]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Remove mmap_offset
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6 53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
920afa77 54 unsigned alignment, bool mappable);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
17250b71
CW
68static int i915_gem_inactive_shrink(struct shrinker *shrinker,
69 int nr_to_scan,
70 gfp_t gfp_mask);
71
31169714 72
73aa808f
CW
73/* some bookkeeping */
74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79}
80
81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83{
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86}
87
88static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
fb7d516a 89 struct drm_gem_object *obj)
73aa808f 90{
fb7d516a 91 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 92 dev_priv->mm.gtt_count++;
fb7d516a
DV
93 dev_priv->mm.gtt_memory += obj->size;
94 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
95 dev_priv->mm.mappable_gtt_used +=
96 min_t(size_t, obj->size,
97 dev_priv->mm.gtt_mappable_end
98 - obj_priv->gtt_offset);
99 }
73aa808f
CW
100}
101
102static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
fb7d516a 103 struct drm_gem_object *obj)
73aa808f 104{
fb7d516a 105 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 106 dev_priv->mm.gtt_count--;
fb7d516a
DV
107 dev_priv->mm.gtt_memory -= obj->size;
108 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
109 dev_priv->mm.mappable_gtt_used -=
110 min_t(size_t, obj->size,
111 dev_priv->mm.gtt_mappable_end
112 - obj_priv->gtt_offset);
113 }
114}
115
116/**
117 * Update the mappable working set counters. Call _only_ when there is a change
118 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
119 * @mappable: new state the changed mappable flag (either pin_ or fault_).
120 */
121static void
122i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
123 struct drm_gem_object *obj,
124 bool mappable)
125{
126 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
127
128 if (mappable) {
129 if (obj_priv->pin_mappable && obj_priv->fault_mappable)
130 /* Combined state was already mappable. */
131 return;
132 dev_priv->mm.gtt_mappable_count++;
133 dev_priv->mm.gtt_mappable_memory += obj->size;
134 } else {
135 if (obj_priv->pin_mappable || obj_priv->fault_mappable)
136 /* Combined state still mappable. */
137 return;
138 dev_priv->mm.gtt_mappable_count--;
139 dev_priv->mm.gtt_mappable_memory -= obj->size;
140 }
73aa808f
CW
141}
142
143static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
fb7d516a
DV
144 struct drm_gem_object *obj,
145 bool mappable)
73aa808f 146{
fb7d516a 147 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 148 dev_priv->mm.pin_count++;
fb7d516a
DV
149 dev_priv->mm.pin_memory += obj->size;
150 if (mappable) {
151 obj_priv->pin_mappable = true;
152 i915_gem_info_update_mappable(dev_priv, obj, true);
153 }
73aa808f
CW
154}
155
156static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
fb7d516a 157 struct drm_gem_object *obj)
73aa808f 158{
fb7d516a 159 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 160 dev_priv->mm.pin_count--;
fb7d516a
DV
161 dev_priv->mm.pin_memory -= obj->size;
162 if (obj_priv->pin_mappable) {
163 obj_priv->pin_mappable = false;
164 i915_gem_info_update_mappable(dev_priv, obj, false);
165 }
73aa808f
CW
166}
167
30dbf0c0
CW
168int
169i915_gem_check_is_wedged(struct drm_device *dev)
170{
171 struct drm_i915_private *dev_priv = dev->dev_private;
172 struct completion *x = &dev_priv->error_completion;
173 unsigned long flags;
174 int ret;
175
176 if (!atomic_read(&dev_priv->mm.wedged))
177 return 0;
178
179 ret = wait_for_completion_interruptible(x);
180 if (ret)
181 return ret;
182
183 /* Success, we reset the GPU! */
184 if (!atomic_read(&dev_priv->mm.wedged))
185 return 0;
186
187 /* GPU is hung, bump the completion count to account for
188 * the token we just consumed so that we never hit zero and
189 * end up waiting upon a subsequent completion event that
190 * will never happen.
191 */
192 spin_lock_irqsave(&x->wait.lock, flags);
193 x->done++;
194 spin_unlock_irqrestore(&x->wait.lock, flags);
195 return -EIO;
196}
197
76c1dec1
CW
198static int i915_mutex_lock_interruptible(struct drm_device *dev)
199{
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 int ret;
202
203 ret = i915_gem_check_is_wedged(dev);
204 if (ret)
205 return ret;
206
207 ret = mutex_lock_interruptible(&dev->struct_mutex);
208 if (ret)
209 return ret;
210
211 if (atomic_read(&dev_priv->mm.wedged)) {
212 mutex_unlock(&dev->struct_mutex);
213 return -EAGAIN;
214 }
215
23bc5982 216 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
217 return 0;
218}
30dbf0c0 219
7d1c4804
CW
220static inline bool
221i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
222{
223 return obj_priv->gtt_space &&
224 !obj_priv->active &&
225 obj_priv->pin_count == 0;
226}
227
73aa808f
CW
228int i915_gem_do_init(struct drm_device *dev,
229 unsigned long start,
53984635 230 unsigned long mappable_end,
79e53945 231 unsigned long end)
673a394b
EA
232{
233 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 234
79e53945
JB
235 if (start >= end ||
236 (start & (PAGE_SIZE - 1)) != 0 ||
237 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
238 return -EINVAL;
239 }
240
79e53945
JB
241 drm_mm_init(&dev_priv->mm.gtt_space, start,
242 end - start);
673a394b 243
73aa808f 244 dev_priv->mm.gtt_total = end - start;
fb7d516a 245 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 246 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
247
248 return 0;
249}
673a394b 250
79e53945
JB
251int
252i915_gem_init_ioctl(struct drm_device *dev, void *data,
253 struct drm_file *file_priv)
254{
255 struct drm_i915_gem_init *args = data;
256 int ret;
257
258 mutex_lock(&dev->struct_mutex);
53984635 259 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
260 mutex_unlock(&dev->struct_mutex);
261
79e53945 262 return ret;
673a394b
EA
263}
264
5a125c3c
EA
265int
266i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
267 struct drm_file *file_priv)
268{
73aa808f 269 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 270 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
271
272 if (!(dev->driver->driver_features & DRIVER_GEM))
273 return -ENODEV;
274
73aa808f
CW
275 mutex_lock(&dev->struct_mutex);
276 args->aper_size = dev_priv->mm.gtt_total;
277 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
278 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
279
280 return 0;
281}
282
673a394b
EA
283
284/**
285 * Creates a new mm object and returns a handle to it.
286 */
287int
288i915_gem_create_ioctl(struct drm_device *dev, void *data,
289 struct drm_file *file_priv)
290{
291 struct drm_i915_gem_create *args = data;
292 struct drm_gem_object *obj;
a1a2d1d3
PP
293 int ret;
294 u32 handle;
673a394b
EA
295
296 args->size = roundup(args->size, PAGE_SIZE);
297
298 /* Allocate the new object */
ac52bc56 299 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
300 if (obj == NULL)
301 return -ENOMEM;
302
303 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 304 if (ret) {
202f2fef
CW
305 drm_gem_object_release(obj);
306 i915_gem_info_remove_obj(dev->dev_private, obj->size);
307 kfree(obj);
673a394b 308 return ret;
1dfd9754 309 }
673a394b 310
202f2fef
CW
311 /* drop reference from allocate - handle holds it now */
312 drm_gem_object_unreference(obj);
313 trace_i915_gem_object_create(obj);
314
1dfd9754 315 args->handle = handle;
673a394b
EA
316 return 0;
317}
318
16e809ac
DV
319static bool
320i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
321{
322 struct drm_device *dev = obj->base.dev;
323 drm_i915_private_t *dev_priv = dev->dev_private;
324
325 return obj->gtt_space == NULL ||
326 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
327}
328
eb01459f
EA
329static inline int
330fast_shmem_read(struct page **pages,
331 loff_t page_base, int page_offset,
332 char __user *data,
333 int length)
334{
b5e4feb6 335 char *vaddr;
4f27b75d 336 int ret;
eb01459f 337
3e4d3af5 338 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
4f27b75d 339 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
3e4d3af5 340 kunmap_atomic(vaddr);
eb01459f 341
4f27b75d 342 return ret;
eb01459f
EA
343}
344
280b713b
EA
345static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
346{
347 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 348 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
349
350 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
351 obj_priv->tiling_mode != I915_TILING_NONE;
352}
353
99a03df5 354static inline void
40123c1f
EA
355slow_shmem_copy(struct page *dst_page,
356 int dst_offset,
357 struct page *src_page,
358 int src_offset,
359 int length)
360{
361 char *dst_vaddr, *src_vaddr;
362
99a03df5
CW
363 dst_vaddr = kmap(dst_page);
364 src_vaddr = kmap(src_page);
40123c1f
EA
365
366 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
367
99a03df5
CW
368 kunmap(src_page);
369 kunmap(dst_page);
40123c1f
EA
370}
371
99a03df5 372static inline void
280b713b
EA
373slow_shmem_bit17_copy(struct page *gpu_page,
374 int gpu_offset,
375 struct page *cpu_page,
376 int cpu_offset,
377 int length,
378 int is_read)
379{
380 char *gpu_vaddr, *cpu_vaddr;
381
382 /* Use the unswizzled path if this page isn't affected. */
383 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
384 if (is_read)
385 return slow_shmem_copy(cpu_page, cpu_offset,
386 gpu_page, gpu_offset, length);
387 else
388 return slow_shmem_copy(gpu_page, gpu_offset,
389 cpu_page, cpu_offset, length);
390 }
391
99a03df5
CW
392 gpu_vaddr = kmap(gpu_page);
393 cpu_vaddr = kmap(cpu_page);
280b713b
EA
394
395 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
396 * XORing with the other bits (A9 for Y, A9 and A10 for X)
397 */
398 while (length > 0) {
399 int cacheline_end = ALIGN(gpu_offset + 1, 64);
400 int this_length = min(cacheline_end - gpu_offset, length);
401 int swizzled_gpu_offset = gpu_offset ^ 64;
402
403 if (is_read) {
404 memcpy(cpu_vaddr + cpu_offset,
405 gpu_vaddr + swizzled_gpu_offset,
406 this_length);
407 } else {
408 memcpy(gpu_vaddr + swizzled_gpu_offset,
409 cpu_vaddr + cpu_offset,
410 this_length);
411 }
412 cpu_offset += this_length;
413 gpu_offset += this_length;
414 length -= this_length;
415 }
416
99a03df5
CW
417 kunmap(cpu_page);
418 kunmap(gpu_page);
280b713b
EA
419}
420
eb01459f
EA
421/**
422 * This is the fast shmem pread path, which attempts to copy_from_user directly
423 * from the backing pages of the object to the user's address space. On a
424 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
425 */
426static int
427i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
428 struct drm_i915_gem_pread *args,
429 struct drm_file *file_priv)
430{
23010e43 431 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
432 ssize_t remain;
433 loff_t offset, page_base;
434 char __user *user_data;
435 int page_offset, page_length;
eb01459f
EA
436
437 user_data = (char __user *) (uintptr_t) args->data_ptr;
438 remain = args->size;
439
23010e43 440 obj_priv = to_intel_bo(obj);
eb01459f
EA
441 offset = args->offset;
442
443 while (remain > 0) {
444 /* Operation in this page
445 *
446 * page_base = page offset within aperture
447 * page_offset = offset within page
448 * page_length = bytes to copy for this page
449 */
450 page_base = (offset & ~(PAGE_SIZE-1));
451 page_offset = offset & (PAGE_SIZE-1);
452 page_length = remain;
453 if ((page_offset + remain) > PAGE_SIZE)
454 page_length = PAGE_SIZE - page_offset;
455
4f27b75d
CW
456 if (fast_shmem_read(obj_priv->pages,
457 page_base, page_offset,
458 user_data, page_length))
459 return -EFAULT;
eb01459f
EA
460
461 remain -= page_length;
462 user_data += page_length;
463 offset += page_length;
464 }
465
4f27b75d 466 return 0;
eb01459f
EA
467}
468
07f73f69
CW
469static int
470i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
471{
472 int ret;
473
4bdadb97 474 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
475
476 /* If we've insufficient memory to map in the pages, attempt
477 * to make some space by throwing out some old buffers.
478 */
479 if (ret == -ENOMEM) {
480 struct drm_device *dev = obj->dev;
07f73f69 481
0108a3ed 482 ret = i915_gem_evict_something(dev, obj->size,
a6e0aa42
DV
483 i915_gem_get_gtt_alignment(obj),
484 false);
07f73f69
CW
485 if (ret)
486 return ret;
487
4bdadb97 488 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
489 }
490
491 return ret;
492}
493
eb01459f
EA
494/**
495 * This is the fallback shmem pread path, which allocates temporary storage
496 * in kernel space to copy_to_user into outside of the struct_mutex, so we
497 * can copy out of the object's backing pages while holding the struct mutex
498 * and not take page faults.
499 */
500static int
501i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
502 struct drm_i915_gem_pread *args,
503 struct drm_file *file_priv)
504{
23010e43 505 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
506 struct mm_struct *mm = current->mm;
507 struct page **user_pages;
508 ssize_t remain;
509 loff_t offset, pinned_pages, i;
510 loff_t first_data_page, last_data_page, num_pages;
511 int shmem_page_index, shmem_page_offset;
512 int data_page_index, data_page_offset;
513 int page_length;
514 int ret;
515 uint64_t data_ptr = args->data_ptr;
280b713b 516 int do_bit17_swizzling;
eb01459f
EA
517
518 remain = args->size;
519
520 /* Pin the user pages containing the data. We can't fault while
521 * holding the struct mutex, yet we want to hold it while
522 * dereferencing the user data.
523 */
524 first_data_page = data_ptr / PAGE_SIZE;
525 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
526 num_pages = last_data_page - first_data_page + 1;
527
4f27b75d 528 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
529 if (user_pages == NULL)
530 return -ENOMEM;
531
4f27b75d 532 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
533 down_read(&mm->mmap_sem);
534 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 535 num_pages, 1, 0, user_pages, NULL);
eb01459f 536 up_read(&mm->mmap_sem);
4f27b75d 537 mutex_lock(&dev->struct_mutex);
eb01459f
EA
538 if (pinned_pages < num_pages) {
539 ret = -EFAULT;
4f27b75d 540 goto out;
eb01459f
EA
541 }
542
4f27b75d
CW
543 ret = i915_gem_object_set_cpu_read_domain_range(obj,
544 args->offset,
545 args->size);
07f73f69 546 if (ret)
4f27b75d 547 goto out;
eb01459f 548
4f27b75d 549 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 550
23010e43 551 obj_priv = to_intel_bo(obj);
eb01459f
EA
552 offset = args->offset;
553
554 while (remain > 0) {
555 /* Operation in this page
556 *
557 * shmem_page_index = page number within shmem file
558 * shmem_page_offset = offset within page in shmem file
559 * data_page_index = page number in get_user_pages return
560 * data_page_offset = offset with data_page_index page.
561 * page_length = bytes to copy for this page
562 */
563 shmem_page_index = offset / PAGE_SIZE;
564 shmem_page_offset = offset & ~PAGE_MASK;
565 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
566 data_page_offset = data_ptr & ~PAGE_MASK;
567
568 page_length = remain;
569 if ((shmem_page_offset + page_length) > PAGE_SIZE)
570 page_length = PAGE_SIZE - shmem_page_offset;
571 if ((data_page_offset + page_length) > PAGE_SIZE)
572 page_length = PAGE_SIZE - data_page_offset;
573
280b713b 574 if (do_bit17_swizzling) {
99a03df5 575 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 576 shmem_page_offset,
99a03df5
CW
577 user_pages[data_page_index],
578 data_page_offset,
579 page_length,
580 1);
581 } else {
582 slow_shmem_copy(user_pages[data_page_index],
583 data_page_offset,
584 obj_priv->pages[shmem_page_index],
585 shmem_page_offset,
586 page_length);
280b713b 587 }
eb01459f
EA
588
589 remain -= page_length;
590 data_ptr += page_length;
591 offset += page_length;
592 }
593
4f27b75d 594out:
eb01459f
EA
595 for (i = 0; i < pinned_pages; i++) {
596 SetPageDirty(user_pages[i]);
597 page_cache_release(user_pages[i]);
598 }
8e7d2b2c 599 drm_free_large(user_pages);
eb01459f
EA
600
601 return ret;
602}
603
673a394b
EA
604/**
605 * Reads data from the object referenced by handle.
606 *
607 * On error, the contents of *data are undefined.
608 */
609int
610i915_gem_pread_ioctl(struct drm_device *dev, void *data,
611 struct drm_file *file_priv)
612{
613 struct drm_i915_gem_pread *args = data;
614 struct drm_gem_object *obj;
615 struct drm_i915_gem_object *obj_priv;
35b62a89 616 int ret = 0;
673a394b 617
4f27b75d 618 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 619 if (ret)
4f27b75d 620 return ret;
673a394b
EA
621
622 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
623 if (obj == NULL) {
624 ret = -ENOENT;
625 goto unlock;
4f27b75d 626 }
23010e43 627 obj_priv = to_intel_bo(obj);
673a394b 628
7dcd2499
CW
629 /* Bounds check source. */
630 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 631 ret = -EINVAL;
35b62a89 632 goto out;
ce9d419d
CW
633 }
634
35b62a89
CW
635 if (args->size == 0)
636 goto out;
637
ce9d419d
CW
638 if (!access_ok(VERIFY_WRITE,
639 (char __user *)(uintptr_t)args->data_ptr,
640 args->size)) {
641 ret = -EFAULT;
35b62a89 642 goto out;
673a394b
EA
643 }
644
b5e4feb6
CW
645 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
646 args->size);
647 if (ret) {
648 ret = -EFAULT;
649 goto out;
280b713b 650 }
673a394b 651
4f27b75d
CW
652 ret = i915_gem_object_get_pages_or_evict(obj);
653 if (ret)
654 goto out;
655
656 ret = i915_gem_object_set_cpu_read_domain_range(obj,
657 args->offset,
658 args->size);
659 if (ret)
660 goto out_put;
661
662 ret = -EFAULT;
663 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 664 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
665 if (ret == -EFAULT)
666 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 667
4f27b75d
CW
668out_put:
669 i915_gem_object_put_pages(obj);
35b62a89 670out:
4f27b75d 671 drm_gem_object_unreference(obj);
1d7cfea1 672unlock:
4f27b75d 673 mutex_unlock(&dev->struct_mutex);
eb01459f 674 return ret;
673a394b
EA
675}
676
0839ccb8
KP
677/* This is the fast write path which cannot handle
678 * page faults in the source data
9b7530cc 679 */
0839ccb8
KP
680
681static inline int
682fast_user_write(struct io_mapping *mapping,
683 loff_t page_base, int page_offset,
684 char __user *user_data,
685 int length)
9b7530cc 686{
9b7530cc 687 char *vaddr_atomic;
0839ccb8 688 unsigned long unwritten;
9b7530cc 689
3e4d3af5 690 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
691 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
692 user_data, length);
3e4d3af5 693 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 694 return unwritten;
0839ccb8
KP
695}
696
697/* Here's the write path which can sleep for
698 * page faults
699 */
700
ab34c226 701static inline void
3de09aa3
EA
702slow_kernel_write(struct io_mapping *mapping,
703 loff_t gtt_base, int gtt_offset,
704 struct page *user_page, int user_offset,
705 int length)
0839ccb8 706{
ab34c226
CW
707 char __iomem *dst_vaddr;
708 char *src_vaddr;
0839ccb8 709
ab34c226
CW
710 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
711 src_vaddr = kmap(user_page);
712
713 memcpy_toio(dst_vaddr + gtt_offset,
714 src_vaddr + user_offset,
715 length);
716
717 kunmap(user_page);
718 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
719}
720
40123c1f
EA
721static inline int
722fast_shmem_write(struct page **pages,
723 loff_t page_base, int page_offset,
724 char __user *data,
725 int length)
726{
b5e4feb6 727 char *vaddr;
fbd5a26d 728 int ret;
40123c1f 729
3e4d3af5 730 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
fbd5a26d 731 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
3e4d3af5 732 kunmap_atomic(vaddr);
40123c1f 733
fbd5a26d 734 return ret;
40123c1f
EA
735}
736
3de09aa3
EA
737/**
738 * This is the fast pwrite path, where we copy the data directly from the
739 * user into the GTT, uncached.
740 */
673a394b 741static int
3de09aa3
EA
742i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file_priv)
673a394b 745{
23010e43 746 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 747 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 748 ssize_t remain;
0839ccb8 749 loff_t offset, page_base;
673a394b 750 char __user *user_data;
0839ccb8 751 int page_offset, page_length;
673a394b
EA
752
753 user_data = (char __user *) (uintptr_t) args->data_ptr;
754 remain = args->size;
673a394b 755
23010e43 756 obj_priv = to_intel_bo(obj);
673a394b 757 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
758
759 while (remain > 0) {
760 /* Operation in this page
761 *
0839ccb8
KP
762 * page_base = page offset within aperture
763 * page_offset = offset within page
764 * page_length = bytes to copy for this page
673a394b 765 */
0839ccb8
KP
766 page_base = (offset & ~(PAGE_SIZE-1));
767 page_offset = offset & (PAGE_SIZE-1);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
0839ccb8 772 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
773 * source page isn't available. Return the error and we'll
774 * retry in the slow path.
0839ccb8 775 */
fbd5a26d
CW
776 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
777 page_offset, user_data, page_length))
778
779 return -EFAULT;
673a394b 780
0839ccb8
KP
781 remain -= page_length;
782 user_data += page_length;
783 offset += page_length;
673a394b 784 }
673a394b 785
fbd5a26d 786 return 0;
673a394b
EA
787}
788
3de09aa3
EA
789/**
790 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
791 * the memory and maps it using kmap_atomic for copying.
792 *
793 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
794 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
795 */
3043c60c 796static int
3de09aa3
EA
797i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
798 struct drm_i915_gem_pwrite *args,
799 struct drm_file *file_priv)
673a394b 800{
23010e43 801 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
802 drm_i915_private_t *dev_priv = dev->dev_private;
803 ssize_t remain;
804 loff_t gtt_page_base, offset;
805 loff_t first_data_page, last_data_page, num_pages;
806 loff_t pinned_pages, i;
807 struct page **user_pages;
808 struct mm_struct *mm = current->mm;
809 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 810 int ret;
3de09aa3
EA
811 uint64_t data_ptr = args->data_ptr;
812
813 remain = args->size;
814
815 /* Pin the user pages containing the data. We can't fault while
816 * holding the struct mutex, and all of the pwrite implementations
817 * want to hold it while dereferencing the user data.
818 */
819 first_data_page = data_ptr / PAGE_SIZE;
820 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
821 num_pages = last_data_page - first_data_page + 1;
822
fbd5a26d 823 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
824 if (user_pages == NULL)
825 return -ENOMEM;
826
fbd5a26d 827 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
828 down_read(&mm->mmap_sem);
829 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
830 num_pages, 0, 0, user_pages, NULL);
831 up_read(&mm->mmap_sem);
fbd5a26d 832 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
833 if (pinned_pages < num_pages) {
834 ret = -EFAULT;
835 goto out_unpin_pages;
836 }
673a394b 837
3de09aa3
EA
838 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
839 if (ret)
fbd5a26d 840 goto out_unpin_pages;
3de09aa3 841
23010e43 842 obj_priv = to_intel_bo(obj);
3de09aa3
EA
843 offset = obj_priv->gtt_offset + args->offset;
844
845 while (remain > 0) {
846 /* Operation in this page
847 *
848 * gtt_page_base = page offset within aperture
849 * gtt_page_offset = offset within page in aperture
850 * data_page_index = page number in get_user_pages return
851 * data_page_offset = offset with data_page_index page.
852 * page_length = bytes to copy for this page
853 */
854 gtt_page_base = offset & PAGE_MASK;
855 gtt_page_offset = offset & ~PAGE_MASK;
856 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
857 data_page_offset = data_ptr & ~PAGE_MASK;
858
859 page_length = remain;
860 if ((gtt_page_offset + page_length) > PAGE_SIZE)
861 page_length = PAGE_SIZE - gtt_page_offset;
862 if ((data_page_offset + page_length) > PAGE_SIZE)
863 page_length = PAGE_SIZE - data_page_offset;
864
ab34c226
CW
865 slow_kernel_write(dev_priv->mm.gtt_mapping,
866 gtt_page_base, gtt_page_offset,
867 user_pages[data_page_index],
868 data_page_offset,
869 page_length);
3de09aa3
EA
870
871 remain -= page_length;
872 offset += page_length;
873 data_ptr += page_length;
874 }
875
3de09aa3
EA
876out_unpin_pages:
877 for (i = 0; i < pinned_pages; i++)
878 page_cache_release(user_pages[i]);
8e7d2b2c 879 drm_free_large(user_pages);
3de09aa3
EA
880
881 return ret;
882}
883
40123c1f
EA
884/**
885 * This is the fast shmem pwrite path, which attempts to directly
886 * copy_from_user into the kmapped pages backing the object.
887 */
3043c60c 888static int
40123c1f
EA
889i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
890 struct drm_i915_gem_pwrite *args,
891 struct drm_file *file_priv)
673a394b 892{
23010e43 893 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
894 ssize_t remain;
895 loff_t offset, page_base;
896 char __user *user_data;
897 int page_offset, page_length;
40123c1f
EA
898
899 user_data = (char __user *) (uintptr_t) args->data_ptr;
900 remain = args->size;
673a394b 901
23010e43 902 obj_priv = to_intel_bo(obj);
40123c1f
EA
903 offset = args->offset;
904 obj_priv->dirty = 1;
905
906 while (remain > 0) {
907 /* Operation in this page
908 *
909 * page_base = page offset within aperture
910 * page_offset = offset within page
911 * page_length = bytes to copy for this page
912 */
913 page_base = (offset & ~(PAGE_SIZE-1));
914 page_offset = offset & (PAGE_SIZE-1);
915 page_length = remain;
916 if ((page_offset + remain) > PAGE_SIZE)
917 page_length = PAGE_SIZE - page_offset;
918
fbd5a26d 919 if (fast_shmem_write(obj_priv->pages,
40123c1f 920 page_base, page_offset,
fbd5a26d
CW
921 user_data, page_length))
922 return -EFAULT;
40123c1f
EA
923
924 remain -= page_length;
925 user_data += page_length;
926 offset += page_length;
927 }
928
fbd5a26d 929 return 0;
40123c1f
EA
930}
931
932/**
933 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
934 * the memory and maps it using kmap_atomic for copying.
935 *
936 * This avoids taking mmap_sem for faulting on the user's address while the
937 * struct_mutex is held.
938 */
939static int
940i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
941 struct drm_i915_gem_pwrite *args,
942 struct drm_file *file_priv)
943{
23010e43 944 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
945 struct mm_struct *mm = current->mm;
946 struct page **user_pages;
947 ssize_t remain;
948 loff_t offset, pinned_pages, i;
949 loff_t first_data_page, last_data_page, num_pages;
950 int shmem_page_index, shmem_page_offset;
951 int data_page_index, data_page_offset;
952 int page_length;
953 int ret;
954 uint64_t data_ptr = args->data_ptr;
280b713b 955 int do_bit17_swizzling;
40123c1f
EA
956
957 remain = args->size;
958
959 /* Pin the user pages containing the data. We can't fault while
960 * holding the struct mutex, and all of the pwrite implementations
961 * want to hold it while dereferencing the user data.
962 */
963 first_data_page = data_ptr / PAGE_SIZE;
964 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
965 num_pages = last_data_page - first_data_page + 1;
966
4f27b75d 967 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
968 if (user_pages == NULL)
969 return -ENOMEM;
970
fbd5a26d 971 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
972 down_read(&mm->mmap_sem);
973 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
974 num_pages, 0, 0, user_pages, NULL);
975 up_read(&mm->mmap_sem);
fbd5a26d 976 mutex_lock(&dev->struct_mutex);
40123c1f
EA
977 if (pinned_pages < num_pages) {
978 ret = -EFAULT;
fbd5a26d 979 goto out;
673a394b
EA
980 }
981
fbd5a26d 982 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 983 if (ret)
fbd5a26d 984 goto out;
40123c1f 985
fbd5a26d 986 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 987
23010e43 988 obj_priv = to_intel_bo(obj);
673a394b 989 offset = args->offset;
40123c1f 990 obj_priv->dirty = 1;
673a394b 991
40123c1f
EA
992 while (remain > 0) {
993 /* Operation in this page
994 *
995 * shmem_page_index = page number within shmem file
996 * shmem_page_offset = offset within page in shmem file
997 * data_page_index = page number in get_user_pages return
998 * data_page_offset = offset with data_page_index page.
999 * page_length = bytes to copy for this page
1000 */
1001 shmem_page_index = offset / PAGE_SIZE;
1002 shmem_page_offset = offset & ~PAGE_MASK;
1003 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
1004 data_page_offset = data_ptr & ~PAGE_MASK;
1005
1006 page_length = remain;
1007 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1008 page_length = PAGE_SIZE - shmem_page_offset;
1009 if ((data_page_offset + page_length) > PAGE_SIZE)
1010 page_length = PAGE_SIZE - data_page_offset;
1011
280b713b 1012 if (do_bit17_swizzling) {
99a03df5 1013 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
1014 shmem_page_offset,
1015 user_pages[data_page_index],
1016 data_page_offset,
99a03df5
CW
1017 page_length,
1018 0);
1019 } else {
1020 slow_shmem_copy(obj_priv->pages[shmem_page_index],
1021 shmem_page_offset,
1022 user_pages[data_page_index],
1023 data_page_offset,
1024 page_length);
280b713b 1025 }
40123c1f
EA
1026
1027 remain -= page_length;
1028 data_ptr += page_length;
1029 offset += page_length;
673a394b
EA
1030 }
1031
fbd5a26d 1032out:
40123c1f
EA
1033 for (i = 0; i < pinned_pages; i++)
1034 page_cache_release(user_pages[i]);
8e7d2b2c 1035 drm_free_large(user_pages);
673a394b 1036
40123c1f 1037 return ret;
673a394b
EA
1038}
1039
1040/**
1041 * Writes data to the object referenced by handle.
1042 *
1043 * On error, the contents of the buffer that were to be modified are undefined.
1044 */
1045int
1046i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1047 struct drm_file *file)
673a394b
EA
1048{
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_gem_object *obj;
1051 struct drm_i915_gem_object *obj_priv;
1052 int ret = 0;
1053
fbd5a26d 1054 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1055 if (ret)
fbd5a26d 1056 return ret;
1d7cfea1
CW
1057
1058 obj = drm_gem_object_lookup(dev, file, args->handle);
1059 if (obj == NULL) {
1060 ret = -ENOENT;
1061 goto unlock;
fbd5a26d 1062 }
23010e43 1063 obj_priv = to_intel_bo(obj);
673a394b 1064
fbd5a26d 1065
7dcd2499
CW
1066 /* Bounds check destination. */
1067 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1068 ret = -EINVAL;
35b62a89 1069 goto out;
ce9d419d
CW
1070 }
1071
35b62a89
CW
1072 if (args->size == 0)
1073 goto out;
1074
ce9d419d
CW
1075 if (!access_ok(VERIFY_READ,
1076 (char __user *)(uintptr_t)args->data_ptr,
1077 args->size)) {
1078 ret = -EFAULT;
35b62a89 1079 goto out;
673a394b
EA
1080 }
1081
b5e4feb6
CW
1082 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1083 args->size);
1084 if (ret) {
1085 ret = -EFAULT;
1086 goto out;
673a394b
EA
1087 }
1088
1089 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1090 * it would end up going through the fenced access, and we'll get
1091 * different detiling behavior between reading and writing.
1092 * pread/pwrite currently are reading and writing from the CPU
1093 * perspective, requiring manual detiling by the client.
1094 */
71acb5eb 1095 if (obj_priv->phys_obj)
fbd5a26d 1096 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1097 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1098 obj_priv->gtt_space &&
9b8c4a0b 1099 obj->write_domain != I915_GEM_DOMAIN_CPU) {
920afa77 1100 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1101 if (ret)
1102 goto out;
1103
1104 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1105 if (ret)
1106 goto out_unpin;
1107
1108 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1109 if (ret == -EFAULT)
1110 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1111
1112out_unpin:
1113 i915_gem_object_unpin(obj);
40123c1f 1114 } else {
fbd5a26d
CW
1115 ret = i915_gem_object_get_pages_or_evict(obj);
1116 if (ret)
1117 goto out;
673a394b 1118
fbd5a26d
CW
1119 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1120 if (ret)
1121 goto out_put;
673a394b 1122
fbd5a26d
CW
1123 ret = -EFAULT;
1124 if (!i915_gem_object_needs_bit17_swizzle(obj))
1125 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1126 if (ret == -EFAULT)
1127 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1128
1129out_put:
1130 i915_gem_object_put_pages(obj);
1131 }
673a394b 1132
35b62a89 1133out:
fbd5a26d 1134 drm_gem_object_unreference(obj);
1d7cfea1 1135unlock:
fbd5a26d 1136 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1137 return ret;
1138}
1139
1140/**
2ef7eeaa
EA
1141 * Called when user space prepares to use an object with the CPU, either
1142 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1143 */
1144int
1145i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1146 struct drm_file *file_priv)
1147{
a09ba7fa 1148 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1149 struct drm_i915_gem_set_domain *args = data;
1150 struct drm_gem_object *obj;
652c393a 1151 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1152 uint32_t read_domains = args->read_domains;
1153 uint32_t write_domain = args->write_domain;
673a394b
EA
1154 int ret;
1155
1156 if (!(dev->driver->driver_features & DRIVER_GEM))
1157 return -ENODEV;
1158
2ef7eeaa 1159 /* Only handle setting domains to types used by the CPU. */
21d509e3 1160 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1161 return -EINVAL;
1162
21d509e3 1163 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1164 return -EINVAL;
1165
1166 /* Having something in the write domain implies it's in the read
1167 * domain, and only that read domain. Enforce that in the request.
1168 */
1169 if (write_domain != 0 && read_domains != write_domain)
1170 return -EINVAL;
1171
76c1dec1 1172 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1173 if (ret)
76c1dec1 1174 return ret;
1d7cfea1 1175
673a394b 1176 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1177 if (obj == NULL) {
1178 ret = -ENOENT;
1179 goto unlock;
76c1dec1 1180 }
23010e43 1181 obj_priv = to_intel_bo(obj);
673a394b 1182
652c393a
JB
1183 intel_mark_busy(dev, obj);
1184
2ef7eeaa
EA
1185 if (read_domains & I915_GEM_DOMAIN_GTT) {
1186 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1187
a09ba7fa
EA
1188 /* Update the LRU on the fence for the CPU access that's
1189 * about to occur.
1190 */
1191 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1192 struct drm_i915_fence_reg *reg =
1193 &dev_priv->fence_regs[obj_priv->fence_reg];
1194 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1195 &dev_priv->mm.fence_list);
1196 }
1197
02354392
EA
1198 /* Silently promote "you're not bound, there was nothing to do"
1199 * to success, since the client was just asking us to
1200 * make sure everything was done.
1201 */
1202 if (ret == -EINVAL)
1203 ret = 0;
2ef7eeaa 1204 } else {
e47c68e9 1205 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1206 }
1207
7d1c4804
CW
1208 /* Maintain LRU order of "inactive" objects */
1209 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1210 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1211
673a394b 1212 drm_gem_object_unreference(obj);
1d7cfea1 1213unlock:
673a394b
EA
1214 mutex_unlock(&dev->struct_mutex);
1215 return ret;
1216}
1217
1218/**
1219 * Called when user space has done writes to this buffer
1220 */
1221int
1222i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1223 struct drm_file *file_priv)
1224{
1225 struct drm_i915_gem_sw_finish *args = data;
1226 struct drm_gem_object *obj;
673a394b
EA
1227 int ret = 0;
1228
1229 if (!(dev->driver->driver_features & DRIVER_GEM))
1230 return -ENODEV;
1231
76c1dec1 1232 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1233 if (ret)
76c1dec1 1234 return ret;
1d7cfea1 1235
673a394b
EA
1236 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1237 if (obj == NULL) {
1d7cfea1
CW
1238 ret = -ENOENT;
1239 goto unlock;
673a394b
EA
1240 }
1241
673a394b 1242 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1243 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1244 i915_gem_object_flush_cpu_write_domain(obj);
1245
673a394b 1246 drm_gem_object_unreference(obj);
1d7cfea1 1247unlock:
673a394b
EA
1248 mutex_unlock(&dev->struct_mutex);
1249 return ret;
1250}
1251
1252/**
1253 * Maps the contents of an object, returning the address it is mapped
1254 * into.
1255 *
1256 * While the mapping holds a reference on the contents of the object, it doesn't
1257 * imply a ref on the object itself.
1258 */
1259int
1260i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1261 struct drm_file *file_priv)
1262{
da761a6e 1263 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1264 struct drm_i915_gem_mmap *args = data;
1265 struct drm_gem_object *obj;
1266 loff_t offset;
1267 unsigned long addr;
1268
1269 if (!(dev->driver->driver_features & DRIVER_GEM))
1270 return -ENODEV;
1271
1272 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1273 if (obj == NULL)
bf79cb91 1274 return -ENOENT;
673a394b 1275
da761a6e
CW
1276 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1277 drm_gem_object_unreference_unlocked(obj);
1278 return -E2BIG;
1279 }
1280
673a394b
EA
1281 offset = args->offset;
1282
1283 down_write(&current->mm->mmap_sem);
1284 addr = do_mmap(obj->filp, 0, args->size,
1285 PROT_READ | PROT_WRITE, MAP_SHARED,
1286 args->offset);
1287 up_write(&current->mm->mmap_sem);
bc9025bd 1288 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1289 if (IS_ERR((void *)addr))
1290 return addr;
1291
1292 args->addr_ptr = (uint64_t) addr;
1293
1294 return 0;
1295}
1296
de151cf6
JB
1297/**
1298 * i915_gem_fault - fault a page into the GTT
1299 * vma: VMA in question
1300 * vmf: fault info
1301 *
1302 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1303 * from userspace. The fault handler takes care of binding the object to
1304 * the GTT (if needed), allocating and programming a fence register (again,
1305 * only if needed based on whether the old reg is still valid or the object
1306 * is tiled) and inserting a new PTE into the faulting process.
1307 *
1308 * Note that the faulting process may involve evicting existing objects
1309 * from the GTT and/or fence registers to make room. So performance may
1310 * suffer if the GTT working set is large or there are few fence registers
1311 * left.
1312 */
1313int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1314{
1315 struct drm_gem_object *obj = vma->vm_private_data;
1316 struct drm_device *dev = obj->dev;
7d1c4804 1317 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1318 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1319 pgoff_t page_offset;
1320 unsigned long pfn;
1321 int ret = 0;
0f973f27 1322 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1323
1324 /* We don't use vmf->pgoff since that has the fake offset */
1325 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1326 PAGE_SHIFT;
1327
1328 /* Now bind it into the GTT if needed */
1329 mutex_lock(&dev->struct_mutex);
fb7d516a 1330 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
16e809ac
DV
1331 if (!i915_gem_object_cpu_accessible(obj_priv))
1332 i915_gem_object_unbind(obj);
1333
de151cf6 1334 if (!obj_priv->gtt_space) {
920afa77 1335 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1336 if (ret)
1337 goto unlock;
07f4f3e8 1338
07f4f3e8 1339 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1340 if (ret)
1341 goto unlock;
de151cf6
JB
1342 }
1343
fb7d516a
DV
1344 if (!obj_priv->fault_mappable) {
1345 obj_priv->fault_mappable = true;
1346 i915_gem_info_update_mappable(dev_priv, obj, true);
1347 }
1348
de151cf6 1349 /* Need a new fence register? */
a09ba7fa 1350 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1351 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1352 if (ret)
1353 goto unlock;
d9ddcb96 1354 }
de151cf6 1355
7d1c4804 1356 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1357 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1358
de151cf6
JB
1359 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1360 page_offset;
1361
1362 /* Finally, remap it using the new GTT offset */
1363 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1364unlock:
de151cf6
JB
1365 mutex_unlock(&dev->struct_mutex);
1366
1367 switch (ret) {
c715089f
CW
1368 case 0:
1369 case -ERESTARTSYS:
1370 return VM_FAULT_NOPAGE;
de151cf6
JB
1371 case -ENOMEM:
1372 case -EAGAIN:
1373 return VM_FAULT_OOM;
de151cf6 1374 default:
c715089f 1375 return VM_FAULT_SIGBUS;
de151cf6
JB
1376 }
1377}
1378
1379/**
1380 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1381 * @obj: obj in question
1382 *
1383 * GEM memory mapping works by handing back to userspace a fake mmap offset
1384 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1385 * up the object based on the offset and sets up the various memory mapping
1386 * structures.
1387 *
1388 * This routine allocates and attaches a fake offset for @obj.
1389 */
1390static int
1391i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1392{
1393 struct drm_device *dev = obj->dev;
1394 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1395 struct drm_map_list *list;
f77d390c 1396 struct drm_local_map *map;
de151cf6
JB
1397 int ret = 0;
1398
1399 /* Set the object up for mmap'ing */
1400 list = &obj->map_list;
9a298b2a 1401 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1402 if (!list->map)
1403 return -ENOMEM;
1404
1405 map = list->map;
1406 map->type = _DRM_GEM;
1407 map->size = obj->size;
1408 map->handle = obj;
1409
1410 /* Get a DRM GEM mmap offset allocated... */
1411 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1412 obj->size / PAGE_SIZE, 0, 0);
1413 if (!list->file_offset_node) {
1414 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1415 ret = -ENOSPC;
de151cf6
JB
1416 goto out_free_list;
1417 }
1418
1419 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1420 obj->size / PAGE_SIZE, 0);
1421 if (!list->file_offset_node) {
1422 ret = -ENOMEM;
1423 goto out_free_list;
1424 }
1425
1426 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1427 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1428 if (ret) {
de151cf6
JB
1429 DRM_ERROR("failed to add to map hash\n");
1430 goto out_free_mm;
1431 }
1432
de151cf6
JB
1433 return 0;
1434
1435out_free_mm:
1436 drm_mm_put_block(list->file_offset_node);
1437out_free_list:
9a298b2a 1438 kfree(list->map);
39a01d1f 1439 list->map = NULL;
de151cf6
JB
1440
1441 return ret;
1442}
1443
901782b2
CW
1444/**
1445 * i915_gem_release_mmap - remove physical page mappings
1446 * @obj: obj in question
1447 *
af901ca1 1448 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1449 * relinquish ownership of the pages back to the system.
1450 *
1451 * It is vital that we remove the page mapping if we have mapped a tiled
1452 * object through the GTT and then lose the fence register due to
1453 * resource pressure. Similarly if the object has been moved out of the
1454 * aperture, than pages mapped into userspace must be revoked. Removing the
1455 * mapping will then trigger a page fault on the next user access, allowing
1456 * fixup by i915_gem_fault().
1457 */
d05ca301 1458void
901782b2
CW
1459i915_gem_release_mmap(struct drm_gem_object *obj)
1460{
1461 struct drm_device *dev = obj->dev;
fb7d516a 1462 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1463 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2 1464
39a01d1f 1465 if (unlikely(obj->map_list.map && dev->dev_mapping))
901782b2 1466 unmap_mapping_range(dev->dev_mapping,
39a01d1f
CW
1467 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1468 obj->size, 1);
fb7d516a
DV
1469
1470 if (obj_priv->fault_mappable) {
1471 obj_priv->fault_mappable = false;
1472 i915_gem_info_update_mappable(dev_priv, obj, false);
1473 }
901782b2
CW
1474}
1475
ab00b3e5
JB
1476static void
1477i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1478{
1479 struct drm_device *dev = obj->dev;
ab00b3e5 1480 struct drm_gem_mm *mm = dev->mm_private;
39a01d1f 1481 struct drm_map_list *list = &obj->map_list;
ab00b3e5 1482
ab00b3e5 1483 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1484 drm_mm_put_block(list->file_offset_node);
1485 kfree(list->map);
1486 list->map = NULL;
ab00b3e5
JB
1487}
1488
de151cf6
JB
1489/**
1490 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1491 * @obj: object to check
1492 *
1493 * Return the required GTT alignment for an object, taking into account
1494 * potential fence register mapping if needed.
1495 */
1496static uint32_t
1497i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1498{
1499 struct drm_device *dev = obj->dev;
23010e43 1500 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1501 int start, i;
1502
1503 /*
1504 * Minimum alignment is 4k (GTT page size), but might be greater
1505 * if a fence register is needed for the object.
1506 */
a6c45cf0 1507 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1508 return 4096;
1509
1510 /*
1511 * Previous chips need to be aligned to the size of the smallest
1512 * fence register that can contain the object.
1513 */
a6c45cf0 1514 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1515 start = 1024*1024;
1516 else
1517 start = 512*1024;
1518
1519 for (i = start; i < obj->size; i <<= 1)
1520 ;
1521
1522 return i;
1523}
1524
1525/**
1526 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1527 * @dev: DRM device
1528 * @data: GTT mapping ioctl data
1529 * @file_priv: GEM object info
1530 *
1531 * Simply returns the fake offset to userspace so it can mmap it.
1532 * The mmap call will end up in drm_gem_mmap(), which will set things
1533 * up so we can get faults in the handler above.
1534 *
1535 * The fault handler will take care of binding the object into the GTT
1536 * (since it may have been evicted to make room for something), allocating
1537 * a fence register, and mapping the appropriate aperture address into
1538 * userspace.
1539 */
1540int
1541i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1542 struct drm_file *file_priv)
1543{
da761a6e 1544 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1545 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1546 struct drm_gem_object *obj;
1547 struct drm_i915_gem_object *obj_priv;
1548 int ret;
1549
1550 if (!(dev->driver->driver_features & DRIVER_GEM))
1551 return -ENODEV;
1552
76c1dec1 1553 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1554 if (ret)
76c1dec1 1555 return ret;
de151cf6 1556
1d7cfea1
CW
1557 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1558 if (obj == NULL) {
1559 ret = -ENOENT;
1560 goto unlock;
1561 }
23010e43 1562 obj_priv = to_intel_bo(obj);
de151cf6 1563
da761a6e
CW
1564 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1565 ret = -E2BIG;
1566 goto unlock;
1567 }
1568
ab18282d
CW
1569 if (obj_priv->madv != I915_MADV_WILLNEED) {
1570 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1571 ret = -EINVAL;
1572 goto out;
ab18282d
CW
1573 }
1574
39a01d1f 1575 if (!obj->map_list.map) {
de151cf6 1576 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1577 if (ret)
1578 goto out;
de151cf6
JB
1579 }
1580
39a01d1f 1581 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
de151cf6 1582
1d7cfea1 1583out:
de151cf6 1584 drm_gem_object_unreference(obj);
1d7cfea1 1585unlock:
de151cf6 1586 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1587 return ret;
de151cf6
JB
1588}
1589
5cdf5881 1590static void
856fa198 1591i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1592{
23010e43 1593 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1594 int page_count = obj->size / PAGE_SIZE;
1595 int i;
1596
856fa198 1597 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1598 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1599
856fa198
EA
1600 if (--obj_priv->pages_refcount != 0)
1601 return;
673a394b 1602
280b713b
EA
1603 if (obj_priv->tiling_mode != I915_TILING_NONE)
1604 i915_gem_object_save_bit_17_swizzle(obj);
1605
3ef94daa 1606 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1607 obj_priv->dirty = 0;
3ef94daa
CW
1608
1609 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1610 if (obj_priv->dirty)
1611 set_page_dirty(obj_priv->pages[i]);
1612
1613 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1614 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1615
1616 page_cache_release(obj_priv->pages[i]);
1617 }
673a394b
EA
1618 obj_priv->dirty = 0;
1619
8e7d2b2c 1620 drm_free_large(obj_priv->pages);
856fa198 1621 obj_priv->pages = NULL;
673a394b
EA
1622}
1623
a56ba56c
CW
1624static uint32_t
1625i915_gem_next_request_seqno(struct drm_device *dev,
1626 struct intel_ring_buffer *ring)
1627{
1628 drm_i915_private_t *dev_priv = dev->dev_private;
1629
1630 ring->outstanding_lazy_request = true;
1631 return dev_priv->next_seqno;
1632}
1633
673a394b 1634static void
617dbe27 1635i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1636 struct intel_ring_buffer *ring)
673a394b
EA
1637{
1638 struct drm_device *dev = obj->dev;
69dc4987 1639 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1640 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1641 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1642
852835f3
ZN
1643 BUG_ON(ring == NULL);
1644 obj_priv->ring = ring;
673a394b
EA
1645
1646 /* Add a reference if we're newly entering the active list. */
1647 if (!obj_priv->active) {
1648 drm_gem_object_reference(obj);
1649 obj_priv->active = 1;
1650 }
e35a41de 1651
673a394b 1652 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1653 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1654 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1655 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1656}
1657
ce44b0ea
EA
1658static void
1659i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1660{
1661 struct drm_device *dev = obj->dev;
1662 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1663 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1664
1665 BUG_ON(!obj_priv->active);
69dc4987
CW
1666 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1667 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1668 obj_priv->last_rendering_seqno = 0;
1669}
673a394b 1670
963b4836
CW
1671/* Immediately discard the backing storage */
1672static void
1673i915_gem_object_truncate(struct drm_gem_object *obj)
1674{
23010e43 1675 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1676 struct inode *inode;
963b4836 1677
ae9fed6b
CW
1678 /* Our goal here is to return as much of the memory as
1679 * is possible back to the system as we are called from OOM.
1680 * To do this we must instruct the shmfs to drop all of its
1681 * backing pages, *now*. Here we mirror the actions taken
1682 * when by shmem_delete_inode() to release the backing store.
1683 */
bb6baf76 1684 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1685 truncate_inode_pages(inode->i_mapping, 0);
1686 if (inode->i_op->truncate_range)
1687 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1688
1689 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1690}
1691
1692static inline int
1693i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1694{
1695 return obj_priv->madv == I915_MADV_DONTNEED;
1696}
1697
673a394b
EA
1698static void
1699i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1700{
1701 struct drm_device *dev = obj->dev;
1702 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1703 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1704
673a394b 1705 if (obj_priv->pin_count != 0)
69dc4987 1706 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1707 else
69dc4987
CW
1708 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1709 list_del_init(&obj_priv->ring_list);
673a394b 1710
99fcb766
DV
1711 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1712
ce44b0ea 1713 obj_priv->last_rendering_seqno = 0;
852835f3 1714 obj_priv->ring = NULL;
673a394b
EA
1715 if (obj_priv->active) {
1716 obj_priv->active = 0;
1717 drm_gem_object_unreference(obj);
1718 }
23bc5982 1719 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1720}
1721
63560396
DV
1722static void
1723i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1724 uint32_t flush_domains,
852835f3 1725 struct intel_ring_buffer *ring)
63560396
DV
1726{
1727 drm_i915_private_t *dev_priv = dev->dev_private;
1728 struct drm_i915_gem_object *obj_priv, *next;
1729
1730 list_for_each_entry_safe(obj_priv, next,
64193406 1731 &ring->gpu_write_list,
63560396 1732 gpu_write_list) {
a8089e84 1733 struct drm_gem_object *obj = &obj_priv->base;
63560396 1734
64193406 1735 if (obj->write_domain & flush_domains) {
63560396
DV
1736 uint32_t old_write_domain = obj->write_domain;
1737
1738 obj->write_domain = 0;
1739 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1740 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1741
1742 /* update the fence lru list */
007cc8ac
DV
1743 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1744 struct drm_i915_fence_reg *reg =
1745 &dev_priv->fence_regs[obj_priv->fence_reg];
1746 list_move_tail(&reg->lru_list,
63560396 1747 &dev_priv->mm.fence_list);
007cc8ac 1748 }
63560396
DV
1749
1750 trace_i915_gem_object_change_domain(obj,
1751 obj->read_domains,
1752 old_write_domain);
1753 }
1754 }
1755}
8187a2b7 1756
3cce469c 1757int
8a1a49f9 1758i915_add_request(struct drm_device *dev,
f787a5f5 1759 struct drm_file *file,
8dc5d147 1760 struct drm_i915_gem_request *request,
8a1a49f9 1761 struct intel_ring_buffer *ring)
673a394b
EA
1762{
1763 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1764 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1765 uint32_t seqno;
1766 int was_empty;
3cce469c
CW
1767 int ret;
1768
1769 BUG_ON(request == NULL);
673a394b 1770
f787a5f5
CW
1771 if (file != NULL)
1772 file_priv = file->driver_priv;
b962442e 1773
3cce469c
CW
1774 ret = ring->add_request(ring, &seqno);
1775 if (ret)
1776 return ret;
673a394b 1777
a56ba56c 1778 ring->outstanding_lazy_request = false;
673a394b
EA
1779
1780 request->seqno = seqno;
852835f3 1781 request->ring = ring;
673a394b 1782 request->emitted_jiffies = jiffies;
852835f3
ZN
1783 was_empty = list_empty(&ring->request_list);
1784 list_add_tail(&request->list, &ring->request_list);
1785
f787a5f5 1786 if (file_priv) {
1c25595f 1787 spin_lock(&file_priv->mm.lock);
f787a5f5 1788 request->file_priv = file_priv;
b962442e 1789 list_add_tail(&request->client_list,
f787a5f5 1790 &file_priv->mm.request_list);
1c25595f 1791 spin_unlock(&file_priv->mm.lock);
b962442e 1792 }
673a394b 1793
f65d9421 1794 if (!dev_priv->mm.suspended) {
b3b079db
CW
1795 mod_timer(&dev_priv->hangcheck_timer,
1796 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1797 if (was_empty)
b3b079db
CW
1798 queue_delayed_work(dev_priv->wq,
1799 &dev_priv->mm.retire_work, HZ);
f65d9421 1800 }
3cce469c 1801 return 0;
673a394b
EA
1802}
1803
1804/**
1805 * Command execution barrier
1806 *
1807 * Ensures that all commands in the ring are finished
1808 * before signalling the CPU
1809 */
8a1a49f9 1810static void
852835f3 1811i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1812{
673a394b 1813 uint32_t flush_domains = 0;
673a394b
EA
1814
1815 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1816 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1817 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1818
78501eac 1819 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1820}
1821
f787a5f5
CW
1822static inline void
1823i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1824{
1c25595f 1825 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1826
1c25595f
CW
1827 if (!file_priv)
1828 return;
1c5d22f7 1829
1c25595f
CW
1830 spin_lock(&file_priv->mm.lock);
1831 list_del(&request->client_list);
1832 request->file_priv = NULL;
1833 spin_unlock(&file_priv->mm.lock);
673a394b 1834}
673a394b 1835
dfaae392
CW
1836static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1837 struct intel_ring_buffer *ring)
9375e446 1838{
dfaae392
CW
1839 while (!list_empty(&ring->request_list)) {
1840 struct drm_i915_gem_request *request;
673a394b 1841
dfaae392
CW
1842 request = list_first_entry(&ring->request_list,
1843 struct drm_i915_gem_request,
1844 list);
de151cf6 1845
dfaae392 1846 list_del(&request->list);
f787a5f5 1847 i915_gem_request_remove_from_client(request);
dfaae392
CW
1848 kfree(request);
1849 }
673a394b 1850
dfaae392 1851 while (!list_empty(&ring->active_list)) {
9375e446
CW
1852 struct drm_i915_gem_object *obj_priv;
1853
dfaae392 1854 obj_priv = list_first_entry(&ring->active_list,
9375e446 1855 struct drm_i915_gem_object,
69dc4987 1856 ring_list);
9375e446
CW
1857
1858 obj_priv->base.write_domain = 0;
dfaae392 1859 list_del_init(&obj_priv->gpu_write_list);
9375e446 1860 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1861 }
1862}
1863
069efc1d 1864void i915_gem_reset(struct drm_device *dev)
673a394b 1865{
77f01230
CW
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 struct drm_i915_gem_object *obj_priv;
069efc1d 1868 int i;
673a394b 1869
dfaae392 1870 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1871 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1872 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1873
1874 /* Remove anything from the flushing lists. The GPU cache is likely
1875 * to be lost on reset along with the data, so simply move the
1876 * lost bo to the inactive list.
1877 */
1878 while (!list_empty(&dev_priv->mm.flushing_list)) {
1879 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1880 struct drm_i915_gem_object,
69dc4987 1881 mm_list);
dfaae392
CW
1882
1883 obj_priv->base.write_domain = 0;
1884 list_del_init(&obj_priv->gpu_write_list);
1885 i915_gem_object_move_to_inactive(&obj_priv->base);
1886 }
1887
1888 /* Move everything out of the GPU domains to ensure we do any
1889 * necessary invalidation upon reuse.
1890 */
77f01230
CW
1891 list_for_each_entry(obj_priv,
1892 &dev_priv->mm.inactive_list,
69dc4987 1893 mm_list)
77f01230
CW
1894 {
1895 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1896 }
069efc1d
CW
1897
1898 /* The fence registers are invalidated so clear them out */
1899 for (i = 0; i < 16; i++) {
1900 struct drm_i915_fence_reg *reg;
1901
1902 reg = &dev_priv->fence_regs[i];
1903 if (!reg->obj)
1904 continue;
1905
1906 i915_gem_clear_fence_reg(reg->obj);
1907 }
673a394b
EA
1908}
1909
1910/**
1911 * This function clears the request list as sequence numbers are passed.
1912 */
b09a1fec
CW
1913static void
1914i915_gem_retire_requests_ring(struct drm_device *dev,
1915 struct intel_ring_buffer *ring)
673a394b
EA
1916{
1917 drm_i915_private_t *dev_priv = dev->dev_private;
1918 uint32_t seqno;
1919
b84d5f0c
CW
1920 if (!ring->status_page.page_addr ||
1921 list_empty(&ring->request_list))
6c0594a3
KW
1922 return;
1923
23bc5982 1924 WARN_ON(i915_verify_lists(dev));
673a394b 1925
78501eac 1926 seqno = ring->get_seqno(ring);
852835f3 1927 while (!list_empty(&ring->request_list)) {
673a394b 1928 struct drm_i915_gem_request *request;
673a394b 1929
852835f3 1930 request = list_first_entry(&ring->request_list,
673a394b
EA
1931 struct drm_i915_gem_request,
1932 list);
673a394b 1933
dfaae392 1934 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1935 break;
1936
1937 trace_i915_gem_request_retire(dev, request->seqno);
1938
1939 list_del(&request->list);
f787a5f5 1940 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1941 kfree(request);
1942 }
673a394b 1943
b84d5f0c
CW
1944 /* Move any buffers on the active list that are no longer referenced
1945 * by the ringbuffer to the flushing/inactive lists as appropriate.
1946 */
1947 while (!list_empty(&ring->active_list)) {
1948 struct drm_gem_object *obj;
1949 struct drm_i915_gem_object *obj_priv;
1950
1951 obj_priv = list_first_entry(&ring->active_list,
1952 struct drm_i915_gem_object,
69dc4987 1953 ring_list);
673a394b 1954
dfaae392 1955 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1956 break;
b84d5f0c
CW
1957
1958 obj = &obj_priv->base;
b84d5f0c
CW
1959 if (obj->write_domain != 0)
1960 i915_gem_object_move_to_flushing(obj);
1961 else
1962 i915_gem_object_move_to_inactive(obj);
673a394b 1963 }
9d34e5db
CW
1964
1965 if (unlikely (dev_priv->trace_irq_seqno &&
1966 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 1967 ring->user_irq_put(ring);
9d34e5db
CW
1968 dev_priv->trace_irq_seqno = 0;
1969 }
23bc5982
CW
1970
1971 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1972}
1973
b09a1fec
CW
1974void
1975i915_gem_retire_requests(struct drm_device *dev)
1976{
1977 drm_i915_private_t *dev_priv = dev->dev_private;
1978
be72615b
CW
1979 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1980 struct drm_i915_gem_object *obj_priv, *tmp;
1981
1982 /* We must be careful that during unbind() we do not
1983 * accidentally infinitely recurse into retire requests.
1984 * Currently:
1985 * retire -> free -> unbind -> wait -> retire_ring
1986 */
1987 list_for_each_entry_safe(obj_priv, tmp,
1988 &dev_priv->mm.deferred_free_list,
69dc4987 1989 mm_list)
be72615b
CW
1990 i915_gem_free_object_tail(&obj_priv->base);
1991 }
1992
b09a1fec 1993 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 1994 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 1995 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
1996}
1997
75ef9da2 1998static void
673a394b
EA
1999i915_gem_retire_work_handler(struct work_struct *work)
2000{
2001 drm_i915_private_t *dev_priv;
2002 struct drm_device *dev;
2003
2004 dev_priv = container_of(work, drm_i915_private_t,
2005 mm.retire_work.work);
2006 dev = dev_priv->dev;
2007
891b48cf
CW
2008 /* Come back later if the device is busy... */
2009 if (!mutex_trylock(&dev->struct_mutex)) {
2010 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2011 return;
2012 }
2013
b09a1fec 2014 i915_gem_retire_requests(dev);
d1b851fc 2015
6dbe2772 2016 if (!dev_priv->mm.suspended &&
d1b851fc 2017 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2018 !list_empty(&dev_priv->bsd_ring.request_list) ||
2019 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2020 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2021 mutex_unlock(&dev->struct_mutex);
2022}
2023
5a5a0c64 2024int
852835f3 2025i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2026 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2027{
2028 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2029 u32 ier;
673a394b
EA
2030 int ret = 0;
2031
2032 BUG_ON(seqno == 0);
2033
ba1234d1 2034 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2035 return -EAGAIN;
2036
a56ba56c 2037 if (ring->outstanding_lazy_request) {
3cce469c
CW
2038 struct drm_i915_gem_request *request;
2039
2040 request = kzalloc(sizeof(*request), GFP_KERNEL);
2041 if (request == NULL)
e35a41de 2042 return -ENOMEM;
3cce469c
CW
2043
2044 ret = i915_add_request(dev, NULL, request, ring);
2045 if (ret) {
2046 kfree(request);
2047 return ret;
2048 }
2049
2050 seqno = request->seqno;
e35a41de 2051 }
a56ba56c 2052 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 2053
78501eac 2054 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2055 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2056 ier = I915_READ(DEIER) | I915_READ(GTIER);
2057 else
2058 ier = I915_READ(IER);
802c7eb6
JB
2059 if (!ier) {
2060 DRM_ERROR("something (likely vbetool) disabled "
2061 "interrupts, re-enabling\n");
2062 i915_driver_irq_preinstall(dev);
2063 i915_driver_irq_postinstall(dev);
2064 }
2065
1c5d22f7
CW
2066 trace_i915_gem_request_wait_begin(dev, seqno);
2067
b2223497 2068 ring->waiting_seqno = seqno;
78501eac 2069 ring->user_irq_get(ring);
48764bf4 2070 if (interruptible)
852835f3 2071 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2072 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2073 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2074 else
852835f3 2075 wait_event(ring->irq_queue,
78501eac 2076 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2077 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2078
78501eac 2079 ring->user_irq_put(ring);
b2223497 2080 ring->waiting_seqno = 0;
1c5d22f7
CW
2081
2082 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2083 }
ba1234d1 2084 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2085 ret = -EAGAIN;
673a394b
EA
2086
2087 if (ret && ret != -ERESTARTSYS)
8bff917c 2088 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2089 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2090 dev_priv->next_seqno);
673a394b
EA
2091
2092 /* Directly dispatch request retiring. While we have the work queue
2093 * to handle this, the waiter on a request often wants an associated
2094 * buffer to have made it to the inactive list, and we would need
2095 * a separate wait queue to handle that.
2096 */
2097 if (ret == 0)
b09a1fec 2098 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2099
2100 return ret;
2101}
2102
48764bf4
DV
2103/**
2104 * Waits for a sequence number to be signaled, and cleans up the
2105 * request and object lists appropriately for that event.
2106 */
2107static int
852835f3 2108i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2109 struct intel_ring_buffer *ring)
48764bf4 2110{
852835f3 2111 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2112}
2113
20f0cd55 2114static void
9220434a 2115i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2116 struct drm_file *file_priv,
9220434a
CW
2117 struct intel_ring_buffer *ring,
2118 uint32_t invalidate_domains,
2119 uint32_t flush_domains)
2120{
78501eac 2121 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2122 i915_gem_process_flushing_list(dev, flush_domains, ring);
2123}
2124
8187a2b7
ZN
2125static void
2126i915_gem_flush(struct drm_device *dev,
c78ec30b 2127 struct drm_file *file_priv,
8187a2b7 2128 uint32_t invalidate_domains,
9220434a
CW
2129 uint32_t flush_domains,
2130 uint32_t flush_rings)
8187a2b7
ZN
2131{
2132 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2133
8187a2b7
ZN
2134 if (flush_domains & I915_GEM_DOMAIN_CPU)
2135 drm_agp_chipset_flush(dev);
8bff917c 2136
9220434a
CW
2137 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2138 if (flush_rings & RING_RENDER)
c78ec30b 2139 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2140 &dev_priv->render_ring,
2141 invalidate_domains, flush_domains);
2142 if (flush_rings & RING_BSD)
c78ec30b 2143 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2144 &dev_priv->bsd_ring,
2145 invalidate_domains, flush_domains);
549f7365
CW
2146 if (flush_rings & RING_BLT)
2147 i915_gem_flush_ring(dev, file_priv,
2148 &dev_priv->blt_ring,
2149 invalidate_domains, flush_domains);
9220434a 2150 }
8187a2b7
ZN
2151}
2152
673a394b
EA
2153/**
2154 * Ensures that all rendering to the object has completed and the object is
2155 * safe to unbind from the GTT or access from the CPU.
2156 */
2157static int
2cf34d7b
CW
2158i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2159 bool interruptible)
673a394b
EA
2160{
2161 struct drm_device *dev = obj->dev;
23010e43 2162 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2163 int ret;
2164
e47c68e9
EA
2165 /* This function only exists to support waiting for existing rendering,
2166 * not for emitting required flushes.
673a394b 2167 */
e47c68e9 2168 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2169
2170 /* If there is rendering queued on the buffer being evicted, wait for
2171 * it.
2172 */
2173 if (obj_priv->active) {
2cf34d7b
CW
2174 ret = i915_do_wait_request(dev,
2175 obj_priv->last_rendering_seqno,
2176 interruptible,
2177 obj_priv->ring);
2178 if (ret)
673a394b
EA
2179 return ret;
2180 }
2181
2182 return 0;
2183}
2184
2185/**
2186 * Unbinds an object from the GTT aperture.
2187 */
0f973f27 2188int
673a394b
EA
2189i915_gem_object_unbind(struct drm_gem_object *obj)
2190{
2191 struct drm_device *dev = obj->dev;
73aa808f 2192 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2193 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2194 int ret = 0;
2195
673a394b
EA
2196 if (obj_priv->gtt_space == NULL)
2197 return 0;
2198
2199 if (obj_priv->pin_count != 0) {
2200 DRM_ERROR("Attempting to unbind pinned buffer\n");
2201 return -EINVAL;
2202 }
2203
5323fd04
EA
2204 /* blow away mappings if mapped through GTT */
2205 i915_gem_release_mmap(obj);
2206
673a394b
EA
2207 /* Move the object to the CPU domain to ensure that
2208 * any possible CPU writes while it's not in the GTT
2209 * are flushed when we go to remap it. This will
2210 * also ensure that all pending GPU writes are finished
2211 * before we unbind.
2212 */
e47c68e9 2213 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2214 if (ret == -ERESTARTSYS)
673a394b 2215 return ret;
8dc1775d
CW
2216 /* Continue on if we fail due to EIO, the GPU is hung so we
2217 * should be safe and we need to cleanup or else we might
2218 * cause memory corruption through use-after-free.
2219 */
812ed492
CW
2220 if (ret) {
2221 i915_gem_clflush_object(obj);
2222 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2223 }
673a394b 2224
96b47b65
DV
2225 /* release the fence reg _after_ flushing */
2226 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2227 i915_gem_clear_fence_reg(obj);
2228
73aa808f
CW
2229 drm_unbind_agp(obj_priv->agp_mem);
2230 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2231
856fa198 2232 i915_gem_object_put_pages(obj);
a32808c0 2233 BUG_ON(obj_priv->pages_refcount);
673a394b 2234
fb7d516a 2235 i915_gem_info_remove_gtt(dev_priv, obj);
69dc4987 2236 list_del_init(&obj_priv->mm_list);
673a394b 2237
73aa808f
CW
2238 drm_mm_put_block(obj_priv->gtt_space);
2239 obj_priv->gtt_space = NULL;
9af90d19 2240 obj_priv->gtt_offset = 0;
673a394b 2241
963b4836
CW
2242 if (i915_gem_object_is_purgeable(obj_priv))
2243 i915_gem_object_truncate(obj);
2244
1c5d22f7
CW
2245 trace_i915_gem_object_unbind(obj);
2246
8dc1775d 2247 return ret;
673a394b
EA
2248}
2249
a56ba56c
CW
2250static int i915_ring_idle(struct drm_device *dev,
2251 struct intel_ring_buffer *ring)
2252{
64193406
CW
2253 if (list_empty(&ring->gpu_write_list))
2254 return 0;
2255
a56ba56c
CW
2256 i915_gem_flush_ring(dev, NULL, ring,
2257 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2258 return i915_wait_request(dev,
2259 i915_gem_next_request_seqno(dev, ring),
2260 ring);
2261}
2262
b47eb4a2 2263int
4df2faf4
DV
2264i915_gpu_idle(struct drm_device *dev)
2265{
2266 drm_i915_private_t *dev_priv = dev->dev_private;
2267 bool lists_empty;
852835f3 2268 int ret;
4df2faf4 2269
d1b851fc
ZN
2270 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2271 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
2272 list_empty(&dev_priv->bsd_ring.active_list) &&
2273 list_empty(&dev_priv->blt_ring.active_list));
4df2faf4
DV
2274 if (lists_empty)
2275 return 0;
2276
2277 /* Flush everything onto the inactive list. */
a56ba56c 2278 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2279 if (ret)
2280 return ret;
d1b851fc 2281
87acb0a5
CW
2282 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2283 if (ret)
2284 return ret;
d1b851fc 2285
549f7365
CW
2286 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2287 if (ret)
2288 return ret;
4df2faf4 2289
8a1a49f9 2290 return 0;
4df2faf4
DV
2291}
2292
5cdf5881 2293static int
4bdadb97
CW
2294i915_gem_object_get_pages(struct drm_gem_object *obj,
2295 gfp_t gfpmask)
673a394b 2296{
23010e43 2297 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2298 int page_count, i;
2299 struct address_space *mapping;
2300 struct inode *inode;
2301 struct page *page;
673a394b 2302
778c3544
DV
2303 BUG_ON(obj_priv->pages_refcount
2304 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2305
856fa198 2306 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2307 return 0;
2308
2309 /* Get the list of pages out of our struct file. They'll be pinned
2310 * at this point until we release them.
2311 */
2312 page_count = obj->size / PAGE_SIZE;
856fa198 2313 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2314 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2315 if (obj_priv->pages == NULL) {
856fa198 2316 obj_priv->pages_refcount--;
673a394b
EA
2317 return -ENOMEM;
2318 }
2319
2320 inode = obj->filp->f_path.dentry->d_inode;
2321 mapping = inode->i_mapping;
2322 for (i = 0; i < page_count; i++) {
4bdadb97 2323 page = read_cache_page_gfp(mapping, i,
985b823b 2324 GFP_HIGHUSER |
4bdadb97 2325 __GFP_COLD |
cd9f040d 2326 __GFP_RECLAIMABLE |
4bdadb97 2327 gfpmask);
1f2b1013
CW
2328 if (IS_ERR(page))
2329 goto err_pages;
2330
856fa198 2331 obj_priv->pages[i] = page;
673a394b 2332 }
280b713b
EA
2333
2334 if (obj_priv->tiling_mode != I915_TILING_NONE)
2335 i915_gem_object_do_bit_17_swizzle(obj);
2336
673a394b 2337 return 0;
1f2b1013
CW
2338
2339err_pages:
2340 while (i--)
2341 page_cache_release(obj_priv->pages[i]);
2342
2343 drm_free_large(obj_priv->pages);
2344 obj_priv->pages = NULL;
2345 obj_priv->pages_refcount--;
2346 return PTR_ERR(page);
673a394b
EA
2347}
2348
4e901fdc
EA
2349static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2350{
2351 struct drm_gem_object *obj = reg->obj;
2352 struct drm_device *dev = obj->dev;
2353 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2354 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2355 int regnum = obj_priv->fence_reg;
2356 uint64_t val;
2357
2358 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2359 0xfffff000) << 32;
2360 val |= obj_priv->gtt_offset & 0xfffff000;
2361 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2362 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2363
2364 if (obj_priv->tiling_mode == I915_TILING_Y)
2365 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2366 val |= I965_FENCE_REG_VALID;
2367
2368 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2369}
2370
de151cf6
JB
2371static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2372{
2373 struct drm_gem_object *obj = reg->obj;
2374 struct drm_device *dev = obj->dev;
2375 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2376 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2377 int regnum = obj_priv->fence_reg;
2378 uint64_t val;
2379
2380 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2381 0xfffff000) << 32;
2382 val |= obj_priv->gtt_offset & 0xfffff000;
2383 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2384 if (obj_priv->tiling_mode == I915_TILING_Y)
2385 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2386 val |= I965_FENCE_REG_VALID;
2387
2388 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2389}
2390
2391static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2392{
2393 struct drm_gem_object *obj = reg->obj;
2394 struct drm_device *dev = obj->dev;
2395 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2396 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2397 int regnum = obj_priv->fence_reg;
0f973f27 2398 int tile_width;
dc529a4f 2399 uint32_t fence_reg, val;
de151cf6
JB
2400 uint32_t pitch_val;
2401
2402 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2403 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2404 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2405 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2406 return;
2407 }
2408
0f973f27
JB
2409 if (obj_priv->tiling_mode == I915_TILING_Y &&
2410 HAS_128_BYTE_Y_TILING(dev))
2411 tile_width = 128;
de151cf6 2412 else
0f973f27
JB
2413 tile_width = 512;
2414
2415 /* Note: pitch better be a power of two tile widths */
2416 pitch_val = obj_priv->stride / tile_width;
2417 pitch_val = ffs(pitch_val) - 1;
de151cf6 2418
c36a2a6d
DV
2419 if (obj_priv->tiling_mode == I915_TILING_Y &&
2420 HAS_128_BYTE_Y_TILING(dev))
2421 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2422 else
2423 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2424
de151cf6
JB
2425 val = obj_priv->gtt_offset;
2426 if (obj_priv->tiling_mode == I915_TILING_Y)
2427 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2428 val |= I915_FENCE_SIZE_BITS(obj->size);
2429 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2430 val |= I830_FENCE_REG_VALID;
2431
dc529a4f
EA
2432 if (regnum < 8)
2433 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2434 else
2435 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2436 I915_WRITE(fence_reg, val);
de151cf6
JB
2437}
2438
2439static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2440{
2441 struct drm_gem_object *obj = reg->obj;
2442 struct drm_device *dev = obj->dev;
2443 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2444 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2445 int regnum = obj_priv->fence_reg;
2446 uint32_t val;
2447 uint32_t pitch_val;
8d7773a3 2448 uint32_t fence_size_bits;
de151cf6 2449
8d7773a3 2450 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2451 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2452 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2453 __func__, obj_priv->gtt_offset);
de151cf6
JB
2454 return;
2455 }
2456
e76a16de
EA
2457 pitch_val = obj_priv->stride / 128;
2458 pitch_val = ffs(pitch_val) - 1;
2459 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2460
de151cf6
JB
2461 val = obj_priv->gtt_offset;
2462 if (obj_priv->tiling_mode == I915_TILING_Y)
2463 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2464 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2465 WARN_ON(fence_size_bits & ~0x00000f00);
2466 val |= fence_size_bits;
de151cf6
JB
2467 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2468 val |= I830_FENCE_REG_VALID;
2469
2470 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2471}
2472
2cf34d7b
CW
2473static int i915_find_fence_reg(struct drm_device *dev,
2474 bool interruptible)
ae3db24a
DV
2475{
2476 struct drm_i915_fence_reg *reg = NULL;
2477 struct drm_i915_gem_object *obj_priv = NULL;
2478 struct drm_i915_private *dev_priv = dev->dev_private;
2479 struct drm_gem_object *obj = NULL;
2480 int i, avail, ret;
2481
2482 /* First try to find a free reg */
2483 avail = 0;
2484 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2485 reg = &dev_priv->fence_regs[i];
2486 if (!reg->obj)
2487 return i;
2488
23010e43 2489 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2490 if (!obj_priv->pin_count)
2491 avail++;
2492 }
2493
2494 if (avail == 0)
2495 return -ENOSPC;
2496
2497 /* None available, try to steal one or wait for a user to finish */
2498 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2499 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2500 lru_list) {
2501 obj = reg->obj;
2502 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2503
2504 if (obj_priv->pin_count)
2505 continue;
2506
2507 /* found one! */
2508 i = obj_priv->fence_reg;
2509 break;
2510 }
2511
2512 BUG_ON(i == I915_FENCE_REG_NONE);
2513
2514 /* We only have a reference on obj from the active list. put_fence_reg
2515 * might drop that one, causing a use-after-free in it. So hold a
2516 * private reference to obj like the other callers of put_fence_reg
2517 * (set_tiling ioctl) do. */
2518 drm_gem_object_reference(obj);
2cf34d7b 2519 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2520 drm_gem_object_unreference(obj);
2521 if (ret != 0)
2522 return ret;
2523
2524 return i;
2525}
2526
de151cf6
JB
2527/**
2528 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2529 * @obj: object to map through a fence reg
2530 *
2531 * When mapping objects through the GTT, userspace wants to be able to write
2532 * to them without having to worry about swizzling if the object is tiled.
2533 *
2534 * This function walks the fence regs looking for a free one for @obj,
2535 * stealing one if it can't find any.
2536 *
2537 * It then sets up the reg based on the object's properties: address, pitch
2538 * and tiling format.
2539 */
8c4b8c3f 2540int
2cf34d7b
CW
2541i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2542 bool interruptible)
de151cf6
JB
2543{
2544 struct drm_device *dev = obj->dev;
79e53945 2545 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2546 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2547 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2548 int ret;
de151cf6 2549
a09ba7fa
EA
2550 /* Just update our place in the LRU if our fence is getting used. */
2551 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2552 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2553 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2554 return 0;
2555 }
2556
de151cf6
JB
2557 switch (obj_priv->tiling_mode) {
2558 case I915_TILING_NONE:
2559 WARN(1, "allocating a fence for non-tiled object?\n");
2560 break;
2561 case I915_TILING_X:
0f973f27
JB
2562 if (!obj_priv->stride)
2563 return -EINVAL;
2564 WARN((obj_priv->stride & (512 - 1)),
2565 "object 0x%08x is X tiled but has non-512B pitch\n",
2566 obj_priv->gtt_offset);
de151cf6
JB
2567 break;
2568 case I915_TILING_Y:
0f973f27
JB
2569 if (!obj_priv->stride)
2570 return -EINVAL;
2571 WARN((obj_priv->stride & (128 - 1)),
2572 "object 0x%08x is Y tiled but has non-128B pitch\n",
2573 obj_priv->gtt_offset);
de151cf6
JB
2574 break;
2575 }
2576
2cf34d7b 2577 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2578 if (ret < 0)
2579 return ret;
de151cf6 2580
ae3db24a
DV
2581 obj_priv->fence_reg = ret;
2582 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2583 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2584
de151cf6
JB
2585 reg->obj = obj;
2586
e259befd
CW
2587 switch (INTEL_INFO(dev)->gen) {
2588 case 6:
4e901fdc 2589 sandybridge_write_fence_reg(reg);
e259befd
CW
2590 break;
2591 case 5:
2592 case 4:
de151cf6 2593 i965_write_fence_reg(reg);
e259befd
CW
2594 break;
2595 case 3:
de151cf6 2596 i915_write_fence_reg(reg);
e259befd
CW
2597 break;
2598 case 2:
de151cf6 2599 i830_write_fence_reg(reg);
e259befd
CW
2600 break;
2601 }
d9ddcb96 2602
ae3db24a
DV
2603 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2604 obj_priv->tiling_mode);
1c5d22f7 2605
d9ddcb96 2606 return 0;
de151cf6
JB
2607}
2608
2609/**
2610 * i915_gem_clear_fence_reg - clear out fence register info
2611 * @obj: object to clear
2612 *
2613 * Zeroes out the fence register itself and clears out the associated
2614 * data structures in dev_priv and obj_priv.
2615 */
2616static void
2617i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2618{
2619 struct drm_device *dev = obj->dev;
79e53945 2620 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2621 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2622 struct drm_i915_fence_reg *reg =
2623 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2624 uint32_t fence_reg;
de151cf6 2625
e259befd
CW
2626 switch (INTEL_INFO(dev)->gen) {
2627 case 6:
4e901fdc
EA
2628 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2629 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2630 break;
2631 case 5:
2632 case 4:
de151cf6 2633 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2634 break;
2635 case 3:
9b74f734 2636 if (obj_priv->fence_reg >= 8)
e259befd 2637 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2638 else
e259befd
CW
2639 case 2:
2640 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2641
2642 I915_WRITE(fence_reg, 0);
e259befd 2643 break;
dc529a4f 2644 }
de151cf6 2645
007cc8ac 2646 reg->obj = NULL;
de151cf6 2647 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2648 list_del_init(&reg->lru_list);
de151cf6
JB
2649}
2650
52dc7d32
CW
2651/**
2652 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2653 * to the buffer to finish, and then resets the fence register.
2654 * @obj: tiled object holding a fence register.
2cf34d7b 2655 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2656 *
2657 * Zeroes out the fence register itself and clears out the associated
2658 * data structures in dev_priv and obj_priv.
2659 */
2660int
2cf34d7b
CW
2661i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2662 bool interruptible)
52dc7d32
CW
2663{
2664 struct drm_device *dev = obj->dev;
53640e1d 2665 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2666 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2667 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2668
2669 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2670 return 0;
2671
10ae9bd2
DV
2672 /* If we've changed tiling, GTT-mappings of the object
2673 * need to re-fault to ensure that the correct fence register
2674 * setup is in place.
2675 */
2676 i915_gem_release_mmap(obj);
2677
52dc7d32
CW
2678 /* On the i915, GPU access to tiled buffers is via a fence,
2679 * therefore we must wait for any outstanding access to complete
2680 * before clearing the fence.
2681 */
53640e1d
CW
2682 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2683 if (reg->gpu) {
52dc7d32
CW
2684 int ret;
2685
2cf34d7b 2686 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2687 if (ret)
2dafb1e0
CW
2688 return ret;
2689
2cf34d7b 2690 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2691 if (ret)
52dc7d32 2692 return ret;
53640e1d
CW
2693
2694 reg->gpu = false;
52dc7d32
CW
2695 }
2696
4a726612 2697 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2698 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2699
2700 return 0;
2701}
2702
673a394b
EA
2703/**
2704 * Finds free space in the GTT aperture and binds the object there.
2705 */
2706static int
920afa77
DV
2707i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2708 unsigned alignment,
2709 bool mappable)
673a394b
EA
2710{
2711 struct drm_device *dev = obj->dev;
2712 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2713 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2714 struct drm_mm_node *free_space;
4bdadb97 2715 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2716 int ret;
673a394b 2717
bb6baf76 2718 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2719 DRM_ERROR("Attempting to bind a purgeable object\n");
2720 return -EINVAL;
2721 }
2722
673a394b 2723 if (alignment == 0)
0f973f27 2724 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2725 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2726 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2727 return -EINVAL;
2728 }
2729
654fc607
CW
2730 /* If the object is bigger than the entire aperture, reject it early
2731 * before evicting everything in a vain attempt to find space.
2732 */
920afa77
DV
2733 if (obj->size >
2734 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2735 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2736 return -E2BIG;
2737 }
2738
673a394b 2739 search_free:
920afa77
DV
2740 if (mappable)
2741 free_space =
2742 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2743 obj->size, alignment, 0,
2744 dev_priv->mm.gtt_mappable_end,
2745 0);
2746 else
2747 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2748 obj->size, alignment, 0);
2749
2750 if (free_space != NULL) {
2751 if (mappable)
2752 obj_priv->gtt_space =
2753 drm_mm_get_block_range_generic(free_space,
2754 obj->size,
2755 alignment, 0,
2756 dev_priv->mm.gtt_mappable_end,
2757 0);
2758 else
2759 obj_priv->gtt_space =
2760 drm_mm_get_block(free_space, obj->size,
2761 alignment);
2762 }
673a394b
EA
2763 if (obj_priv->gtt_space == NULL) {
2764 /* If the gtt is empty and we're still having trouble
2765 * fitting our object in, we're out of memory.
2766 */
920afa77
DV
2767 ret = i915_gem_evict_something(dev, obj->size, alignment,
2768 mappable);
9731129c 2769 if (ret)
673a394b 2770 return ret;
9731129c 2771
673a394b
EA
2772 goto search_free;
2773 }
2774
4bdadb97 2775 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2776 if (ret) {
2777 drm_mm_put_block(obj_priv->gtt_space);
2778 obj_priv->gtt_space = NULL;
07f73f69
CW
2779
2780 if (ret == -ENOMEM) {
2781 /* first try to clear up some space from the GTT */
0108a3ed 2782 ret = i915_gem_evict_something(dev, obj->size,
920afa77 2783 alignment, mappable);
07f73f69 2784 if (ret) {
07f73f69 2785 /* now try to shrink everyone else */
4bdadb97
CW
2786 if (gfpmask) {
2787 gfpmask = 0;
2788 goto search_free;
07f73f69
CW
2789 }
2790
2791 return ret;
2792 }
2793
2794 goto search_free;
2795 }
2796
673a394b
EA
2797 return ret;
2798 }
2799
673a394b
EA
2800 /* Create an AGP memory structure pointing at our pages, and bind it
2801 * into the GTT.
2802 */
2803 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2804 obj_priv->pages,
07f73f69 2805 obj->size >> PAGE_SHIFT,
9af90d19 2806 obj_priv->gtt_space->start,
ba1eb1d8 2807 obj_priv->agp_type);
673a394b 2808 if (obj_priv->agp_mem == NULL) {
856fa198 2809 i915_gem_object_put_pages(obj);
673a394b
EA
2810 drm_mm_put_block(obj_priv->gtt_space);
2811 obj_priv->gtt_space = NULL;
07f73f69 2812
920afa77
DV
2813 ret = i915_gem_evict_something(dev, obj->size, alignment,
2814 mappable);
9731129c 2815 if (ret)
07f73f69 2816 return ret;
07f73f69
CW
2817
2818 goto search_free;
673a394b 2819 }
673a394b 2820
fb7d516a
DV
2821 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2822
bf1a1092 2823 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2824 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
fb7d516a 2825 i915_gem_info_add_gtt(dev_priv, obj);
bf1a1092 2826
673a394b
EA
2827 /* Assert that the object is not currently in any GPU domain. As it
2828 * wasn't in the GTT, there shouldn't be any way it could have been in
2829 * a GPU cache
2830 */
21d509e3
CW
2831 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2832 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2833
ec57d260 2834 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
1c5d22f7 2835
673a394b
EA
2836 return 0;
2837}
2838
2839void
2840i915_gem_clflush_object(struct drm_gem_object *obj)
2841{
23010e43 2842 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2843
2844 /* If we don't have a page list set up, then we're not pinned
2845 * to GPU, and we can ignore the cache flush because it'll happen
2846 * again at bind time.
2847 */
856fa198 2848 if (obj_priv->pages == NULL)
673a394b
EA
2849 return;
2850
1c5d22f7 2851 trace_i915_gem_object_clflush(obj);
cfa16a0d 2852
856fa198 2853 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2854}
2855
e47c68e9 2856/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2857static int
ba3d8d74
DV
2858i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2859 bool pipelined)
e47c68e9
EA
2860{
2861 struct drm_device *dev = obj->dev;
1c5d22f7 2862 uint32_t old_write_domain;
e47c68e9
EA
2863
2864 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2865 return 0;
e47c68e9
EA
2866
2867 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2868 old_write_domain = obj->write_domain;
c78ec30b 2869 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2870 to_intel_bo(obj)->ring,
2871 0, obj->write_domain);
48b956c5 2872 BUG_ON(obj->write_domain);
1c5d22f7
CW
2873
2874 trace_i915_gem_object_change_domain(obj,
2875 obj->read_domains,
2876 old_write_domain);
ba3d8d74
DV
2877
2878 if (pipelined)
2879 return 0;
2880
2cf34d7b 2881 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2882}
2883
2884/** Flushes the GTT write domain for the object if it's dirty. */
2885static void
2886i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2887{
1c5d22f7
CW
2888 uint32_t old_write_domain;
2889
e47c68e9
EA
2890 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2891 return;
2892
2893 /* No actual flushing is required for the GTT write domain. Writes
2894 * to it immediately go to main memory as far as we know, so there's
2895 * no chipset flush. It also doesn't land in render cache.
2896 */
1c5d22f7 2897 old_write_domain = obj->write_domain;
e47c68e9 2898 obj->write_domain = 0;
1c5d22f7
CW
2899
2900 trace_i915_gem_object_change_domain(obj,
2901 obj->read_domains,
2902 old_write_domain);
e47c68e9
EA
2903}
2904
2905/** Flushes the CPU write domain for the object if it's dirty. */
2906static void
2907i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2908{
2909 struct drm_device *dev = obj->dev;
1c5d22f7 2910 uint32_t old_write_domain;
e47c68e9
EA
2911
2912 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2913 return;
2914
2915 i915_gem_clflush_object(obj);
2916 drm_agp_chipset_flush(dev);
1c5d22f7 2917 old_write_domain = obj->write_domain;
e47c68e9 2918 obj->write_domain = 0;
1c5d22f7
CW
2919
2920 trace_i915_gem_object_change_domain(obj,
2921 obj->read_domains,
2922 old_write_domain);
e47c68e9
EA
2923}
2924
2ef7eeaa
EA
2925/**
2926 * Moves a single object to the GTT read, and possibly write domain.
2927 *
2928 * This function returns when the move is complete, including waiting on
2929 * flushes to occur.
2930 */
79e53945 2931int
2ef7eeaa
EA
2932i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2933{
23010e43 2934 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2935 uint32_t old_write_domain, old_read_domains;
e47c68e9 2936 int ret;
2ef7eeaa 2937
02354392
EA
2938 /* Not valid to be called on unbound objects. */
2939 if (obj_priv->gtt_space == NULL)
2940 return -EINVAL;
2941
ba3d8d74 2942 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2943 if (ret != 0)
2944 return ret;
2945
7213342d 2946 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2947
ba3d8d74 2948 if (write) {
2cf34d7b 2949 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2950 if (ret)
2951 return ret;
ba3d8d74 2952 }
e47c68e9 2953
1c5d22f7
CW
2954 old_write_domain = obj->write_domain;
2955 old_read_domains = obj->read_domains;
2956
e47c68e9
EA
2957 /* It should now be out of any other write domains, and we can update
2958 * the domain values for our changes.
2959 */
2960 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2961 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2962 if (write) {
7213342d 2963 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2964 obj->write_domain = I915_GEM_DOMAIN_GTT;
2965 obj_priv->dirty = 1;
2ef7eeaa
EA
2966 }
2967
1c5d22f7
CW
2968 trace_i915_gem_object_change_domain(obj,
2969 old_read_domains,
2970 old_write_domain);
2971
e47c68e9
EA
2972 return 0;
2973}
2974
b9241ea3
ZW
2975/*
2976 * Prepare buffer for display plane. Use uninterruptible for possible flush
2977 * wait, as in modesetting process we're not supposed to be interrupted.
2978 */
2979int
48b956c5
CW
2980i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2981 bool pipelined)
b9241ea3 2982{
23010e43 2983 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2984 uint32_t old_read_domains;
b9241ea3
ZW
2985 int ret;
2986
2987 /* Not valid to be called on unbound objects. */
2988 if (obj_priv->gtt_space == NULL)
2989 return -EINVAL;
2990
ced270fa 2991 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
2992 if (ret)
2993 return ret;
b9241ea3 2994
ced270fa
CW
2995 /* Currently, we are always called from an non-interruptible context. */
2996 if (!pipelined) {
2997 ret = i915_gem_object_wait_rendering(obj, false);
2998 if (ret)
b9241ea3
ZW
2999 return ret;
3000 }
3001
b118c1e3
CW
3002 i915_gem_object_flush_cpu_write_domain(obj);
3003
b9241ea3 3004 old_read_domains = obj->read_domains;
c78ec30b 3005 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3006
3007 trace_i915_gem_object_change_domain(obj,
3008 old_read_domains,
ba3d8d74 3009 obj->write_domain);
b9241ea3
ZW
3010
3011 return 0;
3012}
3013
e47c68e9
EA
3014/**
3015 * Moves a single object to the CPU read, and possibly write domain.
3016 *
3017 * This function returns when the move is complete, including waiting on
3018 * flushes to occur.
3019 */
3020static int
3021i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3022{
1c5d22f7 3023 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3024 int ret;
3025
ba3d8d74 3026 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
3027 if (ret != 0)
3028 return ret;
2ef7eeaa 3029
e47c68e9 3030 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3031
e47c68e9
EA
3032 /* If we have a partially-valid cache of the object in the CPU,
3033 * finish invalidating it and free the per-page flags.
2ef7eeaa 3034 */
e47c68e9 3035 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3036
7213342d 3037 if (write) {
2cf34d7b 3038 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3039 if (ret)
3040 return ret;
3041 }
3042
1c5d22f7
CW
3043 old_write_domain = obj->write_domain;
3044 old_read_domains = obj->read_domains;
3045
e47c68e9
EA
3046 /* Flush the CPU cache if it's still invalid. */
3047 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3048 i915_gem_clflush_object(obj);
2ef7eeaa 3049
e47c68e9 3050 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3051 }
3052
3053 /* It should now be out of any other write domains, and we can update
3054 * the domain values for our changes.
3055 */
e47c68e9
EA
3056 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3057
3058 /* If we're writing through the CPU, then the GPU read domains will
3059 * need to be invalidated at next use.
3060 */
3061 if (write) {
c78ec30b 3062 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
3063 obj->write_domain = I915_GEM_DOMAIN_CPU;
3064 }
2ef7eeaa 3065
1c5d22f7
CW
3066 trace_i915_gem_object_change_domain(obj,
3067 old_read_domains,
3068 old_write_domain);
3069
2ef7eeaa
EA
3070 return 0;
3071}
3072
673a394b
EA
3073/*
3074 * Set the next domain for the specified object. This
3075 * may not actually perform the necessary flushing/invaliding though,
3076 * as that may want to be batched with other set_domain operations
3077 *
3078 * This is (we hope) the only really tricky part of gem. The goal
3079 * is fairly simple -- track which caches hold bits of the object
3080 * and make sure they remain coherent. A few concrete examples may
3081 * help to explain how it works. For shorthand, we use the notation
3082 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3083 * a pair of read and write domain masks.
3084 *
3085 * Case 1: the batch buffer
3086 *
3087 * 1. Allocated
3088 * 2. Written by CPU
3089 * 3. Mapped to GTT
3090 * 4. Read by GPU
3091 * 5. Unmapped from GTT
3092 * 6. Freed
3093 *
3094 * Let's take these a step at a time
3095 *
3096 * 1. Allocated
3097 * Pages allocated from the kernel may still have
3098 * cache contents, so we set them to (CPU, CPU) always.
3099 * 2. Written by CPU (using pwrite)
3100 * The pwrite function calls set_domain (CPU, CPU) and
3101 * this function does nothing (as nothing changes)
3102 * 3. Mapped by GTT
3103 * This function asserts that the object is not
3104 * currently in any GPU-based read or write domains
3105 * 4. Read by GPU
3106 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3107 * As write_domain is zero, this function adds in the
3108 * current read domains (CPU+COMMAND, 0).
3109 * flush_domains is set to CPU.
3110 * invalidate_domains is set to COMMAND
3111 * clflush is run to get data out of the CPU caches
3112 * then i915_dev_set_domain calls i915_gem_flush to
3113 * emit an MI_FLUSH and drm_agp_chipset_flush
3114 * 5. Unmapped from GTT
3115 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3116 * flush_domains and invalidate_domains end up both zero
3117 * so no flushing/invalidating happens
3118 * 6. Freed
3119 * yay, done
3120 *
3121 * Case 2: The shared render buffer
3122 *
3123 * 1. Allocated
3124 * 2. Mapped to GTT
3125 * 3. Read/written by GPU
3126 * 4. set_domain to (CPU,CPU)
3127 * 5. Read/written by CPU
3128 * 6. Read/written by GPU
3129 *
3130 * 1. Allocated
3131 * Same as last example, (CPU, CPU)
3132 * 2. Mapped to GTT
3133 * Nothing changes (assertions find that it is not in the GPU)
3134 * 3. Read/written by GPU
3135 * execbuffer calls set_domain (RENDER, RENDER)
3136 * flush_domains gets CPU
3137 * invalidate_domains gets GPU
3138 * clflush (obj)
3139 * MI_FLUSH and drm_agp_chipset_flush
3140 * 4. set_domain (CPU, CPU)
3141 * flush_domains gets GPU
3142 * invalidate_domains gets CPU
3143 * wait_rendering (obj) to make sure all drawing is complete.
3144 * This will include an MI_FLUSH to get the data from GPU
3145 * to memory
3146 * clflush (obj) to invalidate the CPU cache
3147 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3148 * 5. Read/written by CPU
3149 * cache lines are loaded and dirtied
3150 * 6. Read written by GPU
3151 * Same as last GPU access
3152 *
3153 * Case 3: The constant buffer
3154 *
3155 * 1. Allocated
3156 * 2. Written by CPU
3157 * 3. Read by GPU
3158 * 4. Updated (written) by CPU again
3159 * 5. Read by GPU
3160 *
3161 * 1. Allocated
3162 * (CPU, CPU)
3163 * 2. Written by CPU
3164 * (CPU, CPU)
3165 * 3. Read by GPU
3166 * (CPU+RENDER, 0)
3167 * flush_domains = CPU
3168 * invalidate_domains = RENDER
3169 * clflush (obj)
3170 * MI_FLUSH
3171 * drm_agp_chipset_flush
3172 * 4. Updated (written) by CPU again
3173 * (CPU, CPU)
3174 * flush_domains = 0 (no previous write domain)
3175 * invalidate_domains = 0 (no new read domains)
3176 * 5. Read by GPU
3177 * (CPU+RENDER, 0)
3178 * flush_domains = CPU
3179 * invalidate_domains = RENDER
3180 * clflush (obj)
3181 * MI_FLUSH
3182 * drm_agp_chipset_flush
3183 */
c0d90829 3184static void
b6651458
CW
3185i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3186 struct intel_ring_buffer *ring)
673a394b
EA
3187{
3188 struct drm_device *dev = obj->dev;
9220434a 3189 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3190 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3191 uint32_t invalidate_domains = 0;
3192 uint32_t flush_domains = 0;
652c393a 3193
673a394b
EA
3194 /*
3195 * If the object isn't moving to a new write domain,
3196 * let the object stay in multiple read domains
3197 */
8b0e378a
EA
3198 if (obj->pending_write_domain == 0)
3199 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3200
3201 /*
3202 * Flush the current write domain if
3203 * the new read domains don't match. Invalidate
3204 * any read domains which differ from the old
3205 * write domain
3206 */
8b0e378a
EA
3207 if (obj->write_domain &&
3208 obj->write_domain != obj->pending_read_domains) {
673a394b 3209 flush_domains |= obj->write_domain;
8b0e378a
EA
3210 invalidate_domains |=
3211 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3212 }
3213 /*
3214 * Invalidate any read caches which may have
3215 * stale data. That is, any new read domains.
3216 */
8b0e378a 3217 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3218 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3219 i915_gem_clflush_object(obj);
673a394b 3220
efbeed96
EA
3221 /* The actual obj->write_domain will be updated with
3222 * pending_write_domain after we emit the accumulated flush for all
3223 * of our domain changes in execbuffers (which clears objects'
3224 * write_domains). So if we have a current write domain that we
3225 * aren't changing, set pending_write_domain to that.
3226 */
3227 if (flush_domains == 0 && obj->pending_write_domain == 0)
3228 obj->pending_write_domain = obj->write_domain;
673a394b
EA
3229
3230 dev->invalidate_domains |= invalidate_domains;
3231 dev->flush_domains |= flush_domains;
b6651458 3232 if (flush_domains & I915_GEM_GPU_DOMAINS)
9220434a 3233 dev_priv->mm.flush_rings |= obj_priv->ring->id;
b6651458
CW
3234 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3235 dev_priv->mm.flush_rings |= ring->id;
673a394b
EA
3236}
3237
3238/**
e47c68e9 3239 * Moves the object from a partially CPU read to a full one.
673a394b 3240 *
e47c68e9
EA
3241 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3242 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3243 */
e47c68e9
EA
3244static void
3245i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3246{
23010e43 3247 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3248
e47c68e9
EA
3249 if (!obj_priv->page_cpu_valid)
3250 return;
3251
3252 /* If we're partially in the CPU read domain, finish moving it in.
3253 */
3254 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3255 int i;
3256
3257 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3258 if (obj_priv->page_cpu_valid[i])
3259 continue;
856fa198 3260 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3261 }
e47c68e9
EA
3262 }
3263
3264 /* Free the page_cpu_valid mappings which are now stale, whether
3265 * or not we've got I915_GEM_DOMAIN_CPU.
3266 */
9a298b2a 3267 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3268 obj_priv->page_cpu_valid = NULL;
3269}
3270
3271/**
3272 * Set the CPU read domain on a range of the object.
3273 *
3274 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3275 * not entirely valid. The page_cpu_valid member of the object flags which
3276 * pages have been flushed, and will be respected by
3277 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3278 * of the whole object.
3279 *
3280 * This function returns when the move is complete, including waiting on
3281 * flushes to occur.
3282 */
3283static int
3284i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3285 uint64_t offset, uint64_t size)
3286{
23010e43 3287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3288 uint32_t old_read_domains;
e47c68e9 3289 int i, ret;
673a394b 3290
e47c68e9
EA
3291 if (offset == 0 && size == obj->size)
3292 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3293
ba3d8d74 3294 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3295 if (ret != 0)
6a47baa6 3296 return ret;
e47c68e9
EA
3297 i915_gem_object_flush_gtt_write_domain(obj);
3298
3299 /* If we're already fully in the CPU read domain, we're done. */
3300 if (obj_priv->page_cpu_valid == NULL &&
3301 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3302 return 0;
673a394b 3303
e47c68e9
EA
3304 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3305 * newly adding I915_GEM_DOMAIN_CPU
3306 */
673a394b 3307 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3308 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3309 GFP_KERNEL);
e47c68e9
EA
3310 if (obj_priv->page_cpu_valid == NULL)
3311 return -ENOMEM;
3312 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3313 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3314
3315 /* Flush the cache on any pages that are still invalid from the CPU's
3316 * perspective.
3317 */
e47c68e9
EA
3318 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3319 i++) {
673a394b
EA
3320 if (obj_priv->page_cpu_valid[i])
3321 continue;
3322
856fa198 3323 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3324
3325 obj_priv->page_cpu_valid[i] = 1;
3326 }
3327
e47c68e9
EA
3328 /* It should now be out of any other write domains, and we can update
3329 * the domain values for our changes.
3330 */
3331 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3332
1c5d22f7 3333 old_read_domains = obj->read_domains;
e47c68e9
EA
3334 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3335
1c5d22f7
CW
3336 trace_i915_gem_object_change_domain(obj,
3337 old_read_domains,
3338 obj->write_domain);
3339
673a394b
EA
3340 return 0;
3341}
3342
673a394b
EA
3343/**
3344 * Pin an object to the GTT and evaluate the relocations landing in it.
3345 */
3346static int
9af90d19
CW
3347i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3348 struct drm_file *file_priv,
3349 struct drm_i915_gem_exec_object2 *entry)
673a394b 3350{
9af90d19 3351 struct drm_device *dev = obj->base.dev;
0839ccb8 3352 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3353 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3354 struct drm_gem_object *target_obj = NULL;
3355 uint32_t target_handle = 0;
3356 int i, ret = 0;
673a394b 3357
2549d6c2 3358 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3359 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3360 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3361 uint32_t target_offset;
673a394b 3362
9af90d19
CW
3363 if (__copy_from_user_inatomic(&reloc,
3364 user_relocs+i,
3365 sizeof(reloc))) {
3366 ret = -EFAULT;
3367 break;
76446cac 3368 }
76446cac 3369
9af90d19
CW
3370 if (reloc.target_handle != target_handle) {
3371 drm_gem_object_unreference(target_obj);
673a394b 3372
9af90d19
CW
3373 target_obj = drm_gem_object_lookup(dev, file_priv,
3374 reloc.target_handle);
3375 if (target_obj == NULL) {
3376 ret = -ENOENT;
3377 break;
3378 }
3379
3380 target_handle = reloc.target_handle;
673a394b 3381 }
9af90d19 3382 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3383
8542a0bb
CW
3384#if WATCH_RELOC
3385 DRM_INFO("%s: obj %p offset %08x target %d "
3386 "read %08x write %08x gtt %08x "
3387 "presumed %08x delta %08x\n",
3388 __func__,
3389 obj,
2549d6c2
CW
3390 (int) reloc.offset,
3391 (int) reloc.target_handle,
3392 (int) reloc.read_domains,
3393 (int) reloc.write_domain,
9af90d19 3394 (int) target_offset,
2549d6c2
CW
3395 (int) reloc.presumed_offset,
3396 reloc.delta);
8542a0bb
CW
3397#endif
3398
673a394b
EA
3399 /* The target buffer should have appeared before us in the
3400 * exec_object list, so it should have a GTT space bound by now.
3401 */
9af90d19 3402 if (target_offset == 0) {
673a394b 3403 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3404 reloc.target_handle);
9af90d19
CW
3405 ret = -EINVAL;
3406 break;
673a394b
EA
3407 }
3408
8542a0bb 3409 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3410 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3411 DRM_ERROR("reloc with multiple write domains: "
3412 "obj %p target %d offset %d "
3413 "read %08x write %08x",
2549d6c2
CW
3414 obj, reloc.target_handle,
3415 (int) reloc.offset,
3416 reloc.read_domains,
3417 reloc.write_domain);
9af90d19
CW
3418 ret = -EINVAL;
3419 break;
16edd550 3420 }
2549d6c2
CW
3421 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3422 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3423 DRM_ERROR("reloc with read/write CPU domains: "
3424 "obj %p target %d offset %d "
3425 "read %08x write %08x",
2549d6c2
CW
3426 obj, reloc.target_handle,
3427 (int) reloc.offset,
3428 reloc.read_domains,
3429 reloc.write_domain);
9af90d19
CW
3430 ret = -EINVAL;
3431 break;
e47c68e9 3432 }
2549d6c2
CW
3433 if (reloc.write_domain && target_obj->pending_write_domain &&
3434 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3435 DRM_ERROR("Write domain conflict: "
3436 "obj %p target %d offset %d "
3437 "new %08x old %08x\n",
2549d6c2
CW
3438 obj, reloc.target_handle,
3439 (int) reloc.offset,
3440 reloc.write_domain,
673a394b 3441 target_obj->pending_write_domain);
9af90d19
CW
3442 ret = -EINVAL;
3443 break;
673a394b
EA
3444 }
3445
2549d6c2 3446 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3447 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3448
3449 /* If the relocation already has the right value in it, no
3450 * more work needs to be done.
3451 */
9af90d19 3452 if (target_offset == reloc.presumed_offset)
673a394b 3453 continue;
673a394b 3454
8542a0bb 3455 /* Check that the relocation address is valid... */
9af90d19 3456 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3457 DRM_ERROR("Relocation beyond object bounds: "
3458 "obj %p target %d offset %d size %d.\n",
2549d6c2 3459 obj, reloc.target_handle,
9af90d19
CW
3460 (int) reloc.offset, (int) obj->base.size);
3461 ret = -EINVAL;
3462 break;
8542a0bb 3463 }
2549d6c2 3464 if (reloc.offset & 3) {
8542a0bb
CW
3465 DRM_ERROR("Relocation not 4-byte aligned: "
3466 "obj %p target %d offset %d.\n",
2549d6c2
CW
3467 obj, reloc.target_handle,
3468 (int) reloc.offset);
9af90d19
CW
3469 ret = -EINVAL;
3470 break;
8542a0bb
CW
3471 }
3472
3473 /* and points to somewhere within the target object. */
2549d6c2 3474 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3475 DRM_ERROR("Relocation beyond target object bounds: "
3476 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3477 obj, reloc.target_handle,
3478 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3479 ret = -EINVAL;
3480 break;
673a394b
EA
3481 }
3482
9af90d19
CW
3483 reloc.delta += target_offset;
3484 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3485 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3486 char *vaddr;
673a394b 3487
c48c43e4 3488 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3489 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3490 kunmap_atomic(vaddr);
f0c43d9b
CW
3491 } else {
3492 uint32_t __iomem *reloc_entry;
3493 void __iomem *reloc_page;
b962442e 3494
9af90d19
CW
3495 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3496 if (ret)
3497 break;
b962442e 3498
f0c43d9b 3499 /* Map the page containing the relocation we're going to perform. */
9af90d19 3500 reloc.offset += obj->gtt_offset;
f0c43d9b 3501 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3502 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3503 reloc_entry = (uint32_t __iomem *)
3504 (reloc_page + (reloc.offset & ~PAGE_MASK));
3505 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3506 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3507 }
b962442e 3508
b5dc608c
CW
3509 /* and update the user's relocation entry */
3510 reloc.presumed_offset = target_offset;
3511 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3512 &reloc.presumed_offset,
3513 sizeof(reloc.presumed_offset))) {
3514 ret = -EFAULT;
3515 break;
3516 }
b962442e 3517 }
b962442e 3518
9af90d19 3519 drm_gem_object_unreference(target_obj);
673a394b
EA
3520 return ret;
3521}
3522
40a5f0de 3523static int
9af90d19
CW
3524i915_gem_execbuffer_pin(struct drm_device *dev,
3525 struct drm_file *file,
3526 struct drm_gem_object **object_list,
3527 struct drm_i915_gem_exec_object2 *exec_list,
3528 int count)
40a5f0de 3529{
9af90d19
CW
3530 struct drm_i915_private *dev_priv = dev->dev_private;
3531 int ret, i, retry;
40a5f0de 3532
9af90d19
CW
3533 /* attempt to pin all of the buffers into the GTT */
3534 for (retry = 0; retry < 2; retry++) {
3535 ret = 0;
3536 for (i = 0; i < count; i++) {
3537 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
16e809ac 3538 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
9af90d19
CW
3539 bool need_fence =
3540 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3541 obj->tiling_mode != I915_TILING_NONE;
3542
16e809ac
DV
3543 /* g33/pnv can't fence buffers in the unmappable part */
3544 bool need_mappable =
3545 entry->relocation_count ? true : need_fence;
3546
9af90d19
CW
3547 /* Check fence reg constraints and rebind if necessary */
3548 if (need_fence &&
3549 !i915_gem_object_fence_offset_ok(&obj->base,
3550 obj->tiling_mode)) {
3551 ret = i915_gem_object_unbind(&obj->base);
3552 if (ret)
3553 break;
3554 }
40a5f0de 3555
920afa77 3556 ret = i915_gem_object_pin(&obj->base,
16e809ac
DV
3557 entry->alignment,
3558 need_mappable);
9af90d19
CW
3559 if (ret)
3560 break;
40a5f0de 3561
9af90d19
CW
3562 /*
3563 * Pre-965 chips need a fence register set up in order
3564 * to properly handle blits to/from tiled surfaces.
3565 */
3566 if (need_fence) {
3567 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3568 if (ret) {
3569 i915_gem_object_unpin(&obj->base);
3570 break;
3571 }
40a5f0de 3572
9af90d19
CW
3573 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3574 }
40a5f0de 3575
9af90d19 3576 entry->offset = obj->gtt_offset;
40a5f0de
EA
3577 }
3578
9af90d19
CW
3579 while (i--)
3580 i915_gem_object_unpin(object_list[i]);
3581
3582 if (ret == 0)
3583 break;
673a394b 3584
9af90d19
CW
3585 if (ret != -ENOSPC || retry)
3586 return ret;
3587
3588 ret = i915_gem_evict_everything(dev);
3589 if (ret)
3590 return ret;
40a5f0de
EA
3591 }
3592
2bc43b5c 3593 return 0;
40a5f0de
EA
3594}
3595
673a394b
EA
3596/* Throttle our rendering by waiting until the ring has completed our requests
3597 * emitted over 20 msec ago.
3598 *
b962442e
EA
3599 * Note that if we were to use the current jiffies each time around the loop,
3600 * we wouldn't escape the function with any frames outstanding if the time to
3601 * render a frame was over 20ms.
3602 *
673a394b
EA
3603 * This should get us reasonable parallelism between CPU and GPU but also
3604 * relatively low latency when blocking on a particular request to finish.
3605 */
40a5f0de 3606static int
f787a5f5 3607i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3608{
f787a5f5
CW
3609 struct drm_i915_private *dev_priv = dev->dev_private;
3610 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3611 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3612 struct drm_i915_gem_request *request;
3613 struct intel_ring_buffer *ring = NULL;
3614 u32 seqno = 0;
3615 int ret;
93533c29 3616
1c25595f 3617 spin_lock(&file_priv->mm.lock);
f787a5f5 3618 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3619 if (time_after_eq(request->emitted_jiffies, recent_enough))
3620 break;
40a5f0de 3621
f787a5f5
CW
3622 ring = request->ring;
3623 seqno = request->seqno;
b962442e 3624 }
1c25595f 3625 spin_unlock(&file_priv->mm.lock);
40a5f0de 3626
f787a5f5
CW
3627 if (seqno == 0)
3628 return 0;
2bc43b5c 3629
f787a5f5 3630 ret = 0;
78501eac 3631 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3632 /* And wait for the seqno passing without holding any locks and
3633 * causing extra latency for others. This is safe as the irq
3634 * generation is designed to be run atomically and so is
3635 * lockless.
3636 */
78501eac 3637 ring->user_irq_get(ring);
f787a5f5 3638 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3639 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3640 || atomic_read(&dev_priv->mm.wedged));
78501eac 3641 ring->user_irq_put(ring);
40a5f0de 3642
f787a5f5
CW
3643 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3644 ret = -EIO;
40a5f0de
EA
3645 }
3646
f787a5f5
CW
3647 if (ret == 0)
3648 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3649
3650 return ret;
3651}
3652
83d60795 3653static int
2549d6c2
CW
3654i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3655 uint64_t exec_offset)
83d60795
CW
3656{
3657 uint32_t exec_start, exec_len;
3658
3659 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3660 exec_len = (uint32_t) exec->batch_len;
3661
3662 if ((exec_start | exec_len) & 0x7)
3663 return -EINVAL;
3664
3665 if (!exec_start)
3666 return -EINVAL;
3667
3668 return 0;
3669}
3670
6b95a207 3671static int
2549d6c2
CW
3672validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3673 int count)
6b95a207 3674{
2549d6c2 3675 int i;
6b95a207 3676
2549d6c2
CW
3677 for (i = 0; i < count; i++) {
3678 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3679 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3680
2549d6c2
CW
3681 if (!access_ok(VERIFY_READ, ptr, length))
3682 return -EFAULT;
40a5f0de 3683
b5dc608c
CW
3684 /* we may also need to update the presumed offsets */
3685 if (!access_ok(VERIFY_WRITE, ptr, length))
3686 return -EFAULT;
3687
2549d6c2
CW
3688 if (fault_in_pages_readable(ptr, length))
3689 return -EFAULT;
6b95a207 3690 }
6b95a207 3691
83d60795 3692 return 0;
6b95a207
KH
3693}
3694
8dc5d147 3695static int
76446cac 3696i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3697 struct drm_file *file,
76446cac
JB
3698 struct drm_i915_gem_execbuffer2 *args,
3699 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3700{
3701 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3702 struct drm_gem_object **object_list = NULL;
3703 struct drm_gem_object *batch_obj;
201361a5 3704 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3705 struct drm_i915_gem_request *request = NULL;
9af90d19 3706 int ret, i, flips;
673a394b 3707 uint64_t exec_offset;
673a394b 3708
852835f3
ZN
3709 struct intel_ring_buffer *ring = NULL;
3710
30dbf0c0
CW
3711 ret = i915_gem_check_is_wedged(dev);
3712 if (ret)
3713 return ret;
3714
2549d6c2
CW
3715 ret = validate_exec_list(exec_list, args->buffer_count);
3716 if (ret)
3717 return ret;
3718
673a394b
EA
3719#if WATCH_EXEC
3720 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3721 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3722#endif
549f7365
CW
3723 switch (args->flags & I915_EXEC_RING_MASK) {
3724 case I915_EXEC_DEFAULT:
3725 case I915_EXEC_RENDER:
3726 ring = &dev_priv->render_ring;
3727 break;
3728 case I915_EXEC_BSD:
d1b851fc 3729 if (!HAS_BSD(dev)) {
549f7365 3730 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3731 return -EINVAL;
3732 }
3733 ring = &dev_priv->bsd_ring;
549f7365
CW
3734 break;
3735 case I915_EXEC_BLT:
3736 if (!HAS_BLT(dev)) {
3737 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3738 return -EINVAL;
3739 }
3740 ring = &dev_priv->blt_ring;
3741 break;
3742 default:
3743 DRM_ERROR("execbuf with unknown ring: %d\n",
3744 (int)(args->flags & I915_EXEC_RING_MASK));
3745 return -EINVAL;
d1b851fc
ZN
3746 }
3747
4f481ed2
EA
3748 if (args->buffer_count < 1) {
3749 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3750 return -EINVAL;
3751 }
c8e0f93a 3752 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3753 if (object_list == NULL) {
3754 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3755 args->buffer_count);
3756 ret = -ENOMEM;
3757 goto pre_mutex_err;
3758 }
673a394b 3759
201361a5 3760 if (args->num_cliprects != 0) {
9a298b2a
EA
3761 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3762 GFP_KERNEL);
a40e8d31
OA
3763 if (cliprects == NULL) {
3764 ret = -ENOMEM;
201361a5 3765 goto pre_mutex_err;
a40e8d31 3766 }
201361a5
EA
3767
3768 ret = copy_from_user(cliprects,
3769 (struct drm_clip_rect __user *)
3770 (uintptr_t) args->cliprects_ptr,
3771 sizeof(*cliprects) * args->num_cliprects);
3772 if (ret != 0) {
3773 DRM_ERROR("copy %d cliprects failed: %d\n",
3774 args->num_cliprects, ret);
c877cdce 3775 ret = -EFAULT;
201361a5
EA
3776 goto pre_mutex_err;
3777 }
3778 }
3779
8dc5d147
CW
3780 request = kzalloc(sizeof(*request), GFP_KERNEL);
3781 if (request == NULL) {
3782 ret = -ENOMEM;
40a5f0de 3783 goto pre_mutex_err;
8dc5d147 3784 }
40a5f0de 3785
76c1dec1
CW
3786 ret = i915_mutex_lock_interruptible(dev);
3787 if (ret)
a198bc80 3788 goto pre_mutex_err;
673a394b
EA
3789
3790 if (dev_priv->mm.suspended) {
673a394b 3791 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3792 ret = -EBUSY;
3793 goto pre_mutex_err;
673a394b
EA
3794 }
3795
ac94a962 3796 /* Look up object handles */
673a394b 3797 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3798 struct drm_i915_gem_object *obj_priv;
3799
9af90d19 3800 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3801 exec_list[i].handle);
3802 if (object_list[i] == NULL) {
3803 DRM_ERROR("Invalid object handle %d at index %d\n",
3804 exec_list[i].handle, i);
0ce907f8
CW
3805 /* prevent error path from reading uninitialized data */
3806 args->buffer_count = i + 1;
bf79cb91 3807 ret = -ENOENT;
673a394b
EA
3808 goto err;
3809 }
b70d11da 3810
23010e43 3811 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3812 if (obj_priv->in_execbuffer) {
3813 DRM_ERROR("Object %p appears more than once in object list\n",
3814 object_list[i]);
0ce907f8
CW
3815 /* prevent error path from reading uninitialized data */
3816 args->buffer_count = i + 1;
bf79cb91 3817 ret = -EINVAL;
b70d11da
KH
3818 goto err;
3819 }
3820 obj_priv->in_execbuffer = true;
ac94a962 3821 }
673a394b 3822
9af90d19
CW
3823 /* Move the objects en-masse into the GTT, evicting if necessary. */
3824 ret = i915_gem_execbuffer_pin(dev, file,
3825 object_list, exec_list,
3826 args->buffer_count);
3827 if (ret)
3828 goto err;
ac94a962 3829
9af90d19
CW
3830 /* The objects are in their final locations, apply the relocations. */
3831 for (i = 0; i < args->buffer_count; i++) {
3832 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3833 obj->base.pending_read_domains = 0;
3834 obj->base.pending_write_domain = 0;
3835 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3836 if (ret)
ac94a962 3837 goto err;
673a394b
EA
3838 }
3839
3840 /* Set the pending read domains for the batch buffer to COMMAND */
3841 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3842 if (batch_obj->pending_write_domain) {
3843 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3844 ret = -EINVAL;
3845 goto err;
3846 }
3847 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3848
9af90d19
CW
3849 /* Sanity check the batch buffer */
3850 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3851 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3852 if (ret != 0) {
3853 DRM_ERROR("execbuf with invalid offset/length\n");
3854 goto err;
3855 }
3856
646f0f6e
KP
3857 /* Zero the global flush/invalidate flags. These
3858 * will be modified as new domains are computed
3859 * for each object
3860 */
3861 dev->invalidate_domains = 0;
3862 dev->flush_domains = 0;
9220434a 3863 dev_priv->mm.flush_rings = 0;
7e318e18
CW
3864 for (i = 0; i < args->buffer_count; i++)
3865 i915_gem_object_set_to_gpu_domain(object_list[i], ring);
673a394b 3866
646f0f6e
KP
3867 if (dev->invalidate_domains | dev->flush_domains) {
3868#if WATCH_EXEC
3869 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3870 __func__,
3871 dev->invalidate_domains,
3872 dev->flush_domains);
3873#endif
9af90d19 3874 i915_gem_flush(dev, file,
646f0f6e 3875 dev->invalidate_domains,
9220434a
CW
3876 dev->flush_domains,
3877 dev_priv->mm.flush_rings);
646f0f6e 3878 }
673a394b 3879
673a394b
EA
3880#if WATCH_COHERENCY
3881 for (i = 0; i < args->buffer_count; i++) {
3882 i915_gem_object_check_coherency(object_list[i],
3883 exec_list[i].handle);
3884 }
3885#endif
3886
673a394b 3887#if WATCH_EXEC
6911a9b8 3888 i915_gem_dump_object(batch_obj,
673a394b
EA
3889 args->batch_len,
3890 __func__,
3891 ~0);
3892#endif
3893
e59f2bac
CW
3894 /* Check for any pending flips. As we only maintain a flip queue depth
3895 * of 1, we can simply insert a WAIT for the next display flip prior
3896 * to executing the batch and avoid stalling the CPU.
3897 */
3898 flips = 0;
3899 for (i = 0; i < args->buffer_count; i++) {
3900 if (object_list[i]->write_domain)
3901 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3902 }
3903 if (flips) {
3904 int plane, flip_mask;
3905
3906 for (plane = 0; flips >> plane; plane++) {
3907 if (((flips >> plane) & 1) == 0)
3908 continue;
3909
3910 if (plane)
3911 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3912 else
3913 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3914
e1f99ce6
CW
3915 ret = intel_ring_begin(ring, 2);
3916 if (ret)
3917 goto err;
3918
78501eac
CW
3919 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3920 intel_ring_emit(ring, MI_NOOP);
3921 intel_ring_advance(ring);
e59f2bac
CW
3922 }
3923 }
3924
673a394b 3925 /* Exec the batchbuffer */
78501eac 3926 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3927 if (ret) {
3928 DRM_ERROR("dispatch failed %d\n", ret);
3929 goto err;
3930 }
3931
673a394b
EA
3932 for (i = 0; i < args->buffer_count; i++) {
3933 struct drm_gem_object *obj = object_list[i];
673a394b 3934
7e318e18
CW
3935 obj->read_domains = obj->pending_read_domains;
3936 obj->write_domain = obj->pending_write_domain;
3937
617dbe27 3938 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
3939 if (obj->write_domain) {
3940 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3941 obj_priv->dirty = 1;
3942 list_move_tail(&obj_priv->gpu_write_list,
64193406 3943 &ring->gpu_write_list);
7e318e18
CW
3944 intel_mark_busy(dev, obj);
3945 }
3946
3947 trace_i915_gem_object_change_domain(obj,
3948 obj->read_domains,
3949 obj->write_domain);
673a394b 3950 }
673a394b 3951
7e318e18
CW
3952 /*
3953 * Ensure that the commands in the batch buffer are
3954 * finished before the interrupt fires
3955 */
3956 i915_retire_commands(dev, ring);
3957
3cce469c
CW
3958 if (i915_add_request(dev, file, request, ring))
3959 ring->outstanding_lazy_request = true;
3960 else
3961 request = NULL;
673a394b 3962
673a394b 3963err:
b70d11da 3964 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3965 if (object_list[i] == NULL)
3966 break;
3967
3968 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 3969 drm_gem_object_unreference(object_list[i]);
b70d11da 3970 }
673a394b 3971
673a394b
EA
3972 mutex_unlock(&dev->struct_mutex);
3973
93533c29 3974pre_mutex_err:
8e7d2b2c 3975 drm_free_large(object_list);
9a298b2a 3976 kfree(cliprects);
8dc5d147 3977 kfree(request);
673a394b
EA
3978
3979 return ret;
3980}
3981
76446cac
JB
3982/*
3983 * Legacy execbuffer just creates an exec2 list from the original exec object
3984 * list array and passes it to the real function.
3985 */
3986int
3987i915_gem_execbuffer(struct drm_device *dev, void *data,
3988 struct drm_file *file_priv)
3989{
3990 struct drm_i915_gem_execbuffer *args = data;
3991 struct drm_i915_gem_execbuffer2 exec2;
3992 struct drm_i915_gem_exec_object *exec_list = NULL;
3993 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3994 int ret, i;
3995
3996#if WATCH_EXEC
3997 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3998 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3999#endif
4000
4001 if (args->buffer_count < 1) {
4002 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4003 return -EINVAL;
4004 }
4005
4006 /* Copy in the exec list from userland */
4007 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4008 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4009 if (exec_list == NULL || exec2_list == NULL) {
4010 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4011 args->buffer_count);
4012 drm_free_large(exec_list);
4013 drm_free_large(exec2_list);
4014 return -ENOMEM;
4015 }
4016 ret = copy_from_user(exec_list,
4017 (struct drm_i915_relocation_entry __user *)
4018 (uintptr_t) args->buffers_ptr,
4019 sizeof(*exec_list) * args->buffer_count);
4020 if (ret != 0) {
4021 DRM_ERROR("copy %d exec entries failed %d\n",
4022 args->buffer_count, ret);
4023 drm_free_large(exec_list);
4024 drm_free_large(exec2_list);
4025 return -EFAULT;
4026 }
4027
4028 for (i = 0; i < args->buffer_count; i++) {
4029 exec2_list[i].handle = exec_list[i].handle;
4030 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4031 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4032 exec2_list[i].alignment = exec_list[i].alignment;
4033 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4034 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4035 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4036 else
4037 exec2_list[i].flags = 0;
4038 }
4039
4040 exec2.buffers_ptr = args->buffers_ptr;
4041 exec2.buffer_count = args->buffer_count;
4042 exec2.batch_start_offset = args->batch_start_offset;
4043 exec2.batch_len = args->batch_len;
4044 exec2.DR1 = args->DR1;
4045 exec2.DR4 = args->DR4;
4046 exec2.num_cliprects = args->num_cliprects;
4047 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4048 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4049
4050 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4051 if (!ret) {
4052 /* Copy the new buffer offsets back to the user's exec list. */
4053 for (i = 0; i < args->buffer_count; i++)
4054 exec_list[i].offset = exec2_list[i].offset;
4055 /* ... and back out to userspace */
4056 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4057 (uintptr_t) args->buffers_ptr,
4058 exec_list,
4059 sizeof(*exec_list) * args->buffer_count);
4060 if (ret) {
4061 ret = -EFAULT;
4062 DRM_ERROR("failed to copy %d exec entries "
4063 "back to user (%d)\n",
4064 args->buffer_count, ret);
4065 }
76446cac
JB
4066 }
4067
4068 drm_free_large(exec_list);
4069 drm_free_large(exec2_list);
4070 return ret;
4071}
4072
4073int
4074i915_gem_execbuffer2(struct drm_device *dev, void *data,
4075 struct drm_file *file_priv)
4076{
4077 struct drm_i915_gem_execbuffer2 *args = data;
4078 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4079 int ret;
4080
4081#if WATCH_EXEC
4082 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4083 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4084#endif
4085
4086 if (args->buffer_count < 1) {
4087 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4088 return -EINVAL;
4089 }
4090
4091 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4092 if (exec2_list == NULL) {
4093 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4094 args->buffer_count);
4095 return -ENOMEM;
4096 }
4097 ret = copy_from_user(exec2_list,
4098 (struct drm_i915_relocation_entry __user *)
4099 (uintptr_t) args->buffers_ptr,
4100 sizeof(*exec2_list) * args->buffer_count);
4101 if (ret != 0) {
4102 DRM_ERROR("copy %d exec entries failed %d\n",
4103 args->buffer_count, ret);
4104 drm_free_large(exec2_list);
4105 return -EFAULT;
4106 }
4107
4108 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4109 if (!ret) {
4110 /* Copy the new buffer offsets back to the user's exec list. */
4111 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4112 (uintptr_t) args->buffers_ptr,
4113 exec2_list,
4114 sizeof(*exec2_list) * args->buffer_count);
4115 if (ret) {
4116 ret = -EFAULT;
4117 DRM_ERROR("failed to copy %d exec entries "
4118 "back to user (%d)\n",
4119 args->buffer_count, ret);
4120 }
4121 }
4122
4123 drm_free_large(exec2_list);
4124 return ret;
4125}
4126
673a394b 4127int
920afa77
DV
4128i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4129 bool mappable)
673a394b
EA
4130{
4131 struct drm_device *dev = obj->dev;
f13d3f73 4132 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4133 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4134 int ret;
4135
778c3544 4136 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4137 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4138
4139 if (obj_priv->gtt_space != NULL) {
4140 if (alignment == 0)
4141 alignment = i915_gem_get_gtt_alignment(obj);
16e809ac
DV
4142 if (obj_priv->gtt_offset & (alignment - 1) ||
4143 (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
ae7d49d8
CW
4144 WARN(obj_priv->pin_count,
4145 "bo is already pinned with incorrect alignment:"
4146 " offset=%x, req.alignment=%x\n",
4147 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4148 ret = i915_gem_object_unbind(obj);
4149 if (ret)
4150 return ret;
4151 }
4152 }
4153
673a394b 4154 if (obj_priv->gtt_space == NULL) {
920afa77 4155 ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
9731129c 4156 if (ret)
673a394b 4157 return ret;
22c344e9 4158 }
76446cac 4159
673a394b
EA
4160 obj_priv->pin_count++;
4161
4162 /* If the object is not active and not pending a flush,
4163 * remove it from the inactive list
4164 */
4165 if (obj_priv->pin_count == 1) {
fb7d516a 4166 i915_gem_info_add_pin(dev_priv, obj, mappable);
f13d3f73 4167 if (!obj_priv->active)
69dc4987 4168 list_move_tail(&obj_priv->mm_list,
f13d3f73 4169 &dev_priv->mm.pinned_list);
673a394b 4170 }
fb7d516a 4171 BUG_ON(!obj_priv->pin_mappable && mappable);
673a394b 4172
23bc5982 4173 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4174 return 0;
4175}
4176
4177void
4178i915_gem_object_unpin(struct drm_gem_object *obj)
4179{
4180 struct drm_device *dev = obj->dev;
4181 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4182 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4183
23bc5982 4184 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4185 obj_priv->pin_count--;
4186 BUG_ON(obj_priv->pin_count < 0);
4187 BUG_ON(obj_priv->gtt_space == NULL);
4188
4189 /* If the object is no longer pinned, and is
4190 * neither active nor being flushed, then stick it on
4191 * the inactive list
4192 */
4193 if (obj_priv->pin_count == 0) {
f13d3f73 4194 if (!obj_priv->active)
69dc4987 4195 list_move_tail(&obj_priv->mm_list,
673a394b 4196 &dev_priv->mm.inactive_list);
fb7d516a 4197 i915_gem_info_remove_pin(dev_priv, obj);
673a394b 4198 }
23bc5982 4199 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4200}
4201
4202int
4203i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4204 struct drm_file *file_priv)
4205{
4206 struct drm_i915_gem_pin *args = data;
4207 struct drm_gem_object *obj;
4208 struct drm_i915_gem_object *obj_priv;
4209 int ret;
4210
1d7cfea1
CW
4211 ret = i915_mutex_lock_interruptible(dev);
4212 if (ret)
4213 return ret;
673a394b
EA
4214
4215 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4216 if (obj == NULL) {
1d7cfea1
CW
4217 ret = -ENOENT;
4218 goto unlock;
673a394b 4219 }
23010e43 4220 obj_priv = to_intel_bo(obj);
673a394b 4221
bb6baf76
CW
4222 if (obj_priv->madv != I915_MADV_WILLNEED) {
4223 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4224 ret = -EINVAL;
4225 goto out;
3ef94daa
CW
4226 }
4227
79e53945
JB
4228 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4229 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4230 args->handle);
1d7cfea1
CW
4231 ret = -EINVAL;
4232 goto out;
79e53945
JB
4233 }
4234
4235 obj_priv->user_pin_count++;
4236 obj_priv->pin_filp = file_priv;
4237 if (obj_priv->user_pin_count == 1) {
920afa77 4238 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4239 if (ret)
4240 goto out;
673a394b
EA
4241 }
4242
4243 /* XXX - flush the CPU caches for pinned objects
4244 * as the X server doesn't manage domains yet
4245 */
e47c68e9 4246 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4247 args->offset = obj_priv->gtt_offset;
1d7cfea1 4248out:
673a394b 4249 drm_gem_object_unreference(obj);
1d7cfea1 4250unlock:
673a394b 4251 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4252 return ret;
673a394b
EA
4253}
4254
4255int
4256i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4257 struct drm_file *file_priv)
4258{
4259 struct drm_i915_gem_pin *args = data;
4260 struct drm_gem_object *obj;
79e53945 4261 struct drm_i915_gem_object *obj_priv;
76c1dec1 4262 int ret;
673a394b 4263
1d7cfea1
CW
4264 ret = i915_mutex_lock_interruptible(dev);
4265 if (ret)
4266 return ret;
673a394b
EA
4267
4268 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4269 if (obj == NULL) {
1d7cfea1
CW
4270 ret = -ENOENT;
4271 goto unlock;
673a394b 4272 }
23010e43 4273 obj_priv = to_intel_bo(obj);
76c1dec1 4274
79e53945
JB
4275 if (obj_priv->pin_filp != file_priv) {
4276 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4277 args->handle);
1d7cfea1
CW
4278 ret = -EINVAL;
4279 goto out;
79e53945
JB
4280 }
4281 obj_priv->user_pin_count--;
4282 if (obj_priv->user_pin_count == 0) {
4283 obj_priv->pin_filp = NULL;
4284 i915_gem_object_unpin(obj);
4285 }
673a394b 4286
1d7cfea1 4287out:
673a394b 4288 drm_gem_object_unreference(obj);
1d7cfea1 4289unlock:
673a394b 4290 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4291 return ret;
673a394b
EA
4292}
4293
4294int
4295i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4296 struct drm_file *file_priv)
4297{
4298 struct drm_i915_gem_busy *args = data;
4299 struct drm_gem_object *obj;
4300 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4301 int ret;
4302
76c1dec1 4303 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4304 if (ret)
76c1dec1 4305 return ret;
673a394b 4306
673a394b
EA
4307 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4308 if (obj == NULL) {
1d7cfea1
CW
4309 ret = -ENOENT;
4310 goto unlock;
673a394b 4311 }
1d7cfea1 4312 obj_priv = to_intel_bo(obj);
d1b851fc 4313
0be555b6
CW
4314 /* Count all active objects as busy, even if they are currently not used
4315 * by the gpu. Users of this interface expect objects to eventually
4316 * become non-busy without any further actions, therefore emit any
4317 * necessary flushes here.
c4de0a5d 4318 */
0be555b6
CW
4319 args->busy = obj_priv->active;
4320 if (args->busy) {
4321 /* Unconditionally flush objects, even when the gpu still uses this
4322 * object. Userspace calling this function indicates that it wants to
4323 * use this buffer rather sooner than later, so issuing the required
4324 * flush earlier is beneficial.
4325 */
c78ec30b
CW
4326 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4327 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4328 obj_priv->ring,
4329 0, obj->write_domain);
0be555b6
CW
4330
4331 /* Update the active list for the hardware's current position.
4332 * Otherwise this only updates on a delayed timer or when irqs
4333 * are actually unmasked, and our working set ends up being
4334 * larger than required.
4335 */
4336 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4337
4338 args->busy = obj_priv->active;
4339 }
673a394b
EA
4340
4341 drm_gem_object_unreference(obj);
1d7cfea1 4342unlock:
673a394b 4343 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4344 return ret;
673a394b
EA
4345}
4346
4347int
4348i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4349 struct drm_file *file_priv)
4350{
4351 return i915_gem_ring_throttle(dev, file_priv);
4352}
4353
3ef94daa
CW
4354int
4355i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4356 struct drm_file *file_priv)
4357{
4358 struct drm_i915_gem_madvise *args = data;
4359 struct drm_gem_object *obj;
4360 struct drm_i915_gem_object *obj_priv;
76c1dec1 4361 int ret;
3ef94daa
CW
4362
4363 switch (args->madv) {
4364 case I915_MADV_DONTNEED:
4365 case I915_MADV_WILLNEED:
4366 break;
4367 default:
4368 return -EINVAL;
4369 }
4370
1d7cfea1
CW
4371 ret = i915_mutex_lock_interruptible(dev);
4372 if (ret)
4373 return ret;
4374
3ef94daa
CW
4375 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4376 if (obj == NULL) {
1d7cfea1
CW
4377 ret = -ENOENT;
4378 goto unlock;
3ef94daa 4379 }
23010e43 4380 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4381
4382 if (obj_priv->pin_count) {
1d7cfea1
CW
4383 ret = -EINVAL;
4384 goto out;
3ef94daa
CW
4385 }
4386
bb6baf76
CW
4387 if (obj_priv->madv != __I915_MADV_PURGED)
4388 obj_priv->madv = args->madv;
3ef94daa 4389
2d7ef395
CW
4390 /* if the object is no longer bound, discard its backing storage */
4391 if (i915_gem_object_is_purgeable(obj_priv) &&
4392 obj_priv->gtt_space == NULL)
4393 i915_gem_object_truncate(obj);
4394
bb6baf76
CW
4395 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4396
1d7cfea1 4397out:
3ef94daa 4398 drm_gem_object_unreference(obj);
1d7cfea1 4399unlock:
3ef94daa 4400 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4401 return ret;
3ef94daa
CW
4402}
4403
ac52bc56
DV
4404struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4405 size_t size)
4406{
73aa808f 4407 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4408 struct drm_i915_gem_object *obj;
ac52bc56 4409
c397b908
DV
4410 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4411 if (obj == NULL)
4412 return NULL;
673a394b 4413
c397b908
DV
4414 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4415 kfree(obj);
4416 return NULL;
4417 }
673a394b 4418
73aa808f
CW
4419 i915_gem_info_add_obj(dev_priv, size);
4420
c397b908
DV
4421 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4423
c397b908 4424 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4425 obj->base.driver_private = NULL;
c397b908 4426 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4427 INIT_LIST_HEAD(&obj->mm_list);
4428 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4429 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4430 obj->madv = I915_MADV_WILLNEED;
de151cf6 4431
c397b908
DV
4432 return &obj->base;
4433}
4434
4435int i915_gem_init_object(struct drm_gem_object *obj)
4436{
4437 BUG();
de151cf6 4438
673a394b
EA
4439 return 0;
4440}
4441
be72615b 4442static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4443{
de151cf6 4444 struct drm_device *dev = obj->dev;
be72615b 4445 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4446 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4447 int ret;
673a394b 4448
be72615b
CW
4449 ret = i915_gem_object_unbind(obj);
4450 if (ret == -ERESTARTSYS) {
69dc4987 4451 list_move(&obj_priv->mm_list,
be72615b
CW
4452 &dev_priv->mm.deferred_free_list);
4453 return;
4454 }
673a394b 4455
39a01d1f 4456 if (obj->map_list.map)
7e616158 4457 i915_gem_free_mmap_offset(obj);
de151cf6 4458
c397b908 4459 drm_gem_object_release(obj);
73aa808f 4460 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4461
9a298b2a 4462 kfree(obj_priv->page_cpu_valid);
280b713b 4463 kfree(obj_priv->bit_17);
c397b908 4464 kfree(obj_priv);
673a394b
EA
4465}
4466
be72615b
CW
4467void i915_gem_free_object(struct drm_gem_object *obj)
4468{
4469 struct drm_device *dev = obj->dev;
4470 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4471
4472 trace_i915_gem_object_destroy(obj);
4473
4474 while (obj_priv->pin_count > 0)
4475 i915_gem_object_unpin(obj);
4476
4477 if (obj_priv->phys_obj)
4478 i915_gem_detach_phys_object(dev, obj);
4479
4480 i915_gem_free_object_tail(obj);
4481}
4482
29105ccc
CW
4483int
4484i915_gem_idle(struct drm_device *dev)
4485{
4486 drm_i915_private_t *dev_priv = dev->dev_private;
4487 int ret;
28dfe52a 4488
29105ccc 4489 mutex_lock(&dev->struct_mutex);
1c5d22f7 4490
87acb0a5 4491 if (dev_priv->mm.suspended) {
29105ccc
CW
4492 mutex_unlock(&dev->struct_mutex);
4493 return 0;
28dfe52a
EA
4494 }
4495
29105ccc 4496 ret = i915_gpu_idle(dev);
6dbe2772
KP
4497 if (ret) {
4498 mutex_unlock(&dev->struct_mutex);
673a394b 4499 return ret;
6dbe2772 4500 }
673a394b 4501
29105ccc
CW
4502 /* Under UMS, be paranoid and evict. */
4503 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4504 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4505 if (ret) {
4506 mutex_unlock(&dev->struct_mutex);
4507 return ret;
4508 }
4509 }
4510
4511 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4512 * We need to replace this with a semaphore, or something.
4513 * And not confound mm.suspended!
4514 */
4515 dev_priv->mm.suspended = 1;
bc0c7f14 4516 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4517
4518 i915_kernel_lost_context(dev);
6dbe2772 4519 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4520
6dbe2772
KP
4521 mutex_unlock(&dev->struct_mutex);
4522
29105ccc
CW
4523 /* Cancel the retire work handler, which should be idle now. */
4524 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4525
673a394b
EA
4526 return 0;
4527}
4528
e552eb70
JB
4529/*
4530 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4531 * over cache flushing.
4532 */
8187a2b7 4533static int
e552eb70
JB
4534i915_gem_init_pipe_control(struct drm_device *dev)
4535{
4536 drm_i915_private_t *dev_priv = dev->dev_private;
4537 struct drm_gem_object *obj;
4538 struct drm_i915_gem_object *obj_priv;
4539 int ret;
4540
34dc4d44 4541 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4542 if (obj == NULL) {
4543 DRM_ERROR("Failed to allocate seqno page\n");
4544 ret = -ENOMEM;
4545 goto err;
4546 }
4547 obj_priv = to_intel_bo(obj);
4548 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4549
920afa77 4550 ret = i915_gem_object_pin(obj, 4096, true);
e552eb70
JB
4551 if (ret)
4552 goto err_unref;
4553
4554 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4555 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4556 if (dev_priv->seqno_page == NULL)
4557 goto err_unpin;
4558
4559 dev_priv->seqno_obj = obj;
4560 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4561
4562 return 0;
4563
4564err_unpin:
4565 i915_gem_object_unpin(obj);
4566err_unref:
4567 drm_gem_object_unreference(obj);
4568err:
4569 return ret;
4570}
4571
8187a2b7
ZN
4572
4573static void
e552eb70
JB
4574i915_gem_cleanup_pipe_control(struct drm_device *dev)
4575{
4576 drm_i915_private_t *dev_priv = dev->dev_private;
4577 struct drm_gem_object *obj;
4578 struct drm_i915_gem_object *obj_priv;
4579
4580 obj = dev_priv->seqno_obj;
4581 obj_priv = to_intel_bo(obj);
4582 kunmap(obj_priv->pages[0]);
4583 i915_gem_object_unpin(obj);
4584 drm_gem_object_unreference(obj);
4585 dev_priv->seqno_obj = NULL;
4586
4587 dev_priv->seqno_page = NULL;
673a394b
EA
4588}
4589
8187a2b7
ZN
4590int
4591i915_gem_init_ringbuffer(struct drm_device *dev)
4592{
4593 drm_i915_private_t *dev_priv = dev->dev_private;
4594 int ret;
68f95ba9 4595
8187a2b7
ZN
4596 if (HAS_PIPE_CONTROL(dev)) {
4597 ret = i915_gem_init_pipe_control(dev);
4598 if (ret)
4599 return ret;
4600 }
68f95ba9 4601
5c1143bb 4602 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4603 if (ret)
4604 goto cleanup_pipe_control;
4605
4606 if (HAS_BSD(dev)) {
5c1143bb 4607 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4608 if (ret)
4609 goto cleanup_render_ring;
d1b851fc 4610 }
68f95ba9 4611
549f7365
CW
4612 if (HAS_BLT(dev)) {
4613 ret = intel_init_blt_ring_buffer(dev);
4614 if (ret)
4615 goto cleanup_bsd_ring;
4616 }
4617
6f392d54
CW
4618 dev_priv->next_seqno = 1;
4619
68f95ba9
CW
4620 return 0;
4621
549f7365 4622cleanup_bsd_ring:
78501eac 4623 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4624cleanup_render_ring:
78501eac 4625 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4626cleanup_pipe_control:
4627 if (HAS_PIPE_CONTROL(dev))
4628 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4629 return ret;
4630}
4631
4632void
4633i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4634{
4635 drm_i915_private_t *dev_priv = dev->dev_private;
4636
78501eac
CW
4637 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4638 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4639 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4640 if (HAS_PIPE_CONTROL(dev))
4641 i915_gem_cleanup_pipe_control(dev);
4642}
4643
673a394b
EA
4644int
4645i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4646 struct drm_file *file_priv)
4647{
4648 drm_i915_private_t *dev_priv = dev->dev_private;
4649 int ret;
4650
79e53945
JB
4651 if (drm_core_check_feature(dev, DRIVER_MODESET))
4652 return 0;
4653
ba1234d1 4654 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4655 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4656 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4657 }
4658
673a394b 4659 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4660 dev_priv->mm.suspended = 0;
4661
4662 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4663 if (ret != 0) {
4664 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4665 return ret;
d816f6ac 4666 }
9bb2d6f9 4667
69dc4987 4668 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4669 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4670 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4671 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4672 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4673 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4674 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4675 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4676 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4677 mutex_unlock(&dev->struct_mutex);
dbb19d30 4678
5f35308b
CW
4679 ret = drm_irq_install(dev);
4680 if (ret)
4681 goto cleanup_ringbuffer;
dbb19d30 4682
673a394b 4683 return 0;
5f35308b
CW
4684
4685cleanup_ringbuffer:
4686 mutex_lock(&dev->struct_mutex);
4687 i915_gem_cleanup_ringbuffer(dev);
4688 dev_priv->mm.suspended = 1;
4689 mutex_unlock(&dev->struct_mutex);
4690
4691 return ret;
673a394b
EA
4692}
4693
4694int
4695i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4696 struct drm_file *file_priv)
4697{
79e53945
JB
4698 if (drm_core_check_feature(dev, DRIVER_MODESET))
4699 return 0;
4700
dbb19d30 4701 drm_irq_uninstall(dev);
e6890f6f 4702 return i915_gem_idle(dev);
673a394b
EA
4703}
4704
4705void
4706i915_gem_lastclose(struct drm_device *dev)
4707{
4708 int ret;
673a394b 4709
e806b495
EA
4710 if (drm_core_check_feature(dev, DRIVER_MODESET))
4711 return;
4712
6dbe2772
KP
4713 ret = i915_gem_idle(dev);
4714 if (ret)
4715 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4716}
4717
64193406
CW
4718static void
4719init_ring_lists(struct intel_ring_buffer *ring)
4720{
4721 INIT_LIST_HEAD(&ring->active_list);
4722 INIT_LIST_HEAD(&ring->request_list);
4723 INIT_LIST_HEAD(&ring->gpu_write_list);
4724}
4725
673a394b
EA
4726void
4727i915_gem_load(struct drm_device *dev)
4728{
b5aa8a0f 4729 int i;
673a394b
EA
4730 drm_i915_private_t *dev_priv = dev->dev_private;
4731
69dc4987 4732 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4733 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4734 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4735 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4736 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4737 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4738 init_ring_lists(&dev_priv->render_ring);
4739 init_ring_lists(&dev_priv->bsd_ring);
4740 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4741 for (i = 0; i < 16; i++)
4742 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4743 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4744 i915_gem_retire_work_handler);
30dbf0c0 4745 init_completion(&dev_priv->error_completion);
31169714 4746
94400120
DA
4747 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4748 if (IS_GEN3(dev)) {
4749 u32 tmp = I915_READ(MI_ARB_STATE);
4750 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4751 /* arb state is a masked write, so set bit + bit in mask */
4752 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4753 I915_WRITE(MI_ARB_STATE, tmp);
4754 }
4755 }
4756
de151cf6 4757 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4758 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4759 dev_priv->fence_reg_start = 3;
de151cf6 4760
a6c45cf0 4761 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4762 dev_priv->num_fence_regs = 16;
4763 else
4764 dev_priv->num_fence_regs = 8;
4765
b5aa8a0f 4766 /* Initialize fence registers to zero */
a6c45cf0
CW
4767 switch (INTEL_INFO(dev)->gen) {
4768 case 6:
4769 for (i = 0; i < 16; i++)
4770 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4771 break;
4772 case 5:
4773 case 4:
b5aa8a0f
GH
4774 for (i = 0; i < 16; i++)
4775 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4776 break;
4777 case 3:
b5aa8a0f
GH
4778 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4779 for (i = 0; i < 8; i++)
4780 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4781 case 2:
4782 for (i = 0; i < 8; i++)
4783 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4784 break;
b5aa8a0f 4785 }
673a394b 4786 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4787 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
4788
4789 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4790 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4791 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4792}
71acb5eb
DA
4793
4794/*
4795 * Create a physically contiguous memory object for this object
4796 * e.g. for cursor + overlay regs
4797 */
995b6762
CW
4798static int i915_gem_init_phys_object(struct drm_device *dev,
4799 int id, int size, int align)
71acb5eb
DA
4800{
4801 drm_i915_private_t *dev_priv = dev->dev_private;
4802 struct drm_i915_gem_phys_object *phys_obj;
4803 int ret;
4804
4805 if (dev_priv->mm.phys_objs[id - 1] || !size)
4806 return 0;
4807
9a298b2a 4808 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4809 if (!phys_obj)
4810 return -ENOMEM;
4811
4812 phys_obj->id = id;
4813
6eeefaf3 4814 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4815 if (!phys_obj->handle) {
4816 ret = -ENOMEM;
4817 goto kfree_obj;
4818 }
4819#ifdef CONFIG_X86
4820 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4821#endif
4822
4823 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4824
4825 return 0;
4826kfree_obj:
9a298b2a 4827 kfree(phys_obj);
71acb5eb
DA
4828 return ret;
4829}
4830
995b6762 4831static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4832{
4833 drm_i915_private_t *dev_priv = dev->dev_private;
4834 struct drm_i915_gem_phys_object *phys_obj;
4835
4836 if (!dev_priv->mm.phys_objs[id - 1])
4837 return;
4838
4839 phys_obj = dev_priv->mm.phys_objs[id - 1];
4840 if (phys_obj->cur_obj) {
4841 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4842 }
4843
4844#ifdef CONFIG_X86
4845 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4846#endif
4847 drm_pci_free(dev, phys_obj->handle);
4848 kfree(phys_obj);
4849 dev_priv->mm.phys_objs[id - 1] = NULL;
4850}
4851
4852void i915_gem_free_all_phys_object(struct drm_device *dev)
4853{
4854 int i;
4855
260883c8 4856 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4857 i915_gem_free_phys_object(dev, i);
4858}
4859
4860void i915_gem_detach_phys_object(struct drm_device *dev,
4861 struct drm_gem_object *obj)
4862{
4863 struct drm_i915_gem_object *obj_priv;
4864 int i;
4865 int ret;
4866 int page_count;
4867
23010e43 4868 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4869 if (!obj_priv->phys_obj)
4870 return;
4871
4bdadb97 4872 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4873 if (ret)
4874 goto out;
4875
4876 page_count = obj->size / PAGE_SIZE;
4877
4878 for (i = 0; i < page_count; i++) {
3e4d3af5 4879 char *dst = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4880 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4881
4882 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4883 kunmap_atomic(dst);
71acb5eb 4884 }
856fa198 4885 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4886 drm_agp_chipset_flush(dev);
d78b47b9
CW
4887
4888 i915_gem_object_put_pages(obj);
71acb5eb
DA
4889out:
4890 obj_priv->phys_obj->cur_obj = NULL;
4891 obj_priv->phys_obj = NULL;
4892}
4893
4894int
4895i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4896 struct drm_gem_object *obj,
4897 int id,
4898 int align)
71acb5eb
DA
4899{
4900 drm_i915_private_t *dev_priv = dev->dev_private;
4901 struct drm_i915_gem_object *obj_priv;
4902 int ret = 0;
4903 int page_count;
4904 int i;
4905
4906 if (id > I915_MAX_PHYS_OBJECT)
4907 return -EINVAL;
4908
23010e43 4909 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4910
4911 if (obj_priv->phys_obj) {
4912 if (obj_priv->phys_obj->id == id)
4913 return 0;
4914 i915_gem_detach_phys_object(dev, obj);
4915 }
4916
71acb5eb
DA
4917 /* create a new object */
4918 if (!dev_priv->mm.phys_objs[id - 1]) {
4919 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4920 obj->size, align);
71acb5eb 4921 if (ret) {
aeb565df 4922 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4923 goto out;
4924 }
4925 }
4926
4927 /* bind to the object */
4928 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4929 obj_priv->phys_obj->cur_obj = obj;
4930
4bdadb97 4931 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4932 if (ret) {
4933 DRM_ERROR("failed to get page list\n");
4934 goto out;
4935 }
4936
4937 page_count = obj->size / PAGE_SIZE;
4938
4939 for (i = 0; i < page_count; i++) {
3e4d3af5 4940 char *src = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4941 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4942
4943 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4944 kunmap_atomic(src);
71acb5eb
DA
4945 }
4946
d78b47b9
CW
4947 i915_gem_object_put_pages(obj);
4948
71acb5eb
DA
4949 return 0;
4950out:
4951 return ret;
4952}
4953
4954static int
4955i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4956 struct drm_i915_gem_pwrite *args,
4957 struct drm_file *file_priv)
4958{
23010e43 4959 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4960 void *obj_addr;
4961 int ret;
4962 char __user *user_data;
4963
4964 user_data = (char __user *) (uintptr_t) args->data_ptr;
4965 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4966
44d98a61 4967 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4968 ret = copy_from_user(obj_addr, user_data, args->size);
4969 if (ret)
4970 return -EFAULT;
4971
4972 drm_agp_chipset_flush(dev);
4973 return 0;
4974}
b962442e 4975
f787a5f5 4976void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4977{
f787a5f5 4978 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4979
4980 /* Clean up our request list when the client is going away, so that
4981 * later retire_requests won't dereference our soon-to-be-gone
4982 * file_priv.
4983 */
1c25595f 4984 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4985 while (!list_empty(&file_priv->mm.request_list)) {
4986 struct drm_i915_gem_request *request;
4987
4988 request = list_first_entry(&file_priv->mm.request_list,
4989 struct drm_i915_gem_request,
4990 client_list);
4991 list_del(&request->client_list);
4992 request->file_priv = NULL;
4993 }
1c25595f 4994 spin_unlock(&file_priv->mm.lock);
b962442e 4995}
31169714 4996
1637ef41
CW
4997static int
4998i915_gpu_is_active(struct drm_device *dev)
4999{
5000 drm_i915_private_t *dev_priv = dev->dev_private;
5001 int lists_empty;
5002
1637ef41 5003 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 5004 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
5005
5006 return !lists_empty;
5007}
5008
31169714 5009static int
17250b71
CW
5010i915_gem_inactive_shrink(struct shrinker *shrinker,
5011 int nr_to_scan,
5012 gfp_t gfp_mask)
31169714 5013{
17250b71
CW
5014 struct drm_i915_private *dev_priv =
5015 container_of(shrinker,
5016 struct drm_i915_private,
5017 mm.inactive_shrinker);
5018 struct drm_device *dev = dev_priv->dev;
5019 struct drm_i915_gem_object *obj, *next;
5020 int cnt;
5021
5022 if (!mutex_trylock(&dev->struct_mutex))
5023 return nr_to_scan ? 0 : -1;
31169714
CW
5024
5025 /* "fast-path" to count number of available objects */
5026 if (nr_to_scan == 0) {
17250b71
CW
5027 cnt = 0;
5028 list_for_each_entry(obj,
5029 &dev_priv->mm.inactive_list,
5030 mm_list)
5031 cnt++;
5032 mutex_unlock(&dev->struct_mutex);
5033 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
5034 }
5035
1637ef41 5036rescan:
31169714 5037 /* first scan for clean buffers */
17250b71 5038 i915_gem_retire_requests(dev);
31169714 5039
17250b71
CW
5040 list_for_each_entry_safe(obj, next,
5041 &dev_priv->mm.inactive_list,
5042 mm_list) {
5043 if (i915_gem_object_is_purgeable(obj)) {
5044 i915_gem_object_unbind(&obj->base);
5045 if (--nr_to_scan == 0)
5046 break;
31169714 5047 }
31169714
CW
5048 }
5049
5050 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
5051 cnt = 0;
5052 list_for_each_entry_safe(obj, next,
5053 &dev_priv->mm.inactive_list,
5054 mm_list) {
5055 if (nr_to_scan) {
5056 i915_gem_object_unbind(&obj->base);
5057 nr_to_scan--;
5058 } else
5059 cnt++;
5060 }
5061
5062 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
5063 /*
5064 * We are desperate for pages, so as a last resort, wait
5065 * for the GPU to finish and discard whatever we can.
5066 * This has a dramatic impact to reduce the number of
5067 * OOM-killer events whilst running the GPU aggressively.
5068 */
17250b71 5069 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
5070 goto rescan;
5071 }
17250b71
CW
5072 mutex_unlock(&dev->struct_mutex);
5073 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 5074}