_read) {
402 memcpy(cpu_vaddr + cpu_offset,
403 gpu_vaddr + swizzled_gpu_offset,
404 this_length);
405 } else {
406 memcpy(gpu_vaddr + swizzled_gpu_offset,
407 cpu_vaddr + cpu_offset,
408 this_length);
409 }
410 cpu_offset += this_length;
411 gpu_offset += this_length;
412 length -= this_length;
413 }
414
99a03df5
CW
415 kunmap(cpu_page);
416 kunmap(gpu_page);
280b713b
EA
417}
418
eb01459f
EA
419/**
420 * This is the fast shmem pread path, which attempts to copy_from_user directly
421 * from the backing pages of the object to the user's address space. On a
422 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
423 */
424static int
425i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
426 struct drm_i915_gem_pread *args,
427 struct drm_file *file_priv)
428{
23010e43 429 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
430 ssize_t remain;
431 loff_t offset, page_base;
432 char __user *user_data;
433 int page_offset, page_length;
eb01459f
EA
434
435 user_data = (char __user *) (uintptr_t) args->data_ptr;
436 remain = args->size;
437
23010e43 438 obj_priv = to_intel_bo(obj);
eb01459f
EA
439 offset = args->offset;
440
441 while (remain > 0) {
442 /* Operation in this page
443 *
444 * page_base = page offset within aperture
445 * page_offset = offset within page
446 * page_length = bytes to copy for this page
447 */
448 page_base = (offset & ~(PAGE_SIZE-1));
449 page_offset = offset & (PAGE_SIZE-1);
450 page_length = remain;
451 if ((page_offset + remain) > PAGE_SIZE)
452 page_length = PAGE_SIZE - page_offset;
453
4f27b75d
CW
454 if (fast_shmem_read(obj_priv->pages,
455 page_base, page_offset,
456 user_data, page_length))
457 return -EFAULT;
eb01459f
EA
458
459 remain -= page_length;
460 user_data += page_length;
461 offset += page_length;
462 }
463
4f27b75d 464 return 0;
eb01459f
EA
465}
466
07f73f69
CW
467static int
468i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
469{
470 int ret;
471
4bdadb97 472 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
473
474 /* If we've insufficient memory to map in the pages, attempt
475 * to make some space by throwing out some old buffers.
476 */
477 if (ret == -ENOMEM) {
478 struct drm_device *dev = obj->dev;
07f73f69 479
0108a3ed 480 ret = i915_gem_evict_something(dev, obj->size,
a6e0aa42
DV
481 i915_gem_get_gtt_alignment(obj),
482 false);
07f73f69
CW
483 if (ret)
484 return ret;
485
4bdadb97 486 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
487 }
488
489 return ret;
490}
491
eb01459f
EA
492/**
493 * This is the fallback shmem pread path, which allocates temporary storage
494 * in kernel space to copy_to_user into outside of the struct_mutex, so we
495 * can copy out of the object's backing pages while holding the struct mutex
496 * and not take page faults.
497 */
498static int
499i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
500 struct drm_i915_gem_pread *args,
501 struct drm_file *file_priv)
502{
23010e43 503 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
504 struct mm_struct *mm = current->mm;
505 struct page **user_pages;
506 ssize_t remain;
507 loff_t offset, pinned_pages, i;
508 loff_t first_data_page, last_data_page, num_pages;
509 int shmem_page_index, shmem_page_offset;
510 int data_page_index, data_page_offset;
511 int page_length;
512 int ret;
513 uint64_t data_ptr = args->data_ptr;
280b713b 514 int do_bit17_swizzling;
eb01459f
EA
515
516 remain = args->size;
517
518 /* Pin the user pages containing the data. We can't fault while
519 * holding the struct mutex, yet we want to hold it while
520 * dereferencing the user data.
521 */
522 first_data_page = data_ptr / PAGE_SIZE;
523 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
524 num_pages = last_data_page - first_data_page + 1;
525
4f27b75d 526 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
527 if (user_pages == NULL)
528 return -ENOMEM;
529
4f27b75d 530 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
531 down_read(&mm->mmap_sem);
532 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 533 num_pages, 1, 0, user_pages, NULL);
eb01459f 534 up_read(&mm->mmap_sem);
4f27b75d 535 mutex_lock(&dev->struct_mutex);
eb01459f
EA
536 if (pinned_pages < num_pages) {
537 ret = -EFAULT;
4f27b75d 538 goto out;
eb01459f
EA
539 }
540
4f27b75d
CW
541 ret = i915_gem_object_set_cpu_read_domain_range(obj,
542 args->offset,
543 args->size);
07f73f69 544 if (ret)
4f27b75d 545 goto out;
eb01459f 546
4f27b75d 547 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 548
23010e43 549 obj_priv = to_intel_bo(obj);
eb01459f
EA
550 offset = args->offset;
551
552 while (remain > 0) {
553 /* Operation in this page
554 *
555 * shmem_page_index = page number within shmem file
556 * shmem_page_offset = offset within page in shmem file
557 * data_page_index = page number in get_user_pages return
558 * data_page_offset = offset with data_page_index page.
559 * page_length = bytes to copy for this page
560 */
561 shmem_page_index = offset / PAGE_SIZE;
562 shmem_page_offset = offset & ~PAGE_MASK;
563 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
564 data_page_offset = data_ptr & ~PAGE_MASK;
565
566 page_length = remain;
567 if ((shmem_page_offset + page_length) > PAGE_SIZE)
568 page_length = PAGE_SIZE - shmem_page_offset;
569 if ((data_page_offset + page_length) > PAGE_SIZE)
570 page_length = PAGE_SIZE - data_page_offset;
571
280b713b 572 if (do_bit17_swizzling) {
99a03df5 573 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 574 shmem_page_offset,
99a03df5
CW
575 user_pages[data_page_index],
576 data_page_offset,
577 page_length,
578 1);
579 } else {
580 slow_shmem_copy(user_pages[data_page_index],
581 data_page_offset,
582 obj_priv->pages[shmem_page_index],
583 shmem_page_offset,
584 page_length);
280b713b 585 }
eb01459f
EA
586
587 remain -= page_length;
588 data_ptr += page_length;
589 offset += page_length;
590 }
591
4f27b75d 592out:
eb01459f
EA
593 for (i = 0; i < pinned_pages; i++) {
594 SetPageDirty(user_pages[i]);
595 page_cache_release(user_pages[i]);
596 }
8e7d2b2c 597 drm_free_large(user_pages);
eb01459f
EA
598
599 return ret;
600}
601
673a394b
EA
602/**
603 * Reads data from the object referenced by handle.
604 *
605 * On error, the contents of *data are undefined.
606 */
607int
608i915_gem_pread_ioctl(struct drm_device *dev, void *data,
609 struct drm_file *file_priv)
610{
611 struct drm_i915_gem_pread *args = data;
612 struct drm_gem_object *obj;
613 struct drm_i915_gem_object *obj_priv;
35b62a89 614 int ret = 0;
673a394b 615
4f27b75d 616 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 617 if (ret)
4f27b75d 618 return ret;
673a394b
EA
619
620 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
621 if (obj == NULL) {
622 ret = -ENOENT;
623 goto unlock;
4f27b75d 624 }
23010e43 625 obj_priv = to_intel_bo(obj);
673a394b 626
7dcd2499
CW
627 /* Bounds check source. */
628 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 629 ret = -EINVAL;
35b62a89 630 goto out;
ce9d419d
CW
631 }
632
35b62a89
CW
633 if (args->size == 0)
634 goto out;
635
ce9d419d
CW
636 if (!access_ok(VERIFY_WRITE,
637 (char __user *)(uintptr_t)args->data_ptr,
638 args->size)) {
639 ret = -EFAULT;
35b62a89 640 goto out;
673a394b
EA
641 }
642
b5e4feb6
CW
643 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
644 args->size);
645 if (ret) {
646 ret = -EFAULT;
647 goto out;
280b713b 648 }
673a394b 649
4f27b75d
CW
650 ret = i915_gem_object_get_pages_or_evict(obj);
651 if (ret)
652 goto out;
653
654 ret = i915_gem_object_set_cpu_read_domain_range(obj,
655 args->offset,
656 args->size);
657 if (ret)
658 goto out_put;
659
660 ret = -EFAULT;
661 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 662 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
663 if (ret == -EFAULT)
664 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 665
4f27b75d
CW
666out_put:
667 i915_gem_object_put_pages(obj);
35b62a89 668out:
4f27b75d 669 drm_gem_object_unreference(obj);
1d7cfea1 670unlock:
4f27b75d 671 mutex_unlock(&dev->struct_mutex);
eb01459f 672 return ret;
673a394b
EA
673}
674
0839ccb8
KP
675/* This is the fast write path which cannot handle
676 * page faults in the source data
9b7530cc 677 */
0839ccb8
KP
678
679static inline int
680fast_user_write(struct io_mapping *mapping,
681 loff_t page_base, int page_offset,
682 char __user *user_data,
683 int length)
9b7530cc 684{
9b7530cc 685 char *vaddr_atomic;
0839ccb8 686 unsigned long unwritten;
9b7530cc 687
3e4d3af5 688 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
689 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
690 user_data, length);
3e4d3af5 691 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 692 return unwritten;
0839ccb8
KP
693}
694
695/* Here's the write path which can sleep for
696 * page faults
697 */
698
ab34c226 699static inline void
3de09aa3
EA
700slow_kernel_write(struct io_mapping *mapping,
701 loff_t gtt_base, int gtt_offset,
702 struct page *user_page, int user_offset,
703 int length)
0839ccb8 704{
ab34c226
CW
705 char __iomem *dst_vaddr;
706 char *src_vaddr;
0839ccb8 707
ab34c226
CW
708 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
709 src_vaddr = kmap(user_page);
710
711 memcpy_toio(dst_vaddr + gtt_offset,
712 src_vaddr + user_offset,
713 length);
714
715 kunmap(user_page);
716 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
717}
718
40123c1f
EA
719static inline int
720fast_shmem_write(struct page **pages,
721 loff_t page_base, int page_offset,
722 char __user *data,
723 int length)
724{
b5e4feb6 725 char *vaddr;
fbd5a26d 726 int ret;
40123c1f 727
3e4d3af5 728 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
fbd5a26d 729 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
3e4d3af5 730 kunmap_atomic(vaddr);
40123c1f 731
fbd5a26d 732 return ret;
40123c1f
EA
733}
734
3de09aa3
EA
735/**
736 * This is the fast pwrite path, where we copy the data directly from the
737 * user into the GTT, uncached.
738 */
673a394b 739static int
3de09aa3
EA
740i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
741 struct drm_i915_gem_pwrite *args,
742 struct drm_file *file_priv)
673a394b 743{
23010e43 744 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 745 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 746 ssize_t remain;
0839ccb8 747 loff_t offset, page_base;
673a394b 748 char __user *user_data;
0839ccb8 749 int page_offset, page_length;
673a394b
EA
750
751 user_data = (char __user *) (uintptr_t) args->data_ptr;
752 remain = args->size;
673a394b 753
23010e43 754 obj_priv = to_intel_bo(obj);
673a394b 755 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
756
757 while (remain > 0) {
758 /* Operation in this page
759 *
0839ccb8
KP
760 * page_base = page offset within aperture
761 * page_offset = offset within page
762 * page_length = bytes to copy for this page
673a394b 763 */
0839ccb8
KP
764 page_base = (offset & ~(PAGE_SIZE-1));
765 page_offset = offset & (PAGE_SIZE-1);
766 page_length = remain;
767 if ((page_offset + remain) > PAGE_SIZE)
768 page_length = PAGE_SIZE - page_offset;
769
0839ccb8 770 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
771 * source page isn't available. Return the error and we'll
772 * retry in the slow path.
0839ccb8 773 */
fbd5a26d
CW
774 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
775 page_offset, user_data, page_length))
776
777 return -EFAULT;
673a394b 778
0839ccb8
KP
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
673a394b 782 }
673a394b 783
fbd5a26d 784 return 0;
673a394b
EA
785}
786
3de09aa3
EA
787/**
788 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
789 * the memory and maps it using kmap_atomic for copying.
790 *
791 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
792 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
793 */
3043c60c 794static int
3de09aa3
EA
795i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
796 struct drm_i915_gem_pwrite *args,
797 struct drm_file *file_priv)
673a394b 798{
23010e43 799 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
800 drm_i915_private_t *dev_priv = dev->dev_private;
801 ssize_t remain;
802 loff_t gtt_page_base, offset;
803 loff_t first_data_page, last_data_page, num_pages;
804 loff_t pinned_pages, i;
805 struct page **user_pages;
806 struct mm_struct *mm = current->mm;
807 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 808 int ret;
3de09aa3
EA
809 uint64_t data_ptr = args->data_ptr;
810
811 remain = args->size;
812
813 /* Pin the user pages containing the data. We can't fault while
814 * holding the struct mutex, and all of the pwrite implementations
815 * want to hold it while dereferencing the user data.
816 */
817 first_data_page = data_ptr / PAGE_SIZE;
818 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
819 num_pages = last_data_page - first_data_page + 1;
820
fbd5a26d 821 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
822 if (user_pages == NULL)
823 return -ENOMEM;
824
fbd5a26d 825 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
826 down_read(&mm->mmap_sem);
827 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
828 num_pages, 0, 0, user_pages, NULL);
829 up_read(&mm->mmap_sem);
fbd5a26d 830 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
831 if (pinned_pages < num_pages) {
832 ret = -EFAULT;
833 goto out_unpin_pages;
834 }
673a394b 835
3de09aa3
EA
836 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
837 if (ret)
fbd5a26d 838 goto out_unpin_pages;
3de09aa3 839
23010e43 840 obj_priv = to_intel_bo(obj);
3de09aa3
EA
841 offset = obj_priv->gtt_offset + args->offset;
842
843 while (remain > 0) {
844 /* Operation in this page
845 *
846 * gtt_page_base = page offset within aperture
847 * gtt_page_offset = offset within page in aperture
848 * data_page_index = page number in get_user_pages return
849 * data_page_offset = offset with data_page_index page.
850 * page_length = bytes to copy for this page
851 */
852 gtt_page_base = offset & PAGE_MASK;
853 gtt_page_offset = offset & ~PAGE_MASK;
854 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
855 data_page_offset = data_ptr & ~PAGE_MASK;
856
857 page_length = remain;
858 if ((gtt_page_offset + page_length) > PAGE_SIZE)
859 page_length = PAGE_SIZE - gtt_page_offset;
860 if ((data_page_offset + page_length) > PAGE_SIZE)
861 page_length = PAGE_SIZE - data_page_offset;
862
ab34c226
CW
863 slow_kernel_write(dev_priv->mm.gtt_mapping,
864 gtt_page_base, gtt_page_offset,
865 user_pages[data_page_index],
866 data_page_offset,
867 page_length);
3de09aa3
EA
868
869 remain -= page_length;
870 offset += page_length;
871 data_ptr += page_length;
872 }
873
3de09aa3
EA
874out_unpin_pages:
875 for (i = 0; i < pinned_pages; i++)
876 page_cache_release(user_pages[i]);
8e7d2b2c 877 drm_free_large(user_pages);
3de09aa3
EA
878
879 return ret;
880}
881
40123c1f
EA
882/**
883 * This is the fast shmem pwrite path, which attempts to directly
884 * copy_from_user into the kmapped pages backing the object.
885 */
3043c60c 886static int
40123c1f
EA
887i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
888 struct drm_i915_gem_pwrite *args,
889 struct drm_file *file_priv)
673a394b 890{
23010e43 891 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
892 ssize_t remain;
893 loff_t offset, page_base;
894 char __user *user_data;
895 int page_offset, page_length;
40123c1f
EA
896
897 user_data = (char __user *) (uintptr_t) args->data_ptr;
898 remain = args->size;
673a394b 899
23010e43 900 obj_priv = to_intel_bo(obj);
40123c1f
EA
901 offset = args->offset;
902 obj_priv->dirty = 1;
903
904 while (remain > 0) {
905 /* Operation in this page
906 *
907 * page_base = page offset within aperture
908 * page_offset = offset within page
909 * page_length = bytes to copy for this page
910 */
911 page_base = (offset & ~(PAGE_SIZE-1));
912 page_offset = offset & (PAGE_SIZE-1);
913 page_length = remain;
914 if ((page_offset + remain) > PAGE_SIZE)
915 page_length = PAGE_SIZE - page_offset;
916
fbd5a26d 917 if (fast_shmem_write(obj_priv->pages,
40123c1f 918 page_base, page_offset,
fbd5a26d
CW
919 user_data, page_length))
920 return -EFAULT;
40123c1f
EA
921
922 remain -= page_length;
923 user_data += page_length;
924 offset += page_length;
925 }
926
fbd5a26d 927 return 0;
40123c1f
EA
928}
929
930/**
931 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
932 * the memory and maps it using kmap_atomic for copying.
933 *
934 * This avoids taking mmap_sem for faulting on the user's address while the
935 * struct_mutex is held.
936 */
937static int
938i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
939 struct drm_i915_gem_pwrite *args,
940 struct drm_file *file_priv)
941{
23010e43 942 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
943 struct mm_struct *mm = current->mm;
944 struct page **user_pages;
945 ssize_t remain;
946 loff_t offset, pinned_pages, i;
947 loff_t first_data_page, last_data_page, num_pages;
948 int shmem_page_index, shmem_page_offset;
949 int data_page_index, data_page_offset;
950 int page_length;
951 int ret;
952 uint64_t data_ptr = args->data_ptr;
280b713b 953 int do_bit17_swizzling;
40123c1f
EA
954
955 remain = args->size;
956
957 /* Pin the user pages containing the data. We can't fault while
958 * holding the struct mutex, and all of the pwrite implementations
959 * want to hold it while dereferencing the user data.
960 */
961 first_data_page = data_ptr / PAGE_SIZE;
962 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
963 num_pages = last_data_page - first_data_page + 1;
964
4f27b75d 965 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
966 if (user_pages == NULL)
967 return -ENOMEM;
968
fbd5a26d 969 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
970 down_read(&mm->mmap_sem);
971 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
972 num_pages, 0, 0, user_pages, NULL);
973 up_read(&mm->mmap_sem);
fbd5a26d 974 mutex_lock(&dev->struct_mutex);
40123c1f
EA
975 if (pinned_pages < num_pages) {
976 ret = -EFAULT;
fbd5a26d 977 goto out;
673a394b
EA
978 }
979
fbd5a26d 980 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 981 if (ret)
fbd5a26d 982 goto out;
40123c1f 983
fbd5a26d 984 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 985
23010e43 986 obj_priv = to_intel_bo(obj);
673a394b 987 offset = args->offset;
40123c1f 988 obj_priv->dirty = 1;
673a394b 989
40123c1f
EA
990 while (remain > 0) {
991 /* Operation in this page
992 *
993 * shmem_page_index = page number within shmem file
994 * shmem_page_offset = offset within page in shmem file
995 * data_page_index = page number in get_user_pages return
996 * data_page_offset = offset with data_page_index page.
997 * page_length = bytes to copy for this page
998 */
999 shmem_page_index = offset / PAGE_SIZE;
1000 shmem_page_offset = offset & ~PAGE_MASK;
1001 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
1002 data_page_offset = data_ptr & ~PAGE_MASK;
1003
1004 page_length = remain;
1005 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1006 page_length = PAGE_SIZE - shmem_page_offset;
1007 if ((data_page_offset + page_length) > PAGE_SIZE)
1008 page_length = PAGE_SIZE - data_page_offset;
1009
280b713b 1010 if (do_bit17_swizzling) {
99a03df5 1011 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
1012 shmem_page_offset,
1013 user_pages[data_page_index],
1014 data_page_offset,
99a03df5
CW
1015 page_length,
1016 0);
1017 } else {
1018 slow_shmem_copy(obj_priv->pages[shmem_page_index],
1019 shmem_page_offset,
1020 user_pages[data_page_index],
1021 data_page_offset,
1022 page_length);
280b713b 1023 }
40123c1f
EA
1024
1025 remain -= page_length;
1026 data_ptr += page_length;
1027 offset += page_length;
673a394b
EA
1028 }
1029
fbd5a26d 1030out:
40123c1f
EA
1031 for (i = 0; i < pinned_pages; i++)
1032 page_cache_release(user_pages[i]);
8e7d2b2c 1033 drm_free_large(user_pages);
673a394b 1034
40123c1f 1035 return ret;
673a394b
EA
1036}
1037
1038/**
1039 * Writes data to the object referenced by handle.
1040 *
1041 * On error, the contents of the buffer that were to be modified are undefined.
1042 */
1043int
1044i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1045 struct drm_file *file)
673a394b
EA
1046{
1047 struct drm_i915_gem_pwrite *args = data;
1048 struct drm_gem_object *obj;
1049 struct drm_i915_gem_object *obj_priv;
1050 int ret = 0;
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
fbd5a26d 1054 return ret;
1d7cfea1
CW
1055
1056 obj = drm_gem_object_lookup(dev, file, args->handle);
1057 if (obj == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
23010e43 1061 obj_priv = to_intel_bo(obj);
673a394b 1062
fbd5a26d 1063
7dcd2499
CW
1064 /* Bounds check destination. */
1065 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1066 ret = -EINVAL;
35b62a89 1067 goto out;
ce9d419d
CW
1068 }
1069
35b62a89
CW
1070 if (args->size == 0)
1071 goto out;
1072
ce9d419d
CW
1073 if (!access_ok(VERIFY_READ,
1074 (char __user *)(uintptr_t)args->data_ptr,
1075 args->size)) {
1076 ret = -EFAULT;
35b62a89 1077 goto out;
673a394b
EA
1078 }
1079
b5e4feb6
CW
1080 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1081 args->size);
1082 if (ret) {
1083 ret = -EFAULT;
1084 goto out;
673a394b
EA
1085 }
1086
1087 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1088 * it would end up going through the fenced access, and we'll get
1089 * different detiling behavior between reading and writing.
1090 * pread/pwrite currently are reading and writing from the CPU
1091 * perspective, requiring manual detiling by the client.
1092 */
71acb5eb 1093 if (obj_priv->phys_obj)
fbd5a26d 1094 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1095 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1096 obj_priv->gtt_space &&
9b8c4a0b 1097 obj->write_domain != I915_GEM_DOMAIN_CPU) {
920afa77 1098 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1099 if (ret)
1100 goto out;
1101
1102 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1103 if (ret)
1104 goto out_unpin;
1105
1106 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1107 if (ret == -EFAULT)
1108 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1109
1110out_unpin:
1111 i915_gem_object_unpin(obj);
40123c1f 1112 } else {
fbd5a26d
CW
1113 ret = i915_gem_object_get_pages_or_evict(obj);
1114 if (ret)
1115 goto out;
673a394b 1116
fbd5a26d
CW
1117 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1118 if (ret)
1119 goto out_put;
673a394b 1120
fbd5a26d
CW
1121 ret = -EFAULT;
1122 if (!i915_gem_object_needs_bit17_swizzle(obj))
1123 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1124 if (ret == -EFAULT)
1125 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1126
1127out_put:
1128 i915_gem_object_put_pages(obj);
1129 }
673a394b 1130
35b62a89 1131out:
fbd5a26d 1132 drm_gem_object_unreference(obj);
1d7cfea1 1133unlock:
fbd5a26d 1134 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1135 return ret;
1136}
1137
1138/**
2ef7eeaa
EA
1139 * Called when user space prepares to use an object with the CPU, either
1140 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1141 */
1142int
1143i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1144 struct drm_file *file_priv)
1145{
a09ba7fa 1146 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1147 struct drm_i915_gem_set_domain *args = data;
1148 struct drm_gem_object *obj;
652c393a 1149 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1150 uint32_t read_domains = args->read_domains;
1151 uint32_t write_domain = args->write_domain;
673a394b
EA
1152 int ret;
1153
1154 if (!(dev->driver->driver_features & DRIVER_GEM))
1155 return -ENODEV;
1156
2ef7eeaa 1157 /* Only handle setting domains to types used by the CPU. */
21d509e3 1158 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1159 return -EINVAL;
1160
21d509e3 1161 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1162 return -EINVAL;
1163
1164 /* Having something in the write domain implies it's in the read
1165 * domain, and only that read domain. Enforce that in the request.
1166 */
1167 if (write_domain != 0 && read_domains != write_domain)
1168 return -EINVAL;
1169
76c1dec1 1170 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1171 if (ret)
76c1dec1 1172 return ret;
1d7cfea1 1173
673a394b 1174 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1175 if (obj == NULL) {
1176 ret = -ENOENT;
1177 goto unlock;
76c1dec1 1178 }
23010e43 1179 obj_priv = to_intel_bo(obj);
673a394b 1180
652c393a
JB
1181 intel_mark_busy(dev, obj);
1182
2ef7eeaa
EA
1183 if (read_domains & I915_GEM_DOMAIN_GTT) {
1184 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1185
a09ba7fa
EA
1186 /* Update the LRU on the fence for the CPU access that's
1187 * about to occur.
1188 */
1189 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1190 struct drm_i915_fence_reg *reg =
1191 &dev_priv->fence_regs[obj_priv->fence_reg];
1192 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1193 &dev_priv->mm.fence_list);
1194 }
1195
02354392
EA
1196 /* Silently promote "you're not bound, there was nothing to do"
1197 * to success, since the client was just asking us to
1198 * make sure everything was done.
1199 */
1200 if (ret == -EINVAL)
1201 ret = 0;
2ef7eeaa 1202 } else {
e47c68e9 1203 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1204 }
1205
7d1c4804
CW
1206 /* Maintain LRU order of "inactive" objects */
1207 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1208 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1209
673a394b 1210 drm_gem_object_unreference(obj);
1d7cfea1 1211unlock:
673a394b
EA
1212 mutex_unlock(&dev->struct_mutex);
1213 return ret;
1214}
1215
1216/**
1217 * Called when user space has done writes to this buffer
1218 */
1219int
1220i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1221 struct drm_file *file_priv)
1222{
1223 struct drm_i915_gem_sw_finish *args = data;
1224 struct drm_gem_object *obj;
673a394b
EA
1225 int ret = 0;
1226
1227 if (!(dev->driver->driver_features & DRIVER_GEM))
1228 return -ENODEV;
1229
76c1dec1 1230 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1231 if (ret)
76c1dec1 1232 return ret;
1d7cfea1 1233
673a394b
EA
1234 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1235 if (obj == NULL) {
1d7cfea1
CW
1236 ret = -ENOENT;
1237 goto unlock;
673a394b
EA
1238 }
1239
673a394b 1240 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1241 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1242 i915_gem_object_flush_cpu_write_domain(obj);
1243
673a394b 1244 drm_gem_object_unreference(obj);
1d7cfea1 1245unlock:
673a394b
EA
1246 mutex_unlock(&dev->struct_mutex);
1247 return ret;
1248}
1249
1250/**
1251 * Maps the contents of an object, returning the address it is mapped
1252 * into.
1253 *
1254 * While the mapping holds a reference on the contents of the object, it doesn't
1255 * imply a ref on the object itself.
1256 */
1257int
1258i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1259 struct drm_file *file_priv)
1260{
da761a6e 1261 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1262 struct drm_i915_gem_mmap *args = data;
1263 struct drm_gem_object *obj;
1264 loff_t offset;
1265 unsigned long addr;
1266
1267 if (!(dev->driver->driver_features & DRIVER_GEM))
1268 return -ENODEV;
1269
1270 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1271 if (obj == NULL)
bf79cb91 1272 return -ENOENT;
673a394b 1273
da761a6e
CW
1274 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1275 drm_gem_object_unreference_unlocked(obj);
1276 return -E2BIG;
1277 }
1278
673a394b
EA
1279 offset = args->offset;
1280
1281 down_write(&current->mm->mmap_sem);
1282 addr = do_mmap(obj->filp, 0, args->size,
1283 PROT_READ | PROT_WRITE, MAP_SHARED,
1284 args->offset);
1285 up_write(&current->mm->mmap_sem);
bc9025bd 1286 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1287 if (IS_ERR((void *)addr))
1288 return addr;
1289
1290 args->addr_ptr = (uint64_t) addr;
1291
1292 return 0;
1293}
1294
de151cf6
JB
1295/**
1296 * i915_gem_fault - fault a page into the GTT
1297 * vma: VMA in question
1298 * vmf: fault info
1299 *
1300 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1301 * from userspace. The fault handler takes care of binding the object to
1302 * the GTT (if needed), allocating and programming a fence register (again,
1303 * only if needed based on whether the old reg is still valid or the object
1304 * is tiled) and inserting a new PTE into the faulting process.
1305 *
1306 * Note that the faulting process may involve evicting existing objects
1307 * from the GTT and/or fence registers to make room. So performance may
1308 * suffer if the GTT working set is large or there are few fence registers
1309 * left.
1310 */
1311int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1312{
1313 struct drm_gem_object *obj = vma->vm_private_data;
1314 struct drm_device *dev = obj->dev;
7d1c4804 1315 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1316 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1317 pgoff_t page_offset;
1318 unsigned long pfn;
1319 int ret = 0;
0f973f27 1320 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1321
1322 /* We don't use vmf->pgoff since that has the fake offset */
1323 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1324 PAGE_SHIFT;
1325
1326 /* Now bind it into the GTT if needed */
1327 mutex_lock(&dev->struct_mutex);
fb7d516a 1328 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
16e809ac
DV
1329 if (!i915_gem_object_cpu_accessible(obj_priv))
1330 i915_gem_object_unbind(obj);
1331
de151cf6 1332 if (!obj_priv->gtt_space) {
920afa77 1333 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1334 if (ret)
1335 goto unlock;
07f4f3e8 1336
07f4f3e8 1337 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1338 if (ret)
1339 goto unlock;
de151cf6
JB
1340 }
1341
fb7d516a
DV
1342 if (!obj_priv->fault_mappable) {
1343 obj_priv->fault_mappable = true;
1344 i915_gem_info_update_mappable(dev_priv, obj, true);
1345 }
1346
de151cf6 1347 /* Need a new fence register? */
a09ba7fa 1348 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1349 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1350 if (ret)
1351 goto unlock;
d9ddcb96 1352 }
de151cf6 1353
7d1c4804 1354 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1355 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1356
de151cf6
JB
1357 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1358 page_offset;
1359
1360 /* Finally, remap it using the new GTT offset */
1361 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1362unlock:
de151cf6
JB
1363 mutex_unlock(&dev->struct_mutex);
1364
1365 switch (ret) {
c715089f
CW
1366 case 0:
1367 case -ERESTARTSYS:
1368 return VM_FAULT_NOPAGE;
de151cf6
JB
1369 case -ENOMEM:
1370 case -EAGAIN:
1371 return VM_FAULT_OOM;
de151cf6 1372 default:
c715089f 1373 return VM_FAULT_SIGBUS;
de151cf6
JB
1374 }
1375}
1376
1377/**
1378 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1379 * @obj: obj in question
1380 *
1381 * GEM memory mapping works by handing back to userspace a fake mmap offset
1382 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1383 * up the object based on the offset and sets up the various memory mapping
1384 * structures.
1385 *
1386 * This routine allocates and attaches a fake offset for @obj.
1387 */
1388static int
1389i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1390{
1391 struct drm_device *dev = obj->dev;
1392 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1393 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1394 struct drm_map_list *list;
f77d390c 1395 struct drm_local_map *map;
de151cf6
JB
1396 int ret = 0;
1397
1398 /* Set the object up for mmap'ing */
1399 list = &obj->map_list;
9a298b2a 1400 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1401 if (!list->map)
1402 return -ENOMEM;
1403
1404 map = list->map;
1405 map->type = _DRM_GEM;
1406 map->size = obj->size;
1407 map->handle = obj;
1408
1409 /* Get a DRM GEM mmap offset allocated... */
1410 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1411 obj->size / PAGE_SIZE, 0, 0);
1412 if (!list->file_offset_node) {
1413 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1414 ret = -ENOSPC;
de151cf6
JB
1415 goto out_free_list;
1416 }
1417
1418 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1419 obj->size / PAGE_SIZE, 0);
1420 if (!list->file_offset_node) {
1421 ret = -ENOMEM;
1422 goto out_free_list;
1423 }
1424
1425 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1426 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1427 if (ret) {
de151cf6
JB
1428 DRM_ERROR("failed to add to map hash\n");
1429 goto out_free_mm;
1430 }
1431
1432 /* By now we should be all set, any drm_mmap request on the offset
1433 * below will get to our mmap & fault handler */
1434 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1435
1436 return 0;
1437
1438out_free_mm:
1439 drm_mm_put_block(list->file_offset_node);
1440out_free_list:
9a298b2a 1441 kfree(list->map);
de151cf6
JB
1442
1443 return ret;
1444}
1445
901782b2
CW
1446/**
1447 * i915_gem_release_mmap - remove physical page mappings
1448 * @obj: obj in question
1449 *
af901ca1 1450 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1451 * relinquish ownership of the pages back to the system.
1452 *
1453 * It is vital that we remove the page mapping if we have mapped a tiled
1454 * object through the GTT and then lose the fence register due to
1455 * resource pressure. Similarly if the object has been moved out of the
1456 * aperture, than pages mapped into userspace must be revoked. Removing the
1457 * mapping will then trigger a page fault on the next user access, allowing
1458 * fixup by i915_gem_fault().
1459 */
d05ca301 1460void
901782b2
CW
1461i915_gem_release_mmap(struct drm_gem_object *obj)
1462{
1463 struct drm_device *dev = obj->dev;
fb7d516a 1464 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1465 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1466
1467 if (dev->dev_mapping)
1468 unmap_mapping_range(dev->dev_mapping,
1469 obj_priv->mmap_offset, obj->size, 1);
fb7d516a
DV
1470
1471 if (obj_priv->fault_mappable) {
1472 obj_priv->fault_mappable = false;
1473 i915_gem_info_update_mappable(dev_priv, obj, false);
1474 }
901782b2
CW
1475}
1476
ab00b3e5
JB
1477static void
1478i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1479{
1480 struct drm_device *dev = obj->dev;
23010e43 1481 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1482 struct drm_gem_mm *mm = dev->mm_private;
1483 struct drm_map_list *list;
1484
1485 list = &obj->map_list;
1486 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1487
1488 if (list->file_offset_node) {
1489 drm_mm_put_block(list->file_offset_node);
1490 list->file_offset_node = NULL;
1491 }
1492
1493 if (list->map) {
9a298b2a 1494 kfree(list->map);
ab00b3e5
JB
1495 list->map = NULL;
1496 }
1497
1498 obj_priv->mmap_offset = 0;
1499}
1500
de151cf6
JB
1501/**
1502 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1503 * @obj: object to check
1504 *
1505 * Return the required GTT alignment for an object, taking into account
1506 * potential fence register mapping if needed.
1507 */
1508static uint32_t
1509i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1510{
1511 struct drm_device *dev = obj->dev;
23010e43 1512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1513 int start, i;
1514
1515 /*
1516 * Minimum alignment is 4k (GTT page size), but might be greater
1517 * if a fence register is needed for the object.
1518 */
a6c45cf0 1519 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1520 return 4096;
1521
1522 /*
1523 * Previous chips need to be aligned to the size of the smallest
1524 * fence register that can contain the object.
1525 */
a6c45cf0 1526 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1527 start = 1024*1024;
1528 else
1529 start = 512*1024;
1530
1531 for (i = start; i < obj->size; i <<= 1)
1532 ;
1533
1534 return i;
1535}
1536
1537/**
1538 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1539 * @dev: DRM device
1540 * @data: GTT mapping ioctl data
1541 * @file_priv: GEM object info
1542 *
1543 * Simply returns the fake offset to userspace so it can mmap it.
1544 * The mmap call will end up in drm_gem_mmap(), which will set things
1545 * up so we can get faults in the handler above.
1546 *
1547 * The fault handler will take care of binding the object into the GTT
1548 * (since it may have been evicted to make room for something), allocating
1549 * a fence register, and mapping the appropriate aperture address into
1550 * userspace.
1551 */
1552int
1553i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1554 struct drm_file *file_priv)
1555{
da761a6e 1556 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1557 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1558 struct drm_gem_object *obj;
1559 struct drm_i915_gem_object *obj_priv;
1560 int ret;
1561
1562 if (!(dev->driver->driver_features & DRIVER_GEM))
1563 return -ENODEV;
1564
76c1dec1 1565 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1566 if (ret)
76c1dec1 1567 return ret;
de151cf6 1568
1d7cfea1
CW
1569 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1570 if (obj == NULL) {
1571 ret = -ENOENT;
1572 goto unlock;
1573 }
23010e43 1574 obj_priv = to_intel_bo(obj);
de151cf6 1575
da761a6e
CW
1576 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1577 ret = -E2BIG;
1578 goto unlock;
1579 }
1580
ab18282d
CW
1581 if (obj_priv->madv != I915_MADV_WILLNEED) {
1582 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1583 ret = -EINVAL;
1584 goto out;
ab18282d
CW
1585 }
1586
de151cf6
JB
1587 if (!obj_priv->mmap_offset) {
1588 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1589 if (ret)
1590 goto out;
de151cf6
JB
1591 }
1592
1593 args->offset = obj_priv->mmap_offset;
1594
de151cf6
JB
1595 /*
1596 * Pull it into the GTT so that we have a page list (makes the
1597 * initial fault faster and any subsequent flushing possible).
1598 */
1599 if (!obj_priv->agp_mem) {
920afa77 1600 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1d7cfea1
CW
1601 if (ret)
1602 goto out;
de151cf6
JB
1603 }
1604
1d7cfea1 1605out:
de151cf6 1606 drm_gem_object_unreference(obj);
1d7cfea1 1607unlock:
de151cf6 1608 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1609 return ret;
de151cf6
JB
1610}
1611
5cdf5881 1612static void
856fa198 1613i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1614{
23010e43 1615 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1616 int page_count = obj->size / PAGE_SIZE;
1617 int i;
1618
856fa198 1619 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1620 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1621
856fa198
EA
1622 if (--obj_priv->pages_refcount != 0)
1623 return;
673a394b 1624
280b713b
EA
1625 if (obj_priv->tiling_mode != I915_TILING_NONE)
1626 i915_gem_object_save_bit_17_swizzle(obj);
1627
3ef94daa 1628 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1629 obj_priv->dirty = 0;
3ef94daa
CW
1630
1631 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1632 if (obj_priv->dirty)
1633 set_page_dirty(obj_priv->pages[i]);
1634
1635 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1636 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1637
1638 page_cache_release(obj_priv->pages[i]);
1639 }
673a394b
EA
1640 obj_priv->dirty = 0;
1641
8e7d2b2c 1642 drm_free_large(obj_priv->pages);
856fa198 1643 obj_priv->pages = NULL;
673a394b
EA
1644}
1645
a56ba56c
CW
1646static uint32_t
1647i915_gem_next_request_seqno(struct drm_device *dev,
1648 struct intel_ring_buffer *ring)
1649{
1650 drm_i915_private_t *dev_priv = dev->dev_private;
1651
1652 ring->outstanding_lazy_request = true;
1653 return dev_priv->next_seqno;
1654}
1655
673a394b 1656static void
617dbe27 1657i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1658 struct intel_ring_buffer *ring)
673a394b
EA
1659{
1660 struct drm_device *dev = obj->dev;
69dc4987 1661 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1662 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1663 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1664
852835f3
ZN
1665 BUG_ON(ring == NULL);
1666 obj_priv->ring = ring;
673a394b
EA
1667
1668 /* Add a reference if we're newly entering the active list. */
1669 if (!obj_priv->active) {
1670 drm_gem_object_reference(obj);
1671 obj_priv->active = 1;
1672 }
e35a41de 1673
673a394b 1674 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1675 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1676 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1677 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1678}
1679
ce44b0ea
EA
1680static void
1681i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1682{
1683 struct drm_device *dev = obj->dev;
1684 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1685 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1686
1687 BUG_ON(!obj_priv->active);
69dc4987
CW
1688 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1689 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1690 obj_priv->last_rendering_seqno = 0;
1691}
673a394b 1692
963b4836
CW
1693/* Immediately discard the backing storage */
1694static void
1695i915_gem_object_truncate(struct drm_gem_object *obj)
1696{
23010e43 1697 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1698 struct inode *inode;
963b4836 1699
ae9fed6b
CW
1700 /* Our goal here is to return as much of the memory as
1701 * is possible back to the system as we are called from OOM.
1702 * To do this we must instruct the shmfs to drop all of its
1703 * backing pages, *now*. Here we mirror the actions taken
1704 * when by shmem_delete_inode() to release the backing store.
1705 */
bb6baf76 1706 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1707 truncate_inode_pages(inode->i_mapping, 0);
1708 if (inode->i_op->truncate_range)
1709 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1710
1711 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1712}
1713
1714static inline int
1715i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1716{
1717 return obj_priv->madv == I915_MADV_DONTNEED;
1718}
1719
673a394b
EA
1720static void
1721i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1722{
1723 struct drm_device *dev = obj->dev;
1724 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1725 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1726
673a394b 1727 if (obj_priv->pin_count != 0)
69dc4987 1728 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1729 else
69dc4987
CW
1730 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1731 list_del_init(&obj_priv->ring_list);
673a394b 1732
99fcb766
DV
1733 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1734
ce44b0ea 1735 obj_priv->last_rendering_seqno = 0;
852835f3 1736 obj_priv->ring = NULL;
673a394b
EA
1737 if (obj_priv->active) {
1738 obj_priv->active = 0;
1739 drm_gem_object_unreference(obj);
1740 }
23bc5982 1741 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1742}
1743
63560396
DV
1744static void
1745i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1746 uint32_t flush_domains,
852835f3 1747 struct intel_ring_buffer *ring)
63560396
DV
1748{
1749 drm_i915_private_t *dev_priv = dev->dev_private;
1750 struct drm_i915_gem_object *obj_priv, *next;
1751
1752 list_for_each_entry_safe(obj_priv, next,
64193406 1753 &ring->gpu_write_list,
63560396 1754 gpu_write_list) {
a8089e84 1755 struct drm_gem_object *obj = &obj_priv->base;
63560396 1756
64193406 1757 if (obj->write_domain & flush_domains) {
63560396
DV
1758 uint32_t old_write_domain = obj->write_domain;
1759
1760 obj->write_domain = 0;
1761 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1762 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1763
1764 /* update the fence lru list */
007cc8ac
DV
1765 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1766 struct drm_i915_fence_reg *reg =
1767 &dev_priv->fence_regs[obj_priv->fence_reg];
1768 list_move_tail(&reg->lru_list,
63560396 1769 &dev_priv->mm.fence_list);
007cc8ac 1770 }
63560396
DV
1771
1772 trace_i915_gem_object_change_domain(obj,
1773 obj->read_domains,
1774 old_write_domain);
1775 }
1776 }
1777}
8187a2b7 1778
3cce469c 1779int
8a1a49f9 1780i915_add_request(struct drm_device *dev,
f787a5f5 1781 struct drm_file *file,
8dc5d147 1782 struct drm_i915_gem_request *request,
8a1a49f9 1783 struct intel_ring_buffer *ring)
673a394b
EA
1784{
1785 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1786 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1787 uint32_t seqno;
1788 int was_empty;
3cce469c
CW
1789 int ret;
1790
1791 BUG_ON(request == NULL);
673a394b 1792
f787a5f5
CW
1793 if (file != NULL)
1794 file_priv = file->driver_priv;
b962442e 1795
3cce469c
CW
1796 ret = ring->add_request(ring, &seqno);
1797 if (ret)
1798 return ret;
673a394b 1799
a56ba56c 1800 ring->outstanding_lazy_request = false;
673a394b
EA
1801
1802 request->seqno = seqno;
852835f3 1803 request->ring = ring;
673a394b 1804 request->emitted_jiffies = jiffies;
852835f3
ZN
1805 was_empty = list_empty(&ring->request_list);
1806 list_add_tail(&request->list, &ring->request_list);
1807
f787a5f5 1808 if (file_priv) {
1c25595f 1809 spin_lock(&file_priv->mm.lock);
f787a5f5 1810 request->file_priv = file_priv;
b962442e 1811 list_add_tail(&request->client_list,
f787a5f5 1812 &file_priv->mm.request_list);
1c25595f 1813 spin_unlock(&file_priv->mm.lock);
b962442e 1814 }
673a394b 1815
f65d9421 1816 if (!dev_priv->mm.suspended) {
b3b079db
CW
1817 mod_timer(&dev_priv->hangcheck_timer,
1818 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1819 if (was_empty)
b3b079db
CW
1820 queue_delayed_work(dev_priv->wq,
1821 &dev_priv->mm.retire_work, HZ);
f65d9421 1822 }
3cce469c 1823 return 0;
673a394b
EA
1824}
1825
1826/**
1827 * Command execution barrier
1828 *
1829 * Ensures that all commands in the ring are finished
1830 * before signalling the CPU
1831 */
8a1a49f9 1832static void
852835f3 1833i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1834{
673a394b 1835 uint32_t flush_domains = 0;
673a394b
EA
1836
1837 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1838 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1839 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1840
78501eac 1841 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1842}
1843
f787a5f5
CW
1844static inline void
1845i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1846{
1c25595f 1847 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1848
1c25595f
CW
1849 if (!file_priv)
1850 return;
1c5d22f7 1851
1c25595f
CW
1852 spin_lock(&file_priv->mm.lock);
1853 list_del(&request->client_list);
1854 request->file_priv = NULL;
1855 spin_unlock(&file_priv->mm.lock);
673a394b 1856}
673a394b 1857
dfaae392
CW
1858static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1859 struct intel_ring_buffer *ring)
9375e446 1860{
dfaae392
CW
1861 while (!list_empty(&ring->request_list)) {
1862 struct drm_i915_gem_request *request;
673a394b 1863
dfaae392
CW
1864 request = list_first_entry(&ring->request_list,
1865 struct drm_i915_gem_request,
1866 list);
de151cf6 1867
dfaae392 1868 list_del(&request->list);
f787a5f5 1869 i915_gem_request_remove_from_client(request);
dfaae392
CW
1870 kfree(request);
1871 }
673a394b 1872
dfaae392 1873 while (!list_empty(&ring->active_list)) {
9375e446
CW
1874 struct drm_i915_gem_object *obj_priv;
1875
dfaae392 1876 obj_priv = list_first_entry(&ring->active_list,
9375e446 1877 struct drm_i915_gem_object,
69dc4987 1878 ring_list);
9375e446
CW
1879
1880 obj_priv->base.write_domain = 0;
dfaae392 1881 list_del_init(&obj_priv->gpu_write_list);
9375e446 1882 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1883 }
1884}
1885
069efc1d 1886void i915_gem_reset(struct drm_device *dev)
673a394b 1887{
77f01230
CW
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889 struct drm_i915_gem_object *obj_priv;
069efc1d 1890 int i;
673a394b 1891
dfaae392 1892 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1893 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1894 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1895
1896 /* Remove anything from the flushing lists. The GPU cache is likely
1897 * to be lost on reset along with the data, so simply move the
1898 * lost bo to the inactive list.
1899 */
1900 while (!list_empty(&dev_priv->mm.flushing_list)) {
1901 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1902 struct drm_i915_gem_object,
69dc4987 1903 mm_list);
dfaae392
CW
1904
1905 obj_priv->base.write_domain = 0;
1906 list_del_init(&obj_priv->gpu_write_list);
1907 i915_gem_object_move_to_inactive(&obj_priv->base);
1908 }
1909
1910 /* Move everything out of the GPU domains to ensure we do any
1911 * necessary invalidation upon reuse.
1912 */
77f01230
CW
1913 list_for_each_entry(obj_priv,
1914 &dev_priv->mm.inactive_list,
69dc4987 1915 mm_list)
77f01230
CW
1916 {
1917 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1918 }
069efc1d
CW
1919
1920 /* The fence registers are invalidated so clear them out */
1921 for (i = 0; i < 16; i++) {
1922 struct drm_i915_fence_reg *reg;
1923
1924 reg = &dev_priv->fence_regs[i];
1925 if (!reg->obj)
1926 continue;
1927
1928 i915_gem_clear_fence_reg(reg->obj);
1929 }
673a394b
EA
1930}
1931
1932/**
1933 * This function clears the request list as sequence numbers are passed.
1934 */
b09a1fec
CW
1935static void
1936i915_gem_retire_requests_ring(struct drm_device *dev,
1937 struct intel_ring_buffer *ring)
673a394b
EA
1938{
1939 drm_i915_private_t *dev_priv = dev->dev_private;
1940 uint32_t seqno;
1941
b84d5f0c
CW
1942 if (!ring->status_page.page_addr ||
1943 list_empty(&ring->request_list))
6c0594a3
KW
1944 return;
1945
23bc5982 1946 WARN_ON(i915_verify_lists(dev));
673a394b 1947
78501eac 1948 seqno = ring->get_seqno(ring);
852835f3 1949 while (!list_empty(&ring->request_list)) {
673a394b 1950 struct drm_i915_gem_request *request;
673a394b 1951
852835f3 1952 request = list_first_entry(&ring->request_list,
673a394b
EA
1953 struct drm_i915_gem_request,
1954 list);
673a394b 1955
dfaae392 1956 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1957 break;
1958
1959 trace_i915_gem_request_retire(dev, request->seqno);
1960
1961 list_del(&request->list);
f787a5f5 1962 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1963 kfree(request);
1964 }
673a394b 1965
b84d5f0c
CW
1966 /* Move any buffers on the active list that are no longer referenced
1967 * by the ringbuffer to the flushing/inactive lists as appropriate.
1968 */
1969 while (!list_empty(&ring->active_list)) {
1970 struct drm_gem_object *obj;
1971 struct drm_i915_gem_object *obj_priv;
1972
1973 obj_priv = list_first_entry(&ring->active_list,
1974 struct drm_i915_gem_object,
69dc4987 1975 ring_list);
673a394b 1976
dfaae392 1977 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1978 break;
b84d5f0c
CW
1979
1980 obj = &obj_priv->base;
b84d5f0c
CW
1981 if (obj->write_domain != 0)
1982 i915_gem_object_move_to_flushing(obj);
1983 else
1984 i915_gem_object_move_to_inactive(obj);
673a394b 1985 }
9d34e5db
CW
1986
1987 if (unlikely (dev_priv->trace_irq_seqno &&
1988 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 1989 ring->user_irq_put(ring);
9d34e5db
CW
1990 dev_priv->trace_irq_seqno = 0;
1991 }
23bc5982
CW
1992
1993 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1994}
1995
b09a1fec
CW
1996void
1997i915_gem_retire_requests(struct drm_device *dev)
1998{
1999 drm_i915_private_t *dev_priv = dev->dev_private;
2000
be72615b
CW
2001 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2002 struct drm_i915_gem_object *obj_priv, *tmp;
2003
2004 /* We must be careful that during unbind() we do not
2005 * accidentally infinitely recurse into retire requests.
2006 * Currently:
2007 * retire -> free -> unbind -> wait -> retire_ring
2008 */
2009 list_for_each_entry_safe(obj_priv, tmp,
2010 &dev_priv->mm.deferred_free_list,
69dc4987 2011 mm_list)
be72615b
CW
2012 i915_gem_free_object_tail(&obj_priv->base);
2013 }
2014
b09a1fec 2015 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 2016 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 2017 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
2018}
2019
75ef9da2 2020static void
673a394b
EA
2021i915_gem_retire_work_handler(struct work_struct *work)
2022{
2023 drm_i915_private_t *dev_priv;
2024 struct drm_device *dev;
2025
2026 dev_priv = container_of(work, drm_i915_private_t,
2027 mm.retire_work.work);
2028 dev = dev_priv->dev;
2029
891b48cf
CW
2030 /* Come back later if the device is busy... */
2031 if (!mutex_trylock(&dev->struct_mutex)) {
2032 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2033 return;
2034 }
2035
b09a1fec 2036 i915_gem_retire_requests(dev);
d1b851fc 2037
6dbe2772 2038 if (!dev_priv->mm.suspended &&
d1b851fc 2039 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2040 !list_empty(&dev_priv->bsd_ring.request_list) ||
2041 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2042 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2043 mutex_unlock(&dev->struct_mutex);
2044}
2045
5a5a0c64 2046int
852835f3 2047i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2048 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2049{
2050 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2051 u32 ier;
673a394b
EA
2052 int ret = 0;
2053
2054 BUG_ON(seqno == 0);
2055
ba1234d1 2056 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2057 return -EAGAIN;
2058
a56ba56c 2059 if (ring->outstanding_lazy_request) {
3cce469c
CW
2060 struct drm_i915_gem_request *request;
2061
2062 request = kzalloc(sizeof(*request), GFP_KERNEL);
2063 if (request == NULL)
e35a41de 2064 return -ENOMEM;
3cce469c
CW
2065
2066 ret = i915_add_request(dev, NULL, request, ring);
2067 if (ret) {
2068 kfree(request);
2069 return ret;
2070 }
2071
2072 seqno = request->seqno;
e35a41de 2073 }
a56ba56c 2074 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 2075
78501eac 2076 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2077 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2078 ier = I915_READ(DEIER) | I915_READ(GTIER);
2079 else
2080 ier = I915_READ(IER);
802c7eb6
JB
2081 if (!ier) {
2082 DRM_ERROR("something (likely vbetool) disabled "
2083 "interrupts, re-enabling\n");
2084 i915_driver_irq_preinstall(dev);
2085 i915_driver_irq_postinstall(dev);
2086 }
2087
1c5d22f7
CW
2088 trace_i915_gem_request_wait_begin(dev, seqno);
2089
b2223497 2090 ring->waiting_seqno = seqno;
78501eac 2091 ring->user_irq_get(ring);
48764bf4 2092 if (interruptible)
852835f3 2093 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2094 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2095 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2096 else
852835f3 2097 wait_event(ring->irq_queue,
78501eac 2098 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2099 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2100
78501eac 2101 ring->user_irq_put(ring);
b2223497 2102 ring->waiting_seqno = 0;
1c5d22f7
CW
2103
2104 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2105 }
ba1234d1 2106 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2107 ret = -EAGAIN;
673a394b
EA
2108
2109 if (ret && ret != -ERESTARTSYS)
8bff917c 2110 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2111 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2112 dev_priv->next_seqno);
673a394b
EA
2113
2114 /* Directly dispatch request retiring. While we have the work queue
2115 * to handle this, the waiter on a request often wants an associated
2116 * buffer to have made it to the inactive list, and we would need
2117 * a separate wait queue to handle that.
2118 */
2119 if (ret == 0)
b09a1fec 2120 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2121
2122 return ret;
2123}
2124
48764bf4
DV
2125/**
2126 * Waits for a sequence number to be signaled, and cleans up the
2127 * request and object lists appropriately for that event.
2128 */
2129static int
852835f3 2130i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2131 struct intel_ring_buffer *ring)
48764bf4 2132{
852835f3 2133 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2134}
2135
20f0cd55 2136static void
9220434a 2137i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2138 struct drm_file *file_priv,
9220434a
CW
2139 struct intel_ring_buffer *ring,
2140 uint32_t invalidate_domains,
2141 uint32_t flush_domains)
2142{
78501eac 2143 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2144 i915_gem_process_flushing_list(dev, flush_domains, ring);
2145}
2146
8187a2b7
ZN
2147static void
2148i915_gem_flush(struct drm_device *dev,
c78ec30b 2149 struct drm_file *file_priv,
8187a2b7 2150 uint32_t invalidate_domains,
9220434a
CW
2151 uint32_t flush_domains,
2152 uint32_t flush_rings)
8187a2b7
ZN
2153{
2154 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2155
8187a2b7
ZN
2156 if (flush_domains & I915_GEM_DOMAIN_CPU)
2157 drm_agp_chipset_flush(dev);
8bff917c 2158
9220434a
CW
2159 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2160 if (flush_rings & RING_RENDER)
c78ec30b 2161 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2162 &dev_priv->render_ring,
2163 invalidate_domains, flush_domains);
2164 if (flush_rings & RING_BSD)
c78ec30b 2165 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2166 &dev_priv->bsd_ring,
2167 invalidate_domains, flush_domains);
549f7365
CW
2168 if (flush_rings & RING_BLT)
2169 i915_gem_flush_ring(dev, file_priv,
2170 &dev_priv->blt_ring,
2171 invalidate_domains, flush_domains);
9220434a 2172 }
8187a2b7
ZN
2173}
2174
673a394b
EA
2175/**
2176 * Ensures that all rendering to the object has completed and the object is
2177 * safe to unbind from the GTT or access from the CPU.
2178 */
2179static int
2cf34d7b
CW
2180i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2181 bool interruptible)
673a394b
EA
2182{
2183 struct drm_device *dev = obj->dev;
23010e43 2184 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2185 int ret;
2186
e47c68e9
EA
2187 /* This function only exists to support waiting for existing rendering,
2188 * not for emitting required flushes.
673a394b 2189 */
e47c68e9 2190 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2191
2192 /* If there is rendering queued on the buffer being evicted, wait for
2193 * it.
2194 */
2195 if (obj_priv->active) {
2cf34d7b
CW
2196 ret = i915_do_wait_request(dev,
2197 obj_priv->last_rendering_seqno,
2198 interruptible,
2199 obj_priv->ring);
2200 if (ret)
673a394b
EA
2201 return ret;
2202 }
2203
2204 return 0;
2205}
2206
2207/**
2208 * Unbinds an object from the GTT aperture.
2209 */
0f973f27 2210int
673a394b
EA
2211i915_gem_object_unbind(struct drm_gem_object *obj)
2212{
2213 struct drm_device *dev = obj->dev;
73aa808f 2214 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2215 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2216 int ret = 0;
2217
673a394b
EA
2218 if (obj_priv->gtt_space == NULL)
2219 return 0;
2220
2221 if (obj_priv->pin_count != 0) {
2222 DRM_ERROR("Attempting to unbind pinned buffer\n");
2223 return -EINVAL;
2224 }
2225
5323fd04
EA
2226 /* blow away mappings if mapped through GTT */
2227 i915_gem_release_mmap(obj);
2228
673a394b
EA
2229 /* Move the object to the CPU domain to ensure that
2230 * any possible CPU writes while it's not in the GTT
2231 * are flushed when we go to remap it. This will
2232 * also ensure that all pending GPU writes are finished
2233 * before we unbind.
2234 */
e47c68e9 2235 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2236 if (ret == -ERESTARTSYS)
673a394b 2237 return ret;
8dc1775d
CW
2238 /* Continue on if we fail due to EIO, the GPU is hung so we
2239 * should be safe and we need to cleanup or else we might
2240 * cause memory corruption through use-after-free.
2241 */
812ed492
CW
2242 if (ret) {
2243 i915_gem_clflush_object(obj);
2244 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2245 }
673a394b 2246
96b47b65
DV
2247 /* release the fence reg _after_ flushing */
2248 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2249 i915_gem_clear_fence_reg(obj);
2250
73aa808f
CW
2251 drm_unbind_agp(obj_priv->agp_mem);
2252 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2253
856fa198 2254 i915_gem_object_put_pages(obj);
a32808c0 2255 BUG_ON(obj_priv->pages_refcount);
673a394b 2256
fb7d516a 2257 i915_gem_info_remove_gtt(dev_priv, obj);
69dc4987 2258 list_del_init(&obj_priv->mm_list);
673a394b 2259
73aa808f
CW
2260 drm_mm_put_block(obj_priv->gtt_space);
2261 obj_priv->gtt_space = NULL;
9af90d19 2262 obj_priv->gtt_offset = 0;
673a394b 2263
963b4836
CW
2264 if (i915_gem_object_is_purgeable(obj_priv))
2265 i915_gem_object_truncate(obj);
2266
1c5d22f7
CW
2267 trace_i915_gem_object_unbind(obj);
2268
8dc1775d 2269 return ret;
673a394b
EA
2270}
2271
a56ba56c
CW
2272static int i915_ring_idle(struct drm_device *dev,
2273 struct intel_ring_buffer *ring)
2274{
64193406
CW
2275 if (list_empty(&ring->gpu_write_list))
2276 return 0;
2277
a56ba56c
CW
2278 i915_gem_flush_ring(dev, NULL, ring,
2279 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2280 return i915_wait_request(dev,
2281 i915_gem_next_request_seqno(dev, ring),
2282 ring);
2283}
2284
b47eb4a2 2285int
4df2faf4
DV
2286i915_gpu_idle(struct drm_device *dev)
2287{
2288 drm_i915_private_t *dev_priv = dev->dev_private;
2289 bool lists_empty;
852835f3 2290 int ret;
4df2faf4 2291
d1b851fc
ZN
2292 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2293 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
2294 list_empty(&dev_priv->bsd_ring.active_list) &&
2295 list_empty(&dev_priv->blt_ring.active_list));
4df2faf4
DV
2296 if (lists_empty)
2297 return 0;
2298
2299 /* Flush everything onto the inactive list. */
a56ba56c 2300 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2301 if (ret)
2302 return ret;
d1b851fc 2303
87acb0a5
CW
2304 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2305 if (ret)
2306 return ret;
d1b851fc 2307
549f7365
CW
2308 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2309 if (ret)
2310 return ret;
4df2faf4 2311
8a1a49f9 2312 return 0;
4df2faf4
DV
2313}
2314
5cdf5881 2315static int
4bdadb97
CW
2316i915_gem_object_get_pages(struct drm_gem_object *obj,
2317 gfp_t gfpmask)
673a394b 2318{
23010e43 2319 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2320 int page_count, i;
2321 struct address_space *mapping;
2322 struct inode *inode;
2323 struct page *page;
673a394b 2324
778c3544
DV
2325 BUG_ON(obj_priv->pages_refcount
2326 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2327
856fa198 2328 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2329 return 0;
2330
2331 /* Get the list of pages out of our struct file. They'll be pinned
2332 * at this point until we release them.
2333 */
2334 page_count = obj->size / PAGE_SIZE;
856fa198 2335 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2336 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2337 if (obj_priv->pages == NULL) {
856fa198 2338 obj_priv->pages_refcount--;
673a394b
EA
2339 return -ENOMEM;
2340 }
2341
2342 inode = obj->filp->f_path.dentry->d_inode;
2343 mapping = inode->i_mapping;
2344 for (i = 0; i < page_count; i++) {
4bdadb97 2345 page = read_cache_page_gfp(mapping, i,
985b823b 2346 GFP_HIGHUSER |
4bdadb97 2347 __GFP_COLD |
cd9f040d 2348 __GFP_RECLAIMABLE |
4bdadb97 2349 gfpmask);
1f2b1013
CW
2350 if (IS_ERR(page))
2351 goto err_pages;
2352
856fa198 2353 obj_priv->pages[i] = page;
673a394b 2354 }
280b713b
EA
2355
2356 if (obj_priv->tiling_mode != I915_TILING_NONE)
2357 i915_gem_object_do_bit_17_swizzle(obj);
2358
673a394b 2359 return 0;
1f2b1013
CW
2360
2361err_pages:
2362 while (i--)
2363 page_cache_release(obj_priv->pages[i]);
2364
2365 drm_free_large(obj_priv->pages);
2366 obj_priv->pages = NULL;
2367 obj_priv->pages_refcount--;
2368 return PTR_ERR(page);
673a394b
EA
2369}
2370
4e901fdc
EA
2371static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2372{
2373 struct drm_gem_object *obj = reg->obj;
2374 struct drm_device *dev = obj->dev;
2375 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2376 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2377 int regnum = obj_priv->fence_reg;
2378 uint64_t val;
2379
2380 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2381 0xfffff000) << 32;
2382 val |= obj_priv->gtt_offset & 0xfffff000;
2383 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2384 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2385
2386 if (obj_priv->tiling_mode == I915_TILING_Y)
2387 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2388 val |= I965_FENCE_REG_VALID;
2389
2390 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2391}
2392
de151cf6
JB
2393static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2394{
2395 struct drm_gem_object *obj = reg->obj;
2396 struct drm_device *dev = obj->dev;
2397 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2399 int regnum = obj_priv->fence_reg;
2400 uint64_t val;
2401
2402 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2403 0xfffff000) << 32;
2404 val |= obj_priv->gtt_offset & 0xfffff000;
2405 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2406 if (obj_priv->tiling_mode == I915_TILING_Y)
2407 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2408 val |= I965_FENCE_REG_VALID;
2409
2410 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2411}
2412
2413static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2414{
2415 struct drm_gem_object *obj = reg->obj;
2416 struct drm_device *dev = obj->dev;
2417 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2418 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2419 int regnum = obj_priv->fence_reg;
0f973f27 2420 int tile_width;
dc529a4f 2421 uint32_t fence_reg, val;
de151cf6
JB
2422 uint32_t pitch_val;
2423
2424 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2425 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2426 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2427 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2428 return;
2429 }
2430
0f973f27
JB
2431 if (obj_priv->tiling_mode == I915_TILING_Y &&
2432 HAS_128_BYTE_Y_TILING(dev))
2433 tile_width = 128;
de151cf6 2434 else
0f973f27
JB
2435 tile_width = 512;
2436
2437 /* Note: pitch better be a power of two tile widths */
2438 pitch_val = obj_priv->stride / tile_width;
2439 pitch_val = ffs(pitch_val) - 1;
de151cf6 2440
c36a2a6d
DV
2441 if (obj_priv->tiling_mode == I915_TILING_Y &&
2442 HAS_128_BYTE_Y_TILING(dev))
2443 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2444 else
2445 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2446
de151cf6
JB
2447 val = obj_priv->gtt_offset;
2448 if (obj_priv->tiling_mode == I915_TILING_Y)
2449 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2450 val |= I915_FENCE_SIZE_BITS(obj->size);
2451 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2452 val |= I830_FENCE_REG_VALID;
2453
dc529a4f
EA
2454 if (regnum < 8)
2455 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2456 else
2457 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2458 I915_WRITE(fence_reg, val);
de151cf6
JB
2459}
2460
2461static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2462{
2463 struct drm_gem_object *obj = reg->obj;
2464 struct drm_device *dev = obj->dev;
2465 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2466 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2467 int regnum = obj_priv->fence_reg;
2468 uint32_t val;
2469 uint32_t pitch_val;
8d7773a3 2470 uint32_t fence_size_bits;
de151cf6 2471
8d7773a3 2472 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2473 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2474 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2475 __func__, obj_priv->gtt_offset);
de151cf6
JB
2476 return;
2477 }
2478
e76a16de
EA
2479 pitch_val = obj_priv->stride / 128;
2480 pitch_val = ffs(pitch_val) - 1;
2481 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2482
de151cf6
JB
2483 val = obj_priv->gtt_offset;
2484 if (obj_priv->tiling_mode == I915_TILING_Y)
2485 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2486 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2487 WARN_ON(fence_size_bits & ~0x00000f00);
2488 val |= fence_size_bits;
de151cf6
JB
2489 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2490 val |= I830_FENCE_REG_VALID;
2491
2492 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2493}
2494
2cf34d7b
CW
2495static int i915_find_fence_reg(struct drm_device *dev,
2496 bool interruptible)
ae3db24a
DV
2497{
2498 struct drm_i915_fence_reg *reg = NULL;
2499 struct drm_i915_gem_object *obj_priv = NULL;
2500 struct drm_i915_private *dev_priv = dev->dev_private;
2501 struct drm_gem_object *obj = NULL;
2502 int i, avail, ret;
2503
2504 /* First try to find a free reg */
2505 avail = 0;
2506 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2507 reg = &dev_priv->fence_regs[i];
2508 if (!reg->obj)
2509 return i;
2510
23010e43 2511 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2512 if (!obj_priv->pin_count)
2513 avail++;
2514 }
2515
2516 if (avail == 0)
2517 return -ENOSPC;
2518
2519 /* None available, try to steal one or wait for a user to finish */
2520 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2521 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2522 lru_list) {
2523 obj = reg->obj;
2524 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2525
2526 if (obj_priv->pin_count)
2527 continue;
2528
2529 /* found one! */
2530 i = obj_priv->fence_reg;
2531 break;
2532 }
2533
2534 BUG_ON(i == I915_FENCE_REG_NONE);
2535
2536 /* We only have a reference on obj from the active list. put_fence_reg
2537 * might drop that one, causing a use-after-free in it. So hold a
2538 * private reference to obj like the other callers of put_fence_reg
2539 * (set_tiling ioctl) do. */
2540 drm_gem_object_reference(obj);
2cf34d7b 2541 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2542 drm_gem_object_unreference(obj);
2543 if (ret != 0)
2544 return ret;
2545
2546 return i;
2547}
2548
de151cf6
JB
2549/**
2550 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2551 * @obj: object to map through a fence reg
2552 *
2553 * When mapping objects through the GTT, userspace wants to be able to write
2554 * to them without having to worry about swizzling if the object is tiled.
2555 *
2556 * This function walks the fence regs looking for a free one for @obj,
2557 * stealing one if it can't find any.
2558 *
2559 * It then sets up the reg based on the object's properties: address, pitch
2560 * and tiling format.
2561 */
8c4b8c3f 2562int
2cf34d7b
CW
2563i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2564 bool interruptible)
de151cf6
JB
2565{
2566 struct drm_device *dev = obj->dev;
79e53945 2567 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2568 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2569 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2570 int ret;
de151cf6 2571
a09ba7fa
EA
2572 /* Just update our place in the LRU if our fence is getting used. */
2573 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2574 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2575 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2576 return 0;
2577 }
2578
de151cf6
JB
2579 switch (obj_priv->tiling_mode) {
2580 case I915_TILING_NONE:
2581 WARN(1, "allocating a fence for non-tiled object?\n");
2582 break;
2583 case I915_TILING_X:
0f973f27
JB
2584 if (!obj_priv->stride)
2585 return -EINVAL;
2586 WARN((obj_priv->stride & (512 - 1)),
2587 "object 0x%08x is X tiled but has non-512B pitch\n",
2588 obj_priv->gtt_offset);
de151cf6
JB
2589 break;
2590 case I915_TILING_Y:
0f973f27
JB
2591 if (!obj_priv->stride)
2592 return -EINVAL;
2593 WARN((obj_priv->stride & (128 - 1)),
2594 "object 0x%08x is Y tiled but has non-128B pitch\n",
2595 obj_priv->gtt_offset);
de151cf6
JB
2596 break;
2597 }
2598
2cf34d7b 2599 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2600 if (ret < 0)
2601 return ret;
de151cf6 2602
ae3db24a
DV
2603 obj_priv->fence_reg = ret;
2604 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2605 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2606
de151cf6
JB
2607 reg->obj = obj;
2608
e259befd
CW
2609 switch (INTEL_INFO(dev)->gen) {
2610 case 6:
4e901fdc 2611 sandybridge_write_fence_reg(reg);
e259befd
CW
2612 break;
2613 case 5:
2614 case 4:
de151cf6 2615 i965_write_fence_reg(reg);
e259befd
CW
2616 break;
2617 case 3:
de151cf6 2618 i915_write_fence_reg(reg);
e259befd
CW
2619 break;
2620 case 2:
de151cf6 2621 i830_write_fence_reg(reg);
e259befd
CW
2622 break;
2623 }
d9ddcb96 2624
ae3db24a
DV
2625 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2626 obj_priv->tiling_mode);
1c5d22f7 2627
d9ddcb96 2628 return 0;
de151cf6
JB
2629}
2630
2631/**
2632 * i915_gem_clear_fence_reg - clear out fence register info
2633 * @obj: object to clear
2634 *
2635 * Zeroes out the fence register itself and clears out the associated
2636 * data structures in dev_priv and obj_priv.
2637 */
2638static void
2639i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2640{
2641 struct drm_device *dev = obj->dev;
79e53945 2642 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2643 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2644 struct drm_i915_fence_reg *reg =
2645 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2646 uint32_t fence_reg;
de151cf6 2647
e259befd
CW
2648 switch (INTEL_INFO(dev)->gen) {
2649 case 6:
4e901fdc
EA
2650 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2651 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2652 break;
2653 case 5:
2654 case 4:
de151cf6 2655 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2656 break;
2657 case 3:
9b74f734 2658 if (obj_priv->fence_reg >= 8)
e259befd 2659 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2660 else
e259befd
CW
2661 case 2:
2662 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2663
2664 I915_WRITE(fence_reg, 0);
e259befd 2665 break;
dc529a4f 2666 }
de151cf6 2667
007cc8ac 2668 reg->obj = NULL;
de151cf6 2669 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2670 list_del_init(&reg->lru_list);
de151cf6
JB
2671}
2672
52dc7d32
CW
2673/**
2674 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2675 * to the buffer to finish, and then resets the fence register.
2676 * @obj: tiled object holding a fence register.
2cf34d7b 2677 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2678 *
2679 * Zeroes out the fence register itself and clears out the associated
2680 * data structures in dev_priv and obj_priv.
2681 */
2682int
2cf34d7b
CW
2683i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2684 bool interruptible)
52dc7d32
CW
2685{
2686 struct drm_device *dev = obj->dev;
53640e1d 2687 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2688 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2689 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2690
2691 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2692 return 0;
2693
10ae9bd2
DV
2694 /* If we've changed tiling, GTT-mappings of the object
2695 * need to re-fault to ensure that the correct fence register
2696 * setup is in place.
2697 */
2698 i915_gem_release_mmap(obj);
2699
52dc7d32
CW
2700 /* On the i915, GPU access to tiled buffers is via a fence,
2701 * therefore we must wait for any outstanding access to complete
2702 * before clearing the fence.
2703 */
53640e1d
CW
2704 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2705 if (reg->gpu) {
52dc7d32
CW
2706 int ret;
2707
2cf34d7b 2708 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2709 if (ret)
2dafb1e0
CW
2710 return ret;
2711
2cf34d7b 2712 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2713 if (ret)
52dc7d32 2714 return ret;
53640e1d
CW
2715
2716 reg->gpu = false;
52dc7d32
CW
2717 }
2718
4a726612 2719 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2720 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2721
2722 return 0;
2723}
2724
673a394b
EA
2725/**
2726 * Finds free space in the GTT aperture and binds the object there.
2727 */
2728static int
920afa77
DV
2729i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2730 unsigned alignment,
2731 bool mappable)
673a394b
EA
2732{
2733 struct drm_device *dev = obj->dev;
2734 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2735 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2736 struct drm_mm_node *free_space;
4bdadb97 2737 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2738 int ret;
673a394b 2739
bb6baf76 2740 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2741 DRM_ERROR("Attempting to bind a purgeable object\n");
2742 return -EINVAL;
2743 }
2744
673a394b 2745 if (alignment == 0)
0f973f27 2746 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2747 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2748 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2749 return -EINVAL;
2750 }
2751
654fc607
CW
2752 /* If the object is bigger than the entire aperture, reject it early
2753 * before evicting everything in a vain attempt to find space.
2754 */
920afa77
DV
2755 if (obj->size >
2756 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2757 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2758 return -E2BIG;
2759 }
2760
673a394b 2761 search_free:
920afa77
DV
2762 if (mappable)
2763 free_space =
2764 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2765 obj->size, alignment, 0,
2766 dev_priv->mm.gtt_mappable_end,
2767 0);
2768 else
2769 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2770 obj->size, alignment, 0);
2771
2772 if (free_space != NULL) {
2773 if (mappable)
2774 obj_priv->gtt_space =
2775 drm_mm_get_block_range_generic(free_space,
2776 obj->size,
2777 alignment, 0,
2778 dev_priv->mm.gtt_mappable_end,
2779 0);
2780 else
2781 obj_priv->gtt_space =
2782 drm_mm_get_block(free_space, obj->size,
2783 alignment);
2784 }
673a394b
EA
2785 if (obj_priv->gtt_space == NULL) {
2786 /* If the gtt is empty and we're still having trouble
2787 * fitting our object in, we're out of memory.
2788 */
920afa77
DV
2789 ret = i915_gem_evict_something(dev, obj->size, alignment,
2790 mappable);
9731129c 2791 if (ret)
673a394b 2792 return ret;
9731129c 2793
673a394b
EA
2794 goto search_free;
2795 }
2796
4bdadb97 2797 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2798 if (ret) {
2799 drm_mm_put_block(obj_priv->gtt_space);
2800 obj_priv->gtt_space = NULL;
07f73f69
CW
2801
2802 if (ret == -ENOMEM) {
2803 /* first try to clear up some space from the GTT */
0108a3ed 2804 ret = i915_gem_evict_something(dev, obj->size,
920afa77 2805 alignment, mappable);
07f73f69 2806 if (ret) {
07f73f69 2807 /* now try to shrink everyone else */
4bdadb97
CW
2808 if (gfpmask) {
2809 gfpmask = 0;
2810 goto search_free;
07f73f69
CW
2811 }
2812
2813 return ret;
2814 }
2815
2816 goto search_free;
2817 }
2818
673a394b
EA
2819 return ret;
2820 }
2821
673a394b
EA
2822 /* Create an AGP memory structure pointing at our pages, and bind it
2823 * into the GTT.
2824 */
2825 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2826 obj_priv->pages,
07f73f69 2827 obj->size >> PAGE_SHIFT,
9af90d19 2828 obj_priv->gtt_space->start,
ba1eb1d8 2829 obj_priv->agp_type);
673a394b 2830 if (obj_priv->agp_mem == NULL) {
856fa198 2831 i915_gem_object_put_pages(obj);
673a394b
EA
2832 drm_mm_put_block(obj_priv->gtt_space);
2833 obj_priv->gtt_space = NULL;
07f73f69 2834
920afa77
DV
2835 ret = i915_gem_evict_something(dev, obj->size, alignment,
2836 mappable);
9731129c 2837 if (ret)
07f73f69 2838 return ret;
07f73f69
CW
2839
2840 goto search_free;
673a394b 2841 }
673a394b 2842
fb7d516a
DV
2843 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2844
bf1a1092 2845 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2846 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
fb7d516a 2847 i915_gem_info_add_gtt(dev_priv, obj);
bf1a1092 2848
673a394b
EA
2849 /* Assert that the object is not currently in any GPU domain. As it
2850 * wasn't in the GTT, there shouldn't be any way it could have been in
2851 * a GPU cache
2852 */
21d509e3
CW
2853 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2854 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2855
ec57d260 2856 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
1c5d22f7 2857
673a394b
EA
2858 return 0;
2859}
2860
2861void
2862i915_gem_clflush_object(struct drm_gem_object *obj)
2863{
23010e43 2864 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2865
2866 /* If we don't have a page list set up, then we're not pinned
2867 * to GPU, and we can ignore the cache flush because it'll happen
2868 * again at bind time.
2869 */
856fa198 2870 if (obj_priv->pages == NULL)
673a394b
EA
2871 return;
2872
1c5d22f7 2873 trace_i915_gem_object_clflush(obj);
cfa16a0d 2874
856fa198 2875 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2876}
2877
e47c68e9 2878/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2879static int
ba3d8d74
DV
2880i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2881 bool pipelined)
e47c68e9
EA
2882{
2883 struct drm_device *dev = obj->dev;
1c5d22f7 2884 uint32_t old_write_domain;
e47c68e9
EA
2885
2886 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2887 return 0;
e47c68e9
EA
2888
2889 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2890 old_write_domain = obj->write_domain;
c78ec30b 2891 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2892 to_intel_bo(obj)->ring,
2893 0, obj->write_domain);
48b956c5 2894 BUG_ON(obj->write_domain);
1c5d22f7
CW
2895
2896 trace_i915_gem_object_change_domain(obj,
2897 obj->read_domains,
2898 old_write_domain);
ba3d8d74
DV
2899
2900 if (pipelined)
2901 return 0;
2902
2cf34d7b 2903 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2904}
2905
2906/** Flushes the GTT write domain for the object if it's dirty. */
2907static void
2908i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2909{
1c5d22f7
CW
2910 uint32_t old_write_domain;
2911
e47c68e9
EA
2912 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2913 return;
2914
2915 /* No actual flushing is required for the GTT write domain. Writes
2916 * to it immediately go to main memory as far as we know, so there's
2917 * no chipset flush. It also doesn't land in render cache.
2918 */
1c5d22f7 2919 old_write_domain = obj->write_domain;
e47c68e9 2920 obj->write_domain = 0;
1c5d22f7
CW
2921
2922 trace_i915_gem_object_change_domain(obj,
2923 obj->read_domains,
2924 old_write_domain);
e47c68e9
EA
2925}
2926
2927/** Flushes the CPU write domain for the object if it's dirty. */
2928static void
2929i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2930{
2931 struct drm_device *dev = obj->dev;
1c5d22f7 2932 uint32_t old_write_domain;
e47c68e9
EA
2933
2934 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2935 return;
2936
2937 i915_gem_clflush_object(obj);
2938 drm_agp_chipset_flush(dev);
1c5d22f7 2939 old_write_domain = obj->write_domain;
e47c68e9 2940 obj->write_domain = 0;
1c5d22f7
CW
2941
2942 trace_i915_gem_object_change_domain(obj,
2943 obj->read_domains,
2944 old_write_domain);
e47c68e9
EA
2945}
2946
2ef7eeaa
EA
2947/**
2948 * Moves a single object to the GTT read, and possibly write domain.
2949 *
2950 * This function returns when the move is complete, including waiting on
2951 * flushes to occur.
2952 */
79e53945 2953int
2ef7eeaa
EA
2954i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2955{
23010e43 2956 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2957 uint32_t old_write_domain, old_read_domains;
e47c68e9 2958 int ret;
2ef7eeaa 2959
02354392
EA
2960 /* Not valid to be called on unbound objects. */
2961 if (obj_priv->gtt_space == NULL)
2962 return -EINVAL;
2963
ba3d8d74 2964 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2965 if (ret != 0)
2966 return ret;
2967
7213342d 2968 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2969
ba3d8d74 2970 if (write) {
2cf34d7b 2971 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2972 if (ret)
2973 return ret;
ba3d8d74 2974 }
e47c68e9 2975
1c5d22f7
CW
2976 old_write_domain = obj->write_domain;
2977 old_read_domains = obj->read_domains;
2978
e47c68e9
EA
2979 /* It should now be out of any other write domains, and we can update
2980 * the domain values for our changes.
2981 */
2982 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2983 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2984 if (write) {
7213342d 2985 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2986 obj->write_domain = I915_GEM_DOMAIN_GTT;
2987 obj_priv->dirty = 1;
2ef7eeaa
EA
2988 }
2989
1c5d22f7
CW
2990 trace_i915_gem_object_change_domain(obj,
2991 old_read_domains,
2992 old_write_domain);
2993
e47c68e9
EA
2994 return 0;
2995}
2996
b9241ea3
ZW
2997/*
2998 * Prepare buffer for display plane. Use uninterruptible for possible flush
2999 * wait, as in modesetting process we're not supposed to be interrupted.
3000 */
3001int
48b956c5
CW
3002i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
3003 bool pipelined)
b9241ea3 3004{
23010e43 3005 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 3006 uint32_t old_read_domains;
b9241ea3
ZW
3007 int ret;
3008
3009 /* Not valid to be called on unbound objects. */
3010 if (obj_priv->gtt_space == NULL)
3011 return -EINVAL;
3012
ced270fa 3013 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
3014 if (ret)
3015 return ret;
b9241ea3 3016
ced270fa
CW
3017 /* Currently, we are always called from an non-interruptible context. */
3018 if (!pipelined) {
3019 ret = i915_gem_object_wait_rendering(obj, false);
3020 if (ret)
b9241ea3
ZW
3021 return ret;
3022 }
3023
b118c1e3
CW
3024 i915_gem_object_flush_cpu_write_domain(obj);
3025
b9241ea3 3026 old_read_domains = obj->read_domains;
c78ec30b 3027 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3028
3029 trace_i915_gem_object_change_domain(obj,
3030 old_read_domains,
ba3d8d74 3031 obj->write_domain);
b9241ea3
ZW
3032
3033 return 0;
3034}
3035
e47c68e9
EA
3036/**
3037 * Moves a single object to the CPU read, and possibly write domain.
3038 *
3039 * This function returns when the move is complete, including waiting on
3040 * flushes to occur.
3041 */
3042static int
3043i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3044{
1c5d22f7 3045 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3046 int ret;
3047
ba3d8d74 3048 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
3049 if (ret != 0)
3050 return ret;
2ef7eeaa 3051
e47c68e9 3052 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3053
e47c68e9
EA
3054 /* If we have a partially-valid cache of the object in the CPU,
3055 * finish invalidating it and free the per-page flags.
2ef7eeaa 3056 */
e47c68e9 3057 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3058
7213342d 3059 if (write) {
2cf34d7b 3060 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3061 if (ret)
3062 return ret;
3063 }
3064
1c5d22f7
CW
3065 old_write_domain = obj->write_domain;
3066 old_read_domains = obj->read_domains;
3067
e47c68e9
EA
3068 /* Flush the CPU cache if it's still invalid. */
3069 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3070 i915_gem_clflush_object(obj);
2ef7eeaa 3071
e47c68e9 3072 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3073 }
3074
3075 /* It should now be out of any other write domains, and we can update
3076 * the domain values for our changes.
3077 */
e47c68e9
EA
3078 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3079
3080 /* If we're writing through the CPU, then the GPU read domains will
3081 * need to be invalidated at next use.
3082 */
3083 if (write) {
c78ec30b 3084 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
3085 obj->write_domain = I915_GEM_DOMAIN_CPU;
3086 }
2ef7eeaa 3087
1c5d22f7
CW
3088 trace_i915_gem_object_change_domain(obj,
3089 old_read_domains,
3090 old_write_domain);
3091
2ef7eeaa
EA
3092 return 0;
3093}
3094
673a394b
EA
3095/*
3096 * Set the next domain for the specified object. This
3097 * may not actually perform the necessary flushing/invaliding though,
3098 * as that may want to be batched with other set_domain operations
3099 *
3100 * This is (we hope) the only really tricky part of gem. The goal
3101 * is fairly simple -- track which caches hold bits of the object
3102 * and make sure they remain coherent. A few concrete examples may
3103 * help to explain how it works. For shorthand, we use the notation
3104 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3105 * a pair of read and write domain masks.
3106 *
3107 * Case 1: the batch buffer
3108 *
3109 * 1. Allocated
3110 * 2. Written by CPU
3111 * 3. Mapped to GTT
3112 * 4. Read by GPU
3113 * 5. Unmapped from GTT
3114 * 6. Freed
3115 *
3116 * Let's take these a step at a time
3117 *
3118 * 1. Allocated
3119 * Pages allocated from the kernel may still have
3120 * cache contents, so we set them to (CPU, CPU) always.
3121 * 2. Written by CPU (using pwrite)
3122 * The pwrite function calls set_domain (CPU, CPU) and
3123 * this function does nothing (as nothing changes)
3124 * 3. Mapped by GTT
3125 * This function asserts that the object is not
3126 * currently in any GPU-based read or write domains
3127 * 4. Read by GPU
3128 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3129 * As write_domain is zero, this function adds in the
3130 * current read domains (CPU+COMMAND, 0).
3131 * flush_domains is set to CPU.
3132 * invalidate_domains is set to COMMAND
3133 * clflush is run to get data out of the CPU caches
3134 * then i915_dev_set_domain calls i915_gem_flush to
3135 * emit an MI_FLUSH and drm_agp_chipset_flush
3136 * 5. Unmapped from GTT
3137 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3138 * flush_domains and invalidate_domains end up both zero
3139 * so no flushing/invalidating happens
3140 * 6. Freed
3141 * yay, done
3142 *
3143 * Case 2: The shared render buffer
3144 *
3145 * 1. Allocated
3146 * 2. Mapped to GTT
3147 * 3. Read/written by GPU
3148 * 4. set_domain to (CPU,CPU)
3149 * 5. Read/written by CPU
3150 * 6. Read/written by GPU
3151 *
3152 * 1. Allocated
3153 * Same as last example, (CPU, CPU)
3154 * 2. Mapped to GTT
3155 * Nothing changes (assertions find that it is not in the GPU)
3156 * 3. Read/written by GPU
3157 * execbuffer calls set_domain (RENDER, RENDER)
3158 * flush_domains gets CPU
3159 * invalidate_domains gets GPU
3160 * clflush (obj)
3161 * MI_FLUSH and drm_agp_chipset_flush
3162 * 4. set_domain (CPU, CPU)
3163 * flush_domains gets GPU
3164 * invalidate_domains gets CPU
3165 * wait_rendering (obj) to make sure all drawing is complete.
3166 * This will include an MI_FLUSH to get the data from GPU
3167 * to memory
3168 * clflush (obj) to invalidate the CPU cache
3169 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3170 * 5. Read/written by CPU
3171 * cache lines are loaded and dirtied
3172 * 6. Read written by GPU
3173 * Same as last GPU access
3174 *
3175 * Case 3: The constant buffer
3176 *
3177 * 1. Allocated
3178 * 2. Written by CPU
3179 * 3. Read by GPU
3180 * 4. Updated (written) by CPU again
3181 * 5. Read by GPU
3182 *
3183 * 1. Allocated
3184 * (CPU, CPU)
3185 * 2. Written by CPU
3186 * (CPU, CPU)
3187 * 3. Read by GPU
3188 * (CPU+RENDER, 0)
3189 * flush_domains = CPU
3190 * invalidate_domains = RENDER
3191 * clflush (obj)
3192 * MI_FLUSH
3193 * drm_agp_chipset_flush
3194 * 4. Updated (written) by CPU again
3195 * (CPU, CPU)
3196 * flush_domains = 0 (no previous write domain)
3197 * invalidate_domains = 0 (no new read domains)
3198 * 5. Read by GPU
3199 * (CPU+RENDER, 0)
3200 * flush_domains = CPU
3201 * invalidate_domains = RENDER
3202 * clflush (obj)
3203 * MI_FLUSH
3204 * drm_agp_chipset_flush
3205 */
c0d90829 3206static void
b6651458
CW
3207i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3208 struct intel_ring_buffer *ring)
673a394b
EA
3209{
3210 struct drm_device *dev = obj->dev;
9220434a 3211 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3212 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3213 uint32_t invalidate_domains = 0;
3214 uint32_t flush_domains = 0;
652c393a 3215
673a394b
EA
3216 /*
3217 * If the object isn't moving to a new write domain,
3218 * let the object stay in multiple read domains
3219 */
8b0e378a
EA
3220 if (obj->pending_write_domain == 0)
3221 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3222
3223 /*
3224 * Flush the current write domain if
3225 * the new read domains don't match. Invalidate
3226 * any read domains which differ from the old
3227 * write domain
3228 */
8b0e378a
EA
3229 if (obj->write_domain &&
3230 obj->write_domain != obj->pending_read_domains) {
673a394b 3231 flush_domains |= obj->write_domain;
8b0e378a
EA
3232 invalidate_domains |=
3233 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3234 }
3235 /*
3236 * Invalidate any read caches which may have
3237 * stale data. That is, any new read domains.
3238 */
8b0e378a 3239 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3240 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3241 i915_gem_clflush_object(obj);
673a394b 3242
efbeed96
EA
3243 /* The actual obj->write_domain will be updated with
3244 * pending_write_domain after we emit the accumulated flush for all
3245 * of our domain changes in execbuffers (which clears objects'
3246 * write_domains). So if we have a current write domain that we
3247 * aren't changing, set pending_write_domain to that.
3248 */
3249 if (flush_domains == 0 && obj->pending_write_domain == 0)
3250 obj->pending_write_domain = obj->write_domain;
673a394b
EA
3251
3252 dev->invalidate_domains |= invalidate_domains;
3253 dev->flush_domains |= flush_domains;
b6651458 3254 if (flush_domains & I915_GEM_GPU_DOMAINS)
9220434a 3255 dev_priv->mm.flush_rings |= obj_priv->ring->id;
b6651458
CW
3256 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3257 dev_priv->mm.flush_rings |= ring->id;
673a394b
EA
3258}
3259
3260/**
e47c68e9 3261 * Moves the object from a partially CPU read to a full one.
673a394b 3262 *
e47c68e9
EA
3263 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3264 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3265 */
e47c68e9
EA
3266static void
3267i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3268{
23010e43 3269 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3270
e47c68e9
EA
3271 if (!obj_priv->page_cpu_valid)
3272 return;
3273
3274 /* If we're partially in the CPU read domain, finish moving it in.
3275 */
3276 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3277 int i;
3278
3279 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3280 if (obj_priv->page_cpu_valid[i])
3281 continue;
856fa198 3282 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3283 }
e47c68e9
EA
3284 }
3285
3286 /* Free the page_cpu_valid mappings which are now stale, whether
3287 * or not we've got I915_GEM_DOMAIN_CPU.
3288 */
9a298b2a 3289 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3290 obj_priv->page_cpu_valid = NULL;
3291}
3292
3293/**
3294 * Set the CPU read domain on a range of the object.
3295 *
3296 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3297 * not entirely valid. The page_cpu_valid member of the object flags which
3298 * pages have been flushed, and will be respected by
3299 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3300 * of the whole object.
3301 *
3302 * This function returns when the move is complete, including waiting on
3303 * flushes to occur.
3304 */
3305static int
3306i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3307 uint64_t offset, uint64_t size)
3308{
23010e43 3309 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3310 uint32_t old_read_domains;
e47c68e9 3311 int i, ret;
673a394b 3312
e47c68e9
EA
3313 if (offset == 0 && size == obj->size)
3314 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3315
ba3d8d74 3316 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3317 if (ret != 0)
6a47baa6 3318 return ret;
e47c68e9
EA
3319 i915_gem_object_flush_gtt_write_domain(obj);
3320
3321 /* If we're already fully in the CPU read domain, we're done. */
3322 if (obj_priv->page_cpu_valid == NULL &&
3323 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3324 return 0;
673a394b 3325
e47c68e9
EA
3326 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3327 * newly adding I915_GEM_DOMAIN_CPU
3328 */
673a394b 3329 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3330 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3331 GFP_KERNEL);
e47c68e9
EA
3332 if (obj_priv->page_cpu_valid == NULL)
3333 return -ENOMEM;
3334 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3335 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3336
3337 /* Flush the cache on any pages that are still invalid from the CPU's
3338 * perspective.
3339 */
e47c68e9
EA
3340 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3341 i++) {
673a394b
EA
3342 if (obj_priv->page_cpu_valid[i])
3343 continue;
3344
856fa198 3345 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3346
3347 obj_priv->page_cpu_valid[i] = 1;
3348 }
3349
e47c68e9
EA
3350 /* It should now be out of any other write domains, and we can update
3351 * the domain values for our changes.
3352 */
3353 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3354
1c5d22f7 3355 old_read_domains = obj->read_domains;
e47c68e9
EA
3356 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3357
1c5d22f7
CW
3358 trace_i915_gem_object_change_domain(obj,
3359 old_read_domains,
3360 obj->write_domain);
3361
673a394b
EA
3362 return 0;
3363}
3364
673a394b
EA
3365/**
3366 * Pin an object to the GTT and evaluate the relocations landing in it.
3367 */
3368static int
9af90d19
CW
3369i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3370 struct drm_file *file_priv,
3371 struct drm_i915_gem_exec_object2 *entry)
673a394b 3372{
9af90d19 3373 struct drm_device *dev = obj->base.dev;
0839ccb8 3374 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3375 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3376 struct drm_gem_object *target_obj = NULL;
3377 uint32_t target_handle = 0;
3378 int i, ret = 0;
673a394b 3379
2549d6c2 3380 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3381 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3382 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3383 uint32_t target_offset;
673a394b 3384
9af90d19
CW
3385 if (__copy_from_user_inatomic(&reloc,
3386 user_relocs+i,
3387 sizeof(reloc))) {
3388 ret = -EFAULT;
3389 break;
76446cac 3390 }
76446cac 3391
9af90d19
CW
3392 if (reloc.target_handle != target_handle) {
3393 drm_gem_object_unreference(target_obj);
673a394b 3394
9af90d19
CW
3395 target_obj = drm_gem_object_lookup(dev, file_priv,
3396 reloc.target_handle);
3397 if (target_obj == NULL) {
3398 ret = -ENOENT;
3399 break;
3400 }
3401
3402 target_handle = reloc.target_handle;
673a394b 3403 }
9af90d19 3404 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3405
8542a0bb
CW
3406#if WATCH_RELOC
3407 DRM_INFO("%s: obj %p offset %08x target %d "
3408 "read %08x write %08x gtt %08x "
3409 "presumed %08x delta %08x\n",
3410 __func__,
3411 obj,
2549d6c2
CW
3412 (int) reloc.offset,
3413 (int) reloc.target_handle,
3414 (int) reloc.read_domains,
3415 (int) reloc.write_domain,
9af90d19 3416 (int) target_offset,
2549d6c2
CW
3417 (int) reloc.presumed_offset,
3418 reloc.delta);
8542a0bb
CW
3419#endif
3420
673a394b
EA
3421 /* The target buffer should have appeared before us in the
3422 * exec_object list, so it should have a GTT space bound by now.
3423 */
9af90d19 3424 if (target_offset == 0) {
673a394b 3425 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3426 reloc.target_handle);
9af90d19
CW
3427 ret = -EINVAL;
3428 break;
673a394b
EA
3429 }
3430
8542a0bb 3431 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3432 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3433 DRM_ERROR("reloc with multiple write domains: "
3434 "obj %p target %d offset %d "
3435 "read %08x write %08x",
2549d6c2
CW
3436 obj, reloc.target_handle,
3437 (int) reloc.offset,
3438 reloc.read_domains,
3439 reloc.write_domain);
9af90d19
CW
3440 ret = -EINVAL;
3441 break;
16edd550 3442 }
2549d6c2
CW
3443 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3444 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3445 DRM_ERROR("reloc with read/write CPU domains: "
3446 "obj %p target %d offset %d "
3447 "read %08x write %08x",
2549d6c2
CW
3448 obj, reloc.target_handle,
3449 (int) reloc.offset,
3450 reloc.read_domains,
3451 reloc.write_domain);
9af90d19
CW
3452 ret = -EINVAL;
3453 break;
e47c68e9 3454 }
2549d6c2
CW
3455 if (reloc.write_domain && target_obj->pending_write_domain &&
3456 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3457 DRM_ERROR("Write domain conflict: "
3458 "obj %p target %d offset %d "
3459 "new %08x old %08x\n",
2549d6c2
CW
3460 obj, reloc.target_handle,
3461 (int) reloc.offset,
3462 reloc.write_domain,
673a394b 3463 target_obj->pending_write_domain);
9af90d19
CW
3464 ret = -EINVAL;
3465 break;
673a394b
EA
3466 }
3467
2549d6c2 3468 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3469 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3470
3471 /* If the relocation already has the right value in it, no
3472 * more work needs to be done.
3473 */
9af90d19 3474 if (target_offset == reloc.presumed_offset)
673a394b 3475 continue;
673a394b 3476
8542a0bb 3477 /* Check that the relocation address is valid... */
9af90d19 3478 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3479 DRM_ERROR("Relocation beyond object bounds: "
3480 "obj %p target %d offset %d size %d.\n",
2549d6c2 3481 obj, reloc.target_handle,
9af90d19
CW
3482 (int) reloc.offset, (int) obj->base.size);
3483 ret = -EINVAL;
3484 break;
8542a0bb 3485 }
2549d6c2 3486 if (reloc.offset & 3) {
8542a0bb
CW
3487 DRM_ERROR("Relocation not 4-byte aligned: "
3488 "obj %p target %d offset %d.\n",
2549d6c2
CW
3489 obj, reloc.target_handle,
3490 (int) reloc.offset);
9af90d19
CW
3491 ret = -EINVAL;
3492 break;
8542a0bb
CW
3493 }
3494
3495 /* and points to somewhere within the target object. */
2549d6c2 3496 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3497 DRM_ERROR("Relocation beyond target object bounds: "
3498 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3499 obj, reloc.target_handle,
3500 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3501 ret = -EINVAL;
3502 break;
673a394b
EA
3503 }
3504
9af90d19
CW
3505 reloc.delta += target_offset;
3506 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3507 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3508 char *vaddr;
673a394b 3509
c48c43e4 3510 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3511 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3512 kunmap_atomic(vaddr);
f0c43d9b
CW
3513 } else {
3514 uint32_t __iomem *reloc_entry;
3515 void __iomem *reloc_page;
b962442e 3516
9af90d19
CW
3517 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3518 if (ret)
3519 break;
b962442e 3520
f0c43d9b 3521 /* Map the page containing the relocation we're going to perform. */
9af90d19 3522 reloc.offset += obj->gtt_offset;
f0c43d9b 3523 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3524 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3525 reloc_entry = (uint32_t __iomem *)
3526 (reloc_page + (reloc.offset & ~PAGE_MASK));
3527 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3528 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3529 }
b962442e 3530
b5dc608c
CW
3531 /* and update the user's relocation entry */
3532 reloc.presumed_offset = target_offset;
3533 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3534 &reloc.presumed_offset,
3535 sizeof(reloc.presumed_offset))) {
3536 ret = -EFAULT;
3537 break;
3538 }
b962442e 3539 }
b962442e 3540
9af90d19 3541 drm_gem_object_unreference(target_obj);
673a394b
EA
3542 return ret;
3543}
3544
40a5f0de 3545static int
9af90d19
CW
3546i915_gem_execbuffer_pin(struct drm_device *dev,
3547 struct drm_file *file,
3548 struct drm_gem_object **object_list,
3549 struct drm_i915_gem_exec_object2 *exec_list,
3550 int count)
40a5f0de 3551{
9af90d19
CW
3552 struct drm_i915_private *dev_priv = dev->dev_private;
3553 int ret, i, retry;
40a5f0de 3554
9af90d19
CW
3555 /* attempt to pin all of the buffers into the GTT */
3556 for (retry = 0; retry < 2; retry++) {
3557 ret = 0;
3558 for (i = 0; i < count; i++) {
3559 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
16e809ac 3560 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
9af90d19
CW
3561 bool need_fence =
3562 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3563 obj->tiling_mode != I915_TILING_NONE;
3564
16e809ac
DV
3565 /* g33/pnv can't fence buffers in the unmappable part */
3566 bool need_mappable =
3567 entry->relocation_count ? true : need_fence;
3568
9af90d19
CW
3569 /* Check fence reg constraints and rebind if necessary */
3570 if (need_fence &&
3571 !i915_gem_object_fence_offset_ok(&obj->base,
3572 obj->tiling_mode)) {
3573 ret = i915_gem_object_unbind(&obj->base);
3574 if (ret)
3575 break;
3576 }
40a5f0de 3577
920afa77 3578 ret = i915_gem_object_pin(&obj->base,
16e809ac
DV
3579 entry->alignment,
3580 need_mappable);
9af90d19
CW
3581 if (ret)
3582 break;
40a5f0de 3583
9af90d19
CW
3584 /*
3585 * Pre-965 chips need a fence register set up in order
3586 * to properly handle blits to/from tiled surfaces.
3587 */
3588 if (need_fence) {
3589 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3590 if (ret) {
3591 i915_gem_object_unpin(&obj->base);
3592 break;
3593 }
40a5f0de 3594
9af90d19
CW
3595 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3596 }
40a5f0de 3597
9af90d19 3598 entry->offset = obj->gtt_offset;
40a5f0de
EA
3599 }
3600
9af90d19
CW
3601 while (i--)
3602 i915_gem_object_unpin(object_list[i]);
3603
3604 if (ret == 0)
3605 break;
673a394b 3606
9af90d19
CW
3607 if (ret != -ENOSPC || retry)
3608 return ret;
3609
3610 ret = i915_gem_evict_everything(dev);
3611 if (ret)
3612 return ret;
40a5f0de
EA
3613 }
3614
2bc43b5c 3615 return 0;
40a5f0de
EA
3616}
3617
673a394b
EA
3618/* Throttle our rendering by waiting until the ring has completed our requests
3619 * emitted over 20 msec ago.
3620 *
b962442e
EA
3621 * Note that if we were to use the current jiffies each time around the loop,
3622 * we wouldn't escape the function with any frames outstanding if the time to
3623 * render a frame was over 20ms.
3624 *
673a394b
EA
3625 * This should get us reasonable parallelism between CPU and GPU but also
3626 * relatively low latency when blocking on a particular request to finish.
3627 */
40a5f0de 3628static int
f787a5f5 3629i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3630{
f787a5f5
CW
3631 struct drm_i915_private *dev_priv = dev->dev_private;
3632 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3633 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3634 struct drm_i915_gem_request *request;
3635 struct intel_ring_buffer *ring = NULL;
3636 u32 seqno = 0;
3637 int ret;
93533c29 3638
1c25595f 3639 spin_lock(&file_priv->mm.lock);
f787a5f5 3640 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3641 if (time_after_eq(request->emitted_jiffies, recent_enough))
3642 break;
40a5f0de 3643
f787a5f5
CW
3644 ring = request->ring;
3645 seqno = request->seqno;
b962442e 3646 }
1c25595f 3647 spin_unlock(&file_priv->mm.lock);
40a5f0de 3648
f787a5f5
CW
3649 if (seqno == 0)
3650 return 0;
2bc43b5c 3651
f787a5f5 3652 ret = 0;
78501eac 3653 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3654 /* And wait for the seqno passing without holding any locks and
3655 * causing extra latency for others. This is safe as the irq
3656 * generation is designed to be run atomically and so is
3657 * lockless.
3658 */
78501eac 3659 ring->user_irq_get(ring);
f787a5f5 3660 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3661 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3662 || atomic_read(&dev_priv->mm.wedged));
78501eac 3663 ring->user_irq_put(ring);
40a5f0de 3664
f787a5f5
CW
3665 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3666 ret = -EIO;
40a5f0de
EA
3667 }
3668
f787a5f5
CW
3669 if (ret == 0)
3670 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3671
3672 return ret;
3673}
3674
83d60795 3675static int
2549d6c2
CW
3676i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3677 uint64_t exec_offset)
83d60795
CW
3678{
3679 uint32_t exec_start, exec_len;
3680
3681 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3682 exec_len = (uint32_t) exec->batch_len;
3683
3684 if ((exec_start | exec_len) & 0x7)
3685 return -EINVAL;
3686
3687 if (!exec_start)
3688 return -EINVAL;
3689
3690 return 0;
3691}
3692
6b95a207 3693static int
2549d6c2
CW
3694validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3695 int count)
6b95a207 3696{
2549d6c2 3697 int i;
6b95a207 3698
2549d6c2
CW
3699 for (i = 0; i < count; i++) {
3700 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3701 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3702
2549d6c2
CW
3703 if (!access_ok(VERIFY_READ, ptr, length))
3704 return -EFAULT;
40a5f0de 3705
b5dc608c
CW
3706 /* we may also need to update the presumed offsets */
3707 if (!access_ok(VERIFY_WRITE, ptr, length))
3708 return -EFAULT;
3709
2549d6c2
CW
3710 if (fault_in_pages_readable(ptr, length))
3711 return -EFAULT;
6b95a207 3712 }
6b95a207 3713
83d60795 3714 return 0;
6b95a207
KH
3715}
3716
8dc5d147 3717static int
76446cac 3718i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3719 struct drm_file *file,
76446cac
JB
3720 struct drm_i915_gem_execbuffer2 *args,
3721 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3722{
3723 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3724 struct drm_gem_object **object_list = NULL;
3725 struct drm_gem_object *batch_obj;
201361a5 3726 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3727 struct drm_i915_gem_request *request = NULL;
9af90d19 3728 int ret, i, flips;
673a394b 3729 uint64_t exec_offset;
673a394b 3730
852835f3
ZN
3731 struct intel_ring_buffer *ring = NULL;
3732
30dbf0c0
CW
3733 ret = i915_gem_check_is_wedged(dev);
3734 if (ret)
3735 return ret;
3736
2549d6c2
CW
3737 ret = validate_exec_list(exec_list, args->buffer_count);
3738 if (ret)
3739 return ret;
3740
673a394b
EA
3741#if WATCH_EXEC
3742 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3743 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3744#endif
549f7365
CW
3745 switch (args->flags & I915_EXEC_RING_MASK) {
3746 case I915_EXEC_DEFAULT:
3747 case I915_EXEC_RENDER:
3748 ring = &dev_priv->render_ring;
3749 break;
3750 case I915_EXEC_BSD:
d1b851fc 3751 if (!HAS_BSD(dev)) {
549f7365 3752 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3753 return -EINVAL;
3754 }
3755 ring = &dev_priv->bsd_ring;
549f7365
CW
3756 break;
3757 case I915_EXEC_BLT:
3758 if (!HAS_BLT(dev)) {
3759 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3760 return -EINVAL;
3761 }
3762 ring = &dev_priv->blt_ring;
3763 break;
3764 default:
3765 DRM_ERROR("execbuf with unknown ring: %d\n",
3766 (int)(args->flags & I915_EXEC_RING_MASK));
3767 return -EINVAL;
d1b851fc
ZN
3768 }
3769
4f481ed2
EA
3770 if (args->buffer_count < 1) {
3771 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3772 return -EINVAL;
3773 }
c8e0f93a 3774 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3775 if (object_list == NULL) {
3776 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3777 args->buffer_count);
3778 ret = -ENOMEM;
3779 goto pre_mutex_err;
3780 }
673a394b 3781
201361a5 3782 if (args->num_cliprects != 0) {
9a298b2a
EA
3783 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3784 GFP_KERNEL);
a40e8d31
OA
3785 if (cliprects == NULL) {
3786 ret = -ENOMEM;
201361a5 3787 goto pre_mutex_err;
a40e8d31 3788 }
201361a5
EA
3789
3790 ret = copy_from_user(cliprects,
3791 (struct drm_clip_rect __user *)
3792 (uintptr_t) args->cliprects_ptr,
3793 sizeof(*cliprects) * args->num_cliprects);
3794 if (ret != 0) {
3795 DRM_ERROR("copy %d cliprects failed: %d\n",
3796 args->num_cliprects, ret);
c877cdce 3797 ret = -EFAULT;
201361a5
EA
3798 goto pre_mutex_err;
3799 }
3800 }
3801
8dc5d147
CW
3802 request = kzalloc(sizeof(*request), GFP_KERNEL);
3803 if (request == NULL) {
3804 ret = -ENOMEM;
40a5f0de 3805 goto pre_mutex_err;
8dc5d147 3806 }
40a5f0de 3807
76c1dec1
CW
3808 ret = i915_mutex_lock_interruptible(dev);
3809 if (ret)
a198bc80 3810 goto pre_mutex_err;
673a394b
EA
3811
3812 if (dev_priv->mm.suspended) {
673a394b 3813 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3814 ret = -EBUSY;
3815 goto pre_mutex_err;
673a394b
EA
3816 }
3817
ac94a962 3818 /* Look up object handles */
673a394b 3819 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3820 struct drm_i915_gem_object *obj_priv;
3821
9af90d19 3822 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3823 exec_list[i].handle);
3824 if (object_list[i] == NULL) {
3825 DRM_ERROR("Invalid object handle %d at index %d\n",
3826 exec_list[i].handle, i);
0ce907f8
CW
3827 /* prevent error path from reading uninitialized data */
3828 args->buffer_count = i + 1;
bf79cb91 3829 ret = -ENOENT;
673a394b
EA
3830 goto err;
3831 }
b70d11da 3832
23010e43 3833 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3834 if (obj_priv->in_execbuffer) {
3835 DRM_ERROR("Object %p appears more than once in object list\n",
3836 object_list[i]);
0ce907f8
CW
3837 /* prevent error path from reading uninitialized data */
3838 args->buffer_count = i + 1;
bf79cb91 3839 ret = -EINVAL;
b70d11da
KH
3840 goto err;
3841 }
3842 obj_priv->in_execbuffer = true;
ac94a962 3843 }
673a394b 3844
9af90d19
CW
3845 /* Move the objects en-masse into the GTT, evicting if necessary. */
3846 ret = i915_gem_execbuffer_pin(dev, file,
3847 object_list, exec_list,
3848 args->buffer_count);
3849 if (ret)
3850 goto err;
ac94a962 3851
9af90d19
CW
3852 /* The objects are in their final locations, apply the relocations. */
3853 for (i = 0; i < args->buffer_count; i++) {
3854 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3855 obj->base.pending_read_domains = 0;
3856 obj->base.pending_write_domain = 0;
3857 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3858 if (ret)
ac94a962 3859 goto err;
673a394b
EA
3860 }
3861
3862 /* Set the pending read domains for the batch buffer to COMMAND */
3863 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3864 if (batch_obj->pending_write_domain) {
3865 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3866 ret = -EINVAL;
3867 goto err;
3868 }
3869 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3870
9af90d19
CW
3871 /* Sanity check the batch buffer */
3872 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3873 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3874 if (ret != 0) {
3875 DRM_ERROR("execbuf with invalid offset/length\n");
3876 goto err;
3877 }
3878
646f0f6e
KP
3879 /* Zero the global flush/invalidate flags. These
3880 * will be modified as new domains are computed
3881 * for each object
3882 */
3883 dev->invalidate_domains = 0;
3884 dev->flush_domains = 0;
9220434a 3885 dev_priv->mm.flush_rings = 0;
7e318e18
CW
3886 for (i = 0; i < args->buffer_count; i++)
3887 i915_gem_object_set_to_gpu_domain(object_list[i], ring);
673a394b 3888
646f0f6e
KP
3889 if (dev->invalidate_domains | dev->flush_domains) {
3890#if WATCH_EXEC
3891 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3892 __func__,
3893 dev->invalidate_domains,
3894 dev->flush_domains);
3895#endif
9af90d19 3896 i915_gem_flush(dev, file,
646f0f6e 3897 dev->invalidate_domains,
9220434a
CW
3898 dev->flush_domains,
3899 dev_priv->mm.flush_rings);
646f0f6e 3900 }
673a394b 3901
673a394b
EA
3902#if WATCH_COHERENCY
3903 for (i = 0; i < args->buffer_count; i++) {
3904 i915_gem_object_check_coherency(object_list[i],
3905 exec_list[i].handle);
3906 }
3907#endif
3908
673a394b 3909#if WATCH_EXEC
6911a9b8 3910 i915_gem_dump_object(batch_obj,
673a394b
EA
3911 args->batch_len,
3912 __func__,
3913 ~0);
3914#endif
3915
e59f2bac
CW
3916 /* Check for any pending flips. As we only maintain a flip queue depth
3917 * of 1, we can simply insert a WAIT for the next display flip prior
3918 * to executing the batch and avoid stalling the CPU.
3919 */
3920 flips = 0;
3921 for (i = 0; i < args->buffer_count; i++) {
3922 if (object_list[i]->write_domain)
3923 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3924 }
3925 if (flips) {
3926 int plane, flip_mask;
3927
3928 for (plane = 0; flips >> plane; plane++) {
3929 if (((flips >> plane) & 1) == 0)
3930 continue;
3931
3932 if (plane)
3933 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3934 else
3935 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3936
e1f99ce6
CW
3937 ret = intel_ring_begin(ring, 2);
3938 if (ret)
3939 goto err;
3940
78501eac
CW
3941 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3942 intel_ring_emit(ring, MI_NOOP);
3943 intel_ring_advance(ring);
e59f2bac
CW
3944 }
3945 }
3946
673a394b 3947 /* Exec the batchbuffer */
78501eac 3948 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3949 if (ret) {
3950 DRM_ERROR("dispatch failed %d\n", ret);
3951 goto err;
3952 }
3953
673a394b
EA
3954 for (i = 0; i < args->buffer_count; i++) {
3955 struct drm_gem_object *obj = object_list[i];
673a394b 3956
7e318e18
CW
3957 obj->read_domains = obj->pending_read_domains;
3958 obj->write_domain = obj->pending_write_domain;
3959
617dbe27 3960 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
3961 if (obj->write_domain) {
3962 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3963 obj_priv->dirty = 1;
3964 list_move_tail(&obj_priv->gpu_write_list,
64193406 3965 &ring->gpu_write_list);
7e318e18
CW
3966 intel_mark_busy(dev, obj);
3967 }
3968
3969 trace_i915_gem_object_change_domain(obj,
3970 obj->read_domains,
3971 obj->write_domain);
673a394b 3972 }
673a394b 3973
7e318e18
CW
3974 /*
3975 * Ensure that the commands in the batch buffer are
3976 * finished before the interrupt fires
3977 */
3978 i915_retire_commands(dev, ring);
3979
3cce469c
CW
3980 if (i915_add_request(dev, file, request, ring))
3981 ring->outstanding_lazy_request = true;
3982 else
3983 request = NULL;
673a394b 3984
673a394b 3985err:
b70d11da 3986 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3987 if (object_list[i] == NULL)
3988 break;
3989
3990 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 3991 drm_gem_object_unreference(object_list[i]);
b70d11da 3992 }
673a394b 3993
673a394b
EA
3994 mutex_unlock(&dev->struct_mutex);
3995
93533c29 3996pre_mutex_err:
8e7d2b2c 3997 drm_free_large(object_list);
9a298b2a 3998 kfree(cliprects);
8dc5d147 3999 kfree(request);
673a394b
EA
4000
4001 return ret;
4002}
4003
76446cac
JB
4004/*
4005 * Legacy execbuffer just creates an exec2 list from the original exec object
4006 * list array and passes it to the real function.
4007 */
4008int
4009i915_gem_execbuffer(struct drm_device *dev, void *data,
4010 struct drm_file *file_priv)
4011{
4012 struct drm_i915_gem_execbuffer *args = data;
4013 struct drm_i915_gem_execbuffer2 exec2;
4014 struct drm_i915_gem_exec_object *exec_list = NULL;
4015 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4016 int ret, i;
4017
4018#if WATCH_EXEC
4019 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4020 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4021#endif
4022
4023 if (args->buffer_count < 1) {
4024 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4025 return -EINVAL;
4026 }
4027
4028 /* Copy in the exec list from userland */
4029 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4030 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4031 if (exec_list == NULL || exec2_list == NULL) {
4032 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4033 args->buffer_count);
4034 drm_free_large(exec_list);
4035 drm_free_large(exec2_list);
4036 return -ENOMEM;
4037 }
4038 ret = copy_from_user(exec_list,
4039 (struct drm_i915_relocation_entry __user *)
4040 (uintptr_t) args->buffers_ptr,
4041 sizeof(*exec_list) * args->buffer_count);
4042 if (ret != 0) {
4043 DRM_ERROR("copy %d exec entries failed %d\n",
4044 args->buffer_count, ret);
4045 drm_free_large(exec_list);
4046 drm_free_large(exec2_list);
4047 return -EFAULT;
4048 }
4049
4050 for (i = 0; i < args->buffer_count; i++) {
4051 exec2_list[i].handle = exec_list[i].handle;
4052 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4053 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4054 exec2_list[i].alignment = exec_list[i].alignment;
4055 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4056 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4057 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4058 else
4059 exec2_list[i].flags = 0;
4060 }
4061
4062 exec2.buffers_ptr = args->buffers_ptr;
4063 exec2.buffer_count = args->buffer_count;
4064 exec2.batch_start_offset = args->batch_start_offset;
4065 exec2.batch_len = args->batch_len;
4066 exec2.DR1 = args->DR1;
4067 exec2.DR4 = args->DR4;
4068 exec2.num_cliprects = args->num_cliprects;
4069 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4070 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4071
4072 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4073 if (!ret) {
4074 /* Copy the new buffer offsets back to the user's exec list. */
4075 for (i = 0; i < args->buffer_count; i++)
4076 exec_list[i].offset = exec2_list[i].offset;
4077 /* ... and back out to userspace */
4078 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4079 (uintptr_t) args->buffers_ptr,
4080 exec_list,
4081 sizeof(*exec_list) * args->buffer_count);
4082 if (ret) {
4083 ret = -EFAULT;
4084 DRM_ERROR("failed to copy %d exec entries "
4085 "back to user (%d)\n",
4086 args->buffer_count, ret);
4087 }
76446cac
JB
4088 }
4089
4090 drm_free_large(exec_list);
4091 drm_free_large(exec2_list);
4092 return ret;
4093}
4094
4095int
4096i915_gem_execbuffer2(struct drm_device *dev, void *data,
4097 struct drm_file *file_priv)
4098{
4099 struct drm_i915_gem_execbuffer2 *args = data;
4100 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4101 int ret;
4102
4103#if WATCH_EXEC
4104 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4105 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4106#endif
4107
4108 if (args->buffer_count < 1) {
4109 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4110 return -EINVAL;
4111 }
4112
4113 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4114 if (exec2_list == NULL) {
4115 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4116 args->buffer_count);
4117 return -ENOMEM;
4118 }
4119 ret = copy_from_user(exec2_list,
4120 (struct drm_i915_relocation_entry __user *)
4121 (uintptr_t) args->buffers_ptr,
4122 sizeof(*exec2_list) * args->buffer_count);
4123 if (ret != 0) {
4124 DRM_ERROR("copy %d exec entries failed %d\n",
4125 args->buffer_count, ret);
4126 drm_free_large(exec2_list);
4127 return -EFAULT;
4128 }
4129
4130 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4131 if (!ret) {
4132 /* Copy the new buffer offsets back to the user's exec list. */
4133 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4134 (uintptr_t) args->buffers_ptr,
4135 exec2_list,
4136 sizeof(*exec2_list) * args->buffer_count);
4137 if (ret) {
4138 ret = -EFAULT;
4139 DRM_ERROR("failed to copy %d exec entries "
4140 "back to user (%d)\n",
4141 args->buffer_count, ret);
4142 }
4143 }
4144
4145 drm_free_large(exec2_list);
4146 return ret;
4147}
4148
673a394b 4149int
920afa77
DV
4150i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4151 bool mappable)
673a394b
EA
4152{
4153 struct drm_device *dev = obj->dev;
f13d3f73 4154 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4155 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4156 int ret;
4157
778c3544 4158 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4159 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4160
4161 if (obj_priv->gtt_space != NULL) {
4162 if (alignment == 0)
4163 alignment = i915_gem_get_gtt_alignment(obj);
16e809ac
DV
4164 if (obj_priv->gtt_offset & (alignment - 1) ||
4165 (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
ae7d49d8
CW
4166 WARN(obj_priv->pin_count,
4167 "bo is already pinned with incorrect alignment:"
4168 " offset=%x, req.alignment=%x\n",
4169 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4170 ret = i915_gem_object_unbind(obj);
4171 if (ret)
4172 return ret;
4173 }
4174 }
4175
673a394b 4176 if (obj_priv->gtt_space == NULL) {
920afa77 4177 ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
9731129c 4178 if (ret)
673a394b 4179 return ret;
22c344e9 4180 }
76446cac 4181
673a394b
EA
4182 obj_priv->pin_count++;
4183
4184 /* If the object is not active and not pending a flush,
4185 * remove it from the inactive list
4186 */
4187 if (obj_priv->pin_count == 1) {
fb7d516a 4188 i915_gem_info_add_pin(dev_priv, obj, mappable);
f13d3f73 4189 if (!obj_priv->active)
69dc4987 4190 list_move_tail(&obj_priv->mm_list,
f13d3f73 4191 &dev_priv->mm.pinned_list);
673a394b 4192 }
fb7d516a 4193 BUG_ON(!obj_priv->pin_mappable && mappable);
673a394b 4194
23bc5982 4195 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4196 return 0;
4197}
4198
4199void
4200i915_gem_object_unpin(struct drm_gem_object *obj)
4201{
4202 struct drm_device *dev = obj->dev;
4203 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4204 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4205
23bc5982 4206 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4207 obj_priv->pin_count--;
4208 BUG_ON(obj_priv->pin_count < 0);
4209 BUG_ON(obj_priv->gtt_space == NULL);
4210
4211 /* If the object is no longer pinned, and is
4212 * neither active nor being flushed, then stick it on
4213 * the inactive list
4214 */
4215 if (obj_priv->pin_count == 0) {
f13d3f73 4216 if (!obj_priv->active)
69dc4987 4217 list_move_tail(&obj_priv->mm_list,
673a394b 4218 &dev_priv->mm.inactive_list);
fb7d516a 4219 i915_gem_info_remove_pin(dev_priv, obj);
673a394b 4220 }
23bc5982 4221 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4222}
4223
4224int
4225i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4226 struct drm_file *file_priv)
4227{
4228 struct drm_i915_gem_pin *args = data;
4229 struct drm_gem_object *obj;
4230 struct drm_i915_gem_object *obj_priv;
4231 int ret;
4232
1d7cfea1
CW
4233 ret = i915_mutex_lock_interruptible(dev);
4234 if (ret)
4235 return ret;
673a394b
EA
4236
4237 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4238 if (obj == NULL) {
1d7cfea1
CW
4239 ret = -ENOENT;
4240 goto unlock;
673a394b 4241 }
23010e43 4242 obj_priv = to_intel_bo(obj);
673a394b 4243
bb6baf76
CW
4244 if (obj_priv->madv != I915_MADV_WILLNEED) {
4245 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4246 ret = -EINVAL;
4247 goto out;
3ef94daa
CW
4248 }
4249
79e53945
JB
4250 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4251 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4252 args->handle);
1d7cfea1
CW
4253 ret = -EINVAL;
4254 goto out;
79e53945
JB
4255 }
4256
4257 obj_priv->user_pin_count++;
4258 obj_priv->pin_filp = file_priv;
4259 if (obj_priv->user_pin_count == 1) {
920afa77 4260 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4261 if (ret)
4262 goto out;
673a394b
EA
4263 }
4264
4265 /* XXX - flush the CPU caches for pinned objects
4266 * as the X server doesn't manage domains yet
4267 */
e47c68e9 4268 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4269 args->offset = obj_priv->gtt_offset;
1d7cfea1 4270out:
673a394b 4271 drm_gem_object_unreference(obj);
1d7cfea1 4272unlock:
673a394b 4273 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4274 return ret;
673a394b
EA
4275}
4276
4277int
4278i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4279 struct drm_file *file_priv)
4280{
4281 struct drm_i915_gem_pin *args = data;
4282 struct drm_gem_object *obj;
79e53945 4283 struct drm_i915_gem_object *obj_priv;
76c1dec1 4284 int ret;
673a394b 4285
1d7cfea1
CW
4286 ret = i915_mutex_lock_interruptible(dev);
4287 if (ret)
4288 return ret;
673a394b
EA
4289
4290 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4291 if (obj == NULL) {
1d7cfea1
CW
4292 ret = -ENOENT;
4293 goto unlock;
673a394b 4294 }
23010e43 4295 obj_priv = to_intel_bo(obj);
76c1dec1 4296
79e53945
JB
4297 if (obj_priv->pin_filp != file_priv) {
4298 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4299 args->handle);
1d7cfea1
CW
4300 ret = -EINVAL;
4301 goto out;
79e53945
JB
4302 }
4303 obj_priv->user_pin_count--;
4304 if (obj_priv->user_pin_count == 0) {
4305 obj_priv->pin_filp = NULL;
4306 i915_gem_object_unpin(obj);
4307 }
673a394b 4308
1d7cfea1 4309out:
673a394b 4310 drm_gem_object_unreference(obj);
1d7cfea1 4311unlock:
673a394b 4312 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4313 return ret;
673a394b
EA
4314}
4315
4316int
4317i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4318 struct drm_file *file_priv)
4319{
4320 struct drm_i915_gem_busy *args = data;
4321 struct drm_gem_object *obj;
4322 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4323 int ret;
4324
76c1dec1 4325 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4326 if (ret)
76c1dec1 4327 return ret;
673a394b 4328
673a394b
EA
4329 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4330 if (obj == NULL) {
1d7cfea1
CW
4331 ret = -ENOENT;
4332 goto unlock;
673a394b 4333 }
1d7cfea1 4334 obj_priv = to_intel_bo(obj);
d1b851fc 4335
0be555b6
CW
4336 /* Count all active objects as busy, even if they are currently not used
4337 * by the gpu. Users of this interface expect objects to eventually
4338 * become non-busy without any further actions, therefore emit any
4339 * necessary flushes here.
c4de0a5d 4340 */
0be555b6
CW
4341 args->busy = obj_priv->active;
4342 if (args->busy) {
4343 /* Unconditionally flush objects, even when the gpu still uses this
4344 * object. Userspace calling this function indicates that it wants to
4345 * use this buffer rather sooner than later, so issuing the required
4346 * flush earlier is beneficial.
4347 */
c78ec30b
CW
4348 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4349 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4350 obj_priv->ring,
4351 0, obj->write_domain);
0be555b6
CW
4352
4353 /* Update the active list for the hardware's current position.
4354 * Otherwise this only updates on a delayed timer or when irqs
4355 * are actually unmasked, and our working set ends up being
4356 * larger than required.
4357 */
4358 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4359
4360 args->busy = obj_priv->active;
4361 }
673a394b
EA
4362
4363 drm_gem_object_unreference(obj);
1d7cfea1 4364unlock:
673a394b 4365 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4366 return ret;
673a394b
EA
4367}
4368
4369int
4370i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4371 struct drm_file *file_priv)
4372{
4373 return i915_gem_ring_throttle(dev, file_priv);
4374}
4375
3ef94daa
CW
4376int
4377i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4378 struct drm_file *file_priv)
4379{
4380 struct drm_i915_gem_madvise *args = data;
4381 struct drm_gem_object *obj;
4382 struct drm_i915_gem_object *obj_priv;
76c1dec1 4383 int ret;
3ef94daa
CW
4384
4385 switch (args->madv) {
4386 case I915_MADV_DONTNEED:
4387 case I915_MADV_WILLNEED:
4388 break;
4389 default:
4390 return -EINVAL;
4391 }
4392
1d7cfea1
CW
4393 ret = i915_mutex_lock_interruptible(dev);
4394 if (ret)
4395 return ret;
4396
3ef94daa
CW
4397 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4398 if (obj == NULL) {
1d7cfea1
CW
4399 ret = -ENOENT;
4400 goto unlock;
3ef94daa 4401 }
23010e43 4402 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4403
4404 if (obj_priv->pin_count) {
1d7cfea1
CW
4405 ret = -EINVAL;
4406 goto out;
3ef94daa
CW
4407 }
4408
bb6baf76
CW
4409 if (obj_priv->madv != __I915_MADV_PURGED)
4410 obj_priv->madv = args->madv;
3ef94daa 4411
2d7ef395
CW
4412 /* if the object is no longer bound, discard its backing storage */
4413 if (i915_gem_object_is_purgeable(obj_priv) &&
4414 obj_priv->gtt_space == NULL)
4415 i915_gem_object_truncate(obj);
4416
bb6baf76
CW
4417 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4418
1d7cfea1 4419out:
3ef94daa 4420 drm_gem_object_unreference(obj);
1d7cfea1 4421unlock:
3ef94daa 4422 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4423 return ret;
3ef94daa
CW
4424}
4425
ac52bc56
DV
4426struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4427 size_t size)
4428{
73aa808f 4429 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4430 struct drm_i915_gem_object *obj;
ac52bc56 4431
c397b908
DV
4432 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4433 if (obj == NULL)
4434 return NULL;
673a394b 4435
c397b908
DV
4436 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4437 kfree(obj);
4438 return NULL;
4439 }
673a394b 4440
73aa808f
CW
4441 i915_gem_info_add_obj(dev_priv, size);
4442
c397b908
DV
4443 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4444 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4445
c397b908 4446 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4447 obj->base.driver_private = NULL;
c397b908 4448 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4449 INIT_LIST_HEAD(&obj->mm_list);
4450 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4451 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4452 obj->madv = I915_MADV_WILLNEED;
de151cf6 4453
c397b908
DV
4454 return &obj->base;
4455}
4456
4457int i915_gem_init_object(struct drm_gem_object *obj)
4458{
4459 BUG();
de151cf6 4460
673a394b
EA
4461 return 0;
4462}
4463
be72615b 4464static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4465{
de151cf6 4466 struct drm_device *dev = obj->dev;
be72615b 4467 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4468 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4469 int ret;
673a394b 4470
be72615b
CW
4471 ret = i915_gem_object_unbind(obj);
4472 if (ret == -ERESTARTSYS) {
69dc4987 4473 list_move(&obj_priv->mm_list,
be72615b
CW
4474 &dev_priv->mm.deferred_free_list);
4475 return;
4476 }
673a394b 4477
7e616158
CW
4478 if (obj_priv->mmap_offset)
4479 i915_gem_free_mmap_offset(obj);
de151cf6 4480
c397b908 4481 drm_gem_object_release(obj);
73aa808f 4482 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4483
9a298b2a 4484 kfree(obj_priv->page_cpu_valid);
280b713b 4485 kfree(obj_priv->bit_17);
c397b908 4486 kfree(obj_priv);
673a394b
EA
4487}
4488
be72615b
CW
4489void i915_gem_free_object(struct drm_gem_object *obj)
4490{
4491 struct drm_device *dev = obj->dev;
4492 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4493
4494 trace_i915_gem_object_destroy(obj);
4495
4496 while (obj_priv->pin_count > 0)
4497 i915_gem_object_unpin(obj);
4498
4499 if (obj_priv->phys_obj)
4500 i915_gem_detach_phys_object(dev, obj);
4501
4502 i915_gem_free_object_tail(obj);
4503}
4504
29105ccc
CW
4505int
4506i915_gem_idle(struct drm_device *dev)
4507{
4508 drm_i915_private_t *dev_priv = dev->dev_private;
4509 int ret;
28dfe52a 4510
29105ccc 4511 mutex_lock(&dev->struct_mutex);
1c5d22f7 4512
87acb0a5 4513 if (dev_priv->mm.suspended) {
29105ccc
CW
4514 mutex_unlock(&dev->struct_mutex);
4515 return 0;
28dfe52a
EA
4516 }
4517
29105ccc 4518 ret = i915_gpu_idle(dev);
6dbe2772
KP
4519 if (ret) {
4520 mutex_unlock(&dev->struct_mutex);
673a394b 4521 return ret;
6dbe2772 4522 }
673a394b 4523
29105ccc
CW
4524 /* Under UMS, be paranoid and evict. */
4525 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4526 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4527 if (ret) {
4528 mutex_unlock(&dev->struct_mutex);
4529 return ret;
4530 }
4531 }
4532
4533 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4534 * We need to replace this with a semaphore, or something.
4535 * And not confound mm.suspended!
4536 */
4537 dev_priv->mm.suspended = 1;
bc0c7f14 4538 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4539
4540 i915_kernel_lost_context(dev);
6dbe2772 4541 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4542
6dbe2772
KP
4543 mutex_unlock(&dev->struct_mutex);
4544
29105ccc
CW
4545 /* Cancel the retire work handler, which should be idle now. */
4546 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4547
673a394b
EA
4548 return 0;
4549}
4550
e552eb70
JB
4551/*
4552 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4553 * over cache flushing.
4554 */
8187a2b7 4555static int
e552eb70
JB
4556i915_gem_init_pipe_control(struct drm_device *dev)
4557{
4558 drm_i915_private_t *dev_priv = dev->dev_private;
4559 struct drm_gem_object *obj;
4560 struct drm_i915_gem_object *obj_priv;
4561 int ret;
4562
34dc4d44 4563 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4564 if (obj == NULL) {
4565 DRM_ERROR("Failed to allocate seqno page\n");
4566 ret = -ENOMEM;
4567 goto err;
4568 }
4569 obj_priv = to_intel_bo(obj);
4570 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4571
920afa77 4572 ret = i915_gem_object_pin(obj, 4096, true);
e552eb70
JB
4573 if (ret)
4574 goto err_unref;
4575
4576 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4577 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4578 if (dev_priv->seqno_page == NULL)
4579 goto err_unpin;
4580
4581 dev_priv->seqno_obj = obj;
4582 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4583
4584 return 0;
4585
4586err_unpin:
4587 i915_gem_object_unpin(obj);
4588err_unref:
4589 drm_gem_object_unreference(obj);
4590err:
4591 return ret;
4592}
4593
8187a2b7
ZN
4594
4595static void
e552eb70
JB
4596i915_gem_cleanup_pipe_control(struct drm_device *dev)
4597{
4598 drm_i915_private_t *dev_priv = dev->dev_private;
4599 struct drm_gem_object *obj;
4600 struct drm_i915_gem_object *obj_priv;
4601
4602 obj = dev_priv->seqno_obj;
4603 obj_priv = to_intel_bo(obj);
4604 kunmap(obj_priv->pages[0]);
4605 i915_gem_object_unpin(obj);
4606 drm_gem_object_unreference(obj);
4607 dev_priv->seqno_obj = NULL;
4608
4609 dev_priv->seqno_page = NULL;
673a394b
EA
4610}
4611
8187a2b7
ZN
4612int
4613i915_gem_init_ringbuffer(struct drm_device *dev)
4614{
4615 drm_i915_private_t *dev_priv = dev->dev_private;
4616 int ret;
68f95ba9 4617
8187a2b7
ZN
4618 if (HAS_PIPE_CONTROL(dev)) {
4619 ret = i915_gem_init_pipe_control(dev);
4620 if (ret)
4621 return ret;
4622 }
68f95ba9 4623
5c1143bb 4624 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4625 if (ret)
4626 goto cleanup_pipe_control;
4627
4628 if (HAS_BSD(dev)) {
5c1143bb 4629 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4630 if (ret)
4631 goto cleanup_render_ring;
d1b851fc 4632 }
68f95ba9 4633
549f7365
CW
4634 if (HAS_BLT(dev)) {
4635 ret = intel_init_blt_ring_buffer(dev);
4636 if (ret)
4637 goto cleanup_bsd_ring;
4638 }
4639
6f392d54
CW
4640 dev_priv->next_seqno = 1;
4641
68f95ba9
CW
4642 return 0;
4643
549f7365 4644cleanup_bsd_ring:
78501eac 4645 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4646cleanup_render_ring:
78501eac 4647 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4648cleanup_pipe_control:
4649 if (HAS_PIPE_CONTROL(dev))
4650 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4651 return ret;
4652}
4653
4654void
4655i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4656{
4657 drm_i915_private_t *dev_priv = dev->dev_private;
4658
78501eac
CW
4659 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4660 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4661 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4662 if (HAS_PIPE_CONTROL(dev))
4663 i915_gem_cleanup_pipe_control(dev);
4664}
4665
673a394b
EA
4666int
4667i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4668 struct drm_file *file_priv)
4669{
4670 drm_i915_private_t *dev_priv = dev->dev_private;
4671 int ret;
4672
79e53945
JB
4673 if (drm_core_check_feature(dev, DRIVER_MODESET))
4674 return 0;
4675
ba1234d1 4676 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4677 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4678 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4679 }
4680
673a394b 4681 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4682 dev_priv->mm.suspended = 0;
4683
4684 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4685 if (ret != 0) {
4686 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4687 return ret;
d816f6ac 4688 }
9bb2d6f9 4689
69dc4987 4690 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4691 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4692 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4693 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4694 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4695 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4696 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4697 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4698 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4699 mutex_unlock(&dev->struct_mutex);
dbb19d30 4700
5f35308b
CW
4701 ret = drm_irq_install(dev);
4702 if (ret)
4703 goto cleanup_ringbuffer;
dbb19d30 4704
673a394b 4705 return 0;
5f35308b
CW
4706
4707cleanup_ringbuffer:
4708 mutex_lock(&dev->struct_mutex);
4709 i915_gem_cleanup_ringbuffer(dev);
4710 dev_priv->mm.suspended = 1;
4711 mutex_unlock(&dev->struct_mutex);
4712
4713 return ret;
673a394b
EA
4714}
4715
4716int
4717i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4718 struct drm_file *file_priv)
4719{
79e53945
JB
4720 if (drm_core_check_feature(dev, DRIVER_MODESET))
4721 return 0;
4722
dbb19d30 4723 drm_irq_uninstall(dev);
e6890f6f 4724 return i915_gem_idle(dev);
673a394b
EA
4725}
4726
4727void
4728i915_gem_lastclose(struct drm_device *dev)
4729{
4730 int ret;
673a394b 4731
e806b495
EA
4732 if (drm_core_check_feature(dev, DRIVER_MODESET))
4733 return;
4734
6dbe2772
KP
4735 ret = i915_gem_idle(dev);
4736 if (ret)
4737 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4738}
4739
64193406
CW
4740static void
4741init_ring_lists(struct intel_ring_buffer *ring)
4742{
4743 INIT_LIST_HEAD(&ring->active_list);
4744 INIT_LIST_HEAD(&ring->request_list);
4745 INIT_LIST_HEAD(&ring->gpu_write_list);
4746}
4747
673a394b
EA
4748void
4749i915_gem_load(struct drm_device *dev)
4750{
b5aa8a0f 4751 int i;
673a394b
EA
4752 drm_i915_private_t *dev_priv = dev->dev_private;
4753
69dc4987 4754 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4755 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4756 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4757 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4758 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4759 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4760 init_ring_lists(&dev_priv->render_ring);
4761 init_ring_lists(&dev_priv->bsd_ring);
4762 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4763 for (i = 0; i < 16; i++)
4764 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4765 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4766 i915_gem_retire_work_handler);
30dbf0c0 4767 init_completion(&dev_priv->error_completion);
31169714
CW
4768 spin_lock(&shrink_list_lock);
4769 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4770 spin_unlock(&shrink_list_lock);
4771
94400120
DA
4772 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4773 if (IS_GEN3(dev)) {
4774 u32 tmp = I915_READ(MI_ARB_STATE);
4775 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4776 /* arb state is a masked write, so set bit + bit in mask */
4777 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4778 I915_WRITE(MI_ARB_STATE, tmp);
4779 }
4780 }
4781
de151cf6 4782 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4783 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4784 dev_priv->fence_reg_start = 3;
de151cf6 4785
a6c45cf0 4786 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4787 dev_priv->num_fence_regs = 16;
4788 else
4789 dev_priv->num_fence_regs = 8;
4790
b5aa8a0f 4791 /* Initialize fence registers to zero */
a6c45cf0
CW
4792 switch (INTEL_INFO(dev)->gen) {
4793 case 6:
4794 for (i = 0; i < 16; i++)
4795 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4796 break;
4797 case 5:
4798 case 4:
b5aa8a0f
GH
4799 for (i = 0; i < 16; i++)
4800 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4801 break;
4802 case 3:
b5aa8a0f
GH
4803 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4804 for (i = 0; i < 8; i++)
4805 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4806 case 2:
4807 for (i = 0; i < 8; i++)
4808 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4809 break;
b5aa8a0f 4810 }
673a394b 4811 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4812 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4813}
71acb5eb
DA
4814
4815/*
4816 * Create a physically contiguous memory object for this object
4817 * e.g. for cursor + overlay regs
4818 */
995b6762
CW
4819static int i915_gem_init_phys_object(struct drm_device *dev,
4820 int id, int size, int align)
71acb5eb
DA
4821{
4822 drm_i915_private_t *dev_priv = dev->dev_private;
4823 struct drm_i915_gem_phys_object *phys_obj;
4824 int ret;
4825
4826 if (dev_priv->mm.phys_objs[id - 1] || !size)
4827 return 0;
4828
9a298b2a 4829 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4830 if (!phys_obj)
4831 return -ENOMEM;
4832
4833 phys_obj->id = id;
4834
6eeefaf3 4835 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4836 if (!phys_obj->handle) {
4837 ret = -ENOMEM;
4838 goto kfree_obj;
4839 }
4840#ifdef CONFIG_X86
4841 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4842#endif
4843
4844 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4845
4846 return 0;
4847kfree_obj:
9a298b2a 4848 kfree(phys_obj);
71acb5eb
DA
4849 return ret;
4850}
4851
995b6762 4852static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4853{
4854 drm_i915_private_t *dev_priv = dev->dev_private;
4855 struct drm_i915_gem_phys_object *phys_obj;
4856
4857 if (!dev_priv->mm.phys_objs[id - 1])
4858 return;
4859
4860 phys_obj = dev_priv->mm.phys_objs[id - 1];
4861 if (phys_obj->cur_obj) {
4862 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4863 }
4864
4865#ifdef CONFIG_X86
4866 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4867#endif
4868 drm_pci_free(dev, phys_obj->handle);
4869 kfree(phys_obj);
4870 dev_priv->mm.phys_objs[id - 1] = NULL;
4871}
4872
4873void i915_gem_free_all_phys_object(struct drm_device *dev)
4874{
4875 int i;
4876
260883c8 4877 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4878 i915_gem_free_phys_object(dev, i);
4879}
4880
4881void i915_gem_detach_phys_object(struct drm_device *dev,
4882 struct drm_gem_object *obj)
4883{
4884 struct drm_i915_gem_object *obj_priv;
4885 int i;
4886 int ret;
4887 int page_count;
4888
23010e43 4889 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4890 if (!obj_priv->phys_obj)
4891 return;
4892
4bdadb97 4893 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4894 if (ret)
4895 goto out;
4896
4897 page_count = obj->size / PAGE_SIZE;
4898
4899 for (i = 0; i < page_count; i++) {
3e4d3af5 4900 char *dst = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4901 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4902
4903 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4904 kunmap_atomic(dst);
71acb5eb 4905 }
856fa198 4906 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4907 drm_agp_chipset_flush(dev);
d78b47b9
CW
4908
4909 i915_gem_object_put_pages(obj);
71acb5eb
DA
4910out:
4911 obj_priv->phys_obj->cur_obj = NULL;
4912 obj_priv->phys_obj = NULL;
4913}
4914
4915int
4916i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4917 struct drm_gem_object *obj,
4918 int id,
4919 int align)
71acb5eb
DA
4920{
4921 drm_i915_private_t *dev_priv = dev->dev_private;
4922 struct drm_i915_gem_object *obj_priv;
4923 int ret = 0;
4924 int page_count;
4925 int i;
4926
4927 if (id > I915_MAX_PHYS_OBJECT)
4928 return -EINVAL;
4929
23010e43 4930 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4931
4932 if (obj_priv->phys_obj) {
4933 if (obj_priv->phys_obj->id == id)
4934 return 0;
4935 i915_gem_detach_phys_object(dev, obj);
4936 }
4937
71acb5eb
DA
4938 /* create a new object */
4939 if (!dev_priv->mm.phys_objs[id - 1]) {
4940 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4941 obj->size, align);
71acb5eb 4942 if (ret) {
aeb565df 4943 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4944 goto out;
4945 }
4946 }
4947
4948 /* bind to the object */
4949 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4950 obj_priv->phys_obj->cur_obj = obj;
4951
4bdadb97 4952 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4953 if (ret) {
4954 DRM_ERROR("failed to get page list\n");
4955 goto out;
4956 }
4957
4958 page_count = obj->size / PAGE_SIZE;
4959
4960 for (i = 0; i < page_count; i++) {
3e4d3af5 4961 char *src = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4962 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4963
4964 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4965 kunmap_atomic(src);
71acb5eb
DA
4966 }
4967
d78b47b9
CW
4968 i915_gem_object_put_pages(obj);
4969
71acb5eb
DA
4970 return 0;
4971out:
4972 return ret;
4973}
4974
4975static int
4976i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4977 struct drm_i915_gem_pwrite *args,
4978 struct drm_file *file_priv)
4979{
23010e43 4980 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4981 void *obj_addr;
4982 int ret;
4983 char __user *user_data;
4984
4985 user_data = (char __user *) (uintptr_t) args->data_ptr;
4986 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4987
44d98a61 4988 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4989 ret = copy_from_user(obj_addr, user_data, args->size);
4990 if (ret)
4991 return -EFAULT;
4992
4993 drm_agp_chipset_flush(dev);
4994 return 0;
4995}
b962442e 4996
f787a5f5 4997void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4998{
f787a5f5 4999 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5000
5001 /* Clean up our request list when the client is going away, so that
5002 * later retire_requests won't dereference our soon-to-be-gone
5003 * file_priv.
5004 */
1c25595f 5005 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5006 while (!list_empty(&file_priv->mm.request_list)) {
5007 struct drm_i915_gem_request *request;
5008
5009 request = list_first_entry(&file_priv->mm.request_list,
5010 struct drm_i915_gem_request,
5011 client_list);
5012 list_del(&request->client_list);
5013 request->file_priv = NULL;
5014 }
1c25595f 5015 spin_unlock(&file_priv->mm.lock);
b962442e 5016}
31169714 5017
1637ef41
CW
5018static int
5019i915_gpu_is_active(struct drm_device *dev)
5020{
5021 drm_i915_private_t *dev_priv = dev->dev_private;
5022 int lists_empty;
5023
1637ef41 5024 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
87acb0a5 5025 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
5026 list_empty(&dev_priv->bsd_ring.active_list) &&
5027 list_empty(&dev_priv->blt_ring.active_list);
1637ef41
CW
5028
5029 return !lists_empty;
5030}
5031
31169714 5032static int
7f8275d0 5033i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
5034{
5035 drm_i915_private_t *dev_priv, *next_dev;
5036 struct drm_i915_gem_object *obj_priv, *next_obj;
5037 int cnt = 0;
5038 int would_deadlock = 1;
5039
5040 /* "fast-path" to count number of available objects */
5041 if (nr_to_scan == 0) {
5042 spin_lock(&shrink_list_lock);
5043 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5044 struct drm_device *dev = dev_priv->dev;
5045
5046 if (mutex_trylock(&dev->struct_mutex)) {
5047 list_for_each_entry(obj_priv,
5048 &dev_priv->mm.inactive_list,
69dc4987 5049 mm_list)
31169714
CW
5050 cnt++;
5051 mutex_unlock(&dev->struct_mutex);
5052 }
5053 }
5054 spin_unlock(&shrink_list_lock);
5055
5056 return (cnt / 100) * sysctl_vfs_cache_pressure;
5057 }
5058
5059 spin_lock(&shrink_list_lock);
5060
1637ef41 5061rescan:
31169714
CW
5062 /* first scan for clean buffers */
5063 list_for_each_entry_safe(dev_priv, next_dev,
5064 &shrink_list, mm.shrink_list) {
5065 struct drm_device *dev = dev_priv->dev;
5066
5067 if (! mutex_trylock(&dev->struct_mutex))
5068 continue;
5069
5070 spin_unlock(&shrink_list_lock);
b09a1fec 5071 i915_gem_retire_requests(dev);
31169714
CW
5072
5073 list_for_each_entry_safe(obj_priv, next_obj,
5074 &dev_priv->mm.inactive_list,
69dc4987 5075 mm_list) {
31169714 5076 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 5077 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5078 if (--nr_to_scan <= 0)
5079 break;
5080 }
5081 }
5082
5083 spin_lock(&shrink_list_lock);
5084 mutex_unlock(&dev->struct_mutex);
5085
963b4836
CW
5086 would_deadlock = 0;
5087
31169714
CW
5088 if (nr_to_scan <= 0)
5089 break;
5090 }
5091
5092 /* second pass, evict/count anything still on the inactive list */
5093 list_for_each_entry_safe(dev_priv, next_dev,
5094 &shrink_list, mm.shrink_list) {
5095 struct drm_device *dev = dev_priv->dev;
5096
5097 if (! mutex_trylock(&dev->struct_mutex))
5098 continue;
5099
5100 spin_unlock(&shrink_list_lock);
5101
5102 list_for_each_entry_safe(obj_priv, next_obj,
5103 &dev_priv->mm.inactive_list,
69dc4987 5104 mm_list) {
31169714 5105 if (nr_to_scan > 0) {
a8089e84 5106 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5107 nr_to_scan--;
5108 } else
5109 cnt++;
5110 }
5111
5112 spin_lock(&shrink_list_lock);
5113 mutex_unlock(&dev->struct_mutex);
5114
5115 would_deadlock = 0;
5116 }
5117
1637ef41
CW
5118 if (nr_to_scan) {
5119 int active = 0;
5120
5121 /*
5122 * We are desperate for pages, so as a last resort, wait
5123 * for the GPU to finish and discard whatever we can.
5124 * This has a dramatic impact to reduce the number of
5125 * OOM-killer events whilst running the GPU aggressively.
5126 */
5127 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5128 struct drm_device *dev = dev_priv->dev;
5129
5130 if (!mutex_trylock(&dev->struct_mutex))
5131 continue;
5132
5133 spin_unlock(&shrink_list_lock);
5134
5135 if (i915_gpu_is_active(dev)) {
5136 i915_gpu_idle(dev);
5137 active++;
5138 }
5139
5140 spin_lock(&shrink_list_lock);
5141 mutex_unlock(&dev->struct_mutex);
5142 }
5143
5144 if (active)
5145 goto rescan;
5146 }
5147
31169714
CW
5148 spin_unlock(&shrink_list_lock);
5149
5150 if (would_deadlock)
5151 return -1;
5152 else if (cnt > 0)
5153 return (cnt / 100) * sysctl_vfs_cache_pressure;
5154 else
5155 return 0;
5156}
5157
5158static struct shrinker shrinker = {
5159 .shrink = i915_gem_shrink,
5160 .seeks = DEFAULT_SEEKS,
5161};
5162
5163__init void
5164i915_gem_shrinker_init(void)
5165{
5166 register_shrinker(&shrinker);
5167}
5168
5169__exit void
5170i915_gem_shrinker_exit(void)
5171{
5172 unregister_shrinker(&shrinker);
5173}