]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Convert EFAULT into a silent SIGBUS
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
07fe0b12
BW
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39 55 struct drm_file *file);
673a394b 56
61050808
CW
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
7dc19d5a
DC
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
d9973b43
CW
67static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 207 if (i915_gem_obj_is_pinned(obj))
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
de45eaf7 264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
d174bd64
DV
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
eb01459f 338static int
d174bd64
DV
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
e7e58eb5 346 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
f60d7f0c 358 return ret ? -EFAULT : 0;
d174bd64
DV
359}
360
23c18c71
DV
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
e7e58eb5 365 if (unlikely(swizzled)) {
23c18c71
DV
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
d174bd64
DV
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
23c18c71
DV
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
d174bd64
DV
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
f60d7f0c 409 return ret ? - EFAULT : 0;
d174bd64
DV
410}
411
eb01459f 412static int
dbf7bff0
DV
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
eb01459f 417{
8461d226 418 char __user *user_data;
eb01459f 419 ssize_t remain;
8461d226 420 loff_t offset;
eb2c0c81 421 int shmem_page_offset, page_length, ret = 0;
8461d226 422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 423 int prefaulted = 0;
8489731c 424 int needs_clflush = 0;
67d5a50c 425 struct sg_page_iter sg_iter;
eb01459f 426
2bb4629a 427 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
428 remain = args->size;
429
8461d226 430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 431
8489731c
DV
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
c76ce038 437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
8489731c 441 }
eb01459f 442
f60d7f0c
CW
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
8461d226 449 offset = args->offset;
eb01459f 450
67d5a50c
ID
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
2db76d7c 453 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
454
455 if (remain <= 0)
456 break;
457
eb01459f
EA
458 /* Operation in this page
459 *
eb01459f 460 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
461 * page_length = bytes to copy for this page
462 */
c8cbbb8b 463 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 467
8461d226
DV
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
d174bd64
DV
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
dbf7bff0 476
dbf7bff0
DV
477 mutex_unlock(&dev->struct_mutex);
478
d330a953 479 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 480 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
eb01459f 488
d174bd64
DV
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
eb01459f 492
dbf7bff0 493 mutex_lock(&dev->struct_mutex);
f60d7f0c 494
dbf7bff0 495next_page:
e5281ccd 496 mark_page_accessed(page);
e5281ccd 497
f60d7f0c 498 if (ret)
8461d226 499 goto out;
8461d226 500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
f60d7f0c
CW
507 i915_gem_object_unpin_pages(obj);
508
eb01459f
EA
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
2bb4629a 529 to_user_ptr(args->data_ptr),
51311d0a
CW
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
c37e2204 608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b 619
2bb4629a 620 user_data = to_user_ptr(args->data_ptr);
673a394b 621 remain = args->size;
673a394b 622
f343c5f6 623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
5d4545ae 642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69 653out_unpin:
d7f46fc4 654 i915_gem_object_ggtt_unpin(obj);
935aaa69 655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3 687
755d2218 688 return ret ? -EFAULT : 0;
3de09aa3
EA
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
755d2218 722 return ret ? -EFAULT : 0;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
40123c1f 731 ssize_t remain;
8c59967c
DV
732 loff_t offset;
733 char __user *user_data;
eb2c0c81 734 int shmem_page_offset, page_length, ret = 0;
8c59967c 735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 736 int hit_slowpath = 0;
58642885
DV
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
67d5a50c 739 struct sg_page_iter sg_iter;
40123c1f 740
2bb4629a 741 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
742 remain = args->size;
743
8c59967c 744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 745
58642885
DV
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
2c22569b 751 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
58642885 755 }
c76ce038
CW
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
67d5a50c
ID
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
2db76d7c 773 struct page *page = sg_page_iter_page(&sg_iter);
58642885 774 int partial_cacheline_write;
e5281ccd 775
9da3da66
CW
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
8c59967c
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
e244a443
DV
806
807 hit_slowpath = 1;
e244a443 808 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
40123c1f 813
e244a443 814 mutex_lock(&dev->struct_mutex);
755d2218 815
e244a443 816next_page:
e5281ccd
CW
817 set_page_dirty(page);
818 mark_page_accessed(page);
e5281ccd 819
755d2218 820 if (ret)
8c59967c 821 goto out;
8c59967c 822
40123c1f 823 remain -= page_length;
8c59967c 824 user_data += page_length;
40123c1f 825 offset += page_length;
673a394b
EA
826 }
827
fbd5a26d 828out:
755d2218
CW
829 i915_gem_object_unpin_pages(obj);
830
e244a443 831 if (hit_slowpath) {
8dcf015e
DV
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
e244a443 841 }
8c59967c 842 }
673a394b 843
58642885 844 if (needs_clflush_after)
e76e9aeb 845 i915_gem_chipset_flush(dev);
58642885 846
40123c1f 847 return ret;
673a394b
EA
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 857 struct drm_file *file)
673a394b
EA
858{
859 struct drm_i915_gem_pwrite *args = data;
05394f39 860 struct drm_i915_gem_object *obj;
51311d0a
CW
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
2bb4629a 867 to_user_ptr(args->data_ptr),
51311d0a
CW
868 args->size))
869 return -EFAULT;
870
d330a953 871 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
673a394b 877
fbd5a26d 878 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 879 if (ret)
fbd5a26d 880 return ret;
1d7cfea1 881
05394f39 882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 883 if (&obj->base == NULL) {
1d7cfea1
CW
884 ret = -ENOENT;
885 goto unlock;
fbd5a26d 886 }
673a394b 887
7dcd2499 888 /* Bounds check destination. */
05394f39
CW
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
ce9d419d 891 ret = -EINVAL;
35b62a89 892 goto out;
ce9d419d
CW
893 }
894
1286ff73
DV
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
db53a302
CW
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
935aaa69 905 ret = -EFAULT;
673a394b
EA
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
5c0480f2 912 if (obj->phys_obj) {
fbd5a26d 913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
914 goto out;
915 }
916
2c22569b
CW
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
fbd5a26d 920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
fbd5a26d 924 }
673a394b 925
86a1ee26 926 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 928
35b62a89 929out:
05394f39 930 drm_gem_object_unreference(&obj->base);
1d7cfea1 931unlock:
fbd5a26d 932 mutex_unlock(&dev->struct_mutex);
673a394b
EA
933 return ret;
934}
935
b361237b 936int
33196ded 937i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
938 bool interruptible)
939{
1f83fee0 940 if (i915_reset_in_progress(error)) {
b361237b
CW
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
1f83fee0
DV
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
b361237b
CW
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
1823521d 968 if (seqno == ring->outstanding_lazy_seqno)
0025c077 969 ret = i915_add_request(ring, NULL);
b361237b
CW
970
971 return ret;
972}
973
094f9a54
CW
974static void fake_irq(unsigned long data)
975{
976 wake_up_process((struct task_struct *)data);
977}
978
979static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981{
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983}
984
b29c19b6
CW
985static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986{
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991}
992
b361237b
CW
993/**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
f69061be 997 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
f69061be
DV
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
b361237b
CW
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1012 unsigned reset_counter,
b29c19b6
CW
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
b361237b
CW
1016{
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
168c3f21
MK
1018 const bool irq_test_in_progress =
1019 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1020 struct timespec before, now;
1021 DEFINE_WAIT(wait);
47e9766d 1022 unsigned long timeout_expire;
b361237b
CW
1023 int ret;
1024
c67a470b
PZ
1025 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
b361237b
CW
1027 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028 return 0;
1029
47e9766d 1030 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1031
b29c19b6
CW
1032 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033 gen6_rps_boost(dev_priv);
1034 if (file_priv)
1035 mod_delayed_work(dev_priv->wq,
1036 &file_priv->mm.idle_work,
1037 msecs_to_jiffies(100));
1038 }
1039
168c3f21 1040 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1041 return -ENODEV;
1042
094f9a54
CW
1043 /* Record current time in case interrupted by signal, or wedged */
1044 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1045 getrawmonotonic(&before);
094f9a54
CW
1046 for (;;) {
1047 struct timer_list timer;
b361237b 1048
094f9a54
CW
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1051
f69061be
DV
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
094f9a54
CW
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
f69061be 1062
094f9a54
CW
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
b361237b 1067
094f9a54
CW
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
47e9766d 1073 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1080 unsigned long expire;
1081
094f9a54 1082 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1083 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1084 mod_timer(&timer, expire);
1085 }
1086
5035c275 1087 io_schedule();
094f9a54 1088
094f9a54
CW
1089 if (timer.function) {
1090 del_singleshot_timer_sync(&timer);
1091 destroy_timer_on_stack(&timer);
1092 }
1093 }
b361237b 1094 getrawmonotonic(&now);
094f9a54 1095 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1096
168c3f21
MK
1097 if (!irq_test_in_progress)
1098 ring->irq_put(ring);
094f9a54
CW
1099
1100 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1107 }
1108
094f9a54 1109 return ret;
b361237b
CW
1110}
1111
1112/**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116int
1117i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118{
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
33196ded 1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
f69061be
DV
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1137 interruptible, NULL, NULL);
b361237b
CW
1138}
1139
d26e3af8
CW
1140static int
1141i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143{
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157}
1158
b361237b
CW
1159/**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163static __must_check int
1164i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166{
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
d26e3af8 1179 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1180}
1181
3236f57a
CW
1182/* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185static __must_check int
1186i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
b29c19b6 1187 struct drm_file *file,
3236f57a
CW
1188 bool readonly)
1189{
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
f69061be 1193 unsigned reset_counter;
3236f57a
CW
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
33196ded 1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
f69061be 1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1213 mutex_unlock(&dev->struct_mutex);
b29c19b6 1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
3236f57a 1215 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1216 if (ret)
1217 return ret;
3236f57a 1218
d26e3af8 1219 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1220}
1221
673a394b 1222/**
2ef7eeaa
EA
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1225 */
1226int
1227i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1228 struct drm_file *file)
673a394b
EA
1229{
1230 struct drm_i915_gem_set_domain *args = data;
05394f39 1231 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
673a394b
EA
1234 int ret;
1235
2ef7eeaa 1236 /* Only handle setting domains to types used by the CPU. */
21d509e3 1237 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1238 return -EINVAL;
1239
21d509e3 1240 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
76c1dec1 1257 }
673a394b 1258
3236f57a
CW
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
b29c19b6 1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
3236f57a
CW
1264 if (ret)
1265 goto unref;
1266
2ef7eeaa
EA
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
2ef7eeaa 1276 } else {
e47c68e9 1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1278 }
1279
3236f57a 1280unref:
05394f39 1281 drm_gem_object_unreference(&obj->base);
1d7cfea1 1282unlock:
673a394b
EA
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285}
1286
1287/**
1288 * Called when user space has done writes to this buffer
1289 */
1290int
1291i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1292 struct drm_file *file)
673a394b
EA
1293{
1294 struct drm_i915_gem_sw_finish *args = data;
05394f39 1295 struct drm_i915_gem_object *obj;
673a394b
EA
1296 int ret = 0;
1297
76c1dec1 1298 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1299 if (ret)
76c1dec1 1300 return ret;
1d7cfea1 1301
05394f39 1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1303 if (&obj->base == NULL) {
1d7cfea1
CW
1304 ret = -ENOENT;
1305 goto unlock;
673a394b
EA
1306 }
1307
673a394b 1308 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1311
05394f39 1312 drm_gem_object_unreference(&obj->base);
1d7cfea1 1313unlock:
673a394b
EA
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316}
1317
1318/**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325int
1326i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1327 struct drm_file *file)
673a394b
EA
1328{
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
673a394b
EA
1331 unsigned long addr;
1332
05394f39 1333 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1334 if (obj == NULL)
bf79cb91 1335 return -ENOENT;
673a394b 1336
1286ff73
DV
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
6be5ceb0 1345 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
bc9025bd 1348 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355}
1356
de151cf6
JB
1357/**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374{
05394f39
CW
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
7d1c4804 1377 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
0f973f27 1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1382
f65c9168
PZ
1383 intel_runtime_pm_get(dev_priv);
1384
de151cf6
JB
1385 /* We don't use vmf->pgoff since that has the fake offset */
1386 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387 PAGE_SHIFT;
1388
d9bc7e9f
CW
1389 ret = i915_mutex_lock_interruptible(dev);
1390 if (ret)
1391 goto out;
a00b10c3 1392
db53a302
CW
1393 trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
eb119bd6
CW
1395 /* Access to snoopable pages through the GTT is incoherent. */
1396 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397 ret = -EINVAL;
1398 goto unlock;
1399 }
1400
d9bc7e9f 1401 /* Now bind it into the GTT if needed */
c37e2204 1402 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1403 if (ret)
1404 goto unlock;
4a684a41 1405
c9839303
CW
1406 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407 if (ret)
1408 goto unpin;
74898d7e 1409
06d98131 1410 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1411 if (ret)
c9839303 1412 goto unpin;
7d1c4804 1413
6299f992
CW
1414 obj->fault_mappable = true;
1415
f343c5f6
BW
1416 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417 pfn >>= PAGE_SHIFT;
1418 pfn += page_offset;
de151cf6
JB
1419
1420 /* Finally, remap it using the new GTT offset */
1421 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1422unpin:
d7f46fc4 1423 i915_gem_object_ggtt_unpin(obj);
c715089f 1424unlock:
de151cf6 1425 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1426out:
de151cf6 1427 switch (ret) {
d9bc7e9f 1428 case -EIO:
a9340cca
DV
1429 /* If this -EIO is due to a gpu hang, give the reset code a
1430 * chance to clean up the mess. Otherwise return the proper
1431 * SIGBUS. */
f65c9168
PZ
1432 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433 ret = VM_FAULT_SIGBUS;
1434 break;
1435 }
045e769a 1436 case -EAGAIN:
571c608d
DV
1437 /*
1438 * EAGAIN means the gpu is hung and we'll wait for the error
1439 * handler to reset everything when re-faulting in
1440 * i915_mutex_lock_interruptible.
d9bc7e9f 1441 */
c715089f
CW
1442 case 0:
1443 case -ERESTARTSYS:
bed636ab 1444 case -EINTR:
e79e0fe3
DR
1445 case -EBUSY:
1446 /*
1447 * EBUSY is ok: this just means that another thread
1448 * already did the job.
1449 */
f65c9168
PZ
1450 ret = VM_FAULT_NOPAGE;
1451 break;
de151cf6 1452 case -ENOMEM:
f65c9168
PZ
1453 ret = VM_FAULT_OOM;
1454 break;
a7c2e1aa 1455 case -ENOSPC:
45d67817 1456 case -EFAULT:
f65c9168
PZ
1457 ret = VM_FAULT_SIGBUS;
1458 break;
de151cf6 1459 default:
a7c2e1aa 1460 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1461 ret = VM_FAULT_SIGBUS;
1462 break;
de151cf6 1463 }
f65c9168
PZ
1464
1465 intel_runtime_pm_put(dev_priv);
1466 return ret;
de151cf6
JB
1467}
1468
48018a57
PZ
1469void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1470{
1471 struct i915_vma *vma;
1472
1473 /*
1474 * Only the global gtt is relevant for gtt memory mappings, so restrict
1475 * list traversal to objects bound into the global address space. Note
1476 * that the active list should be empty, but better safe than sorry.
1477 */
1478 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1479 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1480 i915_gem_release_mmap(vma->obj);
1481 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1482 i915_gem_release_mmap(vma->obj);
1483}
1484
901782b2
CW
1485/**
1486 * i915_gem_release_mmap - remove physical page mappings
1487 * @obj: obj in question
1488 *
af901ca1 1489 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1490 * relinquish ownership of the pages back to the system.
1491 *
1492 * It is vital that we remove the page mapping if we have mapped a tiled
1493 * object through the GTT and then lose the fence register due to
1494 * resource pressure. Similarly if the object has been moved out of the
1495 * aperture, than pages mapped into userspace must be revoked. Removing the
1496 * mapping will then trigger a page fault on the next user access, allowing
1497 * fixup by i915_gem_fault().
1498 */
d05ca301 1499void
05394f39 1500i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1501{
6299f992
CW
1502 if (!obj->fault_mappable)
1503 return;
901782b2 1504
51335df9 1505 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1506 obj->fault_mappable = false;
901782b2
CW
1507}
1508
0fa87796 1509uint32_t
e28f8711 1510i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1511{
e28f8711 1512 uint32_t gtt_size;
92b88aeb
CW
1513
1514 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1515 tiling_mode == I915_TILING_NONE)
1516 return size;
92b88aeb
CW
1517
1518 /* Previous chips need a power-of-two fence region when tiling */
1519 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1520 gtt_size = 1024*1024;
92b88aeb 1521 else
e28f8711 1522 gtt_size = 512*1024;
92b88aeb 1523
e28f8711
CW
1524 while (gtt_size < size)
1525 gtt_size <<= 1;
92b88aeb 1526
e28f8711 1527 return gtt_size;
92b88aeb
CW
1528}
1529
de151cf6
JB
1530/**
1531 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1532 * @obj: object to check
1533 *
1534 * Return the required GTT alignment for an object, taking into account
5e783301 1535 * potential fence register mapping.
de151cf6 1536 */
d865110c
ID
1537uint32_t
1538i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1539 int tiling_mode, bool fenced)
de151cf6 1540{
de151cf6
JB
1541 /*
1542 * Minimum alignment is 4k (GTT page size), but might be greater
1543 * if a fence register is needed for the object.
1544 */
d865110c 1545 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1546 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1547 return 4096;
1548
a00b10c3
CW
1549 /*
1550 * Previous chips need to be aligned to the size of the smallest
1551 * fence register that can contain the object.
1552 */
e28f8711 1553 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1554}
1555
d8cb5086
CW
1556static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1557{
1558 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1559 int ret;
1560
0de23977 1561 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1562 return 0;
1563
da494d7c
DV
1564 dev_priv->mm.shrinker_no_lock_stealing = true;
1565
d8cb5086
CW
1566 ret = drm_gem_create_mmap_offset(&obj->base);
1567 if (ret != -ENOSPC)
da494d7c 1568 goto out;
d8cb5086
CW
1569
1570 /* Badly fragmented mmap space? The only way we can recover
1571 * space is by destroying unwanted objects. We can't randomly release
1572 * mmap_offsets as userspace expects them to be persistent for the
1573 * lifetime of the objects. The closest we can is to release the
1574 * offsets on purgeable objects by truncating it and marking it purged,
1575 * which prevents userspace from ever using that object again.
1576 */
1577 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1578 ret = drm_gem_create_mmap_offset(&obj->base);
1579 if (ret != -ENOSPC)
da494d7c 1580 goto out;
d8cb5086
CW
1581
1582 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1583 ret = drm_gem_create_mmap_offset(&obj->base);
1584out:
1585 dev_priv->mm.shrinker_no_lock_stealing = false;
1586
1587 return ret;
d8cb5086
CW
1588}
1589
1590static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1591{
d8cb5086
CW
1592 drm_gem_free_mmap_offset(&obj->base);
1593}
1594
de151cf6 1595int
ff72145b
DA
1596i915_gem_mmap_gtt(struct drm_file *file,
1597 struct drm_device *dev,
1598 uint32_t handle,
1599 uint64_t *offset)
de151cf6 1600{
da761a6e 1601 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1602 struct drm_i915_gem_object *obj;
de151cf6
JB
1603 int ret;
1604
76c1dec1 1605 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1606 if (ret)
76c1dec1 1607 return ret;
de151cf6 1608
ff72145b 1609 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1610 if (&obj->base == NULL) {
1d7cfea1
CW
1611 ret = -ENOENT;
1612 goto unlock;
1613 }
de151cf6 1614
5d4545ae 1615 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1616 ret = -E2BIG;
ff56b0bc 1617 goto out;
da761a6e
CW
1618 }
1619
05394f39 1620 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1621 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1622 ret = -EINVAL;
1623 goto out;
ab18282d
CW
1624 }
1625
d8cb5086
CW
1626 ret = i915_gem_object_create_mmap_offset(obj);
1627 if (ret)
1628 goto out;
de151cf6 1629
0de23977 1630 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1631
1d7cfea1 1632out:
05394f39 1633 drm_gem_object_unreference(&obj->base);
1d7cfea1 1634unlock:
de151cf6 1635 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1636 return ret;
de151cf6
JB
1637}
1638
ff72145b
DA
1639/**
1640 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1641 * @dev: DRM device
1642 * @data: GTT mapping ioctl data
1643 * @file: GEM object info
1644 *
1645 * Simply returns the fake offset to userspace so it can mmap it.
1646 * The mmap call will end up in drm_gem_mmap(), which will set things
1647 * up so we can get faults in the handler above.
1648 *
1649 * The fault handler will take care of binding the object into the GTT
1650 * (since it may have been evicted to make room for something), allocating
1651 * a fence register, and mapping the appropriate aperture address into
1652 * userspace.
1653 */
1654int
1655i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1656 struct drm_file *file)
1657{
1658 struct drm_i915_gem_mmap_gtt *args = data;
1659
ff72145b
DA
1660 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1661}
1662
225067ee
DV
1663/* Immediately discard the backing storage */
1664static void
1665i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1666{
e5281ccd 1667 struct inode *inode;
e5281ccd 1668
4d6294bf 1669 i915_gem_object_free_mmap_offset(obj);
1286ff73 1670
4d6294bf
CW
1671 if (obj->base.filp == NULL)
1672 return;
e5281ccd 1673
225067ee
DV
1674 /* Our goal here is to return as much of the memory as
1675 * is possible back to the system as we are called from OOM.
1676 * To do this we must instruct the shmfs to drop all of its
1677 * backing pages, *now*.
1678 */
496ad9aa 1679 inode = file_inode(obj->base.filp);
225067ee 1680 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1681
225067ee
DV
1682 obj->madv = __I915_MADV_PURGED;
1683}
e5281ccd 1684
225067ee
DV
1685static inline int
1686i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1687{
1688 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1689}
1690
5cdf5881 1691static void
05394f39 1692i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1693{
90797e6d
ID
1694 struct sg_page_iter sg_iter;
1695 int ret;
1286ff73 1696
05394f39 1697 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1698
6c085a72
CW
1699 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1700 if (ret) {
1701 /* In the event of a disaster, abandon all caches and
1702 * hope for the best.
1703 */
1704 WARN_ON(ret != -EIO);
2c22569b 1705 i915_gem_clflush_object(obj, true);
6c085a72
CW
1706 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1707 }
1708
6dacfd2f 1709 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1710 i915_gem_object_save_bit_17_swizzle(obj);
1711
05394f39
CW
1712 if (obj->madv == I915_MADV_DONTNEED)
1713 obj->dirty = 0;
3ef94daa 1714
90797e6d 1715 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1716 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1717
05394f39 1718 if (obj->dirty)
9da3da66 1719 set_page_dirty(page);
3ef94daa 1720
05394f39 1721 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1722 mark_page_accessed(page);
3ef94daa 1723
9da3da66 1724 page_cache_release(page);
3ef94daa 1725 }
05394f39 1726 obj->dirty = 0;
673a394b 1727
9da3da66
CW
1728 sg_free_table(obj->pages);
1729 kfree(obj->pages);
37e680a1 1730}
6c085a72 1731
dd624afd 1732int
37e680a1
CW
1733i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1734{
1735 const struct drm_i915_gem_object_ops *ops = obj->ops;
1736
2f745ad3 1737 if (obj->pages == NULL)
37e680a1
CW
1738 return 0;
1739
a5570178
CW
1740 if (obj->pages_pin_count)
1741 return -EBUSY;
1742
9843877d 1743 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1744
a2165e31
CW
1745 /* ->put_pages might need to allocate memory for the bit17 swizzle
1746 * array, hence protect them from being reaped by removing them from gtt
1747 * lists early. */
35c20a60 1748 list_del(&obj->global_list);
a2165e31 1749
37e680a1 1750 ops->put_pages(obj);
05394f39 1751 obj->pages = NULL;
37e680a1 1752
6c085a72
CW
1753 if (i915_gem_object_is_purgeable(obj))
1754 i915_gem_object_truncate(obj);
1755
1756 return 0;
1757}
1758
d9973b43 1759static unsigned long
93927ca5
DV
1760__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1761 bool purgeable_only)
6c085a72 1762{
57094f82 1763 struct list_head still_bound_list;
6c085a72 1764 struct drm_i915_gem_object *obj, *next;
d9973b43 1765 unsigned long count = 0;
6c085a72
CW
1766
1767 list_for_each_entry_safe(obj, next,
1768 &dev_priv->mm.unbound_list,
35c20a60 1769 global_list) {
93927ca5 1770 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1771 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1772 count += obj->base.size >> PAGE_SHIFT;
1773 if (count >= target)
1774 return count;
1775 }
1776 }
1777
57094f82
CW
1778 /*
1779 * As we may completely rewrite the bound list whilst unbinding
1780 * (due to retiring requests) we have to strictly process only
1781 * one element of the list at the time, and recheck the list
1782 * on every iteration.
1783 */
1784 INIT_LIST_HEAD(&still_bound_list);
1785 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1786 struct i915_vma *vma, *v;
80dcfdbd 1787
57094f82
CW
1788 obj = list_first_entry(&dev_priv->mm.bound_list,
1789 typeof(*obj), global_list);
1790 list_move_tail(&obj->global_list, &still_bound_list);
1791
80dcfdbd
BW
1792 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1793 continue;
1794
57094f82
CW
1795 /*
1796 * Hold a reference whilst we unbind this object, as we may
1797 * end up waiting for and retiring requests. This might
1798 * release the final reference (held by the active list)
1799 * and result in the object being freed from under us.
1800 * in this object being freed.
1801 *
1802 * Note 1: Shrinking the bound list is special since only active
1803 * (and hence bound objects) can contain such limbo objects, so
1804 * we don't need special tricks for shrinking the unbound list.
1805 * The only other place where we have to be careful with active
1806 * objects suddenly disappearing due to retiring requests is the
1807 * eviction code.
1808 *
1809 * Note 2: Even though the bound list doesn't hold a reference
1810 * to the object we can safely grab one here: The final object
1811 * unreferencing and the bound_list are both protected by the
1812 * dev->struct_mutex and so we won't ever be able to observe an
1813 * object on the bound_list with a reference count equals 0.
1814 */
1815 drm_gem_object_reference(&obj->base);
1816
07fe0b12
BW
1817 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1818 if (i915_vma_unbind(vma))
1819 break;
80dcfdbd 1820
57094f82 1821 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1822 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1823
1824 drm_gem_object_unreference(&obj->base);
6c085a72 1825 }
57094f82 1826 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1827
1828 return count;
1829}
1830
d9973b43 1831static unsigned long
93927ca5
DV
1832i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1833{
1834 return __i915_gem_shrink(dev_priv, target, true);
1835}
1836
d9973b43 1837static unsigned long
6c085a72
CW
1838i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1839{
1840 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1841 long freed = 0;
6c085a72
CW
1842
1843 i915_gem_evict_everything(dev_priv->dev);
1844
35c20a60 1845 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1846 global_list) {
d9973b43 1847 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1848 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1849 }
1850 return freed;
225067ee
DV
1851}
1852
37e680a1 1853static int
6c085a72 1854i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1855{
6c085a72 1856 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1857 int page_count, i;
1858 struct address_space *mapping;
9da3da66
CW
1859 struct sg_table *st;
1860 struct scatterlist *sg;
90797e6d 1861 struct sg_page_iter sg_iter;
e5281ccd 1862 struct page *page;
90797e6d 1863 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1864 gfp_t gfp;
e5281ccd 1865
6c085a72
CW
1866 /* Assert that the object is not currently in any GPU domain. As it
1867 * wasn't in the GTT, there shouldn't be any way it could have been in
1868 * a GPU cache
1869 */
1870 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1871 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1872
9da3da66
CW
1873 st = kmalloc(sizeof(*st), GFP_KERNEL);
1874 if (st == NULL)
1875 return -ENOMEM;
1876
05394f39 1877 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1878 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1879 kfree(st);
e5281ccd 1880 return -ENOMEM;
9da3da66 1881 }
e5281ccd 1882
9da3da66
CW
1883 /* Get the list of pages out of our struct file. They'll be pinned
1884 * at this point until we release them.
1885 *
1886 * Fail silently without starting the shrinker
1887 */
496ad9aa 1888 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1889 gfp = mapping_gfp_mask(mapping);
caf49191 1890 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1891 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1892 sg = st->sgl;
1893 st->nents = 0;
1894 for (i = 0; i < page_count; i++) {
6c085a72
CW
1895 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1896 if (IS_ERR(page)) {
1897 i915_gem_purge(dev_priv, page_count);
1898 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1899 }
1900 if (IS_ERR(page)) {
1901 /* We've tried hard to allocate the memory by reaping
1902 * our own buffer, now let the real VM do its job and
1903 * go down in flames if truly OOM.
1904 */
caf49191 1905 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1906 gfp |= __GFP_IO | __GFP_WAIT;
1907
1908 i915_gem_shrink_all(dev_priv);
1909 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1910 if (IS_ERR(page))
1911 goto err_pages;
1912
caf49191 1913 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1914 gfp &= ~(__GFP_IO | __GFP_WAIT);
1915 }
426729dc
KRW
1916#ifdef CONFIG_SWIOTLB
1917 if (swiotlb_nr_tbl()) {
1918 st->nents++;
1919 sg_set_page(sg, page, PAGE_SIZE, 0);
1920 sg = sg_next(sg);
1921 continue;
1922 }
1923#endif
90797e6d
ID
1924 if (!i || page_to_pfn(page) != last_pfn + 1) {
1925 if (i)
1926 sg = sg_next(sg);
1927 st->nents++;
1928 sg_set_page(sg, page, PAGE_SIZE, 0);
1929 } else {
1930 sg->length += PAGE_SIZE;
1931 }
1932 last_pfn = page_to_pfn(page);
3bbbe706
DV
1933
1934 /* Check that the i965g/gm workaround works. */
1935 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1936 }
426729dc
KRW
1937#ifdef CONFIG_SWIOTLB
1938 if (!swiotlb_nr_tbl())
1939#endif
1940 sg_mark_end(sg);
74ce6b6c
CW
1941 obj->pages = st;
1942
6dacfd2f 1943 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1944 i915_gem_object_do_bit_17_swizzle(obj);
1945
1946 return 0;
1947
1948err_pages:
90797e6d
ID
1949 sg_mark_end(sg);
1950 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1951 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1952 sg_free_table(st);
1953 kfree(st);
e5281ccd 1954 return PTR_ERR(page);
673a394b
EA
1955}
1956
37e680a1
CW
1957/* Ensure that the associated pages are gathered from the backing storage
1958 * and pinned into our object. i915_gem_object_get_pages() may be called
1959 * multiple times before they are released by a single call to
1960 * i915_gem_object_put_pages() - once the pages are no longer referenced
1961 * either as a result of memory pressure (reaping pages under the shrinker)
1962 * or as the object is itself released.
1963 */
1964int
1965i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1966{
1967 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1968 const struct drm_i915_gem_object_ops *ops = obj->ops;
1969 int ret;
1970
2f745ad3 1971 if (obj->pages)
37e680a1
CW
1972 return 0;
1973
43e28f09
CW
1974 if (obj->madv != I915_MADV_WILLNEED) {
1975 DRM_ERROR("Attempting to obtain a purgeable object\n");
1976 return -EINVAL;
1977 }
1978
a5570178
CW
1979 BUG_ON(obj->pages_pin_count);
1980
37e680a1
CW
1981 ret = ops->get_pages(obj);
1982 if (ret)
1983 return ret;
1984
35c20a60 1985 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1986 return 0;
673a394b
EA
1987}
1988
e2d05a8b 1989static void
05394f39 1990i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1991 struct intel_ring_buffer *ring)
673a394b 1992{
05394f39 1993 struct drm_device *dev = obj->base.dev;
69dc4987 1994 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1995 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1996
852835f3 1997 BUG_ON(ring == NULL);
02978ff5
CW
1998 if (obj->ring != ring && obj->last_write_seqno) {
1999 /* Keep the seqno relative to the current ring */
2000 obj->last_write_seqno = seqno;
2001 }
05394f39 2002 obj->ring = ring;
673a394b
EA
2003
2004 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2005 if (!obj->active) {
2006 drm_gem_object_reference(&obj->base);
2007 obj->active = 1;
673a394b 2008 }
e35a41de 2009
05394f39 2010 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2011
0201f1ec 2012 obj->last_read_seqno = seqno;
caea7476 2013
7dd49065 2014 if (obj->fenced_gpu_access) {
caea7476 2015 obj->last_fenced_seqno = seqno;
caea7476 2016
7dd49065
CW
2017 /* Bump MRU to take account of the delayed flush */
2018 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2019 struct drm_i915_fence_reg *reg;
2020
2021 reg = &dev_priv->fence_regs[obj->fence_reg];
2022 list_move_tail(&reg->lru_list,
2023 &dev_priv->mm.fence_list);
2024 }
caea7476
CW
2025 }
2026}
2027
e2d05a8b
BW
2028void i915_vma_move_to_active(struct i915_vma *vma,
2029 struct intel_ring_buffer *ring)
2030{
2031 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2032 return i915_gem_object_move_to_active(vma->obj, ring);
2033}
2034
caea7476 2035static void
caea7476 2036i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2037{
ca191b13 2038 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2039 struct i915_address_space *vm;
2040 struct i915_vma *vma;
ce44b0ea 2041
65ce3027 2042 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2043 BUG_ON(!obj->active);
caea7476 2044
feb822cf
BW
2045 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2046 vma = i915_gem_obj_to_vma(obj, vm);
2047 if (vma && !list_empty(&vma->mm_list))
2048 list_move_tail(&vma->mm_list, &vm->inactive_list);
2049 }
caea7476 2050
65ce3027 2051 list_del_init(&obj->ring_list);
caea7476
CW
2052 obj->ring = NULL;
2053
65ce3027
CW
2054 obj->last_read_seqno = 0;
2055 obj->last_write_seqno = 0;
2056 obj->base.write_domain = 0;
2057
2058 obj->last_fenced_seqno = 0;
caea7476 2059 obj->fenced_gpu_access = false;
caea7476
CW
2060
2061 obj->active = 0;
2062 drm_gem_object_unreference(&obj->base);
2063
2064 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2065}
673a394b 2066
9d773091 2067static int
fca26bb4 2068i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2069{
9d773091
CW
2070 struct drm_i915_private *dev_priv = dev->dev_private;
2071 struct intel_ring_buffer *ring;
2072 int ret, i, j;
53d227f2 2073
107f27a5 2074 /* Carefully retire all requests without writing to the rings */
9d773091 2075 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2076 ret = intel_ring_idle(ring);
2077 if (ret)
2078 return ret;
9d773091 2079 }
9d773091 2080 i915_gem_retire_requests(dev);
107f27a5
CW
2081
2082 /* Finally reset hw state */
9d773091 2083 for_each_ring(ring, dev_priv, i) {
fca26bb4 2084 intel_ring_init_seqno(ring, seqno);
498d2ac1 2085
9d773091
CW
2086 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2087 ring->sync_seqno[j] = 0;
2088 }
53d227f2 2089
9d773091 2090 return 0;
53d227f2
DV
2091}
2092
fca26bb4
MK
2093int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2094{
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 int ret;
2097
2098 if (seqno == 0)
2099 return -EINVAL;
2100
2101 /* HWS page needs to be set less than what we
2102 * will inject to ring
2103 */
2104 ret = i915_gem_init_seqno(dev, seqno - 1);
2105 if (ret)
2106 return ret;
2107
2108 /* Carefully set the last_seqno value so that wrap
2109 * detection still works
2110 */
2111 dev_priv->next_seqno = seqno;
2112 dev_priv->last_seqno = seqno - 1;
2113 if (dev_priv->last_seqno == 0)
2114 dev_priv->last_seqno--;
2115
2116 return 0;
2117}
2118
9d773091
CW
2119int
2120i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2121{
9d773091
CW
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123
2124 /* reserve 0 for non-seqno */
2125 if (dev_priv->next_seqno == 0) {
fca26bb4 2126 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2127 if (ret)
2128 return ret;
53d227f2 2129
9d773091
CW
2130 dev_priv->next_seqno = 1;
2131 }
53d227f2 2132
f72b3435 2133 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2134 return 0;
53d227f2
DV
2135}
2136
0025c077
MK
2137int __i915_add_request(struct intel_ring_buffer *ring,
2138 struct drm_file *file,
7d736f4f 2139 struct drm_i915_gem_object *obj,
0025c077 2140 u32 *out_seqno)
673a394b 2141{
db53a302 2142 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2143 struct drm_i915_gem_request *request;
7d736f4f 2144 u32 request_ring_position, request_start;
673a394b 2145 int was_empty;
3cce469c
CW
2146 int ret;
2147
7d736f4f 2148 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2149 /*
2150 * Emit any outstanding flushes - execbuf can fail to emit the flush
2151 * after having emitted the batchbuffer command. Hence we need to fix
2152 * things up similar to emitting the lazy request. The difference here
2153 * is that the flush _must_ happen before the next request, no matter
2154 * what.
2155 */
a7b9761d
CW
2156 ret = intel_ring_flush_all_caches(ring);
2157 if (ret)
2158 return ret;
cc889e0f 2159
3c0e234c
CW
2160 request = ring->preallocated_lazy_request;
2161 if (WARN_ON(request == NULL))
acb868d3 2162 return -ENOMEM;
cc889e0f 2163
a71d8d94
CW
2164 /* Record the position of the start of the request so that
2165 * should we detect the updated seqno part-way through the
2166 * GPU processing the request, we never over-estimate the
2167 * position of the head.
2168 */
2169 request_ring_position = intel_ring_get_tail(ring);
2170
9d773091 2171 ret = ring->add_request(ring);
3c0e234c 2172 if (ret)
3bb73aba 2173 return ret;
673a394b 2174
9d773091 2175 request->seqno = intel_ring_get_seqno(ring);
852835f3 2176 request->ring = ring;
7d736f4f 2177 request->head = request_start;
a71d8d94 2178 request->tail = request_ring_position;
7d736f4f
MK
2179
2180 /* Whilst this request exists, batch_obj will be on the
2181 * active_list, and so will hold the active reference. Only when this
2182 * request is retired will the the batch_obj be moved onto the
2183 * inactive_list and lose its active reference. Hence we do not need
2184 * to explicitly hold another reference here.
2185 */
9a7e0c2a 2186 request->batch_obj = obj;
0e50e96b 2187
9a7e0c2a
CW
2188 /* Hold a reference to the current context so that we can inspect
2189 * it later in case a hangcheck error event fires.
2190 */
2191 request->ctx = ring->last_context;
0e50e96b
MK
2192 if (request->ctx)
2193 i915_gem_context_reference(request->ctx);
2194
673a394b 2195 request->emitted_jiffies = jiffies;
852835f3
ZN
2196 was_empty = list_empty(&ring->request_list);
2197 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2198 request->file_priv = NULL;
852835f3 2199
db53a302
CW
2200 if (file) {
2201 struct drm_i915_file_private *file_priv = file->driver_priv;
2202
1c25595f 2203 spin_lock(&file_priv->mm.lock);
f787a5f5 2204 request->file_priv = file_priv;
b962442e 2205 list_add_tail(&request->client_list,
f787a5f5 2206 &file_priv->mm.request_list);
1c25595f 2207 spin_unlock(&file_priv->mm.lock);
b962442e 2208 }
673a394b 2209
9d773091 2210 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2211 ring->outstanding_lazy_seqno = 0;
3c0e234c 2212 ring->preallocated_lazy_request = NULL;
db53a302 2213
db1b76ca 2214 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2215 i915_queue_hangcheck(ring->dev);
2216
f047e395 2217 if (was_empty) {
b29c19b6 2218 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
b3b079db 2219 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2220 &dev_priv->mm.retire_work,
2221 round_jiffies_up_relative(HZ));
f047e395
CW
2222 intel_mark_busy(dev_priv->dev);
2223 }
f65d9421 2224 }
cc889e0f 2225
acb868d3 2226 if (out_seqno)
9d773091 2227 *out_seqno = request->seqno;
3cce469c 2228 return 0;
673a394b
EA
2229}
2230
f787a5f5
CW
2231static inline void
2232i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2233{
1c25595f 2234 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2235
1c25595f
CW
2236 if (!file_priv)
2237 return;
1c5d22f7 2238
1c25595f 2239 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2240 list_del(&request->client_list);
2241 request->file_priv = NULL;
1c25595f 2242 spin_unlock(&file_priv->mm.lock);
673a394b 2243}
673a394b 2244
939fd762 2245static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2246 const struct i915_hw_context *ctx)
be62acb4 2247{
44e2c070 2248 unsigned long elapsed;
be62acb4 2249
44e2c070
MK
2250 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2251
2252 if (ctx->hang_stats.banned)
be62acb4
MK
2253 return true;
2254
2255 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
3fac8978
MK
2256 if (dev_priv->gpu_error.stop_rings == 0 &&
2257 i915_gem_context_is_default(ctx)) {
2258 DRM_ERROR("gpu hanging too fast, banning!\n");
2259 } else {
2260 DRM_DEBUG("context hanging too fast, banning!\n");
2261 }
2262
be62acb4
MK
2263 return true;
2264 }
2265
2266 return false;
2267}
2268
939fd762
MK
2269static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2270 struct i915_hw_context *ctx,
b6b0fac0 2271 const bool guilty)
aa60c664 2272{
44e2c070
MK
2273 struct i915_ctx_hang_stats *hs;
2274
2275 if (WARN_ON(!ctx))
2276 return;
aa60c664 2277
44e2c070
MK
2278 hs = &ctx->hang_stats;
2279
2280 if (guilty) {
939fd762 2281 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2282 hs->batch_active++;
2283 hs->guilty_ts = get_seconds();
2284 } else {
2285 hs->batch_pending++;
aa60c664
MK
2286 }
2287}
2288
0e50e96b
MK
2289static void i915_gem_free_request(struct drm_i915_gem_request *request)
2290{
2291 list_del(&request->list);
2292 i915_gem_request_remove_from_client(request);
2293
2294 if (request->ctx)
2295 i915_gem_context_unreference(request->ctx);
2296
2297 kfree(request);
2298}
2299
b6b0fac0
MK
2300static struct drm_i915_gem_request *
2301i915_gem_find_first_non_complete(struct intel_ring_buffer *ring)
9375e446 2302{
4db080f9 2303 struct drm_i915_gem_request *request;
b6b0fac0 2304 const u32 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2305
2306 list_for_each_entry(request, &ring->request_list, list) {
2307 if (i915_seqno_passed(completed_seqno, request->seqno))
2308 continue;
aa60c664 2309
b6b0fac0 2310 return request;
4db080f9 2311 }
b6b0fac0
MK
2312
2313 return NULL;
2314}
2315
2316static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2317 struct intel_ring_buffer *ring)
2318{
2319 struct drm_i915_gem_request *request;
2320 bool ring_hung;
2321
2322 request = i915_gem_find_first_non_complete(ring);
2323
2324 if (request == NULL)
2325 return;
2326
2327 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2328
939fd762 2329 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2330
2331 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2332 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2333}
aa60c664 2334
4db080f9
CW
2335static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2336 struct intel_ring_buffer *ring)
2337{
dfaae392 2338 while (!list_empty(&ring->active_list)) {
05394f39 2339 struct drm_i915_gem_object *obj;
9375e446 2340
05394f39
CW
2341 obj = list_first_entry(&ring->active_list,
2342 struct drm_i915_gem_object,
2343 ring_list);
9375e446 2344
05394f39 2345 i915_gem_object_move_to_inactive(obj);
673a394b 2346 }
1d62beea
BW
2347
2348 /*
2349 * We must free the requests after all the corresponding objects have
2350 * been moved off active lists. Which is the same order as the normal
2351 * retire_requests function does. This is important if object hold
2352 * implicit references on things like e.g. ppgtt address spaces through
2353 * the request.
2354 */
2355 while (!list_empty(&ring->request_list)) {
2356 struct drm_i915_gem_request *request;
2357
2358 request = list_first_entry(&ring->request_list,
2359 struct drm_i915_gem_request,
2360 list);
2361
2362 i915_gem_free_request(request);
2363 }
673a394b
EA
2364}
2365
19b2dbde 2366void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2367{
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 int i;
2370
4b9de737 2371 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2372 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2373
94a335db
DV
2374 /*
2375 * Commit delayed tiling changes if we have an object still
2376 * attached to the fence, otherwise just clear the fence.
2377 */
2378 if (reg->obj) {
2379 i915_gem_object_update_fence(reg->obj, reg,
2380 reg->obj->tiling_mode);
2381 } else {
2382 i915_gem_write_fence(dev, i, NULL);
2383 }
312817a3
CW
2384 }
2385}
2386
069efc1d 2387void i915_gem_reset(struct drm_device *dev)
673a394b 2388{
77f01230 2389 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2390 struct intel_ring_buffer *ring;
1ec14ad3 2391 int i;
673a394b 2392
4db080f9
CW
2393 /*
2394 * Before we free the objects from the requests, we need to inspect
2395 * them for finding the guilty party. As the requests only borrow
2396 * their reference to the objects, the inspection must be done first.
2397 */
2398 for_each_ring(ring, dev_priv, i)
2399 i915_gem_reset_ring_status(dev_priv, ring);
2400
b4519513 2401 for_each_ring(ring, dev_priv, i)
4db080f9 2402 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2403
3d57e5bd
BW
2404 i915_gem_cleanup_ringbuffer(dev);
2405
acce9ffa
BW
2406 i915_gem_context_reset(dev);
2407
19b2dbde 2408 i915_gem_restore_fences(dev);
673a394b
EA
2409}
2410
2411/**
2412 * This function clears the request list as sequence numbers are passed.
2413 */
a71d8d94 2414void
db53a302 2415i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2416{
673a394b
EA
2417 uint32_t seqno;
2418
db53a302 2419 if (list_empty(&ring->request_list))
6c0594a3
KW
2420 return;
2421
db53a302 2422 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2423
b2eadbc8 2424 seqno = ring->get_seqno(ring, true);
1ec14ad3 2425
e9103038
CW
2426 /* Move any buffers on the active list that are no longer referenced
2427 * by the ringbuffer to the flushing/inactive lists as appropriate,
2428 * before we free the context associated with the requests.
2429 */
2430 while (!list_empty(&ring->active_list)) {
2431 struct drm_i915_gem_object *obj;
2432
2433 obj = list_first_entry(&ring->active_list,
2434 struct drm_i915_gem_object,
2435 ring_list);
2436
2437 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2438 break;
2439
2440 i915_gem_object_move_to_inactive(obj);
2441 }
2442
2443
852835f3 2444 while (!list_empty(&ring->request_list)) {
673a394b 2445 struct drm_i915_gem_request *request;
673a394b 2446
852835f3 2447 request = list_first_entry(&ring->request_list,
673a394b
EA
2448 struct drm_i915_gem_request,
2449 list);
673a394b 2450
dfaae392 2451 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2452 break;
2453
db53a302 2454 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2455 /* We know the GPU must have read the request to have
2456 * sent us the seqno + interrupt, so use the position
2457 * of tail of the request to update the last known position
2458 * of the GPU head.
2459 */
2460 ring->last_retired_head = request->tail;
b84d5f0c 2461
0e50e96b 2462 i915_gem_free_request(request);
b84d5f0c 2463 }
673a394b 2464
db53a302
CW
2465 if (unlikely(ring->trace_irq_seqno &&
2466 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2467 ring->irq_put(ring);
db53a302 2468 ring->trace_irq_seqno = 0;
9d34e5db 2469 }
23bc5982 2470
db53a302 2471 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2472}
2473
b29c19b6 2474bool
b09a1fec
CW
2475i915_gem_retire_requests(struct drm_device *dev)
2476{
2477 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2478 struct intel_ring_buffer *ring;
b29c19b6 2479 bool idle = true;
1ec14ad3 2480 int i;
b09a1fec 2481
b29c19b6 2482 for_each_ring(ring, dev_priv, i) {
b4519513 2483 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2484 idle &= list_empty(&ring->request_list);
2485 }
2486
2487 if (idle)
2488 mod_delayed_work(dev_priv->wq,
2489 &dev_priv->mm.idle_work,
2490 msecs_to_jiffies(100));
2491
2492 return idle;
b09a1fec
CW
2493}
2494
75ef9da2 2495static void
673a394b
EA
2496i915_gem_retire_work_handler(struct work_struct *work)
2497{
b29c19b6
CW
2498 struct drm_i915_private *dev_priv =
2499 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2500 struct drm_device *dev = dev_priv->dev;
0a58705b 2501 bool idle;
673a394b 2502
891b48cf 2503 /* Come back later if the device is busy... */
b29c19b6
CW
2504 idle = false;
2505 if (mutex_trylock(&dev->struct_mutex)) {
2506 idle = i915_gem_retire_requests(dev);
2507 mutex_unlock(&dev->struct_mutex);
673a394b 2508 }
b29c19b6 2509 if (!idle)
bcb45086
CW
2510 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2511 round_jiffies_up_relative(HZ));
b29c19b6 2512}
0a58705b 2513
b29c19b6
CW
2514static void
2515i915_gem_idle_work_handler(struct work_struct *work)
2516{
2517 struct drm_i915_private *dev_priv =
2518 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2519
2520 intel_mark_idle(dev_priv->dev);
673a394b
EA
2521}
2522
30dfebf3
DV
2523/**
2524 * Ensures that an object will eventually get non-busy by flushing any required
2525 * write domains, emitting any outstanding lazy request and retiring and
2526 * completed requests.
2527 */
2528static int
2529i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2530{
2531 int ret;
2532
2533 if (obj->active) {
0201f1ec 2534 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2535 if (ret)
2536 return ret;
2537
30dfebf3
DV
2538 i915_gem_retire_requests_ring(obj->ring);
2539 }
2540
2541 return 0;
2542}
2543
23ba4fd0
BW
2544/**
2545 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2546 * @DRM_IOCTL_ARGS: standard ioctl arguments
2547 *
2548 * Returns 0 if successful, else an error is returned with the remaining time in
2549 * the timeout parameter.
2550 * -ETIME: object is still busy after timeout
2551 * -ERESTARTSYS: signal interrupted the wait
2552 * -ENONENT: object doesn't exist
2553 * Also possible, but rare:
2554 * -EAGAIN: GPU wedged
2555 * -ENOMEM: damn
2556 * -ENODEV: Internal IRQ fail
2557 * -E?: The add request failed
2558 *
2559 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2560 * non-zero timeout parameter the wait ioctl will wait for the given number of
2561 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2562 * without holding struct_mutex the object may become re-busied before this
2563 * function completes. A similar but shorter * race condition exists in the busy
2564 * ioctl
2565 */
2566int
2567i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2568{
f69061be 2569 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2570 struct drm_i915_gem_wait *args = data;
2571 struct drm_i915_gem_object *obj;
2572 struct intel_ring_buffer *ring = NULL;
eac1f14f 2573 struct timespec timeout_stack, *timeout = NULL;
f69061be 2574 unsigned reset_counter;
23ba4fd0
BW
2575 u32 seqno = 0;
2576 int ret = 0;
2577
eac1f14f
BW
2578 if (args->timeout_ns >= 0) {
2579 timeout_stack = ns_to_timespec(args->timeout_ns);
2580 timeout = &timeout_stack;
2581 }
23ba4fd0
BW
2582
2583 ret = i915_mutex_lock_interruptible(dev);
2584 if (ret)
2585 return ret;
2586
2587 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2588 if (&obj->base == NULL) {
2589 mutex_unlock(&dev->struct_mutex);
2590 return -ENOENT;
2591 }
2592
30dfebf3
DV
2593 /* Need to make sure the object gets inactive eventually. */
2594 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2595 if (ret)
2596 goto out;
2597
2598 if (obj->active) {
0201f1ec 2599 seqno = obj->last_read_seqno;
23ba4fd0
BW
2600 ring = obj->ring;
2601 }
2602
2603 if (seqno == 0)
2604 goto out;
2605
23ba4fd0
BW
2606 /* Do this after OLR check to make sure we make forward progress polling
2607 * on this IOCTL with a 0 timeout (like busy ioctl)
2608 */
2609 if (!args->timeout_ns) {
2610 ret = -ETIME;
2611 goto out;
2612 }
2613
2614 drm_gem_object_unreference(&obj->base);
f69061be 2615 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2616 mutex_unlock(&dev->struct_mutex);
2617
b29c19b6 2618 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2619 if (timeout)
eac1f14f 2620 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2621 return ret;
2622
2623out:
2624 drm_gem_object_unreference(&obj->base);
2625 mutex_unlock(&dev->struct_mutex);
2626 return ret;
2627}
2628
5816d648
BW
2629/**
2630 * i915_gem_object_sync - sync an object to a ring.
2631 *
2632 * @obj: object which may be in use on another ring.
2633 * @to: ring we wish to use the object on. May be NULL.
2634 *
2635 * This code is meant to abstract object synchronization with the GPU.
2636 * Calling with NULL implies synchronizing the object with the CPU
2637 * rather than a particular GPU ring.
2638 *
2639 * Returns 0 if successful, else propagates up the lower layer error.
2640 */
2911a35b
BW
2641int
2642i915_gem_object_sync(struct drm_i915_gem_object *obj,
2643 struct intel_ring_buffer *to)
2644{
2645 struct intel_ring_buffer *from = obj->ring;
2646 u32 seqno;
2647 int ret, idx;
2648
2649 if (from == NULL || to == from)
2650 return 0;
2651
5816d648 2652 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2653 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2654
2655 idx = intel_ring_sync_index(from, to);
2656
0201f1ec 2657 seqno = obj->last_read_seqno;
2911a35b
BW
2658 if (seqno <= from->sync_seqno[idx])
2659 return 0;
2660
b4aca010
BW
2661 ret = i915_gem_check_olr(obj->ring, seqno);
2662 if (ret)
2663 return ret;
2911a35b 2664
b52b89da 2665 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2666 ret = to->sync_to(to, from, seqno);
e3a5a225 2667 if (!ret)
7b01e260
MK
2668 /* We use last_read_seqno because sync_to()
2669 * might have just caused seqno wrap under
2670 * the radar.
2671 */
2672 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2673
e3a5a225 2674 return ret;
2911a35b
BW
2675}
2676
b5ffc9bc
CW
2677static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2678{
2679 u32 old_write_domain, old_read_domains;
2680
b5ffc9bc
CW
2681 /* Force a pagefault for domain tracking on next user access */
2682 i915_gem_release_mmap(obj);
2683
b97c3d9c
KP
2684 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2685 return;
2686
97c809fd
CW
2687 /* Wait for any direct GTT access to complete */
2688 mb();
2689
b5ffc9bc
CW
2690 old_read_domains = obj->base.read_domains;
2691 old_write_domain = obj->base.write_domain;
2692
2693 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2694 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2695
2696 trace_i915_gem_object_change_domain(obj,
2697 old_read_domains,
2698 old_write_domain);
2699}
2700
07fe0b12 2701int i915_vma_unbind(struct i915_vma *vma)
673a394b 2702{
07fe0b12 2703 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2704 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2705 int ret;
673a394b 2706
07fe0b12 2707 if (list_empty(&vma->vma_link))
673a394b
EA
2708 return 0;
2709
0ff501cb
DV
2710 if (!drm_mm_node_allocated(&vma->node)) {
2711 i915_gem_vma_destroy(vma);
2712
2713 return 0;
2714 }
433544bd 2715
d7f46fc4 2716 if (vma->pin_count)
31d8d651 2717 return -EBUSY;
673a394b 2718
c4670ad0
CW
2719 BUG_ON(obj->pages == NULL);
2720
a8198eea 2721 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2722 if (ret)
a8198eea
CW
2723 return ret;
2724 /* Continue on if we fail due to EIO, the GPU is hung so we
2725 * should be safe and we need to cleanup or else we might
2726 * cause memory corruption through use-after-free.
2727 */
2728
b5ffc9bc 2729 i915_gem_object_finish_gtt(obj);
5323fd04 2730
96b47b65 2731 /* release the fence reg _after_ flushing */
d9e86c0e 2732 ret = i915_gem_object_put_fence(obj);
1488fc08 2733 if (ret)
d9e86c0e 2734 return ret;
96b47b65 2735
07fe0b12 2736 trace_i915_vma_unbind(vma);
db53a302 2737
6f65e29a
BW
2738 vma->unbind_vma(vma);
2739
74163907 2740 i915_gem_gtt_finish_object(obj);
7bddb01f 2741
ca191b13 2742 list_del(&vma->mm_list);
75e9e915 2743 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2744 if (i915_is_ggtt(vma->vm))
2745 obj->map_and_fenceable = true;
673a394b 2746
2f633156
BW
2747 drm_mm_remove_node(&vma->node);
2748 i915_gem_vma_destroy(vma);
2749
2750 /* Since the unbound list is global, only move to that list if
b93dab6e 2751 * no more VMAs exist. */
2f633156
BW
2752 if (list_empty(&obj->vma_list))
2753 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2754
70903c3b
CW
2755 /* And finally now the object is completely decoupled from this vma,
2756 * we can drop its hold on the backing storage and allow it to be
2757 * reaped by the shrinker.
2758 */
2759 i915_gem_object_unpin_pages(obj);
2760
88241785 2761 return 0;
54cf91dc
CW
2762}
2763
07fe0b12
BW
2764/**
2765 * Unbinds an object from the global GTT aperture.
2766 */
2767int
2768i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2769{
2770 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2771 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2772
58e73e15 2773 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2774 return 0;
2775
d7f46fc4 2776 if (i915_gem_obj_to_ggtt(obj)->pin_count)
07fe0b12
BW
2777 return -EBUSY;
2778
2779 BUG_ON(obj->pages == NULL);
2780
2781 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2782}
2783
b2da9fe5 2784int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2785{
2786 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2787 struct intel_ring_buffer *ring;
1ec14ad3 2788 int ret, i;
4df2faf4 2789
4df2faf4 2790 /* Flush everything onto the inactive list. */
b4519513 2791 for_each_ring(ring, dev_priv, i) {
41bde553 2792 ret = i915_switch_context(ring, NULL, ring->default_context);
b6c7488d
BW
2793 if (ret)
2794 return ret;
2795
3e960501 2796 ret = intel_ring_idle(ring);
1ec14ad3
CW
2797 if (ret)
2798 return ret;
2799 }
4df2faf4 2800
8a1a49f9 2801 return 0;
4df2faf4
DV
2802}
2803
9ce079e4
CW
2804static void i965_write_fence_reg(struct drm_device *dev, int reg,
2805 struct drm_i915_gem_object *obj)
de151cf6 2806{
de151cf6 2807 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2808 int fence_reg;
2809 int fence_pitch_shift;
de151cf6 2810
56c844e5
ID
2811 if (INTEL_INFO(dev)->gen >= 6) {
2812 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2813 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2814 } else {
2815 fence_reg = FENCE_REG_965_0;
2816 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2817 }
2818
d18b9619
CW
2819 fence_reg += reg * 8;
2820
2821 /* To w/a incoherency with non-atomic 64-bit register updates,
2822 * we split the 64-bit update into two 32-bit writes. In order
2823 * for a partial fence not to be evaluated between writes, we
2824 * precede the update with write to turn off the fence register,
2825 * and only enable the fence as the last step.
2826 *
2827 * For extra levels of paranoia, we make sure each step lands
2828 * before applying the next step.
2829 */
2830 I915_WRITE(fence_reg, 0);
2831 POSTING_READ(fence_reg);
2832
9ce079e4 2833 if (obj) {
f343c5f6 2834 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2835 uint64_t val;
de151cf6 2836
f343c5f6 2837 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2838 0xfffff000) << 32;
f343c5f6 2839 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2840 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2841 if (obj->tiling_mode == I915_TILING_Y)
2842 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2843 val |= I965_FENCE_REG_VALID;
c6642782 2844
d18b9619
CW
2845 I915_WRITE(fence_reg + 4, val >> 32);
2846 POSTING_READ(fence_reg + 4);
2847
2848 I915_WRITE(fence_reg + 0, val);
2849 POSTING_READ(fence_reg);
2850 } else {
2851 I915_WRITE(fence_reg + 4, 0);
2852 POSTING_READ(fence_reg + 4);
2853 }
de151cf6
JB
2854}
2855
9ce079e4
CW
2856static void i915_write_fence_reg(struct drm_device *dev, int reg,
2857 struct drm_i915_gem_object *obj)
de151cf6 2858{
de151cf6 2859 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2860 u32 val;
de151cf6 2861
9ce079e4 2862 if (obj) {
f343c5f6 2863 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2864 int pitch_val;
2865 int tile_width;
c6642782 2866
f343c5f6 2867 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2868 (size & -size) != size ||
f343c5f6
BW
2869 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2870 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2871 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2872
9ce079e4
CW
2873 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2874 tile_width = 128;
2875 else
2876 tile_width = 512;
2877
2878 /* Note: pitch better be a power of two tile widths */
2879 pitch_val = obj->stride / tile_width;
2880 pitch_val = ffs(pitch_val) - 1;
2881
f343c5f6 2882 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2883 if (obj->tiling_mode == I915_TILING_Y)
2884 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2885 val |= I915_FENCE_SIZE_BITS(size);
2886 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2887 val |= I830_FENCE_REG_VALID;
2888 } else
2889 val = 0;
2890
2891 if (reg < 8)
2892 reg = FENCE_REG_830_0 + reg * 4;
2893 else
2894 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2895
2896 I915_WRITE(reg, val);
2897 POSTING_READ(reg);
de151cf6
JB
2898}
2899
9ce079e4
CW
2900static void i830_write_fence_reg(struct drm_device *dev, int reg,
2901 struct drm_i915_gem_object *obj)
de151cf6 2902{
de151cf6 2903 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2904 uint32_t val;
de151cf6 2905
9ce079e4 2906 if (obj) {
f343c5f6 2907 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2908 uint32_t pitch_val;
de151cf6 2909
f343c5f6 2910 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2911 (size & -size) != size ||
f343c5f6
BW
2912 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2913 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2914 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2915
9ce079e4
CW
2916 pitch_val = obj->stride / 128;
2917 pitch_val = ffs(pitch_val) - 1;
de151cf6 2918
f343c5f6 2919 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2920 if (obj->tiling_mode == I915_TILING_Y)
2921 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2922 val |= I830_FENCE_SIZE_BITS(size);
2923 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2924 val |= I830_FENCE_REG_VALID;
2925 } else
2926 val = 0;
c6642782 2927
9ce079e4
CW
2928 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2929 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2930}
2931
d0a57789
CW
2932inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2933{
2934 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2935}
2936
9ce079e4
CW
2937static void i915_gem_write_fence(struct drm_device *dev, int reg,
2938 struct drm_i915_gem_object *obj)
2939{
d0a57789
CW
2940 struct drm_i915_private *dev_priv = dev->dev_private;
2941
2942 /* Ensure that all CPU reads are completed before installing a fence
2943 * and all writes before removing the fence.
2944 */
2945 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2946 mb();
2947
94a335db
DV
2948 WARN(obj && (!obj->stride || !obj->tiling_mode),
2949 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2950 obj->stride, obj->tiling_mode);
2951
9ce079e4 2952 switch (INTEL_INFO(dev)->gen) {
5ab31333 2953 case 8:
9ce079e4 2954 case 7:
56c844e5 2955 case 6:
9ce079e4
CW
2956 case 5:
2957 case 4: i965_write_fence_reg(dev, reg, obj); break;
2958 case 3: i915_write_fence_reg(dev, reg, obj); break;
2959 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2960 default: BUG();
9ce079e4 2961 }
d0a57789
CW
2962
2963 /* And similarly be paranoid that no direct access to this region
2964 * is reordered to before the fence is installed.
2965 */
2966 if (i915_gem_object_needs_mb(obj))
2967 mb();
de151cf6
JB
2968}
2969
61050808
CW
2970static inline int fence_number(struct drm_i915_private *dev_priv,
2971 struct drm_i915_fence_reg *fence)
2972{
2973 return fence - dev_priv->fence_regs;
2974}
2975
2976static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2977 struct drm_i915_fence_reg *fence,
2978 bool enable)
2979{
2dc8aae0 2980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2981 int reg = fence_number(dev_priv, fence);
2982
2983 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2984
2985 if (enable) {
46a0b638 2986 obj->fence_reg = reg;
61050808
CW
2987 fence->obj = obj;
2988 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2989 } else {
2990 obj->fence_reg = I915_FENCE_REG_NONE;
2991 fence->obj = NULL;
2992 list_del_init(&fence->lru_list);
2993 }
94a335db 2994 obj->fence_dirty = false;
61050808
CW
2995}
2996
d9e86c0e 2997static int
d0a57789 2998i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2999{
1c293ea3 3000 if (obj->last_fenced_seqno) {
86d5bc37 3001 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3002 if (ret)
3003 return ret;
d9e86c0e
CW
3004
3005 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3006 }
3007
86d5bc37 3008 obj->fenced_gpu_access = false;
d9e86c0e
CW
3009 return 0;
3010}
3011
3012int
3013i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3014{
61050808 3015 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3016 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3017 int ret;
3018
d0a57789 3019 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3020 if (ret)
3021 return ret;
3022
61050808
CW
3023 if (obj->fence_reg == I915_FENCE_REG_NONE)
3024 return 0;
d9e86c0e 3025
f9c513e9
CW
3026 fence = &dev_priv->fence_regs[obj->fence_reg];
3027
61050808 3028 i915_gem_object_fence_lost(obj);
f9c513e9 3029 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3030
3031 return 0;
3032}
3033
3034static struct drm_i915_fence_reg *
a360bb1a 3035i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3036{
ae3db24a 3037 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3038 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3039 int i;
ae3db24a
DV
3040
3041 /* First try to find a free reg */
d9e86c0e 3042 avail = NULL;
ae3db24a
DV
3043 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3044 reg = &dev_priv->fence_regs[i];
3045 if (!reg->obj)
d9e86c0e 3046 return reg;
ae3db24a 3047
1690e1eb 3048 if (!reg->pin_count)
d9e86c0e 3049 avail = reg;
ae3db24a
DV
3050 }
3051
d9e86c0e 3052 if (avail == NULL)
5dce5b93 3053 goto deadlock;
ae3db24a
DV
3054
3055 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3056 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3057 if (reg->pin_count)
ae3db24a
DV
3058 continue;
3059
8fe301ad 3060 return reg;
ae3db24a
DV
3061 }
3062
5dce5b93
CW
3063deadlock:
3064 /* Wait for completion of pending flips which consume fences */
3065 if (intel_has_pending_fb_unpin(dev))
3066 return ERR_PTR(-EAGAIN);
3067
3068 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3069}
3070
de151cf6 3071/**
9a5a53b3 3072 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3073 * @obj: object to map through a fence reg
3074 *
3075 * When mapping objects through the GTT, userspace wants to be able to write
3076 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3077 * This function walks the fence regs looking for a free one for @obj,
3078 * stealing one if it can't find any.
3079 *
3080 * It then sets up the reg based on the object's properties: address, pitch
3081 * and tiling format.
9a5a53b3
CW
3082 *
3083 * For an untiled surface, this removes any existing fence.
de151cf6 3084 */
8c4b8c3f 3085int
06d98131 3086i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3087{
05394f39 3088 struct drm_device *dev = obj->base.dev;
79e53945 3089 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3090 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3091 struct drm_i915_fence_reg *reg;
ae3db24a 3092 int ret;
de151cf6 3093
14415745
CW
3094 /* Have we updated the tiling parameters upon the object and so
3095 * will need to serialise the write to the associated fence register?
3096 */
5d82e3e6 3097 if (obj->fence_dirty) {
d0a57789 3098 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3099 if (ret)
3100 return ret;
3101 }
9a5a53b3 3102
d9e86c0e 3103 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3104 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3105 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3106 if (!obj->fence_dirty) {
14415745
CW
3107 list_move_tail(&reg->lru_list,
3108 &dev_priv->mm.fence_list);
3109 return 0;
3110 }
3111 } else if (enable) {
3112 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3113 if (IS_ERR(reg))
3114 return PTR_ERR(reg);
d9e86c0e 3115
14415745
CW
3116 if (reg->obj) {
3117 struct drm_i915_gem_object *old = reg->obj;
3118
d0a57789 3119 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3120 if (ret)
3121 return ret;
3122
14415745 3123 i915_gem_object_fence_lost(old);
29c5a587 3124 }
14415745 3125 } else
a09ba7fa 3126 return 0;
a09ba7fa 3127
14415745 3128 i915_gem_object_update_fence(obj, reg, enable);
14415745 3129
9ce079e4 3130 return 0;
de151cf6
JB
3131}
3132
42d6ab48
CW
3133static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3134 struct drm_mm_node *gtt_space,
3135 unsigned long cache_level)
3136{
3137 struct drm_mm_node *other;
3138
3139 /* On non-LLC machines we have to be careful when putting differing
3140 * types of snoopable memory together to avoid the prefetcher
4239ca77 3141 * crossing memory domains and dying.
42d6ab48
CW
3142 */
3143 if (HAS_LLC(dev))
3144 return true;
3145
c6cfb325 3146 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3147 return true;
3148
3149 if (list_empty(&gtt_space->node_list))
3150 return true;
3151
3152 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3153 if (other->allocated && !other->hole_follows && other->color != cache_level)
3154 return false;
3155
3156 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3157 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3158 return false;
3159
3160 return true;
3161}
3162
3163static void i915_gem_verify_gtt(struct drm_device *dev)
3164{
3165#if WATCH_GTT
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct drm_i915_gem_object *obj;
3168 int err = 0;
3169
35c20a60 3170 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3171 if (obj->gtt_space == NULL) {
3172 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3173 err++;
3174 continue;
3175 }
3176
3177 if (obj->cache_level != obj->gtt_space->color) {
3178 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3179 i915_gem_obj_ggtt_offset(obj),
3180 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3181 obj->cache_level,
3182 obj->gtt_space->color);
3183 err++;
3184 continue;
3185 }
3186
3187 if (!i915_gem_valid_gtt_space(dev,
3188 obj->gtt_space,
3189 obj->cache_level)) {
3190 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3191 i915_gem_obj_ggtt_offset(obj),
3192 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3193 obj->cache_level);
3194 err++;
3195 continue;
3196 }
3197 }
3198
3199 WARN_ON(err);
3200#endif
3201}
3202
673a394b
EA
3203/**
3204 * Finds free space in the GTT aperture and binds the object there.
3205 */
3206static int
07fe0b12
BW
3207i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3208 struct i915_address_space *vm,
3209 unsigned alignment,
3210 bool map_and_fenceable,
3211 bool nonblocking)
673a394b 3212{
05394f39 3213 struct drm_device *dev = obj->base.dev;
673a394b 3214 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3215 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3216 size_t gtt_max =
3217 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3218 struct i915_vma *vma;
07f73f69 3219 int ret;
673a394b 3220
e28f8711
CW
3221 fence_size = i915_gem_get_gtt_size(dev,
3222 obj->base.size,
3223 obj->tiling_mode);
3224 fence_alignment = i915_gem_get_gtt_alignment(dev,
3225 obj->base.size,
d865110c 3226 obj->tiling_mode, true);
e28f8711 3227 unfenced_alignment =
d865110c 3228 i915_gem_get_gtt_alignment(dev,
e28f8711 3229 obj->base.size,
d865110c 3230 obj->tiling_mode, false);
a00b10c3 3231
673a394b 3232 if (alignment == 0)
5e783301
DV
3233 alignment = map_and_fenceable ? fence_alignment :
3234 unfenced_alignment;
75e9e915 3235 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3236 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3237 return -EINVAL;
3238 }
3239
05394f39 3240 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3241
654fc607
CW
3242 /* If the object is bigger than the entire aperture, reject it early
3243 * before evicting everything in a vain attempt to find space.
3244 */
0a9ae0d7 3245 if (obj->base.size > gtt_max) {
3765f304 3246 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3247 obj->base.size,
3248 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3249 gtt_max);
654fc607
CW
3250 return -E2BIG;
3251 }
3252
37e680a1 3253 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3254 if (ret)
3255 return ret;
3256
fbdda6fb
CW
3257 i915_gem_object_pin_pages(obj);
3258
accfef2e 3259 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3260 if (IS_ERR(vma)) {
bc6bc15b
DV
3261 ret = PTR_ERR(vma);
3262 goto err_unpin;
2f633156
BW
3263 }
3264
0a9ae0d7 3265search_free:
07fe0b12 3266 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3267 size, alignment,
31e5d7c6
DH
3268 obj->cache_level, 0, gtt_max,
3269 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3270 if (ret) {
f6cd1f15 3271 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3272 obj->cache_level,
86a1ee26
CW
3273 map_and_fenceable,
3274 nonblocking);
dc9dd7a2
CW
3275 if (ret == 0)
3276 goto search_free;
9731129c 3277
bc6bc15b 3278 goto err_free_vma;
673a394b 3279 }
2f633156 3280 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3281 obj->cache_level))) {
2f633156 3282 ret = -EINVAL;
bc6bc15b 3283 goto err_remove_node;
673a394b
EA
3284 }
3285
74163907 3286 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3287 if (ret)
bc6bc15b 3288 goto err_remove_node;
673a394b 3289
35c20a60 3290 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3291 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3292
4bd561b3
BW
3293 if (i915_is_ggtt(vm)) {
3294 bool mappable, fenceable;
a00b10c3 3295
49987099
DV
3296 fenceable = (vma->node.size == fence_size &&
3297 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3298
49987099
DV
3299 mappable = (vma->node.start + obj->base.size <=
3300 dev_priv->gtt.mappable_end);
a00b10c3 3301
5cacaac7 3302 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3303 }
75e9e915 3304
7ace7ef2 3305 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3306
07fe0b12 3307 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3308 i915_gem_verify_gtt(dev);
673a394b 3309 return 0;
2f633156 3310
bc6bc15b 3311err_remove_node:
6286ef9b 3312 drm_mm_remove_node(&vma->node);
bc6bc15b 3313err_free_vma:
2f633156 3314 i915_gem_vma_destroy(vma);
bc6bc15b 3315err_unpin:
2f633156 3316 i915_gem_object_unpin_pages(obj);
2f633156 3317 return ret;
673a394b
EA
3318}
3319
000433b6 3320bool
2c22569b
CW
3321i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3322 bool force)
673a394b 3323{
673a394b
EA
3324 /* If we don't have a page list set up, then we're not pinned
3325 * to GPU, and we can ignore the cache flush because it'll happen
3326 * again at bind time.
3327 */
05394f39 3328 if (obj->pages == NULL)
000433b6 3329 return false;
673a394b 3330
769ce464
ID
3331 /*
3332 * Stolen memory is always coherent with the GPU as it is explicitly
3333 * marked as wc by the system, or the system is cache-coherent.
3334 */
3335 if (obj->stolen)
000433b6 3336 return false;
769ce464 3337
9c23f7fc
CW
3338 /* If the GPU is snooping the contents of the CPU cache,
3339 * we do not need to manually clear the CPU cache lines. However,
3340 * the caches are only snooped when the render cache is
3341 * flushed/invalidated. As we always have to emit invalidations
3342 * and flushes when moving into and out of the RENDER domain, correct
3343 * snooping behaviour occurs naturally as the result of our domain
3344 * tracking.
3345 */
2c22569b 3346 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3347 return false;
9c23f7fc 3348
1c5d22f7 3349 trace_i915_gem_object_clflush(obj);
9da3da66 3350 drm_clflush_sg(obj->pages);
000433b6
CW
3351
3352 return true;
e47c68e9
EA
3353}
3354
3355/** Flushes the GTT write domain for the object if it's dirty. */
3356static void
05394f39 3357i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3358{
1c5d22f7
CW
3359 uint32_t old_write_domain;
3360
05394f39 3361 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3362 return;
3363
63256ec5 3364 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3365 * to it immediately go to main memory as far as we know, so there's
3366 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3367 *
3368 * However, we do have to enforce the order so that all writes through
3369 * the GTT land before any writes to the device, such as updates to
3370 * the GATT itself.
e47c68e9 3371 */
63256ec5
CW
3372 wmb();
3373
05394f39
CW
3374 old_write_domain = obj->base.write_domain;
3375 obj->base.write_domain = 0;
1c5d22f7
CW
3376
3377 trace_i915_gem_object_change_domain(obj,
05394f39 3378 obj->base.read_domains,
1c5d22f7 3379 old_write_domain);
e47c68e9
EA
3380}
3381
3382/** Flushes the CPU write domain for the object if it's dirty. */
3383static void
2c22569b
CW
3384i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3385 bool force)
e47c68e9 3386{
1c5d22f7 3387 uint32_t old_write_domain;
e47c68e9 3388
05394f39 3389 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3390 return;
3391
000433b6
CW
3392 if (i915_gem_clflush_object(obj, force))
3393 i915_gem_chipset_flush(obj->base.dev);
3394
05394f39
CW
3395 old_write_domain = obj->base.write_domain;
3396 obj->base.write_domain = 0;
1c5d22f7
CW
3397
3398 trace_i915_gem_object_change_domain(obj,
05394f39 3399 obj->base.read_domains,
1c5d22f7 3400 old_write_domain);
e47c68e9
EA
3401}
3402
2ef7eeaa
EA
3403/**
3404 * Moves a single object to the GTT read, and possibly write domain.
3405 *
3406 * This function returns when the move is complete, including waiting on
3407 * flushes to occur.
3408 */
79e53945 3409int
2021746e 3410i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3411{
8325a09d 3412 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3413 uint32_t old_write_domain, old_read_domains;
e47c68e9 3414 int ret;
2ef7eeaa 3415
02354392 3416 /* Not valid to be called on unbound objects. */
9843877d 3417 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3418 return -EINVAL;
3419
8d7e3de1
CW
3420 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3421 return 0;
3422
0201f1ec 3423 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3424 if (ret)
3425 return ret;
3426
2c22569b 3427 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3428
d0a57789
CW
3429 /* Serialise direct access to this object with the barriers for
3430 * coherent writes from the GPU, by effectively invalidating the
3431 * GTT domain upon first access.
3432 */
3433 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3434 mb();
3435
05394f39
CW
3436 old_write_domain = obj->base.write_domain;
3437 old_read_domains = obj->base.read_domains;
1c5d22f7 3438
e47c68e9
EA
3439 /* It should now be out of any other write domains, and we can update
3440 * the domain values for our changes.
3441 */
05394f39
CW
3442 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3443 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3444 if (write) {
05394f39
CW
3445 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3446 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3447 obj->dirty = 1;
2ef7eeaa
EA
3448 }
3449
1c5d22f7
CW
3450 trace_i915_gem_object_change_domain(obj,
3451 old_read_domains,
3452 old_write_domain);
3453
8325a09d 3454 /* And bump the LRU for this access */
ca191b13 3455 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3456 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3457 if (vma)
3458 list_move_tail(&vma->mm_list,
3459 &dev_priv->gtt.base.inactive_list);
3460
3461 }
8325a09d 3462
e47c68e9
EA
3463 return 0;
3464}
3465
e4ffd173
CW
3466int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3467 enum i915_cache_level cache_level)
3468{
7bddb01f 3469 struct drm_device *dev = obj->base.dev;
3089c6f2 3470 struct i915_vma *vma;
e4ffd173
CW
3471 int ret;
3472
3473 if (obj->cache_level == cache_level)
3474 return 0;
3475
d7f46fc4 3476 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3477 DRM_DEBUG("can not change the cache level of pinned objects\n");
3478 return -EBUSY;
3479 }
3480
3089c6f2
BW
3481 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3482 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3483 ret = i915_vma_unbind(vma);
3089c6f2
BW
3484 if (ret)
3485 return ret;
3486
3487 break;
3488 }
42d6ab48
CW
3489 }
3490
3089c6f2 3491 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3492 ret = i915_gem_object_finish_gpu(obj);
3493 if (ret)
3494 return ret;
3495
3496 i915_gem_object_finish_gtt(obj);
3497
3498 /* Before SandyBridge, you could not use tiling or fence
3499 * registers with snooped memory, so relinquish any fences
3500 * currently pointing to our region in the aperture.
3501 */
42d6ab48 3502 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3503 ret = i915_gem_object_put_fence(obj);
3504 if (ret)
3505 return ret;
3506 }
3507
6f65e29a
BW
3508 list_for_each_entry(vma, &obj->vma_list, vma_link)
3509 vma->bind_vma(vma, cache_level, 0);
e4ffd173
CW
3510 }
3511
2c22569b
CW
3512 list_for_each_entry(vma, &obj->vma_list, vma_link)
3513 vma->node.color = cache_level;
3514 obj->cache_level = cache_level;
3515
3516 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3517 u32 old_read_domains, old_write_domain;
3518
3519 /* If we're coming from LLC cached, then we haven't
3520 * actually been tracking whether the data is in the
3521 * CPU cache or not, since we only allow one bit set
3522 * in obj->write_domain and have been skipping the clflushes.
3523 * Just set it to the CPU cache for now.
3524 */
3525 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3526
3527 old_read_domains = obj->base.read_domains;
3528 old_write_domain = obj->base.write_domain;
3529
3530 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3531 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3532
3533 trace_i915_gem_object_change_domain(obj,
3534 old_read_domains,
3535 old_write_domain);
3536 }
3537
42d6ab48 3538 i915_gem_verify_gtt(dev);
e4ffd173
CW
3539 return 0;
3540}
3541
199adf40
BW
3542int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3543 struct drm_file *file)
e6994aee 3544{
199adf40 3545 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3546 struct drm_i915_gem_object *obj;
3547 int ret;
3548
3549 ret = i915_mutex_lock_interruptible(dev);
3550 if (ret)
3551 return ret;
3552
3553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3554 if (&obj->base == NULL) {
3555 ret = -ENOENT;
3556 goto unlock;
3557 }
3558
651d794f
CW
3559 switch (obj->cache_level) {
3560 case I915_CACHE_LLC:
3561 case I915_CACHE_L3_LLC:
3562 args->caching = I915_CACHING_CACHED;
3563 break;
3564
4257d3ba
CW
3565 case I915_CACHE_WT:
3566 args->caching = I915_CACHING_DISPLAY;
3567 break;
3568
651d794f
CW
3569 default:
3570 args->caching = I915_CACHING_NONE;
3571 break;
3572 }
e6994aee
CW
3573
3574 drm_gem_object_unreference(&obj->base);
3575unlock:
3576 mutex_unlock(&dev->struct_mutex);
3577 return ret;
3578}
3579
199adf40
BW
3580int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3581 struct drm_file *file)
e6994aee 3582{
199adf40 3583 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3584 struct drm_i915_gem_object *obj;
3585 enum i915_cache_level level;
3586 int ret;
3587
199adf40
BW
3588 switch (args->caching) {
3589 case I915_CACHING_NONE:
e6994aee
CW
3590 level = I915_CACHE_NONE;
3591 break;
199adf40 3592 case I915_CACHING_CACHED:
e6994aee
CW
3593 level = I915_CACHE_LLC;
3594 break;
4257d3ba
CW
3595 case I915_CACHING_DISPLAY:
3596 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3597 break;
e6994aee
CW
3598 default:
3599 return -EINVAL;
3600 }
3601
3bc2913e
BW
3602 ret = i915_mutex_lock_interruptible(dev);
3603 if (ret)
3604 return ret;
3605
e6994aee
CW
3606 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3607 if (&obj->base == NULL) {
3608 ret = -ENOENT;
3609 goto unlock;
3610 }
3611
3612 ret = i915_gem_object_set_cache_level(obj, level);
3613
3614 drm_gem_object_unreference(&obj->base);
3615unlock:
3616 mutex_unlock(&dev->struct_mutex);
3617 return ret;
3618}
3619
cc98b413
CW
3620static bool is_pin_display(struct drm_i915_gem_object *obj)
3621{
3622 /* There are 3 sources that pin objects:
3623 * 1. The display engine (scanouts, sprites, cursors);
3624 * 2. Reservations for execbuffer;
3625 * 3. The user.
3626 *
3627 * We can ignore reservations as we hold the struct_mutex and
3628 * are only called outside of the reservation path. The user
3629 * can only increment pin_count once, and so if after
3630 * subtracting the potential reference by the user, any pin_count
3631 * remains, it must be due to another use by the display engine.
3632 */
d7f46fc4 3633 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
cc98b413
CW
3634}
3635
b9241ea3 3636/*
2da3b9b9
CW
3637 * Prepare buffer for display plane (scanout, cursors, etc).
3638 * Can be called from an uninterruptible phase (modesetting) and allows
3639 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3640 */
3641int
2da3b9b9
CW
3642i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3643 u32 alignment,
919926ae 3644 struct intel_ring_buffer *pipelined)
b9241ea3 3645{
2da3b9b9 3646 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3647 int ret;
3648
0be73284 3649 if (pipelined != obj->ring) {
2911a35b
BW
3650 ret = i915_gem_object_sync(obj, pipelined);
3651 if (ret)
b9241ea3
ZW
3652 return ret;
3653 }
3654
cc98b413
CW
3655 /* Mark the pin_display early so that we account for the
3656 * display coherency whilst setting up the cache domains.
3657 */
3658 obj->pin_display = true;
3659
a7ef0640
EA
3660 /* The display engine is not coherent with the LLC cache on gen6. As
3661 * a result, we make sure that the pinning that is about to occur is
3662 * done with uncached PTEs. This is lowest common denominator for all
3663 * chipsets.
3664 *
3665 * However for gen6+, we could do better by using the GFDT bit instead
3666 * of uncaching, which would allow us to flush all the LLC-cached data
3667 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3668 */
651d794f
CW
3669 ret = i915_gem_object_set_cache_level(obj,
3670 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3671 if (ret)
cc98b413 3672 goto err_unpin_display;
a7ef0640 3673
2da3b9b9
CW
3674 /* As the user may map the buffer once pinned in the display plane
3675 * (e.g. libkms for the bootup splash), we have to ensure that we
3676 * always use map_and_fenceable for all scanout buffers.
3677 */
c37e2204 3678 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3679 if (ret)
cc98b413 3680 goto err_unpin_display;
2da3b9b9 3681
2c22569b 3682 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3683
2da3b9b9 3684 old_write_domain = obj->base.write_domain;
05394f39 3685 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3686
3687 /* It should now be out of any other write domains, and we can update
3688 * the domain values for our changes.
3689 */
e5f1d962 3690 obj->base.write_domain = 0;
05394f39 3691 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3692
3693 trace_i915_gem_object_change_domain(obj,
3694 old_read_domains,
2da3b9b9 3695 old_write_domain);
b9241ea3
ZW
3696
3697 return 0;
cc98b413
CW
3698
3699err_unpin_display:
3700 obj->pin_display = is_pin_display(obj);
3701 return ret;
3702}
3703
3704void
3705i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3706{
d7f46fc4 3707 i915_gem_object_ggtt_unpin(obj);
cc98b413 3708 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3709}
3710
85345517 3711int
a8198eea 3712i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3713{
88241785
CW
3714 int ret;
3715
a8198eea 3716 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3717 return 0;
3718
0201f1ec 3719 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3720 if (ret)
3721 return ret;
3722
a8198eea
CW
3723 /* Ensure that we invalidate the GPU's caches and TLBs. */
3724 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3725 return 0;
85345517
CW
3726}
3727
e47c68e9
EA
3728/**
3729 * Moves a single object to the CPU read, and possibly write domain.
3730 *
3731 * This function returns when the move is complete, including waiting on
3732 * flushes to occur.
3733 */
dabdfe02 3734int
919926ae 3735i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3736{
1c5d22f7 3737 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3738 int ret;
3739
8d7e3de1
CW
3740 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3741 return 0;
3742
0201f1ec 3743 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3744 if (ret)
3745 return ret;
3746
e47c68e9 3747 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3748
05394f39
CW
3749 old_write_domain = obj->base.write_domain;
3750 old_read_domains = obj->base.read_domains;
1c5d22f7 3751
e47c68e9 3752 /* Flush the CPU cache if it's still invalid. */
05394f39 3753 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3754 i915_gem_clflush_object(obj, false);
2ef7eeaa 3755
05394f39 3756 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3757 }
3758
3759 /* It should now be out of any other write domains, and we can update
3760 * the domain values for our changes.
3761 */
05394f39 3762 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3763
3764 /* If we're writing through the CPU, then the GPU read domains will
3765 * need to be invalidated at next use.
3766 */
3767 if (write) {
05394f39
CW
3768 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3769 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3770 }
2ef7eeaa 3771
1c5d22f7
CW
3772 trace_i915_gem_object_change_domain(obj,
3773 old_read_domains,
3774 old_write_domain);
3775
2ef7eeaa
EA
3776 return 0;
3777}
3778
673a394b
EA
3779/* Throttle our rendering by waiting until the ring has completed our requests
3780 * emitted over 20 msec ago.
3781 *
b962442e
EA
3782 * Note that if we were to use the current jiffies each time around the loop,
3783 * we wouldn't escape the function with any frames outstanding if the time to
3784 * render a frame was over 20ms.
3785 *
673a394b
EA
3786 * This should get us reasonable parallelism between CPU and GPU but also
3787 * relatively low latency when blocking on a particular request to finish.
3788 */
40a5f0de 3789static int
f787a5f5 3790i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3791{
f787a5f5
CW
3792 struct drm_i915_private *dev_priv = dev->dev_private;
3793 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3794 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3795 struct drm_i915_gem_request *request;
3796 struct intel_ring_buffer *ring = NULL;
f69061be 3797 unsigned reset_counter;
f787a5f5
CW
3798 u32 seqno = 0;
3799 int ret;
93533c29 3800
308887aa
DV
3801 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3802 if (ret)
3803 return ret;
3804
3805 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3806 if (ret)
3807 return ret;
e110e8d6 3808
1c25595f 3809 spin_lock(&file_priv->mm.lock);
f787a5f5 3810 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3811 if (time_after_eq(request->emitted_jiffies, recent_enough))
3812 break;
40a5f0de 3813
f787a5f5
CW
3814 ring = request->ring;
3815 seqno = request->seqno;
b962442e 3816 }
f69061be 3817 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3818 spin_unlock(&file_priv->mm.lock);
40a5f0de 3819
f787a5f5
CW
3820 if (seqno == 0)
3821 return 0;
2bc43b5c 3822
b29c19b6 3823 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3824 if (ret == 0)
3825 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3826
3827 return ret;
3828}
3829
673a394b 3830int
05394f39 3831i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3832 struct i915_address_space *vm,
05394f39 3833 uint32_t alignment,
86a1ee26
CW
3834 bool map_and_fenceable,
3835 bool nonblocking)
673a394b 3836{
6f65e29a 3837 const u32 flags = map_and_fenceable ? GLOBAL_BIND : 0;
07fe0b12 3838 struct i915_vma *vma;
673a394b
EA
3839 int ret;
3840
07fe0b12
BW
3841 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3842
3843 vma = i915_gem_obj_to_vma(obj, vm);
3844
3845 if (vma) {
d7f46fc4
BW
3846 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3847 return -EBUSY;
3848
07fe0b12
BW
3849 if ((alignment &&
3850 vma->node.start & (alignment - 1)) ||
05394f39 3851 (map_and_fenceable && !obj->map_and_fenceable)) {
d7f46fc4 3852 WARN(vma->pin_count,
ae7d49d8 3853 "bo is already pinned with incorrect alignment:"
f343c5f6 3854 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3855 " obj->map_and_fenceable=%d\n",
07fe0b12 3856 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3857 map_and_fenceable,
05394f39 3858 obj->map_and_fenceable);
07fe0b12 3859 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3860 if (ret)
3861 return ret;
3862 }
3863 }
3864
07fe0b12 3865 if (!i915_gem_obj_bound(obj, vm)) {
07fe0b12
BW
3866 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3867 map_and_fenceable,
3868 nonblocking);
9731129c 3869 if (ret)
673a394b 3870 return ret;
8742267a 3871
22c344e9 3872 }
76446cac 3873
6f65e29a
BW
3874 vma = i915_gem_obj_to_vma(obj, vm);
3875
3876 vma->bind_vma(vma, obj->cache_level, flags);
74898d7e 3877
d7f46fc4 3878 i915_gem_obj_to_vma(obj, vm)->pin_count++;
6299f992 3879 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3880
3881 return 0;
3882}
3883
3884void
d7f46fc4 3885i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3886{
d7f46fc4 3887 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3888
d7f46fc4
BW
3889 BUG_ON(!vma);
3890 BUG_ON(vma->pin_count == 0);
3891 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3892
3893 if (--vma->pin_count == 0)
6299f992 3894 obj->pin_mappable = false;
673a394b
EA
3895}
3896
3897int
3898i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3899 struct drm_file *file)
673a394b
EA
3900{
3901 struct drm_i915_gem_pin *args = data;
05394f39 3902 struct drm_i915_gem_object *obj;
673a394b
EA
3903 int ret;
3904
02f6bccc
DV
3905 if (INTEL_INFO(dev)->gen >= 6)
3906 return -ENODEV;
3907
1d7cfea1
CW
3908 ret = i915_mutex_lock_interruptible(dev);
3909 if (ret)
3910 return ret;
673a394b 3911
05394f39 3912 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3913 if (&obj->base == NULL) {
1d7cfea1
CW
3914 ret = -ENOENT;
3915 goto unlock;
673a394b 3916 }
673a394b 3917
05394f39 3918 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3919 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3920 ret = -EINVAL;
3921 goto out;
3ef94daa
CW
3922 }
3923
05394f39 3924 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3925 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3926 args->handle);
1d7cfea1
CW
3927 ret = -EINVAL;
3928 goto out;
79e53945
JB
3929 }
3930
aa5f8021
DV
3931 if (obj->user_pin_count == ULONG_MAX) {
3932 ret = -EBUSY;
3933 goto out;
3934 }
3935
93be8788 3936 if (obj->user_pin_count == 0) {
c37e2204 3937 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3938 if (ret)
3939 goto out;
673a394b
EA
3940 }
3941
93be8788
CW
3942 obj->user_pin_count++;
3943 obj->pin_filp = file;
3944
f343c5f6 3945 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3946out:
05394f39 3947 drm_gem_object_unreference(&obj->base);
1d7cfea1 3948unlock:
673a394b 3949 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3950 return ret;
673a394b
EA
3951}
3952
3953int
3954i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3955 struct drm_file *file)
673a394b
EA
3956{
3957 struct drm_i915_gem_pin *args = data;
05394f39 3958 struct drm_i915_gem_object *obj;
76c1dec1 3959 int ret;
673a394b 3960
1d7cfea1
CW
3961 ret = i915_mutex_lock_interruptible(dev);
3962 if (ret)
3963 return ret;
673a394b 3964
05394f39 3965 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3966 if (&obj->base == NULL) {
1d7cfea1
CW
3967 ret = -ENOENT;
3968 goto unlock;
673a394b 3969 }
76c1dec1 3970
05394f39 3971 if (obj->pin_filp != file) {
79e53945
JB
3972 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3973 args->handle);
1d7cfea1
CW
3974 ret = -EINVAL;
3975 goto out;
79e53945 3976 }
05394f39
CW
3977 obj->user_pin_count--;
3978 if (obj->user_pin_count == 0) {
3979 obj->pin_filp = NULL;
d7f46fc4 3980 i915_gem_object_ggtt_unpin(obj);
79e53945 3981 }
673a394b 3982
1d7cfea1 3983out:
05394f39 3984 drm_gem_object_unreference(&obj->base);
1d7cfea1 3985unlock:
673a394b 3986 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3987 return ret;
673a394b
EA
3988}
3989
3990int
3991i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3992 struct drm_file *file)
673a394b
EA
3993{
3994 struct drm_i915_gem_busy *args = data;
05394f39 3995 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3996 int ret;
3997
76c1dec1 3998 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3999 if (ret)
76c1dec1 4000 return ret;
673a394b 4001
05394f39 4002 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4003 if (&obj->base == NULL) {
1d7cfea1
CW
4004 ret = -ENOENT;
4005 goto unlock;
673a394b 4006 }
d1b851fc 4007
0be555b6
CW
4008 /* Count all active objects as busy, even if they are currently not used
4009 * by the gpu. Users of this interface expect objects to eventually
4010 * become non-busy without any further actions, therefore emit any
4011 * necessary flushes here.
c4de0a5d 4012 */
30dfebf3 4013 ret = i915_gem_object_flush_active(obj);
0be555b6 4014
30dfebf3 4015 args->busy = obj->active;
e9808edd
CW
4016 if (obj->ring) {
4017 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4018 args->busy |= intel_ring_flag(obj->ring) << 16;
4019 }
673a394b 4020
05394f39 4021 drm_gem_object_unreference(&obj->base);
1d7cfea1 4022unlock:
673a394b 4023 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4024 return ret;
673a394b
EA
4025}
4026
4027int
4028i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4029 struct drm_file *file_priv)
4030{
0206e353 4031 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4032}
4033
3ef94daa
CW
4034int
4035i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4036 struct drm_file *file_priv)
4037{
4038 struct drm_i915_gem_madvise *args = data;
05394f39 4039 struct drm_i915_gem_object *obj;
76c1dec1 4040 int ret;
3ef94daa
CW
4041
4042 switch (args->madv) {
4043 case I915_MADV_DONTNEED:
4044 case I915_MADV_WILLNEED:
4045 break;
4046 default:
4047 return -EINVAL;
4048 }
4049
1d7cfea1
CW
4050 ret = i915_mutex_lock_interruptible(dev);
4051 if (ret)
4052 return ret;
4053
05394f39 4054 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4055 if (&obj->base == NULL) {
1d7cfea1
CW
4056 ret = -ENOENT;
4057 goto unlock;
3ef94daa 4058 }
3ef94daa 4059
d7f46fc4 4060 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4061 ret = -EINVAL;
4062 goto out;
3ef94daa
CW
4063 }
4064
05394f39
CW
4065 if (obj->madv != __I915_MADV_PURGED)
4066 obj->madv = args->madv;
3ef94daa 4067
6c085a72
CW
4068 /* if the object is no longer attached, discard its backing storage */
4069 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4070 i915_gem_object_truncate(obj);
4071
05394f39 4072 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4073
1d7cfea1 4074out:
05394f39 4075 drm_gem_object_unreference(&obj->base);
1d7cfea1 4076unlock:
3ef94daa 4077 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4078 return ret;
3ef94daa
CW
4079}
4080
37e680a1
CW
4081void i915_gem_object_init(struct drm_i915_gem_object *obj,
4082 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4083{
35c20a60 4084 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4085 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4086 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4087 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4088
37e680a1
CW
4089 obj->ops = ops;
4090
0327d6ba
CW
4091 obj->fence_reg = I915_FENCE_REG_NONE;
4092 obj->madv = I915_MADV_WILLNEED;
4093 /* Avoid an unnecessary call to unbind on the first bind. */
4094 obj->map_and_fenceable = true;
4095
4096 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4097}
4098
37e680a1
CW
4099static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4100 .get_pages = i915_gem_object_get_pages_gtt,
4101 .put_pages = i915_gem_object_put_pages_gtt,
4102};
4103
05394f39
CW
4104struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4105 size_t size)
ac52bc56 4106{
c397b908 4107 struct drm_i915_gem_object *obj;
5949eac4 4108 struct address_space *mapping;
1a240d4d 4109 gfp_t mask;
ac52bc56 4110
42dcedd4 4111 obj = i915_gem_object_alloc(dev);
c397b908
DV
4112 if (obj == NULL)
4113 return NULL;
673a394b 4114
c397b908 4115 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4116 i915_gem_object_free(obj);
c397b908
DV
4117 return NULL;
4118 }
673a394b 4119
bed1ea95
CW
4120 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4121 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4122 /* 965gm cannot relocate objects above 4GiB. */
4123 mask &= ~__GFP_HIGHMEM;
4124 mask |= __GFP_DMA32;
4125 }
4126
496ad9aa 4127 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4128 mapping_set_gfp_mask(mapping, mask);
5949eac4 4129
37e680a1 4130 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4131
c397b908
DV
4132 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4133 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4134
3d29b842
ED
4135 if (HAS_LLC(dev)) {
4136 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4137 * cache) for about a 10% performance improvement
4138 * compared to uncached. Graphics requests other than
4139 * display scanout are coherent with the CPU in
4140 * accessing this cache. This means in this mode we
4141 * don't need to clflush on the CPU side, and on the
4142 * GPU side we only need to flush internal caches to
4143 * get data visible to the CPU.
4144 *
4145 * However, we maintain the display planes as UC, and so
4146 * need to rebind when first used as such.
4147 */
4148 obj->cache_level = I915_CACHE_LLC;
4149 } else
4150 obj->cache_level = I915_CACHE_NONE;
4151
d861e338
DV
4152 trace_i915_gem_object_create(obj);
4153
05394f39 4154 return obj;
c397b908
DV
4155}
4156
1488fc08 4157void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4158{
1488fc08 4159 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4160 struct drm_device *dev = obj->base.dev;
be72615b 4161 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4162 struct i915_vma *vma, *next;
673a394b 4163
f65c9168
PZ
4164 intel_runtime_pm_get(dev_priv);
4165
26e12f89
CW
4166 trace_i915_gem_object_destroy(obj);
4167
1488fc08
CW
4168 if (obj->phys_obj)
4169 i915_gem_detach_phys_object(dev, obj);
4170
07fe0b12 4171 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4172 int ret;
4173
4174 vma->pin_count = 0;
4175 ret = i915_vma_unbind(vma);
07fe0b12
BW
4176 if (WARN_ON(ret == -ERESTARTSYS)) {
4177 bool was_interruptible;
1488fc08 4178
07fe0b12
BW
4179 was_interruptible = dev_priv->mm.interruptible;
4180 dev_priv->mm.interruptible = false;
1488fc08 4181
07fe0b12 4182 WARN_ON(i915_vma_unbind(vma));
1488fc08 4183
07fe0b12
BW
4184 dev_priv->mm.interruptible = was_interruptible;
4185 }
1488fc08
CW
4186 }
4187
1d64ae71
BW
4188 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4189 * before progressing. */
4190 if (obj->stolen)
4191 i915_gem_object_unpin_pages(obj);
4192
401c29f6
BW
4193 if (WARN_ON(obj->pages_pin_count))
4194 obj->pages_pin_count = 0;
37e680a1 4195 i915_gem_object_put_pages(obj);
d8cb5086 4196 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4197 i915_gem_object_release_stolen(obj);
de151cf6 4198
9da3da66
CW
4199 BUG_ON(obj->pages);
4200
2f745ad3
CW
4201 if (obj->base.import_attach)
4202 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4203
05394f39
CW
4204 drm_gem_object_release(&obj->base);
4205 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4206
05394f39 4207 kfree(obj->bit_17);
42dcedd4 4208 i915_gem_object_free(obj);
f65c9168
PZ
4209
4210 intel_runtime_pm_put(dev_priv);
673a394b
EA
4211}
4212
e656a6cb 4213struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4214 struct i915_address_space *vm)
e656a6cb
DV
4215{
4216 struct i915_vma *vma;
4217 list_for_each_entry(vma, &obj->vma_list, vma_link)
4218 if (vma->vm == vm)
4219 return vma;
4220
4221 return NULL;
4222}
4223
2f633156
BW
4224void i915_gem_vma_destroy(struct i915_vma *vma)
4225{
4226 WARN_ON(vma->node.allocated);
aaa05667
CW
4227
4228 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4229 if (!list_empty(&vma->exec_list))
4230 return;
4231
8b9c2b94 4232 list_del(&vma->vma_link);
b93dab6e 4233
2f633156
BW
4234 kfree(vma);
4235}
4236
29105ccc 4237int
45c5f202 4238i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4239{
4240 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4241 int ret = 0;
28dfe52a 4242
45c5f202 4243 mutex_lock(&dev->struct_mutex);
f7403347 4244 if (dev_priv->ums.mm_suspended)
45c5f202 4245 goto err;
28dfe52a 4246
b2da9fe5 4247 ret = i915_gpu_idle(dev);
f7403347 4248 if (ret)
45c5f202 4249 goto err;
f7403347 4250
b2da9fe5 4251 i915_gem_retire_requests(dev);
673a394b 4252
29105ccc 4253 /* Under UMS, be paranoid and evict. */
a39d7efc 4254 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4255 i915_gem_evict_everything(dev);
29105ccc 4256
29105ccc 4257 i915_kernel_lost_context(dev);
6dbe2772 4258 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4259
45c5f202
CW
4260 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4261 * We need to replace this with a semaphore, or something.
4262 * And not confound ums.mm_suspended!
4263 */
4264 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4265 DRIVER_MODESET);
4266 mutex_unlock(&dev->struct_mutex);
4267
4268 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4269 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4270 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4271
673a394b 4272 return 0;
45c5f202
CW
4273
4274err:
4275 mutex_unlock(&dev->struct_mutex);
4276 return ret;
673a394b
EA
4277}
4278
c3787e2e 4279int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4280{
c3787e2e 4281 struct drm_device *dev = ring->dev;
b9524a1e 4282 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4283 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4284 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4285 int i, ret;
b9524a1e 4286
040d2baa 4287 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4288 return 0;
b9524a1e 4289
c3787e2e
BW
4290 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4291 if (ret)
4292 return ret;
b9524a1e 4293
c3787e2e
BW
4294 /*
4295 * Note: We do not worry about the concurrent register cacheline hang
4296 * here because no other code should access these registers other than
4297 * at initialization time.
4298 */
b9524a1e 4299 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4300 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4301 intel_ring_emit(ring, reg_base + i);
4302 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4303 }
4304
c3787e2e 4305 intel_ring_advance(ring);
b9524a1e 4306
c3787e2e 4307 return ret;
b9524a1e
BW
4308}
4309
f691e2f4
DV
4310void i915_gem_init_swizzling(struct drm_device *dev)
4311{
4312 drm_i915_private_t *dev_priv = dev->dev_private;
4313
11782b02 4314 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4315 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4316 return;
4317
4318 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4319 DISP_TILE_SURFACE_SWIZZLING);
4320
11782b02
DV
4321 if (IS_GEN5(dev))
4322 return;
4323
f691e2f4
DV
4324 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4325 if (IS_GEN6(dev))
6b26c86d 4326 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4327 else if (IS_GEN7(dev))
6b26c86d 4328 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4329 else if (IS_GEN8(dev))
4330 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4331 else
4332 BUG();
f691e2f4 4333}
e21af88d 4334
67b1b571
CW
4335static bool
4336intel_enable_blt(struct drm_device *dev)
4337{
4338 if (!HAS_BLT(dev))
4339 return false;
4340
4341 /* The blitter was dysfunctional on early prototypes */
4342 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4343 DRM_INFO("BLT not supported on this pre-production hardware;"
4344 " graphics performance will be degraded.\n");
4345 return false;
4346 }
4347
4348 return true;
4349}
4350
4fc7c971 4351static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4352{
4fc7c971 4353 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4354 int ret;
68f95ba9 4355
5c1143bb 4356 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4357 if (ret)
b6913e4b 4358 return ret;
68f95ba9
CW
4359
4360 if (HAS_BSD(dev)) {
5c1143bb 4361 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4362 if (ret)
4363 goto cleanup_render_ring;
d1b851fc 4364 }
68f95ba9 4365
67b1b571 4366 if (intel_enable_blt(dev)) {
549f7365
CW
4367 ret = intel_init_blt_ring_buffer(dev);
4368 if (ret)
4369 goto cleanup_bsd_ring;
4370 }
4371
9a8a2213
BW
4372 if (HAS_VEBOX(dev)) {
4373 ret = intel_init_vebox_ring_buffer(dev);
4374 if (ret)
4375 goto cleanup_blt_ring;
4376 }
4377
4378
99433931 4379 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4380 if (ret)
9a8a2213 4381 goto cleanup_vebox_ring;
4fc7c971
BW
4382
4383 return 0;
4384
9a8a2213
BW
4385cleanup_vebox_ring:
4386 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4387cleanup_blt_ring:
4388 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4389cleanup_bsd_ring:
4390 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4391cleanup_render_ring:
4392 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4393
4394 return ret;
4395}
4396
4397int
4398i915_gem_init_hw(struct drm_device *dev)
4399{
4400 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4401 int ret, i;
4fc7c971
BW
4402
4403 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4404 return -EIO;
4405
59124506 4406 if (dev_priv->ellc_size)
05e21cc4 4407 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4408
0bf21347
VS
4409 if (IS_HASWELL(dev))
4410 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4411 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4412
88a2b2a3 4413 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4414 if (IS_IVYBRIDGE(dev)) {
4415 u32 temp = I915_READ(GEN7_MSG_CTL);
4416 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4417 I915_WRITE(GEN7_MSG_CTL, temp);
4418 } else if (INTEL_INFO(dev)->gen >= 7) {
4419 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4420 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4421 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4422 }
88a2b2a3
BW
4423 }
4424
4fc7c971
BW
4425 i915_gem_init_swizzling(dev);
4426
4427 ret = i915_gem_init_rings(dev);
99433931
MK
4428 if (ret)
4429 return ret;
4430
c3787e2e
BW
4431 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4432 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4433
254f965c 4434 /*
2fa48d8d
BW
4435 * XXX: Contexts should only be initialized once. Doing a switch to the
4436 * default context switch however is something we'd like to do after
4437 * reset or thaw (the latter may not actually be necessary for HW, but
4438 * goes with our code better). Context switching requires rings (for
4439 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4440 */
2fa48d8d 4441 ret = i915_gem_context_enable(dev_priv);
8245be31 4442 if (ret) {
2fa48d8d
BW
4443 DRM_ERROR("Context enable failed %d\n", ret);
4444 goto err_out;
b7c36d25 4445 }
e21af88d 4446
68f95ba9 4447 return 0;
2fa48d8d
BW
4448
4449err_out:
4450 i915_gem_cleanup_ringbuffer(dev);
4451 return ret;
8187a2b7
ZN
4452}
4453
1070a42b
CW
4454int i915_gem_init(struct drm_device *dev)
4455{
4456 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4457 int ret;
4458
1070a42b 4459 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4460
4461 if (IS_VALLEYVIEW(dev)) {
4462 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4463 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4464 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4465 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4466 }
4467
d7e5008f 4468 i915_gem_init_global_gtt(dev);
d62b4892 4469
2fa48d8d 4470 ret = i915_gem_context_init(dev);
e3848694
MK
4471 if (ret) {
4472 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4473 return ret;
e3848694 4474 }
2fa48d8d 4475
1070a42b
CW
4476 ret = i915_gem_init_hw(dev);
4477 mutex_unlock(&dev->struct_mutex);
4478 if (ret) {
bdf4fd7e 4479 WARN_ON(dev_priv->mm.aliasing_ppgtt);
2fa48d8d 4480 i915_gem_context_fini(dev);
c39538a8 4481 drm_mm_takedown(&dev_priv->gtt.base.mm);
1070a42b
CW
4482 return ret;
4483 }
4484
53ca26ca
DV
4485 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4486 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4487 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4488 return 0;
4489}
4490
8187a2b7
ZN
4491void
4492i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4493{
4494 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4495 struct intel_ring_buffer *ring;
1ec14ad3 4496 int i;
8187a2b7 4497
b4519513
CW
4498 for_each_ring(ring, dev_priv, i)
4499 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4500}
4501
673a394b
EA
4502int
4503i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4504 struct drm_file *file_priv)
4505{
db1b76ca 4506 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4507 int ret;
673a394b 4508
79e53945
JB
4509 if (drm_core_check_feature(dev, DRIVER_MODESET))
4510 return 0;
4511
1f83fee0 4512 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4513 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4514 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4515 }
4516
673a394b 4517 mutex_lock(&dev->struct_mutex);
db1b76ca 4518 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4519
f691e2f4 4520 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4521 if (ret != 0) {
4522 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4523 return ret;
d816f6ac 4524 }
9bb2d6f9 4525
5cef07e1 4526 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4527 mutex_unlock(&dev->struct_mutex);
dbb19d30 4528
5f35308b
CW
4529 ret = drm_irq_install(dev);
4530 if (ret)
4531 goto cleanup_ringbuffer;
dbb19d30 4532
673a394b 4533 return 0;
5f35308b
CW
4534
4535cleanup_ringbuffer:
4536 mutex_lock(&dev->struct_mutex);
4537 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4538 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4539 mutex_unlock(&dev->struct_mutex);
4540
4541 return ret;
673a394b
EA
4542}
4543
4544int
4545i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4546 struct drm_file *file_priv)
4547{
79e53945
JB
4548 if (drm_core_check_feature(dev, DRIVER_MODESET))
4549 return 0;
4550
dbb19d30 4551 drm_irq_uninstall(dev);
db1b76ca 4552
45c5f202 4553 return i915_gem_suspend(dev);
673a394b
EA
4554}
4555
4556void
4557i915_gem_lastclose(struct drm_device *dev)
4558{
4559 int ret;
673a394b 4560
e806b495
EA
4561 if (drm_core_check_feature(dev, DRIVER_MODESET))
4562 return;
4563
45c5f202 4564 ret = i915_gem_suspend(dev);
6dbe2772
KP
4565 if (ret)
4566 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4567}
4568
64193406
CW
4569static void
4570init_ring_lists(struct intel_ring_buffer *ring)
4571{
4572 INIT_LIST_HEAD(&ring->active_list);
4573 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4574}
4575
7e0d96bc
BW
4576void i915_init_vm(struct drm_i915_private *dev_priv,
4577 struct i915_address_space *vm)
fc8c067e 4578{
7e0d96bc
BW
4579 if (!i915_is_ggtt(vm))
4580 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4581 vm->dev = dev_priv->dev;
4582 INIT_LIST_HEAD(&vm->active_list);
4583 INIT_LIST_HEAD(&vm->inactive_list);
4584 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4585 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4586}
4587
673a394b
EA
4588void
4589i915_gem_load(struct drm_device *dev)
4590{
4591 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4592 int i;
4593
4594 dev_priv->slab =
4595 kmem_cache_create("i915_gem_object",
4596 sizeof(struct drm_i915_gem_object), 0,
4597 SLAB_HWCACHE_ALIGN,
4598 NULL);
673a394b 4599
fc8c067e
BW
4600 INIT_LIST_HEAD(&dev_priv->vm_list);
4601 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4602
a33afea5 4603 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4604 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4605 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4606 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4607 for (i = 0; i < I915_NUM_RINGS; i++)
4608 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4609 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4610 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4611 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4612 i915_gem_retire_work_handler);
b29c19b6
CW
4613 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4614 i915_gem_idle_work_handler);
1f83fee0 4615 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4616
94400120
DA
4617 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4618 if (IS_GEN3(dev)) {
50743298
DV
4619 I915_WRITE(MI_ARB_STATE,
4620 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4621 }
4622
72bfa19c
CW
4623 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4624
de151cf6 4625 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4626 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4627 dev_priv->fence_reg_start = 3;
de151cf6 4628
42b5aeab
VS
4629 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4630 dev_priv->num_fence_regs = 32;
4631 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4632 dev_priv->num_fence_regs = 16;
4633 else
4634 dev_priv->num_fence_regs = 8;
4635
b5aa8a0f 4636 /* Initialize fence registers to zero */
19b2dbde
CW
4637 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4638 i915_gem_restore_fences(dev);
10ed13e4 4639
673a394b 4640 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4641 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4642
ce453d81
CW
4643 dev_priv->mm.interruptible = true;
4644
7dc19d5a
DC
4645 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4646 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4647 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4648 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4649}
71acb5eb
DA
4650
4651/*
4652 * Create a physically contiguous memory object for this object
4653 * e.g. for cursor + overlay regs
4654 */
995b6762
CW
4655static int i915_gem_init_phys_object(struct drm_device *dev,
4656 int id, int size, int align)
71acb5eb
DA
4657{
4658 drm_i915_private_t *dev_priv = dev->dev_private;
4659 struct drm_i915_gem_phys_object *phys_obj;
4660 int ret;
4661
4662 if (dev_priv->mm.phys_objs[id - 1] || !size)
4663 return 0;
4664
b14c5679 4665 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4666 if (!phys_obj)
4667 return -ENOMEM;
4668
4669 phys_obj->id = id;
4670
6eeefaf3 4671 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4672 if (!phys_obj->handle) {
4673 ret = -ENOMEM;
4674 goto kfree_obj;
4675 }
4676#ifdef CONFIG_X86
4677 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4678#endif
4679
4680 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4681
4682 return 0;
4683kfree_obj:
9a298b2a 4684 kfree(phys_obj);
71acb5eb
DA
4685 return ret;
4686}
4687
995b6762 4688static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4689{
4690 drm_i915_private_t *dev_priv = dev->dev_private;
4691 struct drm_i915_gem_phys_object *phys_obj;
4692
4693 if (!dev_priv->mm.phys_objs[id - 1])
4694 return;
4695
4696 phys_obj = dev_priv->mm.phys_objs[id - 1];
4697 if (phys_obj->cur_obj) {
4698 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4699 }
4700
4701#ifdef CONFIG_X86
4702 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4703#endif
4704 drm_pci_free(dev, phys_obj->handle);
4705 kfree(phys_obj);
4706 dev_priv->mm.phys_objs[id - 1] = NULL;
4707}
4708
4709void i915_gem_free_all_phys_object(struct drm_device *dev)
4710{
4711 int i;
4712
260883c8 4713 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4714 i915_gem_free_phys_object(dev, i);
4715}
4716
4717void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4718 struct drm_i915_gem_object *obj)
71acb5eb 4719{
496ad9aa 4720 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4721 char *vaddr;
71acb5eb 4722 int i;
71acb5eb
DA
4723 int page_count;
4724
05394f39 4725 if (!obj->phys_obj)
71acb5eb 4726 return;
05394f39 4727 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4728
05394f39 4729 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4730 for (i = 0; i < page_count; i++) {
5949eac4 4731 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4732 if (!IS_ERR(page)) {
4733 char *dst = kmap_atomic(page);
4734 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4735 kunmap_atomic(dst);
4736
4737 drm_clflush_pages(&page, 1);
4738
4739 set_page_dirty(page);
4740 mark_page_accessed(page);
4741 page_cache_release(page);
4742 }
71acb5eb 4743 }
e76e9aeb 4744 i915_gem_chipset_flush(dev);
d78b47b9 4745
05394f39
CW
4746 obj->phys_obj->cur_obj = NULL;
4747 obj->phys_obj = NULL;
71acb5eb
DA
4748}
4749
4750int
4751i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4752 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4753 int id,
4754 int align)
71acb5eb 4755{
496ad9aa 4756 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4757 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4758 int ret = 0;
4759 int page_count;
4760 int i;
4761
4762 if (id > I915_MAX_PHYS_OBJECT)
4763 return -EINVAL;
4764
05394f39
CW
4765 if (obj->phys_obj) {
4766 if (obj->phys_obj->id == id)
71acb5eb
DA
4767 return 0;
4768 i915_gem_detach_phys_object(dev, obj);
4769 }
4770
71acb5eb
DA
4771 /* create a new object */
4772 if (!dev_priv->mm.phys_objs[id - 1]) {
4773 ret = i915_gem_init_phys_object(dev, id,
05394f39 4774 obj->base.size, align);
71acb5eb 4775 if (ret) {
05394f39
CW
4776 DRM_ERROR("failed to init phys object %d size: %zu\n",
4777 id, obj->base.size);
e5281ccd 4778 return ret;
71acb5eb
DA
4779 }
4780 }
4781
4782 /* bind to the object */
05394f39
CW
4783 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4784 obj->phys_obj->cur_obj = obj;
71acb5eb 4785
05394f39 4786 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4787
4788 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4789 struct page *page;
4790 char *dst, *src;
4791
5949eac4 4792 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4793 if (IS_ERR(page))
4794 return PTR_ERR(page);
71acb5eb 4795
ff75b9bc 4796 src = kmap_atomic(page);
05394f39 4797 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4798 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4799 kunmap_atomic(src);
71acb5eb 4800
e5281ccd
CW
4801 mark_page_accessed(page);
4802 page_cache_release(page);
4803 }
d78b47b9 4804
71acb5eb 4805 return 0;
71acb5eb
DA
4806}
4807
4808static int
05394f39
CW
4809i915_gem_phys_pwrite(struct drm_device *dev,
4810 struct drm_i915_gem_object *obj,
71acb5eb
DA
4811 struct drm_i915_gem_pwrite *args,
4812 struct drm_file *file_priv)
4813{
05394f39 4814 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4815 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4816
b47b30cc
CW
4817 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4818 unsigned long unwritten;
4819
4820 /* The physical object once assigned is fixed for the lifetime
4821 * of the obj, so we can safely drop the lock and continue
4822 * to access vaddr.
4823 */
4824 mutex_unlock(&dev->struct_mutex);
4825 unwritten = copy_from_user(vaddr, user_data, args->size);
4826 mutex_lock(&dev->struct_mutex);
4827 if (unwritten)
4828 return -EFAULT;
4829 }
71acb5eb 4830
e76e9aeb 4831 i915_gem_chipset_flush(dev);
71acb5eb
DA
4832 return 0;
4833}
b962442e 4834
f787a5f5 4835void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4836{
f787a5f5 4837 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4838
b29c19b6
CW
4839 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4840
b962442e
EA
4841 /* Clean up our request list when the client is going away, so that
4842 * later retire_requests won't dereference our soon-to-be-gone
4843 * file_priv.
4844 */
1c25595f 4845 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4846 while (!list_empty(&file_priv->mm.request_list)) {
4847 struct drm_i915_gem_request *request;
4848
4849 request = list_first_entry(&file_priv->mm.request_list,
4850 struct drm_i915_gem_request,
4851 client_list);
4852 list_del(&request->client_list);
4853 request->file_priv = NULL;
4854 }
1c25595f 4855 spin_unlock(&file_priv->mm.lock);
b962442e 4856}
31169714 4857
b29c19b6
CW
4858static void
4859i915_gem_file_idle_work_handler(struct work_struct *work)
4860{
4861 struct drm_i915_file_private *file_priv =
4862 container_of(work, typeof(*file_priv), mm.idle_work.work);
4863
4864 atomic_set(&file_priv->rps_wait_boost, false);
4865}
4866
4867int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4868{
4869 struct drm_i915_file_private *file_priv;
e422b888 4870 int ret;
b29c19b6
CW
4871
4872 DRM_DEBUG_DRIVER("\n");
4873
4874 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4875 if (!file_priv)
4876 return -ENOMEM;
4877
4878 file->driver_priv = file_priv;
4879 file_priv->dev_priv = dev->dev_private;
4880
4881 spin_lock_init(&file_priv->mm.lock);
4882 INIT_LIST_HEAD(&file_priv->mm.request_list);
4883 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4884 i915_gem_file_idle_work_handler);
4885
e422b888
BW
4886 ret = i915_gem_context_open(dev, file);
4887 if (ret)
4888 kfree(file_priv);
b29c19b6 4889
e422b888 4890 return ret;
b29c19b6
CW
4891}
4892
5774506f
CW
4893static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4894{
4895 if (!mutex_is_locked(mutex))
4896 return false;
4897
4898#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4899 return mutex->owner == task;
4900#else
4901 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4902 return false;
4903#endif
4904}
4905
7dc19d5a
DC
4906static unsigned long
4907i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4908{
17250b71
CW
4909 struct drm_i915_private *dev_priv =
4910 container_of(shrinker,
4911 struct drm_i915_private,
4912 mm.inactive_shrinker);
4913 struct drm_device *dev = dev_priv->dev;
6c085a72 4914 struct drm_i915_gem_object *obj;
5774506f 4915 bool unlock = true;
7dc19d5a 4916 unsigned long count;
17250b71 4917
5774506f
CW
4918 if (!mutex_trylock(&dev->struct_mutex)) {
4919 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4920 return 0;
5774506f 4921
677feac2 4922 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4923 return 0;
677feac2 4924
5774506f
CW
4925 unlock = false;
4926 }
31169714 4927
7dc19d5a 4928 count = 0;
35c20a60 4929 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4930 if (obj->pages_pin_count == 0)
7dc19d5a 4931 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4932
4933 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4934 if (obj->active)
4935 continue;
4936
d7f46fc4 4937 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 4938 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4939 }
17250b71 4940
5774506f
CW
4941 if (unlock)
4942 mutex_unlock(&dev->struct_mutex);
d9973b43 4943
7dc19d5a 4944 return count;
31169714 4945}
a70a3148
BW
4946
4947/* All the new VM stuff */
4948unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4949 struct i915_address_space *vm)
4950{
4951 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4952 struct i915_vma *vma;
4953
6f425321
BW
4954 if (!dev_priv->mm.aliasing_ppgtt ||
4955 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4956 vm = &dev_priv->gtt.base;
4957
4958 BUG_ON(list_empty(&o->vma_list));
4959 list_for_each_entry(vma, &o->vma_list, vma_link) {
4960 if (vma->vm == vm)
4961 return vma->node.start;
4962
4963 }
4964 return -1;
4965}
4966
4967bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4968 struct i915_address_space *vm)
4969{
4970 struct i915_vma *vma;
4971
4972 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4973 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4974 return true;
4975
4976 return false;
4977}
4978
4979bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4980{
5a1d5eb0 4981 struct i915_vma *vma;
a70a3148 4982
5a1d5eb0
CW
4983 list_for_each_entry(vma, &o->vma_list, vma_link)
4984 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4985 return true;
4986
4987 return false;
4988}
4989
4990unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4991 struct i915_address_space *vm)
4992{
4993 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4994 struct i915_vma *vma;
4995
6f425321
BW
4996 if (!dev_priv->mm.aliasing_ppgtt ||
4997 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4998 vm = &dev_priv->gtt.base;
4999
5000 BUG_ON(list_empty(&o->vma_list));
5001
5002 list_for_each_entry(vma, &o->vma_list, vma_link)
5003 if (vma->vm == vm)
5004 return vma->node.size;
5005
5006 return 0;
5007}
5008
7dc19d5a
DC
5009static unsigned long
5010i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5011{
5012 struct drm_i915_private *dev_priv =
5013 container_of(shrinker,
5014 struct drm_i915_private,
5015 mm.inactive_shrinker);
5016 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5017 unsigned long freed;
5018 bool unlock = true;
5019
5020 if (!mutex_trylock(&dev->struct_mutex)) {
5021 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5022 return SHRINK_STOP;
7dc19d5a
DC
5023
5024 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5025 return SHRINK_STOP;
7dc19d5a
DC
5026
5027 unlock = false;
5028 }
5029
d9973b43
CW
5030 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5031 if (freed < sc->nr_to_scan)
5032 freed += __i915_gem_shrink(dev_priv,
5033 sc->nr_to_scan - freed,
5034 false);
5035 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5036 freed += i915_gem_shrink_all(dev_priv);
5037
5038 if (unlock)
5039 mutex_unlock(&dev->struct_mutex);
d9973b43 5040
7dc19d5a
DC
5041 return freed;
5042}
5c2abbea
BW
5043
5044struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5045{
5046 struct i915_vma *vma;
5047
5048 if (WARN_ON(list_empty(&obj->vma_list)))
5049 return NULL;
5050
5051 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5052 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5053 return NULL;
5054
5055 return vma;
5056}