]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Remove unused no-shrinker-steal
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee
AS
65static int
66insert_mappable_node(struct drm_i915_private *i915,
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 size, 0, 0, 0,
72 i915->ggtt.mappable_end,
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
d98c52cf 107 if (!i915_reset_in_progress(error))
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0 115 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 116 !i915_reset_in_progress(error),
1f83fee0 117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
d98c52cf
CW
123 } else {
124 return 0;
0a6759c6 125 }
30dbf0c0
CW
126}
127
54cf91dc 128int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 129{
fac5e23e 130 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
131 int ret;
132
33196ded 133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
76c1dec1
CW
141 return 0;
142}
30dbf0c0 143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
72e96d64 148 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 149 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 150 struct drm_i915_gem_get_aperture *args = data;
ca1543be 151 struct i915_vma *vma;
6299f992 152 size_t pinned;
5a125c3c 153
6299f992 154 pinned = 0;
73aa808f 155 mutex_lock(&dev->struct_mutex);
1c7f4bca 156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 157 if (i915_vma_is_pinned(vma))
ca1543be 158 pinned += vma->node.size;
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
73aa808f 162 mutex_unlock(&dev->struct_mutex);
5a125c3c 163
72e96d64 164 args->aper_size = ggtt->base.total;
0206e353 165 args->aper_available_size = args->aper_size - pinned;
6299f992 166
5a125c3c
EA
167 return 0;
168}
169
6a2c4232
CW
170static int
171i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 172{
6a2c4232
CW
173 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
174 char *vaddr = obj->phys_handle->vaddr;
175 struct sg_table *st;
176 struct scatterlist *sg;
177 int i;
00731155 178
6a2c4232
CW
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return -EINVAL;
181
182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 struct page *page;
184 char *src;
185
186 page = shmem_read_mapping_page(mapping, i);
187 if (IS_ERR(page))
188 return PTR_ERR(page);
189
190 src = kmap_atomic(page);
191 memcpy(vaddr, src, PAGE_SIZE);
192 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 kunmap_atomic(src);
194
09cbfeaf 195 put_page(page);
6a2c4232
CW
196 vaddr += PAGE_SIZE;
197 }
198
c033666a 199 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
200
201 st = kmalloc(sizeof(*st), GFP_KERNEL);
202 if (st == NULL)
203 return -ENOMEM;
204
205 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 kfree(st);
207 return -ENOMEM;
208 }
209
210 sg = st->sgl;
211 sg->offset = 0;
212 sg->length = obj->base.size;
00731155 213
6a2c4232
CW
214 sg_dma_address(sg) = obj->phys_handle->busaddr;
215 sg_dma_len(sg) = obj->base.size;
216
217 obj->pages = st;
6a2c4232
CW
218 return 0;
219}
220
221static void
222i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223{
224 int ret;
225
226 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 227
6a2c4232 228 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 229 if (WARN_ON(ret)) {
6a2c4232
CW
230 /* In the event of a disaster, abandon all caches and
231 * hope for the best.
232 */
6a2c4232
CW
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
09cbfeaf 260 put_page(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
6a2c4232
CW
268}
269
270static void
271i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272{
273 drm_pci_free(obj->base.dev, obj->phys_handle);
274}
275
276static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 .get_pages = i915_gem_object_get_pages_phys,
278 .put_pages = i915_gem_object_put_pages_phys,
279 .release = i915_gem_object_release_phys,
280};
281
aa653a68
CW
282int
283i915_gem_object_unbind(struct drm_i915_gem_object *obj)
284{
285 struct i915_vma *vma;
286 LIST_HEAD(still_in_list);
287 int ret;
288
289 /* The vma will only be freed if it is marked as closed, and if we wait
290 * upon rendering to the vma, we may unbind anything in the list.
291 */
292 while ((vma = list_first_entry_or_null(&obj->vma_list,
293 struct i915_vma,
294 obj_link))) {
295 list_move_tail(&vma->obj_link, &still_in_list);
296 ret = i915_vma_unbind(vma);
297 if (ret)
298 break;
299 }
300 list_splice(&still_in_list, &obj->vma_list);
301
302 return ret;
303}
304
00e60f26
CW
305/**
306 * Ensures that all rendering to the object has completed and the object is
307 * safe to unbind from the GTT or access from the CPU.
308 * @obj: i915 gem object
309 * @readonly: waiting for just read access or read-write access
310 */
311int
312i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
313 bool readonly)
314{
315 struct reservation_object *resv;
316 struct i915_gem_active *active;
317 unsigned long active_mask;
318 int idx;
319
320 lockdep_assert_held(&obj->base.dev->struct_mutex);
321
322 if (!readonly) {
323 active = obj->last_read;
324 active_mask = i915_gem_object_get_active(obj);
325 } else {
326 active_mask = 1;
327 active = &obj->last_write;
328 }
329
330 for_each_active(active_mask, idx) {
331 int ret;
332
333 ret = i915_gem_active_wait(&active[idx],
334 &obj->base.dev->struct_mutex);
335 if (ret)
336 return ret;
337 }
338
339 resv = i915_gem_object_get_dmabuf_resv(obj);
340 if (resv) {
341 long err;
342
343 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
344 MAX_SCHEDULE_TIMEOUT);
345 if (err < 0)
346 return err;
347 }
348
349 return 0;
350}
351
b8f9096d
CW
352/* A nonblocking variant of the above wait. Must be called prior to
353 * acquiring the mutex for the object, as the object state may change
354 * during this call. A reference must be held by the caller for the object.
00e60f26
CW
355 */
356static __must_check int
b8f9096d
CW
357__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
358 struct intel_rps_client *rps,
359 bool readonly)
00e60f26 360{
00e60f26
CW
361 struct i915_gem_active *active;
362 unsigned long active_mask;
b8f9096d 363 int idx;
00e60f26 364
b8f9096d 365 active_mask = __I915_BO_ACTIVE(obj);
00e60f26
CW
366 if (!active_mask)
367 return 0;
368
369 if (!readonly) {
370 active = obj->last_read;
371 } else {
372 active_mask = 1;
373 active = &obj->last_write;
374 }
375
b8f9096d
CW
376 for_each_active(active_mask, idx) {
377 int ret;
00e60f26 378
b8f9096d
CW
379 ret = i915_gem_active_wait_unlocked(&active[idx],
380 true, NULL, rps);
381 if (ret)
382 return ret;
00e60f26
CW
383 }
384
b8f9096d 385 return 0;
00e60f26
CW
386}
387
388static struct intel_rps_client *to_rps_client(struct drm_file *file)
389{
390 struct drm_i915_file_private *fpriv = file->driver_priv;
391
392 return &fpriv->rps;
393}
394
00731155
CW
395int
396i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
397 int align)
398{
399 drm_dma_handle_t *phys;
6a2c4232 400 int ret;
00731155
CW
401
402 if (obj->phys_handle) {
403 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
404 return -EBUSY;
405
406 return 0;
407 }
408
409 if (obj->madv != I915_MADV_WILLNEED)
410 return -EFAULT;
411
412 if (obj->base.filp == NULL)
413 return -EINVAL;
414
4717ca9e
CW
415 ret = i915_gem_object_unbind(obj);
416 if (ret)
417 return ret;
418
419 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
420 if (ret)
421 return ret;
422
00731155
CW
423 /* create a new object */
424 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
425 if (!phys)
426 return -ENOMEM;
427
00731155 428 obj->phys_handle = phys;
6a2c4232
CW
429 obj->ops = &i915_gem_phys_ops;
430
431 return i915_gem_object_get_pages(obj);
00731155
CW
432}
433
434static int
435i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
436 struct drm_i915_gem_pwrite *args,
437 struct drm_file *file_priv)
438{
439 struct drm_device *dev = obj->base.dev;
440 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 441 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 442 int ret = 0;
6a2c4232
CW
443
444 /* We manually control the domain here and pretend that it
445 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
446 */
447 ret = i915_gem_object_wait_rendering(obj, false);
448 if (ret)
449 return ret;
00731155 450
77a0d1ca 451 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
452 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
453 unsigned long unwritten;
454
455 /* The physical object once assigned is fixed for the lifetime
456 * of the obj, so we can safely drop the lock and continue
457 * to access vaddr.
458 */
459 mutex_unlock(&dev->struct_mutex);
460 unwritten = copy_from_user(vaddr, user_data, args->size);
461 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
462 if (unwritten) {
463 ret = -EFAULT;
464 goto out;
465 }
00731155
CW
466 }
467
6a2c4232 468 drm_clflush_virt_range(vaddr, args->size);
c033666a 469 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
470
471out:
de152b62 472 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 473 return ret;
00731155
CW
474}
475
42dcedd4
CW
476void *i915_gem_object_alloc(struct drm_device *dev)
477{
fac5e23e 478 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 479 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
480}
481
482void i915_gem_object_free(struct drm_i915_gem_object *obj)
483{
fac5e23e 484 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 485 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
486}
487
ff72145b
DA
488static int
489i915_gem_create(struct drm_file *file,
490 struct drm_device *dev,
491 uint64_t size,
492 uint32_t *handle_p)
673a394b 493{
05394f39 494 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
495 int ret;
496 u32 handle;
673a394b 497
ff72145b 498 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
499 if (size == 0)
500 return -EINVAL;
673a394b
EA
501
502 /* Allocate the new object */
d37cd8a8 503 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
504 if (IS_ERR(obj))
505 return PTR_ERR(obj);
673a394b 506
05394f39 507 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 508 /* drop reference from allocate - handle holds it now */
34911fd3 509 i915_gem_object_put_unlocked(obj);
d861e338
DV
510 if (ret)
511 return ret;
202f2fef 512
ff72145b 513 *handle_p = handle;
673a394b
EA
514 return 0;
515}
516
ff72145b
DA
517int
518i915_gem_dumb_create(struct drm_file *file,
519 struct drm_device *dev,
520 struct drm_mode_create_dumb *args)
521{
522 /* have to work out size/pitch and return them */
de45eaf7 523 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
524 args->size = args->pitch * args->height;
525 return i915_gem_create(file, dev,
da6b51d0 526 args->size, &args->handle);
ff72145b
DA
527}
528
ff72145b
DA
529/**
530 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
531 * @dev: drm device pointer
532 * @data: ioctl data blob
533 * @file: drm file pointer
ff72145b
DA
534 */
535int
536i915_gem_create_ioctl(struct drm_device *dev, void *data,
537 struct drm_file *file)
538{
539 struct drm_i915_gem_create *args = data;
63ed2cb2 540
ff72145b 541 return i915_gem_create(file, dev,
da6b51d0 542 args->size, &args->handle);
ff72145b
DA
543}
544
8461d226
DV
545static inline int
546__copy_to_user_swizzled(char __user *cpu_vaddr,
547 const char *gpu_vaddr, int gpu_offset,
548 int length)
549{
550 int ret, cpu_offset = 0;
551
552 while (length > 0) {
553 int cacheline_end = ALIGN(gpu_offset + 1, 64);
554 int this_length = min(cacheline_end - gpu_offset, length);
555 int swizzled_gpu_offset = gpu_offset ^ 64;
556
557 ret = __copy_to_user(cpu_vaddr + cpu_offset,
558 gpu_vaddr + swizzled_gpu_offset,
559 this_length);
560 if (ret)
561 return ret + length;
562
563 cpu_offset += this_length;
564 gpu_offset += this_length;
565 length -= this_length;
566 }
567
568 return 0;
569}
570
8c59967c 571static inline int
4f0c7cfb
BW
572__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
573 const char __user *cpu_vaddr,
8c59967c
DV
574 int length)
575{
576 int ret, cpu_offset = 0;
577
578 while (length > 0) {
579 int cacheline_end = ALIGN(gpu_offset + 1, 64);
580 int this_length = min(cacheline_end - gpu_offset, length);
581 int swizzled_gpu_offset = gpu_offset ^ 64;
582
583 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
584 cpu_vaddr + cpu_offset,
585 this_length);
586 if (ret)
587 return ret + length;
588
589 cpu_offset += this_length;
590 gpu_offset += this_length;
591 length -= this_length;
592 }
593
594 return 0;
595}
596
4c914c0c
BV
597/*
598 * Pins the specified object's pages and synchronizes the object with
599 * GPU accesses. Sets needs_clflush to non-zero if the caller should
600 * flush the object from the CPU cache.
601 */
602int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
603 int *needs_clflush)
604{
605 int ret;
606
607 *needs_clflush = 0;
608
b9bcd14a 609 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4c914c0c
BV
610 return -EINVAL;
611
c13d87ea
CW
612 ret = i915_gem_object_wait_rendering(obj, true);
613 if (ret)
614 return ret;
615
4c914c0c
BV
616 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
617 /* If we're not in the cpu read domain, set ourself into the gtt
618 * read domain and manually flush cachelines (if required). This
619 * optimizes for the case when the gpu will dirty the data
620 * anyway again before the next pread happens. */
621 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
622 obj->cache_level);
4c914c0c
BV
623 }
624
625 ret = i915_gem_object_get_pages(obj);
626 if (ret)
627 return ret;
628
629 i915_gem_object_pin_pages(obj);
630
631 return ret;
632}
633
d174bd64
DV
634/* Per-page copy function for the shmem pread fastpath.
635 * Flushes invalid cachelines before reading the target if
636 * needs_clflush is set. */
eb01459f 637static int
d174bd64
DV
638shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
639 char __user *user_data,
640 bool page_do_bit17_swizzling, bool needs_clflush)
641{
642 char *vaddr;
643 int ret;
644
e7e58eb5 645 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
646 return -EINVAL;
647
648 vaddr = kmap_atomic(page);
649 if (needs_clflush)
650 drm_clflush_virt_range(vaddr + shmem_page_offset,
651 page_length);
652 ret = __copy_to_user_inatomic(user_data,
653 vaddr + shmem_page_offset,
654 page_length);
655 kunmap_atomic(vaddr);
656
f60d7f0c 657 return ret ? -EFAULT : 0;
d174bd64
DV
658}
659
23c18c71
DV
660static void
661shmem_clflush_swizzled_range(char *addr, unsigned long length,
662 bool swizzled)
663{
e7e58eb5 664 if (unlikely(swizzled)) {
23c18c71
DV
665 unsigned long start = (unsigned long) addr;
666 unsigned long end = (unsigned long) addr + length;
667
668 /* For swizzling simply ensure that we always flush both
669 * channels. Lame, but simple and it works. Swizzled
670 * pwrite/pread is far from a hotpath - current userspace
671 * doesn't use it at all. */
672 start = round_down(start, 128);
673 end = round_up(end, 128);
674
675 drm_clflush_virt_range((void *)start, end - start);
676 } else {
677 drm_clflush_virt_range(addr, length);
678 }
679
680}
681
d174bd64
DV
682/* Only difference to the fast-path function is that this can handle bit17
683 * and uses non-atomic copy and kmap functions. */
684static int
685shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
686 char __user *user_data,
687 bool page_do_bit17_swizzling, bool needs_clflush)
688{
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (needs_clflush)
23c18c71
DV
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
d174bd64
DV
697
698 if (page_do_bit17_swizzling)
699 ret = __copy_to_user_swizzled(user_data,
700 vaddr, shmem_page_offset,
701 page_length);
702 else
703 ret = __copy_to_user(user_data,
704 vaddr + shmem_page_offset,
705 page_length);
706 kunmap(page);
707
f60d7f0c 708 return ret ? - EFAULT : 0;
d174bd64
DV
709}
710
b50a5371
AS
711static inline unsigned long
712slow_user_access(struct io_mapping *mapping,
713 uint64_t page_base, int page_offset,
714 char __user *user_data,
715 unsigned long length, bool pwrite)
716{
717 void __iomem *ioaddr;
718 void *vaddr;
719 uint64_t unwritten;
720
721 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
722 /* We can use the cpu mem copy function because this is X86. */
723 vaddr = (void __force *)ioaddr + page_offset;
724 if (pwrite)
725 unwritten = __copy_from_user(vaddr, user_data, length);
726 else
727 unwritten = __copy_to_user(user_data, vaddr, length);
728
729 io_mapping_unmap(ioaddr);
730 return unwritten;
731}
732
733static int
734i915_gem_gtt_pread(struct drm_device *dev,
735 struct drm_i915_gem_object *obj, uint64_t size,
736 uint64_t data_offset, uint64_t data_ptr)
737{
fac5e23e 738 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371
AS
739 struct i915_ggtt *ggtt = &dev_priv->ggtt;
740 struct drm_mm_node node;
741 char __user *user_data;
742 uint64_t remain;
743 uint64_t offset;
744 int ret;
745
de895082 746 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
b50a5371
AS
747 if (ret) {
748 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_get_pages(obj);
753 if (ret) {
754 remove_mappable_node(&node);
755 goto out;
756 }
757
758 i915_gem_object_pin_pages(obj);
759 } else {
760 node.start = i915_gem_obj_ggtt_offset(obj);
761 node.allocated = false;
762 ret = i915_gem_object_put_fence(obj);
763 if (ret)
764 goto out_unpin;
765 }
766
767 ret = i915_gem_object_set_to_gtt_domain(obj, false);
768 if (ret)
769 goto out_unpin;
770
771 user_data = u64_to_user_ptr(data_ptr);
772 remain = size;
773 offset = data_offset;
774
775 mutex_unlock(&dev->struct_mutex);
776 if (likely(!i915.prefault_disable)) {
777 ret = fault_in_multipages_writeable(user_data, remain);
778 if (ret) {
779 mutex_lock(&dev->struct_mutex);
780 goto out_unpin;
781 }
782 }
783
784 while (remain > 0) {
785 /* Operation in this page
786 *
787 * page_base = page offset within aperture
788 * page_offset = offset within page
789 * page_length = bytes to copy for this page
790 */
791 u32 page_base = node.start;
792 unsigned page_offset = offset_in_page(offset);
793 unsigned page_length = PAGE_SIZE - page_offset;
794 page_length = remain < page_length ? remain : page_length;
795 if (node.allocated) {
796 wmb();
797 ggtt->base.insert_page(&ggtt->base,
798 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
799 node.start,
800 I915_CACHE_NONE, 0);
801 wmb();
802 } else {
803 page_base += offset & PAGE_MASK;
804 }
805 /* This is a slow read/write as it tries to read from
806 * and write to user memory which may result into page
807 * faults, and so we cannot perform this under struct_mutex.
808 */
809 if (slow_user_access(ggtt->mappable, page_base,
810 page_offset, user_data,
811 page_length, false)) {
812 ret = -EFAULT;
813 break;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 mutex_lock(&dev->struct_mutex);
822 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
823 /* The user has modified the object whilst we tried
824 * reading from it, and we now have no idea what domain
825 * the pages should be in. As we have just been touching
826 * them directly, flush everything back to the GTT
827 * domain.
828 */
829 ret = i915_gem_object_set_to_gtt_domain(obj, false);
830 }
831
832out_unpin:
833 if (node.allocated) {
834 wmb();
835 ggtt->base.clear_range(&ggtt->base,
836 node.start, node.size,
837 true);
838 i915_gem_object_unpin_pages(obj);
839 remove_mappable_node(&node);
840 } else {
841 i915_gem_object_ggtt_unpin(obj);
842 }
843out:
844 return ret;
845}
846
eb01459f 847static int
dbf7bff0
DV
848i915_gem_shmem_pread(struct drm_device *dev,
849 struct drm_i915_gem_object *obj,
850 struct drm_i915_gem_pread *args,
851 struct drm_file *file)
eb01459f 852{
8461d226 853 char __user *user_data;
eb01459f 854 ssize_t remain;
8461d226 855 loff_t offset;
eb2c0c81 856 int shmem_page_offset, page_length, ret = 0;
8461d226 857 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 858 int prefaulted = 0;
8489731c 859 int needs_clflush = 0;
67d5a50c 860 struct sg_page_iter sg_iter;
eb01459f 861
6eae0059 862 if (!i915_gem_object_has_struct_page(obj))
b50a5371
AS
863 return -ENODEV;
864
3ed605bc 865 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
866 remain = args->size;
867
8461d226 868 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 869
4c914c0c 870 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
871 if (ret)
872 return ret;
873
8461d226 874 offset = args->offset;
eb01459f 875
67d5a50c
ID
876 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
877 offset >> PAGE_SHIFT) {
2db76d7c 878 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
879
880 if (remain <= 0)
881 break;
882
eb01459f
EA
883 /* Operation in this page
884 *
eb01459f 885 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
886 * page_length = bytes to copy for this page
887 */
c8cbbb8b 888 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
889 page_length = remain;
890 if ((shmem_page_offset + page_length) > PAGE_SIZE)
891 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 892
8461d226
DV
893 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
894 (page_to_phys(page) & (1 << 17)) != 0;
895
d174bd64
DV
896 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
897 user_data, page_do_bit17_swizzling,
898 needs_clflush);
899 if (ret == 0)
900 goto next_page;
dbf7bff0 901
dbf7bff0
DV
902 mutex_unlock(&dev->struct_mutex);
903
d330a953 904 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 905 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
906 /* Userspace is tricking us, but we've already clobbered
907 * its pages with the prefault and promised to write the
908 * data up to the first fault. Hence ignore any errors
909 * and just continue. */
910 (void)ret;
911 prefaulted = 1;
912 }
eb01459f 913
d174bd64
DV
914 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
915 user_data, page_do_bit17_swizzling,
916 needs_clflush);
eb01459f 917
dbf7bff0 918 mutex_lock(&dev->struct_mutex);
f60d7f0c 919
f60d7f0c 920 if (ret)
8461d226 921 goto out;
8461d226 922
17793c9a 923next_page:
eb01459f 924 remain -= page_length;
8461d226 925 user_data += page_length;
eb01459f
EA
926 offset += page_length;
927 }
928
4f27b75d 929out:
f60d7f0c
CW
930 i915_gem_object_unpin_pages(obj);
931
eb01459f
EA
932 return ret;
933}
934
673a394b
EA
935/**
936 * Reads data from the object referenced by handle.
14bb2c11
TU
937 * @dev: drm device pointer
938 * @data: ioctl data blob
939 * @file: drm file pointer
673a394b
EA
940 *
941 * On error, the contents of *data are undefined.
942 */
943int
944i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 945 struct drm_file *file)
673a394b
EA
946{
947 struct drm_i915_gem_pread *args = data;
05394f39 948 struct drm_i915_gem_object *obj;
35b62a89 949 int ret = 0;
673a394b 950
51311d0a
CW
951 if (args->size == 0)
952 return 0;
953
954 if (!access_ok(VERIFY_WRITE,
3ed605bc 955 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
956 args->size))
957 return -EFAULT;
958
4f27b75d 959 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 960 if (ret)
4f27b75d 961 return ret;
673a394b 962
03ac0642
CW
963 obj = i915_gem_object_lookup(file, args->handle);
964 if (!obj) {
1d7cfea1
CW
965 ret = -ENOENT;
966 goto unlock;
4f27b75d 967 }
673a394b 968
7dcd2499 969 /* Bounds check source. */
05394f39
CW
970 if (args->offset > obj->base.size ||
971 args->size > obj->base.size - args->offset) {
ce9d419d 972 ret = -EINVAL;
35b62a89 973 goto out;
ce9d419d
CW
974 }
975
db53a302
CW
976 trace_i915_gem_object_pread(obj, args->offset, args->size);
977
dbf7bff0 978 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 979
b50a5371 980 /* pread for non shmem backed objects */
1dd5b6f2
CW
981 if (ret == -EFAULT || ret == -ENODEV) {
982 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
983 ret = i915_gem_gtt_pread(dev, obj, args->size,
984 args->offset, args->data_ptr);
1dd5b6f2
CW
985 intel_runtime_pm_put(to_i915(dev));
986 }
b50a5371 987
35b62a89 988out:
f8c417cd 989 i915_gem_object_put(obj);
1d7cfea1 990unlock:
4f27b75d 991 mutex_unlock(&dev->struct_mutex);
eb01459f 992 return ret;
673a394b
EA
993}
994
0839ccb8
KP
995/* This is the fast write path which cannot handle
996 * page faults in the source data
9b7530cc 997 */
0839ccb8
KP
998
999static inline int
1000fast_user_write(struct io_mapping *mapping,
1001 loff_t page_base, int page_offset,
1002 char __user *user_data,
1003 int length)
9b7530cc 1004{
4f0c7cfb
BW
1005 void __iomem *vaddr_atomic;
1006 void *vaddr;
0839ccb8 1007 unsigned long unwritten;
9b7530cc 1008
3e4d3af5 1009 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
1010 /* We can use the cpu mem copy function because this is X86. */
1011 vaddr = (void __force*)vaddr_atomic + page_offset;
1012 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 1013 user_data, length);
3e4d3af5 1014 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 1015 return unwritten;
0839ccb8
KP
1016}
1017
3de09aa3
EA
1018/**
1019 * This is the fast pwrite path, where we copy the data directly from the
1020 * user into the GTT, uncached.
62f90b38 1021 * @i915: i915 device private data
14bb2c11
TU
1022 * @obj: i915 gem object
1023 * @args: pwrite arguments structure
1024 * @file: drm file pointer
3de09aa3 1025 */
673a394b 1026static int
4f1959ee 1027i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 1028 struct drm_i915_gem_object *obj,
3de09aa3 1029 struct drm_i915_gem_pwrite *args,
05394f39 1030 struct drm_file *file)
673a394b 1031{
4f1959ee 1032 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1033 struct drm_device *dev = obj->base.dev;
4f1959ee
AS
1034 struct drm_mm_node node;
1035 uint64_t remain, offset;
673a394b 1036 char __user *user_data;
4f1959ee 1037 int ret;
b50a5371
AS
1038 bool hit_slow_path = false;
1039
1040 if (obj->tiling_mode != I915_TILING_NONE)
1041 return -EFAULT;
935aaa69 1042
de895082
CW
1043 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1044 PIN_MAPPABLE | PIN_NONBLOCK);
4f1959ee
AS
1045 if (ret) {
1046 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1047 if (ret)
1048 goto out;
1049
1050 ret = i915_gem_object_get_pages(obj);
1051 if (ret) {
1052 remove_mappable_node(&node);
1053 goto out;
1054 }
1055
1056 i915_gem_object_pin_pages(obj);
1057 } else {
1058 node.start = i915_gem_obj_ggtt_offset(obj);
1059 node.allocated = false;
b50a5371
AS
1060 ret = i915_gem_object_put_fence(obj);
1061 if (ret)
1062 goto out_unpin;
4f1959ee 1063 }
935aaa69
DV
1064
1065 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1066 if (ret)
1067 goto out_unpin;
1068
77a0d1ca 1069 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4f1959ee 1070 obj->dirty = true;
063e4e6b 1071
4f1959ee
AS
1072 user_data = u64_to_user_ptr(args->data_ptr);
1073 offset = args->offset;
1074 remain = args->size;
1075 while (remain) {
673a394b
EA
1076 /* Operation in this page
1077 *
0839ccb8
KP
1078 * page_base = page offset within aperture
1079 * page_offset = offset within page
1080 * page_length = bytes to copy for this page
673a394b 1081 */
4f1959ee
AS
1082 u32 page_base = node.start;
1083 unsigned page_offset = offset_in_page(offset);
1084 unsigned page_length = PAGE_SIZE - page_offset;
1085 page_length = remain < page_length ? remain : page_length;
1086 if (node.allocated) {
1087 wmb(); /* flush the write before we modify the GGTT */
1088 ggtt->base.insert_page(&ggtt->base,
1089 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1090 node.start, I915_CACHE_NONE, 0);
1091 wmb(); /* flush modifications to the GGTT (insert_page) */
1092 } else {
1093 page_base += offset & PAGE_MASK;
1094 }
0839ccb8 1095 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1096 * source page isn't available. Return the error and we'll
1097 * retry in the slow path.
b50a5371
AS
1098 * If the object is non-shmem backed, we retry again with the
1099 * path that handles page fault.
0839ccb8 1100 */
72e96d64 1101 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 1102 page_offset, user_data, page_length)) {
b50a5371
AS
1103 hit_slow_path = true;
1104 mutex_unlock(&dev->struct_mutex);
1105 if (slow_user_access(ggtt->mappable,
1106 page_base,
1107 page_offset, user_data,
1108 page_length, true)) {
1109 ret = -EFAULT;
1110 mutex_lock(&dev->struct_mutex);
1111 goto out_flush;
1112 }
1113
1114 mutex_lock(&dev->struct_mutex);
935aaa69 1115 }
673a394b 1116
0839ccb8
KP
1117 remain -= page_length;
1118 user_data += page_length;
1119 offset += page_length;
673a394b 1120 }
673a394b 1121
063e4e6b 1122out_flush:
b50a5371
AS
1123 if (hit_slow_path) {
1124 if (ret == 0 &&
1125 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1126 /* The user has modified the object whilst we tried
1127 * reading from it, and we now have no idea what domain
1128 * the pages should be in. As we have just been touching
1129 * them directly, flush everything back to the GTT
1130 * domain.
1131 */
1132 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1133 }
1134 }
1135
de152b62 1136 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 1137out_unpin:
4f1959ee
AS
1138 if (node.allocated) {
1139 wmb();
1140 ggtt->base.clear_range(&ggtt->base,
1141 node.start, node.size,
1142 true);
1143 i915_gem_object_unpin_pages(obj);
1144 remove_mappable_node(&node);
1145 } else {
1146 i915_gem_object_ggtt_unpin(obj);
1147 }
935aaa69 1148out:
3de09aa3 1149 return ret;
673a394b
EA
1150}
1151
d174bd64
DV
1152/* Per-page copy function for the shmem pwrite fastpath.
1153 * Flushes invalid cachelines before writing to the target if
1154 * needs_clflush_before is set and flushes out any written cachelines after
1155 * writing if needs_clflush is set. */
3043c60c 1156static int
d174bd64
DV
1157shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1158 char __user *user_data,
1159 bool page_do_bit17_swizzling,
1160 bool needs_clflush_before,
1161 bool needs_clflush_after)
673a394b 1162{
d174bd64 1163 char *vaddr;
673a394b 1164 int ret;
3de09aa3 1165
e7e58eb5 1166 if (unlikely(page_do_bit17_swizzling))
d174bd64 1167 return -EINVAL;
3de09aa3 1168
d174bd64
DV
1169 vaddr = kmap_atomic(page);
1170 if (needs_clflush_before)
1171 drm_clflush_virt_range(vaddr + shmem_page_offset,
1172 page_length);
c2831a94
CW
1173 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1174 user_data, page_length);
d174bd64
DV
1175 if (needs_clflush_after)
1176 drm_clflush_virt_range(vaddr + shmem_page_offset,
1177 page_length);
1178 kunmap_atomic(vaddr);
3de09aa3 1179
755d2218 1180 return ret ? -EFAULT : 0;
3de09aa3
EA
1181}
1182
d174bd64
DV
1183/* Only difference to the fast-path function is that this can handle bit17
1184 * and uses non-atomic copy and kmap functions. */
3043c60c 1185static int
d174bd64
DV
1186shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1187 char __user *user_data,
1188 bool page_do_bit17_swizzling,
1189 bool needs_clflush_before,
1190 bool needs_clflush_after)
673a394b 1191{
d174bd64
DV
1192 char *vaddr;
1193 int ret;
e5281ccd 1194
d174bd64 1195 vaddr = kmap(page);
e7e58eb5 1196 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1197 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1198 page_length,
1199 page_do_bit17_swizzling);
d174bd64
DV
1200 if (page_do_bit17_swizzling)
1201 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1202 user_data,
1203 page_length);
d174bd64
DV
1204 else
1205 ret = __copy_from_user(vaddr + shmem_page_offset,
1206 user_data,
1207 page_length);
1208 if (needs_clflush_after)
23c18c71
DV
1209 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1210 page_length,
1211 page_do_bit17_swizzling);
d174bd64 1212 kunmap(page);
40123c1f 1213
755d2218 1214 return ret ? -EFAULT : 0;
40123c1f
EA
1215}
1216
40123c1f 1217static int
e244a443
DV
1218i915_gem_shmem_pwrite(struct drm_device *dev,
1219 struct drm_i915_gem_object *obj,
1220 struct drm_i915_gem_pwrite *args,
1221 struct drm_file *file)
40123c1f 1222{
40123c1f 1223 ssize_t remain;
8c59967c
DV
1224 loff_t offset;
1225 char __user *user_data;
eb2c0c81 1226 int shmem_page_offset, page_length, ret = 0;
8c59967c 1227 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1228 int hit_slowpath = 0;
58642885
DV
1229 int needs_clflush_after = 0;
1230 int needs_clflush_before = 0;
67d5a50c 1231 struct sg_page_iter sg_iter;
40123c1f 1232
3ed605bc 1233 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
1234 remain = args->size;
1235
8c59967c 1236 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 1237
c13d87ea
CW
1238 ret = i915_gem_object_wait_rendering(obj, false);
1239 if (ret)
1240 return ret;
1241
58642885
DV
1242 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1243 /* If we're not in the cpu write domain, set ourself into the gtt
1244 * write domain and manually flush cachelines (if required). This
1245 * optimizes for the case when the gpu will use the data
1246 * right away and we therefore have to clflush anyway. */
2c22569b 1247 needs_clflush_after = cpu_write_needs_clflush(obj);
58642885 1248 }
c76ce038
CW
1249 /* Same trick applies to invalidate partially written cachelines read
1250 * before writing. */
1251 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1252 needs_clflush_before =
1253 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 1254
755d2218
CW
1255 ret = i915_gem_object_get_pages(obj);
1256 if (ret)
1257 return ret;
1258
77a0d1ca 1259 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1260
755d2218
CW
1261 i915_gem_object_pin_pages(obj);
1262
673a394b 1263 offset = args->offset;
05394f39 1264 obj->dirty = 1;
673a394b 1265
67d5a50c
ID
1266 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1267 offset >> PAGE_SHIFT) {
2db76d7c 1268 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1269 int partial_cacheline_write;
e5281ccd 1270
9da3da66
CW
1271 if (remain <= 0)
1272 break;
1273
40123c1f
EA
1274 /* Operation in this page
1275 *
40123c1f 1276 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1277 * page_length = bytes to copy for this page
1278 */
c8cbbb8b 1279 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1280
1281 page_length = remain;
1282 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1283 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1284
58642885
DV
1285 /* If we don't overwrite a cacheline completely we need to be
1286 * careful to have up-to-date data by first clflushing. Don't
1287 * overcomplicate things and flush the entire patch. */
1288 partial_cacheline_write = needs_clflush_before &&
1289 ((shmem_page_offset | page_length)
1290 & (boot_cpu_data.x86_clflush_size - 1));
1291
8c59967c
DV
1292 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1293 (page_to_phys(page) & (1 << 17)) != 0;
1294
d174bd64
DV
1295 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1296 user_data, page_do_bit17_swizzling,
1297 partial_cacheline_write,
1298 needs_clflush_after);
1299 if (ret == 0)
1300 goto next_page;
e244a443
DV
1301
1302 hit_slowpath = 1;
e244a443 1303 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1304 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1305 user_data, page_do_bit17_swizzling,
1306 partial_cacheline_write,
1307 needs_clflush_after);
40123c1f 1308
e244a443 1309 mutex_lock(&dev->struct_mutex);
755d2218 1310
755d2218 1311 if (ret)
8c59967c 1312 goto out;
8c59967c 1313
17793c9a 1314next_page:
40123c1f 1315 remain -= page_length;
8c59967c 1316 user_data += page_length;
40123c1f 1317 offset += page_length;
673a394b
EA
1318 }
1319
fbd5a26d 1320out:
755d2218
CW
1321 i915_gem_object_unpin_pages(obj);
1322
e244a443 1323 if (hit_slowpath) {
8dcf015e
DV
1324 /*
1325 * Fixup: Flush cpu caches in case we didn't flush the dirty
1326 * cachelines in-line while writing and the object moved
1327 * out of the cpu write domain while we've dropped the lock.
1328 */
1329 if (!needs_clflush_after &&
1330 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1331 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1332 needs_clflush_after = true;
e244a443 1333 }
8c59967c 1334 }
673a394b 1335
58642885 1336 if (needs_clflush_after)
c033666a 1337 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1338 else
1339 obj->cache_dirty = true;
58642885 1340
de152b62 1341 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1342 return ret;
673a394b
EA
1343}
1344
1345/**
1346 * Writes data to the object referenced by handle.
14bb2c11
TU
1347 * @dev: drm device
1348 * @data: ioctl data blob
1349 * @file: drm file
673a394b
EA
1350 *
1351 * On error, the contents of the buffer that were to be modified are undefined.
1352 */
1353int
1354i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1355 struct drm_file *file)
673a394b 1356{
fac5e23e 1357 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1358 struct drm_i915_gem_pwrite *args = data;
05394f39 1359 struct drm_i915_gem_object *obj;
51311d0a
CW
1360 int ret;
1361
1362 if (args->size == 0)
1363 return 0;
1364
1365 if (!access_ok(VERIFY_READ,
3ed605bc 1366 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1367 args->size))
1368 return -EFAULT;
1369
d330a953 1370 if (likely(!i915.prefault_disable)) {
3ed605bc 1371 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1372 args->size);
1373 if (ret)
1374 return -EFAULT;
1375 }
673a394b 1376
5d77d9c5
ID
1377 intel_runtime_pm_get(dev_priv);
1378
fbd5a26d 1379 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1380 if (ret)
5d77d9c5 1381 goto put_rpm;
1d7cfea1 1382
03ac0642
CW
1383 obj = i915_gem_object_lookup(file, args->handle);
1384 if (!obj) {
1d7cfea1
CW
1385 ret = -ENOENT;
1386 goto unlock;
fbd5a26d 1387 }
673a394b 1388
7dcd2499 1389 /* Bounds check destination. */
05394f39
CW
1390 if (args->offset > obj->base.size ||
1391 args->size > obj->base.size - args->offset) {
ce9d419d 1392 ret = -EINVAL;
35b62a89 1393 goto out;
ce9d419d
CW
1394 }
1395
db53a302
CW
1396 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1397
935aaa69 1398 ret = -EFAULT;
673a394b
EA
1399 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1400 * it would end up going through the fenced access, and we'll get
1401 * different detiling behavior between reading and writing.
1402 * pread/pwrite currently are reading and writing from the CPU
1403 * perspective, requiring manual detiling by the client.
1404 */
6eae0059
CW
1405 if (!i915_gem_object_has_struct_page(obj) ||
1406 cpu_write_needs_clflush(obj)) {
4f1959ee 1407 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1408 /* Note that the gtt paths might fail with non-page-backed user
1409 * pointers (e.g. gtt mappings when moving data between
1410 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1411 }
673a394b 1412
d1054ee4 1413 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1414 if (obj->phys_handle)
1415 ret = i915_gem_phys_pwrite(obj, args, file);
6eae0059 1416 else if (i915_gem_object_has_struct_page(obj))
6a2c4232 1417 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
b50a5371
AS
1418 else
1419 ret = -ENODEV;
6a2c4232 1420 }
5c0480f2 1421
35b62a89 1422out:
f8c417cd 1423 i915_gem_object_put(obj);
1d7cfea1 1424unlock:
fbd5a26d 1425 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1426put_rpm:
1427 intel_runtime_pm_put(dev_priv);
1428
673a394b
EA
1429 return ret;
1430}
1431
aeecc969
CW
1432static enum fb_op_origin
1433write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1434{
1435 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1436 ORIGIN_GTT : ORIGIN_CPU;
1437}
1438
673a394b 1439/**
2ef7eeaa
EA
1440 * Called when user space prepares to use an object with the CPU, either
1441 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1442 * @dev: drm device
1443 * @data: ioctl data blob
1444 * @file: drm file
673a394b
EA
1445 */
1446int
1447i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1448 struct drm_file *file)
673a394b
EA
1449{
1450 struct drm_i915_gem_set_domain *args = data;
05394f39 1451 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1452 uint32_t read_domains = args->read_domains;
1453 uint32_t write_domain = args->write_domain;
673a394b
EA
1454 int ret;
1455
2ef7eeaa 1456 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1457 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1458 return -EINVAL;
1459
1460 /* Having something in the write domain implies it's in the read
1461 * domain, and only that read domain. Enforce that in the request.
1462 */
1463 if (write_domain != 0 && read_domains != write_domain)
1464 return -EINVAL;
1465
03ac0642 1466 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1467 if (!obj)
1468 return -ENOENT;
673a394b 1469
3236f57a
CW
1470 /* Try to flush the object off the GPU without holding the lock.
1471 * We will repeat the flush holding the lock in the normal manner
1472 * to catch cases where we are gazumped.
1473 */
b8f9096d
CW
1474 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1475 if (ret)
1476 goto err;
1477
1478 ret = i915_mutex_lock_interruptible(dev);
3236f57a 1479 if (ret)
b8f9096d 1480 goto err;
3236f57a 1481
43566ded 1482 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1483 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1484 else
e47c68e9 1485 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1486
031b698a 1487 if (write_domain != 0)
aeecc969 1488 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1489
f8c417cd 1490 i915_gem_object_put(obj);
673a394b
EA
1491 mutex_unlock(&dev->struct_mutex);
1492 return ret;
b8f9096d
CW
1493
1494err:
1495 i915_gem_object_put_unlocked(obj);
1496 return ret;
673a394b
EA
1497}
1498
1499/**
1500 * Called when user space has done writes to this buffer
14bb2c11
TU
1501 * @dev: drm device
1502 * @data: ioctl data blob
1503 * @file: drm file
673a394b
EA
1504 */
1505int
1506i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1507 struct drm_file *file)
673a394b
EA
1508{
1509 struct drm_i915_gem_sw_finish *args = data;
05394f39 1510 struct drm_i915_gem_object *obj;
673a394b
EA
1511 int ret = 0;
1512
76c1dec1 1513 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1514 if (ret)
76c1dec1 1515 return ret;
1d7cfea1 1516
03ac0642
CW
1517 obj = i915_gem_object_lookup(file, args->handle);
1518 if (!obj) {
1d7cfea1
CW
1519 ret = -ENOENT;
1520 goto unlock;
673a394b
EA
1521 }
1522
673a394b 1523 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1524 if (obj->pin_display)
e62b59e4 1525 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1526
f8c417cd 1527 i915_gem_object_put(obj);
1d7cfea1 1528unlock:
673a394b
EA
1529 mutex_unlock(&dev->struct_mutex);
1530 return ret;
1531}
1532
1533/**
14bb2c11
TU
1534 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1535 * it is mapped to.
1536 * @dev: drm device
1537 * @data: ioctl data blob
1538 * @file: drm file
673a394b
EA
1539 *
1540 * While the mapping holds a reference on the contents of the object, it doesn't
1541 * imply a ref on the object itself.
34367381
DV
1542 *
1543 * IMPORTANT:
1544 *
1545 * DRM driver writers who look a this function as an example for how to do GEM
1546 * mmap support, please don't implement mmap support like here. The modern way
1547 * to implement DRM mmap support is with an mmap offset ioctl (like
1548 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1549 * That way debug tooling like valgrind will understand what's going on, hiding
1550 * the mmap call in a driver private ioctl will break that. The i915 driver only
1551 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1552 */
1553int
1554i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1555 struct drm_file *file)
673a394b
EA
1556{
1557 struct drm_i915_gem_mmap *args = data;
03ac0642 1558 struct drm_i915_gem_object *obj;
673a394b
EA
1559 unsigned long addr;
1560
1816f923
AG
1561 if (args->flags & ~(I915_MMAP_WC))
1562 return -EINVAL;
1563
568a58e5 1564 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1565 return -ENODEV;
1566
03ac0642
CW
1567 obj = i915_gem_object_lookup(file, args->handle);
1568 if (!obj)
bf79cb91 1569 return -ENOENT;
673a394b 1570
1286ff73
DV
1571 /* prime objects have no backing filp to GEM mmap
1572 * pages from.
1573 */
03ac0642 1574 if (!obj->base.filp) {
34911fd3 1575 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1576 return -EINVAL;
1577 }
1578
03ac0642 1579 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1580 PROT_READ | PROT_WRITE, MAP_SHARED,
1581 args->offset);
1816f923
AG
1582 if (args->flags & I915_MMAP_WC) {
1583 struct mm_struct *mm = current->mm;
1584 struct vm_area_struct *vma;
1585
80a89a5e 1586 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1587 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1588 return -EINTR;
1589 }
1816f923
AG
1590 vma = find_vma(mm, addr);
1591 if (vma)
1592 vma->vm_page_prot =
1593 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1594 else
1595 addr = -ENOMEM;
1596 up_write(&mm->mmap_sem);
aeecc969
CW
1597
1598 /* This may race, but that's ok, it only gets set */
03ac0642 1599 WRITE_ONCE(obj->has_wc_mmap, true);
1816f923 1600 }
34911fd3 1601 i915_gem_object_put_unlocked(obj);
673a394b
EA
1602 if (IS_ERR((void *)addr))
1603 return addr;
1604
1605 args->addr_ptr = (uint64_t) addr;
1606
1607 return 0;
1608}
1609
de151cf6
JB
1610/**
1611 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1612 * @vma: VMA in question
1613 * @vmf: fault info
de151cf6
JB
1614 *
1615 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1616 * from userspace. The fault handler takes care of binding the object to
1617 * the GTT (if needed), allocating and programming a fence register (again,
1618 * only if needed based on whether the old reg is still valid or the object
1619 * is tiled) and inserting a new PTE into the faulting process.
1620 *
1621 * Note that the faulting process may involve evicting existing objects
1622 * from the GTT and/or fence registers to make room. So performance may
1623 * suffer if the GTT working set is large or there are few fence registers
1624 * left.
1625 */
1626int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1627{
05394f39
CW
1628 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1629 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1630 struct drm_i915_private *dev_priv = to_i915(dev);
1631 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1632 struct i915_ggtt_view view = i915_ggtt_view_normal;
b8f9096d 1633 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1634 pgoff_t page_offset;
1635 unsigned long pfn;
b8f9096d 1636 int ret;
f65c9168 1637
de151cf6
JB
1638 /* We don't use vmf->pgoff since that has the fake offset */
1639 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1640 PAGE_SHIFT;
1641
db53a302
CW
1642 trace_i915_gem_object_fault(obj, page_offset, true, write);
1643
6e4930f6 1644 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1645 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1646 * repeat the flush holding the lock in the normal manner to catch cases
1647 * where we are gazumped.
1648 */
b8f9096d 1649 ret = __unsafe_wait_rendering(obj, NULL, !write);
6e4930f6 1650 if (ret)
b8f9096d
CW
1651 goto err;
1652
1653 intel_runtime_pm_get(dev_priv);
1654
1655 ret = i915_mutex_lock_interruptible(dev);
1656 if (ret)
1657 goto err_rpm;
6e4930f6 1658
eb119bd6
CW
1659 /* Access to snoopable pages through the GTT is incoherent. */
1660 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1661 ret = -EFAULT;
b8f9096d 1662 goto err_unlock;
eb119bd6
CW
1663 }
1664
c5ad54cf 1665 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1666 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1667 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1668 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1669
c5ad54cf
JL
1670 memset(&view, 0, sizeof(view));
1671 view.type = I915_GGTT_VIEW_PARTIAL;
1672 view.params.partial.offset = rounddown(page_offset, chunk_size);
1673 view.params.partial.size =
1674 min_t(unsigned int,
1675 chunk_size,
1676 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1677 view.params.partial.offset);
1678 }
1679
1680 /* Now pin it into the GTT if needed */
91b2db6f 1681 ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
c9839303 1682 if (ret)
b8f9096d 1683 goto err_unlock;
4a684a41 1684
c9839303
CW
1685 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1686 if (ret)
b8f9096d 1687 goto err_unpin;
74898d7e 1688
06d98131 1689 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1690 if (ret)
b8f9096d 1691 goto err_unpin;
7d1c4804 1692
b90b91d8 1693 /* Finally, remap it using the new GTT offset */
72e96d64 1694 pfn = ggtt->mappable_base +
c5ad54cf 1695 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1696 pfn >>= PAGE_SHIFT;
de151cf6 1697
c5ad54cf
JL
1698 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1699 /* Overriding existing pages in partial view does not cause
1700 * us any trouble as TLBs are still valid because the fault
1701 * is due to userspace losing part of the mapping or never
1702 * having accessed it before (at this partials' range).
1703 */
1704 unsigned long base = vma->vm_start +
1705 (view.params.partial.offset << PAGE_SHIFT);
1706 unsigned int i;
b90b91d8 1707
c5ad54cf
JL
1708 for (i = 0; i < view.params.partial.size; i++) {
1709 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1710 if (ret)
1711 break;
1712 }
1713
1714 obj->fault_mappable = true;
c5ad54cf
JL
1715 } else {
1716 if (!obj->fault_mappable) {
1717 unsigned long size = min_t(unsigned long,
1718 vma->vm_end - vma->vm_start,
1719 obj->base.size);
1720 int i;
1721
1722 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1723 ret = vm_insert_pfn(vma,
1724 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1725 pfn + i);
1726 if (ret)
1727 break;
1728 }
1729
1730 obj->fault_mappable = true;
1731 } else
1732 ret = vm_insert_pfn(vma,
1733 (unsigned long)vmf->virtual_address,
1734 pfn + page_offset);
1735 }
b8f9096d 1736err_unpin:
c5ad54cf 1737 i915_gem_object_ggtt_unpin_view(obj, &view);
b8f9096d 1738err_unlock:
de151cf6 1739 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1740err_rpm:
1741 intel_runtime_pm_put(dev_priv);
1742err:
de151cf6 1743 switch (ret) {
d9bc7e9f 1744 case -EIO:
2232f031
DV
1745 /*
1746 * We eat errors when the gpu is terminally wedged to avoid
1747 * userspace unduly crashing (gl has no provisions for mmaps to
1748 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1749 * and so needs to be reported.
1750 */
1751 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1752 ret = VM_FAULT_SIGBUS;
1753 break;
1754 }
045e769a 1755 case -EAGAIN:
571c608d
DV
1756 /*
1757 * EAGAIN means the gpu is hung and we'll wait for the error
1758 * handler to reset everything when re-faulting in
1759 * i915_mutex_lock_interruptible.
d9bc7e9f 1760 */
c715089f
CW
1761 case 0:
1762 case -ERESTARTSYS:
bed636ab 1763 case -EINTR:
e79e0fe3
DR
1764 case -EBUSY:
1765 /*
1766 * EBUSY is ok: this just means that another thread
1767 * already did the job.
1768 */
f65c9168
PZ
1769 ret = VM_FAULT_NOPAGE;
1770 break;
de151cf6 1771 case -ENOMEM:
f65c9168
PZ
1772 ret = VM_FAULT_OOM;
1773 break;
a7c2e1aa 1774 case -ENOSPC:
45d67817 1775 case -EFAULT:
f65c9168
PZ
1776 ret = VM_FAULT_SIGBUS;
1777 break;
de151cf6 1778 default:
a7c2e1aa 1779 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1780 ret = VM_FAULT_SIGBUS;
1781 break;
de151cf6 1782 }
f65c9168 1783 return ret;
de151cf6
JB
1784}
1785
901782b2
CW
1786/**
1787 * i915_gem_release_mmap - remove physical page mappings
1788 * @obj: obj in question
1789 *
af901ca1 1790 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1791 * relinquish ownership of the pages back to the system.
1792 *
1793 * It is vital that we remove the page mapping if we have mapped a tiled
1794 * object through the GTT and then lose the fence register due to
1795 * resource pressure. Similarly if the object has been moved out of the
1796 * aperture, than pages mapped into userspace must be revoked. Removing the
1797 * mapping will then trigger a page fault on the next user access, allowing
1798 * fixup by i915_gem_fault().
1799 */
d05ca301 1800void
05394f39 1801i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1802{
349f2ccf
CW
1803 /* Serialisation between user GTT access and our code depends upon
1804 * revoking the CPU's PTE whilst the mutex is held. The next user
1805 * pagefault then has to wait until we release the mutex.
1806 */
1807 lockdep_assert_held(&obj->base.dev->struct_mutex);
1808
6299f992
CW
1809 if (!obj->fault_mappable)
1810 return;
901782b2 1811
6796cb16
DH
1812 drm_vma_node_unmap(&obj->base.vma_node,
1813 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1814
1815 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1816 * memory transactions from userspace before we return. The TLB
1817 * flushing implied above by changing the PTE above *should* be
1818 * sufficient, an extra barrier here just provides us with a bit
1819 * of paranoid documentation about our requirement to serialise
1820 * memory writes before touching registers / GSM.
1821 */
1822 wmb();
1823
6299f992 1824 obj->fault_mappable = false;
901782b2
CW
1825}
1826
eedd10f4
CW
1827void
1828i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1829{
1830 struct drm_i915_gem_object *obj;
1831
1832 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1833 i915_gem_release_mmap(obj);
1834}
1835
ad1a7d20
CW
1836/**
1837 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1838 * @dev_priv: i915 device
ad1a7d20
CW
1839 * @size: object size
1840 * @tiling_mode: tiling mode
1841 *
1842 * Return the required global GTT size for an object, taking into account
1843 * potential fence register mapping.
1844 */
a9f1481f
CW
1845u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1846 u64 size, int tiling_mode)
92b88aeb 1847{
ad1a7d20 1848 u64 ggtt_size;
92b88aeb 1849
ad1a7d20
CW
1850 GEM_BUG_ON(size == 0);
1851
a9f1481f 1852 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1853 tiling_mode == I915_TILING_NONE)
1854 return size;
92b88aeb
CW
1855
1856 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1857 if (IS_GEN3(dev_priv))
ad1a7d20 1858 ggtt_size = 1024*1024;
92b88aeb 1859 else
ad1a7d20 1860 ggtt_size = 512*1024;
92b88aeb 1861
ad1a7d20
CW
1862 while (ggtt_size < size)
1863 ggtt_size <<= 1;
92b88aeb 1864
ad1a7d20 1865 return ggtt_size;
92b88aeb
CW
1866}
1867
de151cf6 1868/**
ad1a7d20 1869 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1870 * @dev_priv: i915 device
14bb2c11
TU
1871 * @size: object size
1872 * @tiling_mode: tiling mode
ad1a7d20 1873 * @fenced: is fenced alignment required or not
de151cf6 1874 *
ad1a7d20 1875 * Return the required global GTT alignment for an object, taking into account
5e783301 1876 * potential fence register mapping.
de151cf6 1877 */
a9f1481f 1878u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1879 int tiling_mode, bool fenced)
de151cf6 1880{
ad1a7d20
CW
1881 GEM_BUG_ON(size == 0);
1882
de151cf6
JB
1883 /*
1884 * Minimum alignment is 4k (GTT page size), but might be greater
1885 * if a fence register is needed for the object.
1886 */
a9f1481f 1887 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 1888 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1889 return 4096;
1890
a00b10c3
CW
1891 /*
1892 * Previous chips need to be aligned to the size of the smallest
1893 * fence register that can contain the object.
1894 */
a9f1481f 1895 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
1896}
1897
d8cb5086
CW
1898static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1899{
fac5e23e 1900 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 1901 int err;
da494d7c 1902
f3f6184c
CW
1903 err = drm_gem_create_mmap_offset(&obj->base);
1904 if (!err)
1905 return 0;
d8cb5086 1906
f3f6184c
CW
1907 /* We can idle the GPU locklessly to flush stale objects, but in order
1908 * to claim that space for ourselves, we need to take the big
1909 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 1910 */
f3f6184c
CW
1911 err = i915_gem_wait_for_idle(dev_priv, true);
1912 if (err)
1913 return err;
1914
1915 err = i915_mutex_lock_interruptible(&dev_priv->drm);
1916 if (!err) {
1917 i915_gem_retire_requests(dev_priv);
1918 err = drm_gem_create_mmap_offset(&obj->base);
1919 mutex_unlock(&dev_priv->drm.struct_mutex);
1920 }
da494d7c 1921
f3f6184c 1922 return err;
d8cb5086
CW
1923}
1924
1925static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1926{
d8cb5086
CW
1927 drm_gem_free_mmap_offset(&obj->base);
1928}
1929
da6b51d0 1930int
ff72145b
DA
1931i915_gem_mmap_gtt(struct drm_file *file,
1932 struct drm_device *dev,
da6b51d0 1933 uint32_t handle,
ff72145b 1934 uint64_t *offset)
de151cf6 1935{
05394f39 1936 struct drm_i915_gem_object *obj;
de151cf6
JB
1937 int ret;
1938
03ac0642 1939 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
1940 if (!obj)
1941 return -ENOENT;
ab18282d 1942
d8cb5086 1943 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
1944 if (ret == 0)
1945 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1946
f3f6184c 1947 i915_gem_object_put_unlocked(obj);
1d7cfea1 1948 return ret;
de151cf6
JB
1949}
1950
ff72145b
DA
1951/**
1952 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1953 * @dev: DRM device
1954 * @data: GTT mapping ioctl data
1955 * @file: GEM object info
1956 *
1957 * Simply returns the fake offset to userspace so it can mmap it.
1958 * The mmap call will end up in drm_gem_mmap(), which will set things
1959 * up so we can get faults in the handler above.
1960 *
1961 * The fault handler will take care of binding the object into the GTT
1962 * (since it may have been evicted to make room for something), allocating
1963 * a fence register, and mapping the appropriate aperture address into
1964 * userspace.
1965 */
1966int
1967i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1968 struct drm_file *file)
1969{
1970 struct drm_i915_gem_mmap_gtt *args = data;
1971
da6b51d0 1972 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
1973}
1974
225067ee
DV
1975/* Immediately discard the backing storage */
1976static void
1977i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1978{
4d6294bf 1979 i915_gem_object_free_mmap_offset(obj);
1286ff73 1980
4d6294bf
CW
1981 if (obj->base.filp == NULL)
1982 return;
e5281ccd 1983
225067ee
DV
1984 /* Our goal here is to return as much of the memory as
1985 * is possible back to the system as we are called from OOM.
1986 * To do this we must instruct the shmfs to drop all of its
1987 * backing pages, *now*.
1988 */
5537252b 1989 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1990 obj->madv = __I915_MADV_PURGED;
1991}
e5281ccd 1992
5537252b
CW
1993/* Try to discard unwanted pages */
1994static void
1995i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1996{
5537252b
CW
1997 struct address_space *mapping;
1998
1999 switch (obj->madv) {
2000 case I915_MADV_DONTNEED:
2001 i915_gem_object_truncate(obj);
2002 case __I915_MADV_PURGED:
2003 return;
2004 }
2005
2006 if (obj->base.filp == NULL)
2007 return;
2008
2009 mapping = file_inode(obj->base.filp)->i_mapping,
2010 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2011}
2012
5cdf5881 2013static void
05394f39 2014i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2015{
85d1225e
DG
2016 struct sgt_iter sgt_iter;
2017 struct page *page;
90797e6d 2018 int ret;
1286ff73 2019
05394f39 2020 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2021
6c085a72 2022 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2023 if (WARN_ON(ret)) {
6c085a72
CW
2024 /* In the event of a disaster, abandon all caches and
2025 * hope for the best.
2026 */
2c22569b 2027 i915_gem_clflush_object(obj, true);
6c085a72
CW
2028 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2029 }
2030
e2273302
ID
2031 i915_gem_gtt_finish_object(obj);
2032
6dacfd2f 2033 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2034 i915_gem_object_save_bit_17_swizzle(obj);
2035
05394f39
CW
2036 if (obj->madv == I915_MADV_DONTNEED)
2037 obj->dirty = 0;
3ef94daa 2038
85d1225e 2039 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2040 if (obj->dirty)
9da3da66 2041 set_page_dirty(page);
3ef94daa 2042
05394f39 2043 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2044 mark_page_accessed(page);
3ef94daa 2045
09cbfeaf 2046 put_page(page);
3ef94daa 2047 }
05394f39 2048 obj->dirty = 0;
673a394b 2049
9da3da66
CW
2050 sg_free_table(obj->pages);
2051 kfree(obj->pages);
37e680a1 2052}
6c085a72 2053
dd624afd 2054int
37e680a1
CW
2055i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2056{
2057 const struct drm_i915_gem_object_ops *ops = obj->ops;
2058
2f745ad3 2059 if (obj->pages == NULL)
37e680a1
CW
2060 return 0;
2061
a5570178
CW
2062 if (obj->pages_pin_count)
2063 return -EBUSY;
2064
15717de2 2065 GEM_BUG_ON(obj->bind_count);
3e123027 2066
a2165e31
CW
2067 /* ->put_pages might need to allocate memory for the bit17 swizzle
2068 * array, hence protect them from being reaped by removing them from gtt
2069 * lists early. */
35c20a60 2070 list_del(&obj->global_list);
a2165e31 2071
0a798eb9 2072 if (obj->mapping) {
fb8621d3
CW
2073 if (is_vmalloc_addr(obj->mapping))
2074 vunmap(obj->mapping);
2075 else
2076 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2077 obj->mapping = NULL;
2078 }
2079
37e680a1 2080 ops->put_pages(obj);
05394f39 2081 obj->pages = NULL;
37e680a1 2082
5537252b 2083 i915_gem_object_invalidate(obj);
6c085a72
CW
2084
2085 return 0;
2086}
2087
37e680a1 2088static int
6c085a72 2089i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2090{
fac5e23e 2091 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2092 int page_count, i;
2093 struct address_space *mapping;
9da3da66
CW
2094 struct sg_table *st;
2095 struct scatterlist *sg;
85d1225e 2096 struct sgt_iter sgt_iter;
e5281ccd 2097 struct page *page;
90797e6d 2098 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2099 int ret;
6c085a72 2100 gfp_t gfp;
e5281ccd 2101
6c085a72
CW
2102 /* Assert that the object is not currently in any GPU domain. As it
2103 * wasn't in the GTT, there shouldn't be any way it could have been in
2104 * a GPU cache
2105 */
2106 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2107 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2108
9da3da66
CW
2109 st = kmalloc(sizeof(*st), GFP_KERNEL);
2110 if (st == NULL)
2111 return -ENOMEM;
2112
05394f39 2113 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2114 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2115 kfree(st);
e5281ccd 2116 return -ENOMEM;
9da3da66 2117 }
e5281ccd 2118
9da3da66
CW
2119 /* Get the list of pages out of our struct file. They'll be pinned
2120 * at this point until we release them.
2121 *
2122 * Fail silently without starting the shrinker
2123 */
496ad9aa 2124 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2125 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2126 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2127 sg = st->sgl;
2128 st->nents = 0;
2129 for (i = 0; i < page_count; i++) {
6c085a72
CW
2130 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2131 if (IS_ERR(page)) {
21ab4e74
CW
2132 i915_gem_shrink(dev_priv,
2133 page_count,
2134 I915_SHRINK_BOUND |
2135 I915_SHRINK_UNBOUND |
2136 I915_SHRINK_PURGEABLE);
6c085a72
CW
2137 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2138 }
2139 if (IS_ERR(page)) {
2140 /* We've tried hard to allocate the memory by reaping
2141 * our own buffer, now let the real VM do its job and
2142 * go down in flames if truly OOM.
2143 */
6c085a72 2144 i915_gem_shrink_all(dev_priv);
f461d1be 2145 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2146 if (IS_ERR(page)) {
2147 ret = PTR_ERR(page);
6c085a72 2148 goto err_pages;
e2273302 2149 }
6c085a72 2150 }
426729dc
KRW
2151#ifdef CONFIG_SWIOTLB
2152 if (swiotlb_nr_tbl()) {
2153 st->nents++;
2154 sg_set_page(sg, page, PAGE_SIZE, 0);
2155 sg = sg_next(sg);
2156 continue;
2157 }
2158#endif
90797e6d
ID
2159 if (!i || page_to_pfn(page) != last_pfn + 1) {
2160 if (i)
2161 sg = sg_next(sg);
2162 st->nents++;
2163 sg_set_page(sg, page, PAGE_SIZE, 0);
2164 } else {
2165 sg->length += PAGE_SIZE;
2166 }
2167 last_pfn = page_to_pfn(page);
3bbbe706
DV
2168
2169 /* Check that the i965g/gm workaround works. */
2170 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2171 }
426729dc
KRW
2172#ifdef CONFIG_SWIOTLB
2173 if (!swiotlb_nr_tbl())
2174#endif
2175 sg_mark_end(sg);
74ce6b6c
CW
2176 obj->pages = st;
2177
e2273302
ID
2178 ret = i915_gem_gtt_prepare_object(obj);
2179 if (ret)
2180 goto err_pages;
2181
6dacfd2f 2182 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2183 i915_gem_object_do_bit_17_swizzle(obj);
2184
656bfa3a
DV
2185 if (obj->tiling_mode != I915_TILING_NONE &&
2186 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2187 i915_gem_object_pin_pages(obj);
2188
e5281ccd
CW
2189 return 0;
2190
2191err_pages:
90797e6d 2192 sg_mark_end(sg);
85d1225e
DG
2193 for_each_sgt_page(page, sgt_iter, st)
2194 put_page(page);
9da3da66
CW
2195 sg_free_table(st);
2196 kfree(st);
0820baf3
CW
2197
2198 /* shmemfs first checks if there is enough memory to allocate the page
2199 * and reports ENOSPC should there be insufficient, along with the usual
2200 * ENOMEM for a genuine allocation failure.
2201 *
2202 * We use ENOSPC in our driver to mean that we have run out of aperture
2203 * space and so want to translate the error from shmemfs back to our
2204 * usual understanding of ENOMEM.
2205 */
e2273302
ID
2206 if (ret == -ENOSPC)
2207 ret = -ENOMEM;
2208
2209 return ret;
673a394b
EA
2210}
2211
37e680a1
CW
2212/* Ensure that the associated pages are gathered from the backing storage
2213 * and pinned into our object. i915_gem_object_get_pages() may be called
2214 * multiple times before they are released by a single call to
2215 * i915_gem_object_put_pages() - once the pages are no longer referenced
2216 * either as a result of memory pressure (reaping pages under the shrinker)
2217 * or as the object is itself released.
2218 */
2219int
2220i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2221{
fac5e23e 2222 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2223 const struct drm_i915_gem_object_ops *ops = obj->ops;
2224 int ret;
2225
2f745ad3 2226 if (obj->pages)
37e680a1
CW
2227 return 0;
2228
43e28f09 2229 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2230 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2231 return -EFAULT;
43e28f09
CW
2232 }
2233
a5570178
CW
2234 BUG_ON(obj->pages_pin_count);
2235
37e680a1
CW
2236 ret = ops->get_pages(obj);
2237 if (ret)
2238 return ret;
2239
35c20a60 2240 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2241
2242 obj->get_page.sg = obj->pages->sgl;
2243 obj->get_page.last = 0;
2244
37e680a1 2245 return 0;
673a394b
EA
2246}
2247
dd6034c6
DG
2248/* The 'mapping' part of i915_gem_object_pin_map() below */
2249static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2250{
2251 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2252 struct sg_table *sgt = obj->pages;
85d1225e
DG
2253 struct sgt_iter sgt_iter;
2254 struct page *page;
b338fa47
DG
2255 struct page *stack_pages[32];
2256 struct page **pages = stack_pages;
dd6034c6
DG
2257 unsigned long i = 0;
2258 void *addr;
2259
2260 /* A single page can always be kmapped */
2261 if (n_pages == 1)
2262 return kmap(sg_page(sgt->sgl));
2263
b338fa47
DG
2264 if (n_pages > ARRAY_SIZE(stack_pages)) {
2265 /* Too big for stack -- allocate temporary array instead */
2266 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2267 if (!pages)
2268 return NULL;
2269 }
dd6034c6 2270
85d1225e
DG
2271 for_each_sgt_page(page, sgt_iter, sgt)
2272 pages[i++] = page;
dd6034c6
DG
2273
2274 /* Check that we have the expected number of pages */
2275 GEM_BUG_ON(i != n_pages);
2276
2277 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2278
b338fa47
DG
2279 if (pages != stack_pages)
2280 drm_free_large(pages);
dd6034c6
DG
2281
2282 return addr;
2283}
2284
2285/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2286void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2287{
2288 int ret;
2289
2290 lockdep_assert_held(&obj->base.dev->struct_mutex);
2291
2292 ret = i915_gem_object_get_pages(obj);
2293 if (ret)
2294 return ERR_PTR(ret);
2295
2296 i915_gem_object_pin_pages(obj);
2297
dd6034c6
DG
2298 if (!obj->mapping) {
2299 obj->mapping = i915_gem_object_map(obj);
2300 if (!obj->mapping) {
0a798eb9
CW
2301 i915_gem_object_unpin_pages(obj);
2302 return ERR_PTR(-ENOMEM);
2303 }
2304 }
2305
2306 return obj->mapping;
2307}
2308
b4716185 2309static void
fa545cbf
CW
2310i915_gem_object_retire__write(struct i915_gem_active *active,
2311 struct drm_i915_gem_request *request)
e2d05a8b 2312{
fa545cbf
CW
2313 struct drm_i915_gem_object *obj =
2314 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2315
de152b62 2316 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2317}
2318
caea7476 2319static void
fa545cbf
CW
2320i915_gem_object_retire__read(struct i915_gem_active *active,
2321 struct drm_i915_gem_request *request)
ce44b0ea 2322{
fa545cbf
CW
2323 int idx = request->engine->id;
2324 struct drm_i915_gem_object *obj =
2325 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2326
573adb39 2327 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
b4716185 2328
573adb39
CW
2329 i915_gem_object_clear_active(obj, idx);
2330 if (i915_gem_object_is_active(obj))
b4716185 2331 return;
caea7476 2332
6c246959
CW
2333 /* Bump our place on the bound list to keep it roughly in LRU order
2334 * so that we don't steal from recently used but inactive objects
2335 * (unless we are forced to ofc!)
2336 */
b0decaf7
CW
2337 if (obj->bind_count)
2338 list_move_tail(&obj->global_list,
2339 &request->i915->mm.bound_list);
caea7476 2340
f8c417cd 2341 i915_gem_object_put(obj);
c8725f3d
CW
2342}
2343
7b4d3a16 2344static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2345{
44e2c070 2346 unsigned long elapsed;
be62acb4 2347
44e2c070 2348 if (ctx->hang_stats.banned)
be62acb4
MK
2349 return true;
2350
7b4d3a16 2351 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2352 if (ctx->hang_stats.ban_period_seconds &&
2353 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2354 DRM_DEBUG("context hanging too fast, banning!\n");
2355 return true;
be62acb4
MK
2356 }
2357
2358 return false;
2359}
2360
7b4d3a16 2361static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2362 const bool guilty)
aa60c664 2363{
7b4d3a16 2364 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2365
2366 if (guilty) {
7b4d3a16 2367 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2368 hs->batch_active++;
2369 hs->guilty_ts = get_seconds();
2370 } else {
2371 hs->batch_pending++;
aa60c664
MK
2372 }
2373}
2374
8d9fc7fd 2375struct drm_i915_gem_request *
0bc40be8 2376i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2377{
4db080f9
CW
2378 struct drm_i915_gem_request *request;
2379
f69a02c9
CW
2380 /* We are called by the error capture and reset at a random
2381 * point in time. In particular, note that neither is crucially
2382 * ordered with an interrupt. After a hang, the GPU is dead and we
2383 * assume that no more writes can happen (we waited long enough for
2384 * all writes that were in transaction to be flushed) - adding an
2385 * extra delay for a recent interrupt is pointless. Hence, we do
2386 * not need an engine->irq_seqno_barrier() before the seqno reads.
2387 */
efdf7c06 2388 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2389 if (i915_gem_request_completed(request))
4db080f9 2390 continue;
aa60c664 2391
b6b0fac0 2392 return request;
4db080f9 2393 }
b6b0fac0
MK
2394
2395 return NULL;
2396}
2397
7b4d3a16 2398static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2399{
2400 struct drm_i915_gem_request *request;
2401 bool ring_hung;
2402
0bc40be8 2403 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2404 if (request == NULL)
2405 return;
2406
0bc40be8 2407 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2408
7b4d3a16 2409 i915_set_reset_status(request->ctx, ring_hung);
efdf7c06 2410 list_for_each_entry_continue(request, &engine->request_list, link)
7b4d3a16 2411 i915_set_reset_status(request->ctx, false);
4db080f9 2412}
aa60c664 2413
7b4d3a16 2414static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2415{
dcff85c8 2416 struct drm_i915_gem_request *request;
7e37f889 2417 struct intel_ring *ring;
608c1a52 2418
dcff85c8
CW
2419 request = i915_gem_active_peek(&engine->last_request,
2420 &engine->i915->drm.struct_mutex);
2421
c4b0930b
CW
2422 /* Mark all pending requests as complete so that any concurrent
2423 * (lockless) lookup doesn't try and wait upon the request as we
2424 * reset it.
2425 */
dcff85c8
CW
2426 if (request)
2427 intel_engine_init_seqno(engine, request->fence.seqno);
c4b0930b 2428
dcb4c12a
OM
2429 /*
2430 * Clear the execlists queue up before freeing the requests, as those
2431 * are the ones that keep the context and ringbuffer backing objects
2432 * pinned in place.
2433 */
dcb4c12a 2434
7de1691a 2435 if (i915.enable_execlists) {
27af5eea
TU
2436 /* Ensure irq handler finishes or is cancelled. */
2437 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2438
e39d42fa 2439 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2440 }
2441
1d62beea
BW
2442 /*
2443 * We must free the requests after all the corresponding objects have
2444 * been moved off active lists. Which is the same order as the normal
2445 * retire_requests function does. This is important if object hold
2446 * implicit references on things like e.g. ppgtt address spaces through
2447 * the request.
2448 */
dcff85c8 2449 if (request)
05235c53 2450 i915_gem_request_retire_upto(request);
dcff85c8 2451 GEM_BUG_ON(intel_engine_is_active(engine));
608c1a52
CW
2452
2453 /* Having flushed all requests from all queues, we know that all
2454 * ringbuffers must now be empty. However, since we do not reclaim
2455 * all space when retiring the request (to prevent HEADs colliding
2456 * with rapid ringbuffer wraparound) the amount of available space
2457 * upon reset is less than when we start. Do one more pass over
2458 * all the ringbuffers to reset last_retired_head.
2459 */
7e37f889
CW
2460 list_for_each_entry(ring, &engine->buffers, link) {
2461 ring->last_retired_head = ring->tail;
2462 intel_ring_update_space(ring);
608c1a52 2463 }
2ed53a94 2464
b913b33c 2465 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2466}
2467
069efc1d 2468void i915_gem_reset(struct drm_device *dev)
673a394b 2469{
fac5e23e 2470 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2471 struct intel_engine_cs *engine;
673a394b 2472
4db080f9
CW
2473 /*
2474 * Before we free the objects from the requests, we need to inspect
2475 * them for finding the guilty party. As the requests only borrow
2476 * their reference to the objects, the inspection must be done first.
2477 */
b4ac5afc 2478 for_each_engine(engine, dev_priv)
7b4d3a16 2479 i915_gem_reset_engine_status(engine);
4db080f9 2480
b4ac5afc 2481 for_each_engine(engine, dev_priv)
7b4d3a16 2482 i915_gem_reset_engine_cleanup(engine);
b913b33c 2483 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2484
acce9ffa
BW
2485 i915_gem_context_reset(dev);
2486
19b2dbde 2487 i915_gem_restore_fences(dev);
673a394b
EA
2488}
2489
75ef9da2 2490static void
673a394b
EA
2491i915_gem_retire_work_handler(struct work_struct *work)
2492{
b29c19b6 2493 struct drm_i915_private *dev_priv =
67d97da3 2494 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2495 struct drm_device *dev = &dev_priv->drm;
673a394b 2496
891b48cf 2497 /* Come back later if the device is busy... */
b29c19b6 2498 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2499 i915_gem_retire_requests(dev_priv);
b29c19b6 2500 mutex_unlock(&dev->struct_mutex);
673a394b 2501 }
67d97da3
CW
2502
2503 /* Keep the retire handler running until we are finally idle.
2504 * We do not need to do this test under locking as in the worst-case
2505 * we queue the retire worker once too often.
2506 */
c9615613
CW
2507 if (READ_ONCE(dev_priv->gt.awake)) {
2508 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2509 queue_delayed_work(dev_priv->wq,
2510 &dev_priv->gt.retire_work,
bcb45086 2511 round_jiffies_up_relative(HZ));
c9615613 2512 }
b29c19b6 2513}
0a58705b 2514
b29c19b6
CW
2515static void
2516i915_gem_idle_work_handler(struct work_struct *work)
2517{
2518 struct drm_i915_private *dev_priv =
67d97da3 2519 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2520 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2521 struct intel_engine_cs *engine;
67d97da3
CW
2522 unsigned int stuck_engines;
2523 bool rearm_hangcheck;
2524
2525 if (!READ_ONCE(dev_priv->gt.awake))
2526 return;
2527
2528 if (READ_ONCE(dev_priv->gt.active_engines))
2529 return;
2530
2531 rearm_hangcheck =
2532 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2533
2534 if (!mutex_trylock(&dev->struct_mutex)) {
2535 /* Currently busy, come back later */
2536 mod_delayed_work(dev_priv->wq,
2537 &dev_priv->gt.idle_work,
2538 msecs_to_jiffies(50));
2539 goto out_rearm;
2540 }
2541
2542 if (dev_priv->gt.active_engines)
2543 goto out_unlock;
b29c19b6 2544
b4ac5afc 2545 for_each_engine(engine, dev_priv)
67d97da3 2546 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2547
67d97da3
CW
2548 GEM_BUG_ON(!dev_priv->gt.awake);
2549 dev_priv->gt.awake = false;
2550 rearm_hangcheck = false;
30ecad77 2551
2529d570
CW
2552 /* As we have disabled hangcheck, we need to unstick any waiters still
2553 * hanging around. However, as we may be racing against the interrupt
2554 * handler or the waiters themselves, we skip enabling the fake-irq.
2555 */
67d97da3 2556 stuck_engines = intel_kick_waiters(dev_priv);
2529d570
CW
2557 if (unlikely(stuck_engines))
2558 DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
2559 stuck_engines);
35c94185 2560
67d97da3
CW
2561 if (INTEL_GEN(dev_priv) >= 6)
2562 gen6_rps_idle(dev_priv);
2563 intel_runtime_pm_put(dev_priv);
2564out_unlock:
2565 mutex_unlock(&dev->struct_mutex);
b29c19b6 2566
67d97da3
CW
2567out_rearm:
2568 if (rearm_hangcheck) {
2569 GEM_BUG_ON(!dev_priv->gt.awake);
2570 i915_queue_hangcheck(dev_priv);
35c94185 2571 }
673a394b
EA
2572}
2573
b1f788c6
CW
2574void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2575{
2576 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2577 struct drm_i915_file_private *fpriv = file->driver_priv;
2578 struct i915_vma *vma, *vn;
2579
2580 mutex_lock(&obj->base.dev->struct_mutex);
2581 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2582 if (vma->vm->file == fpriv)
2583 i915_vma_close(vma);
2584 mutex_unlock(&obj->base.dev->struct_mutex);
2585}
2586
23ba4fd0
BW
2587/**
2588 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2589 * @dev: drm device pointer
2590 * @data: ioctl data blob
2591 * @file: drm file pointer
23ba4fd0
BW
2592 *
2593 * Returns 0 if successful, else an error is returned with the remaining time in
2594 * the timeout parameter.
2595 * -ETIME: object is still busy after timeout
2596 * -ERESTARTSYS: signal interrupted the wait
2597 * -ENONENT: object doesn't exist
2598 * Also possible, but rare:
2599 * -EAGAIN: GPU wedged
2600 * -ENOMEM: damn
2601 * -ENODEV: Internal IRQ fail
2602 * -E?: The add request failed
2603 *
2604 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2605 * non-zero timeout parameter the wait ioctl will wait for the given number of
2606 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2607 * without holding struct_mutex the object may become re-busied before this
2608 * function completes. A similar but shorter * race condition exists in the busy
2609 * ioctl
2610 */
2611int
2612i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2613{
2614 struct drm_i915_gem_wait *args = data;
2615 struct drm_i915_gem_object *obj;
27c01aae 2616 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185
CW
2617 int i, n = 0;
2618 int ret;
23ba4fd0 2619
11b5d511
DV
2620 if (args->flags != 0)
2621 return -EINVAL;
2622
23ba4fd0
BW
2623 ret = i915_mutex_lock_interruptible(dev);
2624 if (ret)
2625 return ret;
2626
03ac0642
CW
2627 obj = i915_gem_object_lookup(file, args->bo_handle);
2628 if (!obj) {
23ba4fd0
BW
2629 mutex_unlock(&dev->struct_mutex);
2630 return -ENOENT;
2631 }
2632
573adb39 2633 if (!i915_gem_object_is_active(obj))
97b2a6a1 2634 goto out;
23ba4fd0 2635
666796da 2636 for (i = 0; i < I915_NUM_ENGINES; i++) {
27c01aae 2637 struct drm_i915_gem_request *req;
b4716185 2638
d72d908b
CW
2639 req = i915_gem_active_get(&obj->last_read[i],
2640 &obj->base.dev->struct_mutex);
27c01aae
CW
2641 if (req)
2642 requests[n++] = req;
b4716185
CW
2643 }
2644
21c310f2
CW
2645out:
2646 i915_gem_object_put(obj);
23ba4fd0
BW
2647 mutex_unlock(&dev->struct_mutex);
2648
b4716185
CW
2649 for (i = 0; i < n; i++) {
2650 if (ret == 0)
776f3236
CW
2651 ret = i915_wait_request(requests[i], true,
2652 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2653 to_rps_client(file));
27c01aae 2654 i915_gem_request_put(requests[i]);
b4716185 2655 }
ff865885 2656 return ret;
23ba4fd0
BW
2657}
2658
b4716185 2659static int
fa545cbf 2660__i915_gem_object_sync(struct drm_i915_gem_request *to,
8e637178 2661 struct drm_i915_gem_request *from)
b4716185 2662{
b4716185
CW
2663 int ret;
2664
8e637178 2665 if (to->engine == from->engine)
b4716185
CW
2666 return 0;
2667
39df9190 2668 if (!i915.semaphores) {
776f3236
CW
2669 ret = i915_wait_request(from,
2670 from->i915->mm.interruptible,
2671 NULL,
2672 NO_WAITBOOST);
b4716185
CW
2673 if (ret)
2674 return ret;
b4716185 2675 } else {
8e637178 2676 int idx = intel_engine_sync_index(from->engine, to->engine);
ddf07be7 2677 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
b4716185
CW
2678 return 0;
2679
8e637178 2680 trace_i915_gem_ring_sync_to(to, from);
ddf07be7 2681 ret = to->engine->semaphore.sync_to(to, from);
b4716185
CW
2682 if (ret)
2683 return ret;
2684
ddf07be7 2685 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
b4716185
CW
2686 }
2687
2688 return 0;
2689}
2690
5816d648
BW
2691/**
2692 * i915_gem_object_sync - sync an object to a ring.
2693 *
2694 * @obj: object which may be in use on another ring.
8e637178 2695 * @to: request we are wishing to use
5816d648
BW
2696 *
2697 * This code is meant to abstract object synchronization with the GPU.
8e637178
CW
2698 * Conceptually we serialise writes between engines inside the GPU.
2699 * We only allow one engine to write into a buffer at any time, but
2700 * multiple readers. To ensure each has a coherent view of memory, we must:
b4716185
CW
2701 *
2702 * - If there is an outstanding write request to the object, the new
2703 * request must wait for it to complete (either CPU or in hw, requests
2704 * on the same ring will be naturally ordered).
2705 *
2706 * - If we are a write request (pending_write_domain is set), the new
2707 * request must wait for outstanding read requests to complete.
5816d648
BW
2708 *
2709 * Returns 0 if successful, else propagates up the lower layer error.
2710 */
2911a35b
BW
2711int
2712i915_gem_object_sync(struct drm_i915_gem_object *obj,
8e637178 2713 struct drm_i915_gem_request *to)
2911a35b 2714{
8cac6f6c
CW
2715 struct i915_gem_active *active;
2716 unsigned long active_mask;
2717 int idx;
41c52415 2718
8cac6f6c 2719 lockdep_assert_held(&obj->base.dev->struct_mutex);
2911a35b 2720
573adb39 2721 active_mask = i915_gem_object_get_active(obj);
8cac6f6c
CW
2722 if (!active_mask)
2723 return 0;
27c01aae 2724
8cac6f6c
CW
2725 if (obj->base.pending_write_domain) {
2726 active = obj->last_read;
b4716185 2727 } else {
8cac6f6c
CW
2728 active_mask = 1;
2729 active = &obj->last_write;
b4716185 2730 }
8cac6f6c
CW
2731
2732 for_each_active(active_mask, idx) {
2733 struct drm_i915_gem_request *request;
2734 int ret;
2735
2736 request = i915_gem_active_peek(&active[idx],
2737 &obj->base.dev->struct_mutex);
2738 if (!request)
2739 continue;
2740
fa545cbf 2741 ret = __i915_gem_object_sync(to, request);
b4716185
CW
2742 if (ret)
2743 return ret;
2744 }
2911a35b 2745
b4716185 2746 return 0;
2911a35b
BW
2747}
2748
b5ffc9bc
CW
2749static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2750{
2751 u32 old_write_domain, old_read_domains;
2752
b5ffc9bc
CW
2753 /* Force a pagefault for domain tracking on next user access */
2754 i915_gem_release_mmap(obj);
2755
b97c3d9c
KP
2756 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2757 return;
2758
b5ffc9bc
CW
2759 old_read_domains = obj->base.read_domains;
2760 old_write_domain = obj->base.write_domain;
2761
2762 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2763 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2764
2765 trace_i915_gem_object_change_domain(obj,
2766 old_read_domains,
2767 old_write_domain);
2768}
2769
8ef8561f
CW
2770static void __i915_vma_iounmap(struct i915_vma *vma)
2771{
20dfbde4 2772 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2773
2774 if (vma->iomap == NULL)
2775 return;
2776
2777 io_mapping_unmap(vma->iomap);
2778 vma->iomap = NULL;
2779}
2780
df0e9a28 2781int i915_vma_unbind(struct i915_vma *vma)
673a394b 2782{
07fe0b12 2783 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2784 unsigned long active;
43e28f09 2785 int ret;
673a394b 2786
b0decaf7
CW
2787 /* First wait upon any activity as retiring the request may
2788 * have side-effects such as unpinning or even unbinding this vma.
2789 */
2790 active = i915_vma_get_active(vma);
df0e9a28 2791 if (active) {
b0decaf7
CW
2792 int idx;
2793
b1f788c6
CW
2794 /* When a closed VMA is retired, it is unbound - eek.
2795 * In order to prevent it from being recursively closed,
2796 * take a pin on the vma so that the second unbind is
2797 * aborted.
2798 */
20dfbde4 2799 __i915_vma_pin(vma);
b1f788c6 2800
b0decaf7
CW
2801 for_each_active(active, idx) {
2802 ret = i915_gem_active_retire(&vma->last_read[idx],
2803 &vma->vm->dev->struct_mutex);
2804 if (ret)
b1f788c6 2805 break;
b0decaf7
CW
2806 }
2807
20dfbde4 2808 __i915_vma_unpin(vma);
b1f788c6
CW
2809 if (ret)
2810 return ret;
2811
b0decaf7
CW
2812 GEM_BUG_ON(i915_vma_is_active(vma));
2813 }
2814
20dfbde4 2815 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2816 return -EBUSY;
2817
b1f788c6
CW
2818 if (!drm_mm_node_allocated(&vma->node))
2819 goto destroy;
433544bd 2820
15717de2
CW
2821 GEM_BUG_ON(obj->bind_count == 0);
2822 GEM_BUG_ON(!obj->pages);
c4670ad0 2823
3272db53
CW
2824 if (i915_vma_is_ggtt(vma) &&
2825 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 2826 i915_gem_object_finish_gtt(obj);
5323fd04 2827
8b1bc9b4
DV
2828 /* release the fence reg _after_ flushing */
2829 ret = i915_gem_object_put_fence(obj);
2830 if (ret)
2831 return ret;
8ef8561f
CW
2832
2833 __i915_vma_iounmap(vma);
8b1bc9b4 2834 }
96b47b65 2835
50e046b6
CW
2836 if (likely(!vma->vm->closed)) {
2837 trace_i915_vma_unbind(vma);
2838 vma->vm->unbind_vma(vma);
2839 }
3272db53 2840 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2841
50e046b6
CW
2842 drm_mm_remove_node(&vma->node);
2843 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2844
3272db53 2845 if (i915_vma_is_ggtt(vma)) {
fe14d5f4
TU
2846 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2847 obj->map_and_fenceable = false;
2848 } else if (vma->ggtt_view.pages) {
2849 sg_free_table(vma->ggtt_view.pages);
2850 kfree(vma->ggtt_view.pages);
fe14d5f4 2851 }
016a65a3 2852 vma->ggtt_view.pages = NULL;
fe14d5f4 2853 }
673a394b 2854
2f633156 2855 /* Since the unbound list is global, only move to that list if
b93dab6e 2856 * no more VMAs exist. */
15717de2
CW
2857 if (--obj->bind_count == 0)
2858 list_move_tail(&obj->global_list,
2859 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2860
70903c3b
CW
2861 /* And finally now the object is completely decoupled from this vma,
2862 * we can drop its hold on the backing storage and allow it to be
2863 * reaped by the shrinker.
2864 */
2865 i915_gem_object_unpin_pages(obj);
2866
b1f788c6 2867destroy:
3272db53 2868 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2869 i915_vma_destroy(vma);
2870
88241785 2871 return 0;
54cf91dc
CW
2872}
2873
dcff85c8
CW
2874int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2875 bool interruptible)
4df2faf4 2876{
e2f80391 2877 struct intel_engine_cs *engine;
b4ac5afc 2878 int ret;
4df2faf4 2879
b4ac5afc 2880 for_each_engine(engine, dev_priv) {
62e63007
CW
2881 if (engine->last_context == NULL)
2882 continue;
2883
dcff85c8 2884 ret = intel_engine_idle(engine, interruptible);
1ec14ad3
CW
2885 if (ret)
2886 return ret;
2887 }
4df2faf4 2888
8a1a49f9 2889 return 0;
4df2faf4
DV
2890}
2891
4144f9b5 2892static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
2893 unsigned long cache_level)
2894{
4144f9b5 2895 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
2896 struct drm_mm_node *other;
2897
4144f9b5
CW
2898 /*
2899 * On some machines we have to be careful when putting differing types
2900 * of snoopable memory together to avoid the prefetcher crossing memory
2901 * domains and dying. During vm initialisation, we decide whether or not
2902 * these constraints apply and set the drm_mm.color_adjust
2903 * appropriately.
42d6ab48 2904 */
4144f9b5 2905 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
2906 return true;
2907
c6cfb325 2908 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
2909 return true;
2910
2911 if (list_empty(&gtt_space->node_list))
2912 return true;
2913
2914 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2915 if (other->allocated && !other->hole_follows && other->color != cache_level)
2916 return false;
2917
2918 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2919 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2920 return false;
2921
2922 return true;
2923}
2924
673a394b 2925/**
59bfa124
CW
2926 * i915_vma_insert - finds a slot for the vma in its address space
2927 * @vma: the vma
91b2db6f 2928 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 2929 * @alignment: required alignment
14bb2c11 2930 * @flags: mask of PIN_* flags to use
59bfa124
CW
2931 *
2932 * First we try to allocate some free space that meets the requirements for
2933 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2934 * preferrably the oldest idle entry to make room for the new VMA.
2935 *
2936 * Returns:
2937 * 0 on success, negative error code otherwise.
673a394b 2938 */
59bfa124
CW
2939static int
2940i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 2941{
59bfa124
CW
2942 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
2943 struct drm_i915_gem_object *obj = vma->obj;
de180033
CW
2944 u64 start, end;
2945 u64 min_alignment;
07f73f69 2946 int ret;
673a394b 2947
3272db53 2948 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 2949 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
2950
2951 size = max(size, vma->size);
2952 if (flags & PIN_MAPPABLE)
2953 size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);
2954
2955 min_alignment =
2956 i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
2957 flags & PIN_MAPPABLE);
2958 if (alignment == 0)
2959 alignment = min_alignment;
2960 if (alignment & (min_alignment - 1)) {
2961 DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
2962 alignment, min_alignment);
59bfa124 2963 return -EINVAL;
91e6711e 2964 }
a00b10c3 2965
101b506a 2966 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
2967
2968 end = vma->vm->total;
101b506a 2969 if (flags & PIN_MAPPABLE)
91b2db6f 2970 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 2971 if (flags & PIN_ZONE_4G)
48ea1e32 2972 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 2973
91e6711e
JL
2974 /* If binding the object/GGTT view requires more space than the entire
2975 * aperture has, reject it early before evicting everything in a vain
2976 * attempt to find space.
654fc607 2977 */
91e6711e 2978 if (size > end) {
de180033 2979 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 2980 size, obj->base.size,
1ec9e26d 2981 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 2982 end);
59bfa124 2983 return -E2BIG;
654fc607
CW
2984 }
2985
37e680a1 2986 ret = i915_gem_object_get_pages(obj);
6c085a72 2987 if (ret)
59bfa124 2988 return ret;
6c085a72 2989
fbdda6fb
CW
2990 i915_gem_object_pin_pages(obj);
2991
506a8e87 2992 if (flags & PIN_OFFSET_FIXED) {
59bfa124 2993 u64 offset = flags & PIN_OFFSET_MASK;
de180033 2994 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 2995 ret = -EINVAL;
de180033 2996 goto err_unpin;
506a8e87 2997 }
de180033 2998
506a8e87
CW
2999 vma->node.start = offset;
3000 vma->node.size = size;
3001 vma->node.color = obj->cache_level;
de180033 3002 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3003 if (ret) {
3004 ret = i915_gem_evict_for_vma(vma);
3005 if (ret == 0)
de180033
CW
3006 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3007 if (ret)
3008 goto err_unpin;
506a8e87 3009 }
101b506a 3010 } else {
de180033
CW
3011 u32 search_flag, alloc_flag;
3012
506a8e87
CW
3013 if (flags & PIN_HIGH) {
3014 search_flag = DRM_MM_SEARCH_BELOW;
3015 alloc_flag = DRM_MM_CREATE_TOP;
3016 } else {
3017 search_flag = DRM_MM_SEARCH_DEFAULT;
3018 alloc_flag = DRM_MM_CREATE_DEFAULT;
3019 }
101b506a 3020
954c4691
CW
3021 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3022 * so we know that we always have a minimum alignment of 4096.
3023 * The drm_mm range manager is optimised to return results
3024 * with zero alignment, so where possible use the optimal
3025 * path.
3026 */
3027 if (alignment <= 4096)
3028 alignment = 0;
3029
0a9ae0d7 3030search_free:
de180033
CW
3031 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3032 &vma->node,
506a8e87
CW
3033 size, alignment,
3034 obj->cache_level,
3035 start, end,
3036 search_flag,
3037 alloc_flag);
3038 if (ret) {
de180033 3039 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3040 obj->cache_level,
3041 start, end,
3042 flags);
3043 if (ret == 0)
3044 goto search_free;
9731129c 3045
de180033 3046 goto err_unpin;
506a8e87 3047 }
673a394b 3048 }
37508589 3049 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3050
35c20a60 3051 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3052 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3053 obj->bind_count++;
bf1a1092 3054
59bfa124 3055 return 0;
2f633156 3056
bc6bc15b 3057err_unpin:
2f633156 3058 i915_gem_object_unpin_pages(obj);
59bfa124 3059 return ret;
673a394b
EA
3060}
3061
000433b6 3062bool
2c22569b
CW
3063i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3064 bool force)
673a394b 3065{
673a394b
EA
3066 /* If we don't have a page list set up, then we're not pinned
3067 * to GPU, and we can ignore the cache flush because it'll happen
3068 * again at bind time.
3069 */
05394f39 3070 if (obj->pages == NULL)
000433b6 3071 return false;
673a394b 3072
769ce464
ID
3073 /*
3074 * Stolen memory is always coherent with the GPU as it is explicitly
3075 * marked as wc by the system, or the system is cache-coherent.
3076 */
6a2c4232 3077 if (obj->stolen || obj->phys_handle)
000433b6 3078 return false;
769ce464 3079
9c23f7fc
CW
3080 /* If the GPU is snooping the contents of the CPU cache,
3081 * we do not need to manually clear the CPU cache lines. However,
3082 * the caches are only snooped when the render cache is
3083 * flushed/invalidated. As we always have to emit invalidations
3084 * and flushes when moving into and out of the RENDER domain, correct
3085 * snooping behaviour occurs naturally as the result of our domain
3086 * tracking.
3087 */
0f71979a
CW
3088 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3089 obj->cache_dirty = true;
000433b6 3090 return false;
0f71979a 3091 }
9c23f7fc 3092
1c5d22f7 3093 trace_i915_gem_object_clflush(obj);
9da3da66 3094 drm_clflush_sg(obj->pages);
0f71979a 3095 obj->cache_dirty = false;
000433b6
CW
3096
3097 return true;
e47c68e9
EA
3098}
3099
3100/** Flushes the GTT write domain for the object if it's dirty. */
3101static void
05394f39 3102i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3103{
1c5d22f7
CW
3104 uint32_t old_write_domain;
3105
05394f39 3106 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3107 return;
3108
63256ec5 3109 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3110 * to it immediately go to main memory as far as we know, so there's
3111 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3112 *
3113 * However, we do have to enforce the order so that all writes through
3114 * the GTT land before any writes to the device, such as updates to
3115 * the GATT itself.
e47c68e9 3116 */
63256ec5
CW
3117 wmb();
3118
05394f39
CW
3119 old_write_domain = obj->base.write_domain;
3120 obj->base.write_domain = 0;
1c5d22f7 3121
de152b62 3122 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3123
1c5d22f7 3124 trace_i915_gem_object_change_domain(obj,
05394f39 3125 obj->base.read_domains,
1c5d22f7 3126 old_write_domain);
e47c68e9
EA
3127}
3128
3129/** Flushes the CPU write domain for the object if it's dirty. */
3130static void
e62b59e4 3131i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3132{
1c5d22f7 3133 uint32_t old_write_domain;
e47c68e9 3134
05394f39 3135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3136 return;
3137
e62b59e4 3138 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3139 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3140
05394f39
CW
3141 old_write_domain = obj->base.write_domain;
3142 obj->base.write_domain = 0;
1c5d22f7 3143
de152b62 3144 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3145
1c5d22f7 3146 trace_i915_gem_object_change_domain(obj,
05394f39 3147 obj->base.read_domains,
1c5d22f7 3148 old_write_domain);
e47c68e9
EA
3149}
3150
2ef7eeaa
EA
3151/**
3152 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3153 * @obj: object to act on
3154 * @write: ask for write access or read only
2ef7eeaa
EA
3155 *
3156 * This function returns when the move is complete, including waiting on
3157 * flushes to occur.
3158 */
79e53945 3159int
2021746e 3160i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3161{
1c5d22f7 3162 uint32_t old_write_domain, old_read_domains;
43566ded 3163 struct i915_vma *vma;
e47c68e9 3164 int ret;
2ef7eeaa 3165
0201f1ec 3166 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3167 if (ret)
3168 return ret;
3169
c13d87ea
CW
3170 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3171 return 0;
3172
43566ded
CW
3173 /* Flush and acquire obj->pages so that we are coherent through
3174 * direct access in memory with previous cached writes through
3175 * shmemfs and that our cache domain tracking remains valid.
3176 * For example, if the obj->filp was moved to swap without us
3177 * being notified and releasing the pages, we would mistakenly
3178 * continue to assume that the obj remained out of the CPU cached
3179 * domain.
3180 */
3181 ret = i915_gem_object_get_pages(obj);
3182 if (ret)
3183 return ret;
3184
e62b59e4 3185 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3186
d0a57789
CW
3187 /* Serialise direct access to this object with the barriers for
3188 * coherent writes from the GPU, by effectively invalidating the
3189 * GTT domain upon first access.
3190 */
3191 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3192 mb();
3193
05394f39
CW
3194 old_write_domain = obj->base.write_domain;
3195 old_read_domains = obj->base.read_domains;
1c5d22f7 3196
e47c68e9
EA
3197 /* It should now be out of any other write domains, and we can update
3198 * the domain values for our changes.
3199 */
05394f39
CW
3200 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3201 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3202 if (write) {
05394f39
CW
3203 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3204 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3205 obj->dirty = 1;
2ef7eeaa
EA
3206 }
3207
1c5d22f7
CW
3208 trace_i915_gem_object_change_domain(obj,
3209 old_read_domains,
3210 old_write_domain);
3211
8325a09d 3212 /* And bump the LRU for this access */
43566ded 3213 vma = i915_gem_obj_to_ggtt(obj);
b0decaf7
CW
3214 if (vma &&
3215 drm_mm_node_allocated(&vma->node) &&
3216 !i915_vma_is_active(vma))
3217 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
8325a09d 3218
e47c68e9
EA
3219 return 0;
3220}
3221
ef55f92a
CW
3222/**
3223 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3224 * @obj: object to act on
3225 * @cache_level: new cache level to set for the object
ef55f92a
CW
3226 *
3227 * After this function returns, the object will be in the new cache-level
3228 * across all GTT and the contents of the backing storage will be coherent,
3229 * with respect to the new cache-level. In order to keep the backing storage
3230 * coherent for all users, we only allow a single cache level to be set
3231 * globally on the object and prevent it from being changed whilst the
3232 * hardware is reading from the object. That is if the object is currently
3233 * on the scanout it will be set to uncached (or equivalent display
3234 * cache coherency) and all non-MOCS GPU access will also be uncached so
3235 * that all direct access to the scanout remains coherent.
3236 */
e4ffd173
CW
3237int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3238 enum i915_cache_level cache_level)
3239{
aa653a68 3240 struct i915_vma *vma;
ed75a55b 3241 int ret = 0;
e4ffd173
CW
3242
3243 if (obj->cache_level == cache_level)
ed75a55b 3244 goto out;
e4ffd173 3245
ef55f92a
CW
3246 /* Inspect the list of currently bound VMA and unbind any that would
3247 * be invalid given the new cache-level. This is principally to
3248 * catch the issue of the CS prefetch crossing page boundaries and
3249 * reading an invalid PTE on older architectures.
3250 */
aa653a68
CW
3251restart:
3252 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3253 if (!drm_mm_node_allocated(&vma->node))
3254 continue;
3255
20dfbde4 3256 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3257 DRM_DEBUG("can not change the cache level of pinned objects\n");
3258 return -EBUSY;
3259 }
3260
aa653a68
CW
3261 if (i915_gem_valid_gtt_space(vma, cache_level))
3262 continue;
3263
3264 ret = i915_vma_unbind(vma);
3265 if (ret)
3266 return ret;
3267
3268 /* As unbinding may affect other elements in the
3269 * obj->vma_list (due to side-effects from retiring
3270 * an active vma), play safe and restart the iterator.
3271 */
3272 goto restart;
42d6ab48
CW
3273 }
3274
ef55f92a
CW
3275 /* We can reuse the existing drm_mm nodes but need to change the
3276 * cache-level on the PTE. We could simply unbind them all and
3277 * rebind with the correct cache-level on next use. However since
3278 * we already have a valid slot, dma mapping, pages etc, we may as
3279 * rewrite the PTE in the belief that doing so tramples upon less
3280 * state and so involves less work.
3281 */
15717de2 3282 if (obj->bind_count) {
ef55f92a
CW
3283 /* Before we change the PTE, the GPU must not be accessing it.
3284 * If we wait upon the object, we know that all the bound
3285 * VMA are no longer active.
3286 */
2e2f351d 3287 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3288 if (ret)
3289 return ret;
3290
aa653a68 3291 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3292 /* Access to snoopable pages through the GTT is
3293 * incoherent and on some machines causes a hard
3294 * lockup. Relinquish the CPU mmaping to force
3295 * userspace to refault in the pages and we can
3296 * then double check if the GTT mapping is still
3297 * valid for that pointer access.
3298 */
3299 i915_gem_release_mmap(obj);
3300
3301 /* As we no longer need a fence for GTT access,
3302 * we can relinquish it now (and so prevent having
3303 * to steal a fence from someone else on the next
3304 * fence request). Note GPU activity would have
3305 * dropped the fence as all snoopable access is
3306 * supposed to be linear.
3307 */
e4ffd173
CW
3308 ret = i915_gem_object_put_fence(obj);
3309 if (ret)
3310 return ret;
ef55f92a
CW
3311 } else {
3312 /* We either have incoherent backing store and
3313 * so no GTT access or the architecture is fully
3314 * coherent. In such cases, existing GTT mmaps
3315 * ignore the cache bit in the PTE and we can
3316 * rewrite it without confusing the GPU or having
3317 * to force userspace to fault back in its mmaps.
3318 */
e4ffd173
CW
3319 }
3320
1c7f4bca 3321 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3322 if (!drm_mm_node_allocated(&vma->node))
3323 continue;
3324
3325 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3326 if (ret)
3327 return ret;
3328 }
e4ffd173
CW
3329 }
3330
1c7f4bca 3331 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3332 vma->node.color = cache_level;
3333 obj->cache_level = cache_level;
3334
ed75a55b 3335out:
ef55f92a
CW
3336 /* Flush the dirty CPU caches to the backing storage so that the
3337 * object is now coherent at its new cache level (with respect
3338 * to the access domain).
3339 */
b50a5371 3340 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3341 if (i915_gem_clflush_object(obj, true))
c033666a 3342 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3343 }
3344
e4ffd173
CW
3345 return 0;
3346}
3347
199adf40
BW
3348int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3349 struct drm_file *file)
e6994aee 3350{
199adf40 3351 struct drm_i915_gem_caching *args = data;
e6994aee 3352 struct drm_i915_gem_object *obj;
e6994aee 3353
03ac0642
CW
3354 obj = i915_gem_object_lookup(file, args->handle);
3355 if (!obj)
432be69d 3356 return -ENOENT;
e6994aee 3357
651d794f
CW
3358 switch (obj->cache_level) {
3359 case I915_CACHE_LLC:
3360 case I915_CACHE_L3_LLC:
3361 args->caching = I915_CACHING_CACHED;
3362 break;
3363
4257d3ba
CW
3364 case I915_CACHE_WT:
3365 args->caching = I915_CACHING_DISPLAY;
3366 break;
3367
651d794f
CW
3368 default:
3369 args->caching = I915_CACHING_NONE;
3370 break;
3371 }
e6994aee 3372
34911fd3 3373 i915_gem_object_put_unlocked(obj);
432be69d 3374 return 0;
e6994aee
CW
3375}
3376
199adf40
BW
3377int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3378 struct drm_file *file)
e6994aee 3379{
fac5e23e 3380 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3381 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3382 struct drm_i915_gem_object *obj;
3383 enum i915_cache_level level;
3384 int ret;
3385
199adf40
BW
3386 switch (args->caching) {
3387 case I915_CACHING_NONE:
e6994aee
CW
3388 level = I915_CACHE_NONE;
3389 break;
199adf40 3390 case I915_CACHING_CACHED:
e5756c10
ID
3391 /*
3392 * Due to a HW issue on BXT A stepping, GPU stores via a
3393 * snooped mapping may leave stale data in a corresponding CPU
3394 * cacheline, whereas normally such cachelines would get
3395 * invalidated.
3396 */
ca377809 3397 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3398 return -ENODEV;
3399
e6994aee
CW
3400 level = I915_CACHE_LLC;
3401 break;
4257d3ba
CW
3402 case I915_CACHING_DISPLAY:
3403 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3404 break;
e6994aee
CW
3405 default:
3406 return -EINVAL;
3407 }
3408
fd0fe6ac
ID
3409 intel_runtime_pm_get(dev_priv);
3410
3bc2913e
BW
3411 ret = i915_mutex_lock_interruptible(dev);
3412 if (ret)
fd0fe6ac 3413 goto rpm_put;
3bc2913e 3414
03ac0642
CW
3415 obj = i915_gem_object_lookup(file, args->handle);
3416 if (!obj) {
e6994aee
CW
3417 ret = -ENOENT;
3418 goto unlock;
3419 }
3420
3421 ret = i915_gem_object_set_cache_level(obj, level);
3422
f8c417cd 3423 i915_gem_object_put(obj);
e6994aee
CW
3424unlock:
3425 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3426rpm_put:
3427 intel_runtime_pm_put(dev_priv);
3428
e6994aee
CW
3429 return ret;
3430}
3431
b9241ea3 3432/*
2da3b9b9
CW
3433 * Prepare buffer for display plane (scanout, cursors, etc).
3434 * Can be called from an uninterruptible phase (modesetting) and allows
3435 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3436 */
3437int
2da3b9b9
CW
3438i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3439 u32 alignment,
e6617330 3440 const struct i915_ggtt_view *view)
b9241ea3 3441{
2da3b9b9 3442 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3443 int ret;
3444
cc98b413
CW
3445 /* Mark the pin_display early so that we account for the
3446 * display coherency whilst setting up the cache domains.
3447 */
8a0c39b1 3448 obj->pin_display++;
cc98b413 3449
a7ef0640
EA
3450 /* The display engine is not coherent with the LLC cache on gen6. As
3451 * a result, we make sure that the pinning that is about to occur is
3452 * done with uncached PTEs. This is lowest common denominator for all
3453 * chipsets.
3454 *
3455 * However for gen6+, we could do better by using the GFDT bit instead
3456 * of uncaching, which would allow us to flush all the LLC-cached data
3457 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3458 */
651d794f
CW
3459 ret = i915_gem_object_set_cache_level(obj,
3460 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3461 if (ret)
cc98b413 3462 goto err_unpin_display;
a7ef0640 3463
2da3b9b9
CW
3464 /* As the user may map the buffer once pinned in the display plane
3465 * (e.g. libkms for the bootup splash), we have to ensure that we
3466 * always use map_and_fenceable for all scanout buffers.
3467 */
91b2db6f 3468 ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
50470bb0
TU
3469 view->type == I915_GGTT_VIEW_NORMAL ?
3470 PIN_MAPPABLE : 0);
2da3b9b9 3471 if (ret)
cc98b413 3472 goto err_unpin_display;
2da3b9b9 3473
e62b59e4 3474 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3475
2da3b9b9 3476 old_write_domain = obj->base.write_domain;
05394f39 3477 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3478
3479 /* It should now be out of any other write domains, and we can update
3480 * the domain values for our changes.
3481 */
e5f1d962 3482 obj->base.write_domain = 0;
05394f39 3483 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3484
3485 trace_i915_gem_object_change_domain(obj,
3486 old_read_domains,
2da3b9b9 3487 old_write_domain);
b9241ea3
ZW
3488
3489 return 0;
cc98b413
CW
3490
3491err_unpin_display:
8a0c39b1 3492 obj->pin_display--;
cc98b413
CW
3493 return ret;
3494}
3495
3496void
e6617330
TU
3497i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3498 const struct i915_ggtt_view *view)
cc98b413 3499{
8a0c39b1
TU
3500 if (WARN_ON(obj->pin_display == 0))
3501 return;
3502
e6617330
TU
3503 i915_gem_object_ggtt_unpin_view(obj, view);
3504
8a0c39b1 3505 obj->pin_display--;
b9241ea3
ZW
3506}
3507
e47c68e9
EA
3508/**
3509 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3510 * @obj: object to act on
3511 * @write: requesting write or read-only access
e47c68e9
EA
3512 *
3513 * This function returns when the move is complete, including waiting on
3514 * flushes to occur.
3515 */
dabdfe02 3516int
919926ae 3517i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3518{
1c5d22f7 3519 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3520 int ret;
3521
0201f1ec 3522 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3523 if (ret)
3524 return ret;
3525
c13d87ea
CW
3526 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3527 return 0;
3528
e47c68e9 3529 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3530
05394f39
CW
3531 old_write_domain = obj->base.write_domain;
3532 old_read_domains = obj->base.read_domains;
1c5d22f7 3533
e47c68e9 3534 /* Flush the CPU cache if it's still invalid. */
05394f39 3535 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3536 i915_gem_clflush_object(obj, false);
2ef7eeaa 3537
05394f39 3538 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3539 }
3540
3541 /* It should now be out of any other write domains, and we can update
3542 * the domain values for our changes.
3543 */
05394f39 3544 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3545
3546 /* If we're writing through the CPU, then the GPU read domains will
3547 * need to be invalidated at next use.
3548 */
3549 if (write) {
05394f39
CW
3550 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3551 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3552 }
2ef7eeaa 3553
1c5d22f7
CW
3554 trace_i915_gem_object_change_domain(obj,
3555 old_read_domains,
3556 old_write_domain);
3557
2ef7eeaa
EA
3558 return 0;
3559}
3560
673a394b
EA
3561/* Throttle our rendering by waiting until the ring has completed our requests
3562 * emitted over 20 msec ago.
3563 *
b962442e
EA
3564 * Note that if we were to use the current jiffies each time around the loop,
3565 * we wouldn't escape the function with any frames outstanding if the time to
3566 * render a frame was over 20ms.
3567 *
673a394b
EA
3568 * This should get us reasonable parallelism between CPU and GPU but also
3569 * relatively low latency when blocking on a particular request to finish.
3570 */
40a5f0de 3571static int
f787a5f5 3572i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3573{
fac5e23e 3574 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3575 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3576 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3577 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3578 int ret;
93533c29 3579
308887aa
DV
3580 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3581 if (ret)
3582 return ret;
3583
f4457ae7
CW
3584 /* ABI: return -EIO if already wedged */
3585 if (i915_terminally_wedged(&dev_priv->gpu_error))
3586 return -EIO;
e110e8d6 3587
1c25595f 3588 spin_lock(&file_priv->mm.lock);
f787a5f5 3589 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3590 if (time_after_eq(request->emitted_jiffies, recent_enough))
3591 break;
40a5f0de 3592
fcfa423c
JH
3593 /*
3594 * Note that the request might not have been submitted yet.
3595 * In which case emitted_jiffies will be zero.
3596 */
3597 if (!request->emitted_jiffies)
3598 continue;
3599
54fb2411 3600 target = request;
b962442e 3601 }
ff865885 3602 if (target)
e8a261ea 3603 i915_gem_request_get(target);
1c25595f 3604 spin_unlock(&file_priv->mm.lock);
40a5f0de 3605
54fb2411 3606 if (target == NULL)
f787a5f5 3607 return 0;
2bc43b5c 3608
776f3236 3609 ret = i915_wait_request(target, true, NULL, NULL);
e8a261ea 3610 i915_gem_request_put(target);
ff865885 3611
40a5f0de
EA
3612 return ret;
3613}
3614
d23db88c 3615static bool
91b2db6f 3616i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c
CW
3617{
3618 struct drm_i915_gem_object *obj = vma->obj;
3619
59bfa124
CW
3620 if (!drm_mm_node_allocated(&vma->node))
3621 return false;
3622
91b2db6f
CW
3623 if (vma->node.size < size)
3624 return true;
3625
3626 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3627 return true;
3628
3629 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3630 return true;
3631
3632 if (flags & PIN_OFFSET_BIAS &&
3633 vma->node.start < (flags & PIN_OFFSET_MASK))
3634 return true;
3635
506a8e87
CW
3636 if (flags & PIN_OFFSET_FIXED &&
3637 vma->node.start != (flags & PIN_OFFSET_MASK))
3638 return true;
3639
d23db88c
CW
3640 return false;
3641}
3642
d0710abb
CW
3643void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3644{
3645 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3646 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3647 bool mappable, fenceable;
3648 u32 fence_size, fence_alignment;
3649
a9f1481f 3650 fence_size = i915_gem_get_ggtt_size(dev_priv,
ad1a7d20
CW
3651 obj->base.size,
3652 obj->tiling_mode);
a9f1481f 3653 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
ad1a7d20
CW
3654 obj->base.size,
3655 obj->tiling_mode,
3656 true);
d0710abb
CW
3657
3658 fenceable = (vma->node.size == fence_size &&
3659 (vma->node.start & (fence_alignment - 1)) == 0);
3660
3661 mappable = (vma->node.start + fence_size <=
a9f1481f 3662 dev_priv->ggtt.mappable_end);
d0710abb
CW
3663
3664 obj->map_and_fenceable = mappable && fenceable;
3665}
3666
305bc234
CW
3667int __i915_vma_do_pin(struct i915_vma *vma,
3668 u64 size, u64 alignment, u64 flags)
673a394b 3669{
305bc234 3670 unsigned int bound = vma->flags;
673a394b
EA
3671 int ret;
3672
59bfa124 3673 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3674 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3675
305bc234
CW
3676 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3677 ret = -EBUSY;
3678 goto err;
3679 }
ac0c6b5a 3680
de895082 3681 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3682 ret = i915_vma_insert(vma, size, alignment, flags);
3683 if (ret)
3684 goto err;
fe14d5f4 3685 }
74898d7e 3686
59bfa124 3687 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3688 if (ret)
59bfa124 3689 goto err;
3b16525c 3690
3272db53 3691 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3692 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3693
3b16525c 3694 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3695 return 0;
673a394b 3696
59bfa124
CW
3697err:
3698 __i915_vma_unpin(vma);
3699 return ret;
ec7adb6e
JL
3700}
3701
3702int
3703i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3704 const struct i915_ggtt_view *view,
91b2db6f 3705 u64 size,
2ffffd0f
CW
3706 u64 alignment,
3707 u64 flags)
ec7adb6e 3708{
59bfa124
CW
3709 struct i915_vma *vma;
3710 int ret;
72e96d64 3711
de895082
CW
3712 if (!view)
3713 view = &i915_ggtt_view_normal;
ec7adb6e 3714
59bfa124
CW
3715 vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
3716 if (IS_ERR(vma))
3717 return PTR_ERR(vma);
3718
3719 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3720 if (flags & PIN_NONBLOCK &&
3721 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3722 return -ENOSPC;
3723
3724 WARN(i915_vma_is_pinned(vma),
3725 "bo is already pinned in ggtt with incorrect alignment:"
3726 " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3727 " obj->map_and_fenceable=%d\n",
3728 upper_32_bits(vma->node.start),
3729 lower_32_bits(vma->node.start),
3730 alignment,
3731 !!(flags & PIN_MAPPABLE),
3732 obj->map_and_fenceable);
3733 ret = i915_vma_unbind(vma);
3734 if (ret)
3735 return ret;
3736 }
3737
3738 return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
3739}
3740
673a394b 3741void
e6617330
TU
3742i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3743 const struct i915_ggtt_view *view)
673a394b 3744{
de895082 3745 i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
673a394b
EA
3746}
3747
673a394b
EA
3748int
3749i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3750 struct drm_file *file)
673a394b
EA
3751{
3752 struct drm_i915_gem_busy *args = data;
05394f39 3753 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3754 int ret;
3755
76c1dec1 3756 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3757 if (ret)
76c1dec1 3758 return ret;
673a394b 3759
03ac0642
CW
3760 obj = i915_gem_object_lookup(file, args->handle);
3761 if (!obj) {
1d7cfea1
CW
3762 ret = -ENOENT;
3763 goto unlock;
673a394b 3764 }
d1b851fc 3765
0be555b6
CW
3766 /* Count all active objects as busy, even if they are currently not used
3767 * by the gpu. Users of this interface expect objects to eventually
21c310f2 3768 * become non-busy without any further actions.
c4de0a5d 3769 */
426960be 3770 args->busy = 0;
573adb39 3771 if (i915_gem_object_is_active(obj)) {
27c01aae 3772 struct drm_i915_gem_request *req;
426960be
CW
3773 int i;
3774
666796da 3775 for (i = 0; i < I915_NUM_ENGINES; i++) {
d72d908b
CW
3776 req = i915_gem_active_peek(&obj->last_read[i],
3777 &obj->base.dev->struct_mutex);
426960be 3778 if (req)
4a570db5 3779 args->busy |= 1 << (16 + req->engine->exec_id);
426960be 3780 }
d72d908b
CW
3781 req = i915_gem_active_peek(&obj->last_write,
3782 &obj->base.dev->struct_mutex);
27c01aae
CW
3783 if (req)
3784 args->busy |= req->engine->exec_id;
426960be 3785 }
673a394b 3786
f8c417cd 3787 i915_gem_object_put(obj);
1d7cfea1 3788unlock:
673a394b 3789 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3790 return ret;
673a394b
EA
3791}
3792
3793int
3794i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3795 struct drm_file *file_priv)
3796{
0206e353 3797 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3798}
3799
3ef94daa
CW
3800int
3801i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3802 struct drm_file *file_priv)
3803{
fac5e23e 3804 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3805 struct drm_i915_gem_madvise *args = data;
05394f39 3806 struct drm_i915_gem_object *obj;
76c1dec1 3807 int ret;
3ef94daa
CW
3808
3809 switch (args->madv) {
3810 case I915_MADV_DONTNEED:
3811 case I915_MADV_WILLNEED:
3812 break;
3813 default:
3814 return -EINVAL;
3815 }
3816
1d7cfea1
CW
3817 ret = i915_mutex_lock_interruptible(dev);
3818 if (ret)
3819 return ret;
3820
03ac0642
CW
3821 obj = i915_gem_object_lookup(file_priv, args->handle);
3822 if (!obj) {
1d7cfea1
CW
3823 ret = -ENOENT;
3824 goto unlock;
3ef94daa 3825 }
3ef94daa 3826
d7f46fc4 3827 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
3828 ret = -EINVAL;
3829 goto out;
3ef94daa
CW
3830 }
3831
656bfa3a
DV
3832 if (obj->pages &&
3833 obj->tiling_mode != I915_TILING_NONE &&
3834 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3835 if (obj->madv == I915_MADV_WILLNEED)
3836 i915_gem_object_unpin_pages(obj);
3837 if (args->madv == I915_MADV_WILLNEED)
3838 i915_gem_object_pin_pages(obj);
3839 }
3840
05394f39
CW
3841 if (obj->madv != __I915_MADV_PURGED)
3842 obj->madv = args->madv;
3ef94daa 3843
6c085a72 3844 /* if the object is no longer attached, discard its backing storage */
be6a0376 3845 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
3846 i915_gem_object_truncate(obj);
3847
05394f39 3848 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3849
1d7cfea1 3850out:
f8c417cd 3851 i915_gem_object_put(obj);
1d7cfea1 3852unlock:
3ef94daa 3853 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3854 return ret;
3ef94daa
CW
3855}
3856
37e680a1
CW
3857void i915_gem_object_init(struct drm_i915_gem_object *obj,
3858 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3859{
b4716185
CW
3860 int i;
3861
35c20a60 3862 INIT_LIST_HEAD(&obj->global_list);
666796da 3863 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
3864 init_request_active(&obj->last_read[i],
3865 i915_gem_object_retire__read);
3866 init_request_active(&obj->last_write,
3867 i915_gem_object_retire__write);
3868 init_request_active(&obj->last_fence, NULL);
b25cb2f8 3869 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3870 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3871 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3872
37e680a1
CW
3873 obj->ops = ops;
3874
0327d6ba
CW
3875 obj->fence_reg = I915_FENCE_REG_NONE;
3876 obj->madv = I915_MADV_WILLNEED;
0327d6ba 3877
f19ec8cb 3878 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3879}
3880
37e680a1 3881static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 3882 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
3883 .get_pages = i915_gem_object_get_pages_gtt,
3884 .put_pages = i915_gem_object_put_pages_gtt,
3885};
3886
d37cd8a8 3887struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 3888 size_t size)
ac52bc56 3889{
c397b908 3890 struct drm_i915_gem_object *obj;
5949eac4 3891 struct address_space *mapping;
1a240d4d 3892 gfp_t mask;
fe3db79b 3893 int ret;
ac52bc56 3894
42dcedd4 3895 obj = i915_gem_object_alloc(dev);
c397b908 3896 if (obj == NULL)
fe3db79b 3897 return ERR_PTR(-ENOMEM);
673a394b 3898
fe3db79b
CW
3899 ret = drm_gem_object_init(dev, &obj->base, size);
3900 if (ret)
3901 goto fail;
673a394b 3902
bed1ea95
CW
3903 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3904 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3905 /* 965gm cannot relocate objects above 4GiB. */
3906 mask &= ~__GFP_HIGHMEM;
3907 mask |= __GFP_DMA32;
3908 }
3909
496ad9aa 3910 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3911 mapping_set_gfp_mask(mapping, mask);
5949eac4 3912
37e680a1 3913 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3914
c397b908
DV
3915 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3916 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3917
3d29b842
ED
3918 if (HAS_LLC(dev)) {
3919 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3920 * cache) for about a 10% performance improvement
3921 * compared to uncached. Graphics requests other than
3922 * display scanout are coherent with the CPU in
3923 * accessing this cache. This means in this mode we
3924 * don't need to clflush on the CPU side, and on the
3925 * GPU side we only need to flush internal caches to
3926 * get data visible to the CPU.
3927 *
3928 * However, we maintain the display planes as UC, and so
3929 * need to rebind when first used as such.
3930 */
3931 obj->cache_level = I915_CACHE_LLC;
3932 } else
3933 obj->cache_level = I915_CACHE_NONE;
3934
d861e338
DV
3935 trace_i915_gem_object_create(obj);
3936
05394f39 3937 return obj;
fe3db79b
CW
3938
3939fail:
3940 i915_gem_object_free(obj);
3941
3942 return ERR_PTR(ret);
c397b908
DV
3943}
3944
340fbd8c
CW
3945static bool discard_backing_storage(struct drm_i915_gem_object *obj)
3946{
3947 /* If we are the last user of the backing storage (be it shmemfs
3948 * pages or stolen etc), we know that the pages are going to be
3949 * immediately released. In this case, we can then skip copying
3950 * back the contents from the GPU.
3951 */
3952
3953 if (obj->madv != I915_MADV_WILLNEED)
3954 return false;
3955
3956 if (obj->base.filp == NULL)
3957 return true;
3958
3959 /* At first glance, this looks racy, but then again so would be
3960 * userspace racing mmap against close. However, the first external
3961 * reference to the filp can only be obtained through the
3962 * i915_gem_mmap_ioctl() which safeguards us against the user
3963 * acquiring such a reference whilst we are in the middle of
3964 * freeing the object.
3965 */
3966 return atomic_long_read(&obj->base.filp->f_count) == 1;
3967}
3968
1488fc08 3969void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3970{
1488fc08 3971 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3972 struct drm_device *dev = obj->base.dev;
fac5e23e 3973 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 3974 struct i915_vma *vma, *next;
673a394b 3975
f65c9168
PZ
3976 intel_runtime_pm_get(dev_priv);
3977
26e12f89
CW
3978 trace_i915_gem_object_destroy(obj);
3979
b1f788c6
CW
3980 /* All file-owned VMA should have been released by this point through
3981 * i915_gem_close_object(), or earlier by i915_gem_context_close().
3982 * However, the object may also be bound into the global GTT (e.g.
3983 * older GPUs without per-process support, or for direct access through
3984 * the GTT either for the user or for scanout). Those VMA still need to
3985 * unbound now.
3986 */
1c7f4bca 3987 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3272db53 3988 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
b1f788c6 3989 GEM_BUG_ON(i915_vma_is_active(vma));
3272db53 3990 vma->flags &= ~I915_VMA_PIN_MASK;
b1f788c6 3991 i915_vma_close(vma);
1488fc08 3992 }
15717de2 3993 GEM_BUG_ON(obj->bind_count);
1488fc08 3994
1d64ae71
BW
3995 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3996 * before progressing. */
3997 if (obj->stolen)
3998 i915_gem_object_unpin_pages(obj);
3999
faf5bf0a 4000 WARN_ON(atomic_read(&obj->frontbuffer_bits));
a071fa00 4001
656bfa3a
DV
4002 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4003 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4004 obj->tiling_mode != I915_TILING_NONE)
4005 i915_gem_object_unpin_pages(obj);
4006
401c29f6
BW
4007 if (WARN_ON(obj->pages_pin_count))
4008 obj->pages_pin_count = 0;
340fbd8c 4009 if (discard_backing_storage(obj))
5537252b 4010 obj->madv = I915_MADV_DONTNEED;
37e680a1 4011 i915_gem_object_put_pages(obj);
de151cf6 4012
9da3da66
CW
4013 BUG_ON(obj->pages);
4014
2f745ad3
CW
4015 if (obj->base.import_attach)
4016 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4017
5cc9ed4b
CW
4018 if (obj->ops->release)
4019 obj->ops->release(obj);
4020
05394f39
CW
4021 drm_gem_object_release(&obj->base);
4022 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4023
05394f39 4024 kfree(obj->bit_17);
42dcedd4 4025 i915_gem_object_free(obj);
f65c9168
PZ
4026
4027 intel_runtime_pm_put(dev_priv);
673a394b
EA
4028}
4029
ec7adb6e
JL
4030struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4031 struct i915_address_space *vm)
e656a6cb
DV
4032{
4033 struct i915_vma *vma;
1c7f4bca 4034 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4035 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4036 vma->vm == vm)
e656a6cb 4037 return vma;
ec7adb6e
JL
4038 }
4039 return NULL;
4040}
4041
4042struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4043 const struct i915_ggtt_view *view)
4044{
ec7adb6e 4045 struct i915_vma *vma;
e656a6cb 4046
598b9ec8 4047 GEM_BUG_ON(!view);
ec7adb6e 4048
1c7f4bca 4049 list_for_each_entry(vma, &obj->vma_list, obj_link)
3272db53
CW
4050 if (i915_vma_is_ggtt(vma) &&
4051 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4052 return vma;
e656a6cb
DV
4053 return NULL;
4054}
4055
dcff85c8 4056int i915_gem_suspend(struct drm_device *dev)
29105ccc 4057{
fac5e23e 4058 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4059 int ret;
28dfe52a 4060
54b4f68f
CW
4061 intel_suspend_gt_powersave(dev_priv);
4062
45c5f202 4063 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4064
4065 /* We have to flush all the executing contexts to main memory so
4066 * that they can saved in the hibernation image. To ensure the last
4067 * context image is coherent, we have to switch away from it. That
4068 * leaves the dev_priv->kernel_context still active when
4069 * we actually suspend, and its image in memory may not match the GPU
4070 * state. Fortunately, the kernel_context is disposable and we do
4071 * not rely on its state.
4072 */
4073 ret = i915_gem_switch_to_kernel_context(dev_priv);
4074 if (ret)
4075 goto err;
4076
dcff85c8 4077 ret = i915_gem_wait_for_idle(dev_priv, true);
f7403347 4078 if (ret)
45c5f202 4079 goto err;
f7403347 4080
c033666a 4081 i915_gem_retire_requests(dev_priv);
673a394b 4082
b2e862d0 4083 i915_gem_context_lost(dev_priv);
45c5f202
CW
4084 mutex_unlock(&dev->struct_mutex);
4085
737b1506 4086 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4087 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4088 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4089
bdcf120b
CW
4090 /* Assert that we sucessfully flushed all the work and
4091 * reset the GPU back to its idle, low power state.
4092 */
67d97da3 4093 WARN_ON(dev_priv->gt.awake);
bdcf120b 4094
673a394b 4095 return 0;
45c5f202
CW
4096
4097err:
4098 mutex_unlock(&dev->struct_mutex);
4099 return ret;
673a394b
EA
4100}
4101
5ab57c70
CW
4102void i915_gem_resume(struct drm_device *dev)
4103{
4104 struct drm_i915_private *dev_priv = to_i915(dev);
4105
4106 mutex_lock(&dev->struct_mutex);
4107 i915_gem_restore_gtt_mappings(dev);
4108
4109 /* As we didn't flush the kernel context before suspend, we cannot
4110 * guarantee that the context image is complete. So let's just reset
4111 * it and start again.
4112 */
4113 if (i915.enable_execlists)
4114 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4115
4116 mutex_unlock(&dev->struct_mutex);
4117}
4118
f691e2f4
DV
4119void i915_gem_init_swizzling(struct drm_device *dev)
4120{
fac5e23e 4121 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4122
11782b02 4123 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4124 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4125 return;
4126
4127 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4128 DISP_TILE_SURFACE_SWIZZLING);
4129
11782b02
DV
4130 if (IS_GEN5(dev))
4131 return;
4132
f691e2f4
DV
4133 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4134 if (IS_GEN6(dev))
6b26c86d 4135 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4136 else if (IS_GEN7(dev))
6b26c86d 4137 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4138 else if (IS_GEN8(dev))
4139 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4140 else
4141 BUG();
f691e2f4 4142}
e21af88d 4143
81e7f200
VS
4144static void init_unused_ring(struct drm_device *dev, u32 base)
4145{
fac5e23e 4146 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4147
4148 I915_WRITE(RING_CTL(base), 0);
4149 I915_WRITE(RING_HEAD(base), 0);
4150 I915_WRITE(RING_TAIL(base), 0);
4151 I915_WRITE(RING_START(base), 0);
4152}
4153
4154static void init_unused_rings(struct drm_device *dev)
4155{
4156 if (IS_I830(dev)) {
4157 init_unused_ring(dev, PRB1_BASE);
4158 init_unused_ring(dev, SRB0_BASE);
4159 init_unused_ring(dev, SRB1_BASE);
4160 init_unused_ring(dev, SRB2_BASE);
4161 init_unused_ring(dev, SRB3_BASE);
4162 } else if (IS_GEN2(dev)) {
4163 init_unused_ring(dev, SRB0_BASE);
4164 init_unused_ring(dev, SRB1_BASE);
4165 } else if (IS_GEN3(dev)) {
4166 init_unused_ring(dev, PRB1_BASE);
4167 init_unused_ring(dev, PRB2_BASE);
4168 }
4169}
4170
4fc7c971
BW
4171int
4172i915_gem_init_hw(struct drm_device *dev)
4173{
fac5e23e 4174 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4175 struct intel_engine_cs *engine;
d200cda6 4176 int ret;
4fc7c971 4177
5e4f5189
CW
4178 /* Double layer security blanket, see i915_gem_init() */
4179 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4180
3accaf7e 4181 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4182 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4183
0bf21347
VS
4184 if (IS_HASWELL(dev))
4185 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4186 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4187
88a2b2a3 4188 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4189 if (IS_IVYBRIDGE(dev)) {
4190 u32 temp = I915_READ(GEN7_MSG_CTL);
4191 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4192 I915_WRITE(GEN7_MSG_CTL, temp);
4193 } else if (INTEL_INFO(dev)->gen >= 7) {
4194 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4195 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4196 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4197 }
88a2b2a3
BW
4198 }
4199
4fc7c971
BW
4200 i915_gem_init_swizzling(dev);
4201
d5abdfda
DV
4202 /*
4203 * At least 830 can leave some of the unused rings
4204 * "active" (ie. head != tail) after resume which
4205 * will prevent c3 entry. Makes sure all unused rings
4206 * are totally idle.
4207 */
4208 init_unused_rings(dev);
4209
ed54c1a1 4210 BUG_ON(!dev_priv->kernel_context);
90638cc1 4211
4ad2fd88
JH
4212 ret = i915_ppgtt_init_hw(dev);
4213 if (ret) {
4214 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4215 goto out;
4216 }
4217
4218 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4219 for_each_engine(engine, dev_priv) {
e2f80391 4220 ret = engine->init_hw(engine);
35a57ffb 4221 if (ret)
5e4f5189 4222 goto out;
35a57ffb 4223 }
99433931 4224
0ccdacf6
PA
4225 intel_mocs_init_l3cc_table(dev);
4226
33a732f4 4227 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4228 ret = intel_guc_setup(dev);
4229 if (ret)
4230 goto out;
33a732f4 4231
5e4f5189
CW
4232out:
4233 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4234 return ret;
8187a2b7
ZN
4235}
4236
39df9190
CW
4237bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4238{
4239 if (INTEL_INFO(dev_priv)->gen < 6)
4240 return false;
4241
4242 /* TODO: make semaphores and Execlists play nicely together */
4243 if (i915.enable_execlists)
4244 return false;
4245
4246 if (value >= 0)
4247 return value;
4248
4249#ifdef CONFIG_INTEL_IOMMU
4250 /* Enable semaphores on SNB when IO remapping is off */
4251 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4252 return false;
4253#endif
4254
4255 return true;
4256}
4257
1070a42b
CW
4258int i915_gem_init(struct drm_device *dev)
4259{
fac5e23e 4260 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4261 int ret;
4262
1070a42b 4263 mutex_lock(&dev->struct_mutex);
d62b4892 4264
a83014d3 4265 if (!i915.enable_execlists) {
7e37f889 4266 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4267 } else {
117897f4 4268 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4269 }
4270
5e4f5189
CW
4271 /* This is just a security blanket to placate dragons.
4272 * On some systems, we very sporadically observe that the first TLBs
4273 * used by the CS may be stale, despite us poking the TLB reset. If
4274 * we hold the forcewake during initialisation these problems
4275 * just magically go away.
4276 */
4277 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4278
72778cb2 4279 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4280
4281 ret = i915_gem_init_ggtt(dev_priv);
4282 if (ret)
4283 goto out_unlock;
d62b4892 4284
2fa48d8d 4285 ret = i915_gem_context_init(dev);
7bcc3777
JN
4286 if (ret)
4287 goto out_unlock;
2fa48d8d 4288
8b3e2d36 4289 ret = intel_engines_init(dev);
35a57ffb 4290 if (ret)
7bcc3777 4291 goto out_unlock;
2fa48d8d 4292
1070a42b 4293 ret = i915_gem_init_hw(dev);
60990320 4294 if (ret == -EIO) {
7e21d648 4295 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4296 * wedged. But we only want to do this where the GPU is angry,
4297 * for all other failure, such as an allocation failure, bail.
4298 */
4299 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4300 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4301 ret = 0;
1070a42b 4302 }
7bcc3777
JN
4303
4304out_unlock:
5e4f5189 4305 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4306 mutex_unlock(&dev->struct_mutex);
1070a42b 4307
60990320 4308 return ret;
1070a42b
CW
4309}
4310
8187a2b7 4311void
117897f4 4312i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4313{
fac5e23e 4314 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4315 struct intel_engine_cs *engine;
8187a2b7 4316
b4ac5afc 4317 for_each_engine(engine, dev_priv)
117897f4 4318 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4319}
4320
64193406 4321static void
666796da 4322init_engine_lists(struct intel_engine_cs *engine)
64193406 4323{
0bc40be8 4324 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4325}
4326
40ae4e16
ID
4327void
4328i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4329{
91c8a326 4330 struct drm_device *dev = &dev_priv->drm;
40ae4e16
ID
4331
4332 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4333 !IS_CHERRYVIEW(dev_priv))
4334 dev_priv->num_fence_regs = 32;
4335 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4336 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4337 dev_priv->num_fence_regs = 16;
4338 else
4339 dev_priv->num_fence_regs = 8;
4340
c033666a 4341 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4342 dev_priv->num_fence_regs =
4343 I915_READ(vgtif_reg(avail_rs.fence_num));
4344
4345 /* Initialize fence registers to zero */
4346 i915_gem_restore_fences(dev);
4347
4348 i915_gem_detect_bit_6_swizzle(dev);
4349}
4350
673a394b 4351void
d64aa096 4352i915_gem_load_init(struct drm_device *dev)
673a394b 4353{
fac5e23e 4354 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4355 int i;
4356
efab6d8d 4357 dev_priv->objects =
42dcedd4
CW
4358 kmem_cache_create("i915_gem_object",
4359 sizeof(struct drm_i915_gem_object), 0,
4360 SLAB_HWCACHE_ALIGN,
4361 NULL);
e20d2ab7
CW
4362 dev_priv->vmas =
4363 kmem_cache_create("i915_gem_vma",
4364 sizeof(struct i915_vma), 0,
4365 SLAB_HWCACHE_ALIGN,
4366 NULL);
efab6d8d
CW
4367 dev_priv->requests =
4368 kmem_cache_create("i915_gem_request",
4369 sizeof(struct drm_i915_gem_request), 0,
0eafec6d
CW
4370 SLAB_HWCACHE_ALIGN |
4371 SLAB_RECLAIM_ACCOUNT |
4372 SLAB_DESTROY_BY_RCU,
efab6d8d 4373 NULL);
673a394b 4374
a33afea5 4375 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4376 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4377 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4378 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4379 for (i = 0; i < I915_NUM_ENGINES; i++)
4380 init_engine_lists(&dev_priv->engine[i]);
4b9de737 4381 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4382 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
67d97da3 4383 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4384 i915_gem_retire_work_handler);
67d97da3 4385 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4386 i915_gem_idle_work_handler);
1f15b76f 4387 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4388 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4389
72bfa19c
CW
4390 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4391
19b2dbde 4392 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 4393
6b95a207 4394 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4395
ce453d81
CW
4396 dev_priv->mm.interruptible = true;
4397
b5add959 4398 spin_lock_init(&dev_priv->fb_tracking.lock);
673a394b 4399}
71acb5eb 4400
d64aa096
ID
4401void i915_gem_load_cleanup(struct drm_device *dev)
4402{
4403 struct drm_i915_private *dev_priv = to_i915(dev);
4404
4405 kmem_cache_destroy(dev_priv->requests);
4406 kmem_cache_destroy(dev_priv->vmas);
4407 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4408
4409 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4410 rcu_barrier();
d64aa096
ID
4411}
4412
461fb99c
CW
4413int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4414{
4415 struct drm_i915_gem_object *obj;
4416
4417 /* Called just before we write the hibernation image.
4418 *
4419 * We need to update the domain tracking to reflect that the CPU
4420 * will be accessing all the pages to create and restore from the
4421 * hibernation, and so upon restoration those pages will be in the
4422 * CPU domain.
4423 *
4424 * To make sure the hibernation image contains the latest state,
4425 * we update that state just before writing out the image.
4426 */
4427
4428 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4429 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4430 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4431 }
4432
4433 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4434 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4435 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4436 }
4437
4438 return 0;
4439}
4440
f787a5f5 4441void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4442{
f787a5f5 4443 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4444 struct drm_i915_gem_request *request;
b962442e
EA
4445
4446 /* Clean up our request list when the client is going away, so that
4447 * later retire_requests won't dereference our soon-to-be-gone
4448 * file_priv.
4449 */
1c25595f 4450 spin_lock(&file_priv->mm.lock);
15f7bbc7 4451 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4452 request->file_priv = NULL;
1c25595f 4453 spin_unlock(&file_priv->mm.lock);
b29c19b6 4454
2e1b8730 4455 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4456 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4457 list_del(&file_priv->rps.link);
8d3afd7d 4458 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4459 }
b29c19b6
CW
4460}
4461
4462int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4463{
4464 struct drm_i915_file_private *file_priv;
e422b888 4465 int ret;
b29c19b6
CW
4466
4467 DRM_DEBUG_DRIVER("\n");
4468
4469 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4470 if (!file_priv)
4471 return -ENOMEM;
4472
4473 file->driver_priv = file_priv;
f19ec8cb 4474 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4475 file_priv->file = file;
2e1b8730 4476 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4477
4478 spin_lock_init(&file_priv->mm.lock);
4479 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4480
c80ff16e 4481 file_priv->bsd_engine = -1;
de1add36 4482
e422b888
BW
4483 ret = i915_gem_context_open(dev, file);
4484 if (ret)
4485 kfree(file_priv);
b29c19b6 4486
e422b888 4487 return ret;
b29c19b6
CW
4488}
4489
b680c37a
DV
4490/**
4491 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4492 * @old: current GEM buffer for the frontbuffer slots
4493 * @new: new GEM buffer for the frontbuffer slots
4494 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4495 *
4496 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4497 * from @old and setting them in @new. Both @old and @new can be NULL.
4498 */
a071fa00
DV
4499void i915_gem_track_fb(struct drm_i915_gem_object *old,
4500 struct drm_i915_gem_object *new,
4501 unsigned frontbuffer_bits)
4502{
faf5bf0a
CW
4503 /* Control of individual bits within the mask are guarded by
4504 * the owning plane->mutex, i.e. we can never see concurrent
4505 * manipulation of individual bits. But since the bitfield as a whole
4506 * is updated using RMW, we need to use atomics in order to update
4507 * the bits.
4508 */
4509 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4510 sizeof(atomic_t) * BITS_PER_BYTE);
4511
a071fa00 4512 if (old) {
faf5bf0a
CW
4513 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4514 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4515 }
4516
4517 if (new) {
faf5bf0a
CW
4518 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4519 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4520 }
4521}
4522
a70a3148 4523/* All the new VM stuff */
088e0df4
MT
4524u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4525 struct i915_address_space *vm)
a70a3148 4526{
fac5e23e 4527 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
a70a3148
BW
4528 struct i915_vma *vma;
4529
896ab1a5 4530 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 4531
1c7f4bca 4532 list_for_each_entry(vma, &o->vma_list, obj_link) {
3272db53 4533 if (i915_vma_is_ggtt(vma) &&
ec7adb6e
JL
4534 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4535 continue;
4536 if (vma->vm == vm)
a70a3148 4537 return vma->node.start;
a70a3148 4538 }
ec7adb6e 4539
f25748ea
DV
4540 WARN(1, "%s vma for this object not found.\n",
4541 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
4542 return -1;
4543}
4544
088e0df4
MT
4545u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4546 const struct i915_ggtt_view *view)
a70a3148
BW
4547{
4548 struct i915_vma *vma;
4549
1c7f4bca 4550 list_for_each_entry(vma, &o->vma_list, obj_link)
3272db53
CW
4551 if (i915_vma_is_ggtt(vma) &&
4552 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
4553 return vma->node.start;
4554
5678ad73 4555 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
4556 return -1;
4557}
4558
4559bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4560 struct i915_address_space *vm)
4561{
4562 struct i915_vma *vma;
4563
1c7f4bca 4564 list_for_each_entry(vma, &o->vma_list, obj_link) {
3272db53 4565 if (i915_vma_is_ggtt(vma) &&
ec7adb6e
JL
4566 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4567 continue;
4568 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4569 return true;
4570 }
4571
4572 return false;
4573}
4574
4575bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 4576 const struct i915_ggtt_view *view)
ec7adb6e 4577{
ec7adb6e
JL
4578 struct i915_vma *vma;
4579
1c7f4bca 4580 list_for_each_entry(vma, &o->vma_list, obj_link)
3272db53 4581 if (i915_vma_is_ggtt(vma) &&
9abc4648 4582 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 4583 drm_mm_node_allocated(&vma->node))
a70a3148
BW
4584 return true;
4585
4586 return false;
4587}
4588
8da32727 4589unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 4590{
a70a3148
BW
4591 struct i915_vma *vma;
4592
8da32727 4593 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 4594
1c7f4bca 4595 list_for_each_entry(vma, &o->vma_list, obj_link) {
3272db53 4596 if (i915_vma_is_ggtt(vma) &&
8da32727 4597 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 4598 return vma->node.size;
ec7adb6e 4599 }
8da32727 4600
a70a3148
BW
4601 return 0;
4602}
4603
ec7adb6e 4604bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
4605{
4606 struct i915_vma *vma;
1c7f4bca 4607 list_for_each_entry(vma, &obj->vma_list, obj_link)
20dfbde4 4608 if (i915_vma_is_pinned(vma))
ec7adb6e 4609 return true;
a6631ae1 4610
ec7adb6e 4611 return false;
5c2abbea 4612}
ea70299d 4613
033908ae
DG
4614/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4615struct page *
4616i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4617{
4618 struct page *page;
4619
4620 /* Only default objects have per-page dirty tracking */
b9bcd14a 4621 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4622 return NULL;
4623
4624 page = i915_gem_object_get_page(obj, n);
4625 set_page_dirty(page);
4626 return page;
4627}
4628
ea70299d
DG
4629/* Allocate a new GEM object and fill it with the supplied data */
4630struct drm_i915_gem_object *
4631i915_gem_object_create_from_data(struct drm_device *dev,
4632 const void *data, size_t size)
4633{
4634 struct drm_i915_gem_object *obj;
4635 struct sg_table *sg;
4636 size_t bytes;
4637 int ret;
4638
d37cd8a8 4639 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4640 if (IS_ERR(obj))
ea70299d
DG
4641 return obj;
4642
4643 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4644 if (ret)
4645 goto fail;
4646
4647 ret = i915_gem_object_get_pages(obj);
4648 if (ret)
4649 goto fail;
4650
4651 i915_gem_object_pin_pages(obj);
4652 sg = obj->pages;
4653 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4654 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4655 i915_gem_object_unpin_pages(obj);
4656
4657 if (WARN_ON(bytes != size)) {
4658 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4659 ret = -EFAULT;
4660 goto fail;
4661 }
4662
4663 return obj;
4664
4665fail:
f8c417cd 4666 i915_gem_object_put(obj);
ea70299d
DG
4667 return ERR_PTR(ret);
4668}