]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: fix EDID memory leak in SDVO
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
88241785 40static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
43static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
8c59967c 59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 60
61050808
CW
61static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62{
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
5d82e3e6 69 obj->fence_dirty = false;
61050808
CW
70 obj->fence_reg = I915_FENCE_REG_NONE;
71}
72
73aa808f
CW
73/* some bookkeeping */
74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79}
80
81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83{
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86}
87
21dd3734
CW
88static int
89i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
90{
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
0a6759c6
DV
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
105 if (ret == 0) {
106 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
107 return -EIO;
108 } else if (ret < 0) {
30dbf0c0 109 return ret;
0a6759c6 110 }
30dbf0c0 111
21dd3734
CW
112 if (atomic_read(&dev_priv->mm.wedged)) {
113 /* GPU is hung, bump the completion count to account for
114 * the token we just consumed so that we never hit zero and
115 * end up waiting upon a subsequent completion event that
116 * will never happen.
117 */
118 spin_lock_irqsave(&x->wait.lock, flags);
119 x->done++;
120 spin_unlock_irqrestore(&x->wait.lock, flags);
121 }
122 return 0;
30dbf0c0
CW
123}
124
54cf91dc 125int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 126{
76c1dec1
CW
127 int ret;
128
21dd3734 129 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
23bc5982 137 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
138 return 0;
139}
30dbf0c0 140
7d1c4804 141static inline bool
05394f39 142i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 143{
1b50247a 144 return !obj->active;
7d1c4804
CW
145}
146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e 152
7bb6fb8d
DV
153 if (drm_core_check_feature(dev, DRIVER_MODESET))
154 return -ENODEV;
155
2021746e
CW
156 if (args->gtt_start >= args->gtt_end ||
157 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
158 return -EINVAL;
79e53945 159
f534bc0b
DV
160 /* GEM with user mode setting was never supported on ilk and later. */
161 if (INTEL_INFO(dev)->gen >= 5)
162 return -ENODEV;
163
79e53945 164 mutex_lock(&dev->struct_mutex);
644ec02b
DV
165 i915_gem_init_global_gtt(dev, args->gtt_start,
166 args->gtt_end, args->gtt_end);
673a394b
EA
167 mutex_unlock(&dev->struct_mutex);
168
2021746e 169 return 0;
673a394b
EA
170}
171
5a125c3c
EA
172int
173i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 174 struct drm_file *file)
5a125c3c 175{
73aa808f 176 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 177 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
178 struct drm_i915_gem_object *obj;
179 size_t pinned;
5a125c3c 180
6299f992 181 pinned = 0;
73aa808f 182 mutex_lock(&dev->struct_mutex);
1b50247a
CW
183 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
184 if (obj->pin_count)
185 pinned += obj->gtt_space->size;
73aa808f 186 mutex_unlock(&dev->struct_mutex);
5a125c3c 187
6299f992 188 args->aper_size = dev_priv->mm.gtt_total;
0206e353 189 args->aper_available_size = args->aper_size - pinned;
6299f992 190
5a125c3c
EA
191 return 0;
192}
193
ff72145b
DA
194static int
195i915_gem_create(struct drm_file *file,
196 struct drm_device *dev,
197 uint64_t size,
198 uint32_t *handle_p)
673a394b 199{
05394f39 200 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
201 int ret;
202 u32 handle;
673a394b 203
ff72145b 204 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
205 if (size == 0)
206 return -EINVAL;
673a394b
EA
207
208 /* Allocate the new object */
ff72145b 209 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
210 if (obj == NULL)
211 return -ENOMEM;
212
05394f39 213 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 214 if (ret) {
05394f39
CW
215 drm_gem_object_release(&obj->base);
216 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 217 kfree(obj);
673a394b 218 return ret;
1dfd9754 219 }
673a394b 220
202f2fef 221 /* drop reference from allocate - handle holds it now */
05394f39 222 drm_gem_object_unreference(&obj->base);
202f2fef
CW
223 trace_i915_gem_object_create(obj);
224
ff72145b 225 *handle_p = handle;
673a394b
EA
226 return 0;
227}
228
ff72145b
DA
229int
230i915_gem_dumb_create(struct drm_file *file,
231 struct drm_device *dev,
232 struct drm_mode_create_dumb *args)
233{
234 /* have to work out size/pitch and return them */
ed0291fd 235 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
236 args->size = args->pitch * args->height;
237 return i915_gem_create(file, dev,
238 args->size, &args->handle);
239}
240
241int i915_gem_dumb_destroy(struct drm_file *file,
242 struct drm_device *dev,
243 uint32_t handle)
244{
245 return drm_gem_handle_delete(file, handle);
246}
247
248/**
249 * Creates a new mm object and returns a handle to it.
250 */
251int
252i915_gem_create_ioctl(struct drm_device *dev, void *data,
253 struct drm_file *file)
254{
255 struct drm_i915_gem_create *args = data;
63ed2cb2 256
ff72145b
DA
257 return i915_gem_create(file, dev,
258 args->size, &args->handle);
259}
260
05394f39 261static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 262{
05394f39 263 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
264
265 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 266 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
267}
268
8461d226
DV
269static inline int
270__copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273{
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293}
294
8c59967c 295static inline int
4f0c7cfb
BW
296__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
8c59967c
DV
298 int length)
299{
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319}
320
d174bd64
DV
321/* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
eb01459f 324static int
d174bd64
DV
325shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328{
329 char *vaddr;
330 int ret;
331
e7e58eb5 332 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret;
345}
346
23c18c71
DV
347static void
348shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350{
e7e58eb5 351 if (unlikely(swizzled)) {
23c18c71
DV
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367}
368
d174bd64
DV
369/* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371static int
372shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375{
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
23c18c71
DV
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
d174bd64
DV
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret;
396}
397
eb01459f 398static int
dbf7bff0
DV
399i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
eb01459f 403{
05394f39 404 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 405 char __user *user_data;
eb01459f 406 ssize_t remain;
8461d226 407 loff_t offset;
eb2c0c81 408 int shmem_page_offset, page_length, ret = 0;
8461d226 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 410 int hit_slowpath = 0;
96d79b52 411 int prefaulted = 0;
8489731c 412 int needs_clflush = 0;
692a576b 413 int release_page;
eb01459f 414
8461d226 415 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
416 remain = args->size;
417
8461d226 418 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 419
8489731c
DV
420 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
421 /* If we're not in the cpu read domain, set ourself into the gtt
422 * read domain and manually flush cachelines (if required). This
423 * optimizes for the case when the gpu will dirty the data
424 * anyway again before the next pread happens. */
425 if (obj->cache_level == I915_CACHE_NONE)
426 needs_clflush = 1;
427 ret = i915_gem_object_set_to_gtt_domain(obj, false);
428 if (ret)
429 return ret;
430 }
eb01459f 431
8461d226 432 offset = args->offset;
eb01459f
EA
433
434 while (remain > 0) {
e5281ccd
CW
435 struct page *page;
436
eb01459f
EA
437 /* Operation in this page
438 *
eb01459f 439 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
440 * page_length = bytes to copy for this page
441 */
c8cbbb8b 442 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
443 page_length = remain;
444 if ((shmem_page_offset + page_length) > PAGE_SIZE)
445 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 446
692a576b
DV
447 if (obj->pages) {
448 page = obj->pages[offset >> PAGE_SHIFT];
449 release_page = 0;
450 } else {
451 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
452 if (IS_ERR(page)) {
453 ret = PTR_ERR(page);
454 goto out;
455 }
456 release_page = 1;
b65552f0 457 }
e5281ccd 458
8461d226
DV
459 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
460 (page_to_phys(page) & (1 << 17)) != 0;
461
d174bd64
DV
462 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
463 user_data, page_do_bit17_swizzling,
464 needs_clflush);
465 if (ret == 0)
466 goto next_page;
dbf7bff0
DV
467
468 hit_slowpath = 1;
692a576b 469 page_cache_get(page);
dbf7bff0
DV
470 mutex_unlock(&dev->struct_mutex);
471
96d79b52 472 if (!prefaulted) {
f56f821f 473 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
474 /* Userspace is tricking us, but we've already clobbered
475 * its pages with the prefault and promised to write the
476 * data up to the first fault. Hence ignore any errors
477 * and just continue. */
478 (void)ret;
479 prefaulted = 1;
480 }
eb01459f 481
d174bd64
DV
482 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
483 user_data, page_do_bit17_swizzling,
484 needs_clflush);
eb01459f 485
dbf7bff0 486 mutex_lock(&dev->struct_mutex);
e5281ccd 487 page_cache_release(page);
dbf7bff0 488next_page:
e5281ccd 489 mark_page_accessed(page);
692a576b
DV
490 if (release_page)
491 page_cache_release(page);
e5281ccd 492
8461d226
DV
493 if (ret) {
494 ret = -EFAULT;
495 goto out;
496 }
497
eb01459f 498 remain -= page_length;
8461d226 499 user_data += page_length;
eb01459f
EA
500 offset += page_length;
501 }
502
4f27b75d 503out:
dbf7bff0
DV
504 if (hit_slowpath) {
505 /* Fixup: Kill any reinstated backing storage pages */
506 if (obj->madv == __I915_MADV_PURGED)
507 i915_gem_object_truncate(obj);
508 }
eb01459f
EA
509
510 return ret;
511}
512
673a394b
EA
513/**
514 * Reads data from the object referenced by handle.
515 *
516 * On error, the contents of *data are undefined.
517 */
518int
519i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 520 struct drm_file *file)
673a394b
EA
521{
522 struct drm_i915_gem_pread *args = data;
05394f39 523 struct drm_i915_gem_object *obj;
35b62a89 524 int ret = 0;
673a394b 525
51311d0a
CW
526 if (args->size == 0)
527 return 0;
528
529 if (!access_ok(VERIFY_WRITE,
530 (char __user *)(uintptr_t)args->data_ptr,
531 args->size))
532 return -EFAULT;
533
4f27b75d 534 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 535 if (ret)
4f27b75d 536 return ret;
673a394b 537
05394f39 538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 539 if (&obj->base == NULL) {
1d7cfea1
CW
540 ret = -ENOENT;
541 goto unlock;
4f27b75d 542 }
673a394b 543
7dcd2499 544 /* Bounds check source. */
05394f39
CW
545 if (args->offset > obj->base.size ||
546 args->size > obj->base.size - args->offset) {
ce9d419d 547 ret = -EINVAL;
35b62a89 548 goto out;
ce9d419d
CW
549 }
550
1286ff73
DV
551 /* prime objects have no backing filp to GEM pread/pwrite
552 * pages from.
553 */
554 if (!obj->base.filp) {
555 ret = -EINVAL;
556 goto out;
557 }
558
db53a302
CW
559 trace_i915_gem_object_pread(obj, args->offset, args->size);
560
dbf7bff0 561 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 562
35b62a89 563out:
05394f39 564 drm_gem_object_unreference(&obj->base);
1d7cfea1 565unlock:
4f27b75d 566 mutex_unlock(&dev->struct_mutex);
eb01459f 567 return ret;
673a394b
EA
568}
569
0839ccb8
KP
570/* This is the fast write path which cannot handle
571 * page faults in the source data
9b7530cc 572 */
0839ccb8
KP
573
574static inline int
575fast_user_write(struct io_mapping *mapping,
576 loff_t page_base, int page_offset,
577 char __user *user_data,
578 int length)
9b7530cc 579{
4f0c7cfb
BW
580 void __iomem *vaddr_atomic;
581 void *vaddr;
0839ccb8 582 unsigned long unwritten;
9b7530cc 583
3e4d3af5 584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
585 /* We can use the cpu mem copy function because this is X86. */
586 vaddr = (void __force*)vaddr_atomic + page_offset;
587 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 588 user_data, length);
3e4d3af5 589 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 590 return unwritten;
0839ccb8
KP
591}
592
3de09aa3
EA
593/**
594 * This is the fast pwrite path, where we copy the data directly from the
595 * user into the GTT, uncached.
596 */
673a394b 597static int
05394f39
CW
598i915_gem_gtt_pwrite_fast(struct drm_device *dev,
599 struct drm_i915_gem_object *obj,
3de09aa3 600 struct drm_i915_gem_pwrite *args,
05394f39 601 struct drm_file *file)
673a394b 602{
0839ccb8 603 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 604 ssize_t remain;
0839ccb8 605 loff_t offset, page_base;
673a394b 606 char __user *user_data;
935aaa69
DV
607 int page_offset, page_length, ret;
608
609 ret = i915_gem_object_pin(obj, 0, true);
610 if (ret)
611 goto out;
612
613 ret = i915_gem_object_set_to_gtt_domain(obj, true);
614 if (ret)
615 goto out_unpin;
616
617 ret = i915_gem_object_put_fence(obj);
618 if (ret)
619 goto out_unpin;
673a394b
EA
620
621 user_data = (char __user *) (uintptr_t) args->data_ptr;
622 remain = args->size;
673a394b 623
05394f39 624 offset = obj->gtt_offset + args->offset;
673a394b
EA
625
626 while (remain > 0) {
627 /* Operation in this page
628 *
0839ccb8
KP
629 * page_base = page offset within aperture
630 * page_offset = offset within page
631 * page_length = bytes to copy for this page
673a394b 632 */
c8cbbb8b
CW
633 page_base = offset & PAGE_MASK;
634 page_offset = offset_in_page(offset);
0839ccb8
KP
635 page_length = remain;
636 if ((page_offset + remain) > PAGE_SIZE)
637 page_length = PAGE_SIZE - page_offset;
638
0839ccb8 639 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
640 * source page isn't available. Return the error and we'll
641 * retry in the slow path.
0839ccb8 642 */
fbd5a26d 643 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
644 page_offset, user_data, page_length)) {
645 ret = -EFAULT;
646 goto out_unpin;
647 }
673a394b 648
0839ccb8
KP
649 remain -= page_length;
650 user_data += page_length;
651 offset += page_length;
673a394b 652 }
673a394b 653
935aaa69
DV
654out_unpin:
655 i915_gem_object_unpin(obj);
656out:
3de09aa3 657 return ret;
673a394b
EA
658}
659
d174bd64
DV
660/* Per-page copy function for the shmem pwrite fastpath.
661 * Flushes invalid cachelines before writing to the target if
662 * needs_clflush_before is set and flushes out any written cachelines after
663 * writing if needs_clflush is set. */
3043c60c 664static int
d174bd64
DV
665shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
666 char __user *user_data,
667 bool page_do_bit17_swizzling,
668 bool needs_clflush_before,
669 bool needs_clflush_after)
673a394b 670{
d174bd64 671 char *vaddr;
673a394b 672 int ret;
3de09aa3 673
e7e58eb5 674 if (unlikely(page_do_bit17_swizzling))
d174bd64 675 return -EINVAL;
3de09aa3 676
d174bd64
DV
677 vaddr = kmap_atomic(page);
678 if (needs_clflush_before)
679 drm_clflush_virt_range(vaddr + shmem_page_offset,
680 page_length);
681 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
682 user_data,
683 page_length);
684 if (needs_clflush_after)
685 drm_clflush_virt_range(vaddr + shmem_page_offset,
686 page_length);
687 kunmap_atomic(vaddr);
3de09aa3
EA
688
689 return ret;
690}
691
d174bd64
DV
692/* Only difference to the fast-path function is that this can handle bit17
693 * and uses non-atomic copy and kmap functions. */
3043c60c 694static int
d174bd64
DV
695shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
696 char __user *user_data,
697 bool page_do_bit17_swizzling,
698 bool needs_clflush_before,
699 bool needs_clflush_after)
673a394b 700{
d174bd64
DV
701 char *vaddr;
702 int ret;
e5281ccd 703
d174bd64 704 vaddr = kmap(page);
e7e58eb5 705 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
d174bd64
DV
709 if (page_do_bit17_swizzling)
710 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
711 user_data,
712 page_length);
d174bd64
DV
713 else
714 ret = __copy_from_user(vaddr + shmem_page_offset,
715 user_data,
716 page_length);
717 if (needs_clflush_after)
23c18c71
DV
718 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
719 page_length,
720 page_do_bit17_swizzling);
d174bd64 721 kunmap(page);
40123c1f 722
d174bd64 723 return ret;
40123c1f
EA
724}
725
40123c1f 726static int
e244a443
DV
727i915_gem_shmem_pwrite(struct drm_device *dev,
728 struct drm_i915_gem_object *obj,
729 struct drm_i915_gem_pwrite *args,
730 struct drm_file *file)
40123c1f 731{
05394f39 732 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 733 ssize_t remain;
8c59967c
DV
734 loff_t offset;
735 char __user *user_data;
eb2c0c81 736 int shmem_page_offset, page_length, ret = 0;
8c59967c 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 738 int hit_slowpath = 0;
58642885
DV
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
692a576b 741 int release_page;
40123c1f 742
8c59967c 743 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
744 remain = args->size;
745
8c59967c 746 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 747
58642885
DV
748 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
749 /* If we're not in the cpu write domain, set ourself into the gtt
750 * write domain and manually flush cachelines (if required). This
751 * optimizes for the case when the gpu will use the data
752 * right away and we therefore have to clflush anyway. */
753 if (obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_after = 1;
755 ret = i915_gem_object_set_to_gtt_domain(obj, true);
756 if (ret)
757 return ret;
758 }
759 /* Same trick applies for invalidate partially written cachelines before
760 * writing. */
761 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
762 && obj->cache_level == I915_CACHE_NONE)
763 needs_clflush_before = 1;
764
673a394b 765 offset = args->offset;
05394f39 766 obj->dirty = 1;
673a394b 767
40123c1f 768 while (remain > 0) {
e5281ccd 769 struct page *page;
58642885 770 int partial_cacheline_write;
e5281ccd 771
40123c1f
EA
772 /* Operation in this page
773 *
40123c1f 774 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
775 * page_length = bytes to copy for this page
776 */
c8cbbb8b 777 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
778
779 page_length = remain;
780 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 782
58642885
DV
783 /* If we don't overwrite a cacheline completely we need to be
784 * careful to have up-to-date data by first clflushing. Don't
785 * overcomplicate things and flush the entire patch. */
786 partial_cacheline_write = needs_clflush_before &&
787 ((shmem_page_offset | page_length)
788 & (boot_cpu_data.x86_clflush_size - 1));
789
692a576b
DV
790 if (obj->pages) {
791 page = obj->pages[offset >> PAGE_SHIFT];
792 release_page = 0;
793 } else {
794 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
795 if (IS_ERR(page)) {
796 ret = PTR_ERR(page);
797 goto out;
798 }
799 release_page = 1;
e5281ccd
CW
800 }
801
8c59967c
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
e244a443
DV
811
812 hit_slowpath = 1;
692a576b 813 page_cache_get(page);
e244a443
DV
814 mutex_unlock(&dev->struct_mutex);
815
d174bd64
DV
816 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
817 user_data, page_do_bit17_swizzling,
818 partial_cacheline_write,
819 needs_clflush_after);
40123c1f 820
e244a443 821 mutex_lock(&dev->struct_mutex);
692a576b 822 page_cache_release(page);
e244a443 823next_page:
e5281ccd
CW
824 set_page_dirty(page);
825 mark_page_accessed(page);
692a576b
DV
826 if (release_page)
827 page_cache_release(page);
e5281ccd 828
8c59967c
DV
829 if (ret) {
830 ret = -EFAULT;
831 goto out;
832 }
833
40123c1f 834 remain -= page_length;
8c59967c 835 user_data += page_length;
40123c1f 836 offset += page_length;
673a394b
EA
837 }
838
fbd5a26d 839out:
e244a443
DV
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 intel_gtt_chipset_flush();
849 }
8c59967c 850 }
673a394b 851
58642885
DV
852 if (needs_clflush_after)
853 intel_gtt_chipset_flush();
854
40123c1f 855 return ret;
673a394b
EA
856}
857
858/**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863int
864i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 865 struct drm_file *file)
673a394b
EA
866{
867 struct drm_i915_gem_pwrite *args = data;
05394f39 868 struct drm_i915_gem_object *obj;
51311d0a
CW
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
f56f821f
DV
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
51311d0a
CW
881 if (ret)
882 return -EFAULT;
673a394b 883
fbd5a26d 884 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 885 if (ret)
fbd5a26d 886 return ret;
1d7cfea1 887
05394f39 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 889 if (&obj->base == NULL) {
1d7cfea1
CW
890 ret = -ENOENT;
891 goto unlock;
fbd5a26d 892 }
673a394b 893
7dcd2499 894 /* Bounds check destination. */
05394f39
CW
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
ce9d419d 897 ret = -EINVAL;
35b62a89 898 goto out;
ce9d419d
CW
899 }
900
1286ff73
DV
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
db53a302
CW
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
935aaa69 911 ret = -EFAULT;
673a394b
EA
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
5c0480f2 918 if (obj->phys_obj) {
fbd5a26d 919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
920 goto out;
921 }
922
923 if (obj->gtt_space &&
3ae53783 924 obj->cache_level == I915_CACHE_NONE &&
c07496fa 925 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 926 obj->map_and_fenceable &&
5c0480f2 927 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 928 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
929 /* Note that the gtt paths might fail with non-page-backed user
930 * pointers (e.g. gtt mappings when moving data between
931 * textures). Fallback to the shmem path in that case. */
fbd5a26d 932 }
673a394b 933
5c0480f2 934 if (ret == -EFAULT)
935aaa69 935 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 936
35b62a89 937out:
05394f39 938 drm_gem_object_unreference(&obj->base);
1d7cfea1 939unlock:
fbd5a26d 940 mutex_unlock(&dev->struct_mutex);
673a394b
EA
941 return ret;
942}
943
944/**
2ef7eeaa
EA
945 * Called when user space prepares to use an object with the CPU, either
946 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
947 */
948int
949i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 950 struct drm_file *file)
673a394b
EA
951{
952 struct drm_i915_gem_set_domain *args = data;
05394f39 953 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
954 uint32_t read_domains = args->read_domains;
955 uint32_t write_domain = args->write_domain;
673a394b
EA
956 int ret;
957
2ef7eeaa 958 /* Only handle setting domains to types used by the CPU. */
21d509e3 959 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
960 return -EINVAL;
961
21d509e3 962 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
963 return -EINVAL;
964
965 /* Having something in the write domain implies it's in the read
966 * domain, and only that read domain. Enforce that in the request.
967 */
968 if (write_domain != 0 && read_domains != write_domain)
969 return -EINVAL;
970
76c1dec1 971 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 972 if (ret)
76c1dec1 973 return ret;
1d7cfea1 974
05394f39 975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 976 if (&obj->base == NULL) {
1d7cfea1
CW
977 ret = -ENOENT;
978 goto unlock;
76c1dec1 979 }
673a394b 980
2ef7eeaa
EA
981 if (read_domains & I915_GEM_DOMAIN_GTT) {
982 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
983
984 /* Silently promote "you're not bound, there was nothing to do"
985 * to success, since the client was just asking us to
986 * make sure everything was done.
987 */
988 if (ret == -EINVAL)
989 ret = 0;
2ef7eeaa 990 } else {
e47c68e9 991 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
992 }
993
05394f39 994 drm_gem_object_unreference(&obj->base);
1d7cfea1 995unlock:
673a394b
EA
996 mutex_unlock(&dev->struct_mutex);
997 return ret;
998}
999
1000/**
1001 * Called when user space has done writes to this buffer
1002 */
1003int
1004i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1005 struct drm_file *file)
673a394b
EA
1006{
1007 struct drm_i915_gem_sw_finish *args = data;
05394f39 1008 struct drm_i915_gem_object *obj;
673a394b
EA
1009 int ret = 0;
1010
76c1dec1 1011 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1012 if (ret)
76c1dec1 1013 return ret;
1d7cfea1 1014
05394f39 1015 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1016 if (&obj->base == NULL) {
1d7cfea1
CW
1017 ret = -ENOENT;
1018 goto unlock;
673a394b
EA
1019 }
1020
673a394b 1021 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1022 if (obj->pin_count)
e47c68e9
EA
1023 i915_gem_object_flush_cpu_write_domain(obj);
1024
05394f39 1025 drm_gem_object_unreference(&obj->base);
1d7cfea1 1026unlock:
673a394b
EA
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029}
1030
1031/**
1032 * Maps the contents of an object, returning the address it is mapped
1033 * into.
1034 *
1035 * While the mapping holds a reference on the contents of the object, it doesn't
1036 * imply a ref on the object itself.
1037 */
1038int
1039i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1040 struct drm_file *file)
673a394b
EA
1041{
1042 struct drm_i915_gem_mmap *args = data;
1043 struct drm_gem_object *obj;
673a394b
EA
1044 unsigned long addr;
1045
05394f39 1046 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1047 if (obj == NULL)
bf79cb91 1048 return -ENOENT;
673a394b 1049
1286ff73
DV
1050 /* prime objects have no backing filp to GEM mmap
1051 * pages from.
1052 */
1053 if (!obj->filp) {
1054 drm_gem_object_unreference_unlocked(obj);
1055 return -EINVAL;
1056 }
1057
6be5ceb0 1058 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1059 PROT_READ | PROT_WRITE, MAP_SHARED,
1060 args->offset);
bc9025bd 1061 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1062 if (IS_ERR((void *)addr))
1063 return addr;
1064
1065 args->addr_ptr = (uint64_t) addr;
1066
1067 return 0;
1068}
1069
de151cf6
JB
1070/**
1071 * i915_gem_fault - fault a page into the GTT
1072 * vma: VMA in question
1073 * vmf: fault info
1074 *
1075 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1076 * from userspace. The fault handler takes care of binding the object to
1077 * the GTT (if needed), allocating and programming a fence register (again,
1078 * only if needed based on whether the old reg is still valid or the object
1079 * is tiled) and inserting a new PTE into the faulting process.
1080 *
1081 * Note that the faulting process may involve evicting existing objects
1082 * from the GTT and/or fence registers to make room. So performance may
1083 * suffer if the GTT working set is large or there are few fence registers
1084 * left.
1085 */
1086int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1087{
05394f39
CW
1088 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1089 struct drm_device *dev = obj->base.dev;
7d1c4804 1090 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1091 pgoff_t page_offset;
1092 unsigned long pfn;
1093 int ret = 0;
0f973f27 1094 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1095
1096 /* We don't use vmf->pgoff since that has the fake offset */
1097 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1098 PAGE_SHIFT;
1099
d9bc7e9f
CW
1100 ret = i915_mutex_lock_interruptible(dev);
1101 if (ret)
1102 goto out;
a00b10c3 1103
db53a302
CW
1104 trace_i915_gem_object_fault(obj, page_offset, true, write);
1105
d9bc7e9f 1106 /* Now bind it into the GTT if needed */
919926ae
CW
1107 if (!obj->map_and_fenceable) {
1108 ret = i915_gem_object_unbind(obj);
1109 if (ret)
1110 goto unlock;
a00b10c3 1111 }
05394f39 1112 if (!obj->gtt_space) {
75e9e915 1113 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1114 if (ret)
1115 goto unlock;
de151cf6 1116
e92d03bf
EA
1117 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1118 if (ret)
1119 goto unlock;
1120 }
4a684a41 1121
74898d7e
DV
1122 if (!obj->has_global_gtt_mapping)
1123 i915_gem_gtt_bind_object(obj, obj->cache_level);
1124
06d98131 1125 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1126 if (ret)
1127 goto unlock;
de151cf6 1128
05394f39
CW
1129 if (i915_gem_object_is_inactive(obj))
1130 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1131
6299f992
CW
1132 obj->fault_mappable = true;
1133
dd2757f8 1134 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1135 page_offset;
1136
1137 /* Finally, remap it using the new GTT offset */
1138 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1139unlock:
de151cf6 1140 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1141out:
de151cf6 1142 switch (ret) {
d9bc7e9f 1143 case -EIO:
a9340cca
DV
1144 /* If this -EIO is due to a gpu hang, give the reset code a
1145 * chance to clean up the mess. Otherwise return the proper
1146 * SIGBUS. */
1147 if (!atomic_read(&dev_priv->mm.wedged))
1148 return VM_FAULT_SIGBUS;
045e769a 1149 case -EAGAIN:
d9bc7e9f
CW
1150 /* Give the error handler a chance to run and move the
1151 * objects off the GPU active list. Next time we service the
1152 * fault, we should be able to transition the page into the
1153 * GTT without touching the GPU (and so avoid further
1154 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1155 * with coherency, just lost writes.
1156 */
045e769a 1157 set_need_resched();
c715089f
CW
1158 case 0:
1159 case -ERESTARTSYS:
bed636ab 1160 case -EINTR:
c715089f 1161 return VM_FAULT_NOPAGE;
de151cf6 1162 case -ENOMEM:
de151cf6 1163 return VM_FAULT_OOM;
de151cf6 1164 default:
c715089f 1165 return VM_FAULT_SIGBUS;
de151cf6
JB
1166 }
1167}
1168
901782b2
CW
1169/**
1170 * i915_gem_release_mmap - remove physical page mappings
1171 * @obj: obj in question
1172 *
af901ca1 1173 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1174 * relinquish ownership of the pages back to the system.
1175 *
1176 * It is vital that we remove the page mapping if we have mapped a tiled
1177 * object through the GTT and then lose the fence register due to
1178 * resource pressure. Similarly if the object has been moved out of the
1179 * aperture, than pages mapped into userspace must be revoked. Removing the
1180 * mapping will then trigger a page fault on the next user access, allowing
1181 * fixup by i915_gem_fault().
1182 */
d05ca301 1183void
05394f39 1184i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1185{
6299f992
CW
1186 if (!obj->fault_mappable)
1187 return;
901782b2 1188
f6e47884
CW
1189 if (obj->base.dev->dev_mapping)
1190 unmap_mapping_range(obj->base.dev->dev_mapping,
1191 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1192 obj->base.size, 1);
fb7d516a 1193
6299f992 1194 obj->fault_mappable = false;
901782b2
CW
1195}
1196
92b88aeb 1197static uint32_t
e28f8711 1198i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1199{
e28f8711 1200 uint32_t gtt_size;
92b88aeb
CW
1201
1202 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1203 tiling_mode == I915_TILING_NONE)
1204 return size;
92b88aeb
CW
1205
1206 /* Previous chips need a power-of-two fence region when tiling */
1207 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1208 gtt_size = 1024*1024;
92b88aeb 1209 else
e28f8711 1210 gtt_size = 512*1024;
92b88aeb 1211
e28f8711
CW
1212 while (gtt_size < size)
1213 gtt_size <<= 1;
92b88aeb 1214
e28f8711 1215 return gtt_size;
92b88aeb
CW
1216}
1217
de151cf6
JB
1218/**
1219 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1220 * @obj: object to check
1221 *
1222 * Return the required GTT alignment for an object, taking into account
5e783301 1223 * potential fence register mapping.
de151cf6
JB
1224 */
1225static uint32_t
e28f8711
CW
1226i915_gem_get_gtt_alignment(struct drm_device *dev,
1227 uint32_t size,
1228 int tiling_mode)
de151cf6 1229{
de151cf6
JB
1230 /*
1231 * Minimum alignment is 4k (GTT page size), but might be greater
1232 * if a fence register is needed for the object.
1233 */
a00b10c3 1234 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1235 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1236 return 4096;
1237
a00b10c3
CW
1238 /*
1239 * Previous chips need to be aligned to the size of the smallest
1240 * fence register that can contain the object.
1241 */
e28f8711 1242 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1243}
1244
5e783301
DV
1245/**
1246 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1247 * unfenced object
e28f8711
CW
1248 * @dev: the device
1249 * @size: size of the object
1250 * @tiling_mode: tiling mode of the object
5e783301
DV
1251 *
1252 * Return the required GTT alignment for an object, only taking into account
1253 * unfenced tiled surface requirements.
1254 */
467cffba 1255uint32_t
e28f8711
CW
1256i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1257 uint32_t size,
1258 int tiling_mode)
5e783301 1259{
5e783301
DV
1260 /*
1261 * Minimum alignment is 4k (GTT page size) for sane hw.
1262 */
1263 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1264 tiling_mode == I915_TILING_NONE)
5e783301
DV
1265 return 4096;
1266
e28f8711
CW
1267 /* Previous hardware however needs to be aligned to a power-of-two
1268 * tile height. The simplest method for determining this is to reuse
1269 * the power-of-tile object size.
5e783301 1270 */
e28f8711 1271 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1272}
1273
de151cf6 1274int
ff72145b
DA
1275i915_gem_mmap_gtt(struct drm_file *file,
1276 struct drm_device *dev,
1277 uint32_t handle,
1278 uint64_t *offset)
de151cf6 1279{
da761a6e 1280 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1281 struct drm_i915_gem_object *obj;
de151cf6
JB
1282 int ret;
1283
76c1dec1 1284 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1285 if (ret)
76c1dec1 1286 return ret;
de151cf6 1287
ff72145b 1288 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1289 if (&obj->base == NULL) {
1d7cfea1
CW
1290 ret = -ENOENT;
1291 goto unlock;
1292 }
de151cf6 1293
05394f39 1294 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1295 ret = -E2BIG;
ff56b0bc 1296 goto out;
da761a6e
CW
1297 }
1298
05394f39 1299 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1300 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1301 ret = -EINVAL;
1302 goto out;
ab18282d
CW
1303 }
1304
05394f39 1305 if (!obj->base.map_list.map) {
b464e9a2 1306 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1307 if (ret)
1308 goto out;
de151cf6
JB
1309 }
1310
ff72145b 1311 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1312
1d7cfea1 1313out:
05394f39 1314 drm_gem_object_unreference(&obj->base);
1d7cfea1 1315unlock:
de151cf6 1316 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1317 return ret;
de151cf6
JB
1318}
1319
ff72145b
DA
1320/**
1321 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1322 * @dev: DRM device
1323 * @data: GTT mapping ioctl data
1324 * @file: GEM object info
1325 *
1326 * Simply returns the fake offset to userspace so it can mmap it.
1327 * The mmap call will end up in drm_gem_mmap(), which will set things
1328 * up so we can get faults in the handler above.
1329 *
1330 * The fault handler will take care of binding the object into the GTT
1331 * (since it may have been evicted to make room for something), allocating
1332 * a fence register, and mapping the appropriate aperture address into
1333 * userspace.
1334 */
1335int
1336i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1337 struct drm_file *file)
1338{
1339 struct drm_i915_gem_mmap_gtt *args = data;
1340
ff72145b
DA
1341 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1342}
1343
1286ff73 1344int
05394f39 1345i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1346 gfp_t gfpmask)
1347{
e5281ccd
CW
1348 int page_count, i;
1349 struct address_space *mapping;
1350 struct inode *inode;
1351 struct page *page;
1352
1286ff73
DV
1353 if (obj->pages || obj->sg_table)
1354 return 0;
1355
e5281ccd
CW
1356 /* Get the list of pages out of our struct file. They'll be pinned
1357 * at this point until we release them.
1358 */
05394f39
CW
1359 page_count = obj->base.size / PAGE_SIZE;
1360 BUG_ON(obj->pages != NULL);
1361 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1362 if (obj->pages == NULL)
e5281ccd
CW
1363 return -ENOMEM;
1364
05394f39 1365 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1366 mapping = inode->i_mapping;
5949eac4
HD
1367 gfpmask |= mapping_gfp_mask(mapping);
1368
e5281ccd 1369 for (i = 0; i < page_count; i++) {
5949eac4 1370 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1371 if (IS_ERR(page))
1372 goto err_pages;
1373
05394f39 1374 obj->pages[i] = page;
e5281ccd
CW
1375 }
1376
6dacfd2f 1377 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1378 i915_gem_object_do_bit_17_swizzle(obj);
1379
1380 return 0;
1381
1382err_pages:
1383 while (i--)
05394f39 1384 page_cache_release(obj->pages[i]);
e5281ccd 1385
05394f39
CW
1386 drm_free_large(obj->pages);
1387 obj->pages = NULL;
e5281ccd
CW
1388 return PTR_ERR(page);
1389}
1390
5cdf5881 1391static void
05394f39 1392i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1393{
05394f39 1394 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1395 int i;
1396
1286ff73
DV
1397 if (!obj->pages)
1398 return;
1399
05394f39 1400 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1401
6dacfd2f 1402 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1403 i915_gem_object_save_bit_17_swizzle(obj);
1404
05394f39
CW
1405 if (obj->madv == I915_MADV_DONTNEED)
1406 obj->dirty = 0;
3ef94daa
CW
1407
1408 for (i = 0; i < page_count; i++) {
05394f39
CW
1409 if (obj->dirty)
1410 set_page_dirty(obj->pages[i]);
3ef94daa 1411
05394f39
CW
1412 if (obj->madv == I915_MADV_WILLNEED)
1413 mark_page_accessed(obj->pages[i]);
3ef94daa 1414
05394f39 1415 page_cache_release(obj->pages[i]);
3ef94daa 1416 }
05394f39 1417 obj->dirty = 0;
673a394b 1418
05394f39
CW
1419 drm_free_large(obj->pages);
1420 obj->pages = NULL;
673a394b
EA
1421}
1422
54cf91dc 1423void
05394f39 1424i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1425 struct intel_ring_buffer *ring,
1426 u32 seqno)
673a394b 1427{
05394f39 1428 struct drm_device *dev = obj->base.dev;
69dc4987 1429 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1430
852835f3 1431 BUG_ON(ring == NULL);
05394f39 1432 obj->ring = ring;
673a394b
EA
1433
1434 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1435 if (!obj->active) {
1436 drm_gem_object_reference(&obj->base);
1437 obj->active = 1;
673a394b 1438 }
e35a41de 1439
673a394b 1440 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1441 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1442 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1443
05394f39 1444 obj->last_rendering_seqno = seqno;
caea7476 1445
7dd49065 1446 if (obj->fenced_gpu_access) {
caea7476 1447 obj->last_fenced_seqno = seqno;
caea7476 1448
7dd49065
CW
1449 /* Bump MRU to take account of the delayed flush */
1450 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1451 struct drm_i915_fence_reg *reg;
1452
1453 reg = &dev_priv->fence_regs[obj->fence_reg];
1454 list_move_tail(&reg->lru_list,
1455 &dev_priv->mm.fence_list);
1456 }
caea7476
CW
1457 }
1458}
1459
1460static void
1461i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1462{
1463 list_del_init(&obj->ring_list);
1464 obj->last_rendering_seqno = 0;
15a13bbd 1465 obj->last_fenced_seqno = 0;
673a394b
EA
1466}
1467
ce44b0ea 1468static void
05394f39 1469i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1470{
05394f39 1471 struct drm_device *dev = obj->base.dev;
ce44b0ea 1472 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1473
05394f39
CW
1474 BUG_ON(!obj->active);
1475 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1476
1477 i915_gem_object_move_off_active(obj);
1478}
1479
1480static void
1481i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1482{
1483 struct drm_device *dev = obj->base.dev;
1484 struct drm_i915_private *dev_priv = dev->dev_private;
1485
1b50247a 1486 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476
CW
1487
1488 BUG_ON(!list_empty(&obj->gpu_write_list));
1489 BUG_ON(!obj->active);
1490 obj->ring = NULL;
1491
1492 i915_gem_object_move_off_active(obj);
1493 obj->fenced_gpu_access = false;
caea7476
CW
1494
1495 obj->active = 0;
87ca9c8a 1496 obj->pending_gpu_write = false;
caea7476
CW
1497 drm_gem_object_unreference(&obj->base);
1498
1499 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1500}
673a394b 1501
963b4836
CW
1502/* Immediately discard the backing storage */
1503static void
05394f39 1504i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1505{
bb6baf76 1506 struct inode *inode;
963b4836 1507
ae9fed6b
CW
1508 /* Our goal here is to return as much of the memory as
1509 * is possible back to the system as we are called from OOM.
1510 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1511 * backing pages, *now*.
ae9fed6b 1512 */
05394f39 1513 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1514 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1515
a14917ee
CW
1516 if (obj->base.map_list.map)
1517 drm_gem_free_mmap_offset(&obj->base);
1518
05394f39 1519 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1520}
1521
1522static inline int
05394f39 1523i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1524{
05394f39 1525 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1526}
1527
63560396 1528static void
db53a302
CW
1529i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1530 uint32_t flush_domains)
63560396 1531{
05394f39 1532 struct drm_i915_gem_object *obj, *next;
63560396 1533
05394f39 1534 list_for_each_entry_safe(obj, next,
64193406 1535 &ring->gpu_write_list,
63560396 1536 gpu_write_list) {
05394f39
CW
1537 if (obj->base.write_domain & flush_domains) {
1538 uint32_t old_write_domain = obj->base.write_domain;
63560396 1539
05394f39
CW
1540 obj->base.write_domain = 0;
1541 list_del_init(&obj->gpu_write_list);
1ec14ad3 1542 i915_gem_object_move_to_active(obj, ring,
db53a302 1543 i915_gem_next_request_seqno(ring));
63560396 1544
63560396 1545 trace_i915_gem_object_change_domain(obj,
05394f39 1546 obj->base.read_domains,
63560396
DV
1547 old_write_domain);
1548 }
1549 }
1550}
8187a2b7 1551
53d227f2
DV
1552static u32
1553i915_gem_get_seqno(struct drm_device *dev)
1554{
1555 drm_i915_private_t *dev_priv = dev->dev_private;
1556 u32 seqno = dev_priv->next_seqno;
1557
1558 /* reserve 0 for non-seqno */
1559 if (++dev_priv->next_seqno == 0)
1560 dev_priv->next_seqno = 1;
1561
1562 return seqno;
1563}
1564
1565u32
1566i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1567{
1568 if (ring->outstanding_lazy_request == 0)
1569 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1570
1571 return ring->outstanding_lazy_request;
1572}
1573
3cce469c 1574int
db53a302 1575i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1576 struct drm_file *file,
db53a302 1577 struct drm_i915_gem_request *request)
673a394b 1578{
db53a302 1579 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1580 uint32_t seqno;
a71d8d94 1581 u32 request_ring_position;
673a394b 1582 int was_empty;
3cce469c
CW
1583 int ret;
1584
cc889e0f
DV
1585 /*
1586 * Emit any outstanding flushes - execbuf can fail to emit the flush
1587 * after having emitted the batchbuffer command. Hence we need to fix
1588 * things up similar to emitting the lazy request. The difference here
1589 * is that the flush _must_ happen before the next request, no matter
1590 * what.
1591 */
1592 if (ring->gpu_caches_dirty) {
1593 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1594 if (ret)
1595 return ret;
1596
1597 ring->gpu_caches_dirty = false;
1598 }
1599
3cce469c 1600 BUG_ON(request == NULL);
53d227f2 1601 seqno = i915_gem_next_request_seqno(ring);
673a394b 1602
a71d8d94
CW
1603 /* Record the position of the start of the request so that
1604 * should we detect the updated seqno part-way through the
1605 * GPU processing the request, we never over-estimate the
1606 * position of the head.
1607 */
1608 request_ring_position = intel_ring_get_tail(ring);
1609
3cce469c
CW
1610 ret = ring->add_request(ring, &seqno);
1611 if (ret)
1612 return ret;
673a394b 1613
db53a302 1614 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1615
1616 request->seqno = seqno;
852835f3 1617 request->ring = ring;
a71d8d94 1618 request->tail = request_ring_position;
673a394b 1619 request->emitted_jiffies = jiffies;
852835f3
ZN
1620 was_empty = list_empty(&ring->request_list);
1621 list_add_tail(&request->list, &ring->request_list);
1622
db53a302
CW
1623 if (file) {
1624 struct drm_i915_file_private *file_priv = file->driver_priv;
1625
1c25595f 1626 spin_lock(&file_priv->mm.lock);
f787a5f5 1627 request->file_priv = file_priv;
b962442e 1628 list_add_tail(&request->client_list,
f787a5f5 1629 &file_priv->mm.request_list);
1c25595f 1630 spin_unlock(&file_priv->mm.lock);
b962442e 1631 }
673a394b 1632
5391d0cf 1633 ring->outstanding_lazy_request = 0;
db53a302 1634
f65d9421 1635 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1636 if (i915_enable_hangcheck) {
1637 mod_timer(&dev_priv->hangcheck_timer,
1638 jiffies +
1639 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1640 }
f65d9421 1641 if (was_empty)
b3b079db
CW
1642 queue_delayed_work(dev_priv->wq,
1643 &dev_priv->mm.retire_work, HZ);
f65d9421 1644 }
cc889e0f
DV
1645
1646 WARN_ON(!list_empty(&ring->gpu_write_list));
1647
3cce469c 1648 return 0;
673a394b
EA
1649}
1650
f787a5f5
CW
1651static inline void
1652i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1653{
1c25595f 1654 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1655
1c25595f
CW
1656 if (!file_priv)
1657 return;
1c5d22f7 1658
1c25595f 1659 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1660 if (request->file_priv) {
1661 list_del(&request->client_list);
1662 request->file_priv = NULL;
1663 }
1c25595f 1664 spin_unlock(&file_priv->mm.lock);
673a394b 1665}
673a394b 1666
dfaae392
CW
1667static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1668 struct intel_ring_buffer *ring)
9375e446 1669{
dfaae392
CW
1670 while (!list_empty(&ring->request_list)) {
1671 struct drm_i915_gem_request *request;
673a394b 1672
dfaae392
CW
1673 request = list_first_entry(&ring->request_list,
1674 struct drm_i915_gem_request,
1675 list);
de151cf6 1676
dfaae392 1677 list_del(&request->list);
f787a5f5 1678 i915_gem_request_remove_from_client(request);
dfaae392
CW
1679 kfree(request);
1680 }
673a394b 1681
dfaae392 1682 while (!list_empty(&ring->active_list)) {
05394f39 1683 struct drm_i915_gem_object *obj;
9375e446 1684
05394f39
CW
1685 obj = list_first_entry(&ring->active_list,
1686 struct drm_i915_gem_object,
1687 ring_list);
9375e446 1688
05394f39
CW
1689 obj->base.write_domain = 0;
1690 list_del_init(&obj->gpu_write_list);
1691 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1692 }
1693}
1694
312817a3
CW
1695static void i915_gem_reset_fences(struct drm_device *dev)
1696{
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698 int i;
1699
4b9de737 1700 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1701 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1702
ada726c7 1703 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1704
ada726c7
CW
1705 if (reg->obj)
1706 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1707
ada726c7
CW
1708 reg->pin_count = 0;
1709 reg->obj = NULL;
1710 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1711 }
ada726c7
CW
1712
1713 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1714}
1715
069efc1d 1716void i915_gem_reset(struct drm_device *dev)
673a394b 1717{
77f01230 1718 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1719 struct drm_i915_gem_object *obj;
b4519513 1720 struct intel_ring_buffer *ring;
1ec14ad3 1721 int i;
673a394b 1722
b4519513
CW
1723 for_each_ring(ring, dev_priv, i)
1724 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392
CW
1725
1726 /* Remove anything from the flushing lists. The GPU cache is likely
1727 * to be lost on reset along with the data, so simply move the
1728 * lost bo to the inactive list.
1729 */
1730 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1731 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1732 struct drm_i915_gem_object,
1733 mm_list);
dfaae392 1734
05394f39
CW
1735 obj->base.write_domain = 0;
1736 list_del_init(&obj->gpu_write_list);
1737 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1738 }
1739
1740 /* Move everything out of the GPU domains to ensure we do any
1741 * necessary invalidation upon reuse.
1742 */
05394f39 1743 list_for_each_entry(obj,
77f01230 1744 &dev_priv->mm.inactive_list,
69dc4987 1745 mm_list)
77f01230 1746 {
05394f39 1747 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1748 }
069efc1d
CW
1749
1750 /* The fence registers are invalidated so clear them out */
312817a3 1751 i915_gem_reset_fences(dev);
673a394b
EA
1752}
1753
1754/**
1755 * This function clears the request list as sequence numbers are passed.
1756 */
a71d8d94 1757void
db53a302 1758i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1759{
673a394b 1760 uint32_t seqno;
1ec14ad3 1761 int i;
673a394b 1762
db53a302 1763 if (list_empty(&ring->request_list))
6c0594a3
KW
1764 return;
1765
db53a302 1766 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1767
78501eac 1768 seqno = ring->get_seqno(ring);
1ec14ad3 1769
076e2c0e 1770 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1771 if (seqno >= ring->sync_seqno[i])
1772 ring->sync_seqno[i] = 0;
1773
852835f3 1774 while (!list_empty(&ring->request_list)) {
673a394b 1775 struct drm_i915_gem_request *request;
673a394b 1776
852835f3 1777 request = list_first_entry(&ring->request_list,
673a394b
EA
1778 struct drm_i915_gem_request,
1779 list);
673a394b 1780
dfaae392 1781 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1782 break;
1783
db53a302 1784 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1785 /* We know the GPU must have read the request to have
1786 * sent us the seqno + interrupt, so use the position
1787 * of tail of the request to update the last known position
1788 * of the GPU head.
1789 */
1790 ring->last_retired_head = request->tail;
b84d5f0c
CW
1791
1792 list_del(&request->list);
f787a5f5 1793 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1794 kfree(request);
1795 }
673a394b 1796
b84d5f0c
CW
1797 /* Move any buffers on the active list that are no longer referenced
1798 * by the ringbuffer to the flushing/inactive lists as appropriate.
1799 */
1800 while (!list_empty(&ring->active_list)) {
05394f39 1801 struct drm_i915_gem_object *obj;
b84d5f0c 1802
0206e353 1803 obj = list_first_entry(&ring->active_list,
05394f39
CW
1804 struct drm_i915_gem_object,
1805 ring_list);
673a394b 1806
05394f39 1807 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1808 break;
b84d5f0c 1809
05394f39 1810 if (obj->base.write_domain != 0)
b84d5f0c
CW
1811 i915_gem_object_move_to_flushing(obj);
1812 else
1813 i915_gem_object_move_to_inactive(obj);
673a394b 1814 }
9d34e5db 1815
db53a302
CW
1816 if (unlikely(ring->trace_irq_seqno &&
1817 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1818 ring->irq_put(ring);
db53a302 1819 ring->trace_irq_seqno = 0;
9d34e5db 1820 }
23bc5982 1821
db53a302 1822 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1823}
1824
b09a1fec
CW
1825void
1826i915_gem_retire_requests(struct drm_device *dev)
1827{
1828 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1829 struct intel_ring_buffer *ring;
1ec14ad3 1830 int i;
b09a1fec 1831
b4519513
CW
1832 for_each_ring(ring, dev_priv, i)
1833 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1834}
1835
75ef9da2 1836static void
673a394b
EA
1837i915_gem_retire_work_handler(struct work_struct *work)
1838{
1839 drm_i915_private_t *dev_priv;
1840 struct drm_device *dev;
b4519513 1841 struct intel_ring_buffer *ring;
0a58705b
CW
1842 bool idle;
1843 int i;
673a394b
EA
1844
1845 dev_priv = container_of(work, drm_i915_private_t,
1846 mm.retire_work.work);
1847 dev = dev_priv->dev;
1848
891b48cf
CW
1849 /* Come back later if the device is busy... */
1850 if (!mutex_trylock(&dev->struct_mutex)) {
1851 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1852 return;
1853 }
1854
b09a1fec 1855 i915_gem_retire_requests(dev);
d1b851fc 1856
0a58705b
CW
1857 /* Send a periodic flush down the ring so we don't hold onto GEM
1858 * objects indefinitely.
1859 */
1860 idle = true;
b4519513 1861 for_each_ring(ring, dev_priv, i) {
cc889e0f 1862 if (ring->gpu_caches_dirty) {
0a58705b 1863 struct drm_i915_gem_request *request;
0a58705b 1864
0a58705b 1865 request = kzalloc(sizeof(*request), GFP_KERNEL);
cc889e0f 1866 if (request == NULL ||
db53a302 1867 i915_add_request(ring, NULL, request))
0a58705b
CW
1868 kfree(request);
1869 }
1870
1871 idle &= list_empty(&ring->request_list);
1872 }
1873
1874 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1875 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1876
673a394b
EA
1877 mutex_unlock(&dev->struct_mutex);
1878}
1879
d6b2c790
DV
1880int
1881i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1882 bool interruptible)
b4aca010 1883{
b4aca010
BW
1884 if (atomic_read(&dev_priv->mm.wedged)) {
1885 struct completion *x = &dev_priv->error_completion;
1886 bool recovery_complete;
1887 unsigned long flags;
1888
1889 /* Give the error handler a chance to run. */
1890 spin_lock_irqsave(&x->wait.lock, flags);
1891 recovery_complete = x->done > 0;
1892 spin_unlock_irqrestore(&x->wait.lock, flags);
1893
d6b2c790
DV
1894 /* Non-interruptible callers can't handle -EAGAIN, hence return
1895 * -EIO unconditionally for these. */
1896 if (!interruptible)
1897 return -EIO;
1898
1899 /* Recovery complete, but still wedged means reset failure. */
1900 if (recovery_complete)
1901 return -EIO;
1902
1903 return -EAGAIN;
b4aca010
BW
1904 }
1905
1906 return 0;
1907}
1908
1909/*
1910 * Compare seqno against outstanding lazy request. Emit a request if they are
1911 * equal.
1912 */
1913static int
1914i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1915{
1916 int ret = 0;
1917
1918 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1919
1920 if (seqno == ring->outstanding_lazy_request) {
1921 struct drm_i915_gem_request *request;
1922
1923 request = kzalloc(sizeof(*request), GFP_KERNEL);
1924 if (request == NULL)
1925 return -ENOMEM;
1926
1927 ret = i915_add_request(ring, NULL, request);
1928 if (ret) {
1929 kfree(request);
1930 return ret;
1931 }
1932
1933 BUG_ON(seqno != request->seqno);
1934 }
1935
1936 return ret;
1937}
1938
5c81fe85
BW
1939/**
1940 * __wait_seqno - wait until execution of seqno has finished
1941 * @ring: the ring expected to report seqno
1942 * @seqno: duh!
1943 * @interruptible: do an interruptible wait (normally yes)
1944 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1945 *
1946 * Returns 0 if the seqno was found within the alloted time. Else returns the
1947 * errno with remaining time filled in timeout argument.
1948 */
604dd3ec 1949static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 1950 bool interruptible, struct timespec *timeout)
604dd3ec
BW
1951{
1952 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
1953 struct timespec before, now, wait_time={1,0};
1954 unsigned long timeout_jiffies;
1955 long end;
1956 bool wait_forever = true;
d6b2c790 1957 int ret;
604dd3ec
BW
1958
1959 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1960 return 0;
1961
1962 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
1963
1964 if (timeout != NULL) {
1965 wait_time = *timeout;
1966 wait_forever = false;
1967 }
1968
1969 timeout_jiffies = timespec_to_jiffies(&wait_time);
1970
604dd3ec
BW
1971 if (WARN_ON(!ring->irq_get(ring)))
1972 return -ENODEV;
1973
5c81fe85
BW
1974 /* Record current time in case interrupted by signal, or wedged * */
1975 getrawmonotonic(&before);
1976
604dd3ec
BW
1977#define EXIT_COND \
1978 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1979 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
1980 do {
1981 if (interruptible)
1982 end = wait_event_interruptible_timeout(ring->irq_queue,
1983 EXIT_COND,
1984 timeout_jiffies);
1985 else
1986 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1987 timeout_jiffies);
604dd3ec 1988
d6b2c790
DV
1989 ret = i915_gem_check_wedge(dev_priv, interruptible);
1990 if (ret)
1991 end = ret;
5c81fe85
BW
1992 } while (end == 0 && wait_forever);
1993
1994 getrawmonotonic(&now);
604dd3ec
BW
1995
1996 ring->irq_put(ring);
1997 trace_i915_gem_request_wait_end(ring, seqno);
1998#undef EXIT_COND
1999
5c81fe85
BW
2000 if (timeout) {
2001 struct timespec sleep_time = timespec_sub(now, before);
2002 *timeout = timespec_sub(*timeout, sleep_time);
2003 }
2004
2005 switch (end) {
eeef9b38 2006 case -EIO:
5c81fe85
BW
2007 case -EAGAIN: /* Wedged */
2008 case -ERESTARTSYS: /* Signal */
2009 return (int)end;
2010 case 0: /* Timeout */
2011 if (timeout)
2012 set_normalized_timespec(timeout, 0, 0);
2013 return -ETIME;
2014 default: /* Completed */
2015 WARN_ON(end < 0); /* We're not aware of other errors */
2016 return 0;
2017 }
604dd3ec
BW
2018}
2019
db53a302
CW
2020/**
2021 * Waits for a sequence number to be signaled, and cleans up the
2022 * request and object lists appropriately for that event.
2023 */
5a5a0c64 2024int
199b2bc2 2025i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 2026{
db53a302 2027 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
2028 int ret = 0;
2029
2030 BUG_ON(seqno == 0);
2031
d6b2c790 2032 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
b4aca010
BW
2033 if (ret)
2034 return ret;
3cce469c 2035
b4aca010
BW
2036 ret = i915_gem_check_olr(ring, seqno);
2037 if (ret)
2038 return ret;
ffed1d09 2039
5c81fe85 2040 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 2041
673a394b
EA
2042 return ret;
2043}
2044
673a394b
EA
2045/**
2046 * Ensures that all rendering to the object has completed and the object is
2047 * safe to unbind from the GTT or access from the CPU.
2048 */
54cf91dc 2049int
ce453d81 2050i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2051{
673a394b
EA
2052 int ret;
2053
e47c68e9
EA
2054 /* This function only exists to support waiting for existing rendering,
2055 * not for emitting required flushes.
673a394b 2056 */
05394f39 2057 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2058
2059 /* If there is rendering queued on the buffer being evicted, wait for
2060 * it.
2061 */
05394f39 2062 if (obj->active) {
199b2bc2 2063 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2064 if (ret)
673a394b 2065 return ret;
b2da9fe5 2066 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
2067 }
2068
2069 return 0;
2070}
2071
30dfebf3
DV
2072/**
2073 * Ensures that an object will eventually get non-busy by flushing any required
2074 * write domains, emitting any outstanding lazy request and retiring and
2075 * completed requests.
2076 */
2077static int
2078i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2079{
2080 int ret;
2081
2082 if (obj->active) {
2083 ret = i915_gem_object_flush_gpu_write_domain(obj);
2084 if (ret)
2085 return ret;
2086
2087 ret = i915_gem_check_olr(obj->ring,
2088 obj->last_rendering_seqno);
2089 if (ret)
2090 return ret;
2091 i915_gem_retire_requests_ring(obj->ring);
2092 }
2093
2094 return 0;
2095}
2096
23ba4fd0
BW
2097/**
2098 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2099 * @DRM_IOCTL_ARGS: standard ioctl arguments
2100 *
2101 * Returns 0 if successful, else an error is returned with the remaining time in
2102 * the timeout parameter.
2103 * -ETIME: object is still busy after timeout
2104 * -ERESTARTSYS: signal interrupted the wait
2105 * -ENONENT: object doesn't exist
2106 * Also possible, but rare:
2107 * -EAGAIN: GPU wedged
2108 * -ENOMEM: damn
2109 * -ENODEV: Internal IRQ fail
2110 * -E?: The add request failed
2111 *
2112 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2113 * non-zero timeout parameter the wait ioctl will wait for the given number of
2114 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2115 * without holding struct_mutex the object may become re-busied before this
2116 * function completes. A similar but shorter * race condition exists in the busy
2117 * ioctl
2118 */
2119int
2120i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2121{
2122 struct drm_i915_gem_wait *args = data;
2123 struct drm_i915_gem_object *obj;
2124 struct intel_ring_buffer *ring = NULL;
eac1f14f 2125 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2126 u32 seqno = 0;
2127 int ret = 0;
2128
eac1f14f
BW
2129 if (args->timeout_ns >= 0) {
2130 timeout_stack = ns_to_timespec(args->timeout_ns);
2131 timeout = &timeout_stack;
2132 }
23ba4fd0
BW
2133
2134 ret = i915_mutex_lock_interruptible(dev);
2135 if (ret)
2136 return ret;
2137
2138 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2139 if (&obj->base == NULL) {
2140 mutex_unlock(&dev->struct_mutex);
2141 return -ENOENT;
2142 }
2143
30dfebf3
DV
2144 /* Need to make sure the object gets inactive eventually. */
2145 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2146 if (ret)
2147 goto out;
2148
2149 if (obj->active) {
2150 seqno = obj->last_rendering_seqno;
2151 ring = obj->ring;
2152 }
2153
2154 if (seqno == 0)
2155 goto out;
2156
23ba4fd0
BW
2157 /* Do this after OLR check to make sure we make forward progress polling
2158 * on this IOCTL with a 0 timeout (like busy ioctl)
2159 */
2160 if (!args->timeout_ns) {
2161 ret = -ETIME;
2162 goto out;
2163 }
2164
2165 drm_gem_object_unreference(&obj->base);
2166 mutex_unlock(&dev->struct_mutex);
2167
eac1f14f
BW
2168 ret = __wait_seqno(ring, seqno, true, timeout);
2169 if (timeout) {
2170 WARN_ON(!timespec_valid(timeout));
2171 args->timeout_ns = timespec_to_ns(timeout);
2172 }
23ba4fd0
BW
2173 return ret;
2174
2175out:
2176 drm_gem_object_unreference(&obj->base);
2177 mutex_unlock(&dev->struct_mutex);
2178 return ret;
2179}
2180
5816d648
BW
2181/**
2182 * i915_gem_object_sync - sync an object to a ring.
2183 *
2184 * @obj: object which may be in use on another ring.
2185 * @to: ring we wish to use the object on. May be NULL.
2186 *
2187 * This code is meant to abstract object synchronization with the GPU.
2188 * Calling with NULL implies synchronizing the object with the CPU
2189 * rather than a particular GPU ring.
2190 *
2191 * Returns 0 if successful, else propagates up the lower layer error.
2192 */
2911a35b
BW
2193int
2194i915_gem_object_sync(struct drm_i915_gem_object *obj,
2195 struct intel_ring_buffer *to)
2196{
2197 struct intel_ring_buffer *from = obj->ring;
2198 u32 seqno;
2199 int ret, idx;
2200
2201 if (from == NULL || to == from)
2202 return 0;
2203
5816d648 2204 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
2205 return i915_gem_object_wait_rendering(obj);
2206
2207 idx = intel_ring_sync_index(from, to);
2208
2209 seqno = obj->last_rendering_seqno;
2210 if (seqno <= from->sync_seqno[idx])
2211 return 0;
2212
b4aca010
BW
2213 ret = i915_gem_check_olr(obj->ring, seqno);
2214 if (ret)
2215 return ret;
2911a35b 2216
1500f7ea 2217 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2218 if (!ret)
2219 from->sync_seqno[idx] = seqno;
2911a35b 2220
e3a5a225 2221 return ret;
2911a35b
BW
2222}
2223
b5ffc9bc
CW
2224static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2225{
2226 u32 old_write_domain, old_read_domains;
2227
b5ffc9bc
CW
2228 /* Act a barrier for all accesses through the GTT */
2229 mb();
2230
2231 /* Force a pagefault for domain tracking on next user access */
2232 i915_gem_release_mmap(obj);
2233
b97c3d9c
KP
2234 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2235 return;
2236
b5ffc9bc
CW
2237 old_read_domains = obj->base.read_domains;
2238 old_write_domain = obj->base.write_domain;
2239
2240 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2241 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2242
2243 trace_i915_gem_object_change_domain(obj,
2244 old_read_domains,
2245 old_write_domain);
2246}
2247
673a394b
EA
2248/**
2249 * Unbinds an object from the GTT aperture.
2250 */
0f973f27 2251int
05394f39 2252i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2253{
7bddb01f 2254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2255 int ret = 0;
2256
05394f39 2257 if (obj->gtt_space == NULL)
673a394b
EA
2258 return 0;
2259
31d8d651
CW
2260 if (obj->pin_count)
2261 return -EBUSY;
673a394b 2262
a8198eea 2263 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2264 if (ret)
a8198eea
CW
2265 return ret;
2266 /* Continue on if we fail due to EIO, the GPU is hung so we
2267 * should be safe and we need to cleanup or else we might
2268 * cause memory corruption through use-after-free.
2269 */
2270
b5ffc9bc 2271 i915_gem_object_finish_gtt(obj);
5323fd04 2272
673a394b
EA
2273 /* Move the object to the CPU domain to ensure that
2274 * any possible CPU writes while it's not in the GTT
a8198eea 2275 * are flushed when we go to remap it.
673a394b 2276 */
a8198eea
CW
2277 if (ret == 0)
2278 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2279 if (ret == -ERESTARTSYS)
673a394b 2280 return ret;
812ed492 2281 if (ret) {
a8198eea
CW
2282 /* In the event of a disaster, abandon all caches and
2283 * hope for the best.
2284 */
812ed492 2285 i915_gem_clflush_object(obj);
05394f39 2286 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2287 }
673a394b 2288
96b47b65 2289 /* release the fence reg _after_ flushing */
d9e86c0e 2290 ret = i915_gem_object_put_fence(obj);
1488fc08 2291 if (ret)
d9e86c0e 2292 return ret;
96b47b65 2293
db53a302
CW
2294 trace_i915_gem_object_unbind(obj);
2295
74898d7e
DV
2296 if (obj->has_global_gtt_mapping)
2297 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2298 if (obj->has_aliasing_ppgtt_mapping) {
2299 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2300 obj->has_aliasing_ppgtt_mapping = 0;
2301 }
74163907 2302 i915_gem_gtt_finish_object(obj);
7bddb01f 2303
e5281ccd 2304 i915_gem_object_put_pages_gtt(obj);
673a394b 2305
6299f992 2306 list_del_init(&obj->gtt_list);
05394f39 2307 list_del_init(&obj->mm_list);
75e9e915 2308 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2309 obj->map_and_fenceable = true;
673a394b 2310
05394f39
CW
2311 drm_mm_put_block(obj->gtt_space);
2312 obj->gtt_space = NULL;
2313 obj->gtt_offset = 0;
673a394b 2314
05394f39 2315 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2316 i915_gem_object_truncate(obj);
2317
8dc1775d 2318 return ret;
673a394b
EA
2319}
2320
88241785 2321int
db53a302 2322i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2323 uint32_t invalidate_domains,
2324 uint32_t flush_domains)
2325{
88241785
CW
2326 int ret;
2327
36d527de
CW
2328 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2329 return 0;
2330
db53a302
CW
2331 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2332
88241785
CW
2333 ret = ring->flush(ring, invalidate_domains, flush_domains);
2334 if (ret)
2335 return ret;
2336
36d527de
CW
2337 if (flush_domains & I915_GEM_GPU_DOMAINS)
2338 i915_gem_process_flushing_list(ring, flush_domains);
2339
88241785 2340 return 0;
54cf91dc
CW
2341}
2342
b2da9fe5 2343static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2344{
88241785
CW
2345 int ret;
2346
395b70be 2347 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2348 return 0;
2349
88241785 2350 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2351 ret = i915_gem_flush_ring(ring,
0ac74c6b 2352 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2353 if (ret)
2354 return ret;
2355 }
2356
199b2bc2 2357 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2358}
2359
b2da9fe5 2360int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2361{
2362 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2363 struct intel_ring_buffer *ring;
1ec14ad3 2364 int ret, i;
4df2faf4 2365
4df2faf4 2366 /* Flush everything onto the inactive list. */
b4519513
CW
2367 for_each_ring(ring, dev_priv, i) {
2368 ret = i915_ring_idle(ring);
1ec14ad3
CW
2369 if (ret)
2370 return ret;
b4519513
CW
2371
2372 /* Is the device fubar? */
2373 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2374 return -EBUSY;
f2ef6eb1
BW
2375
2376 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2377 if (ret)
2378 return ret;
1ec14ad3 2379 }
4df2faf4 2380
8a1a49f9 2381 return 0;
4df2faf4
DV
2382}
2383
9ce079e4
CW
2384static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2385 struct drm_i915_gem_object *obj)
4e901fdc 2386{
4e901fdc 2387 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2388 uint64_t val;
2389
9ce079e4
CW
2390 if (obj) {
2391 u32 size = obj->gtt_space->size;
4e901fdc 2392
9ce079e4
CW
2393 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2394 0xfffff000) << 32;
2395 val |= obj->gtt_offset & 0xfffff000;
2396 val |= (uint64_t)((obj->stride / 128) - 1) <<
2397 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2398
9ce079e4
CW
2399 if (obj->tiling_mode == I915_TILING_Y)
2400 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2401 val |= I965_FENCE_REG_VALID;
2402 } else
2403 val = 0;
c6642782 2404
9ce079e4
CW
2405 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2406 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2407}
2408
9ce079e4
CW
2409static void i965_write_fence_reg(struct drm_device *dev, int reg,
2410 struct drm_i915_gem_object *obj)
de151cf6 2411{
de151cf6 2412 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2413 uint64_t val;
2414
9ce079e4
CW
2415 if (obj) {
2416 u32 size = obj->gtt_space->size;
de151cf6 2417
9ce079e4
CW
2418 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2419 0xfffff000) << 32;
2420 val |= obj->gtt_offset & 0xfffff000;
2421 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2422 if (obj->tiling_mode == I915_TILING_Y)
2423 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2424 val |= I965_FENCE_REG_VALID;
2425 } else
2426 val = 0;
c6642782 2427
9ce079e4
CW
2428 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2429 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2430}
2431
9ce079e4
CW
2432static void i915_write_fence_reg(struct drm_device *dev, int reg,
2433 struct drm_i915_gem_object *obj)
de151cf6 2434{
de151cf6 2435 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2436 u32 val;
de151cf6 2437
9ce079e4
CW
2438 if (obj) {
2439 u32 size = obj->gtt_space->size;
2440 int pitch_val;
2441 int tile_width;
c6642782 2442
9ce079e4
CW
2443 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2444 (size & -size) != size ||
2445 (obj->gtt_offset & (size - 1)),
2446 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2447 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2448
9ce079e4
CW
2449 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2450 tile_width = 128;
2451 else
2452 tile_width = 512;
2453
2454 /* Note: pitch better be a power of two tile widths */
2455 pitch_val = obj->stride / tile_width;
2456 pitch_val = ffs(pitch_val) - 1;
2457
2458 val = obj->gtt_offset;
2459 if (obj->tiling_mode == I915_TILING_Y)
2460 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2461 val |= I915_FENCE_SIZE_BITS(size);
2462 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2463 val |= I830_FENCE_REG_VALID;
2464 } else
2465 val = 0;
2466
2467 if (reg < 8)
2468 reg = FENCE_REG_830_0 + reg * 4;
2469 else
2470 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2471
2472 I915_WRITE(reg, val);
2473 POSTING_READ(reg);
de151cf6
JB
2474}
2475
9ce079e4
CW
2476static void i830_write_fence_reg(struct drm_device *dev, int reg,
2477 struct drm_i915_gem_object *obj)
de151cf6 2478{
de151cf6 2479 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2480 uint32_t val;
de151cf6 2481
9ce079e4
CW
2482 if (obj) {
2483 u32 size = obj->gtt_space->size;
2484 uint32_t pitch_val;
de151cf6 2485
9ce079e4
CW
2486 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2487 (size & -size) != size ||
2488 (obj->gtt_offset & (size - 1)),
2489 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2490 obj->gtt_offset, size);
e76a16de 2491
9ce079e4
CW
2492 pitch_val = obj->stride / 128;
2493 pitch_val = ffs(pitch_val) - 1;
de151cf6 2494
9ce079e4
CW
2495 val = obj->gtt_offset;
2496 if (obj->tiling_mode == I915_TILING_Y)
2497 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2498 val |= I830_FENCE_SIZE_BITS(size);
2499 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2500 val |= I830_FENCE_REG_VALID;
2501 } else
2502 val = 0;
c6642782 2503
9ce079e4
CW
2504 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2505 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2506}
2507
2508static void i915_gem_write_fence(struct drm_device *dev, int reg,
2509 struct drm_i915_gem_object *obj)
2510{
2511 switch (INTEL_INFO(dev)->gen) {
2512 case 7:
2513 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2514 case 5:
2515 case 4: i965_write_fence_reg(dev, reg, obj); break;
2516 case 3: i915_write_fence_reg(dev, reg, obj); break;
2517 case 2: i830_write_fence_reg(dev, reg, obj); break;
2518 default: break;
2519 }
de151cf6
JB
2520}
2521
61050808
CW
2522static inline int fence_number(struct drm_i915_private *dev_priv,
2523 struct drm_i915_fence_reg *fence)
2524{
2525 return fence - dev_priv->fence_regs;
2526}
2527
2528static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2529 struct drm_i915_fence_reg *fence,
2530 bool enable)
2531{
2532 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2533 int reg = fence_number(dev_priv, fence);
2534
2535 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2536
2537 if (enable) {
2538 obj->fence_reg = reg;
2539 fence->obj = obj;
2540 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2541 } else {
2542 obj->fence_reg = I915_FENCE_REG_NONE;
2543 fence->obj = NULL;
2544 list_del_init(&fence->lru_list);
2545 }
2546}
2547
d9e86c0e 2548static int
a360bb1a 2549i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2550{
2551 int ret;
2552
2553 if (obj->fenced_gpu_access) {
88241785 2554 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2555 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2556 0, obj->base.write_domain);
2557 if (ret)
2558 return ret;
2559 }
d9e86c0e
CW
2560
2561 obj->fenced_gpu_access = false;
2562 }
2563
1c293ea3 2564 if (obj->last_fenced_seqno) {
199b2bc2 2565 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2566 if (ret)
2567 return ret;
d9e86c0e
CW
2568
2569 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2570 }
2571
63256ec5
CW
2572 /* Ensure that all CPU reads are completed before installing a fence
2573 * and all writes before removing the fence.
2574 */
2575 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2576 mb();
2577
d9e86c0e
CW
2578 return 0;
2579}
2580
2581int
2582i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2583{
61050808 2584 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2585 int ret;
2586
a360bb1a 2587 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2588 if (ret)
2589 return ret;
2590
61050808
CW
2591 if (obj->fence_reg == I915_FENCE_REG_NONE)
2592 return 0;
d9e86c0e 2593
61050808
CW
2594 i915_gem_object_update_fence(obj,
2595 &dev_priv->fence_regs[obj->fence_reg],
2596 false);
2597 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2598
2599 return 0;
2600}
2601
2602static struct drm_i915_fence_reg *
a360bb1a 2603i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2604{
ae3db24a 2605 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2606 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2607 int i;
ae3db24a
DV
2608
2609 /* First try to find a free reg */
d9e86c0e 2610 avail = NULL;
ae3db24a
DV
2611 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2612 reg = &dev_priv->fence_regs[i];
2613 if (!reg->obj)
d9e86c0e 2614 return reg;
ae3db24a 2615
1690e1eb 2616 if (!reg->pin_count)
d9e86c0e 2617 avail = reg;
ae3db24a
DV
2618 }
2619
d9e86c0e
CW
2620 if (avail == NULL)
2621 return NULL;
ae3db24a
DV
2622
2623 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2624 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2625 if (reg->pin_count)
ae3db24a
DV
2626 continue;
2627
8fe301ad 2628 return reg;
ae3db24a
DV
2629 }
2630
8fe301ad 2631 return NULL;
ae3db24a
DV
2632}
2633
de151cf6 2634/**
9a5a53b3 2635 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2636 * @obj: object to map through a fence reg
2637 *
2638 * When mapping objects through the GTT, userspace wants to be able to write
2639 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2640 * This function walks the fence regs looking for a free one for @obj,
2641 * stealing one if it can't find any.
2642 *
2643 * It then sets up the reg based on the object's properties: address, pitch
2644 * and tiling format.
9a5a53b3
CW
2645 *
2646 * For an untiled surface, this removes any existing fence.
de151cf6 2647 */
8c4b8c3f 2648int
06d98131 2649i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2650{
05394f39 2651 struct drm_device *dev = obj->base.dev;
79e53945 2652 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2653 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2654 struct drm_i915_fence_reg *reg;
ae3db24a 2655 int ret;
de151cf6 2656
14415745
CW
2657 /* Have we updated the tiling parameters upon the object and so
2658 * will need to serialise the write to the associated fence register?
2659 */
5d82e3e6 2660 if (obj->fence_dirty) {
14415745
CW
2661 ret = i915_gem_object_flush_fence(obj);
2662 if (ret)
2663 return ret;
2664 }
9a5a53b3 2665
d9e86c0e 2666 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2667 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2668 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2669 if (!obj->fence_dirty) {
14415745
CW
2670 list_move_tail(&reg->lru_list,
2671 &dev_priv->mm.fence_list);
2672 return 0;
2673 }
2674 } else if (enable) {
2675 reg = i915_find_fence_reg(dev);
2676 if (reg == NULL)
2677 return -EDEADLK;
d9e86c0e 2678
14415745
CW
2679 if (reg->obj) {
2680 struct drm_i915_gem_object *old = reg->obj;
2681
2682 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2683 if (ret)
2684 return ret;
2685
14415745 2686 i915_gem_object_fence_lost(old);
29c5a587 2687 }
14415745 2688 } else
a09ba7fa 2689 return 0;
a09ba7fa 2690
14415745 2691 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2692 obj->fence_dirty = false;
14415745 2693
9ce079e4 2694 return 0;
de151cf6
JB
2695}
2696
673a394b
EA
2697/**
2698 * Finds free space in the GTT aperture and binds the object there.
2699 */
2700static int
05394f39 2701i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2702 unsigned alignment,
75e9e915 2703 bool map_and_fenceable)
673a394b 2704{
05394f39 2705 struct drm_device *dev = obj->base.dev;
673a394b 2706 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2707 struct drm_mm_node *free_space;
a00b10c3 2708 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2709 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2710 bool mappable, fenceable;
07f73f69 2711 int ret;
673a394b 2712
05394f39 2713 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2714 DRM_ERROR("Attempting to bind a purgeable object\n");
2715 return -EINVAL;
2716 }
2717
e28f8711
CW
2718 fence_size = i915_gem_get_gtt_size(dev,
2719 obj->base.size,
2720 obj->tiling_mode);
2721 fence_alignment = i915_gem_get_gtt_alignment(dev,
2722 obj->base.size,
2723 obj->tiling_mode);
2724 unfenced_alignment =
2725 i915_gem_get_unfenced_gtt_alignment(dev,
2726 obj->base.size,
2727 obj->tiling_mode);
a00b10c3 2728
673a394b 2729 if (alignment == 0)
5e783301
DV
2730 alignment = map_and_fenceable ? fence_alignment :
2731 unfenced_alignment;
75e9e915 2732 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2733 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2734 return -EINVAL;
2735 }
2736
05394f39 2737 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2738
654fc607
CW
2739 /* If the object is bigger than the entire aperture, reject it early
2740 * before evicting everything in a vain attempt to find space.
2741 */
05394f39 2742 if (obj->base.size >
75e9e915 2743 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2744 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2745 return -E2BIG;
2746 }
2747
673a394b 2748 search_free:
75e9e915 2749 if (map_and_fenceable)
920afa77
DV
2750 free_space =
2751 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
6b9d89b4
CW
2752 size, alignment,
2753 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2754 0);
2755 else
2756 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2757 size, alignment, 0);
920afa77
DV
2758
2759 if (free_space != NULL) {
75e9e915 2760 if (map_and_fenceable)
05394f39 2761 obj->gtt_space =
920afa77 2762 drm_mm_get_block_range_generic(free_space,
a00b10c3 2763 size, alignment, 0,
6b9d89b4 2764 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2765 0);
2766 else
05394f39 2767 obj->gtt_space =
a00b10c3 2768 drm_mm_get_block(free_space, size, alignment);
920afa77 2769 }
05394f39 2770 if (obj->gtt_space == NULL) {
673a394b
EA
2771 /* If the gtt is empty and we're still having trouble
2772 * fitting our object in, we're out of memory.
2773 */
75e9e915
DV
2774 ret = i915_gem_evict_something(dev, size, alignment,
2775 map_and_fenceable);
9731129c 2776 if (ret)
673a394b 2777 return ret;
9731129c 2778
673a394b
EA
2779 goto search_free;
2780 }
2781
e5281ccd 2782 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2783 if (ret) {
05394f39
CW
2784 drm_mm_put_block(obj->gtt_space);
2785 obj->gtt_space = NULL;
07f73f69
CW
2786
2787 if (ret == -ENOMEM) {
809b6334
CW
2788 /* first try to reclaim some memory by clearing the GTT */
2789 ret = i915_gem_evict_everything(dev, false);
07f73f69 2790 if (ret) {
07f73f69 2791 /* now try to shrink everyone else */
4bdadb97
CW
2792 if (gfpmask) {
2793 gfpmask = 0;
2794 goto search_free;
07f73f69
CW
2795 }
2796
809b6334 2797 return -ENOMEM;
07f73f69
CW
2798 }
2799
2800 goto search_free;
2801 }
2802
673a394b
EA
2803 return ret;
2804 }
2805
74163907 2806 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2807 if (ret) {
e5281ccd 2808 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2809 drm_mm_put_block(obj->gtt_space);
2810 obj->gtt_space = NULL;
07f73f69 2811
809b6334 2812 if (i915_gem_evict_everything(dev, false))
07f73f69 2813 return ret;
07f73f69
CW
2814
2815 goto search_free;
673a394b 2816 }
673a394b 2817
0ebb9829
DV
2818 if (!dev_priv->mm.aliasing_ppgtt)
2819 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2820
6299f992 2821 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2822 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2823
673a394b
EA
2824 /* Assert that the object is not currently in any GPU domain. As it
2825 * wasn't in the GTT, there shouldn't be any way it could have been in
2826 * a GPU cache
2827 */
05394f39
CW
2828 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2829 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2830
6299f992 2831 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2832
75e9e915 2833 fenceable =
05394f39 2834 obj->gtt_space->size == fence_size &&
0206e353 2835 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2836
75e9e915 2837 mappable =
05394f39 2838 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2839
05394f39 2840 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2841
db53a302 2842 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2843 return 0;
2844}
2845
2846void
05394f39 2847i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2848{
673a394b
EA
2849 /* If we don't have a page list set up, then we're not pinned
2850 * to GPU, and we can ignore the cache flush because it'll happen
2851 * again at bind time.
2852 */
05394f39 2853 if (obj->pages == NULL)
673a394b
EA
2854 return;
2855
9c23f7fc
CW
2856 /* If the GPU is snooping the contents of the CPU cache,
2857 * we do not need to manually clear the CPU cache lines. However,
2858 * the caches are only snooped when the render cache is
2859 * flushed/invalidated. As we always have to emit invalidations
2860 * and flushes when moving into and out of the RENDER domain, correct
2861 * snooping behaviour occurs naturally as the result of our domain
2862 * tracking.
2863 */
2864 if (obj->cache_level != I915_CACHE_NONE)
2865 return;
2866
1c5d22f7 2867 trace_i915_gem_object_clflush(obj);
cfa16a0d 2868
05394f39 2869 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2870}
2871
e47c68e9 2872/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2873static int
3619df03 2874i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2875{
05394f39 2876 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2877 return 0;
e47c68e9
EA
2878
2879 /* Queue the GPU write cache flushing we need. */
db53a302 2880 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2881}
2882
2883/** Flushes the GTT write domain for the object if it's dirty. */
2884static void
05394f39 2885i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2886{
1c5d22f7
CW
2887 uint32_t old_write_domain;
2888
05394f39 2889 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2890 return;
2891
63256ec5 2892 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2893 * to it immediately go to main memory as far as we know, so there's
2894 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2895 *
2896 * However, we do have to enforce the order so that all writes through
2897 * the GTT land before any writes to the device, such as updates to
2898 * the GATT itself.
e47c68e9 2899 */
63256ec5
CW
2900 wmb();
2901
05394f39
CW
2902 old_write_domain = obj->base.write_domain;
2903 obj->base.write_domain = 0;
1c5d22f7
CW
2904
2905 trace_i915_gem_object_change_domain(obj,
05394f39 2906 obj->base.read_domains,
1c5d22f7 2907 old_write_domain);
e47c68e9
EA
2908}
2909
2910/** Flushes the CPU write domain for the object if it's dirty. */
2911static void
05394f39 2912i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2913{
1c5d22f7 2914 uint32_t old_write_domain;
e47c68e9 2915
05394f39 2916 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2917 return;
2918
2919 i915_gem_clflush_object(obj);
40ce6575 2920 intel_gtt_chipset_flush();
05394f39
CW
2921 old_write_domain = obj->base.write_domain;
2922 obj->base.write_domain = 0;
1c5d22f7
CW
2923
2924 trace_i915_gem_object_change_domain(obj,
05394f39 2925 obj->base.read_domains,
1c5d22f7 2926 old_write_domain);
e47c68e9
EA
2927}
2928
2ef7eeaa
EA
2929/**
2930 * Moves a single object to the GTT read, and possibly write domain.
2931 *
2932 * This function returns when the move is complete, including waiting on
2933 * flushes to occur.
2934 */
79e53945 2935int
2021746e 2936i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2937{
8325a09d 2938 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2939 uint32_t old_write_domain, old_read_domains;
e47c68e9 2940 int ret;
2ef7eeaa 2941
02354392 2942 /* Not valid to be called on unbound objects. */
05394f39 2943 if (obj->gtt_space == NULL)
02354392
EA
2944 return -EINVAL;
2945
8d7e3de1
CW
2946 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2947 return 0;
2948
88241785
CW
2949 ret = i915_gem_object_flush_gpu_write_domain(obj);
2950 if (ret)
2951 return ret;
2952
87ca9c8a 2953 if (obj->pending_gpu_write || write) {
ce453d81 2954 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2955 if (ret)
2956 return ret;
2957 }
2dafb1e0 2958
7213342d 2959 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2960
05394f39
CW
2961 old_write_domain = obj->base.write_domain;
2962 old_read_domains = obj->base.read_domains;
1c5d22f7 2963
e47c68e9
EA
2964 /* It should now be out of any other write domains, and we can update
2965 * the domain values for our changes.
2966 */
05394f39
CW
2967 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2968 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2969 if (write) {
05394f39
CW
2970 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2971 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2972 obj->dirty = 1;
2ef7eeaa
EA
2973 }
2974
1c5d22f7
CW
2975 trace_i915_gem_object_change_domain(obj,
2976 old_read_domains,
2977 old_write_domain);
2978
8325a09d
CW
2979 /* And bump the LRU for this access */
2980 if (i915_gem_object_is_inactive(obj))
2981 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2982
e47c68e9
EA
2983 return 0;
2984}
2985
e4ffd173
CW
2986int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2987 enum i915_cache_level cache_level)
2988{
7bddb01f
DV
2989 struct drm_device *dev = obj->base.dev;
2990 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2991 int ret;
2992
2993 if (obj->cache_level == cache_level)
2994 return 0;
2995
2996 if (obj->pin_count) {
2997 DRM_DEBUG("can not change the cache level of pinned objects\n");
2998 return -EBUSY;
2999 }
3000
3001 if (obj->gtt_space) {
3002 ret = i915_gem_object_finish_gpu(obj);
3003 if (ret)
3004 return ret;
3005
3006 i915_gem_object_finish_gtt(obj);
3007
3008 /* Before SandyBridge, you could not use tiling or fence
3009 * registers with snooped memory, so relinquish any fences
3010 * currently pointing to our region in the aperture.
3011 */
3012 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3013 ret = i915_gem_object_put_fence(obj);
3014 if (ret)
3015 return ret;
3016 }
3017
74898d7e
DV
3018 if (obj->has_global_gtt_mapping)
3019 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3020 if (obj->has_aliasing_ppgtt_mapping)
3021 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3022 obj, cache_level);
e4ffd173
CW
3023 }
3024
3025 if (cache_level == I915_CACHE_NONE) {
3026 u32 old_read_domains, old_write_domain;
3027
3028 /* If we're coming from LLC cached, then we haven't
3029 * actually been tracking whether the data is in the
3030 * CPU cache or not, since we only allow one bit set
3031 * in obj->write_domain and have been skipping the clflushes.
3032 * Just set it to the CPU cache for now.
3033 */
3034 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3035 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3036
3037 old_read_domains = obj->base.read_domains;
3038 old_write_domain = obj->base.write_domain;
3039
3040 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3041 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3042
3043 trace_i915_gem_object_change_domain(obj,
3044 old_read_domains,
3045 old_write_domain);
3046 }
3047
3048 obj->cache_level = cache_level;
3049 return 0;
3050}
3051
b9241ea3 3052/*
2da3b9b9
CW
3053 * Prepare buffer for display plane (scanout, cursors, etc).
3054 * Can be called from an uninterruptible phase (modesetting) and allows
3055 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3056 */
3057int
2da3b9b9
CW
3058i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3059 u32 alignment,
919926ae 3060 struct intel_ring_buffer *pipelined)
b9241ea3 3061{
2da3b9b9 3062 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3063 int ret;
3064
88241785
CW
3065 ret = i915_gem_object_flush_gpu_write_domain(obj);
3066 if (ret)
3067 return ret;
3068
0be73284 3069 if (pipelined != obj->ring) {
2911a35b
BW
3070 ret = i915_gem_object_sync(obj, pipelined);
3071 if (ret)
b9241ea3
ZW
3072 return ret;
3073 }
3074
a7ef0640
EA
3075 /* The display engine is not coherent with the LLC cache on gen6. As
3076 * a result, we make sure that the pinning that is about to occur is
3077 * done with uncached PTEs. This is lowest common denominator for all
3078 * chipsets.
3079 *
3080 * However for gen6+, we could do better by using the GFDT bit instead
3081 * of uncaching, which would allow us to flush all the LLC-cached data
3082 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3083 */
3084 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3085 if (ret)
3086 return ret;
3087
2da3b9b9
CW
3088 /* As the user may map the buffer once pinned in the display plane
3089 * (e.g. libkms for the bootup splash), we have to ensure that we
3090 * always use map_and_fenceable for all scanout buffers.
3091 */
3092 ret = i915_gem_object_pin(obj, alignment, true);
3093 if (ret)
3094 return ret;
3095
b118c1e3
CW
3096 i915_gem_object_flush_cpu_write_domain(obj);
3097
2da3b9b9 3098 old_write_domain = obj->base.write_domain;
05394f39 3099 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3100
3101 /* It should now be out of any other write domains, and we can update
3102 * the domain values for our changes.
3103 */
3104 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3105 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3106
3107 trace_i915_gem_object_change_domain(obj,
3108 old_read_domains,
2da3b9b9 3109 old_write_domain);
b9241ea3
ZW
3110
3111 return 0;
3112}
3113
85345517 3114int
a8198eea 3115i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3116{
88241785
CW
3117 int ret;
3118
a8198eea 3119 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3120 return 0;
3121
88241785 3122 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3123 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3124 if (ret)
3125 return ret;
3126 }
85345517 3127
c501ae7f
CW
3128 ret = i915_gem_object_wait_rendering(obj);
3129 if (ret)
3130 return ret;
3131
a8198eea
CW
3132 /* Ensure that we invalidate the GPU's caches and TLBs. */
3133 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3134 return 0;
85345517
CW
3135}
3136
e47c68e9
EA
3137/**
3138 * Moves a single object to the CPU read, and possibly write domain.
3139 *
3140 * This function returns when the move is complete, including waiting on
3141 * flushes to occur.
3142 */
dabdfe02 3143int
919926ae 3144i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3145{
1c5d22f7 3146 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3147 int ret;
3148
8d7e3de1
CW
3149 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3150 return 0;
3151
88241785
CW
3152 ret = i915_gem_object_flush_gpu_write_domain(obj);
3153 if (ret)
3154 return ret;
3155
f8413190
CW
3156 if (write || obj->pending_gpu_write) {
3157 ret = i915_gem_object_wait_rendering(obj);
3158 if (ret)
3159 return ret;
3160 }
2ef7eeaa 3161
e47c68e9 3162 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3163
05394f39
CW
3164 old_write_domain = obj->base.write_domain;
3165 old_read_domains = obj->base.read_domains;
1c5d22f7 3166
e47c68e9 3167 /* Flush the CPU cache if it's still invalid. */
05394f39 3168 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3169 i915_gem_clflush_object(obj);
2ef7eeaa 3170
05394f39 3171 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3172 }
3173
3174 /* It should now be out of any other write domains, and we can update
3175 * the domain values for our changes.
3176 */
05394f39 3177 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3178
3179 /* If we're writing through the CPU, then the GPU read domains will
3180 * need to be invalidated at next use.
3181 */
3182 if (write) {
05394f39
CW
3183 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3184 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3185 }
2ef7eeaa 3186
1c5d22f7
CW
3187 trace_i915_gem_object_change_domain(obj,
3188 old_read_domains,
3189 old_write_domain);
3190
2ef7eeaa
EA
3191 return 0;
3192}
3193
673a394b
EA
3194/* Throttle our rendering by waiting until the ring has completed our requests
3195 * emitted over 20 msec ago.
3196 *
b962442e
EA
3197 * Note that if we were to use the current jiffies each time around the loop,
3198 * we wouldn't escape the function with any frames outstanding if the time to
3199 * render a frame was over 20ms.
3200 *
673a394b
EA
3201 * This should get us reasonable parallelism between CPU and GPU but also
3202 * relatively low latency when blocking on a particular request to finish.
3203 */
40a5f0de 3204static int
f787a5f5 3205i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3206{
f787a5f5
CW
3207 struct drm_i915_private *dev_priv = dev->dev_private;
3208 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3209 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3210 struct drm_i915_gem_request *request;
3211 struct intel_ring_buffer *ring = NULL;
3212 u32 seqno = 0;
3213 int ret;
93533c29 3214
e110e8d6
CW
3215 if (atomic_read(&dev_priv->mm.wedged))
3216 return -EIO;
3217
1c25595f 3218 spin_lock(&file_priv->mm.lock);
f787a5f5 3219 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3220 if (time_after_eq(request->emitted_jiffies, recent_enough))
3221 break;
40a5f0de 3222
f787a5f5
CW
3223 ring = request->ring;
3224 seqno = request->seqno;
b962442e 3225 }
1c25595f 3226 spin_unlock(&file_priv->mm.lock);
40a5f0de 3227
f787a5f5
CW
3228 if (seqno == 0)
3229 return 0;
2bc43b5c 3230
5c81fe85 3231 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3232 if (ret == 0)
3233 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3234
3235 return ret;
3236}
3237
673a394b 3238int
05394f39
CW
3239i915_gem_object_pin(struct drm_i915_gem_object *obj,
3240 uint32_t alignment,
75e9e915 3241 bool map_and_fenceable)
673a394b 3242{
673a394b
EA
3243 int ret;
3244
05394f39 3245 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3246
05394f39
CW
3247 if (obj->gtt_space != NULL) {
3248 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3249 (map_and_fenceable && !obj->map_and_fenceable)) {
3250 WARN(obj->pin_count,
ae7d49d8 3251 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3252 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3253 " obj->map_and_fenceable=%d\n",
05394f39 3254 obj->gtt_offset, alignment,
75e9e915 3255 map_and_fenceable,
05394f39 3256 obj->map_and_fenceable);
ac0c6b5a
CW
3257 ret = i915_gem_object_unbind(obj);
3258 if (ret)
3259 return ret;
3260 }
3261 }
3262
05394f39 3263 if (obj->gtt_space == NULL) {
a00b10c3 3264 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3265 map_and_fenceable);
9731129c 3266 if (ret)
673a394b 3267 return ret;
22c344e9 3268 }
76446cac 3269
74898d7e
DV
3270 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3271 i915_gem_gtt_bind_object(obj, obj->cache_level);
3272
1b50247a 3273 obj->pin_count++;
6299f992 3274 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3275
3276 return 0;
3277}
3278
3279void
05394f39 3280i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3281{
05394f39
CW
3282 BUG_ON(obj->pin_count == 0);
3283 BUG_ON(obj->gtt_space == NULL);
673a394b 3284
1b50247a 3285 if (--obj->pin_count == 0)
6299f992 3286 obj->pin_mappable = false;
673a394b
EA
3287}
3288
3289int
3290i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3291 struct drm_file *file)
673a394b
EA
3292{
3293 struct drm_i915_gem_pin *args = data;
05394f39 3294 struct drm_i915_gem_object *obj;
673a394b
EA
3295 int ret;
3296
1d7cfea1
CW
3297 ret = i915_mutex_lock_interruptible(dev);
3298 if (ret)
3299 return ret;
673a394b 3300
05394f39 3301 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3302 if (&obj->base == NULL) {
1d7cfea1
CW
3303 ret = -ENOENT;
3304 goto unlock;
673a394b 3305 }
673a394b 3306
05394f39 3307 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3308 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3309 ret = -EINVAL;
3310 goto out;
3ef94daa
CW
3311 }
3312
05394f39 3313 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3314 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3315 args->handle);
1d7cfea1
CW
3316 ret = -EINVAL;
3317 goto out;
79e53945
JB
3318 }
3319
05394f39
CW
3320 obj->user_pin_count++;
3321 obj->pin_filp = file;
3322 if (obj->user_pin_count == 1) {
75e9e915 3323 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3324 if (ret)
3325 goto out;
673a394b
EA
3326 }
3327
3328 /* XXX - flush the CPU caches for pinned objects
3329 * as the X server doesn't manage domains yet
3330 */
e47c68e9 3331 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3332 args->offset = obj->gtt_offset;
1d7cfea1 3333out:
05394f39 3334 drm_gem_object_unreference(&obj->base);
1d7cfea1 3335unlock:
673a394b 3336 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3337 return ret;
673a394b
EA
3338}
3339
3340int
3341i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3342 struct drm_file *file)
673a394b
EA
3343{
3344 struct drm_i915_gem_pin *args = data;
05394f39 3345 struct drm_i915_gem_object *obj;
76c1dec1 3346 int ret;
673a394b 3347
1d7cfea1
CW
3348 ret = i915_mutex_lock_interruptible(dev);
3349 if (ret)
3350 return ret;
673a394b 3351
05394f39 3352 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3353 if (&obj->base == NULL) {
1d7cfea1
CW
3354 ret = -ENOENT;
3355 goto unlock;
673a394b 3356 }
76c1dec1 3357
05394f39 3358 if (obj->pin_filp != file) {
79e53945
JB
3359 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3360 args->handle);
1d7cfea1
CW
3361 ret = -EINVAL;
3362 goto out;
79e53945 3363 }
05394f39
CW
3364 obj->user_pin_count--;
3365 if (obj->user_pin_count == 0) {
3366 obj->pin_filp = NULL;
79e53945
JB
3367 i915_gem_object_unpin(obj);
3368 }
673a394b 3369
1d7cfea1 3370out:
05394f39 3371 drm_gem_object_unreference(&obj->base);
1d7cfea1 3372unlock:
673a394b 3373 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3374 return ret;
673a394b
EA
3375}
3376
3377int
3378i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3379 struct drm_file *file)
673a394b
EA
3380{
3381 struct drm_i915_gem_busy *args = data;
05394f39 3382 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3383 int ret;
3384
76c1dec1 3385 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3386 if (ret)
76c1dec1 3387 return ret;
673a394b 3388
05394f39 3389 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3390 if (&obj->base == NULL) {
1d7cfea1
CW
3391 ret = -ENOENT;
3392 goto unlock;
673a394b 3393 }
d1b851fc 3394
0be555b6
CW
3395 /* Count all active objects as busy, even if they are currently not used
3396 * by the gpu. Users of this interface expect objects to eventually
3397 * become non-busy without any further actions, therefore emit any
3398 * necessary flushes here.
c4de0a5d 3399 */
30dfebf3 3400 ret = i915_gem_object_flush_active(obj);
0be555b6 3401
30dfebf3 3402 args->busy = obj->active;
673a394b 3403
05394f39 3404 drm_gem_object_unreference(&obj->base);
1d7cfea1 3405unlock:
673a394b 3406 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3407 return ret;
673a394b
EA
3408}
3409
3410int
3411i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3412 struct drm_file *file_priv)
3413{
0206e353 3414 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3415}
3416
3ef94daa
CW
3417int
3418i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3419 struct drm_file *file_priv)
3420{
3421 struct drm_i915_gem_madvise *args = data;
05394f39 3422 struct drm_i915_gem_object *obj;
76c1dec1 3423 int ret;
3ef94daa
CW
3424
3425 switch (args->madv) {
3426 case I915_MADV_DONTNEED:
3427 case I915_MADV_WILLNEED:
3428 break;
3429 default:
3430 return -EINVAL;
3431 }
3432
1d7cfea1
CW
3433 ret = i915_mutex_lock_interruptible(dev);
3434 if (ret)
3435 return ret;
3436
05394f39 3437 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3438 if (&obj->base == NULL) {
1d7cfea1
CW
3439 ret = -ENOENT;
3440 goto unlock;
3ef94daa 3441 }
3ef94daa 3442
05394f39 3443 if (obj->pin_count) {
1d7cfea1
CW
3444 ret = -EINVAL;
3445 goto out;
3ef94daa
CW
3446 }
3447
05394f39
CW
3448 if (obj->madv != __I915_MADV_PURGED)
3449 obj->madv = args->madv;
3ef94daa 3450
2d7ef395 3451 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3452 if (i915_gem_object_is_purgeable(obj) &&
3453 obj->gtt_space == NULL)
2d7ef395
CW
3454 i915_gem_object_truncate(obj);
3455
05394f39 3456 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3457
1d7cfea1 3458out:
05394f39 3459 drm_gem_object_unreference(&obj->base);
1d7cfea1 3460unlock:
3ef94daa 3461 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3462 return ret;
3ef94daa
CW
3463}
3464
05394f39
CW
3465struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3466 size_t size)
ac52bc56 3467{
73aa808f 3468 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3469 struct drm_i915_gem_object *obj;
5949eac4 3470 struct address_space *mapping;
bed1ea95 3471 u32 mask;
ac52bc56 3472
c397b908
DV
3473 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3474 if (obj == NULL)
3475 return NULL;
673a394b 3476
c397b908
DV
3477 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3478 kfree(obj);
3479 return NULL;
3480 }
673a394b 3481
bed1ea95
CW
3482 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3483 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3484 /* 965gm cannot relocate objects above 4GiB. */
3485 mask &= ~__GFP_HIGHMEM;
3486 mask |= __GFP_DMA32;
3487 }
3488
5949eac4 3489 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3490 mapping_set_gfp_mask(mapping, mask);
5949eac4 3491
73aa808f
CW
3492 i915_gem_info_add_obj(dev_priv, size);
3493
c397b908
DV
3494 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3495 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3496
3d29b842
ED
3497 if (HAS_LLC(dev)) {
3498 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3499 * cache) for about a 10% performance improvement
3500 * compared to uncached. Graphics requests other than
3501 * display scanout are coherent with the CPU in
3502 * accessing this cache. This means in this mode we
3503 * don't need to clflush on the CPU side, and on the
3504 * GPU side we only need to flush internal caches to
3505 * get data visible to the CPU.
3506 *
3507 * However, we maintain the display planes as UC, and so
3508 * need to rebind when first used as such.
3509 */
3510 obj->cache_level = I915_CACHE_LLC;
3511 } else
3512 obj->cache_level = I915_CACHE_NONE;
3513
62b8b215 3514 obj->base.driver_private = NULL;
c397b908 3515 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3516 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3517 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3518 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3519 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3520 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3521 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3522 /* Avoid an unnecessary call to unbind on the first bind. */
3523 obj->map_and_fenceable = true;
de151cf6 3524
05394f39 3525 return obj;
c397b908
DV
3526}
3527
3528int i915_gem_init_object(struct drm_gem_object *obj)
3529{
3530 BUG();
de151cf6 3531
673a394b
EA
3532 return 0;
3533}
3534
1488fc08 3535void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3536{
1488fc08 3537 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3538 struct drm_device *dev = obj->base.dev;
be72615b 3539 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3540
26e12f89
CW
3541 trace_i915_gem_object_destroy(obj);
3542
1286ff73
DV
3543 if (gem_obj->import_attach)
3544 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3545
1488fc08
CW
3546 if (obj->phys_obj)
3547 i915_gem_detach_phys_object(dev, obj);
3548
3549 obj->pin_count = 0;
3550 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3551 bool was_interruptible;
3552
3553 was_interruptible = dev_priv->mm.interruptible;
3554 dev_priv->mm.interruptible = false;
3555
3556 WARN_ON(i915_gem_object_unbind(obj));
3557
3558 dev_priv->mm.interruptible = was_interruptible;
3559 }
3560
05394f39 3561 if (obj->base.map_list.map)
b464e9a2 3562 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3563
05394f39
CW
3564 drm_gem_object_release(&obj->base);
3565 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3566
05394f39
CW
3567 kfree(obj->bit_17);
3568 kfree(obj);
673a394b
EA
3569}
3570
29105ccc
CW
3571int
3572i915_gem_idle(struct drm_device *dev)
3573{
3574 drm_i915_private_t *dev_priv = dev->dev_private;
3575 int ret;
28dfe52a 3576
29105ccc 3577 mutex_lock(&dev->struct_mutex);
1c5d22f7 3578
87acb0a5 3579 if (dev_priv->mm.suspended) {
29105ccc
CW
3580 mutex_unlock(&dev->struct_mutex);
3581 return 0;
28dfe52a
EA
3582 }
3583
b2da9fe5 3584 ret = i915_gpu_idle(dev);
6dbe2772
KP
3585 if (ret) {
3586 mutex_unlock(&dev->struct_mutex);
673a394b 3587 return ret;
6dbe2772 3588 }
b2da9fe5 3589 i915_gem_retire_requests(dev);
673a394b 3590
29105ccc 3591 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3592 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3593 i915_gem_evict_everything(dev, false);
29105ccc 3594
312817a3
CW
3595 i915_gem_reset_fences(dev);
3596
29105ccc
CW
3597 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3598 * We need to replace this with a semaphore, or something.
3599 * And not confound mm.suspended!
3600 */
3601 dev_priv->mm.suspended = 1;
bc0c7f14 3602 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3603
3604 i915_kernel_lost_context(dev);
6dbe2772 3605 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3606
6dbe2772
KP
3607 mutex_unlock(&dev->struct_mutex);
3608
29105ccc
CW
3609 /* Cancel the retire work handler, which should be idle now. */
3610 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3611
673a394b
EA
3612 return 0;
3613}
3614
b9524a1e
BW
3615void i915_gem_l3_remap(struct drm_device *dev)
3616{
3617 drm_i915_private_t *dev_priv = dev->dev_private;
3618 u32 misccpctl;
3619 int i;
3620
3621 if (!IS_IVYBRIDGE(dev))
3622 return;
3623
3624 if (!dev_priv->mm.l3_remap_info)
3625 return;
3626
3627 misccpctl = I915_READ(GEN7_MISCCPCTL);
3628 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3629 POSTING_READ(GEN7_MISCCPCTL);
3630
3631 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3632 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3633 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3634 DRM_DEBUG("0x%x was already programmed to %x\n",
3635 GEN7_L3LOG_BASE + i, remap);
3636 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3637 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3638 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3639 }
3640
3641 /* Make sure all the writes land before disabling dop clock gating */
3642 POSTING_READ(GEN7_L3LOG_BASE);
3643
3644 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3645}
3646
f691e2f4
DV
3647void i915_gem_init_swizzling(struct drm_device *dev)
3648{
3649 drm_i915_private_t *dev_priv = dev->dev_private;
3650
11782b02 3651 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3652 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3653 return;
3654
3655 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3656 DISP_TILE_SURFACE_SWIZZLING);
3657
11782b02
DV
3658 if (IS_GEN5(dev))
3659 return;
3660
f691e2f4
DV
3661 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3662 if (IS_GEN6(dev))
6b26c86d 3663 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3664 else
6b26c86d 3665 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3666}
e21af88d
DV
3667
3668void i915_gem_init_ppgtt(struct drm_device *dev)
3669{
3670 drm_i915_private_t *dev_priv = dev->dev_private;
3671 uint32_t pd_offset;
3672 struct intel_ring_buffer *ring;
55a254ac
DV
3673 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3674 uint32_t __iomem *pd_addr;
3675 uint32_t pd_entry;
e21af88d
DV
3676 int i;
3677
3678 if (!dev_priv->mm.aliasing_ppgtt)
3679 return;
3680
55a254ac
DV
3681
3682 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3683 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3684 dma_addr_t pt_addr;
3685
3686 if (dev_priv->mm.gtt->needs_dmar)
3687 pt_addr = ppgtt->pt_dma_addr[i];
3688 else
3689 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3690
3691 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3692 pd_entry |= GEN6_PDE_VALID;
3693
3694 writel(pd_entry, pd_addr + i);
3695 }
3696 readl(pd_addr);
3697
3698 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3699 pd_offset /= 64; /* in cachelines, */
3700 pd_offset <<= 16;
3701
3702 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3703 uint32_t ecochk, gab_ctl, ecobits;
3704
3705 ecobits = I915_READ(GAC_ECO_BITS);
3706 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3707
3708 gab_ctl = I915_READ(GAB_CTL);
3709 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3710
3711 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3712 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3713 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3714 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3715 } else if (INTEL_INFO(dev)->gen >= 7) {
3716 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3717 /* GFX_MODE is per-ring on gen7+ */
3718 }
3719
b4519513 3720 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3721 if (INTEL_INFO(dev)->gen >= 7)
3722 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3723 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3724
3725 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3726 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3727 }
3728}
3729
67b1b571
CW
3730static bool
3731intel_enable_blt(struct drm_device *dev)
3732{
3733 if (!HAS_BLT(dev))
3734 return false;
3735
3736 /* The blitter was dysfunctional on early prototypes */
3737 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3738 DRM_INFO("BLT not supported on this pre-production hardware;"
3739 " graphics performance will be degraded.\n");
3740 return false;
3741 }
3742
3743 return true;
3744}
3745
8187a2b7 3746int
f691e2f4 3747i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3748{
3749 drm_i915_private_t *dev_priv = dev->dev_private;
3750 int ret;
68f95ba9 3751
8ecd1a66
DV
3752 if (!intel_enable_gtt())
3753 return -EIO;
3754
b9524a1e
BW
3755 i915_gem_l3_remap(dev);
3756
f691e2f4
DV
3757 i915_gem_init_swizzling(dev);
3758
5c1143bb 3759 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3760 if (ret)
b6913e4b 3761 return ret;
68f95ba9
CW
3762
3763 if (HAS_BSD(dev)) {
5c1143bb 3764 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3765 if (ret)
3766 goto cleanup_render_ring;
d1b851fc 3767 }
68f95ba9 3768
67b1b571 3769 if (intel_enable_blt(dev)) {
549f7365
CW
3770 ret = intel_init_blt_ring_buffer(dev);
3771 if (ret)
3772 goto cleanup_bsd_ring;
3773 }
3774
6f392d54
CW
3775 dev_priv->next_seqno = 1;
3776
254f965c
BW
3777 /*
3778 * XXX: There was some w/a described somewhere suggesting loading
3779 * contexts before PPGTT.
3780 */
3781 i915_gem_context_init(dev);
e21af88d
DV
3782 i915_gem_init_ppgtt(dev);
3783
68f95ba9
CW
3784 return 0;
3785
549f7365 3786cleanup_bsd_ring:
1ec14ad3 3787 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3788cleanup_render_ring:
1ec14ad3 3789 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3790 return ret;
3791}
3792
1070a42b
CW
3793static bool
3794intel_enable_ppgtt(struct drm_device *dev)
3795{
3796 if (i915_enable_ppgtt >= 0)
3797 return i915_enable_ppgtt;
3798
3799#ifdef CONFIG_INTEL_IOMMU
3800 /* Disable ppgtt on SNB if VT-d is on. */
3801 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3802 return false;
3803#endif
3804
3805 return true;
3806}
3807
3808int i915_gem_init(struct drm_device *dev)
3809{
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811 unsigned long gtt_size, mappable_size;
3812 int ret;
3813
3814 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3815 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3816
3817 mutex_lock(&dev->struct_mutex);
3818 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3819 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3820 * aperture accordingly when using aliasing ppgtt. */
3821 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3822
3823 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3824
3825 ret = i915_gem_init_aliasing_ppgtt(dev);
3826 if (ret) {
3827 mutex_unlock(&dev->struct_mutex);
3828 return ret;
3829 }
3830 } else {
3831 /* Let GEM Manage all of the aperture.
3832 *
3833 * However, leave one page at the end still bound to the scratch
3834 * page. There are a number of places where the hardware
3835 * apparently prefetches past the end of the object, and we've
3836 * seen multiple hangs with the GPU head pointer stuck in a
3837 * batchbuffer bound at the last page of the aperture. One page
3838 * should be enough to keep any prefetching inside of the
3839 * aperture.
3840 */
3841 i915_gem_init_global_gtt(dev, 0, mappable_size,
3842 gtt_size);
3843 }
3844
3845 ret = i915_gem_init_hw(dev);
3846 mutex_unlock(&dev->struct_mutex);
3847 if (ret) {
3848 i915_gem_cleanup_aliasing_ppgtt(dev);
3849 return ret;
3850 }
3851
53ca26ca
DV
3852 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3853 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3854 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3855 return 0;
3856}
3857
8187a2b7
ZN
3858void
3859i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3860{
3861 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3862 struct intel_ring_buffer *ring;
1ec14ad3 3863 int i;
8187a2b7 3864
b4519513
CW
3865 for_each_ring(ring, dev_priv, i)
3866 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3867}
3868
673a394b
EA
3869int
3870i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3871 struct drm_file *file_priv)
3872{
3873 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3874 int ret;
673a394b 3875
79e53945
JB
3876 if (drm_core_check_feature(dev, DRIVER_MODESET))
3877 return 0;
3878
ba1234d1 3879 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3880 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3881 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3882 }
3883
673a394b 3884 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3885 dev_priv->mm.suspended = 0;
3886
f691e2f4 3887 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3888 if (ret != 0) {
3889 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3890 return ret;
d816f6ac 3891 }
9bb2d6f9 3892
69dc4987 3893 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3894 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3895 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3896 mutex_unlock(&dev->struct_mutex);
dbb19d30 3897
5f35308b
CW
3898 ret = drm_irq_install(dev);
3899 if (ret)
3900 goto cleanup_ringbuffer;
dbb19d30 3901
673a394b 3902 return 0;
5f35308b
CW
3903
3904cleanup_ringbuffer:
3905 mutex_lock(&dev->struct_mutex);
3906 i915_gem_cleanup_ringbuffer(dev);
3907 dev_priv->mm.suspended = 1;
3908 mutex_unlock(&dev->struct_mutex);
3909
3910 return ret;
673a394b
EA
3911}
3912
3913int
3914i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3915 struct drm_file *file_priv)
3916{
79e53945
JB
3917 if (drm_core_check_feature(dev, DRIVER_MODESET))
3918 return 0;
3919
dbb19d30 3920 drm_irq_uninstall(dev);
e6890f6f 3921 return i915_gem_idle(dev);
673a394b
EA
3922}
3923
3924void
3925i915_gem_lastclose(struct drm_device *dev)
3926{
3927 int ret;
673a394b 3928
e806b495
EA
3929 if (drm_core_check_feature(dev, DRIVER_MODESET))
3930 return;
3931
6dbe2772
KP
3932 ret = i915_gem_idle(dev);
3933 if (ret)
3934 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3935}
3936
64193406
CW
3937static void
3938init_ring_lists(struct intel_ring_buffer *ring)
3939{
3940 INIT_LIST_HEAD(&ring->active_list);
3941 INIT_LIST_HEAD(&ring->request_list);
3942 INIT_LIST_HEAD(&ring->gpu_write_list);
3943}
3944
673a394b
EA
3945void
3946i915_gem_load(struct drm_device *dev)
3947{
b5aa8a0f 3948 int i;
673a394b
EA
3949 drm_i915_private_t *dev_priv = dev->dev_private;
3950
69dc4987 3951 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3952 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3953 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3954 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3955 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3956 for (i = 0; i < I915_NUM_RINGS; i++)
3957 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3958 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3959 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3960 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3961 i915_gem_retire_work_handler);
30dbf0c0 3962 init_completion(&dev_priv->error_completion);
31169714 3963
94400120
DA
3964 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3965 if (IS_GEN3(dev)) {
50743298
DV
3966 I915_WRITE(MI_ARB_STATE,
3967 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3968 }
3969
72bfa19c
CW
3970 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3971
de151cf6 3972 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3973 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3974 dev_priv->fence_reg_start = 3;
de151cf6 3975
a6c45cf0 3976 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3977 dev_priv->num_fence_regs = 16;
3978 else
3979 dev_priv->num_fence_regs = 8;
3980
b5aa8a0f 3981 /* Initialize fence registers to zero */
ada726c7 3982 i915_gem_reset_fences(dev);
10ed13e4 3983
673a394b 3984 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3985 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3986
ce453d81
CW
3987 dev_priv->mm.interruptible = true;
3988
17250b71
CW
3989 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3990 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3991 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3992}
71acb5eb
DA
3993
3994/*
3995 * Create a physically contiguous memory object for this object
3996 * e.g. for cursor + overlay regs
3997 */
995b6762
CW
3998static int i915_gem_init_phys_object(struct drm_device *dev,
3999 int id, int size, int align)
71acb5eb
DA
4000{
4001 drm_i915_private_t *dev_priv = dev->dev_private;
4002 struct drm_i915_gem_phys_object *phys_obj;
4003 int ret;
4004
4005 if (dev_priv->mm.phys_objs[id - 1] || !size)
4006 return 0;
4007
9a298b2a 4008 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4009 if (!phys_obj)
4010 return -ENOMEM;
4011
4012 phys_obj->id = id;
4013
6eeefaf3 4014 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4015 if (!phys_obj->handle) {
4016 ret = -ENOMEM;
4017 goto kfree_obj;
4018 }
4019#ifdef CONFIG_X86
4020 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4021#endif
4022
4023 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4024
4025 return 0;
4026kfree_obj:
9a298b2a 4027 kfree(phys_obj);
71acb5eb
DA
4028 return ret;
4029}
4030
995b6762 4031static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4032{
4033 drm_i915_private_t *dev_priv = dev->dev_private;
4034 struct drm_i915_gem_phys_object *phys_obj;
4035
4036 if (!dev_priv->mm.phys_objs[id - 1])
4037 return;
4038
4039 phys_obj = dev_priv->mm.phys_objs[id - 1];
4040 if (phys_obj->cur_obj) {
4041 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4042 }
4043
4044#ifdef CONFIG_X86
4045 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4046#endif
4047 drm_pci_free(dev, phys_obj->handle);
4048 kfree(phys_obj);
4049 dev_priv->mm.phys_objs[id - 1] = NULL;
4050}
4051
4052void i915_gem_free_all_phys_object(struct drm_device *dev)
4053{
4054 int i;
4055
260883c8 4056 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4057 i915_gem_free_phys_object(dev, i);
4058}
4059
4060void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4061 struct drm_i915_gem_object *obj)
71acb5eb 4062{
05394f39 4063 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4064 char *vaddr;
71acb5eb 4065 int i;
71acb5eb
DA
4066 int page_count;
4067
05394f39 4068 if (!obj->phys_obj)
71acb5eb 4069 return;
05394f39 4070 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4071
05394f39 4072 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4073 for (i = 0; i < page_count; i++) {
5949eac4 4074 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4075 if (!IS_ERR(page)) {
4076 char *dst = kmap_atomic(page);
4077 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4078 kunmap_atomic(dst);
4079
4080 drm_clflush_pages(&page, 1);
4081
4082 set_page_dirty(page);
4083 mark_page_accessed(page);
4084 page_cache_release(page);
4085 }
71acb5eb 4086 }
40ce6575 4087 intel_gtt_chipset_flush();
d78b47b9 4088
05394f39
CW
4089 obj->phys_obj->cur_obj = NULL;
4090 obj->phys_obj = NULL;
71acb5eb
DA
4091}
4092
4093int
4094i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4095 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4096 int id,
4097 int align)
71acb5eb 4098{
05394f39 4099 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4100 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4101 int ret = 0;
4102 int page_count;
4103 int i;
4104
4105 if (id > I915_MAX_PHYS_OBJECT)
4106 return -EINVAL;
4107
05394f39
CW
4108 if (obj->phys_obj) {
4109 if (obj->phys_obj->id == id)
71acb5eb
DA
4110 return 0;
4111 i915_gem_detach_phys_object(dev, obj);
4112 }
4113
71acb5eb
DA
4114 /* create a new object */
4115 if (!dev_priv->mm.phys_objs[id - 1]) {
4116 ret = i915_gem_init_phys_object(dev, id,
05394f39 4117 obj->base.size, align);
71acb5eb 4118 if (ret) {
05394f39
CW
4119 DRM_ERROR("failed to init phys object %d size: %zu\n",
4120 id, obj->base.size);
e5281ccd 4121 return ret;
71acb5eb
DA
4122 }
4123 }
4124
4125 /* bind to the object */
05394f39
CW
4126 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4127 obj->phys_obj->cur_obj = obj;
71acb5eb 4128
05394f39 4129 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4130
4131 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4132 struct page *page;
4133 char *dst, *src;
4134
5949eac4 4135 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4136 if (IS_ERR(page))
4137 return PTR_ERR(page);
71acb5eb 4138
ff75b9bc 4139 src = kmap_atomic(page);
05394f39 4140 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4141 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4142 kunmap_atomic(src);
71acb5eb 4143
e5281ccd
CW
4144 mark_page_accessed(page);
4145 page_cache_release(page);
4146 }
d78b47b9 4147
71acb5eb 4148 return 0;
71acb5eb
DA
4149}
4150
4151static int
05394f39
CW
4152i915_gem_phys_pwrite(struct drm_device *dev,
4153 struct drm_i915_gem_object *obj,
71acb5eb
DA
4154 struct drm_i915_gem_pwrite *args,
4155 struct drm_file *file_priv)
4156{
05394f39 4157 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4158 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4159
b47b30cc
CW
4160 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4161 unsigned long unwritten;
4162
4163 /* The physical object once assigned is fixed for the lifetime
4164 * of the obj, so we can safely drop the lock and continue
4165 * to access vaddr.
4166 */
4167 mutex_unlock(&dev->struct_mutex);
4168 unwritten = copy_from_user(vaddr, user_data, args->size);
4169 mutex_lock(&dev->struct_mutex);
4170 if (unwritten)
4171 return -EFAULT;
4172 }
71acb5eb 4173
40ce6575 4174 intel_gtt_chipset_flush();
71acb5eb
DA
4175 return 0;
4176}
b962442e 4177
f787a5f5 4178void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4179{
f787a5f5 4180 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4181
4182 /* Clean up our request list when the client is going away, so that
4183 * later retire_requests won't dereference our soon-to-be-gone
4184 * file_priv.
4185 */
1c25595f 4186 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4187 while (!list_empty(&file_priv->mm.request_list)) {
4188 struct drm_i915_gem_request *request;
4189
4190 request = list_first_entry(&file_priv->mm.request_list,
4191 struct drm_i915_gem_request,
4192 client_list);
4193 list_del(&request->client_list);
4194 request->file_priv = NULL;
4195 }
1c25595f 4196 spin_unlock(&file_priv->mm.lock);
b962442e 4197}
31169714 4198
1637ef41
CW
4199static int
4200i915_gpu_is_active(struct drm_device *dev)
4201{
4202 drm_i915_private_t *dev_priv = dev->dev_private;
4203 int lists_empty;
4204
1637ef41 4205 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4206 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4207
4208 return !lists_empty;
4209}
4210
31169714 4211static int
1495f230 4212i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4213{
17250b71
CW
4214 struct drm_i915_private *dev_priv =
4215 container_of(shrinker,
4216 struct drm_i915_private,
4217 mm.inactive_shrinker);
4218 struct drm_device *dev = dev_priv->dev;
4219 struct drm_i915_gem_object *obj, *next;
1495f230 4220 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4221 int cnt;
4222
4223 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4224 return 0;
31169714
CW
4225
4226 /* "fast-path" to count number of available objects */
4227 if (nr_to_scan == 0) {
17250b71
CW
4228 cnt = 0;
4229 list_for_each_entry(obj,
4230 &dev_priv->mm.inactive_list,
4231 mm_list)
4232 cnt++;
4233 mutex_unlock(&dev->struct_mutex);
4234 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4235 }
4236
1637ef41 4237rescan:
31169714 4238 /* first scan for clean buffers */
17250b71 4239 i915_gem_retire_requests(dev);
31169714 4240
17250b71
CW
4241 list_for_each_entry_safe(obj, next,
4242 &dev_priv->mm.inactive_list,
4243 mm_list) {
4244 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4245 if (i915_gem_object_unbind(obj) == 0 &&
4246 --nr_to_scan == 0)
17250b71 4247 break;
31169714 4248 }
31169714
CW
4249 }
4250
4251 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4252 cnt = 0;
4253 list_for_each_entry_safe(obj, next,
4254 &dev_priv->mm.inactive_list,
4255 mm_list) {
2021746e
CW
4256 if (nr_to_scan &&
4257 i915_gem_object_unbind(obj) == 0)
17250b71 4258 nr_to_scan--;
2021746e 4259 else
17250b71
CW
4260 cnt++;
4261 }
4262
4263 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4264 /*
4265 * We are desperate for pages, so as a last resort, wait
4266 * for the GPU to finish and discard whatever we can.
4267 * This has a dramatic impact to reduce the number of
4268 * OOM-killer events whilst running the GPU aggressively.
4269 */
b2da9fe5 4270 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4271 goto rescan;
4272 }
17250b71
CW
4273 mutex_unlock(&dev->struct_mutex);
4274 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4275}