]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Broaden application of set-domain(GTT)
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
5a125c3c
EA
156int
157i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 158 struct drm_file *file)
5a125c3c 159{
73aa808f 160 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 161 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
162 struct drm_i915_gem_object *obj;
163 size_t pinned;
5a125c3c 164
6299f992 165 pinned = 0;
73aa808f 166 mutex_lock(&dev->struct_mutex);
35c20a60 167 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 168 if (i915_gem_obj_is_pinned(obj))
f343c5f6 169 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 170 mutex_unlock(&dev->struct_mutex);
5a125c3c 171
853ba5d2 172 args->aper_size = dev_priv->gtt.base.total;
0206e353 173 args->aper_available_size = args->aper_size - pinned;
6299f992 174
5a125c3c
EA
175 return 0;
176}
177
6a2c4232
CW
178static int
179i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 180{
6a2c4232
CW
181 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182 char *vaddr = obj->phys_handle->vaddr;
183 struct sg_table *st;
184 struct scatterlist *sg;
185 int i;
00731155 186
6a2c4232
CW
187 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188 return -EINVAL;
189
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page))
196 return PTR_ERR(page);
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 page_cache_release(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(obj->base.dev);
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (st == NULL)
211 return -ENOMEM;
212
213 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214 kfree(st);
215 return -ENOMEM;
216 }
217
218 sg = st->sgl;
219 sg->offset = 0;
220 sg->length = obj->base.size;
00731155 221
6a2c4232
CW
222 sg_dma_address(sg) = obj->phys_handle->busaddr;
223 sg_dma_len(sg) = obj->base.size;
224
225 obj->pages = st;
226 obj->has_dma_mapping = true;
227 return 0;
228}
229
230static void
231i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232{
233 int ret;
234
235 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 236
6a2c4232
CW
237 ret = i915_gem_object_set_to_cpu_domain(obj, true);
238 if (ret) {
239 /* In the event of a disaster, abandon all caches and
240 * hope for the best.
241 */
242 WARN_ON(ret != -EIO);
243 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244 }
245
246 if (obj->madv == I915_MADV_DONTNEED)
247 obj->dirty = 0;
248
249 if (obj->dirty) {
00731155 250 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 251 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
252 int i;
253
254 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
255 struct page *page;
256 char *dst;
257
258 page = shmem_read_mapping_page(mapping, i);
259 if (IS_ERR(page))
260 continue;
261
262 dst = kmap_atomic(page);
263 drm_clflush_virt_range(vaddr, PAGE_SIZE);
264 memcpy(dst, vaddr, PAGE_SIZE);
265 kunmap_atomic(dst);
266
267 set_page_dirty(page);
268 if (obj->madv == I915_MADV_WILLNEED)
00731155 269 mark_page_accessed(page);
6a2c4232 270 page_cache_release(page);
00731155
CW
271 vaddr += PAGE_SIZE;
272 }
6a2c4232 273 obj->dirty = 0;
00731155
CW
274 }
275
6a2c4232
CW
276 sg_free_table(obj->pages);
277 kfree(obj->pages);
278
279 obj->has_dma_mapping = false;
280}
281
282static void
283i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284{
285 drm_pci_free(obj->base.dev, obj->phys_handle);
286}
287
288static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289 .get_pages = i915_gem_object_get_pages_phys,
290 .put_pages = i915_gem_object_put_pages_phys,
291 .release = i915_gem_object_release_phys,
292};
293
294static int
295drop_pages(struct drm_i915_gem_object *obj)
296{
297 struct i915_vma *vma, *next;
298 int ret;
299
300 drm_gem_object_reference(&obj->base);
301 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302 if (i915_vma_unbind(vma))
303 break;
304
305 ret = i915_gem_object_put_pages(obj);
306 drm_gem_object_unreference(&obj->base);
307
308 return ret;
00731155
CW
309}
310
311int
312i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313 int align)
314{
315 drm_dma_handle_t *phys;
6a2c4232 316 int ret;
00731155
CW
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 if (obj->base.filp == NULL)
329 return -EINVAL;
330
6a2c4232
CW
331 ret = drop_pages(obj);
332 if (ret)
333 return ret;
334
00731155
CW
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
00731155 340 obj->phys_handle = phys;
6a2c4232
CW
341 obj->ops = &i915_gem_phys_ops;
342
343 return i915_gem_object_get_pages(obj);
00731155
CW
344}
345
346static int
347i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348 struct drm_i915_gem_pwrite *args,
349 struct drm_file *file_priv)
350{
351 struct drm_device *dev = obj->base.dev;
352 void *vaddr = obj->phys_handle->vaddr + args->offset;
353 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
354 int ret;
355
356 /* We manually control the domain here and pretend that it
357 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358 */
359 ret = i915_gem_object_wait_rendering(obj, false);
360 if (ret)
361 return ret;
00731155
CW
362
363 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
364 unsigned long unwritten;
365
366 /* The physical object once assigned is fixed for the lifetime
367 * of the obj, so we can safely drop the lock and continue
368 * to access vaddr.
369 */
370 mutex_unlock(&dev->struct_mutex);
371 unwritten = copy_from_user(vaddr, user_data, args->size);
372 mutex_lock(&dev->struct_mutex);
373 if (unwritten)
374 return -EFAULT;
375 }
376
6a2c4232 377 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
378 i915_gem_chipset_flush(dev);
379 return 0;
380}
381
42dcedd4
CW
382void *i915_gem_object_alloc(struct drm_device *dev)
383{
384 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 385 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
386}
387
388void i915_gem_object_free(struct drm_i915_gem_object *obj)
389{
390 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391 kmem_cache_free(dev_priv->slab, obj);
392}
393
ff72145b
DA
394static int
395i915_gem_create(struct drm_file *file,
396 struct drm_device *dev,
397 uint64_t size,
355a7018 398 bool dumb,
ff72145b 399 uint32_t *handle_p)
673a394b 400{
05394f39 401 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
402 int ret;
403 u32 handle;
673a394b 404
ff72145b 405 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
406 if (size == 0)
407 return -EINVAL;
673a394b
EA
408
409 /* Allocate the new object */
ff72145b 410 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
411 if (obj == NULL)
412 return -ENOMEM;
413
355a7018 414 obj->base.dumb = dumb;
05394f39 415 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 416 /* drop reference from allocate - handle holds it now */
d861e338
DV
417 drm_gem_object_unreference_unlocked(&obj->base);
418 if (ret)
419 return ret;
202f2fef 420
ff72145b 421 *handle_p = handle;
673a394b
EA
422 return 0;
423}
424
ff72145b
DA
425int
426i915_gem_dumb_create(struct drm_file *file,
427 struct drm_device *dev,
428 struct drm_mode_create_dumb *args)
429{
430 /* have to work out size/pitch and return them */
de45eaf7 431 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
432 args->size = args->pitch * args->height;
433 return i915_gem_create(file, dev,
355a7018 434 args->size, true, &args->handle);
ff72145b
DA
435}
436
ff72145b
DA
437/**
438 * Creates a new mm object and returns a handle to it.
439 */
440int
441i915_gem_create_ioctl(struct drm_device *dev, void *data,
442 struct drm_file *file)
443{
444 struct drm_i915_gem_create *args = data;
63ed2cb2 445
ff72145b 446 return i915_gem_create(file, dev,
355a7018 447 args->size, false, &args->handle);
ff72145b
DA
448}
449
8461d226
DV
450static inline int
451__copy_to_user_swizzled(char __user *cpu_vaddr,
452 const char *gpu_vaddr, int gpu_offset,
453 int length)
454{
455 int ret, cpu_offset = 0;
456
457 while (length > 0) {
458 int cacheline_end = ALIGN(gpu_offset + 1, 64);
459 int this_length = min(cacheline_end - gpu_offset, length);
460 int swizzled_gpu_offset = gpu_offset ^ 64;
461
462 ret = __copy_to_user(cpu_vaddr + cpu_offset,
463 gpu_vaddr + swizzled_gpu_offset,
464 this_length);
465 if (ret)
466 return ret + length;
467
468 cpu_offset += this_length;
469 gpu_offset += this_length;
470 length -= this_length;
471 }
472
473 return 0;
474}
475
8c59967c 476static inline int
4f0c7cfb
BW
477__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
478 const char __user *cpu_vaddr,
8c59967c
DV
479 int length)
480{
481 int ret, cpu_offset = 0;
482
483 while (length > 0) {
484 int cacheline_end = ALIGN(gpu_offset + 1, 64);
485 int this_length = min(cacheline_end - gpu_offset, length);
486 int swizzled_gpu_offset = gpu_offset ^ 64;
487
488 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
489 cpu_vaddr + cpu_offset,
490 this_length);
491 if (ret)
492 return ret + length;
493
494 cpu_offset += this_length;
495 gpu_offset += this_length;
496 length -= this_length;
497 }
498
499 return 0;
500}
501
4c914c0c
BV
502/*
503 * Pins the specified object's pages and synchronizes the object with
504 * GPU accesses. Sets needs_clflush to non-zero if the caller should
505 * flush the object from the CPU cache.
506 */
507int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
508 int *needs_clflush)
509{
510 int ret;
511
512 *needs_clflush = 0;
513
514 if (!obj->base.filp)
515 return -EINVAL;
516
517 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
518 /* If we're not in the cpu read domain, set ourself into the gtt
519 * read domain and manually flush cachelines (if required). This
520 * optimizes for the case when the gpu will dirty the data
521 * anyway again before the next pread happens. */
522 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
523 obj->cache_level);
524 ret = i915_gem_object_wait_rendering(obj, true);
525 if (ret)
526 return ret;
c8725f3d
CW
527
528 i915_gem_object_retire(obj);
4c914c0c
BV
529 }
530
531 ret = i915_gem_object_get_pages(obj);
532 if (ret)
533 return ret;
534
535 i915_gem_object_pin_pages(obj);
536
537 return ret;
538}
539
d174bd64
DV
540/* Per-page copy function for the shmem pread fastpath.
541 * Flushes invalid cachelines before reading the target if
542 * needs_clflush is set. */
eb01459f 543static int
d174bd64
DV
544shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
545 char __user *user_data,
546 bool page_do_bit17_swizzling, bool needs_clflush)
547{
548 char *vaddr;
549 int ret;
550
e7e58eb5 551 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
552 return -EINVAL;
553
554 vaddr = kmap_atomic(page);
555 if (needs_clflush)
556 drm_clflush_virt_range(vaddr + shmem_page_offset,
557 page_length);
558 ret = __copy_to_user_inatomic(user_data,
559 vaddr + shmem_page_offset,
560 page_length);
561 kunmap_atomic(vaddr);
562
f60d7f0c 563 return ret ? -EFAULT : 0;
d174bd64
DV
564}
565
23c18c71
DV
566static void
567shmem_clflush_swizzled_range(char *addr, unsigned long length,
568 bool swizzled)
569{
e7e58eb5 570 if (unlikely(swizzled)) {
23c18c71
DV
571 unsigned long start = (unsigned long) addr;
572 unsigned long end = (unsigned long) addr + length;
573
574 /* For swizzling simply ensure that we always flush both
575 * channels. Lame, but simple and it works. Swizzled
576 * pwrite/pread is far from a hotpath - current userspace
577 * doesn't use it at all. */
578 start = round_down(start, 128);
579 end = round_up(end, 128);
580
581 drm_clflush_virt_range((void *)start, end - start);
582 } else {
583 drm_clflush_virt_range(addr, length);
584 }
585
586}
587
d174bd64
DV
588/* Only difference to the fast-path function is that this can handle bit17
589 * and uses non-atomic copy and kmap functions. */
590static int
591shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
592 char __user *user_data,
593 bool page_do_bit17_swizzling, bool needs_clflush)
594{
595 char *vaddr;
596 int ret;
597
598 vaddr = kmap(page);
599 if (needs_clflush)
23c18c71
DV
600 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
601 page_length,
602 page_do_bit17_swizzling);
d174bd64
DV
603
604 if (page_do_bit17_swizzling)
605 ret = __copy_to_user_swizzled(user_data,
606 vaddr, shmem_page_offset,
607 page_length);
608 else
609 ret = __copy_to_user(user_data,
610 vaddr + shmem_page_offset,
611 page_length);
612 kunmap(page);
613
f60d7f0c 614 return ret ? - EFAULT : 0;
d174bd64
DV
615}
616
eb01459f 617static int
dbf7bff0
DV
618i915_gem_shmem_pread(struct drm_device *dev,
619 struct drm_i915_gem_object *obj,
620 struct drm_i915_gem_pread *args,
621 struct drm_file *file)
eb01459f 622{
8461d226 623 char __user *user_data;
eb01459f 624 ssize_t remain;
8461d226 625 loff_t offset;
eb2c0c81 626 int shmem_page_offset, page_length, ret = 0;
8461d226 627 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 628 int prefaulted = 0;
8489731c 629 int needs_clflush = 0;
67d5a50c 630 struct sg_page_iter sg_iter;
eb01459f 631
2bb4629a 632 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
633 remain = args->size;
634
8461d226 635 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 636
4c914c0c 637 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
638 if (ret)
639 return ret;
640
8461d226 641 offset = args->offset;
eb01459f 642
67d5a50c
ID
643 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
644 offset >> PAGE_SHIFT) {
2db76d7c 645 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
646
647 if (remain <= 0)
648 break;
649
eb01459f
EA
650 /* Operation in this page
651 *
eb01459f 652 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
653 * page_length = bytes to copy for this page
654 */
c8cbbb8b 655 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
656 page_length = remain;
657 if ((shmem_page_offset + page_length) > PAGE_SIZE)
658 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 659
8461d226
DV
660 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
661 (page_to_phys(page) & (1 << 17)) != 0;
662
d174bd64
DV
663 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
664 user_data, page_do_bit17_swizzling,
665 needs_clflush);
666 if (ret == 0)
667 goto next_page;
dbf7bff0 668
dbf7bff0
DV
669 mutex_unlock(&dev->struct_mutex);
670
d330a953 671 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 672 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
673 /* Userspace is tricking us, but we've already clobbered
674 * its pages with the prefault and promised to write the
675 * data up to the first fault. Hence ignore any errors
676 * and just continue. */
677 (void)ret;
678 prefaulted = 1;
679 }
eb01459f 680
d174bd64
DV
681 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
682 user_data, page_do_bit17_swizzling,
683 needs_clflush);
eb01459f 684
dbf7bff0 685 mutex_lock(&dev->struct_mutex);
f60d7f0c 686
f60d7f0c 687 if (ret)
8461d226 688 goto out;
8461d226 689
17793c9a 690next_page:
eb01459f 691 remain -= page_length;
8461d226 692 user_data += page_length;
eb01459f
EA
693 offset += page_length;
694 }
695
4f27b75d 696out:
f60d7f0c
CW
697 i915_gem_object_unpin_pages(obj);
698
eb01459f
EA
699 return ret;
700}
701
673a394b
EA
702/**
703 * Reads data from the object referenced by handle.
704 *
705 * On error, the contents of *data are undefined.
706 */
707int
708i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 709 struct drm_file *file)
673a394b
EA
710{
711 struct drm_i915_gem_pread *args = data;
05394f39 712 struct drm_i915_gem_object *obj;
35b62a89 713 int ret = 0;
673a394b 714
51311d0a
CW
715 if (args->size == 0)
716 return 0;
717
718 if (!access_ok(VERIFY_WRITE,
2bb4629a 719 to_user_ptr(args->data_ptr),
51311d0a
CW
720 args->size))
721 return -EFAULT;
722
4f27b75d 723 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 724 if (ret)
4f27b75d 725 return ret;
673a394b 726
05394f39 727 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 728 if (&obj->base == NULL) {
1d7cfea1
CW
729 ret = -ENOENT;
730 goto unlock;
4f27b75d 731 }
673a394b 732
7dcd2499 733 /* Bounds check source. */
05394f39
CW
734 if (args->offset > obj->base.size ||
735 args->size > obj->base.size - args->offset) {
ce9d419d 736 ret = -EINVAL;
35b62a89 737 goto out;
ce9d419d
CW
738 }
739
1286ff73
DV
740 /* prime objects have no backing filp to GEM pread/pwrite
741 * pages from.
742 */
743 if (!obj->base.filp) {
744 ret = -EINVAL;
745 goto out;
746 }
747
db53a302
CW
748 trace_i915_gem_object_pread(obj, args->offset, args->size);
749
dbf7bff0 750 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 751
35b62a89 752out:
05394f39 753 drm_gem_object_unreference(&obj->base);
1d7cfea1 754unlock:
4f27b75d 755 mutex_unlock(&dev->struct_mutex);
eb01459f 756 return ret;
673a394b
EA
757}
758
0839ccb8
KP
759/* This is the fast write path which cannot handle
760 * page faults in the source data
9b7530cc 761 */
0839ccb8
KP
762
763static inline int
764fast_user_write(struct io_mapping *mapping,
765 loff_t page_base, int page_offset,
766 char __user *user_data,
767 int length)
9b7530cc 768{
4f0c7cfb
BW
769 void __iomem *vaddr_atomic;
770 void *vaddr;
0839ccb8 771 unsigned long unwritten;
9b7530cc 772
3e4d3af5 773 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
774 /* We can use the cpu mem copy function because this is X86. */
775 vaddr = (void __force*)vaddr_atomic + page_offset;
776 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 777 user_data, length);
3e4d3af5 778 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 779 return unwritten;
0839ccb8
KP
780}
781
3de09aa3
EA
782/**
783 * This is the fast pwrite path, where we copy the data directly from the
784 * user into the GTT, uncached.
785 */
673a394b 786static int
05394f39
CW
787i915_gem_gtt_pwrite_fast(struct drm_device *dev,
788 struct drm_i915_gem_object *obj,
3de09aa3 789 struct drm_i915_gem_pwrite *args,
05394f39 790 struct drm_file *file)
673a394b 791{
3e31c6c0 792 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 793 ssize_t remain;
0839ccb8 794 loff_t offset, page_base;
673a394b 795 char __user *user_data;
935aaa69
DV
796 int page_offset, page_length, ret;
797
1ec9e26d 798 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
799 if (ret)
800 goto out;
801
802 ret = i915_gem_object_set_to_gtt_domain(obj, true);
803 if (ret)
804 goto out_unpin;
805
806 ret = i915_gem_object_put_fence(obj);
807 if (ret)
808 goto out_unpin;
673a394b 809
2bb4629a 810 user_data = to_user_ptr(args->data_ptr);
673a394b 811 remain = args->size;
673a394b 812
f343c5f6 813 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
814
815 while (remain > 0) {
816 /* Operation in this page
817 *
0839ccb8
KP
818 * page_base = page offset within aperture
819 * page_offset = offset within page
820 * page_length = bytes to copy for this page
673a394b 821 */
c8cbbb8b
CW
822 page_base = offset & PAGE_MASK;
823 page_offset = offset_in_page(offset);
0839ccb8
KP
824 page_length = remain;
825 if ((page_offset + remain) > PAGE_SIZE)
826 page_length = PAGE_SIZE - page_offset;
827
0839ccb8 828 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
829 * source page isn't available. Return the error and we'll
830 * retry in the slow path.
0839ccb8 831 */
5d4545ae 832 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
833 page_offset, user_data, page_length)) {
834 ret = -EFAULT;
835 goto out_unpin;
836 }
673a394b 837
0839ccb8
KP
838 remain -= page_length;
839 user_data += page_length;
840 offset += page_length;
673a394b 841 }
673a394b 842
935aaa69 843out_unpin:
d7f46fc4 844 i915_gem_object_ggtt_unpin(obj);
935aaa69 845out:
3de09aa3 846 return ret;
673a394b
EA
847}
848
d174bd64
DV
849/* Per-page copy function for the shmem pwrite fastpath.
850 * Flushes invalid cachelines before writing to the target if
851 * needs_clflush_before is set and flushes out any written cachelines after
852 * writing if needs_clflush is set. */
3043c60c 853static int
d174bd64
DV
854shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
855 char __user *user_data,
856 bool page_do_bit17_swizzling,
857 bool needs_clflush_before,
858 bool needs_clflush_after)
673a394b 859{
d174bd64 860 char *vaddr;
673a394b 861 int ret;
3de09aa3 862
e7e58eb5 863 if (unlikely(page_do_bit17_swizzling))
d174bd64 864 return -EINVAL;
3de09aa3 865
d174bd64
DV
866 vaddr = kmap_atomic(page);
867 if (needs_clflush_before)
868 drm_clflush_virt_range(vaddr + shmem_page_offset,
869 page_length);
c2831a94
CW
870 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
871 user_data, page_length);
d174bd64
DV
872 if (needs_clflush_after)
873 drm_clflush_virt_range(vaddr + shmem_page_offset,
874 page_length);
875 kunmap_atomic(vaddr);
3de09aa3 876
755d2218 877 return ret ? -EFAULT : 0;
3de09aa3
EA
878}
879
d174bd64
DV
880/* Only difference to the fast-path function is that this can handle bit17
881 * and uses non-atomic copy and kmap functions. */
3043c60c 882static int
d174bd64
DV
883shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
884 char __user *user_data,
885 bool page_do_bit17_swizzling,
886 bool needs_clflush_before,
887 bool needs_clflush_after)
673a394b 888{
d174bd64
DV
889 char *vaddr;
890 int ret;
e5281ccd 891
d174bd64 892 vaddr = kmap(page);
e7e58eb5 893 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
894 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
895 page_length,
896 page_do_bit17_swizzling);
d174bd64
DV
897 if (page_do_bit17_swizzling)
898 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
899 user_data,
900 page_length);
d174bd64
DV
901 else
902 ret = __copy_from_user(vaddr + shmem_page_offset,
903 user_data,
904 page_length);
905 if (needs_clflush_after)
23c18c71
DV
906 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
907 page_length,
908 page_do_bit17_swizzling);
d174bd64 909 kunmap(page);
40123c1f 910
755d2218 911 return ret ? -EFAULT : 0;
40123c1f
EA
912}
913
40123c1f 914static int
e244a443
DV
915i915_gem_shmem_pwrite(struct drm_device *dev,
916 struct drm_i915_gem_object *obj,
917 struct drm_i915_gem_pwrite *args,
918 struct drm_file *file)
40123c1f 919{
40123c1f 920 ssize_t remain;
8c59967c
DV
921 loff_t offset;
922 char __user *user_data;
eb2c0c81 923 int shmem_page_offset, page_length, ret = 0;
8c59967c 924 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 925 int hit_slowpath = 0;
58642885
DV
926 int needs_clflush_after = 0;
927 int needs_clflush_before = 0;
67d5a50c 928 struct sg_page_iter sg_iter;
40123c1f 929
2bb4629a 930 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
931 remain = args->size;
932
8c59967c 933 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 934
58642885
DV
935 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
936 /* If we're not in the cpu write domain, set ourself into the gtt
937 * write domain and manually flush cachelines (if required). This
938 * optimizes for the case when the gpu will use the data
939 * right away and we therefore have to clflush anyway. */
2c22569b 940 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
941 ret = i915_gem_object_wait_rendering(obj, false);
942 if (ret)
943 return ret;
c8725f3d
CW
944
945 i915_gem_object_retire(obj);
58642885 946 }
c76ce038
CW
947 /* Same trick applies to invalidate partially written cachelines read
948 * before writing. */
949 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
950 needs_clflush_before =
951 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 952
755d2218
CW
953 ret = i915_gem_object_get_pages(obj);
954 if (ret)
955 return ret;
956
957 i915_gem_object_pin_pages(obj);
958
673a394b 959 offset = args->offset;
05394f39 960 obj->dirty = 1;
673a394b 961
67d5a50c
ID
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
2db76d7c 964 struct page *page = sg_page_iter_page(&sg_iter);
58642885 965 int partial_cacheline_write;
e5281ccd 966
9da3da66
CW
967 if (remain <= 0)
968 break;
969
40123c1f
EA
970 /* Operation in this page
971 *
40123c1f 972 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
973 * page_length = bytes to copy for this page
974 */
c8cbbb8b 975 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 980
58642885
DV
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
8c59967c
DV
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
d174bd64
DV
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
e244a443
DV
997
998 hit_slowpath = 1;
e244a443 999 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
40123c1f 1004
e244a443 1005 mutex_lock(&dev->struct_mutex);
755d2218 1006
755d2218 1007 if (ret)
8c59967c 1008 goto out;
8c59967c 1009
17793c9a 1010next_page:
40123c1f 1011 remain -= page_length;
8c59967c 1012 user_data += page_length;
40123c1f 1013 offset += page_length;
673a394b
EA
1014 }
1015
fbd5a26d 1016out:
755d2218
CW
1017 i915_gem_object_unpin_pages(obj);
1018
e244a443 1019 if (hit_slowpath) {
8dcf015e
DV
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
e244a443 1029 }
8c59967c 1030 }
673a394b 1031
58642885 1032 if (needs_clflush_after)
e76e9aeb 1033 i915_gem_chipset_flush(dev);
58642885 1034
40123c1f 1035 return ret;
673a394b
EA
1036}
1037
1038/**
1039 * Writes data to the object referenced by handle.
1040 *
1041 * On error, the contents of the buffer that were to be modified are undefined.
1042 */
1043int
1044i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1045 struct drm_file *file)
673a394b
EA
1046{
1047 struct drm_i915_gem_pwrite *args = data;
05394f39 1048 struct drm_i915_gem_object *obj;
51311d0a
CW
1049 int ret;
1050
1051 if (args->size == 0)
1052 return 0;
1053
1054 if (!access_ok(VERIFY_READ,
2bb4629a 1055 to_user_ptr(args->data_ptr),
51311d0a
CW
1056 args->size))
1057 return -EFAULT;
1058
d330a953 1059 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1060 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1061 args->size);
1062 if (ret)
1063 return -EFAULT;
1064 }
673a394b 1065
fbd5a26d 1066 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1067 if (ret)
fbd5a26d 1068 return ret;
1d7cfea1 1069
05394f39 1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1071 if (&obj->base == NULL) {
1d7cfea1
CW
1072 ret = -ENOENT;
1073 goto unlock;
fbd5a26d 1074 }
673a394b 1075
7dcd2499 1076 /* Bounds check destination. */
05394f39
CW
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
ce9d419d 1079 ret = -EINVAL;
35b62a89 1080 goto out;
ce9d419d
CW
1081 }
1082
1286ff73
DV
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
db53a302
CW
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
935aaa69 1093 ret = -EFAULT;
673a394b
EA
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
2c22569b
CW
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
fbd5a26d 1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1107 }
673a394b 1108
6a2c4232
CW
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
5c0480f2 1115
35b62a89 1116out:
05394f39 1117 drm_gem_object_unreference(&obj->base);
1d7cfea1 1118unlock:
fbd5a26d 1119 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1120 return ret;
1121}
1122
b361237b 1123int
33196ded 1124i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1125 bool interruptible)
1126{
1f83fee0 1127 if (i915_reset_in_progress(error)) {
b361237b
CW
1128 /* Non-interruptible callers can't handle -EAGAIN, hence return
1129 * -EIO unconditionally for these. */
1130 if (!interruptible)
1131 return -EIO;
1132
1f83fee0
DV
1133 /* Recovery complete, but the reset failed ... */
1134 if (i915_terminally_wedged(error))
b361237b
CW
1135 return -EIO;
1136
6689c167
MA
1137 /*
1138 * Check if GPU Reset is in progress - we need intel_ring_begin
1139 * to work properly to reinit the hw state while the gpu is
1140 * still marked as reset-in-progress. Handle this with a flag.
1141 */
1142 if (!error->reload_in_reset)
1143 return -EAGAIN;
b361237b
CW
1144 }
1145
1146 return 0;
1147}
1148
1149/*
b6660d59 1150 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1151 */
84c33a64 1152int
b6660d59 1153i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1154{
1155 int ret;
1156
b6660d59 1157 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1158
1159 ret = 0;
b6660d59 1160 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1161 ret = i915_add_request(req->ring);
b361237b
CW
1162
1163 return ret;
1164}
1165
094f9a54
CW
1166static void fake_irq(unsigned long data)
1167{
1168 wake_up_process((struct task_struct *)data);
1169}
1170
1171static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1172 struct intel_engine_cs *ring)
094f9a54
CW
1173{
1174 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175}
1176
b29c19b6
CW
1177static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1178{
1179 if (file_priv == NULL)
1180 return true;
1181
1182 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1183}
1184
b361237b 1185/**
9c654818
JH
1186 * __i915_wait_request - wait until execution of request has finished
1187 * @req: duh!
1188 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1189 * @interruptible: do an interruptible wait (normally yes)
1190 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1191 *
f69061be
DV
1192 * Note: It is of utmost importance that the passed in seqno and reset_counter
1193 * values have been read by the caller in an smp safe manner. Where read-side
1194 * locks are involved, it is sufficient to read the reset_counter before
1195 * unlocking the lock that protects the seqno. For lockless tricks, the
1196 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1197 * inserted.
1198 *
9c654818 1199 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1200 * errno with remaining time filled in timeout argument.
1201 */
9c654818 1202int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1203 unsigned reset_counter,
b29c19b6 1204 bool interruptible,
5ed0bdf2 1205 s64 *timeout,
b29c19b6 1206 struct drm_i915_file_private *file_priv)
b361237b 1207{
9c654818 1208 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1209 struct drm_device *dev = ring->dev;
3e31c6c0 1210 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1211 const bool irq_test_in_progress =
1212 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1213 DEFINE_WAIT(wait);
47e9766d 1214 unsigned long timeout_expire;
5ed0bdf2 1215 s64 before, now;
b361237b
CW
1216 int ret;
1217
9df7575f 1218 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1219
1b5a433a 1220 if (i915_gem_request_completed(req, true))
b361237b
CW
1221 return 0;
1222
5ed0bdf2 1223 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1224
ec5cc0f9 1225 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1226 gen6_rps_boost(dev_priv);
1227 if (file_priv)
1228 mod_delayed_work(dev_priv->wq,
1229 &file_priv->mm.idle_work,
1230 msecs_to_jiffies(100));
1231 }
1232
168c3f21 1233 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1234 return -ENODEV;
1235
094f9a54 1236 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1237 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1238 before = ktime_get_raw_ns();
094f9a54
CW
1239 for (;;) {
1240 struct timer_list timer;
b361237b 1241
094f9a54
CW
1242 prepare_to_wait(&ring->irq_queue, &wait,
1243 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1244
f69061be
DV
1245 /* We need to check whether any gpu reset happened in between
1246 * the caller grabbing the seqno and now ... */
094f9a54
CW
1247 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1248 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1249 * is truely gone. */
1250 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1251 if (ret == 0)
1252 ret = -EAGAIN;
1253 break;
1254 }
f69061be 1255
1b5a433a 1256 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1257 ret = 0;
1258 break;
1259 }
b361237b 1260
094f9a54
CW
1261 if (interruptible && signal_pending(current)) {
1262 ret = -ERESTARTSYS;
1263 break;
1264 }
1265
47e9766d 1266 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1267 ret = -ETIME;
1268 break;
1269 }
1270
1271 timer.function = NULL;
1272 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1273 unsigned long expire;
1274
094f9a54 1275 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1276 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1277 mod_timer(&timer, expire);
1278 }
1279
5035c275 1280 io_schedule();
094f9a54 1281
094f9a54
CW
1282 if (timer.function) {
1283 del_singleshot_timer_sync(&timer);
1284 destroy_timer_on_stack(&timer);
1285 }
1286 }
5ed0bdf2 1287 now = ktime_get_raw_ns();
74328ee5 1288 trace_i915_gem_request_wait_end(req);
b361237b 1289
168c3f21
MK
1290 if (!irq_test_in_progress)
1291 ring->irq_put(ring);
094f9a54
CW
1292
1293 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1294
1295 if (timeout) {
5ed0bdf2
TG
1296 s64 tres = *timeout - (now - before);
1297
1298 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1299 }
1300
094f9a54 1301 return ret;
b361237b
CW
1302}
1303
1304/**
a4b3a571 1305 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1306 * request and object lists appropriately for that event.
1307 */
1308int
a4b3a571 1309i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1310{
a4b3a571
DV
1311 struct drm_device *dev;
1312 struct drm_i915_private *dev_priv;
1313 bool interruptible;
16e9a21f 1314 unsigned reset_counter;
b361237b
CW
1315 int ret;
1316
a4b3a571
DV
1317 BUG_ON(req == NULL);
1318
1319 dev = req->ring->dev;
1320 dev_priv = dev->dev_private;
1321 interruptible = dev_priv->mm.interruptible;
1322
b361237b 1323 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1324
33196ded 1325 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1326 if (ret)
1327 return ret;
1328
a4b3a571 1329 ret = i915_gem_check_olr(req);
b361237b
CW
1330 if (ret)
1331 return ret;
1332
16e9a21f 1333 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1334 i915_gem_request_reference(req);
9c654818
JH
1335 ret = __i915_wait_request(req, reset_counter,
1336 interruptible, NULL, NULL);
a4b3a571
DV
1337 i915_gem_request_unreference(req);
1338 return ret;
b361237b
CW
1339}
1340
d26e3af8 1341static int
8e639549 1342i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1343{
c8725f3d
CW
1344 if (!obj->active)
1345 return 0;
d26e3af8
CW
1346
1347 /* Manually manage the write flush as we may have not yet
1348 * retired the buffer.
1349 *
97b2a6a1
JH
1350 * Note that the last_write_req is always the earlier of
1351 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1352 * we know we have passed the last write.
1353 */
97b2a6a1 1354 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1355
1356 return 0;
1357}
1358
b361237b
CW
1359/**
1360 * Ensures that all rendering to the object has completed and the object is
1361 * safe to unbind from the GTT or access from the CPU.
1362 */
1363static __must_check int
1364i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1365 bool readonly)
1366{
97b2a6a1 1367 struct drm_i915_gem_request *req;
b361237b
CW
1368 int ret;
1369
97b2a6a1
JH
1370 req = readonly ? obj->last_write_req : obj->last_read_req;
1371 if (!req)
b361237b
CW
1372 return 0;
1373
a4b3a571 1374 ret = i915_wait_request(req);
b361237b
CW
1375 if (ret)
1376 return ret;
1377
8e639549 1378 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1379}
1380
3236f57a
CW
1381/* A nonblocking variant of the above wait. This is a highly dangerous routine
1382 * as the object state may change during this call.
1383 */
1384static __must_check int
1385i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1386 struct drm_i915_file_private *file_priv,
3236f57a
CW
1387 bool readonly)
1388{
97b2a6a1 1389 struct drm_i915_gem_request *req;
3236f57a
CW
1390 struct drm_device *dev = obj->base.dev;
1391 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1392 unsigned reset_counter;
3236f57a
CW
1393 int ret;
1394
1395 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1396 BUG_ON(!dev_priv->mm.interruptible);
1397
97b2a6a1
JH
1398 req = readonly ? obj->last_write_req : obj->last_read_req;
1399 if (!req)
3236f57a
CW
1400 return 0;
1401
33196ded 1402 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1403 if (ret)
1404 return ret;
1405
b6660d59 1406 ret = i915_gem_check_olr(req);
3236f57a
CW
1407 if (ret)
1408 return ret;
1409
f69061be 1410 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1411 i915_gem_request_reference(req);
3236f57a 1412 mutex_unlock(&dev->struct_mutex);
9c654818 1413 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1414 mutex_lock(&dev->struct_mutex);
ff865885 1415 i915_gem_request_unreference(req);
d26e3af8
CW
1416 if (ret)
1417 return ret;
3236f57a 1418
8e639549 1419 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1420}
1421
673a394b 1422/**
2ef7eeaa
EA
1423 * Called when user space prepares to use an object with the CPU, either
1424 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1425 */
1426int
1427i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1428 struct drm_file *file)
673a394b
EA
1429{
1430 struct drm_i915_gem_set_domain *args = data;
05394f39 1431 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1432 uint32_t read_domains = args->read_domains;
1433 uint32_t write_domain = args->write_domain;
673a394b
EA
1434 int ret;
1435
2ef7eeaa 1436 /* Only handle setting domains to types used by the CPU. */
21d509e3 1437 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1438 return -EINVAL;
1439
21d509e3 1440 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1441 return -EINVAL;
1442
1443 /* Having something in the write domain implies it's in the read
1444 * domain, and only that read domain. Enforce that in the request.
1445 */
1446 if (write_domain != 0 && read_domains != write_domain)
1447 return -EINVAL;
1448
76c1dec1 1449 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1450 if (ret)
76c1dec1 1451 return ret;
1d7cfea1 1452
05394f39 1453 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1454 if (&obj->base == NULL) {
1d7cfea1
CW
1455 ret = -ENOENT;
1456 goto unlock;
76c1dec1 1457 }
673a394b 1458
3236f57a
CW
1459 /* Try to flush the object off the GPU without holding the lock.
1460 * We will repeat the flush holding the lock in the normal manner
1461 * to catch cases where we are gazumped.
1462 */
6e4930f6
CW
1463 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1464 file->driver_priv,
1465 !write_domain);
3236f57a
CW
1466 if (ret)
1467 goto unref;
1468
43566ded 1469 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1470 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1471 else
e47c68e9 1472 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1473
3236f57a 1474unref:
05394f39 1475 drm_gem_object_unreference(&obj->base);
1d7cfea1 1476unlock:
673a394b
EA
1477 mutex_unlock(&dev->struct_mutex);
1478 return ret;
1479}
1480
1481/**
1482 * Called when user space has done writes to this buffer
1483 */
1484int
1485i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1486 struct drm_file *file)
673a394b
EA
1487{
1488 struct drm_i915_gem_sw_finish *args = data;
05394f39 1489 struct drm_i915_gem_object *obj;
673a394b
EA
1490 int ret = 0;
1491
76c1dec1 1492 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1493 if (ret)
76c1dec1 1494 return ret;
1d7cfea1 1495
05394f39 1496 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1497 if (&obj->base == NULL) {
1d7cfea1
CW
1498 ret = -ENOENT;
1499 goto unlock;
673a394b
EA
1500 }
1501
673a394b 1502 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1503 if (obj->pin_display)
1504 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1505
05394f39 1506 drm_gem_object_unreference(&obj->base);
1d7cfea1 1507unlock:
673a394b
EA
1508 mutex_unlock(&dev->struct_mutex);
1509 return ret;
1510}
1511
1512/**
1513 * Maps the contents of an object, returning the address it is mapped
1514 * into.
1515 *
1516 * While the mapping holds a reference on the contents of the object, it doesn't
1517 * imply a ref on the object itself.
34367381
DV
1518 *
1519 * IMPORTANT:
1520 *
1521 * DRM driver writers who look a this function as an example for how to do GEM
1522 * mmap support, please don't implement mmap support like here. The modern way
1523 * to implement DRM mmap support is with an mmap offset ioctl (like
1524 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1525 * That way debug tooling like valgrind will understand what's going on, hiding
1526 * the mmap call in a driver private ioctl will break that. The i915 driver only
1527 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1528 */
1529int
1530i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1531 struct drm_file *file)
673a394b
EA
1532{
1533 struct drm_i915_gem_mmap *args = data;
1534 struct drm_gem_object *obj;
673a394b
EA
1535 unsigned long addr;
1536
05394f39 1537 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1538 if (obj == NULL)
bf79cb91 1539 return -ENOENT;
673a394b 1540
1286ff73
DV
1541 /* prime objects have no backing filp to GEM mmap
1542 * pages from.
1543 */
1544 if (!obj->filp) {
1545 drm_gem_object_unreference_unlocked(obj);
1546 return -EINVAL;
1547 }
1548
6be5ceb0 1549 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1550 PROT_READ | PROT_WRITE, MAP_SHARED,
1551 args->offset);
bc9025bd 1552 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1553 if (IS_ERR((void *)addr))
1554 return addr;
1555
1556 args->addr_ptr = (uint64_t) addr;
1557
1558 return 0;
1559}
1560
de151cf6
JB
1561/**
1562 * i915_gem_fault - fault a page into the GTT
1563 * vma: VMA in question
1564 * vmf: fault info
1565 *
1566 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1567 * from userspace. The fault handler takes care of binding the object to
1568 * the GTT (if needed), allocating and programming a fence register (again,
1569 * only if needed based on whether the old reg is still valid or the object
1570 * is tiled) and inserting a new PTE into the faulting process.
1571 *
1572 * Note that the faulting process may involve evicting existing objects
1573 * from the GTT and/or fence registers to make room. So performance may
1574 * suffer if the GTT working set is large or there are few fence registers
1575 * left.
1576 */
1577int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1578{
05394f39
CW
1579 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1580 struct drm_device *dev = obj->base.dev;
3e31c6c0 1581 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1582 pgoff_t page_offset;
1583 unsigned long pfn;
1584 int ret = 0;
0f973f27 1585 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1586
f65c9168
PZ
1587 intel_runtime_pm_get(dev_priv);
1588
de151cf6
JB
1589 /* We don't use vmf->pgoff since that has the fake offset */
1590 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1591 PAGE_SHIFT;
1592
d9bc7e9f
CW
1593 ret = i915_mutex_lock_interruptible(dev);
1594 if (ret)
1595 goto out;
a00b10c3 1596
db53a302
CW
1597 trace_i915_gem_object_fault(obj, page_offset, true, write);
1598
6e4930f6
CW
1599 /* Try to flush the object off the GPU first without holding the lock.
1600 * Upon reacquiring the lock, we will perform our sanity checks and then
1601 * repeat the flush holding the lock in the normal manner to catch cases
1602 * where we are gazumped.
1603 */
1604 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1605 if (ret)
1606 goto unlock;
1607
eb119bd6
CW
1608 /* Access to snoopable pages through the GTT is incoherent. */
1609 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1610 ret = -EFAULT;
eb119bd6
CW
1611 goto unlock;
1612 }
1613
d9bc7e9f 1614 /* Now bind it into the GTT if needed */
1ec9e26d 1615 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1616 if (ret)
1617 goto unlock;
4a684a41 1618
c9839303
CW
1619 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1620 if (ret)
1621 goto unpin;
74898d7e 1622
06d98131 1623 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1624 if (ret)
c9839303 1625 goto unpin;
7d1c4804 1626
b90b91d8 1627 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1628 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1629 pfn >>= PAGE_SHIFT;
de151cf6 1630
b90b91d8 1631 if (!obj->fault_mappable) {
beff0d0f
VS
1632 unsigned long size = min_t(unsigned long,
1633 vma->vm_end - vma->vm_start,
1634 obj->base.size);
b90b91d8
CW
1635 int i;
1636
beff0d0f 1637 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1638 ret = vm_insert_pfn(vma,
1639 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1640 pfn + i);
1641 if (ret)
1642 break;
1643 }
1644
1645 obj->fault_mappable = true;
1646 } else
1647 ret = vm_insert_pfn(vma,
1648 (unsigned long)vmf->virtual_address,
1649 pfn + page_offset);
c9839303 1650unpin:
d7f46fc4 1651 i915_gem_object_ggtt_unpin(obj);
c715089f 1652unlock:
de151cf6 1653 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1654out:
de151cf6 1655 switch (ret) {
d9bc7e9f 1656 case -EIO:
2232f031
DV
1657 /*
1658 * We eat errors when the gpu is terminally wedged to avoid
1659 * userspace unduly crashing (gl has no provisions for mmaps to
1660 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1661 * and so needs to be reported.
1662 */
1663 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1664 ret = VM_FAULT_SIGBUS;
1665 break;
1666 }
045e769a 1667 case -EAGAIN:
571c608d
DV
1668 /*
1669 * EAGAIN means the gpu is hung and we'll wait for the error
1670 * handler to reset everything when re-faulting in
1671 * i915_mutex_lock_interruptible.
d9bc7e9f 1672 */
c715089f
CW
1673 case 0:
1674 case -ERESTARTSYS:
bed636ab 1675 case -EINTR:
e79e0fe3
DR
1676 case -EBUSY:
1677 /*
1678 * EBUSY is ok: this just means that another thread
1679 * already did the job.
1680 */
f65c9168
PZ
1681 ret = VM_FAULT_NOPAGE;
1682 break;
de151cf6 1683 case -ENOMEM:
f65c9168
PZ
1684 ret = VM_FAULT_OOM;
1685 break;
a7c2e1aa 1686 case -ENOSPC:
45d67817 1687 case -EFAULT:
f65c9168
PZ
1688 ret = VM_FAULT_SIGBUS;
1689 break;
de151cf6 1690 default:
a7c2e1aa 1691 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1692 ret = VM_FAULT_SIGBUS;
1693 break;
de151cf6 1694 }
f65c9168
PZ
1695
1696 intel_runtime_pm_put(dev_priv);
1697 return ret;
de151cf6
JB
1698}
1699
901782b2
CW
1700/**
1701 * i915_gem_release_mmap - remove physical page mappings
1702 * @obj: obj in question
1703 *
af901ca1 1704 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1705 * relinquish ownership of the pages back to the system.
1706 *
1707 * It is vital that we remove the page mapping if we have mapped a tiled
1708 * object through the GTT and then lose the fence register due to
1709 * resource pressure. Similarly if the object has been moved out of the
1710 * aperture, than pages mapped into userspace must be revoked. Removing the
1711 * mapping will then trigger a page fault on the next user access, allowing
1712 * fixup by i915_gem_fault().
1713 */
d05ca301 1714void
05394f39 1715i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1716{
6299f992
CW
1717 if (!obj->fault_mappable)
1718 return;
901782b2 1719
6796cb16
DH
1720 drm_vma_node_unmap(&obj->base.vma_node,
1721 obj->base.dev->anon_inode->i_mapping);
6299f992 1722 obj->fault_mappable = false;
901782b2
CW
1723}
1724
eedd10f4
CW
1725void
1726i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1727{
1728 struct drm_i915_gem_object *obj;
1729
1730 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1731 i915_gem_release_mmap(obj);
1732}
1733
0fa87796 1734uint32_t
e28f8711 1735i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1736{
e28f8711 1737 uint32_t gtt_size;
92b88aeb
CW
1738
1739 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1740 tiling_mode == I915_TILING_NONE)
1741 return size;
92b88aeb
CW
1742
1743 /* Previous chips need a power-of-two fence region when tiling */
1744 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1745 gtt_size = 1024*1024;
92b88aeb 1746 else
e28f8711 1747 gtt_size = 512*1024;
92b88aeb 1748
e28f8711
CW
1749 while (gtt_size < size)
1750 gtt_size <<= 1;
92b88aeb 1751
e28f8711 1752 return gtt_size;
92b88aeb
CW
1753}
1754
de151cf6
JB
1755/**
1756 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1757 * @obj: object to check
1758 *
1759 * Return the required GTT alignment for an object, taking into account
5e783301 1760 * potential fence register mapping.
de151cf6 1761 */
d865110c
ID
1762uint32_t
1763i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1764 int tiling_mode, bool fenced)
de151cf6 1765{
de151cf6
JB
1766 /*
1767 * Minimum alignment is 4k (GTT page size), but might be greater
1768 * if a fence register is needed for the object.
1769 */
d865110c 1770 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1771 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1772 return 4096;
1773
a00b10c3
CW
1774 /*
1775 * Previous chips need to be aligned to the size of the smallest
1776 * fence register that can contain the object.
1777 */
e28f8711 1778 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1779}
1780
d8cb5086
CW
1781static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1782{
1783 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1784 int ret;
1785
0de23977 1786 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1787 return 0;
1788
da494d7c
DV
1789 dev_priv->mm.shrinker_no_lock_stealing = true;
1790
d8cb5086
CW
1791 ret = drm_gem_create_mmap_offset(&obj->base);
1792 if (ret != -ENOSPC)
da494d7c 1793 goto out;
d8cb5086
CW
1794
1795 /* Badly fragmented mmap space? The only way we can recover
1796 * space is by destroying unwanted objects. We can't randomly release
1797 * mmap_offsets as userspace expects them to be persistent for the
1798 * lifetime of the objects. The closest we can is to release the
1799 * offsets on purgeable objects by truncating it and marking it purged,
1800 * which prevents userspace from ever using that object again.
1801 */
21ab4e74
CW
1802 i915_gem_shrink(dev_priv,
1803 obj->base.size >> PAGE_SHIFT,
1804 I915_SHRINK_BOUND |
1805 I915_SHRINK_UNBOUND |
1806 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1807 ret = drm_gem_create_mmap_offset(&obj->base);
1808 if (ret != -ENOSPC)
da494d7c 1809 goto out;
d8cb5086
CW
1810
1811 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1812 ret = drm_gem_create_mmap_offset(&obj->base);
1813out:
1814 dev_priv->mm.shrinker_no_lock_stealing = false;
1815
1816 return ret;
d8cb5086
CW
1817}
1818
1819static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1820{
d8cb5086
CW
1821 drm_gem_free_mmap_offset(&obj->base);
1822}
1823
355a7018 1824static int
ff72145b
DA
1825i915_gem_mmap_gtt(struct drm_file *file,
1826 struct drm_device *dev,
355a7018 1827 uint32_t handle, bool dumb,
ff72145b 1828 uint64_t *offset)
de151cf6 1829{
da761a6e 1830 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1831 struct drm_i915_gem_object *obj;
de151cf6
JB
1832 int ret;
1833
76c1dec1 1834 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1835 if (ret)
76c1dec1 1836 return ret;
de151cf6 1837
ff72145b 1838 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1839 if (&obj->base == NULL) {
1d7cfea1
CW
1840 ret = -ENOENT;
1841 goto unlock;
1842 }
de151cf6 1843
355a7018
TH
1844 /*
1845 * We don't allow dumb mmaps on objects created using another
1846 * interface.
1847 */
1848 WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1849 "Illegal dumb map of accelerated buffer.\n");
1850
5d4545ae 1851 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1852 ret = -E2BIG;
ff56b0bc 1853 goto out;
da761a6e
CW
1854 }
1855
05394f39 1856 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1857 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1858 ret = -EFAULT;
1d7cfea1 1859 goto out;
ab18282d
CW
1860 }
1861
d8cb5086
CW
1862 ret = i915_gem_object_create_mmap_offset(obj);
1863 if (ret)
1864 goto out;
de151cf6 1865
0de23977 1866 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1867
1d7cfea1 1868out:
05394f39 1869 drm_gem_object_unreference(&obj->base);
1d7cfea1 1870unlock:
de151cf6 1871 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1872 return ret;
de151cf6
JB
1873}
1874
355a7018
TH
1875int
1876i915_gem_dumb_map_offset(struct drm_file *file,
1877 struct drm_device *dev,
1878 uint32_t handle,
1879 uint64_t *offset)
1880{
1881 return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1882}
1883
ff72145b
DA
1884/**
1885 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1886 * @dev: DRM device
1887 * @data: GTT mapping ioctl data
1888 * @file: GEM object info
1889 *
1890 * Simply returns the fake offset to userspace so it can mmap it.
1891 * The mmap call will end up in drm_gem_mmap(), which will set things
1892 * up so we can get faults in the handler above.
1893 *
1894 * The fault handler will take care of binding the object into the GTT
1895 * (since it may have been evicted to make room for something), allocating
1896 * a fence register, and mapping the appropriate aperture address into
1897 * userspace.
1898 */
1899int
1900i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1901 struct drm_file *file)
1902{
1903 struct drm_i915_gem_mmap_gtt *args = data;
1904
355a7018 1905 return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
ff72145b
DA
1906}
1907
5537252b
CW
1908static inline int
1909i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1910{
1911 return obj->madv == I915_MADV_DONTNEED;
1912}
1913
225067ee
DV
1914/* Immediately discard the backing storage */
1915static void
1916i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1917{
4d6294bf 1918 i915_gem_object_free_mmap_offset(obj);
1286ff73 1919
4d6294bf
CW
1920 if (obj->base.filp == NULL)
1921 return;
e5281ccd 1922
225067ee
DV
1923 /* Our goal here is to return as much of the memory as
1924 * is possible back to the system as we are called from OOM.
1925 * To do this we must instruct the shmfs to drop all of its
1926 * backing pages, *now*.
1927 */
5537252b 1928 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1929 obj->madv = __I915_MADV_PURGED;
1930}
e5281ccd 1931
5537252b
CW
1932/* Try to discard unwanted pages */
1933static void
1934i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1935{
5537252b
CW
1936 struct address_space *mapping;
1937
1938 switch (obj->madv) {
1939 case I915_MADV_DONTNEED:
1940 i915_gem_object_truncate(obj);
1941 case __I915_MADV_PURGED:
1942 return;
1943 }
1944
1945 if (obj->base.filp == NULL)
1946 return;
1947
1948 mapping = file_inode(obj->base.filp)->i_mapping,
1949 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1950}
1951
5cdf5881 1952static void
05394f39 1953i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1954{
90797e6d
ID
1955 struct sg_page_iter sg_iter;
1956 int ret;
1286ff73 1957
05394f39 1958 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1959
6c085a72
CW
1960 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1961 if (ret) {
1962 /* In the event of a disaster, abandon all caches and
1963 * hope for the best.
1964 */
1965 WARN_ON(ret != -EIO);
2c22569b 1966 i915_gem_clflush_object(obj, true);
6c085a72
CW
1967 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1968 }
1969
6dacfd2f 1970 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1971 i915_gem_object_save_bit_17_swizzle(obj);
1972
05394f39
CW
1973 if (obj->madv == I915_MADV_DONTNEED)
1974 obj->dirty = 0;
3ef94daa 1975
90797e6d 1976 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1977 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1978
05394f39 1979 if (obj->dirty)
9da3da66 1980 set_page_dirty(page);
3ef94daa 1981
05394f39 1982 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1983 mark_page_accessed(page);
3ef94daa 1984
9da3da66 1985 page_cache_release(page);
3ef94daa 1986 }
05394f39 1987 obj->dirty = 0;
673a394b 1988
9da3da66
CW
1989 sg_free_table(obj->pages);
1990 kfree(obj->pages);
37e680a1 1991}
6c085a72 1992
dd624afd 1993int
37e680a1
CW
1994i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1995{
1996 const struct drm_i915_gem_object_ops *ops = obj->ops;
1997
2f745ad3 1998 if (obj->pages == NULL)
37e680a1
CW
1999 return 0;
2000
a5570178
CW
2001 if (obj->pages_pin_count)
2002 return -EBUSY;
2003
9843877d 2004 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2005
a2165e31
CW
2006 /* ->put_pages might need to allocate memory for the bit17 swizzle
2007 * array, hence protect them from being reaped by removing them from gtt
2008 * lists early. */
35c20a60 2009 list_del(&obj->global_list);
a2165e31 2010
37e680a1 2011 ops->put_pages(obj);
05394f39 2012 obj->pages = NULL;
37e680a1 2013
5537252b 2014 i915_gem_object_invalidate(obj);
6c085a72
CW
2015
2016 return 0;
2017}
2018
21ab4e74
CW
2019unsigned long
2020i915_gem_shrink(struct drm_i915_private *dev_priv,
2021 long target, unsigned flags)
6c085a72 2022{
60a53727
CW
2023 const struct {
2024 struct list_head *list;
2025 unsigned int bit;
2026 } phases[] = {
2027 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2028 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2029 { NULL, 0 },
2030 }, *phase;
d9973b43 2031 unsigned long count = 0;
6c085a72 2032
57094f82 2033 /*
c8725f3d 2034 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2035 * (due to retiring requests) we have to strictly process only
2036 * one element of the list at the time, and recheck the list
2037 * on every iteration.
c8725f3d
CW
2038 *
2039 * In particular, we must hold a reference whilst removing the
2040 * object as we may end up waiting for and/or retiring the objects.
2041 * This might release the final reference (held by the active list)
2042 * and result in the object being freed from under us. This is
2043 * similar to the precautions the eviction code must take whilst
2044 * removing objects.
2045 *
2046 * Also note that although these lists do not hold a reference to
2047 * the object we can safely grab one here: The final object
2048 * unreferencing and the bound_list are both protected by the
2049 * dev->struct_mutex and so we won't ever be able to observe an
2050 * object on the bound_list with a reference count equals 0.
57094f82 2051 */
60a53727 2052 for (phase = phases; phase->list; phase++) {
21ab4e74 2053 struct list_head still_in_list;
c8725f3d 2054
60a53727
CW
2055 if ((flags & phase->bit) == 0)
2056 continue;
80dcfdbd 2057
21ab4e74 2058 INIT_LIST_HEAD(&still_in_list);
60a53727 2059 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2060 struct drm_i915_gem_object *obj;
2061 struct i915_vma *vma, *v;
57094f82 2062
60a53727 2063 obj = list_first_entry(phase->list,
21ab4e74
CW
2064 typeof(*obj), global_list);
2065 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2066
60a53727
CW
2067 if (flags & I915_SHRINK_PURGEABLE &&
2068 !i915_gem_object_is_purgeable(obj))
21ab4e74 2069 continue;
57094f82 2070
21ab4e74 2071 drm_gem_object_reference(&obj->base);
80dcfdbd 2072
60a53727
CW
2073 /* For the unbound phase, this should be a no-op! */
2074 list_for_each_entry_safe(vma, v,
2075 &obj->vma_list, vma_link)
21ab4e74
CW
2076 if (i915_vma_unbind(vma))
2077 break;
57094f82 2078
21ab4e74
CW
2079 if (i915_gem_object_put_pages(obj) == 0)
2080 count += obj->base.size >> PAGE_SHIFT;
2081
2082 drm_gem_object_unreference(&obj->base);
2083 }
60a53727 2084 list_splice(&still_in_list, phase->list);
6c085a72
CW
2085 }
2086
2087 return count;
2088}
2089
d9973b43 2090static unsigned long
6c085a72
CW
2091i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2092{
6c085a72 2093 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2094 return i915_gem_shrink(dev_priv, LONG_MAX,
2095 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2096}
2097
37e680a1 2098static int
6c085a72 2099i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2100{
6c085a72 2101 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2102 int page_count, i;
2103 struct address_space *mapping;
9da3da66
CW
2104 struct sg_table *st;
2105 struct scatterlist *sg;
90797e6d 2106 struct sg_page_iter sg_iter;
e5281ccd 2107 struct page *page;
90797e6d 2108 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2109 gfp_t gfp;
e5281ccd 2110
6c085a72
CW
2111 /* Assert that the object is not currently in any GPU domain. As it
2112 * wasn't in the GTT, there shouldn't be any way it could have been in
2113 * a GPU cache
2114 */
2115 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2116 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2117
9da3da66
CW
2118 st = kmalloc(sizeof(*st), GFP_KERNEL);
2119 if (st == NULL)
2120 return -ENOMEM;
2121
05394f39 2122 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2123 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2124 kfree(st);
e5281ccd 2125 return -ENOMEM;
9da3da66 2126 }
e5281ccd 2127
9da3da66
CW
2128 /* Get the list of pages out of our struct file. They'll be pinned
2129 * at this point until we release them.
2130 *
2131 * Fail silently without starting the shrinker
2132 */
496ad9aa 2133 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2134 gfp = mapping_gfp_mask(mapping);
caf49191 2135 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2136 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2137 sg = st->sgl;
2138 st->nents = 0;
2139 for (i = 0; i < page_count; i++) {
6c085a72
CW
2140 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2141 if (IS_ERR(page)) {
21ab4e74
CW
2142 i915_gem_shrink(dev_priv,
2143 page_count,
2144 I915_SHRINK_BOUND |
2145 I915_SHRINK_UNBOUND |
2146 I915_SHRINK_PURGEABLE);
6c085a72
CW
2147 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2148 }
2149 if (IS_ERR(page)) {
2150 /* We've tried hard to allocate the memory by reaping
2151 * our own buffer, now let the real VM do its job and
2152 * go down in flames if truly OOM.
2153 */
6c085a72 2154 i915_gem_shrink_all(dev_priv);
f461d1be 2155 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2156 if (IS_ERR(page))
2157 goto err_pages;
6c085a72 2158 }
426729dc
KRW
2159#ifdef CONFIG_SWIOTLB
2160 if (swiotlb_nr_tbl()) {
2161 st->nents++;
2162 sg_set_page(sg, page, PAGE_SIZE, 0);
2163 sg = sg_next(sg);
2164 continue;
2165 }
2166#endif
90797e6d
ID
2167 if (!i || page_to_pfn(page) != last_pfn + 1) {
2168 if (i)
2169 sg = sg_next(sg);
2170 st->nents++;
2171 sg_set_page(sg, page, PAGE_SIZE, 0);
2172 } else {
2173 sg->length += PAGE_SIZE;
2174 }
2175 last_pfn = page_to_pfn(page);
3bbbe706
DV
2176
2177 /* Check that the i965g/gm workaround works. */
2178 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2179 }
426729dc
KRW
2180#ifdef CONFIG_SWIOTLB
2181 if (!swiotlb_nr_tbl())
2182#endif
2183 sg_mark_end(sg);
74ce6b6c
CW
2184 obj->pages = st;
2185
6dacfd2f 2186 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2187 i915_gem_object_do_bit_17_swizzle(obj);
2188
656bfa3a
DV
2189 if (obj->tiling_mode != I915_TILING_NONE &&
2190 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2191 i915_gem_object_pin_pages(obj);
2192
e5281ccd
CW
2193 return 0;
2194
2195err_pages:
90797e6d
ID
2196 sg_mark_end(sg);
2197 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2198 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2199 sg_free_table(st);
2200 kfree(st);
0820baf3
CW
2201
2202 /* shmemfs first checks if there is enough memory to allocate the page
2203 * and reports ENOSPC should there be insufficient, along with the usual
2204 * ENOMEM for a genuine allocation failure.
2205 *
2206 * We use ENOSPC in our driver to mean that we have run out of aperture
2207 * space and so want to translate the error from shmemfs back to our
2208 * usual understanding of ENOMEM.
2209 */
2210 if (PTR_ERR(page) == -ENOSPC)
2211 return -ENOMEM;
2212 else
2213 return PTR_ERR(page);
673a394b
EA
2214}
2215
37e680a1
CW
2216/* Ensure that the associated pages are gathered from the backing storage
2217 * and pinned into our object. i915_gem_object_get_pages() may be called
2218 * multiple times before they are released by a single call to
2219 * i915_gem_object_put_pages() - once the pages are no longer referenced
2220 * either as a result of memory pressure (reaping pages under the shrinker)
2221 * or as the object is itself released.
2222 */
2223int
2224i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2225{
2226 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2227 const struct drm_i915_gem_object_ops *ops = obj->ops;
2228 int ret;
2229
2f745ad3 2230 if (obj->pages)
37e680a1
CW
2231 return 0;
2232
43e28f09 2233 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2234 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2235 return -EFAULT;
43e28f09
CW
2236 }
2237
a5570178
CW
2238 BUG_ON(obj->pages_pin_count);
2239
37e680a1
CW
2240 ret = ops->get_pages(obj);
2241 if (ret)
2242 return ret;
2243
35c20a60 2244 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2245 return 0;
673a394b
EA
2246}
2247
e2d05a8b 2248static void
05394f39 2249i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2250 struct intel_engine_cs *ring)
673a394b 2251{
41c52415
JH
2252 struct drm_i915_gem_request *req;
2253 struct intel_engine_cs *old_ring;
617dbe27 2254
852835f3 2255 BUG_ON(ring == NULL);
41c52415
JH
2256
2257 req = intel_ring_get_request(ring);
2258 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2259
2260 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2261 /* Keep the request relative to the current ring */
2262 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2263 }
673a394b
EA
2264
2265 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2266 if (!obj->active) {
2267 drm_gem_object_reference(&obj->base);
2268 obj->active = 1;
673a394b 2269 }
e35a41de 2270
05394f39 2271 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2272
97b2a6a1 2273 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2274}
2275
e2d05a8b 2276void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2277 struct intel_engine_cs *ring)
e2d05a8b
BW
2278{
2279 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2280 return i915_gem_object_move_to_active(vma->obj, ring);
2281}
2282
caea7476 2283static void
caea7476 2284i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2285{
feb822cf 2286 struct i915_vma *vma;
ce44b0ea 2287
65ce3027 2288 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2289 BUG_ON(!obj->active);
caea7476 2290
fe14d5f4
TU
2291 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2292 if (!list_empty(&vma->mm_list))
2293 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2294 }
caea7476 2295
f99d7069
DV
2296 intel_fb_obj_flush(obj, true);
2297
65ce3027 2298 list_del_init(&obj->ring_list);
caea7476 2299
97b2a6a1
JH
2300 i915_gem_request_assign(&obj->last_read_req, NULL);
2301 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2302 obj->base.write_domain = 0;
2303
97b2a6a1 2304 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2305
2306 obj->active = 0;
2307 drm_gem_object_unreference(&obj->base);
2308
2309 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2310}
673a394b 2311
c8725f3d
CW
2312static void
2313i915_gem_object_retire(struct drm_i915_gem_object *obj)
2314{
41c52415 2315 if (obj->last_read_req == NULL)
c8725f3d
CW
2316 return;
2317
1b5a433a 2318 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2319 i915_gem_object_move_to_inactive(obj);
2320}
2321
9d773091 2322static int
fca26bb4 2323i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2324{
9d773091 2325 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2326 struct intel_engine_cs *ring;
9d773091 2327 int ret, i, j;
53d227f2 2328
107f27a5 2329 /* Carefully retire all requests without writing to the rings */
9d773091 2330 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2331 ret = intel_ring_idle(ring);
2332 if (ret)
2333 return ret;
9d773091 2334 }
9d773091 2335 i915_gem_retire_requests(dev);
107f27a5
CW
2336
2337 /* Finally reset hw state */
9d773091 2338 for_each_ring(ring, dev_priv, i) {
fca26bb4 2339 intel_ring_init_seqno(ring, seqno);
498d2ac1 2340
ebc348b2
BW
2341 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2342 ring->semaphore.sync_seqno[j] = 0;
9d773091 2343 }
53d227f2 2344
9d773091 2345 return 0;
53d227f2
DV
2346}
2347
fca26bb4
MK
2348int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2349{
2350 struct drm_i915_private *dev_priv = dev->dev_private;
2351 int ret;
2352
2353 if (seqno == 0)
2354 return -EINVAL;
2355
2356 /* HWS page needs to be set less than what we
2357 * will inject to ring
2358 */
2359 ret = i915_gem_init_seqno(dev, seqno - 1);
2360 if (ret)
2361 return ret;
2362
2363 /* Carefully set the last_seqno value so that wrap
2364 * detection still works
2365 */
2366 dev_priv->next_seqno = seqno;
2367 dev_priv->last_seqno = seqno - 1;
2368 if (dev_priv->last_seqno == 0)
2369 dev_priv->last_seqno--;
2370
2371 return 0;
2372}
2373
9d773091
CW
2374int
2375i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2376{
9d773091
CW
2377 struct drm_i915_private *dev_priv = dev->dev_private;
2378
2379 /* reserve 0 for non-seqno */
2380 if (dev_priv->next_seqno == 0) {
fca26bb4 2381 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2382 if (ret)
2383 return ret;
53d227f2 2384
9d773091
CW
2385 dev_priv->next_seqno = 1;
2386 }
53d227f2 2387
f72b3435 2388 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2389 return 0;
53d227f2
DV
2390}
2391
a4872ba6 2392int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2393 struct drm_file *file,
9400ae5c 2394 struct drm_i915_gem_object *obj)
673a394b 2395{
3e31c6c0 2396 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2397 struct drm_i915_gem_request *request;
48e29f55 2398 struct intel_ringbuffer *ringbuf;
7d736f4f 2399 u32 request_ring_position, request_start;
3cce469c
CW
2400 int ret;
2401
6259cead 2402 request = ring->outstanding_lazy_request;
48e29f55
OM
2403 if (WARN_ON(request == NULL))
2404 return -ENOMEM;
2405
2406 if (i915.enable_execlists) {
2407 struct intel_context *ctx = request->ctx;
2408 ringbuf = ctx->engine[ring->id].ringbuf;
2409 } else
2410 ringbuf = ring->buffer;
2411
2412 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2413 /*
2414 * Emit any outstanding flushes - execbuf can fail to emit the flush
2415 * after having emitted the batchbuffer command. Hence we need to fix
2416 * things up similar to emitting the lazy request. The difference here
2417 * is that the flush _must_ happen before the next request, no matter
2418 * what.
2419 */
48e29f55
OM
2420 if (i915.enable_execlists) {
2421 ret = logical_ring_flush_all_caches(ringbuf);
2422 if (ret)
2423 return ret;
2424 } else {
2425 ret = intel_ring_flush_all_caches(ring);
2426 if (ret)
2427 return ret;
2428 }
cc889e0f 2429
a71d8d94
CW
2430 /* Record the position of the start of the request so that
2431 * should we detect the updated seqno part-way through the
2432 * GPU processing the request, we never over-estimate the
2433 * position of the head.
2434 */
48e29f55 2435 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2436
48e29f55
OM
2437 if (i915.enable_execlists) {
2438 ret = ring->emit_request(ringbuf);
2439 if (ret)
2440 return ret;
2441 } else {
2442 ret = ring->add_request(ring);
2443 if (ret)
2444 return ret;
2445 }
673a394b 2446
7d736f4f 2447 request->head = request_start;
a71d8d94 2448 request->tail = request_ring_position;
7d736f4f
MK
2449
2450 /* Whilst this request exists, batch_obj will be on the
2451 * active_list, and so will hold the active reference. Only when this
2452 * request is retired will the the batch_obj be moved onto the
2453 * inactive_list and lose its active reference. Hence we do not need
2454 * to explicitly hold another reference here.
2455 */
9a7e0c2a 2456 request->batch_obj = obj;
0e50e96b 2457
48e29f55
OM
2458 if (!i915.enable_execlists) {
2459 /* Hold a reference to the current context so that we can inspect
2460 * it later in case a hangcheck error event fires.
2461 */
2462 request->ctx = ring->last_context;
2463 if (request->ctx)
2464 i915_gem_context_reference(request->ctx);
2465 }
0e50e96b 2466
673a394b 2467 request->emitted_jiffies = jiffies;
852835f3 2468 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2469 request->file_priv = NULL;
852835f3 2470
db53a302
CW
2471 if (file) {
2472 struct drm_i915_file_private *file_priv = file->driver_priv;
2473
1c25595f 2474 spin_lock(&file_priv->mm.lock);
f787a5f5 2475 request->file_priv = file_priv;
b962442e 2476 list_add_tail(&request->client_list,
f787a5f5 2477 &file_priv->mm.request_list);
1c25595f 2478 spin_unlock(&file_priv->mm.lock);
b962442e 2479 }
673a394b 2480
74328ee5 2481 trace_i915_gem_request_add(request);
6259cead 2482 ring->outstanding_lazy_request = NULL;
db53a302 2483
87255483 2484 i915_queue_hangcheck(ring->dev);
10cd45b6 2485
87255483
DV
2486 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2487 queue_delayed_work(dev_priv->wq,
2488 &dev_priv->mm.retire_work,
2489 round_jiffies_up_relative(HZ));
2490 intel_mark_busy(dev_priv->dev);
cc889e0f 2491
3cce469c 2492 return 0;
673a394b
EA
2493}
2494
f787a5f5
CW
2495static inline void
2496i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2497{
1c25595f 2498 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2499
1c25595f
CW
2500 if (!file_priv)
2501 return;
1c5d22f7 2502
1c25595f 2503 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2504 list_del(&request->client_list);
2505 request->file_priv = NULL;
1c25595f 2506 spin_unlock(&file_priv->mm.lock);
673a394b 2507}
673a394b 2508
939fd762 2509static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2510 const struct intel_context *ctx)
be62acb4 2511{
44e2c070 2512 unsigned long elapsed;
be62acb4 2513
44e2c070
MK
2514 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2515
2516 if (ctx->hang_stats.banned)
be62acb4
MK
2517 return true;
2518
2519 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2520 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2521 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2522 return true;
88b4aa87
MK
2523 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2524 if (i915_stop_ring_allow_warn(dev_priv))
2525 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2526 return true;
3fac8978 2527 }
be62acb4
MK
2528 }
2529
2530 return false;
2531}
2532
939fd762 2533static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2534 struct intel_context *ctx,
b6b0fac0 2535 const bool guilty)
aa60c664 2536{
44e2c070
MK
2537 struct i915_ctx_hang_stats *hs;
2538
2539 if (WARN_ON(!ctx))
2540 return;
aa60c664 2541
44e2c070
MK
2542 hs = &ctx->hang_stats;
2543
2544 if (guilty) {
939fd762 2545 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2546 hs->batch_active++;
2547 hs->guilty_ts = get_seconds();
2548 } else {
2549 hs->batch_pending++;
aa60c664
MK
2550 }
2551}
2552
0e50e96b
MK
2553static void i915_gem_free_request(struct drm_i915_gem_request *request)
2554{
2555 list_del(&request->list);
2556 i915_gem_request_remove_from_client(request);
2557
abfe262a
JH
2558 i915_gem_request_unreference(request);
2559}
2560
2561void i915_gem_request_free(struct kref *req_ref)
2562{
2563 struct drm_i915_gem_request *req = container_of(req_ref,
2564 typeof(*req), ref);
2565 struct intel_context *ctx = req->ctx;
2566
0794aed3
TD
2567 if (ctx) {
2568 if (i915.enable_execlists) {
abfe262a 2569 struct intel_engine_cs *ring = req->ring;
0e50e96b 2570
0794aed3
TD
2571 if (ctx != ring->default_context)
2572 intel_lr_context_unpin(ring, ctx);
2573 }
abfe262a 2574
dcb4c12a
OM
2575 i915_gem_context_unreference(ctx);
2576 }
abfe262a
JH
2577
2578 kfree(req);
0e50e96b
MK
2579}
2580
8d9fc7fd 2581struct drm_i915_gem_request *
a4872ba6 2582i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2583{
4db080f9
CW
2584 struct drm_i915_gem_request *request;
2585
2586 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2587 if (i915_gem_request_completed(request, false))
4db080f9 2588 continue;
aa60c664 2589
b6b0fac0 2590 return request;
4db080f9 2591 }
b6b0fac0
MK
2592
2593 return NULL;
2594}
2595
2596static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2597 struct intel_engine_cs *ring)
b6b0fac0
MK
2598{
2599 struct drm_i915_gem_request *request;
2600 bool ring_hung;
2601
8d9fc7fd 2602 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2603
2604 if (request == NULL)
2605 return;
2606
2607 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2608
939fd762 2609 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2610
2611 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2612 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2613}
aa60c664 2614
4db080f9 2615static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2616 struct intel_engine_cs *ring)
4db080f9 2617{
dfaae392 2618 while (!list_empty(&ring->active_list)) {
05394f39 2619 struct drm_i915_gem_object *obj;
9375e446 2620
05394f39
CW
2621 obj = list_first_entry(&ring->active_list,
2622 struct drm_i915_gem_object,
2623 ring_list);
9375e446 2624
05394f39 2625 i915_gem_object_move_to_inactive(obj);
673a394b 2626 }
1d62beea 2627
dcb4c12a
OM
2628 /*
2629 * Clear the execlists queue up before freeing the requests, as those
2630 * are the ones that keep the context and ringbuffer backing objects
2631 * pinned in place.
2632 */
2633 while (!list_empty(&ring->execlist_queue)) {
2634 struct intel_ctx_submit_request *submit_req;
2635
2636 submit_req = list_first_entry(&ring->execlist_queue,
2637 struct intel_ctx_submit_request,
2638 execlist_link);
2639 list_del(&submit_req->execlist_link);
2640 intel_runtime_pm_put(dev_priv);
2641 i915_gem_context_unreference(submit_req->ctx);
2642 kfree(submit_req);
2643 }
2644
1d62beea
BW
2645 /*
2646 * We must free the requests after all the corresponding objects have
2647 * been moved off active lists. Which is the same order as the normal
2648 * retire_requests function does. This is important if object hold
2649 * implicit references on things like e.g. ppgtt address spaces through
2650 * the request.
2651 */
2652 while (!list_empty(&ring->request_list)) {
2653 struct drm_i915_gem_request *request;
2654
2655 request = list_first_entry(&ring->request_list,
2656 struct drm_i915_gem_request,
2657 list);
2658
2659 i915_gem_free_request(request);
2660 }
e3efda49 2661
6259cead
JH
2662 /* This may not have been flushed before the reset, so clean it now */
2663 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2664}
2665
19b2dbde 2666void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2667{
2668 struct drm_i915_private *dev_priv = dev->dev_private;
2669 int i;
2670
4b9de737 2671 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2672 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2673
94a335db
DV
2674 /*
2675 * Commit delayed tiling changes if we have an object still
2676 * attached to the fence, otherwise just clear the fence.
2677 */
2678 if (reg->obj) {
2679 i915_gem_object_update_fence(reg->obj, reg,
2680 reg->obj->tiling_mode);
2681 } else {
2682 i915_gem_write_fence(dev, i, NULL);
2683 }
312817a3
CW
2684 }
2685}
2686
069efc1d 2687void i915_gem_reset(struct drm_device *dev)
673a394b 2688{
77f01230 2689 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2690 struct intel_engine_cs *ring;
1ec14ad3 2691 int i;
673a394b 2692
4db080f9
CW
2693 /*
2694 * Before we free the objects from the requests, we need to inspect
2695 * them for finding the guilty party. As the requests only borrow
2696 * their reference to the objects, the inspection must be done first.
2697 */
2698 for_each_ring(ring, dev_priv, i)
2699 i915_gem_reset_ring_status(dev_priv, ring);
2700
b4519513 2701 for_each_ring(ring, dev_priv, i)
4db080f9 2702 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2703
acce9ffa
BW
2704 i915_gem_context_reset(dev);
2705
19b2dbde 2706 i915_gem_restore_fences(dev);
673a394b
EA
2707}
2708
2709/**
2710 * This function clears the request list as sequence numbers are passed.
2711 */
1cf0ba14 2712void
a4872ba6 2713i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2714{
db53a302 2715 if (list_empty(&ring->request_list))
6c0594a3
KW
2716 return;
2717
db53a302 2718 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2719
e9103038
CW
2720 /* Move any buffers on the active list that are no longer referenced
2721 * by the ringbuffer to the flushing/inactive lists as appropriate,
2722 * before we free the context associated with the requests.
2723 */
2724 while (!list_empty(&ring->active_list)) {
2725 struct drm_i915_gem_object *obj;
2726
2727 obj = list_first_entry(&ring->active_list,
2728 struct drm_i915_gem_object,
2729 ring_list);
2730
1b5a433a 2731 if (!i915_gem_request_completed(obj->last_read_req, true))
e9103038
CW
2732 break;
2733
2734 i915_gem_object_move_to_inactive(obj);
2735 }
2736
2737
852835f3 2738 while (!list_empty(&ring->request_list)) {
673a394b 2739 struct drm_i915_gem_request *request;
48e29f55 2740 struct intel_ringbuffer *ringbuf;
673a394b 2741
852835f3 2742 request = list_first_entry(&ring->request_list,
673a394b
EA
2743 struct drm_i915_gem_request,
2744 list);
673a394b 2745
1b5a433a 2746 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2747 break;
2748
74328ee5 2749 trace_i915_gem_request_retire(request);
48e29f55
OM
2750
2751 /* This is one of the few common intersection points
2752 * between legacy ringbuffer submission and execlists:
2753 * we need to tell them apart in order to find the correct
2754 * ringbuffer to which the request belongs to.
2755 */
2756 if (i915.enable_execlists) {
2757 struct intel_context *ctx = request->ctx;
2758 ringbuf = ctx->engine[ring->id].ringbuf;
2759 } else
2760 ringbuf = ring->buffer;
2761
a71d8d94
CW
2762 /* We know the GPU must have read the request to have
2763 * sent us the seqno + interrupt, so use the position
2764 * of tail of the request to update the last known position
2765 * of the GPU head.
2766 */
48e29f55 2767 ringbuf->last_retired_head = request->tail;
b84d5f0c 2768
0e50e96b 2769 i915_gem_free_request(request);
b84d5f0c 2770 }
673a394b 2771
581c26e8
JH
2772 if (unlikely(ring->trace_irq_req &&
2773 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2774 ring->irq_put(ring);
581c26e8 2775 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2776 }
23bc5982 2777
db53a302 2778 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2779}
2780
b29c19b6 2781bool
b09a1fec
CW
2782i915_gem_retire_requests(struct drm_device *dev)
2783{
3e31c6c0 2784 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2785 struct intel_engine_cs *ring;
b29c19b6 2786 bool idle = true;
1ec14ad3 2787 int i;
b09a1fec 2788
b29c19b6 2789 for_each_ring(ring, dev_priv, i) {
b4519513 2790 i915_gem_retire_requests_ring(ring);
b29c19b6 2791 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2792 if (i915.enable_execlists) {
2793 unsigned long flags;
2794
2795 spin_lock_irqsave(&ring->execlist_lock, flags);
2796 idle &= list_empty(&ring->execlist_queue);
2797 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2798
2799 intel_execlists_retire_requests(ring);
2800 }
b29c19b6
CW
2801 }
2802
2803 if (idle)
2804 mod_delayed_work(dev_priv->wq,
2805 &dev_priv->mm.idle_work,
2806 msecs_to_jiffies(100));
2807
2808 return idle;
b09a1fec
CW
2809}
2810
75ef9da2 2811static void
673a394b
EA
2812i915_gem_retire_work_handler(struct work_struct *work)
2813{
b29c19b6
CW
2814 struct drm_i915_private *dev_priv =
2815 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2816 struct drm_device *dev = dev_priv->dev;
0a58705b 2817 bool idle;
673a394b 2818
891b48cf 2819 /* Come back later if the device is busy... */
b29c19b6
CW
2820 idle = false;
2821 if (mutex_trylock(&dev->struct_mutex)) {
2822 idle = i915_gem_retire_requests(dev);
2823 mutex_unlock(&dev->struct_mutex);
673a394b 2824 }
b29c19b6 2825 if (!idle)
bcb45086
CW
2826 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2827 round_jiffies_up_relative(HZ));
b29c19b6 2828}
0a58705b 2829
b29c19b6
CW
2830static void
2831i915_gem_idle_work_handler(struct work_struct *work)
2832{
2833 struct drm_i915_private *dev_priv =
2834 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2835
2836 intel_mark_idle(dev_priv->dev);
673a394b
EA
2837}
2838
30dfebf3
DV
2839/**
2840 * Ensures that an object will eventually get non-busy by flushing any required
2841 * write domains, emitting any outstanding lazy request and retiring and
2842 * completed requests.
2843 */
2844static int
2845i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2846{
41c52415 2847 struct intel_engine_cs *ring;
30dfebf3
DV
2848 int ret;
2849
2850 if (obj->active) {
41c52415
JH
2851 ring = i915_gem_request_get_ring(obj->last_read_req);
2852
b6660d59 2853 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2854 if (ret)
2855 return ret;
2856
41c52415 2857 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2858 }
2859
2860 return 0;
2861}
2862
23ba4fd0
BW
2863/**
2864 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2865 * @DRM_IOCTL_ARGS: standard ioctl arguments
2866 *
2867 * Returns 0 if successful, else an error is returned with the remaining time in
2868 * the timeout parameter.
2869 * -ETIME: object is still busy after timeout
2870 * -ERESTARTSYS: signal interrupted the wait
2871 * -ENONENT: object doesn't exist
2872 * Also possible, but rare:
2873 * -EAGAIN: GPU wedged
2874 * -ENOMEM: damn
2875 * -ENODEV: Internal IRQ fail
2876 * -E?: The add request failed
2877 *
2878 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2879 * non-zero timeout parameter the wait ioctl will wait for the given number of
2880 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2881 * without holding struct_mutex the object may become re-busied before this
2882 * function completes. A similar but shorter * race condition exists in the busy
2883 * ioctl
2884 */
2885int
2886i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2887{
3e31c6c0 2888 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2889 struct drm_i915_gem_wait *args = data;
2890 struct drm_i915_gem_object *obj;
ff865885 2891 struct drm_i915_gem_request *req;
f69061be 2892 unsigned reset_counter;
23ba4fd0
BW
2893 int ret = 0;
2894
11b5d511
DV
2895 if (args->flags != 0)
2896 return -EINVAL;
2897
23ba4fd0
BW
2898 ret = i915_mutex_lock_interruptible(dev);
2899 if (ret)
2900 return ret;
2901
2902 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2903 if (&obj->base == NULL) {
2904 mutex_unlock(&dev->struct_mutex);
2905 return -ENOENT;
2906 }
2907
30dfebf3
DV
2908 /* Need to make sure the object gets inactive eventually. */
2909 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2910 if (ret)
2911 goto out;
2912
97b2a6a1
JH
2913 if (!obj->active || !obj->last_read_req)
2914 goto out;
23ba4fd0 2915
ff865885 2916 req = obj->last_read_req;
23ba4fd0 2917
23ba4fd0 2918 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2919 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2920 */
5ed0bdf2 2921 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2922 ret = -ETIME;
2923 goto out;
2924 }
2925
2926 drm_gem_object_unreference(&obj->base);
f69061be 2927 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2928 i915_gem_request_reference(req);
23ba4fd0
BW
2929 mutex_unlock(&dev->struct_mutex);
2930
9c654818
JH
2931 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2932 file->driver_priv);
ff865885
JH
2933 mutex_lock(&dev->struct_mutex);
2934 i915_gem_request_unreference(req);
2935 mutex_unlock(&dev->struct_mutex);
2936 return ret;
23ba4fd0
BW
2937
2938out:
2939 drm_gem_object_unreference(&obj->base);
2940 mutex_unlock(&dev->struct_mutex);
2941 return ret;
2942}
2943
5816d648
BW
2944/**
2945 * i915_gem_object_sync - sync an object to a ring.
2946 *
2947 * @obj: object which may be in use on another ring.
2948 * @to: ring we wish to use the object on. May be NULL.
2949 *
2950 * This code is meant to abstract object synchronization with the GPU.
2951 * Calling with NULL implies synchronizing the object with the CPU
2952 * rather than a particular GPU ring.
2953 *
2954 * Returns 0 if successful, else propagates up the lower layer error.
2955 */
2911a35b
BW
2956int
2957i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2958 struct intel_engine_cs *to)
2911a35b 2959{
41c52415 2960 struct intel_engine_cs *from;
2911a35b
BW
2961 u32 seqno;
2962 int ret, idx;
2963
41c52415
JH
2964 from = i915_gem_request_get_ring(obj->last_read_req);
2965
2911a35b
BW
2966 if (from == NULL || to == from)
2967 return 0;
2968
5816d648 2969 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2970 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2971
2972 idx = intel_ring_sync_index(from, to);
2973
97b2a6a1 2974 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2975 /* Optimization: Avoid semaphore sync when we are sure we already
2976 * waited for an object with higher seqno */
ebc348b2 2977 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2978 return 0;
2979
b6660d59 2980 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
2981 if (ret)
2982 return ret;
2911a35b 2983
74328ee5 2984 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 2985 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2986 if (!ret)
97b2a6a1 2987 /* We use last_read_req because sync_to()
7b01e260
MK
2988 * might have just caused seqno wrap under
2989 * the radar.
2990 */
97b2a6a1
JH
2991 from->semaphore.sync_seqno[idx] =
2992 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 2993
e3a5a225 2994 return ret;
2911a35b
BW
2995}
2996
b5ffc9bc
CW
2997static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2998{
2999 u32 old_write_domain, old_read_domains;
3000
b5ffc9bc
CW
3001 /* Force a pagefault for domain tracking on next user access */
3002 i915_gem_release_mmap(obj);
3003
b97c3d9c
KP
3004 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3005 return;
3006
97c809fd
CW
3007 /* Wait for any direct GTT access to complete */
3008 mb();
3009
b5ffc9bc
CW
3010 old_read_domains = obj->base.read_domains;
3011 old_write_domain = obj->base.write_domain;
3012
3013 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3014 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3015
3016 trace_i915_gem_object_change_domain(obj,
3017 old_read_domains,
3018 old_write_domain);
3019}
3020
07fe0b12 3021int i915_vma_unbind(struct i915_vma *vma)
673a394b 3022{
07fe0b12 3023 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3024 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3025 int ret;
673a394b 3026
07fe0b12 3027 if (list_empty(&vma->vma_link))
673a394b
EA
3028 return 0;
3029
0ff501cb
DV
3030 if (!drm_mm_node_allocated(&vma->node)) {
3031 i915_gem_vma_destroy(vma);
0ff501cb
DV
3032 return 0;
3033 }
433544bd 3034
d7f46fc4 3035 if (vma->pin_count)
31d8d651 3036 return -EBUSY;
673a394b 3037
c4670ad0
CW
3038 BUG_ON(obj->pages == NULL);
3039
a8198eea 3040 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3041 if (ret)
a8198eea
CW
3042 return ret;
3043 /* Continue on if we fail due to EIO, the GPU is hung so we
3044 * should be safe and we need to cleanup or else we might
3045 * cause memory corruption through use-after-free.
3046 */
3047
fe14d5f4
TU
3048 if (i915_is_ggtt(vma->vm) &&
3049 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3050 i915_gem_object_finish_gtt(obj);
5323fd04 3051
8b1bc9b4
DV
3052 /* release the fence reg _after_ flushing */
3053 ret = i915_gem_object_put_fence(obj);
3054 if (ret)
3055 return ret;
3056 }
96b47b65 3057
07fe0b12 3058 trace_i915_vma_unbind(vma);
db53a302 3059
6f65e29a
BW
3060 vma->unbind_vma(vma);
3061
64bf9303 3062 list_del_init(&vma->mm_list);
fe14d5f4
TU
3063 if (i915_is_ggtt(vma->vm)) {
3064 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3065 obj->map_and_fenceable = false;
3066 } else if (vma->ggtt_view.pages) {
3067 sg_free_table(vma->ggtt_view.pages);
3068 kfree(vma->ggtt_view.pages);
3069 vma->ggtt_view.pages = NULL;
3070 }
3071 }
673a394b 3072
2f633156
BW
3073 drm_mm_remove_node(&vma->node);
3074 i915_gem_vma_destroy(vma);
3075
3076 /* Since the unbound list is global, only move to that list if
b93dab6e 3077 * no more VMAs exist. */
9490edb5 3078 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3079 /* Throw away the active reference before
3080 * moving to the unbound list. */
3081 i915_gem_object_retire(obj);
3082
9490edb5 3083 i915_gem_gtt_finish_object(obj);
2f633156 3084 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3085 }
673a394b 3086
70903c3b
CW
3087 /* And finally now the object is completely decoupled from this vma,
3088 * we can drop its hold on the backing storage and allow it to be
3089 * reaped by the shrinker.
3090 */
3091 i915_gem_object_unpin_pages(obj);
3092
88241785 3093 return 0;
54cf91dc
CW
3094}
3095
b2da9fe5 3096int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3097{
3e31c6c0 3098 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3099 struct intel_engine_cs *ring;
1ec14ad3 3100 int ret, i;
4df2faf4 3101
4df2faf4 3102 /* Flush everything onto the inactive list. */
b4519513 3103 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3104 if (!i915.enable_execlists) {
3105 ret = i915_switch_context(ring, ring->default_context);
3106 if (ret)
3107 return ret;
3108 }
b6c7488d 3109
3e960501 3110 ret = intel_ring_idle(ring);
1ec14ad3
CW
3111 if (ret)
3112 return ret;
3113 }
4df2faf4 3114
8a1a49f9 3115 return 0;
4df2faf4
DV
3116}
3117
9ce079e4
CW
3118static void i965_write_fence_reg(struct drm_device *dev, int reg,
3119 struct drm_i915_gem_object *obj)
de151cf6 3120{
3e31c6c0 3121 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3122 int fence_reg;
3123 int fence_pitch_shift;
de151cf6 3124
56c844e5
ID
3125 if (INTEL_INFO(dev)->gen >= 6) {
3126 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3127 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3128 } else {
3129 fence_reg = FENCE_REG_965_0;
3130 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3131 }
3132
d18b9619
CW
3133 fence_reg += reg * 8;
3134
3135 /* To w/a incoherency with non-atomic 64-bit register updates,
3136 * we split the 64-bit update into two 32-bit writes. In order
3137 * for a partial fence not to be evaluated between writes, we
3138 * precede the update with write to turn off the fence register,
3139 * and only enable the fence as the last step.
3140 *
3141 * For extra levels of paranoia, we make sure each step lands
3142 * before applying the next step.
3143 */
3144 I915_WRITE(fence_reg, 0);
3145 POSTING_READ(fence_reg);
3146
9ce079e4 3147 if (obj) {
f343c5f6 3148 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3149 uint64_t val;
de151cf6 3150
f343c5f6 3151 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3152 0xfffff000) << 32;
f343c5f6 3153 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3154 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3155 if (obj->tiling_mode == I915_TILING_Y)
3156 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3157 val |= I965_FENCE_REG_VALID;
c6642782 3158
d18b9619
CW
3159 I915_WRITE(fence_reg + 4, val >> 32);
3160 POSTING_READ(fence_reg + 4);
3161
3162 I915_WRITE(fence_reg + 0, val);
3163 POSTING_READ(fence_reg);
3164 } else {
3165 I915_WRITE(fence_reg + 4, 0);
3166 POSTING_READ(fence_reg + 4);
3167 }
de151cf6
JB
3168}
3169
9ce079e4
CW
3170static void i915_write_fence_reg(struct drm_device *dev, int reg,
3171 struct drm_i915_gem_object *obj)
de151cf6 3172{
3e31c6c0 3173 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3174 u32 val;
de151cf6 3175
9ce079e4 3176 if (obj) {
f343c5f6 3177 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3178 int pitch_val;
3179 int tile_width;
c6642782 3180
f343c5f6 3181 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3182 (size & -size) != size ||
f343c5f6
BW
3183 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3184 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3185 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3186
9ce079e4
CW
3187 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3188 tile_width = 128;
3189 else
3190 tile_width = 512;
3191
3192 /* Note: pitch better be a power of two tile widths */
3193 pitch_val = obj->stride / tile_width;
3194 pitch_val = ffs(pitch_val) - 1;
3195
f343c5f6 3196 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3197 if (obj->tiling_mode == I915_TILING_Y)
3198 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3199 val |= I915_FENCE_SIZE_BITS(size);
3200 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3201 val |= I830_FENCE_REG_VALID;
3202 } else
3203 val = 0;
3204
3205 if (reg < 8)
3206 reg = FENCE_REG_830_0 + reg * 4;
3207 else
3208 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3209
3210 I915_WRITE(reg, val);
3211 POSTING_READ(reg);
de151cf6
JB
3212}
3213
9ce079e4
CW
3214static void i830_write_fence_reg(struct drm_device *dev, int reg,
3215 struct drm_i915_gem_object *obj)
de151cf6 3216{
3e31c6c0 3217 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3218 uint32_t val;
de151cf6 3219
9ce079e4 3220 if (obj) {
f343c5f6 3221 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3222 uint32_t pitch_val;
de151cf6 3223
f343c5f6 3224 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3225 (size & -size) != size ||
f343c5f6
BW
3226 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3227 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3228 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3229
9ce079e4
CW
3230 pitch_val = obj->stride / 128;
3231 pitch_val = ffs(pitch_val) - 1;
de151cf6 3232
f343c5f6 3233 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3234 if (obj->tiling_mode == I915_TILING_Y)
3235 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3236 val |= I830_FENCE_SIZE_BITS(size);
3237 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3238 val |= I830_FENCE_REG_VALID;
3239 } else
3240 val = 0;
c6642782 3241
9ce079e4
CW
3242 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3243 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3244}
3245
d0a57789
CW
3246inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3247{
3248 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3249}
3250
9ce079e4
CW
3251static void i915_gem_write_fence(struct drm_device *dev, int reg,
3252 struct drm_i915_gem_object *obj)
3253{
d0a57789
CW
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255
3256 /* Ensure that all CPU reads are completed before installing a fence
3257 * and all writes before removing the fence.
3258 */
3259 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3260 mb();
3261
94a335db
DV
3262 WARN(obj && (!obj->stride || !obj->tiling_mode),
3263 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3264 obj->stride, obj->tiling_mode);
3265
ce38ab05
RV
3266 if (IS_GEN2(dev))
3267 i830_write_fence_reg(dev, reg, obj);
3268 else if (IS_GEN3(dev))
3269 i915_write_fence_reg(dev, reg, obj);
3270 else if (INTEL_INFO(dev)->gen >= 4)
3271 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3272
3273 /* And similarly be paranoid that no direct access to this region
3274 * is reordered to before the fence is installed.
3275 */
3276 if (i915_gem_object_needs_mb(obj))
3277 mb();
de151cf6
JB
3278}
3279
61050808
CW
3280static inline int fence_number(struct drm_i915_private *dev_priv,
3281 struct drm_i915_fence_reg *fence)
3282{
3283 return fence - dev_priv->fence_regs;
3284}
3285
3286static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3287 struct drm_i915_fence_reg *fence,
3288 bool enable)
3289{
2dc8aae0 3290 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3291 int reg = fence_number(dev_priv, fence);
3292
3293 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3294
3295 if (enable) {
46a0b638 3296 obj->fence_reg = reg;
61050808
CW
3297 fence->obj = obj;
3298 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3299 } else {
3300 obj->fence_reg = I915_FENCE_REG_NONE;
3301 fence->obj = NULL;
3302 list_del_init(&fence->lru_list);
3303 }
94a335db 3304 obj->fence_dirty = false;
61050808
CW
3305}
3306
d9e86c0e 3307static int
d0a57789 3308i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3309{
97b2a6a1 3310 if (obj->last_fenced_req) {
a4b3a571 3311 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3312 if (ret)
3313 return ret;
d9e86c0e 3314
97b2a6a1 3315 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3316 }
3317
3318 return 0;
3319}
3320
3321int
3322i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3323{
61050808 3324 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3325 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3326 int ret;
3327
d0a57789 3328 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3329 if (ret)
3330 return ret;
3331
61050808
CW
3332 if (obj->fence_reg == I915_FENCE_REG_NONE)
3333 return 0;
d9e86c0e 3334
f9c513e9
CW
3335 fence = &dev_priv->fence_regs[obj->fence_reg];
3336
aff10b30
DV
3337 if (WARN_ON(fence->pin_count))
3338 return -EBUSY;
3339
61050808 3340 i915_gem_object_fence_lost(obj);
f9c513e9 3341 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3342
3343 return 0;
3344}
3345
3346static struct drm_i915_fence_reg *
a360bb1a 3347i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3348{
ae3db24a 3349 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3350 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3351 int i;
ae3db24a
DV
3352
3353 /* First try to find a free reg */
d9e86c0e 3354 avail = NULL;
ae3db24a
DV
3355 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3356 reg = &dev_priv->fence_regs[i];
3357 if (!reg->obj)
d9e86c0e 3358 return reg;
ae3db24a 3359
1690e1eb 3360 if (!reg->pin_count)
d9e86c0e 3361 avail = reg;
ae3db24a
DV
3362 }
3363
d9e86c0e 3364 if (avail == NULL)
5dce5b93 3365 goto deadlock;
ae3db24a
DV
3366
3367 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3368 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3369 if (reg->pin_count)
ae3db24a
DV
3370 continue;
3371
8fe301ad 3372 return reg;
ae3db24a
DV
3373 }
3374
5dce5b93
CW
3375deadlock:
3376 /* Wait for completion of pending flips which consume fences */
3377 if (intel_has_pending_fb_unpin(dev))
3378 return ERR_PTR(-EAGAIN);
3379
3380 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3381}
3382
de151cf6 3383/**
9a5a53b3 3384 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3385 * @obj: object to map through a fence reg
3386 *
3387 * When mapping objects through the GTT, userspace wants to be able to write
3388 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3389 * This function walks the fence regs looking for a free one for @obj,
3390 * stealing one if it can't find any.
3391 *
3392 * It then sets up the reg based on the object's properties: address, pitch
3393 * and tiling format.
9a5a53b3
CW
3394 *
3395 * For an untiled surface, this removes any existing fence.
de151cf6 3396 */
8c4b8c3f 3397int
06d98131 3398i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3399{
05394f39 3400 struct drm_device *dev = obj->base.dev;
79e53945 3401 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3402 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3403 struct drm_i915_fence_reg *reg;
ae3db24a 3404 int ret;
de151cf6 3405
14415745
CW
3406 /* Have we updated the tiling parameters upon the object and so
3407 * will need to serialise the write to the associated fence register?
3408 */
5d82e3e6 3409 if (obj->fence_dirty) {
d0a57789 3410 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3411 if (ret)
3412 return ret;
3413 }
9a5a53b3 3414
d9e86c0e 3415 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3416 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3417 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3418 if (!obj->fence_dirty) {
14415745
CW
3419 list_move_tail(&reg->lru_list,
3420 &dev_priv->mm.fence_list);
3421 return 0;
3422 }
3423 } else if (enable) {
e6a84468
CW
3424 if (WARN_ON(!obj->map_and_fenceable))
3425 return -EINVAL;
3426
14415745 3427 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3428 if (IS_ERR(reg))
3429 return PTR_ERR(reg);
d9e86c0e 3430
14415745
CW
3431 if (reg->obj) {
3432 struct drm_i915_gem_object *old = reg->obj;
3433
d0a57789 3434 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3435 if (ret)
3436 return ret;
3437
14415745 3438 i915_gem_object_fence_lost(old);
29c5a587 3439 }
14415745 3440 } else
a09ba7fa 3441 return 0;
a09ba7fa 3442
14415745 3443 i915_gem_object_update_fence(obj, reg, enable);
14415745 3444
9ce079e4 3445 return 0;
de151cf6
JB
3446}
3447
4144f9b5 3448static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3449 unsigned long cache_level)
3450{
4144f9b5 3451 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3452 struct drm_mm_node *other;
3453
4144f9b5
CW
3454 /*
3455 * On some machines we have to be careful when putting differing types
3456 * of snoopable memory together to avoid the prefetcher crossing memory
3457 * domains and dying. During vm initialisation, we decide whether or not
3458 * these constraints apply and set the drm_mm.color_adjust
3459 * appropriately.
42d6ab48 3460 */
4144f9b5 3461 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3462 return true;
3463
c6cfb325 3464 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3465 return true;
3466
3467 if (list_empty(&gtt_space->node_list))
3468 return true;
3469
3470 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3471 if (other->allocated && !other->hole_follows && other->color != cache_level)
3472 return false;
3473
3474 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3475 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3476 return false;
3477
3478 return true;
3479}
3480
673a394b
EA
3481/**
3482 * Finds free space in the GTT aperture and binds the object there.
3483 */
262de145 3484static struct i915_vma *
07fe0b12
BW
3485i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3486 struct i915_address_space *vm,
3487 unsigned alignment,
fe14d5f4
TU
3488 uint64_t flags,
3489 const struct i915_ggtt_view *view)
673a394b 3490{
05394f39 3491 struct drm_device *dev = obj->base.dev;
3e31c6c0 3492 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3493 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3494 unsigned long start =
3495 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3496 unsigned long end =
1ec9e26d 3497 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3498 struct i915_vma *vma;
07f73f69 3499 int ret;
673a394b 3500
e28f8711
CW
3501 fence_size = i915_gem_get_gtt_size(dev,
3502 obj->base.size,
3503 obj->tiling_mode);
3504 fence_alignment = i915_gem_get_gtt_alignment(dev,
3505 obj->base.size,
d865110c 3506 obj->tiling_mode, true);
e28f8711 3507 unfenced_alignment =
d865110c 3508 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3509 obj->base.size,
3510 obj->tiling_mode, false);
a00b10c3 3511
673a394b 3512 if (alignment == 0)
1ec9e26d 3513 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3514 unfenced_alignment;
1ec9e26d 3515 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3516 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3517 return ERR_PTR(-EINVAL);
673a394b
EA
3518 }
3519
1ec9e26d 3520 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3521
654fc607
CW
3522 /* If the object is bigger than the entire aperture, reject it early
3523 * before evicting everything in a vain attempt to find space.
3524 */
d23db88c
CW
3525 if (obj->base.size > end) {
3526 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3527 obj->base.size,
1ec9e26d 3528 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3529 end);
262de145 3530 return ERR_PTR(-E2BIG);
654fc607
CW
3531 }
3532
37e680a1 3533 ret = i915_gem_object_get_pages(obj);
6c085a72 3534 if (ret)
262de145 3535 return ERR_PTR(ret);
6c085a72 3536
fbdda6fb
CW
3537 i915_gem_object_pin_pages(obj);
3538
fe14d5f4 3539 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
262de145 3540 if (IS_ERR(vma))
bc6bc15b 3541 goto err_unpin;
2f633156 3542
0a9ae0d7 3543search_free:
07fe0b12 3544 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3545 size, alignment,
d23db88c
CW
3546 obj->cache_level,
3547 start, end,
62347f9e
LK
3548 DRM_MM_SEARCH_DEFAULT,
3549 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3550 if (ret) {
f6cd1f15 3551 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3552 obj->cache_level,
3553 start, end,
3554 flags);
dc9dd7a2
CW
3555 if (ret == 0)
3556 goto search_free;
9731129c 3557
bc6bc15b 3558 goto err_free_vma;
673a394b 3559 }
4144f9b5 3560 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3561 ret = -EINVAL;
bc6bc15b 3562 goto err_remove_node;
673a394b
EA
3563 }
3564
74163907 3565 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3566 if (ret)
bc6bc15b 3567 goto err_remove_node;
673a394b 3568
fe14d5f4
TU
3569 trace_i915_vma_bind(vma, flags);
3570 ret = i915_vma_bind(vma, obj->cache_level,
3571 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3572 if (ret)
3573 goto err_finish_gtt;
3574
35c20a60 3575 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3576 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3577
262de145 3578 return vma;
2f633156 3579
fe14d5f4
TU
3580err_finish_gtt:
3581 i915_gem_gtt_finish_object(obj);
bc6bc15b 3582err_remove_node:
6286ef9b 3583 drm_mm_remove_node(&vma->node);
bc6bc15b 3584err_free_vma:
2f633156 3585 i915_gem_vma_destroy(vma);
262de145 3586 vma = ERR_PTR(ret);
bc6bc15b 3587err_unpin:
2f633156 3588 i915_gem_object_unpin_pages(obj);
262de145 3589 return vma;
673a394b
EA
3590}
3591
000433b6 3592bool
2c22569b
CW
3593i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3594 bool force)
673a394b 3595{
673a394b
EA
3596 /* If we don't have a page list set up, then we're not pinned
3597 * to GPU, and we can ignore the cache flush because it'll happen
3598 * again at bind time.
3599 */
05394f39 3600 if (obj->pages == NULL)
000433b6 3601 return false;
673a394b 3602
769ce464
ID
3603 /*
3604 * Stolen memory is always coherent with the GPU as it is explicitly
3605 * marked as wc by the system, or the system is cache-coherent.
3606 */
6a2c4232 3607 if (obj->stolen || obj->phys_handle)
000433b6 3608 return false;
769ce464 3609
9c23f7fc
CW
3610 /* If the GPU is snooping the contents of the CPU cache,
3611 * we do not need to manually clear the CPU cache lines. However,
3612 * the caches are only snooped when the render cache is
3613 * flushed/invalidated. As we always have to emit invalidations
3614 * and flushes when moving into and out of the RENDER domain, correct
3615 * snooping behaviour occurs naturally as the result of our domain
3616 * tracking.
3617 */
2c22569b 3618 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3619 return false;
9c23f7fc 3620
1c5d22f7 3621 trace_i915_gem_object_clflush(obj);
9da3da66 3622 drm_clflush_sg(obj->pages);
000433b6
CW
3623
3624 return true;
e47c68e9
EA
3625}
3626
3627/** Flushes the GTT write domain for the object if it's dirty. */
3628static void
05394f39 3629i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3630{
1c5d22f7
CW
3631 uint32_t old_write_domain;
3632
05394f39 3633 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3634 return;
3635
63256ec5 3636 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3637 * to it immediately go to main memory as far as we know, so there's
3638 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3639 *
3640 * However, we do have to enforce the order so that all writes through
3641 * the GTT land before any writes to the device, such as updates to
3642 * the GATT itself.
e47c68e9 3643 */
63256ec5
CW
3644 wmb();
3645
05394f39
CW
3646 old_write_domain = obj->base.write_domain;
3647 obj->base.write_domain = 0;
1c5d22f7 3648
f99d7069
DV
3649 intel_fb_obj_flush(obj, false);
3650
1c5d22f7 3651 trace_i915_gem_object_change_domain(obj,
05394f39 3652 obj->base.read_domains,
1c5d22f7 3653 old_write_domain);
e47c68e9
EA
3654}
3655
3656/** Flushes the CPU write domain for the object if it's dirty. */
3657static void
2c22569b
CW
3658i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3659 bool force)
e47c68e9 3660{
1c5d22f7 3661 uint32_t old_write_domain;
e47c68e9 3662
05394f39 3663 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3664 return;
3665
000433b6
CW
3666 if (i915_gem_clflush_object(obj, force))
3667 i915_gem_chipset_flush(obj->base.dev);
3668
05394f39
CW
3669 old_write_domain = obj->base.write_domain;
3670 obj->base.write_domain = 0;
1c5d22f7 3671
f99d7069
DV
3672 intel_fb_obj_flush(obj, false);
3673
1c5d22f7 3674 trace_i915_gem_object_change_domain(obj,
05394f39 3675 obj->base.read_domains,
1c5d22f7 3676 old_write_domain);
e47c68e9
EA
3677}
3678
2ef7eeaa
EA
3679/**
3680 * Moves a single object to the GTT read, and possibly write domain.
3681 *
3682 * This function returns when the move is complete, including waiting on
3683 * flushes to occur.
3684 */
79e53945 3685int
2021746e 3686i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3687{
1c5d22f7 3688 uint32_t old_write_domain, old_read_domains;
43566ded 3689 struct i915_vma *vma;
e47c68e9 3690 int ret;
2ef7eeaa 3691
8d7e3de1
CW
3692 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3693 return 0;
3694
0201f1ec 3695 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3696 if (ret)
3697 return ret;
3698
c8725f3d 3699 i915_gem_object_retire(obj);
43566ded
CW
3700
3701 /* Flush and acquire obj->pages so that we are coherent through
3702 * direct access in memory with previous cached writes through
3703 * shmemfs and that our cache domain tracking remains valid.
3704 * For example, if the obj->filp was moved to swap without us
3705 * being notified and releasing the pages, we would mistakenly
3706 * continue to assume that the obj remained out of the CPU cached
3707 * domain.
3708 */
3709 ret = i915_gem_object_get_pages(obj);
3710 if (ret)
3711 return ret;
3712
2c22569b 3713 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3714
d0a57789
CW
3715 /* Serialise direct access to this object with the barriers for
3716 * coherent writes from the GPU, by effectively invalidating the
3717 * GTT domain upon first access.
3718 */
3719 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3720 mb();
3721
05394f39
CW
3722 old_write_domain = obj->base.write_domain;
3723 old_read_domains = obj->base.read_domains;
1c5d22f7 3724
e47c68e9
EA
3725 /* It should now be out of any other write domains, and we can update
3726 * the domain values for our changes.
3727 */
05394f39
CW
3728 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3729 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3730 if (write) {
05394f39
CW
3731 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3732 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3733 obj->dirty = 1;
2ef7eeaa
EA
3734 }
3735
f99d7069
DV
3736 if (write)
3737 intel_fb_obj_invalidate(obj, NULL);
3738
1c5d22f7
CW
3739 trace_i915_gem_object_change_domain(obj,
3740 old_read_domains,
3741 old_write_domain);
3742
8325a09d 3743 /* And bump the LRU for this access */
43566ded
CW
3744 vma = i915_gem_obj_to_ggtt(obj);
3745 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3746 list_move_tail(&vma->mm_list,
43566ded 3747 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3748
e47c68e9
EA
3749 return 0;
3750}
3751
e4ffd173
CW
3752int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3753 enum i915_cache_level cache_level)
3754{
7bddb01f 3755 struct drm_device *dev = obj->base.dev;
df6f783a 3756 struct i915_vma *vma, *next;
e4ffd173
CW
3757 int ret;
3758
3759 if (obj->cache_level == cache_level)
3760 return 0;
3761
d7f46fc4 3762 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3763 DRM_DEBUG("can not change the cache level of pinned objects\n");
3764 return -EBUSY;
3765 }
3766
df6f783a 3767 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3768 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3769 ret = i915_vma_unbind(vma);
3089c6f2
BW
3770 if (ret)
3771 return ret;
3089c6f2 3772 }
42d6ab48
CW
3773 }
3774
3089c6f2 3775 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3776 ret = i915_gem_object_finish_gpu(obj);
3777 if (ret)
3778 return ret;
3779
3780 i915_gem_object_finish_gtt(obj);
3781
3782 /* Before SandyBridge, you could not use tiling or fence
3783 * registers with snooped memory, so relinquish any fences
3784 * currently pointing to our region in the aperture.
3785 */
42d6ab48 3786 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3787 ret = i915_gem_object_put_fence(obj);
3788 if (ret)
3789 return ret;
3790 }
3791
6f65e29a 3792 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3793 if (drm_mm_node_allocated(&vma->node)) {
3794 ret = i915_vma_bind(vma, cache_level,
3795 vma->bound & GLOBAL_BIND);
3796 if (ret)
3797 return ret;
3798 }
e4ffd173
CW
3799 }
3800
2c22569b
CW
3801 list_for_each_entry(vma, &obj->vma_list, vma_link)
3802 vma->node.color = cache_level;
3803 obj->cache_level = cache_level;
3804
3805 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3806 u32 old_read_domains, old_write_domain;
3807
3808 /* If we're coming from LLC cached, then we haven't
3809 * actually been tracking whether the data is in the
3810 * CPU cache or not, since we only allow one bit set
3811 * in obj->write_domain and have been skipping the clflushes.
3812 * Just set it to the CPU cache for now.
3813 */
c8725f3d 3814 i915_gem_object_retire(obj);
e4ffd173 3815 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3816
3817 old_read_domains = obj->base.read_domains;
3818 old_write_domain = obj->base.write_domain;
3819
3820 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3821 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3822
3823 trace_i915_gem_object_change_domain(obj,
3824 old_read_domains,
3825 old_write_domain);
3826 }
3827
e4ffd173
CW
3828 return 0;
3829}
3830
199adf40
BW
3831int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3832 struct drm_file *file)
e6994aee 3833{
199adf40 3834 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3835 struct drm_i915_gem_object *obj;
3836 int ret;
3837
3838 ret = i915_mutex_lock_interruptible(dev);
3839 if (ret)
3840 return ret;
3841
3842 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3843 if (&obj->base == NULL) {
3844 ret = -ENOENT;
3845 goto unlock;
3846 }
3847
651d794f
CW
3848 switch (obj->cache_level) {
3849 case I915_CACHE_LLC:
3850 case I915_CACHE_L3_LLC:
3851 args->caching = I915_CACHING_CACHED;
3852 break;
3853
4257d3ba
CW
3854 case I915_CACHE_WT:
3855 args->caching = I915_CACHING_DISPLAY;
3856 break;
3857
651d794f
CW
3858 default:
3859 args->caching = I915_CACHING_NONE;
3860 break;
3861 }
e6994aee
CW
3862
3863 drm_gem_object_unreference(&obj->base);
3864unlock:
3865 mutex_unlock(&dev->struct_mutex);
3866 return ret;
3867}
3868
199adf40
BW
3869int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3870 struct drm_file *file)
e6994aee 3871{
199adf40 3872 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3873 struct drm_i915_gem_object *obj;
3874 enum i915_cache_level level;
3875 int ret;
3876
199adf40
BW
3877 switch (args->caching) {
3878 case I915_CACHING_NONE:
e6994aee
CW
3879 level = I915_CACHE_NONE;
3880 break;
199adf40 3881 case I915_CACHING_CACHED:
e6994aee
CW
3882 level = I915_CACHE_LLC;
3883 break;
4257d3ba
CW
3884 case I915_CACHING_DISPLAY:
3885 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3886 break;
e6994aee
CW
3887 default:
3888 return -EINVAL;
3889 }
3890
3bc2913e
BW
3891 ret = i915_mutex_lock_interruptible(dev);
3892 if (ret)
3893 return ret;
3894
e6994aee
CW
3895 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3896 if (&obj->base == NULL) {
3897 ret = -ENOENT;
3898 goto unlock;
3899 }
3900
3901 ret = i915_gem_object_set_cache_level(obj, level);
3902
3903 drm_gem_object_unreference(&obj->base);
3904unlock:
3905 mutex_unlock(&dev->struct_mutex);
3906 return ret;
3907}
3908
cc98b413
CW
3909static bool is_pin_display(struct drm_i915_gem_object *obj)
3910{
19656430
OM
3911 struct i915_vma *vma;
3912
19656430
OM
3913 vma = i915_gem_obj_to_ggtt(obj);
3914 if (!vma)
3915 return false;
3916
4feb7659 3917 /* There are 2 sources that pin objects:
cc98b413
CW
3918 * 1. The display engine (scanouts, sprites, cursors);
3919 * 2. Reservations for execbuffer;
cc98b413
CW
3920 *
3921 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3922 * are only called outside of the reservation path.
cc98b413 3923 */
4feb7659 3924 return vma->pin_count;
cc98b413
CW
3925}
3926
b9241ea3 3927/*
2da3b9b9
CW
3928 * Prepare buffer for display plane (scanout, cursors, etc).
3929 * Can be called from an uninterruptible phase (modesetting) and allows
3930 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3931 */
3932int
2da3b9b9
CW
3933i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3934 u32 alignment,
a4872ba6 3935 struct intel_engine_cs *pipelined)
b9241ea3 3936{
2da3b9b9 3937 u32 old_read_domains, old_write_domain;
19656430 3938 bool was_pin_display;
b9241ea3
ZW
3939 int ret;
3940
41c52415 3941 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3942 ret = i915_gem_object_sync(obj, pipelined);
3943 if (ret)
b9241ea3
ZW
3944 return ret;
3945 }
3946
cc98b413
CW
3947 /* Mark the pin_display early so that we account for the
3948 * display coherency whilst setting up the cache domains.
3949 */
19656430 3950 was_pin_display = obj->pin_display;
cc98b413
CW
3951 obj->pin_display = true;
3952
a7ef0640
EA
3953 /* The display engine is not coherent with the LLC cache on gen6. As
3954 * a result, we make sure that the pinning that is about to occur is
3955 * done with uncached PTEs. This is lowest common denominator for all
3956 * chipsets.
3957 *
3958 * However for gen6+, we could do better by using the GFDT bit instead
3959 * of uncaching, which would allow us to flush all the LLC-cached data
3960 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3961 */
651d794f
CW
3962 ret = i915_gem_object_set_cache_level(obj,
3963 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3964 if (ret)
cc98b413 3965 goto err_unpin_display;
a7ef0640 3966
2da3b9b9
CW
3967 /* As the user may map the buffer once pinned in the display plane
3968 * (e.g. libkms for the bootup splash), we have to ensure that we
3969 * always use map_and_fenceable for all scanout buffers.
3970 */
1ec9e26d 3971 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3972 if (ret)
cc98b413 3973 goto err_unpin_display;
2da3b9b9 3974
2c22569b 3975 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3976
2da3b9b9 3977 old_write_domain = obj->base.write_domain;
05394f39 3978 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3979
3980 /* It should now be out of any other write domains, and we can update
3981 * the domain values for our changes.
3982 */
e5f1d962 3983 obj->base.write_domain = 0;
05394f39 3984 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3985
3986 trace_i915_gem_object_change_domain(obj,
3987 old_read_domains,
2da3b9b9 3988 old_write_domain);
b9241ea3
ZW
3989
3990 return 0;
cc98b413
CW
3991
3992err_unpin_display:
19656430
OM
3993 WARN_ON(was_pin_display != is_pin_display(obj));
3994 obj->pin_display = was_pin_display;
cc98b413
CW
3995 return ret;
3996}
3997
3998void
3999i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4000{
d7f46fc4 4001 i915_gem_object_ggtt_unpin(obj);
cc98b413 4002 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4003}
4004
85345517 4005int
a8198eea 4006i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4007{
88241785
CW
4008 int ret;
4009
a8198eea 4010 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4011 return 0;
4012
0201f1ec 4013 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4014 if (ret)
4015 return ret;
4016
a8198eea
CW
4017 /* Ensure that we invalidate the GPU's caches and TLBs. */
4018 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4019 return 0;
85345517
CW
4020}
4021
e47c68e9
EA
4022/**
4023 * Moves a single object to the CPU read, and possibly write domain.
4024 *
4025 * This function returns when the move is complete, including waiting on
4026 * flushes to occur.
4027 */
dabdfe02 4028int
919926ae 4029i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4030{
1c5d22f7 4031 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4032 int ret;
4033
8d7e3de1
CW
4034 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4035 return 0;
4036
0201f1ec 4037 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4038 if (ret)
4039 return ret;
4040
c8725f3d 4041 i915_gem_object_retire(obj);
e47c68e9 4042 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4043
05394f39
CW
4044 old_write_domain = obj->base.write_domain;
4045 old_read_domains = obj->base.read_domains;
1c5d22f7 4046
e47c68e9 4047 /* Flush the CPU cache if it's still invalid. */
05394f39 4048 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4049 i915_gem_clflush_object(obj, false);
2ef7eeaa 4050
05394f39 4051 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4052 }
4053
4054 /* It should now be out of any other write domains, and we can update
4055 * the domain values for our changes.
4056 */
05394f39 4057 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4058
4059 /* If we're writing through the CPU, then the GPU read domains will
4060 * need to be invalidated at next use.
4061 */
4062 if (write) {
05394f39
CW
4063 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4064 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4065 }
2ef7eeaa 4066
f99d7069
DV
4067 if (write)
4068 intel_fb_obj_invalidate(obj, NULL);
4069
1c5d22f7
CW
4070 trace_i915_gem_object_change_domain(obj,
4071 old_read_domains,
4072 old_write_domain);
4073
2ef7eeaa
EA
4074 return 0;
4075}
4076
673a394b
EA
4077/* Throttle our rendering by waiting until the ring has completed our requests
4078 * emitted over 20 msec ago.
4079 *
b962442e
EA
4080 * Note that if we were to use the current jiffies each time around the loop,
4081 * we wouldn't escape the function with any frames outstanding if the time to
4082 * render a frame was over 20ms.
4083 *
673a394b
EA
4084 * This should get us reasonable parallelism between CPU and GPU but also
4085 * relatively low latency when blocking on a particular request to finish.
4086 */
40a5f0de 4087static int
f787a5f5 4088i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4089{
f787a5f5
CW
4090 struct drm_i915_private *dev_priv = dev->dev_private;
4091 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4092 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4093 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4094 unsigned reset_counter;
f787a5f5 4095 int ret;
93533c29 4096
308887aa
DV
4097 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4098 if (ret)
4099 return ret;
4100
4101 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4102 if (ret)
4103 return ret;
e110e8d6 4104
1c25595f 4105 spin_lock(&file_priv->mm.lock);
f787a5f5 4106 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4107 if (time_after_eq(request->emitted_jiffies, recent_enough))
4108 break;
40a5f0de 4109
54fb2411 4110 target = request;
b962442e 4111 }
f69061be 4112 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4113 if (target)
4114 i915_gem_request_reference(target);
1c25595f 4115 spin_unlock(&file_priv->mm.lock);
40a5f0de 4116
54fb2411 4117 if (target == NULL)
f787a5f5 4118 return 0;
2bc43b5c 4119
9c654818 4120 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4121 if (ret == 0)
4122 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4123
ff865885
JH
4124 mutex_lock(&dev->struct_mutex);
4125 i915_gem_request_unreference(target);
4126 mutex_unlock(&dev->struct_mutex);
4127
40a5f0de
EA
4128 return ret;
4129}
4130
d23db88c
CW
4131static bool
4132i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4133{
4134 struct drm_i915_gem_object *obj = vma->obj;
4135
4136 if (alignment &&
4137 vma->node.start & (alignment - 1))
4138 return true;
4139
4140 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4141 return true;
4142
4143 if (flags & PIN_OFFSET_BIAS &&
4144 vma->node.start < (flags & PIN_OFFSET_MASK))
4145 return true;
4146
4147 return false;
4148}
4149
673a394b 4150int
fe14d5f4
TU
4151i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4152 struct i915_address_space *vm,
4153 uint32_t alignment,
4154 uint64_t flags,
4155 const struct i915_ggtt_view *view)
673a394b 4156{
6e7186af 4157 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4158 struct i915_vma *vma;
ef79e17c 4159 unsigned bound;
673a394b
EA
4160 int ret;
4161
6e7186af
BW
4162 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4163 return -ENODEV;
4164
bf3d149b 4165 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4166 return -EINVAL;
07fe0b12 4167
c826c449
CW
4168 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4169 return -EINVAL;
4170
fe14d5f4 4171 vma = i915_gem_obj_to_vma_view(obj, vm, view);
07fe0b12 4172 if (vma) {
d7f46fc4
BW
4173 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4174 return -EBUSY;
4175
d23db88c 4176 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4177 WARN(vma->pin_count,
ae7d49d8 4178 "bo is already pinned with incorrect alignment:"
f343c5f6 4179 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4180 " obj->map_and_fenceable=%d\n",
fe14d5f4
TU
4181 i915_gem_obj_offset_view(obj, vm, view->type),
4182 alignment,
d23db88c 4183 !!(flags & PIN_MAPPABLE),
05394f39 4184 obj->map_and_fenceable);
07fe0b12 4185 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4186 if (ret)
4187 return ret;
8ea99c92
DV
4188
4189 vma = NULL;
ac0c6b5a
CW
4190 }
4191 }
4192
ef79e17c 4193 bound = vma ? vma->bound : 0;
8ea99c92 4194 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
fe14d5f4
TU
4195 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4196 flags, view);
262de145
DV
4197 if (IS_ERR(vma))
4198 return PTR_ERR(vma);
22c344e9 4199 }
76446cac 4200
fe14d5f4
TU
4201 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4202 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4203 if (ret)
4204 return ret;
4205 }
74898d7e 4206
ef79e17c
CW
4207 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4208 bool mappable, fenceable;
4209 u32 fence_size, fence_alignment;
4210
4211 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4212 obj->base.size,
4213 obj->tiling_mode);
4214 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4215 obj->base.size,
4216 obj->tiling_mode,
4217 true);
4218
4219 fenceable = (vma->node.size == fence_size &&
4220 (vma->node.start & (fence_alignment - 1)) == 0);
4221
4222 mappable = (vma->node.start + obj->base.size <=
4223 dev_priv->gtt.mappable_end);
4224
4225 obj->map_and_fenceable = mappable && fenceable;
4226 }
4227
4228 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4229
8ea99c92 4230 vma->pin_count++;
1ec9e26d
DV
4231 if (flags & PIN_MAPPABLE)
4232 obj->pin_mappable |= true;
673a394b
EA
4233
4234 return 0;
4235}
4236
4237void
d7f46fc4 4238i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4239{
d7f46fc4 4240 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4241
d7f46fc4
BW
4242 BUG_ON(!vma);
4243 BUG_ON(vma->pin_count == 0);
4244 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4245
4246 if (--vma->pin_count == 0)
6299f992 4247 obj->pin_mappable = false;
673a394b
EA
4248}
4249
d8ffa60b
DV
4250bool
4251i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4252{
4253 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4254 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4255 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4256
4257 WARN_ON(!ggtt_vma ||
4258 dev_priv->fence_regs[obj->fence_reg].pin_count >
4259 ggtt_vma->pin_count);
4260 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4261 return true;
4262 } else
4263 return false;
4264}
4265
4266void
4267i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4268{
4269 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4270 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4271 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4272 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4273 }
4274}
4275
673a394b
EA
4276int
4277i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4278 struct drm_file *file)
673a394b
EA
4279{
4280 struct drm_i915_gem_busy *args = data;
05394f39 4281 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4282 int ret;
4283
76c1dec1 4284 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4285 if (ret)
76c1dec1 4286 return ret;
673a394b 4287
05394f39 4288 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4289 if (&obj->base == NULL) {
1d7cfea1
CW
4290 ret = -ENOENT;
4291 goto unlock;
673a394b 4292 }
d1b851fc 4293
0be555b6
CW
4294 /* Count all active objects as busy, even if they are currently not used
4295 * by the gpu. Users of this interface expect objects to eventually
4296 * become non-busy without any further actions, therefore emit any
4297 * necessary flushes here.
c4de0a5d 4298 */
30dfebf3 4299 ret = i915_gem_object_flush_active(obj);
0be555b6 4300
30dfebf3 4301 args->busy = obj->active;
41c52415
JH
4302 if (obj->last_read_req) {
4303 struct intel_engine_cs *ring;
e9808edd 4304 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4305 ring = i915_gem_request_get_ring(obj->last_read_req);
4306 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4307 }
673a394b 4308
05394f39 4309 drm_gem_object_unreference(&obj->base);
1d7cfea1 4310unlock:
673a394b 4311 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4312 return ret;
673a394b
EA
4313}
4314
4315int
4316i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4317 struct drm_file *file_priv)
4318{
0206e353 4319 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4320}
4321
3ef94daa
CW
4322int
4323i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4324 struct drm_file *file_priv)
4325{
656bfa3a 4326 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4327 struct drm_i915_gem_madvise *args = data;
05394f39 4328 struct drm_i915_gem_object *obj;
76c1dec1 4329 int ret;
3ef94daa
CW
4330
4331 switch (args->madv) {
4332 case I915_MADV_DONTNEED:
4333 case I915_MADV_WILLNEED:
4334 break;
4335 default:
4336 return -EINVAL;
4337 }
4338
1d7cfea1
CW
4339 ret = i915_mutex_lock_interruptible(dev);
4340 if (ret)
4341 return ret;
4342
05394f39 4343 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4344 if (&obj->base == NULL) {
1d7cfea1
CW
4345 ret = -ENOENT;
4346 goto unlock;
3ef94daa 4347 }
3ef94daa 4348
d7f46fc4 4349 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4350 ret = -EINVAL;
4351 goto out;
3ef94daa
CW
4352 }
4353
656bfa3a
DV
4354 if (obj->pages &&
4355 obj->tiling_mode != I915_TILING_NONE &&
4356 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4357 if (obj->madv == I915_MADV_WILLNEED)
4358 i915_gem_object_unpin_pages(obj);
4359 if (args->madv == I915_MADV_WILLNEED)
4360 i915_gem_object_pin_pages(obj);
4361 }
4362
05394f39
CW
4363 if (obj->madv != __I915_MADV_PURGED)
4364 obj->madv = args->madv;
3ef94daa 4365
6c085a72
CW
4366 /* if the object is no longer attached, discard its backing storage */
4367 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4368 i915_gem_object_truncate(obj);
4369
05394f39 4370 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4371
1d7cfea1 4372out:
05394f39 4373 drm_gem_object_unreference(&obj->base);
1d7cfea1 4374unlock:
3ef94daa 4375 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4376 return ret;
3ef94daa
CW
4377}
4378
37e680a1
CW
4379void i915_gem_object_init(struct drm_i915_gem_object *obj,
4380 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4381{
35c20a60 4382 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4383 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4384 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4385 INIT_LIST_HEAD(&obj->vma_list);
493018dc 4386 INIT_LIST_HEAD(&obj->batch_pool_list);
0327d6ba 4387
37e680a1
CW
4388 obj->ops = ops;
4389
0327d6ba
CW
4390 obj->fence_reg = I915_FENCE_REG_NONE;
4391 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4392
4393 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4394}
4395
37e680a1
CW
4396static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4397 .get_pages = i915_gem_object_get_pages_gtt,
4398 .put_pages = i915_gem_object_put_pages_gtt,
4399};
4400
05394f39
CW
4401struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4402 size_t size)
ac52bc56 4403{
c397b908 4404 struct drm_i915_gem_object *obj;
5949eac4 4405 struct address_space *mapping;
1a240d4d 4406 gfp_t mask;
ac52bc56 4407
42dcedd4 4408 obj = i915_gem_object_alloc(dev);
c397b908
DV
4409 if (obj == NULL)
4410 return NULL;
673a394b 4411
c397b908 4412 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4413 i915_gem_object_free(obj);
c397b908
DV
4414 return NULL;
4415 }
673a394b 4416
bed1ea95
CW
4417 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4418 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4419 /* 965gm cannot relocate objects above 4GiB. */
4420 mask &= ~__GFP_HIGHMEM;
4421 mask |= __GFP_DMA32;
4422 }
4423
496ad9aa 4424 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4425 mapping_set_gfp_mask(mapping, mask);
5949eac4 4426
37e680a1 4427 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4428
c397b908
DV
4429 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4430 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4431
3d29b842
ED
4432 if (HAS_LLC(dev)) {
4433 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4434 * cache) for about a 10% performance improvement
4435 * compared to uncached. Graphics requests other than
4436 * display scanout are coherent with the CPU in
4437 * accessing this cache. This means in this mode we
4438 * don't need to clflush on the CPU side, and on the
4439 * GPU side we only need to flush internal caches to
4440 * get data visible to the CPU.
4441 *
4442 * However, we maintain the display planes as UC, and so
4443 * need to rebind when first used as such.
4444 */
4445 obj->cache_level = I915_CACHE_LLC;
4446 } else
4447 obj->cache_level = I915_CACHE_NONE;
4448
d861e338
DV
4449 trace_i915_gem_object_create(obj);
4450
05394f39 4451 return obj;
c397b908
DV
4452}
4453
340fbd8c
CW
4454static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4455{
4456 /* If we are the last user of the backing storage (be it shmemfs
4457 * pages or stolen etc), we know that the pages are going to be
4458 * immediately released. In this case, we can then skip copying
4459 * back the contents from the GPU.
4460 */
4461
4462 if (obj->madv != I915_MADV_WILLNEED)
4463 return false;
4464
4465 if (obj->base.filp == NULL)
4466 return true;
4467
4468 /* At first glance, this looks racy, but then again so would be
4469 * userspace racing mmap against close. However, the first external
4470 * reference to the filp can only be obtained through the
4471 * i915_gem_mmap_ioctl() which safeguards us against the user
4472 * acquiring such a reference whilst we are in the middle of
4473 * freeing the object.
4474 */
4475 return atomic_long_read(&obj->base.filp->f_count) == 1;
4476}
4477
1488fc08 4478void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4479{
1488fc08 4480 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4481 struct drm_device *dev = obj->base.dev;
3e31c6c0 4482 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4483 struct i915_vma *vma, *next;
673a394b 4484
f65c9168
PZ
4485 intel_runtime_pm_get(dev_priv);
4486
26e12f89
CW
4487 trace_i915_gem_object_destroy(obj);
4488
07fe0b12 4489 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4490 int ret;
4491
4492 vma->pin_count = 0;
4493 ret = i915_vma_unbind(vma);
07fe0b12
BW
4494 if (WARN_ON(ret == -ERESTARTSYS)) {
4495 bool was_interruptible;
1488fc08 4496
07fe0b12
BW
4497 was_interruptible = dev_priv->mm.interruptible;
4498 dev_priv->mm.interruptible = false;
1488fc08 4499
07fe0b12 4500 WARN_ON(i915_vma_unbind(vma));
1488fc08 4501
07fe0b12
BW
4502 dev_priv->mm.interruptible = was_interruptible;
4503 }
1488fc08
CW
4504 }
4505
1d64ae71
BW
4506 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4507 * before progressing. */
4508 if (obj->stolen)
4509 i915_gem_object_unpin_pages(obj);
4510
a071fa00
DV
4511 WARN_ON(obj->frontbuffer_bits);
4512
656bfa3a
DV
4513 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4514 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4515 obj->tiling_mode != I915_TILING_NONE)
4516 i915_gem_object_unpin_pages(obj);
4517
401c29f6
BW
4518 if (WARN_ON(obj->pages_pin_count))
4519 obj->pages_pin_count = 0;
340fbd8c 4520 if (discard_backing_storage(obj))
5537252b 4521 obj->madv = I915_MADV_DONTNEED;
37e680a1 4522 i915_gem_object_put_pages(obj);
d8cb5086 4523 i915_gem_object_free_mmap_offset(obj);
de151cf6 4524
9da3da66
CW
4525 BUG_ON(obj->pages);
4526
2f745ad3
CW
4527 if (obj->base.import_attach)
4528 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4529
5cc9ed4b
CW
4530 if (obj->ops->release)
4531 obj->ops->release(obj);
4532
05394f39
CW
4533 drm_gem_object_release(&obj->base);
4534 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4535
05394f39 4536 kfree(obj->bit_17);
42dcedd4 4537 i915_gem_object_free(obj);
f65c9168
PZ
4538
4539 intel_runtime_pm_put(dev_priv);
673a394b
EA
4540}
4541
fe14d5f4
TU
4542struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4543 struct i915_address_space *vm,
4544 const struct i915_ggtt_view *view)
e656a6cb
DV
4545{
4546 struct i915_vma *vma;
4547 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4 4548 if (vma->vm == vm && vma->ggtt_view.type == view->type)
e656a6cb
DV
4549 return vma;
4550
4551 return NULL;
4552}
4553
2f633156
BW
4554void i915_gem_vma_destroy(struct i915_vma *vma)
4555{
b9d06dd9 4556 struct i915_address_space *vm = NULL;
2f633156 4557 WARN_ON(vma->node.allocated);
aaa05667
CW
4558
4559 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4560 if (!list_empty(&vma->exec_list))
4561 return;
4562
b9d06dd9 4563 vm = vma->vm;
b9d06dd9 4564
841cd773
DV
4565 if (!i915_is_ggtt(vm))
4566 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4567
8b9c2b94 4568 list_del(&vma->vma_link);
b93dab6e 4569
2f633156
BW
4570 kfree(vma);
4571}
4572
e3efda49
CW
4573static void
4574i915_gem_stop_ringbuffers(struct drm_device *dev)
4575{
4576 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4577 struct intel_engine_cs *ring;
e3efda49
CW
4578 int i;
4579
4580 for_each_ring(ring, dev_priv, i)
a83014d3 4581 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4582}
4583
29105ccc 4584int
45c5f202 4585i915_gem_suspend(struct drm_device *dev)
29105ccc 4586{
3e31c6c0 4587 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4588 int ret = 0;
28dfe52a 4589
45c5f202 4590 mutex_lock(&dev->struct_mutex);
b2da9fe5 4591 ret = i915_gpu_idle(dev);
f7403347 4592 if (ret)
45c5f202 4593 goto err;
f7403347 4594
b2da9fe5 4595 i915_gem_retire_requests(dev);
673a394b 4596
29105ccc 4597 /* Under UMS, be paranoid and evict. */
a39d7efc 4598 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4599 i915_gem_evict_everything(dev);
29105ccc 4600
e3efda49 4601 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4602 mutex_unlock(&dev->struct_mutex);
4603
4604 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4605 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4606 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4607
bdcf120b
CW
4608 /* Assert that we sucessfully flushed all the work and
4609 * reset the GPU back to its idle, low power state.
4610 */
4611 WARN_ON(dev_priv->mm.busy);
4612
673a394b 4613 return 0;
45c5f202
CW
4614
4615err:
4616 mutex_unlock(&dev->struct_mutex);
4617 return ret;
673a394b
EA
4618}
4619
a4872ba6 4620int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4621{
c3787e2e 4622 struct drm_device *dev = ring->dev;
3e31c6c0 4623 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4624 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4625 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4626 int i, ret;
b9524a1e 4627
040d2baa 4628 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4629 return 0;
b9524a1e 4630
c3787e2e
BW
4631 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4632 if (ret)
4633 return ret;
b9524a1e 4634
c3787e2e
BW
4635 /*
4636 * Note: We do not worry about the concurrent register cacheline hang
4637 * here because no other code should access these registers other than
4638 * at initialization time.
4639 */
b9524a1e 4640 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4641 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4642 intel_ring_emit(ring, reg_base + i);
4643 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4644 }
4645
c3787e2e 4646 intel_ring_advance(ring);
b9524a1e 4647
c3787e2e 4648 return ret;
b9524a1e
BW
4649}
4650
f691e2f4
DV
4651void i915_gem_init_swizzling(struct drm_device *dev)
4652{
3e31c6c0 4653 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4654
11782b02 4655 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4656 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4657 return;
4658
4659 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4660 DISP_TILE_SURFACE_SWIZZLING);
4661
11782b02
DV
4662 if (IS_GEN5(dev))
4663 return;
4664
f691e2f4
DV
4665 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4666 if (IS_GEN6(dev))
6b26c86d 4667 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4668 else if (IS_GEN7(dev))
6b26c86d 4669 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4670 else if (IS_GEN8(dev))
4671 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4672 else
4673 BUG();
f691e2f4 4674}
e21af88d 4675
67b1b571
CW
4676static bool
4677intel_enable_blt(struct drm_device *dev)
4678{
4679 if (!HAS_BLT(dev))
4680 return false;
4681
4682 /* The blitter was dysfunctional on early prototypes */
4683 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4684 DRM_INFO("BLT not supported on this pre-production hardware;"
4685 " graphics performance will be degraded.\n");
4686 return false;
4687 }
4688
4689 return true;
4690}
4691
81e7f200
VS
4692static void init_unused_ring(struct drm_device *dev, u32 base)
4693{
4694 struct drm_i915_private *dev_priv = dev->dev_private;
4695
4696 I915_WRITE(RING_CTL(base), 0);
4697 I915_WRITE(RING_HEAD(base), 0);
4698 I915_WRITE(RING_TAIL(base), 0);
4699 I915_WRITE(RING_START(base), 0);
4700}
4701
4702static void init_unused_rings(struct drm_device *dev)
4703{
4704 if (IS_I830(dev)) {
4705 init_unused_ring(dev, PRB1_BASE);
4706 init_unused_ring(dev, SRB0_BASE);
4707 init_unused_ring(dev, SRB1_BASE);
4708 init_unused_ring(dev, SRB2_BASE);
4709 init_unused_ring(dev, SRB3_BASE);
4710 } else if (IS_GEN2(dev)) {
4711 init_unused_ring(dev, SRB0_BASE);
4712 init_unused_ring(dev, SRB1_BASE);
4713 } else if (IS_GEN3(dev)) {
4714 init_unused_ring(dev, PRB1_BASE);
4715 init_unused_ring(dev, PRB2_BASE);
4716 }
4717}
4718
a83014d3 4719int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4720{
4fc7c971 4721 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4722 int ret;
68f95ba9 4723
5c1143bb 4724 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4725 if (ret)
b6913e4b 4726 return ret;
68f95ba9
CW
4727
4728 if (HAS_BSD(dev)) {
5c1143bb 4729 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4730 if (ret)
4731 goto cleanup_render_ring;
d1b851fc 4732 }
68f95ba9 4733
67b1b571 4734 if (intel_enable_blt(dev)) {
549f7365
CW
4735 ret = intel_init_blt_ring_buffer(dev);
4736 if (ret)
4737 goto cleanup_bsd_ring;
4738 }
4739
9a8a2213
BW
4740 if (HAS_VEBOX(dev)) {
4741 ret = intel_init_vebox_ring_buffer(dev);
4742 if (ret)
4743 goto cleanup_blt_ring;
4744 }
4745
845f74a7
ZY
4746 if (HAS_BSD2(dev)) {
4747 ret = intel_init_bsd2_ring_buffer(dev);
4748 if (ret)
4749 goto cleanup_vebox_ring;
4750 }
9a8a2213 4751
99433931 4752 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4753 if (ret)
845f74a7 4754 goto cleanup_bsd2_ring;
4fc7c971
BW
4755
4756 return 0;
4757
845f74a7
ZY
4758cleanup_bsd2_ring:
4759 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4760cleanup_vebox_ring:
4761 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4762cleanup_blt_ring:
4763 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4764cleanup_bsd_ring:
4765 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4766cleanup_render_ring:
4767 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4768
4769 return ret;
4770}
4771
4772int
4773i915_gem_init_hw(struct drm_device *dev)
4774{
3e31c6c0 4775 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4776 struct intel_engine_cs *ring;
35a85ac6 4777 int ret, i;
4fc7c971
BW
4778
4779 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4780 return -EIO;
4781
59124506 4782 if (dev_priv->ellc_size)
05e21cc4 4783 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4784
0bf21347
VS
4785 if (IS_HASWELL(dev))
4786 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4787 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4788
88a2b2a3 4789 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4790 if (IS_IVYBRIDGE(dev)) {
4791 u32 temp = I915_READ(GEN7_MSG_CTL);
4792 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4793 I915_WRITE(GEN7_MSG_CTL, temp);
4794 } else if (INTEL_INFO(dev)->gen >= 7) {
4795 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4796 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4797 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4798 }
88a2b2a3
BW
4799 }
4800
4fc7c971
BW
4801 i915_gem_init_swizzling(dev);
4802
d5abdfda
DV
4803 /*
4804 * At least 830 can leave some of the unused rings
4805 * "active" (ie. head != tail) after resume which
4806 * will prevent c3 entry. Makes sure all unused rings
4807 * are totally idle.
4808 */
4809 init_unused_rings(dev);
4810
35a57ffb
DV
4811 for_each_ring(ring, dev_priv, i) {
4812 ret = ring->init_hw(ring);
4813 if (ret)
4814 return ret;
4815 }
99433931 4816
c3787e2e
BW
4817 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4818 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4819
254f965c 4820 /*
2fa48d8d
BW
4821 * XXX: Contexts should only be initialized once. Doing a switch to the
4822 * default context switch however is something we'd like to do after
4823 * reset or thaw (the latter may not actually be necessary for HW, but
4824 * goes with our code better). Context switching requires rings (for
4825 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4826 */
2fa48d8d 4827 ret = i915_gem_context_enable(dev_priv);
60990320 4828 if (ret && ret != -EIO) {
2fa48d8d 4829 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4830 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4831
4832 return ret;
4833 }
4834
4835 ret = i915_ppgtt_init_hw(dev);
4836 if (ret && ret != -EIO) {
4837 DRM_ERROR("PPGTT enable failed %d\n", ret);
4838 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4839 }
e21af88d 4840
2fa48d8d 4841 return ret;
8187a2b7
ZN
4842}
4843
1070a42b
CW
4844int i915_gem_init(struct drm_device *dev)
4845{
4846 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4847 int ret;
4848
127f1003
OM
4849 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4850 i915.enable_execlists);
4851
1070a42b 4852 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4853
4854 if (IS_VALLEYVIEW(dev)) {
4855 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4856 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4857 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4858 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4859 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4860 }
4861
a83014d3
OM
4862 if (!i915.enable_execlists) {
4863 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4864 dev_priv->gt.init_rings = i915_gem_init_rings;
4865 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4866 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4867 } else {
4868 dev_priv->gt.do_execbuf = intel_execlists_submission;
4869 dev_priv->gt.init_rings = intel_logical_rings_init;
4870 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4871 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4872 }
4873
6c5566a8 4874 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4875 if (ret)
4876 goto out_unlock;
6c5566a8 4877
d7e5008f 4878 i915_gem_init_global_gtt(dev);
d62b4892 4879
2fa48d8d 4880 ret = i915_gem_context_init(dev);
7bcc3777
JN
4881 if (ret)
4882 goto out_unlock;
2fa48d8d 4883
35a57ffb
DV
4884 ret = dev_priv->gt.init_rings(dev);
4885 if (ret)
7bcc3777 4886 goto out_unlock;
35a57ffb 4887
1070a42b 4888 ret = i915_gem_init_hw(dev);
60990320
CW
4889 if (ret == -EIO) {
4890 /* Allow ring initialisation to fail by marking the GPU as
4891 * wedged. But we only want to do this where the GPU is angry,
4892 * for all other failure, such as an allocation failure, bail.
4893 */
4894 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4895 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4896 ret = 0;
1070a42b 4897 }
7bcc3777
JN
4898
4899out_unlock:
60990320 4900 mutex_unlock(&dev->struct_mutex);
1070a42b 4901
60990320 4902 return ret;
1070a42b
CW
4903}
4904
8187a2b7
ZN
4905void
4906i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4907{
3e31c6c0 4908 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4909 struct intel_engine_cs *ring;
1ec14ad3 4910 int i;
8187a2b7 4911
b4519513 4912 for_each_ring(ring, dev_priv, i)
a83014d3 4913 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4914}
4915
64193406 4916static void
a4872ba6 4917init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4918{
4919 INIT_LIST_HEAD(&ring->active_list);
4920 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4921}
4922
7e0d96bc
BW
4923void i915_init_vm(struct drm_i915_private *dev_priv,
4924 struct i915_address_space *vm)
fc8c067e 4925{
7e0d96bc
BW
4926 if (!i915_is_ggtt(vm))
4927 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4928 vm->dev = dev_priv->dev;
4929 INIT_LIST_HEAD(&vm->active_list);
4930 INIT_LIST_HEAD(&vm->inactive_list);
4931 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4932 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4933}
4934
673a394b
EA
4935void
4936i915_gem_load(struct drm_device *dev)
4937{
3e31c6c0 4938 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4939 int i;
4940
4941 dev_priv->slab =
4942 kmem_cache_create("i915_gem_object",
4943 sizeof(struct drm_i915_gem_object), 0,
4944 SLAB_HWCACHE_ALIGN,
4945 NULL);
673a394b 4946
fc8c067e
BW
4947 INIT_LIST_HEAD(&dev_priv->vm_list);
4948 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4949
a33afea5 4950 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4951 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4952 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4953 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4954 for (i = 0; i < I915_NUM_RINGS; i++)
4955 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4956 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4957 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4958 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4959 i915_gem_retire_work_handler);
b29c19b6
CW
4960 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4961 i915_gem_idle_work_handler);
1f83fee0 4962 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4963
94400120 4964 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4965 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4966 I915_WRITE(MI_ARB_STATE,
4967 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4968 }
4969
72bfa19c
CW
4970 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4971
de151cf6 4972 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4973 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4974 dev_priv->fence_reg_start = 3;
de151cf6 4975
42b5aeab
VS
4976 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4977 dev_priv->num_fence_regs = 32;
4978 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4979 dev_priv->num_fence_regs = 16;
4980 else
4981 dev_priv->num_fence_regs = 8;
4982
b5aa8a0f 4983 /* Initialize fence registers to zero */
19b2dbde
CW
4984 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4985 i915_gem_restore_fences(dev);
10ed13e4 4986
673a394b 4987 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4988 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4989
ce453d81
CW
4990 dev_priv->mm.interruptible = true;
4991
ceabbba5
CW
4992 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4993 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4994 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4995 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4996
4997 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4998 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069 4999
78a42377
BV
5000 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5001
f99d7069 5002 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5003}
71acb5eb 5004
f787a5f5 5005void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5006{
f787a5f5 5007 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5008
b29c19b6
CW
5009 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5010
b962442e
EA
5011 /* Clean up our request list when the client is going away, so that
5012 * later retire_requests won't dereference our soon-to-be-gone
5013 * file_priv.
5014 */
1c25595f 5015 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5016 while (!list_empty(&file_priv->mm.request_list)) {
5017 struct drm_i915_gem_request *request;
5018
5019 request = list_first_entry(&file_priv->mm.request_list,
5020 struct drm_i915_gem_request,
5021 client_list);
5022 list_del(&request->client_list);
5023 request->file_priv = NULL;
5024 }
1c25595f 5025 spin_unlock(&file_priv->mm.lock);
b962442e 5026}
31169714 5027
b29c19b6
CW
5028static void
5029i915_gem_file_idle_work_handler(struct work_struct *work)
5030{
5031 struct drm_i915_file_private *file_priv =
5032 container_of(work, typeof(*file_priv), mm.idle_work.work);
5033
5034 atomic_set(&file_priv->rps_wait_boost, false);
5035}
5036
5037int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5038{
5039 struct drm_i915_file_private *file_priv;
e422b888 5040 int ret;
b29c19b6
CW
5041
5042 DRM_DEBUG_DRIVER("\n");
5043
5044 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5045 if (!file_priv)
5046 return -ENOMEM;
5047
5048 file->driver_priv = file_priv;
5049 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5050 file_priv->file = file;
b29c19b6
CW
5051
5052 spin_lock_init(&file_priv->mm.lock);
5053 INIT_LIST_HEAD(&file_priv->mm.request_list);
5054 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5055 i915_gem_file_idle_work_handler);
5056
e422b888
BW
5057 ret = i915_gem_context_open(dev, file);
5058 if (ret)
5059 kfree(file_priv);
b29c19b6 5060
e422b888 5061 return ret;
b29c19b6
CW
5062}
5063
b680c37a
DV
5064/**
5065 * i915_gem_track_fb - update frontbuffer tracking
5066 * old: current GEM buffer for the frontbuffer slots
5067 * new: new GEM buffer for the frontbuffer slots
5068 * frontbuffer_bits: bitmask of frontbuffer slots
5069 *
5070 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5071 * from @old and setting them in @new. Both @old and @new can be NULL.
5072 */
a071fa00
DV
5073void i915_gem_track_fb(struct drm_i915_gem_object *old,
5074 struct drm_i915_gem_object *new,
5075 unsigned frontbuffer_bits)
5076{
5077 if (old) {
5078 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5079 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5080 old->frontbuffer_bits &= ~frontbuffer_bits;
5081 }
5082
5083 if (new) {
5084 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5085 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5086 new->frontbuffer_bits |= frontbuffer_bits;
5087 }
5088}
5089
5774506f
CW
5090static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5091{
5092 if (!mutex_is_locked(mutex))
5093 return false;
5094
5095#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5096 return mutex->owner == task;
5097#else
5098 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5099 return false;
5100#endif
5101}
5102
b453c4db
CW
5103static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5104{
5105 if (!mutex_trylock(&dev->struct_mutex)) {
5106 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5107 return false;
5108
5109 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5110 return false;
5111
5112 *unlock = false;
5113 } else
5114 *unlock = true;
5115
5116 return true;
5117}
5118
ceabbba5
CW
5119static int num_vma_bound(struct drm_i915_gem_object *obj)
5120{
5121 struct i915_vma *vma;
5122 int count = 0;
5123
5124 list_for_each_entry(vma, &obj->vma_list, vma_link)
5125 if (drm_mm_node_allocated(&vma->node))
5126 count++;
5127
5128 return count;
5129}
5130
7dc19d5a 5131static unsigned long
ceabbba5 5132i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5133{
17250b71 5134 struct drm_i915_private *dev_priv =
ceabbba5 5135 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5136 struct drm_device *dev = dev_priv->dev;
6c085a72 5137 struct drm_i915_gem_object *obj;
7dc19d5a 5138 unsigned long count;
b453c4db 5139 bool unlock;
17250b71 5140
b453c4db
CW
5141 if (!i915_gem_shrinker_lock(dev, &unlock))
5142 return 0;
31169714 5143
7dc19d5a 5144 count = 0;
35c20a60 5145 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5146 if (obj->pages_pin_count == 0)
7dc19d5a 5147 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5148
5149 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5150 if (!i915_gem_obj_is_pinned(obj) &&
5151 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5152 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5153 }
17250b71 5154
5774506f
CW
5155 if (unlock)
5156 mutex_unlock(&dev->struct_mutex);
d9973b43 5157
7dc19d5a 5158 return count;
31169714 5159}
a70a3148
BW
5160
5161/* All the new VM stuff */
fe14d5f4
TU
5162unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5163 struct i915_address_space *vm,
5164 enum i915_ggtt_view_type view)
a70a3148
BW
5165{
5166 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5167 struct i915_vma *vma;
5168
896ab1a5 5169 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5170
a70a3148 5171 list_for_each_entry(vma, &o->vma_list, vma_link) {
fe14d5f4 5172 if (vma->vm == vm && vma->ggtt_view.type == view)
a70a3148
BW
5173 return vma->node.start;
5174
5175 }
f25748ea
DV
5176 WARN(1, "%s vma for this object not found.\n",
5177 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5178 return -1;
5179}
5180
fe14d5f4
TU
5181bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5182 struct i915_address_space *vm,
5183 enum i915_ggtt_view_type view)
a70a3148
BW
5184{
5185 struct i915_vma *vma;
5186
5187 list_for_each_entry(vma, &o->vma_list, vma_link)
fe14d5f4
TU
5188 if (vma->vm == vm &&
5189 vma->ggtt_view.type == view &&
5190 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5191 return true;
5192
5193 return false;
5194}
5195
5196bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5197{
5a1d5eb0 5198 struct i915_vma *vma;
a70a3148 5199
5a1d5eb0
CW
5200 list_for_each_entry(vma, &o->vma_list, vma_link)
5201 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5202 return true;
5203
5204 return false;
5205}
5206
5207unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5208 struct i915_address_space *vm)
5209{
5210 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5211 struct i915_vma *vma;
5212
896ab1a5 5213 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5214
5215 BUG_ON(list_empty(&o->vma_list));
5216
5217 list_for_each_entry(vma, &o->vma_list, vma_link)
5218 if (vma->vm == vm)
5219 return vma->node.size;
5220
5221 return 0;
5222}
5223
7dc19d5a 5224static unsigned long
ceabbba5 5225i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5226{
5227 struct drm_i915_private *dev_priv =
ceabbba5 5228 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5229 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5230 unsigned long freed;
b453c4db 5231 bool unlock;
7dc19d5a 5232
b453c4db
CW
5233 if (!i915_gem_shrinker_lock(dev, &unlock))
5234 return SHRINK_STOP;
7dc19d5a 5235
21ab4e74
CW
5236 freed = i915_gem_shrink(dev_priv,
5237 sc->nr_to_scan,
5238 I915_SHRINK_BOUND |
5239 I915_SHRINK_UNBOUND |
5240 I915_SHRINK_PURGEABLE);
d9973b43 5241 if (freed < sc->nr_to_scan)
21ab4e74
CW
5242 freed += i915_gem_shrink(dev_priv,
5243 sc->nr_to_scan - freed,
5244 I915_SHRINK_BOUND |
5245 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5246 if (unlock)
5247 mutex_unlock(&dev->struct_mutex);
d9973b43 5248
7dc19d5a
DC
5249 return freed;
5250}
5c2abbea 5251
2cfcd32a
CW
5252static int
5253i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5254{
5255 struct drm_i915_private *dev_priv =
5256 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5257 struct drm_device *dev = dev_priv->dev;
5258 struct drm_i915_gem_object *obj;
5259 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5260 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5261 bool was_interruptible;
5262 bool unlock;
5263
a1db2fa7 5264 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5265 schedule_timeout_killable(1);
a1db2fa7
CW
5266 if (fatal_signal_pending(current))
5267 return NOTIFY_DONE;
5268 }
2cfcd32a
CW
5269 if (timeout == 0) {
5270 pr_err("Unable to purge GPU memory due lock contention.\n");
5271 return NOTIFY_DONE;
5272 }
5273
5274 was_interruptible = dev_priv->mm.interruptible;
5275 dev_priv->mm.interruptible = false;
5276
005445c5 5277 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5278
5279 dev_priv->mm.interruptible = was_interruptible;
5280
5281 /* Because we may be allocating inside our own driver, we cannot
5282 * assert that there are no objects with pinned pages that are not
5283 * being pointed to by hardware.
5284 */
5285 unbound = bound = pinned = 0;
5286 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5287 if (!obj->base.filp) /* not backed by a freeable object */
5288 continue;
5289
5290 if (obj->pages_pin_count)
5291 pinned += obj->base.size;
5292 else
5293 unbound += obj->base.size;
5294 }
5295 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5296 if (!obj->base.filp)
5297 continue;
5298
5299 if (obj->pages_pin_count)
5300 pinned += obj->base.size;
5301 else
5302 bound += obj->base.size;
5303 }
5304
5305 if (unlock)
5306 mutex_unlock(&dev->struct_mutex);
5307
bb9059d3
CW
5308 if (freed_pages || unbound || bound)
5309 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5310 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5311 if (unbound || bound)
5312 pr_err("%lu and %lu bytes still available in the "
5313 "bound and unbound GPU page lists.\n",
5314 bound, unbound);
5315
005445c5 5316 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5317 return NOTIFY_DONE;
5318}
5319
5c2abbea
BW
5320struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5321{
f7635669 5322 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5c2abbea
BW
5323 struct i915_vma *vma;
5324
fe14d5f4
TU
5325 list_for_each_entry(vma, &obj->vma_list, vma_link)
5326 if (vma->vm == ggtt &&
5327 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
f7635669 5328 return vma;
5c2abbea 5329
f7635669 5330 return NULL;
5c2abbea 5331}