]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Convert i915_gem_ring_throttle to use requests
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c 170
6299f992 171 pinned = 0;
73aa808f 172 mutex_lock(&dev->struct_mutex);
35c20a60 173 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 174 if (i915_gem_obj_is_pinned(obj))
f343c5f6 175 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
853ba5d2 178 args->aper_size = dev_priv->gtt.base.total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
6a2c4232
CW
184static int
185i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 186{
6a2c4232
CW
187 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188 char *vaddr = obj->phys_handle->vaddr;
189 struct sg_table *st;
190 struct scatterlist *sg;
191 int i;
00731155 192
6a2c4232
CW
193 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194 return -EINVAL;
195
196 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197 struct page *page;
198 char *src;
199
200 page = shmem_read_mapping_page(mapping, i);
201 if (IS_ERR(page))
202 return PTR_ERR(page);
203
204 src = kmap_atomic(page);
205 memcpy(vaddr, src, PAGE_SIZE);
206 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207 kunmap_atomic(src);
208
209 page_cache_release(page);
210 vaddr += PAGE_SIZE;
211 }
212
213 i915_gem_chipset_flush(obj->base.dev);
214
215 st = kmalloc(sizeof(*st), GFP_KERNEL);
216 if (st == NULL)
217 return -ENOMEM;
218
219 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220 kfree(st);
221 return -ENOMEM;
222 }
223
224 sg = st->sgl;
225 sg->offset = 0;
226 sg->length = obj->base.size;
00731155 227
6a2c4232
CW
228 sg_dma_address(sg) = obj->phys_handle->busaddr;
229 sg_dma_len(sg) = obj->base.size;
230
231 obj->pages = st;
232 obj->has_dma_mapping = true;
233 return 0;
234}
235
236static void
237i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238{
239 int ret;
240
241 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 242
6a2c4232
CW
243 ret = i915_gem_object_set_to_cpu_domain(obj, true);
244 if (ret) {
245 /* In the event of a disaster, abandon all caches and
246 * hope for the best.
247 */
248 WARN_ON(ret != -EIO);
249 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250 }
251
252 if (obj->madv == I915_MADV_DONTNEED)
253 obj->dirty = 0;
254
255 if (obj->dirty) {
00731155 256 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 257 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
258 int i;
259
260 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
261 struct page *page;
262 char *dst;
263
264 page = shmem_read_mapping_page(mapping, i);
265 if (IS_ERR(page))
266 continue;
267
268 dst = kmap_atomic(page);
269 drm_clflush_virt_range(vaddr, PAGE_SIZE);
270 memcpy(dst, vaddr, PAGE_SIZE);
271 kunmap_atomic(dst);
272
273 set_page_dirty(page);
274 if (obj->madv == I915_MADV_WILLNEED)
00731155 275 mark_page_accessed(page);
6a2c4232 276 page_cache_release(page);
00731155
CW
277 vaddr += PAGE_SIZE;
278 }
6a2c4232 279 obj->dirty = 0;
00731155
CW
280 }
281
6a2c4232
CW
282 sg_free_table(obj->pages);
283 kfree(obj->pages);
284
285 obj->has_dma_mapping = false;
286}
287
288static void
289i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290{
291 drm_pci_free(obj->base.dev, obj->phys_handle);
292}
293
294static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295 .get_pages = i915_gem_object_get_pages_phys,
296 .put_pages = i915_gem_object_put_pages_phys,
297 .release = i915_gem_object_release_phys,
298};
299
300static int
301drop_pages(struct drm_i915_gem_object *obj)
302{
303 struct i915_vma *vma, *next;
304 int ret;
305
306 drm_gem_object_reference(&obj->base);
307 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308 if (i915_vma_unbind(vma))
309 break;
310
311 ret = i915_gem_object_put_pages(obj);
312 drm_gem_object_unreference(&obj->base);
313
314 return ret;
00731155
CW
315}
316
317int
318i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319 int align)
320{
321 drm_dma_handle_t *phys;
6a2c4232 322 int ret;
00731155
CW
323
324 if (obj->phys_handle) {
325 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326 return -EBUSY;
327
328 return 0;
329 }
330
331 if (obj->madv != I915_MADV_WILLNEED)
332 return -EFAULT;
333
334 if (obj->base.filp == NULL)
335 return -EINVAL;
336
6a2c4232
CW
337 ret = drop_pages(obj);
338 if (ret)
339 return ret;
340
00731155
CW
341 /* create a new object */
342 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343 if (!phys)
344 return -ENOMEM;
345
00731155 346 obj->phys_handle = phys;
6a2c4232
CW
347 obj->ops = &i915_gem_phys_ops;
348
349 return i915_gem_object_get_pages(obj);
00731155
CW
350}
351
352static int
353i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354 struct drm_i915_gem_pwrite *args,
355 struct drm_file *file_priv)
356{
357 struct drm_device *dev = obj->base.dev;
358 void *vaddr = obj->phys_handle->vaddr + args->offset;
359 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
360 int ret;
361
362 /* We manually control the domain here and pretend that it
363 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364 */
365 ret = i915_gem_object_wait_rendering(obj, false);
366 if (ret)
367 return ret;
00731155
CW
368
369 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370 unsigned long unwritten;
371
372 /* The physical object once assigned is fixed for the lifetime
373 * of the obj, so we can safely drop the lock and continue
374 * to access vaddr.
375 */
376 mutex_unlock(&dev->struct_mutex);
377 unwritten = copy_from_user(vaddr, user_data, args->size);
378 mutex_lock(&dev->struct_mutex);
379 if (unwritten)
380 return -EFAULT;
381 }
382
6a2c4232 383 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
384 i915_gem_chipset_flush(dev);
385 return 0;
386}
387
42dcedd4
CW
388void *i915_gem_object_alloc(struct drm_device *dev)
389{
390 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 391 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
392}
393
394void i915_gem_object_free(struct drm_i915_gem_object *obj)
395{
396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397 kmem_cache_free(dev_priv->slab, obj);
398}
399
ff72145b
DA
400static int
401i915_gem_create(struct drm_file *file,
402 struct drm_device *dev,
403 uint64_t size,
355a7018 404 bool dumb,
ff72145b 405 uint32_t *handle_p)
673a394b 406{
05394f39 407 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
408 int ret;
409 u32 handle;
673a394b 410
ff72145b 411 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
412 if (size == 0)
413 return -EINVAL;
673a394b
EA
414
415 /* Allocate the new object */
ff72145b 416 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
417 if (obj == NULL)
418 return -ENOMEM;
419
355a7018 420 obj->base.dumb = dumb;
05394f39 421 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 422 /* drop reference from allocate - handle holds it now */
d861e338
DV
423 drm_gem_object_unreference_unlocked(&obj->base);
424 if (ret)
425 return ret;
202f2fef 426
ff72145b 427 *handle_p = handle;
673a394b
EA
428 return 0;
429}
430
ff72145b
DA
431int
432i915_gem_dumb_create(struct drm_file *file,
433 struct drm_device *dev,
434 struct drm_mode_create_dumb *args)
435{
436 /* have to work out size/pitch and return them */
de45eaf7 437 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
438 args->size = args->pitch * args->height;
439 return i915_gem_create(file, dev,
355a7018 440 args->size, true, &args->handle);
ff72145b
DA
441}
442
ff72145b
DA
443/**
444 * Creates a new mm object and returns a handle to it.
445 */
446int
447i915_gem_create_ioctl(struct drm_device *dev, void *data,
448 struct drm_file *file)
449{
450 struct drm_i915_gem_create *args = data;
63ed2cb2 451
ff72145b 452 return i915_gem_create(file, dev,
355a7018 453 args->size, false, &args->handle);
ff72145b
DA
454}
455
8461d226
DV
456static inline int
457__copy_to_user_swizzled(char __user *cpu_vaddr,
458 const char *gpu_vaddr, int gpu_offset,
459 int length)
460{
461 int ret, cpu_offset = 0;
462
463 while (length > 0) {
464 int cacheline_end = ALIGN(gpu_offset + 1, 64);
465 int this_length = min(cacheline_end - gpu_offset, length);
466 int swizzled_gpu_offset = gpu_offset ^ 64;
467
468 ret = __copy_to_user(cpu_vaddr + cpu_offset,
469 gpu_vaddr + swizzled_gpu_offset,
470 this_length);
471 if (ret)
472 return ret + length;
473
474 cpu_offset += this_length;
475 gpu_offset += this_length;
476 length -= this_length;
477 }
478
479 return 0;
480}
481
8c59967c 482static inline int
4f0c7cfb
BW
483__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484 const char __user *cpu_vaddr,
8c59967c
DV
485 int length)
486{
487 int ret, cpu_offset = 0;
488
489 while (length > 0) {
490 int cacheline_end = ALIGN(gpu_offset + 1, 64);
491 int this_length = min(cacheline_end - gpu_offset, length);
492 int swizzled_gpu_offset = gpu_offset ^ 64;
493
494 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495 cpu_vaddr + cpu_offset,
496 this_length);
497 if (ret)
498 return ret + length;
499
500 cpu_offset += this_length;
501 gpu_offset += this_length;
502 length -= this_length;
503 }
504
505 return 0;
506}
507
4c914c0c
BV
508/*
509 * Pins the specified object's pages and synchronizes the object with
510 * GPU accesses. Sets needs_clflush to non-zero if the caller should
511 * flush the object from the CPU cache.
512 */
513int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514 int *needs_clflush)
515{
516 int ret;
517
518 *needs_clflush = 0;
519
520 if (!obj->base.filp)
521 return -EINVAL;
522
523 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524 /* If we're not in the cpu read domain, set ourself into the gtt
525 * read domain and manually flush cachelines (if required). This
526 * optimizes for the case when the gpu will dirty the data
527 * anyway again before the next pread happens. */
528 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529 obj->cache_level);
530 ret = i915_gem_object_wait_rendering(obj, true);
531 if (ret)
532 return ret;
c8725f3d
CW
533
534 i915_gem_object_retire(obj);
4c914c0c
BV
535 }
536
537 ret = i915_gem_object_get_pages(obj);
538 if (ret)
539 return ret;
540
541 i915_gem_object_pin_pages(obj);
542
543 return ret;
544}
545
d174bd64
DV
546/* Per-page copy function for the shmem pread fastpath.
547 * Flushes invalid cachelines before reading the target if
548 * needs_clflush is set. */
eb01459f 549static int
d174bd64
DV
550shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551 char __user *user_data,
552 bool page_do_bit17_swizzling, bool needs_clflush)
553{
554 char *vaddr;
555 int ret;
556
e7e58eb5 557 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
558 return -EINVAL;
559
560 vaddr = kmap_atomic(page);
561 if (needs_clflush)
562 drm_clflush_virt_range(vaddr + shmem_page_offset,
563 page_length);
564 ret = __copy_to_user_inatomic(user_data,
565 vaddr + shmem_page_offset,
566 page_length);
567 kunmap_atomic(vaddr);
568
f60d7f0c 569 return ret ? -EFAULT : 0;
d174bd64
DV
570}
571
23c18c71
DV
572static void
573shmem_clflush_swizzled_range(char *addr, unsigned long length,
574 bool swizzled)
575{
e7e58eb5 576 if (unlikely(swizzled)) {
23c18c71
DV
577 unsigned long start = (unsigned long) addr;
578 unsigned long end = (unsigned long) addr + length;
579
580 /* For swizzling simply ensure that we always flush both
581 * channels. Lame, but simple and it works. Swizzled
582 * pwrite/pread is far from a hotpath - current userspace
583 * doesn't use it at all. */
584 start = round_down(start, 128);
585 end = round_up(end, 128);
586
587 drm_clflush_virt_range((void *)start, end - start);
588 } else {
589 drm_clflush_virt_range(addr, length);
590 }
591
592}
593
d174bd64
DV
594/* Only difference to the fast-path function is that this can handle bit17
595 * and uses non-atomic copy and kmap functions. */
596static int
597shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598 char __user *user_data,
599 bool page_do_bit17_swizzling, bool needs_clflush)
600{
601 char *vaddr;
602 int ret;
603
604 vaddr = kmap(page);
605 if (needs_clflush)
23c18c71
DV
606 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607 page_length,
608 page_do_bit17_swizzling);
d174bd64
DV
609
610 if (page_do_bit17_swizzling)
611 ret = __copy_to_user_swizzled(user_data,
612 vaddr, shmem_page_offset,
613 page_length);
614 else
615 ret = __copy_to_user(user_data,
616 vaddr + shmem_page_offset,
617 page_length);
618 kunmap(page);
619
f60d7f0c 620 return ret ? - EFAULT : 0;
d174bd64
DV
621}
622
eb01459f 623static int
dbf7bff0
DV
624i915_gem_shmem_pread(struct drm_device *dev,
625 struct drm_i915_gem_object *obj,
626 struct drm_i915_gem_pread *args,
627 struct drm_file *file)
eb01459f 628{
8461d226 629 char __user *user_data;
eb01459f 630 ssize_t remain;
8461d226 631 loff_t offset;
eb2c0c81 632 int shmem_page_offset, page_length, ret = 0;
8461d226 633 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 634 int prefaulted = 0;
8489731c 635 int needs_clflush = 0;
67d5a50c 636 struct sg_page_iter sg_iter;
eb01459f 637
2bb4629a 638 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
639 remain = args->size;
640
8461d226 641 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 642
4c914c0c 643 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
644 if (ret)
645 return ret;
646
8461d226 647 offset = args->offset;
eb01459f 648
67d5a50c
ID
649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650 offset >> PAGE_SHIFT) {
2db76d7c 651 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
652
653 if (remain <= 0)
654 break;
655
eb01459f
EA
656 /* Operation in this page
657 *
eb01459f 658 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
659 * page_length = bytes to copy for this page
660 */
c8cbbb8b 661 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
662 page_length = remain;
663 if ((shmem_page_offset + page_length) > PAGE_SIZE)
664 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 665
8461d226
DV
666 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667 (page_to_phys(page) & (1 << 17)) != 0;
668
d174bd64
DV
669 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670 user_data, page_do_bit17_swizzling,
671 needs_clflush);
672 if (ret == 0)
673 goto next_page;
dbf7bff0 674
dbf7bff0
DV
675 mutex_unlock(&dev->struct_mutex);
676
d330a953 677 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 678 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
679 /* Userspace is tricking us, but we've already clobbered
680 * its pages with the prefault and promised to write the
681 * data up to the first fault. Hence ignore any errors
682 * and just continue. */
683 (void)ret;
684 prefaulted = 1;
685 }
eb01459f 686
d174bd64
DV
687 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688 user_data, page_do_bit17_swizzling,
689 needs_clflush);
eb01459f 690
dbf7bff0 691 mutex_lock(&dev->struct_mutex);
f60d7f0c 692
f60d7f0c 693 if (ret)
8461d226 694 goto out;
8461d226 695
17793c9a 696next_page:
eb01459f 697 remain -= page_length;
8461d226 698 user_data += page_length;
eb01459f
EA
699 offset += page_length;
700 }
701
4f27b75d 702out:
f60d7f0c
CW
703 i915_gem_object_unpin_pages(obj);
704
eb01459f
EA
705 return ret;
706}
707
673a394b
EA
708/**
709 * Reads data from the object referenced by handle.
710 *
711 * On error, the contents of *data are undefined.
712 */
713int
714i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 715 struct drm_file *file)
673a394b
EA
716{
717 struct drm_i915_gem_pread *args = data;
05394f39 718 struct drm_i915_gem_object *obj;
35b62a89 719 int ret = 0;
673a394b 720
51311d0a
CW
721 if (args->size == 0)
722 return 0;
723
724 if (!access_ok(VERIFY_WRITE,
2bb4629a 725 to_user_ptr(args->data_ptr),
51311d0a
CW
726 args->size))
727 return -EFAULT;
728
4f27b75d 729 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 730 if (ret)
4f27b75d 731 return ret;
673a394b 732
05394f39 733 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 734 if (&obj->base == NULL) {
1d7cfea1
CW
735 ret = -ENOENT;
736 goto unlock;
4f27b75d 737 }
673a394b 738
7dcd2499 739 /* Bounds check source. */
05394f39
CW
740 if (args->offset > obj->base.size ||
741 args->size > obj->base.size - args->offset) {
ce9d419d 742 ret = -EINVAL;
35b62a89 743 goto out;
ce9d419d
CW
744 }
745
1286ff73
DV
746 /* prime objects have no backing filp to GEM pread/pwrite
747 * pages from.
748 */
749 if (!obj->base.filp) {
750 ret = -EINVAL;
751 goto out;
752 }
753
db53a302
CW
754 trace_i915_gem_object_pread(obj, args->offset, args->size);
755
dbf7bff0 756 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 757
35b62a89 758out:
05394f39 759 drm_gem_object_unreference(&obj->base);
1d7cfea1 760unlock:
4f27b75d 761 mutex_unlock(&dev->struct_mutex);
eb01459f 762 return ret;
673a394b
EA
763}
764
0839ccb8
KP
765/* This is the fast write path which cannot handle
766 * page faults in the source data
9b7530cc 767 */
0839ccb8
KP
768
769static inline int
770fast_user_write(struct io_mapping *mapping,
771 loff_t page_base, int page_offset,
772 char __user *user_data,
773 int length)
9b7530cc 774{
4f0c7cfb
BW
775 void __iomem *vaddr_atomic;
776 void *vaddr;
0839ccb8 777 unsigned long unwritten;
9b7530cc 778
3e4d3af5 779 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
780 /* We can use the cpu mem copy function because this is X86. */
781 vaddr = (void __force*)vaddr_atomic + page_offset;
782 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 783 user_data, length);
3e4d3af5 784 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 785 return unwritten;
0839ccb8
KP
786}
787
3de09aa3
EA
788/**
789 * This is the fast pwrite path, where we copy the data directly from the
790 * user into the GTT, uncached.
791 */
673a394b 792static int
05394f39
CW
793i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794 struct drm_i915_gem_object *obj,
3de09aa3 795 struct drm_i915_gem_pwrite *args,
05394f39 796 struct drm_file *file)
673a394b 797{
3e31c6c0 798 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 799 ssize_t remain;
0839ccb8 800 loff_t offset, page_base;
673a394b 801 char __user *user_data;
935aaa69
DV
802 int page_offset, page_length, ret;
803
1ec9e26d 804 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
805 if (ret)
806 goto out;
807
808 ret = i915_gem_object_set_to_gtt_domain(obj, true);
809 if (ret)
810 goto out_unpin;
811
812 ret = i915_gem_object_put_fence(obj);
813 if (ret)
814 goto out_unpin;
673a394b 815
2bb4629a 816 user_data = to_user_ptr(args->data_ptr);
673a394b 817 remain = args->size;
673a394b 818
f343c5f6 819 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
820
821 while (remain > 0) {
822 /* Operation in this page
823 *
0839ccb8
KP
824 * page_base = page offset within aperture
825 * page_offset = offset within page
826 * page_length = bytes to copy for this page
673a394b 827 */
c8cbbb8b
CW
828 page_base = offset & PAGE_MASK;
829 page_offset = offset_in_page(offset);
0839ccb8
KP
830 page_length = remain;
831 if ((page_offset + remain) > PAGE_SIZE)
832 page_length = PAGE_SIZE - page_offset;
833
0839ccb8 834 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
835 * source page isn't available. Return the error and we'll
836 * retry in the slow path.
0839ccb8 837 */
5d4545ae 838 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
839 page_offset, user_data, page_length)) {
840 ret = -EFAULT;
841 goto out_unpin;
842 }
673a394b 843
0839ccb8
KP
844 remain -= page_length;
845 user_data += page_length;
846 offset += page_length;
673a394b 847 }
673a394b 848
935aaa69 849out_unpin:
d7f46fc4 850 i915_gem_object_ggtt_unpin(obj);
935aaa69 851out:
3de09aa3 852 return ret;
673a394b
EA
853}
854
d174bd64
DV
855/* Per-page copy function for the shmem pwrite fastpath.
856 * Flushes invalid cachelines before writing to the target if
857 * needs_clflush_before is set and flushes out any written cachelines after
858 * writing if needs_clflush is set. */
3043c60c 859static int
d174bd64
DV
860shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861 char __user *user_data,
862 bool page_do_bit17_swizzling,
863 bool needs_clflush_before,
864 bool needs_clflush_after)
673a394b 865{
d174bd64 866 char *vaddr;
673a394b 867 int ret;
3de09aa3 868
e7e58eb5 869 if (unlikely(page_do_bit17_swizzling))
d174bd64 870 return -EINVAL;
3de09aa3 871
d174bd64
DV
872 vaddr = kmap_atomic(page);
873 if (needs_clflush_before)
874 drm_clflush_virt_range(vaddr + shmem_page_offset,
875 page_length);
c2831a94
CW
876 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877 user_data, page_length);
d174bd64
DV
878 if (needs_clflush_after)
879 drm_clflush_virt_range(vaddr + shmem_page_offset,
880 page_length);
881 kunmap_atomic(vaddr);
3de09aa3 882
755d2218 883 return ret ? -EFAULT : 0;
3de09aa3
EA
884}
885
d174bd64
DV
886/* Only difference to the fast-path function is that this can handle bit17
887 * and uses non-atomic copy and kmap functions. */
3043c60c 888static int
d174bd64
DV
889shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890 char __user *user_data,
891 bool page_do_bit17_swizzling,
892 bool needs_clflush_before,
893 bool needs_clflush_after)
673a394b 894{
d174bd64
DV
895 char *vaddr;
896 int ret;
e5281ccd 897
d174bd64 898 vaddr = kmap(page);
e7e58eb5 899 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
900 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901 page_length,
902 page_do_bit17_swizzling);
d174bd64
DV
903 if (page_do_bit17_swizzling)
904 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
905 user_data,
906 page_length);
d174bd64
DV
907 else
908 ret = __copy_from_user(vaddr + shmem_page_offset,
909 user_data,
910 page_length);
911 if (needs_clflush_after)
23c18c71
DV
912 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913 page_length,
914 page_do_bit17_swizzling);
d174bd64 915 kunmap(page);
40123c1f 916
755d2218 917 return ret ? -EFAULT : 0;
40123c1f
EA
918}
919
40123c1f 920static int
e244a443
DV
921i915_gem_shmem_pwrite(struct drm_device *dev,
922 struct drm_i915_gem_object *obj,
923 struct drm_i915_gem_pwrite *args,
924 struct drm_file *file)
40123c1f 925{
40123c1f 926 ssize_t remain;
8c59967c
DV
927 loff_t offset;
928 char __user *user_data;
eb2c0c81 929 int shmem_page_offset, page_length, ret = 0;
8c59967c 930 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 931 int hit_slowpath = 0;
58642885
DV
932 int needs_clflush_after = 0;
933 int needs_clflush_before = 0;
67d5a50c 934 struct sg_page_iter sg_iter;
40123c1f 935
2bb4629a 936 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
937 remain = args->size;
938
8c59967c 939 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 940
58642885
DV
941 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942 /* If we're not in the cpu write domain, set ourself into the gtt
943 * write domain and manually flush cachelines (if required). This
944 * optimizes for the case when the gpu will use the data
945 * right away and we therefore have to clflush anyway. */
2c22569b 946 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
947 ret = i915_gem_object_wait_rendering(obj, false);
948 if (ret)
949 return ret;
c8725f3d
CW
950
951 i915_gem_object_retire(obj);
58642885 952 }
c76ce038
CW
953 /* Same trick applies to invalidate partially written cachelines read
954 * before writing. */
955 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956 needs_clflush_before =
957 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 958
755d2218
CW
959 ret = i915_gem_object_get_pages(obj);
960 if (ret)
961 return ret;
962
963 i915_gem_object_pin_pages(obj);
964
673a394b 965 offset = args->offset;
05394f39 966 obj->dirty = 1;
673a394b 967
67d5a50c
ID
968 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969 offset >> PAGE_SHIFT) {
2db76d7c 970 struct page *page = sg_page_iter_page(&sg_iter);
58642885 971 int partial_cacheline_write;
e5281ccd 972
9da3da66
CW
973 if (remain <= 0)
974 break;
975
40123c1f
EA
976 /* Operation in this page
977 *
40123c1f 978 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
979 * page_length = bytes to copy for this page
980 */
c8cbbb8b 981 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
982
983 page_length = remain;
984 if ((shmem_page_offset + page_length) > PAGE_SIZE)
985 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 986
58642885
DV
987 /* If we don't overwrite a cacheline completely we need to be
988 * careful to have up-to-date data by first clflushing. Don't
989 * overcomplicate things and flush the entire patch. */
990 partial_cacheline_write = needs_clflush_before &&
991 ((shmem_page_offset | page_length)
992 & (boot_cpu_data.x86_clflush_size - 1));
993
8c59967c
DV
994 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995 (page_to_phys(page) & (1 << 17)) != 0;
996
d174bd64
DV
997 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
1001 if (ret == 0)
1002 goto next_page;
e244a443
DV
1003
1004 hit_slowpath = 1;
e244a443 1005 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1006 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007 user_data, page_do_bit17_swizzling,
1008 partial_cacheline_write,
1009 needs_clflush_after);
40123c1f 1010
e244a443 1011 mutex_lock(&dev->struct_mutex);
755d2218 1012
755d2218 1013 if (ret)
8c59967c 1014 goto out;
8c59967c 1015
17793c9a 1016next_page:
40123c1f 1017 remain -= page_length;
8c59967c 1018 user_data += page_length;
40123c1f 1019 offset += page_length;
673a394b
EA
1020 }
1021
fbd5a26d 1022out:
755d2218
CW
1023 i915_gem_object_unpin_pages(obj);
1024
e244a443 1025 if (hit_slowpath) {
8dcf015e
DV
1026 /*
1027 * Fixup: Flush cpu caches in case we didn't flush the dirty
1028 * cachelines in-line while writing and the object moved
1029 * out of the cpu write domain while we've dropped the lock.
1030 */
1031 if (!needs_clflush_after &&
1032 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1033 if (i915_gem_clflush_object(obj, obj->pin_display))
1034 i915_gem_chipset_flush(dev);
e244a443 1035 }
8c59967c 1036 }
673a394b 1037
58642885 1038 if (needs_clflush_after)
e76e9aeb 1039 i915_gem_chipset_flush(dev);
58642885 1040
40123c1f 1041 return ret;
673a394b
EA
1042}
1043
1044/**
1045 * Writes data to the object referenced by handle.
1046 *
1047 * On error, the contents of the buffer that were to be modified are undefined.
1048 */
1049int
1050i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1051 struct drm_file *file)
673a394b
EA
1052{
1053 struct drm_i915_gem_pwrite *args = data;
05394f39 1054 struct drm_i915_gem_object *obj;
51311d0a
CW
1055 int ret;
1056
1057 if (args->size == 0)
1058 return 0;
1059
1060 if (!access_ok(VERIFY_READ,
2bb4629a 1061 to_user_ptr(args->data_ptr),
51311d0a
CW
1062 args->size))
1063 return -EFAULT;
1064
d330a953 1065 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1066 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067 args->size);
1068 if (ret)
1069 return -EFAULT;
1070 }
673a394b 1071
fbd5a26d 1072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1073 if (ret)
fbd5a26d 1074 return ret;
1d7cfea1 1075
05394f39 1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1077 if (&obj->base == NULL) {
1d7cfea1
CW
1078 ret = -ENOENT;
1079 goto unlock;
fbd5a26d 1080 }
673a394b 1081
7dcd2499 1082 /* Bounds check destination. */
05394f39
CW
1083 if (args->offset > obj->base.size ||
1084 args->size > obj->base.size - args->offset) {
ce9d419d 1085 ret = -EINVAL;
35b62a89 1086 goto out;
ce9d419d
CW
1087 }
1088
1286ff73
DV
1089 /* prime objects have no backing filp to GEM pread/pwrite
1090 * pages from.
1091 */
1092 if (!obj->base.filp) {
1093 ret = -EINVAL;
1094 goto out;
1095 }
1096
db53a302
CW
1097 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
935aaa69 1099 ret = -EFAULT;
673a394b
EA
1100 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101 * it would end up going through the fenced access, and we'll get
1102 * different detiling behavior between reading and writing.
1103 * pread/pwrite currently are reading and writing from the CPU
1104 * perspective, requiring manual detiling by the client.
1105 */
2c22569b
CW
1106 if (obj->tiling_mode == I915_TILING_NONE &&
1107 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108 cpu_write_needs_clflush(obj)) {
fbd5a26d 1109 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1110 /* Note that the gtt paths might fail with non-page-backed user
1111 * pointers (e.g. gtt mappings when moving data between
1112 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1113 }
673a394b 1114
6a2c4232
CW
1115 if (ret == -EFAULT || ret == -ENOSPC) {
1116 if (obj->phys_handle)
1117 ret = i915_gem_phys_pwrite(obj, args, file);
1118 else
1119 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120 }
5c0480f2 1121
35b62a89 1122out:
05394f39 1123 drm_gem_object_unreference(&obj->base);
1d7cfea1 1124unlock:
fbd5a26d 1125 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1126 return ret;
1127}
1128
b361237b 1129int
33196ded 1130i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1131 bool interruptible)
1132{
1f83fee0 1133 if (i915_reset_in_progress(error)) {
b361237b
CW
1134 /* Non-interruptible callers can't handle -EAGAIN, hence return
1135 * -EIO unconditionally for these. */
1136 if (!interruptible)
1137 return -EIO;
1138
1f83fee0
DV
1139 /* Recovery complete, but the reset failed ... */
1140 if (i915_terminally_wedged(error))
b361237b
CW
1141 return -EIO;
1142
6689c167
MA
1143 /*
1144 * Check if GPU Reset is in progress - we need intel_ring_begin
1145 * to work properly to reinit the hw state while the gpu is
1146 * still marked as reset-in-progress. Handle this with a flag.
1147 */
1148 if (!error->reload_in_reset)
1149 return -EAGAIN;
b361237b
CW
1150 }
1151
1152 return 0;
1153}
1154
1155/*
1156 * Compare seqno against outstanding lazy request. Emit a request if they are
1157 * equal.
1158 */
84c33a64 1159int
a4872ba6 1160i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1161{
1162 int ret;
1163
1164 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1165
1166 ret = 0;
1823521d 1167 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1168 ret = i915_add_request(ring, NULL);
b361237b
CW
1169
1170 return ret;
1171}
1172
094f9a54
CW
1173static void fake_irq(unsigned long data)
1174{
1175 wake_up_process((struct task_struct *)data);
1176}
1177
1178static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1179 struct intel_engine_cs *ring)
094f9a54
CW
1180{
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182}
1183
b29c19b6
CW
1184static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185{
1186 if (file_priv == NULL)
1187 return true;
1188
1189 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190}
1191
b361237b 1192/**
16e9a21f 1193 * __i915_wait_seqno - wait until execution of seqno has finished
b361237b
CW
1194 * @ring: the ring expected to report seqno
1195 * @seqno: duh!
f69061be 1196 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1197 * @interruptible: do an interruptible wait (normally yes)
1198 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1199 *
f69061be
DV
1200 * Note: It is of utmost importance that the passed in seqno and reset_counter
1201 * values have been read by the caller in an smp safe manner. Where read-side
1202 * locks are involved, it is sufficient to read the reset_counter before
1203 * unlocking the lock that protects the seqno. For lockless tricks, the
1204 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1205 * inserted.
1206 *
b361237b
CW
1207 * Returns 0 if the seqno was found within the alloted time. Else returns the
1208 * errno with remaining time filled in timeout argument.
1209 */
16e9a21f 1210int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1211 unsigned reset_counter,
b29c19b6 1212 bool interruptible,
5ed0bdf2 1213 s64 *timeout,
b29c19b6 1214 struct drm_i915_file_private *file_priv)
b361237b 1215{
3d13ef2e 1216 struct drm_device *dev = ring->dev;
3e31c6c0 1217 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1218 const bool irq_test_in_progress =
1219 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1220 DEFINE_WAIT(wait);
47e9766d 1221 unsigned long timeout_expire;
5ed0bdf2 1222 s64 before, now;
b361237b
CW
1223 int ret;
1224
9df7575f 1225 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1226
b361237b
CW
1227 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1228 return 0;
1229
5ed0bdf2 1230 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1231
ec5cc0f9 1232 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1233 gen6_rps_boost(dev_priv);
1234 if (file_priv)
1235 mod_delayed_work(dev_priv->wq,
1236 &file_priv->mm.idle_work,
1237 msecs_to_jiffies(100));
1238 }
1239
168c3f21 1240 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1241 return -ENODEV;
1242
094f9a54
CW
1243 /* Record current time in case interrupted by signal, or wedged */
1244 trace_i915_gem_request_wait_begin(ring, seqno);
5ed0bdf2 1245 before = ktime_get_raw_ns();
094f9a54
CW
1246 for (;;) {
1247 struct timer_list timer;
b361237b 1248
094f9a54
CW
1249 prepare_to_wait(&ring->irq_queue, &wait,
1250 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1251
f69061be
DV
1252 /* We need to check whether any gpu reset happened in between
1253 * the caller grabbing the seqno and now ... */
094f9a54
CW
1254 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1255 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1256 * is truely gone. */
1257 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1258 if (ret == 0)
1259 ret = -EAGAIN;
1260 break;
1261 }
f69061be 1262
094f9a54
CW
1263 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1264 ret = 0;
1265 break;
1266 }
b361237b 1267
094f9a54
CW
1268 if (interruptible && signal_pending(current)) {
1269 ret = -ERESTARTSYS;
1270 break;
1271 }
1272
47e9766d 1273 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1274 ret = -ETIME;
1275 break;
1276 }
1277
1278 timer.function = NULL;
1279 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1280 unsigned long expire;
1281
094f9a54 1282 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1283 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1284 mod_timer(&timer, expire);
1285 }
1286
5035c275 1287 io_schedule();
094f9a54 1288
094f9a54
CW
1289 if (timer.function) {
1290 del_singleshot_timer_sync(&timer);
1291 destroy_timer_on_stack(&timer);
1292 }
1293 }
5ed0bdf2 1294 now = ktime_get_raw_ns();
094f9a54 1295 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1296
168c3f21
MK
1297 if (!irq_test_in_progress)
1298 ring->irq_put(ring);
094f9a54
CW
1299
1300 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1301
1302 if (timeout) {
5ed0bdf2
TG
1303 s64 tres = *timeout - (now - before);
1304
1305 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1306 }
1307
094f9a54 1308 return ret;
b361237b
CW
1309}
1310
1311/**
1312 * Waits for a sequence number to be signaled, and cleans up the
1313 * request and object lists appropriately for that event.
1314 */
1315int
a4872ba6 1316i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1317{
1318 struct drm_device *dev = ring->dev;
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 bool interruptible = dev_priv->mm.interruptible;
16e9a21f 1321 unsigned reset_counter;
b361237b
CW
1322 int ret;
1323
1324 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1325 BUG_ON(seqno == 0);
1326
33196ded 1327 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1328 if (ret)
1329 return ret;
1330
1331 ret = i915_gem_check_olr(ring, seqno);
1332 if (ret)
1333 return ret;
1334
16e9a21f
ACO
1335 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1336 return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1337 NULL, NULL);
b361237b
CW
1338}
1339
d26e3af8 1340static int
8e639549 1341i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1342{
c8725f3d
CW
1343 if (!obj->active)
1344 return 0;
d26e3af8
CW
1345
1346 /* Manually manage the write flush as we may have not yet
1347 * retired the buffer.
1348 *
97b2a6a1
JH
1349 * Note that the last_write_req is always the earlier of
1350 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1351 * we know we have passed the last write.
1352 */
97b2a6a1 1353 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1354
1355 return 0;
1356}
1357
b361237b
CW
1358/**
1359 * Ensures that all rendering to the object has completed and the object is
1360 * safe to unbind from the GTT or access from the CPU.
1361 */
1362static __must_check int
1363i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1364 bool readonly)
1365{
97b2a6a1 1366 struct drm_i915_gem_request *req;
a4872ba6 1367 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1368 u32 seqno;
1369 int ret;
1370
97b2a6a1
JH
1371 req = readonly ? obj->last_write_req : obj->last_read_req;
1372 if (!req)
b361237b
CW
1373 return 0;
1374
97b2a6a1
JH
1375 seqno = i915_gem_request_get_seqno(req);
1376 WARN_ON(seqno == 0);
1377
b361237b
CW
1378 ret = i915_wait_seqno(ring, seqno);
1379 if (ret)
1380 return ret;
1381
8e639549 1382 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1383}
1384
3236f57a
CW
1385/* A nonblocking variant of the above wait. This is a highly dangerous routine
1386 * as the object state may change during this call.
1387 */
1388static __must_check int
1389i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1390 struct drm_i915_file_private *file_priv,
3236f57a
CW
1391 bool readonly)
1392{
97b2a6a1 1393 struct drm_i915_gem_request *req;
3236f57a
CW
1394 struct drm_device *dev = obj->base.dev;
1395 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1396 struct intel_engine_cs *ring = obj->ring;
f69061be 1397 unsigned reset_counter;
3236f57a
CW
1398 u32 seqno;
1399 int ret;
1400
1401 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1402 BUG_ON(!dev_priv->mm.interruptible);
1403
97b2a6a1
JH
1404 req = readonly ? obj->last_write_req : obj->last_read_req;
1405 if (!req)
3236f57a
CW
1406 return 0;
1407
97b2a6a1
JH
1408 seqno = i915_gem_request_get_seqno(req);
1409 WARN_ON(seqno == 0);
1410
33196ded 1411 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1412 if (ret)
1413 return ret;
1414
1415 ret = i915_gem_check_olr(ring, seqno);
1416 if (ret)
1417 return ret;
1418
f69061be 1419 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1420 mutex_unlock(&dev->struct_mutex);
16e9a21f
ACO
1421 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1422 file_priv);
3236f57a 1423 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1424 if (ret)
1425 return ret;
3236f57a 1426
8e639549 1427 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1428}
1429
673a394b 1430/**
2ef7eeaa
EA
1431 * Called when user space prepares to use an object with the CPU, either
1432 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1433 */
1434int
1435i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1436 struct drm_file *file)
673a394b
EA
1437{
1438 struct drm_i915_gem_set_domain *args = data;
05394f39 1439 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1440 uint32_t read_domains = args->read_domains;
1441 uint32_t write_domain = args->write_domain;
673a394b
EA
1442 int ret;
1443
2ef7eeaa 1444 /* Only handle setting domains to types used by the CPU. */
21d509e3 1445 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1446 return -EINVAL;
1447
21d509e3 1448 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1449 return -EINVAL;
1450
1451 /* Having something in the write domain implies it's in the read
1452 * domain, and only that read domain. Enforce that in the request.
1453 */
1454 if (write_domain != 0 && read_domains != write_domain)
1455 return -EINVAL;
1456
76c1dec1 1457 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1458 if (ret)
76c1dec1 1459 return ret;
1d7cfea1 1460
05394f39 1461 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1462 if (&obj->base == NULL) {
1d7cfea1
CW
1463 ret = -ENOENT;
1464 goto unlock;
76c1dec1 1465 }
673a394b 1466
3236f57a
CW
1467 /* Try to flush the object off the GPU without holding the lock.
1468 * We will repeat the flush holding the lock in the normal manner
1469 * to catch cases where we are gazumped.
1470 */
6e4930f6
CW
1471 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1472 file->driver_priv,
1473 !write_domain);
3236f57a
CW
1474 if (ret)
1475 goto unref;
1476
2ef7eeaa
EA
1477 if (read_domains & I915_GEM_DOMAIN_GTT) {
1478 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1479
1480 /* Silently promote "you're not bound, there was nothing to do"
1481 * to success, since the client was just asking us to
1482 * make sure everything was done.
1483 */
1484 if (ret == -EINVAL)
1485 ret = 0;
2ef7eeaa 1486 } else {
e47c68e9 1487 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1488 }
1489
3236f57a 1490unref:
05394f39 1491 drm_gem_object_unreference(&obj->base);
1d7cfea1 1492unlock:
673a394b
EA
1493 mutex_unlock(&dev->struct_mutex);
1494 return ret;
1495}
1496
1497/**
1498 * Called when user space has done writes to this buffer
1499 */
1500int
1501i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1502 struct drm_file *file)
673a394b
EA
1503{
1504 struct drm_i915_gem_sw_finish *args = data;
05394f39 1505 struct drm_i915_gem_object *obj;
673a394b
EA
1506 int ret = 0;
1507
76c1dec1 1508 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1509 if (ret)
76c1dec1 1510 return ret;
1d7cfea1 1511
05394f39 1512 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1513 if (&obj->base == NULL) {
1d7cfea1
CW
1514 ret = -ENOENT;
1515 goto unlock;
673a394b
EA
1516 }
1517
673a394b 1518 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1519 if (obj->pin_display)
1520 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1521
05394f39 1522 drm_gem_object_unreference(&obj->base);
1d7cfea1 1523unlock:
673a394b
EA
1524 mutex_unlock(&dev->struct_mutex);
1525 return ret;
1526}
1527
1528/**
1529 * Maps the contents of an object, returning the address it is mapped
1530 * into.
1531 *
1532 * While the mapping holds a reference on the contents of the object, it doesn't
1533 * imply a ref on the object itself.
34367381
DV
1534 *
1535 * IMPORTANT:
1536 *
1537 * DRM driver writers who look a this function as an example for how to do GEM
1538 * mmap support, please don't implement mmap support like here. The modern way
1539 * to implement DRM mmap support is with an mmap offset ioctl (like
1540 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1541 * That way debug tooling like valgrind will understand what's going on, hiding
1542 * the mmap call in a driver private ioctl will break that. The i915 driver only
1543 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1544 */
1545int
1546i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1547 struct drm_file *file)
673a394b
EA
1548{
1549 struct drm_i915_gem_mmap *args = data;
1550 struct drm_gem_object *obj;
673a394b
EA
1551 unsigned long addr;
1552
05394f39 1553 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1554 if (obj == NULL)
bf79cb91 1555 return -ENOENT;
673a394b 1556
1286ff73
DV
1557 /* prime objects have no backing filp to GEM mmap
1558 * pages from.
1559 */
1560 if (!obj->filp) {
1561 drm_gem_object_unreference_unlocked(obj);
1562 return -EINVAL;
1563 }
1564
6be5ceb0 1565 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1566 PROT_READ | PROT_WRITE, MAP_SHARED,
1567 args->offset);
bc9025bd 1568 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1569 if (IS_ERR((void *)addr))
1570 return addr;
1571
1572 args->addr_ptr = (uint64_t) addr;
1573
1574 return 0;
1575}
1576
de151cf6
JB
1577/**
1578 * i915_gem_fault - fault a page into the GTT
1579 * vma: VMA in question
1580 * vmf: fault info
1581 *
1582 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1583 * from userspace. The fault handler takes care of binding the object to
1584 * the GTT (if needed), allocating and programming a fence register (again,
1585 * only if needed based on whether the old reg is still valid or the object
1586 * is tiled) and inserting a new PTE into the faulting process.
1587 *
1588 * Note that the faulting process may involve evicting existing objects
1589 * from the GTT and/or fence registers to make room. So performance may
1590 * suffer if the GTT working set is large or there are few fence registers
1591 * left.
1592 */
1593int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1594{
05394f39
CW
1595 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1596 struct drm_device *dev = obj->base.dev;
3e31c6c0 1597 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1598 pgoff_t page_offset;
1599 unsigned long pfn;
1600 int ret = 0;
0f973f27 1601 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1602
f65c9168
PZ
1603 intel_runtime_pm_get(dev_priv);
1604
de151cf6
JB
1605 /* We don't use vmf->pgoff since that has the fake offset */
1606 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1607 PAGE_SHIFT;
1608
d9bc7e9f
CW
1609 ret = i915_mutex_lock_interruptible(dev);
1610 if (ret)
1611 goto out;
a00b10c3 1612
db53a302
CW
1613 trace_i915_gem_object_fault(obj, page_offset, true, write);
1614
6e4930f6
CW
1615 /* Try to flush the object off the GPU first without holding the lock.
1616 * Upon reacquiring the lock, we will perform our sanity checks and then
1617 * repeat the flush holding the lock in the normal manner to catch cases
1618 * where we are gazumped.
1619 */
1620 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1621 if (ret)
1622 goto unlock;
1623
eb119bd6
CW
1624 /* Access to snoopable pages through the GTT is incoherent. */
1625 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1626 ret = -EFAULT;
eb119bd6
CW
1627 goto unlock;
1628 }
1629
d9bc7e9f 1630 /* Now bind it into the GTT if needed */
1ec9e26d 1631 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1632 if (ret)
1633 goto unlock;
4a684a41 1634
c9839303
CW
1635 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1636 if (ret)
1637 goto unpin;
74898d7e 1638
06d98131 1639 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1640 if (ret)
c9839303 1641 goto unpin;
7d1c4804 1642
b90b91d8 1643 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1644 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1645 pfn >>= PAGE_SHIFT;
de151cf6 1646
b90b91d8 1647 if (!obj->fault_mappable) {
beff0d0f
VS
1648 unsigned long size = min_t(unsigned long,
1649 vma->vm_end - vma->vm_start,
1650 obj->base.size);
b90b91d8
CW
1651 int i;
1652
beff0d0f 1653 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1654 ret = vm_insert_pfn(vma,
1655 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1656 pfn + i);
1657 if (ret)
1658 break;
1659 }
1660
1661 obj->fault_mappable = true;
1662 } else
1663 ret = vm_insert_pfn(vma,
1664 (unsigned long)vmf->virtual_address,
1665 pfn + page_offset);
c9839303 1666unpin:
d7f46fc4 1667 i915_gem_object_ggtt_unpin(obj);
c715089f 1668unlock:
de151cf6 1669 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1670out:
de151cf6 1671 switch (ret) {
d9bc7e9f 1672 case -EIO:
2232f031
DV
1673 /*
1674 * We eat errors when the gpu is terminally wedged to avoid
1675 * userspace unduly crashing (gl has no provisions for mmaps to
1676 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1677 * and so needs to be reported.
1678 */
1679 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1680 ret = VM_FAULT_SIGBUS;
1681 break;
1682 }
045e769a 1683 case -EAGAIN:
571c608d
DV
1684 /*
1685 * EAGAIN means the gpu is hung and we'll wait for the error
1686 * handler to reset everything when re-faulting in
1687 * i915_mutex_lock_interruptible.
d9bc7e9f 1688 */
c715089f
CW
1689 case 0:
1690 case -ERESTARTSYS:
bed636ab 1691 case -EINTR:
e79e0fe3
DR
1692 case -EBUSY:
1693 /*
1694 * EBUSY is ok: this just means that another thread
1695 * already did the job.
1696 */
f65c9168
PZ
1697 ret = VM_FAULT_NOPAGE;
1698 break;
de151cf6 1699 case -ENOMEM:
f65c9168
PZ
1700 ret = VM_FAULT_OOM;
1701 break;
a7c2e1aa 1702 case -ENOSPC:
45d67817 1703 case -EFAULT:
f65c9168
PZ
1704 ret = VM_FAULT_SIGBUS;
1705 break;
de151cf6 1706 default:
a7c2e1aa 1707 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1708 ret = VM_FAULT_SIGBUS;
1709 break;
de151cf6 1710 }
f65c9168
PZ
1711
1712 intel_runtime_pm_put(dev_priv);
1713 return ret;
de151cf6
JB
1714}
1715
901782b2
CW
1716/**
1717 * i915_gem_release_mmap - remove physical page mappings
1718 * @obj: obj in question
1719 *
af901ca1 1720 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1721 * relinquish ownership of the pages back to the system.
1722 *
1723 * It is vital that we remove the page mapping if we have mapped a tiled
1724 * object through the GTT and then lose the fence register due to
1725 * resource pressure. Similarly if the object has been moved out of the
1726 * aperture, than pages mapped into userspace must be revoked. Removing the
1727 * mapping will then trigger a page fault on the next user access, allowing
1728 * fixup by i915_gem_fault().
1729 */
d05ca301 1730void
05394f39 1731i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1732{
6299f992
CW
1733 if (!obj->fault_mappable)
1734 return;
901782b2 1735
6796cb16
DH
1736 drm_vma_node_unmap(&obj->base.vma_node,
1737 obj->base.dev->anon_inode->i_mapping);
6299f992 1738 obj->fault_mappable = false;
901782b2
CW
1739}
1740
eedd10f4
CW
1741void
1742i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1743{
1744 struct drm_i915_gem_object *obj;
1745
1746 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1747 i915_gem_release_mmap(obj);
1748}
1749
0fa87796 1750uint32_t
e28f8711 1751i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1752{
e28f8711 1753 uint32_t gtt_size;
92b88aeb
CW
1754
1755 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1756 tiling_mode == I915_TILING_NONE)
1757 return size;
92b88aeb
CW
1758
1759 /* Previous chips need a power-of-two fence region when tiling */
1760 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1761 gtt_size = 1024*1024;
92b88aeb 1762 else
e28f8711 1763 gtt_size = 512*1024;
92b88aeb 1764
e28f8711
CW
1765 while (gtt_size < size)
1766 gtt_size <<= 1;
92b88aeb 1767
e28f8711 1768 return gtt_size;
92b88aeb
CW
1769}
1770
de151cf6
JB
1771/**
1772 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1773 * @obj: object to check
1774 *
1775 * Return the required GTT alignment for an object, taking into account
5e783301 1776 * potential fence register mapping.
de151cf6 1777 */
d865110c
ID
1778uint32_t
1779i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1780 int tiling_mode, bool fenced)
de151cf6 1781{
de151cf6
JB
1782 /*
1783 * Minimum alignment is 4k (GTT page size), but might be greater
1784 * if a fence register is needed for the object.
1785 */
d865110c 1786 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1787 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1788 return 4096;
1789
a00b10c3
CW
1790 /*
1791 * Previous chips need to be aligned to the size of the smallest
1792 * fence register that can contain the object.
1793 */
e28f8711 1794 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1795}
1796
d8cb5086
CW
1797static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1798{
1799 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1800 int ret;
1801
0de23977 1802 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1803 return 0;
1804
da494d7c
DV
1805 dev_priv->mm.shrinker_no_lock_stealing = true;
1806
d8cb5086
CW
1807 ret = drm_gem_create_mmap_offset(&obj->base);
1808 if (ret != -ENOSPC)
da494d7c 1809 goto out;
d8cb5086
CW
1810
1811 /* Badly fragmented mmap space? The only way we can recover
1812 * space is by destroying unwanted objects. We can't randomly release
1813 * mmap_offsets as userspace expects them to be persistent for the
1814 * lifetime of the objects. The closest we can is to release the
1815 * offsets on purgeable objects by truncating it and marking it purged,
1816 * which prevents userspace from ever using that object again.
1817 */
21ab4e74
CW
1818 i915_gem_shrink(dev_priv,
1819 obj->base.size >> PAGE_SHIFT,
1820 I915_SHRINK_BOUND |
1821 I915_SHRINK_UNBOUND |
1822 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1823 ret = drm_gem_create_mmap_offset(&obj->base);
1824 if (ret != -ENOSPC)
da494d7c 1825 goto out;
d8cb5086
CW
1826
1827 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1828 ret = drm_gem_create_mmap_offset(&obj->base);
1829out:
1830 dev_priv->mm.shrinker_no_lock_stealing = false;
1831
1832 return ret;
d8cb5086
CW
1833}
1834
1835static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1836{
d8cb5086
CW
1837 drm_gem_free_mmap_offset(&obj->base);
1838}
1839
355a7018 1840static int
ff72145b
DA
1841i915_gem_mmap_gtt(struct drm_file *file,
1842 struct drm_device *dev,
355a7018 1843 uint32_t handle, bool dumb,
ff72145b 1844 uint64_t *offset)
de151cf6 1845{
da761a6e 1846 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1847 struct drm_i915_gem_object *obj;
de151cf6
JB
1848 int ret;
1849
76c1dec1 1850 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1851 if (ret)
76c1dec1 1852 return ret;
de151cf6 1853
ff72145b 1854 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1855 if (&obj->base == NULL) {
1d7cfea1
CW
1856 ret = -ENOENT;
1857 goto unlock;
1858 }
de151cf6 1859
355a7018
TH
1860 /*
1861 * We don't allow dumb mmaps on objects created using another
1862 * interface.
1863 */
1864 WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1865 "Illegal dumb map of accelerated buffer.\n");
1866
5d4545ae 1867 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1868 ret = -E2BIG;
ff56b0bc 1869 goto out;
da761a6e
CW
1870 }
1871
05394f39 1872 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1873 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1874 ret = -EFAULT;
1d7cfea1 1875 goto out;
ab18282d
CW
1876 }
1877
d8cb5086
CW
1878 ret = i915_gem_object_create_mmap_offset(obj);
1879 if (ret)
1880 goto out;
de151cf6 1881
0de23977 1882 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1883
1d7cfea1 1884out:
05394f39 1885 drm_gem_object_unreference(&obj->base);
1d7cfea1 1886unlock:
de151cf6 1887 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1888 return ret;
de151cf6
JB
1889}
1890
355a7018
TH
1891int
1892i915_gem_dumb_map_offset(struct drm_file *file,
1893 struct drm_device *dev,
1894 uint32_t handle,
1895 uint64_t *offset)
1896{
1897 return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1898}
1899
ff72145b
DA
1900/**
1901 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1902 * @dev: DRM device
1903 * @data: GTT mapping ioctl data
1904 * @file: GEM object info
1905 *
1906 * Simply returns the fake offset to userspace so it can mmap it.
1907 * The mmap call will end up in drm_gem_mmap(), which will set things
1908 * up so we can get faults in the handler above.
1909 *
1910 * The fault handler will take care of binding the object into the GTT
1911 * (since it may have been evicted to make room for something), allocating
1912 * a fence register, and mapping the appropriate aperture address into
1913 * userspace.
1914 */
1915int
1916i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1917 struct drm_file *file)
1918{
1919 struct drm_i915_gem_mmap_gtt *args = data;
1920
355a7018 1921 return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
ff72145b
DA
1922}
1923
5537252b
CW
1924static inline int
1925i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1926{
1927 return obj->madv == I915_MADV_DONTNEED;
1928}
1929
225067ee
DV
1930/* Immediately discard the backing storage */
1931static void
1932i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1933{
4d6294bf 1934 i915_gem_object_free_mmap_offset(obj);
1286ff73 1935
4d6294bf
CW
1936 if (obj->base.filp == NULL)
1937 return;
e5281ccd 1938
225067ee
DV
1939 /* Our goal here is to return as much of the memory as
1940 * is possible back to the system as we are called from OOM.
1941 * To do this we must instruct the shmfs to drop all of its
1942 * backing pages, *now*.
1943 */
5537252b 1944 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1945 obj->madv = __I915_MADV_PURGED;
1946}
e5281ccd 1947
5537252b
CW
1948/* Try to discard unwanted pages */
1949static void
1950i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1951{
5537252b
CW
1952 struct address_space *mapping;
1953
1954 switch (obj->madv) {
1955 case I915_MADV_DONTNEED:
1956 i915_gem_object_truncate(obj);
1957 case __I915_MADV_PURGED:
1958 return;
1959 }
1960
1961 if (obj->base.filp == NULL)
1962 return;
1963
1964 mapping = file_inode(obj->base.filp)->i_mapping,
1965 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1966}
1967
5cdf5881 1968static void
05394f39 1969i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1970{
90797e6d
ID
1971 struct sg_page_iter sg_iter;
1972 int ret;
1286ff73 1973
05394f39 1974 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1975
6c085a72
CW
1976 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1977 if (ret) {
1978 /* In the event of a disaster, abandon all caches and
1979 * hope for the best.
1980 */
1981 WARN_ON(ret != -EIO);
2c22569b 1982 i915_gem_clflush_object(obj, true);
6c085a72
CW
1983 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1984 }
1985
6dacfd2f 1986 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1987 i915_gem_object_save_bit_17_swizzle(obj);
1988
05394f39
CW
1989 if (obj->madv == I915_MADV_DONTNEED)
1990 obj->dirty = 0;
3ef94daa 1991
90797e6d 1992 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1993 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1994
05394f39 1995 if (obj->dirty)
9da3da66 1996 set_page_dirty(page);
3ef94daa 1997
05394f39 1998 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1999 mark_page_accessed(page);
3ef94daa 2000
9da3da66 2001 page_cache_release(page);
3ef94daa 2002 }
05394f39 2003 obj->dirty = 0;
673a394b 2004
9da3da66
CW
2005 sg_free_table(obj->pages);
2006 kfree(obj->pages);
37e680a1 2007}
6c085a72 2008
dd624afd 2009int
37e680a1
CW
2010i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2011{
2012 const struct drm_i915_gem_object_ops *ops = obj->ops;
2013
2f745ad3 2014 if (obj->pages == NULL)
37e680a1
CW
2015 return 0;
2016
a5570178
CW
2017 if (obj->pages_pin_count)
2018 return -EBUSY;
2019
9843877d 2020 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2021
a2165e31
CW
2022 /* ->put_pages might need to allocate memory for the bit17 swizzle
2023 * array, hence protect them from being reaped by removing them from gtt
2024 * lists early. */
35c20a60 2025 list_del(&obj->global_list);
a2165e31 2026
37e680a1 2027 ops->put_pages(obj);
05394f39 2028 obj->pages = NULL;
37e680a1 2029
5537252b 2030 i915_gem_object_invalidate(obj);
6c085a72
CW
2031
2032 return 0;
2033}
2034
21ab4e74
CW
2035unsigned long
2036i915_gem_shrink(struct drm_i915_private *dev_priv,
2037 long target, unsigned flags)
6c085a72 2038{
60a53727
CW
2039 const struct {
2040 struct list_head *list;
2041 unsigned int bit;
2042 } phases[] = {
2043 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2044 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2045 { NULL, 0 },
2046 }, *phase;
d9973b43 2047 unsigned long count = 0;
6c085a72 2048
57094f82 2049 /*
c8725f3d 2050 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2051 * (due to retiring requests) we have to strictly process only
2052 * one element of the list at the time, and recheck the list
2053 * on every iteration.
c8725f3d
CW
2054 *
2055 * In particular, we must hold a reference whilst removing the
2056 * object as we may end up waiting for and/or retiring the objects.
2057 * This might release the final reference (held by the active list)
2058 * and result in the object being freed from under us. This is
2059 * similar to the precautions the eviction code must take whilst
2060 * removing objects.
2061 *
2062 * Also note that although these lists do not hold a reference to
2063 * the object we can safely grab one here: The final object
2064 * unreferencing and the bound_list are both protected by the
2065 * dev->struct_mutex and so we won't ever be able to observe an
2066 * object on the bound_list with a reference count equals 0.
57094f82 2067 */
60a53727 2068 for (phase = phases; phase->list; phase++) {
21ab4e74 2069 struct list_head still_in_list;
c8725f3d 2070
60a53727
CW
2071 if ((flags & phase->bit) == 0)
2072 continue;
80dcfdbd 2073
21ab4e74 2074 INIT_LIST_HEAD(&still_in_list);
60a53727 2075 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2076 struct drm_i915_gem_object *obj;
2077 struct i915_vma *vma, *v;
57094f82 2078
60a53727 2079 obj = list_first_entry(phase->list,
21ab4e74
CW
2080 typeof(*obj), global_list);
2081 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2082
60a53727
CW
2083 if (flags & I915_SHRINK_PURGEABLE &&
2084 !i915_gem_object_is_purgeable(obj))
21ab4e74 2085 continue;
57094f82 2086
21ab4e74 2087 drm_gem_object_reference(&obj->base);
80dcfdbd 2088
60a53727
CW
2089 /* For the unbound phase, this should be a no-op! */
2090 list_for_each_entry_safe(vma, v,
2091 &obj->vma_list, vma_link)
21ab4e74
CW
2092 if (i915_vma_unbind(vma))
2093 break;
57094f82 2094
21ab4e74
CW
2095 if (i915_gem_object_put_pages(obj) == 0)
2096 count += obj->base.size >> PAGE_SHIFT;
2097
2098 drm_gem_object_unreference(&obj->base);
2099 }
60a53727 2100 list_splice(&still_in_list, phase->list);
6c085a72
CW
2101 }
2102
2103 return count;
2104}
2105
d9973b43 2106static unsigned long
6c085a72
CW
2107i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2108{
6c085a72 2109 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2110 return i915_gem_shrink(dev_priv, LONG_MAX,
2111 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2112}
2113
37e680a1 2114static int
6c085a72 2115i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2116{
6c085a72 2117 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2118 int page_count, i;
2119 struct address_space *mapping;
9da3da66
CW
2120 struct sg_table *st;
2121 struct scatterlist *sg;
90797e6d 2122 struct sg_page_iter sg_iter;
e5281ccd 2123 struct page *page;
90797e6d 2124 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2125 gfp_t gfp;
e5281ccd 2126
6c085a72
CW
2127 /* Assert that the object is not currently in any GPU domain. As it
2128 * wasn't in the GTT, there shouldn't be any way it could have been in
2129 * a GPU cache
2130 */
2131 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2132 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2133
9da3da66
CW
2134 st = kmalloc(sizeof(*st), GFP_KERNEL);
2135 if (st == NULL)
2136 return -ENOMEM;
2137
05394f39 2138 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2139 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2140 kfree(st);
e5281ccd 2141 return -ENOMEM;
9da3da66 2142 }
e5281ccd 2143
9da3da66
CW
2144 /* Get the list of pages out of our struct file. They'll be pinned
2145 * at this point until we release them.
2146 *
2147 * Fail silently without starting the shrinker
2148 */
496ad9aa 2149 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2150 gfp = mapping_gfp_mask(mapping);
caf49191 2151 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2152 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2153 sg = st->sgl;
2154 st->nents = 0;
2155 for (i = 0; i < page_count; i++) {
6c085a72
CW
2156 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2157 if (IS_ERR(page)) {
21ab4e74
CW
2158 i915_gem_shrink(dev_priv,
2159 page_count,
2160 I915_SHRINK_BOUND |
2161 I915_SHRINK_UNBOUND |
2162 I915_SHRINK_PURGEABLE);
6c085a72
CW
2163 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2164 }
2165 if (IS_ERR(page)) {
2166 /* We've tried hard to allocate the memory by reaping
2167 * our own buffer, now let the real VM do its job and
2168 * go down in flames if truly OOM.
2169 */
6c085a72 2170 i915_gem_shrink_all(dev_priv);
f461d1be 2171 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2172 if (IS_ERR(page))
2173 goto err_pages;
6c085a72 2174 }
426729dc
KRW
2175#ifdef CONFIG_SWIOTLB
2176 if (swiotlb_nr_tbl()) {
2177 st->nents++;
2178 sg_set_page(sg, page, PAGE_SIZE, 0);
2179 sg = sg_next(sg);
2180 continue;
2181 }
2182#endif
90797e6d
ID
2183 if (!i || page_to_pfn(page) != last_pfn + 1) {
2184 if (i)
2185 sg = sg_next(sg);
2186 st->nents++;
2187 sg_set_page(sg, page, PAGE_SIZE, 0);
2188 } else {
2189 sg->length += PAGE_SIZE;
2190 }
2191 last_pfn = page_to_pfn(page);
3bbbe706
DV
2192
2193 /* Check that the i965g/gm workaround works. */
2194 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2195 }
426729dc
KRW
2196#ifdef CONFIG_SWIOTLB
2197 if (!swiotlb_nr_tbl())
2198#endif
2199 sg_mark_end(sg);
74ce6b6c
CW
2200 obj->pages = st;
2201
6dacfd2f 2202 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2203 i915_gem_object_do_bit_17_swizzle(obj);
2204
656bfa3a
DV
2205 if (obj->tiling_mode != I915_TILING_NONE &&
2206 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2207 i915_gem_object_pin_pages(obj);
2208
e5281ccd
CW
2209 return 0;
2210
2211err_pages:
90797e6d
ID
2212 sg_mark_end(sg);
2213 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2214 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2215 sg_free_table(st);
2216 kfree(st);
0820baf3
CW
2217
2218 /* shmemfs first checks if there is enough memory to allocate the page
2219 * and reports ENOSPC should there be insufficient, along with the usual
2220 * ENOMEM for a genuine allocation failure.
2221 *
2222 * We use ENOSPC in our driver to mean that we have run out of aperture
2223 * space and so want to translate the error from shmemfs back to our
2224 * usual understanding of ENOMEM.
2225 */
2226 if (PTR_ERR(page) == -ENOSPC)
2227 return -ENOMEM;
2228 else
2229 return PTR_ERR(page);
673a394b
EA
2230}
2231
37e680a1
CW
2232/* Ensure that the associated pages are gathered from the backing storage
2233 * and pinned into our object. i915_gem_object_get_pages() may be called
2234 * multiple times before they are released by a single call to
2235 * i915_gem_object_put_pages() - once the pages are no longer referenced
2236 * either as a result of memory pressure (reaping pages under the shrinker)
2237 * or as the object is itself released.
2238 */
2239int
2240i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2241{
2242 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2243 const struct drm_i915_gem_object_ops *ops = obj->ops;
2244 int ret;
2245
2f745ad3 2246 if (obj->pages)
37e680a1
CW
2247 return 0;
2248
43e28f09 2249 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2250 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2251 return -EFAULT;
43e28f09
CW
2252 }
2253
a5570178
CW
2254 BUG_ON(obj->pages_pin_count);
2255
37e680a1
CW
2256 ret = ops->get_pages(obj);
2257 if (ret)
2258 return ret;
2259
35c20a60 2260 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2261 return 0;
673a394b
EA
2262}
2263
e2d05a8b 2264static void
05394f39 2265i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2266 struct intel_engine_cs *ring)
673a394b 2267{
97b2a6a1 2268 struct drm_i915_gem_request *req = intel_ring_get_request(ring);
617dbe27 2269
852835f3 2270 BUG_ON(ring == NULL);
97b2a6a1
JH
2271 if (obj->ring != ring && obj->last_write_req) {
2272 /* Keep the request relative to the current ring */
2273 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2274 }
05394f39 2275 obj->ring = ring;
673a394b
EA
2276
2277 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2278 if (!obj->active) {
2279 drm_gem_object_reference(&obj->base);
2280 obj->active = 1;
673a394b 2281 }
e35a41de 2282
05394f39 2283 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2284
97b2a6a1 2285 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2286}
2287
e2d05a8b 2288void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2289 struct intel_engine_cs *ring)
e2d05a8b
BW
2290{
2291 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2292 return i915_gem_object_move_to_active(vma->obj, ring);
2293}
2294
caea7476 2295static void
caea7476 2296i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2297{
ca191b13 2298 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2299 struct i915_address_space *vm;
2300 struct i915_vma *vma;
ce44b0ea 2301
65ce3027 2302 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2303 BUG_ON(!obj->active);
caea7476 2304
feb822cf
BW
2305 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2306 vma = i915_gem_obj_to_vma(obj, vm);
2307 if (vma && !list_empty(&vma->mm_list))
2308 list_move_tail(&vma->mm_list, &vm->inactive_list);
2309 }
caea7476 2310
f99d7069
DV
2311 intel_fb_obj_flush(obj, true);
2312
65ce3027 2313 list_del_init(&obj->ring_list);
caea7476
CW
2314 obj->ring = NULL;
2315
97b2a6a1
JH
2316 i915_gem_request_assign(&obj->last_read_req, NULL);
2317 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2318 obj->base.write_domain = 0;
2319
97b2a6a1 2320 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2321
2322 obj->active = 0;
2323 drm_gem_object_unreference(&obj->base);
2324
2325 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2326}
673a394b 2327
c8725f3d
CW
2328static void
2329i915_gem_object_retire(struct drm_i915_gem_object *obj)
2330{
a4872ba6 2331 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2332
2333 if (ring == NULL)
2334 return;
2335
2336 if (i915_seqno_passed(ring->get_seqno(ring, true),
97b2a6a1 2337 i915_gem_request_get_seqno(obj->last_read_req)))
c8725f3d
CW
2338 i915_gem_object_move_to_inactive(obj);
2339}
2340
9d773091 2341static int
fca26bb4 2342i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2343{
9d773091 2344 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2345 struct intel_engine_cs *ring;
9d773091 2346 int ret, i, j;
53d227f2 2347
107f27a5 2348 /* Carefully retire all requests without writing to the rings */
9d773091 2349 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2350 ret = intel_ring_idle(ring);
2351 if (ret)
2352 return ret;
9d773091 2353 }
9d773091 2354 i915_gem_retire_requests(dev);
107f27a5
CW
2355
2356 /* Finally reset hw state */
9d773091 2357 for_each_ring(ring, dev_priv, i) {
fca26bb4 2358 intel_ring_init_seqno(ring, seqno);
498d2ac1 2359
ebc348b2
BW
2360 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2361 ring->semaphore.sync_seqno[j] = 0;
9d773091 2362 }
53d227f2 2363
9d773091 2364 return 0;
53d227f2
DV
2365}
2366
fca26bb4
MK
2367int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2368{
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 int ret;
2371
2372 if (seqno == 0)
2373 return -EINVAL;
2374
2375 /* HWS page needs to be set less than what we
2376 * will inject to ring
2377 */
2378 ret = i915_gem_init_seqno(dev, seqno - 1);
2379 if (ret)
2380 return ret;
2381
2382 /* Carefully set the last_seqno value so that wrap
2383 * detection still works
2384 */
2385 dev_priv->next_seqno = seqno;
2386 dev_priv->last_seqno = seqno - 1;
2387 if (dev_priv->last_seqno == 0)
2388 dev_priv->last_seqno--;
2389
2390 return 0;
2391}
2392
9d773091
CW
2393int
2394i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2395{
9d773091
CW
2396 struct drm_i915_private *dev_priv = dev->dev_private;
2397
2398 /* reserve 0 for non-seqno */
2399 if (dev_priv->next_seqno == 0) {
fca26bb4 2400 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2401 if (ret)
2402 return ret;
53d227f2 2403
9d773091
CW
2404 dev_priv->next_seqno = 1;
2405 }
53d227f2 2406
f72b3435 2407 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2408 return 0;
53d227f2
DV
2409}
2410
a4872ba6 2411int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2412 struct drm_file *file,
7d736f4f 2413 struct drm_i915_gem_object *obj,
0025c077 2414 u32 *out_seqno)
673a394b 2415{
3e31c6c0 2416 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2417 struct drm_i915_gem_request *request;
48e29f55 2418 struct intel_ringbuffer *ringbuf;
7d736f4f 2419 u32 request_ring_position, request_start;
3cce469c
CW
2420 int ret;
2421
48e29f55
OM
2422 request = ring->preallocated_lazy_request;
2423 if (WARN_ON(request == NULL))
2424 return -ENOMEM;
2425
2426 if (i915.enable_execlists) {
2427 struct intel_context *ctx = request->ctx;
2428 ringbuf = ctx->engine[ring->id].ringbuf;
2429 } else
2430 ringbuf = ring->buffer;
2431
2432 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2433 /*
2434 * Emit any outstanding flushes - execbuf can fail to emit the flush
2435 * after having emitted the batchbuffer command. Hence we need to fix
2436 * things up similar to emitting the lazy request. The difference here
2437 * is that the flush _must_ happen before the next request, no matter
2438 * what.
2439 */
48e29f55
OM
2440 if (i915.enable_execlists) {
2441 ret = logical_ring_flush_all_caches(ringbuf);
2442 if (ret)
2443 return ret;
2444 } else {
2445 ret = intel_ring_flush_all_caches(ring);
2446 if (ret)
2447 return ret;
2448 }
cc889e0f 2449
a71d8d94
CW
2450 /* Record the position of the start of the request so that
2451 * should we detect the updated seqno part-way through the
2452 * GPU processing the request, we never over-estimate the
2453 * position of the head.
2454 */
48e29f55 2455 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2456
48e29f55
OM
2457 if (i915.enable_execlists) {
2458 ret = ring->emit_request(ringbuf);
2459 if (ret)
2460 return ret;
2461 } else {
2462 ret = ring->add_request(ring);
2463 if (ret)
2464 return ret;
2465 }
673a394b 2466
9d773091 2467 request->seqno = intel_ring_get_seqno(ring);
852835f3 2468 request->ring = ring;
7d736f4f 2469 request->head = request_start;
a71d8d94 2470 request->tail = request_ring_position;
7d736f4f
MK
2471
2472 /* Whilst this request exists, batch_obj will be on the
2473 * active_list, and so will hold the active reference. Only when this
2474 * request is retired will the the batch_obj be moved onto the
2475 * inactive_list and lose its active reference. Hence we do not need
2476 * to explicitly hold another reference here.
2477 */
9a7e0c2a 2478 request->batch_obj = obj;
0e50e96b 2479
48e29f55
OM
2480 if (!i915.enable_execlists) {
2481 /* Hold a reference to the current context so that we can inspect
2482 * it later in case a hangcheck error event fires.
2483 */
2484 request->ctx = ring->last_context;
2485 if (request->ctx)
2486 i915_gem_context_reference(request->ctx);
2487 }
0e50e96b 2488
673a394b 2489 request->emitted_jiffies = jiffies;
852835f3 2490 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2491 request->file_priv = NULL;
852835f3 2492
db53a302
CW
2493 if (file) {
2494 struct drm_i915_file_private *file_priv = file->driver_priv;
2495
1c25595f 2496 spin_lock(&file_priv->mm.lock);
f787a5f5 2497 request->file_priv = file_priv;
b962442e 2498 list_add_tail(&request->client_list,
f787a5f5 2499 &file_priv->mm.request_list);
1c25595f 2500 spin_unlock(&file_priv->mm.lock);
b962442e 2501 }
673a394b 2502
9d773091 2503 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2504 ring->outstanding_lazy_seqno = 0;
3c0e234c 2505 ring->preallocated_lazy_request = NULL;
db53a302 2506
87255483 2507 i915_queue_hangcheck(ring->dev);
10cd45b6 2508
87255483
DV
2509 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2510 queue_delayed_work(dev_priv->wq,
2511 &dev_priv->mm.retire_work,
2512 round_jiffies_up_relative(HZ));
2513 intel_mark_busy(dev_priv->dev);
cc889e0f 2514
acb868d3 2515 if (out_seqno)
9d773091 2516 *out_seqno = request->seqno;
3cce469c 2517 return 0;
673a394b
EA
2518}
2519
f787a5f5
CW
2520static inline void
2521i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2522{
1c25595f 2523 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2524
1c25595f
CW
2525 if (!file_priv)
2526 return;
1c5d22f7 2527
1c25595f 2528 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2529 list_del(&request->client_list);
2530 request->file_priv = NULL;
1c25595f 2531 spin_unlock(&file_priv->mm.lock);
673a394b 2532}
673a394b 2533
939fd762 2534static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2535 const struct intel_context *ctx)
be62acb4 2536{
44e2c070 2537 unsigned long elapsed;
be62acb4 2538
44e2c070
MK
2539 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2540
2541 if (ctx->hang_stats.banned)
be62acb4
MK
2542 return true;
2543
2544 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2545 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2546 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2547 return true;
88b4aa87
MK
2548 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2549 if (i915_stop_ring_allow_warn(dev_priv))
2550 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2551 return true;
3fac8978 2552 }
be62acb4
MK
2553 }
2554
2555 return false;
2556}
2557
939fd762 2558static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2559 struct intel_context *ctx,
b6b0fac0 2560 const bool guilty)
aa60c664 2561{
44e2c070
MK
2562 struct i915_ctx_hang_stats *hs;
2563
2564 if (WARN_ON(!ctx))
2565 return;
aa60c664 2566
44e2c070
MK
2567 hs = &ctx->hang_stats;
2568
2569 if (guilty) {
939fd762 2570 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2571 hs->batch_active++;
2572 hs->guilty_ts = get_seconds();
2573 } else {
2574 hs->batch_pending++;
aa60c664
MK
2575 }
2576}
2577
0e50e96b
MK
2578static void i915_gem_free_request(struct drm_i915_gem_request *request)
2579{
2580 list_del(&request->list);
2581 i915_gem_request_remove_from_client(request);
2582
abfe262a
JH
2583 i915_gem_request_unreference(request);
2584}
2585
2586void i915_gem_request_free(struct kref *req_ref)
2587{
2588 struct drm_i915_gem_request *req = container_of(req_ref,
2589 typeof(*req), ref);
2590 struct intel_context *ctx = req->ctx;
2591
0794aed3
TD
2592 if (ctx) {
2593 if (i915.enable_execlists) {
abfe262a 2594 struct intel_engine_cs *ring = req->ring;
0e50e96b 2595
0794aed3
TD
2596 if (ctx != ring->default_context)
2597 intel_lr_context_unpin(ring, ctx);
2598 }
abfe262a 2599
dcb4c12a
OM
2600 i915_gem_context_unreference(ctx);
2601 }
abfe262a
JH
2602
2603 kfree(req);
0e50e96b
MK
2604}
2605
8d9fc7fd 2606struct drm_i915_gem_request *
a4872ba6 2607i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2608{
4db080f9 2609 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2610 u32 completed_seqno;
2611
2612 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2613
2614 list_for_each_entry(request, &ring->request_list, list) {
2615 if (i915_seqno_passed(completed_seqno, request->seqno))
2616 continue;
aa60c664 2617
b6b0fac0 2618 return request;
4db080f9 2619 }
b6b0fac0
MK
2620
2621 return NULL;
2622}
2623
2624static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2625 struct intel_engine_cs *ring)
b6b0fac0
MK
2626{
2627 struct drm_i915_gem_request *request;
2628 bool ring_hung;
2629
8d9fc7fd 2630 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2631
2632 if (request == NULL)
2633 return;
2634
2635 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2636
939fd762 2637 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2638
2639 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2640 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2641}
aa60c664 2642
4db080f9 2643static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2644 struct intel_engine_cs *ring)
4db080f9 2645{
dfaae392 2646 while (!list_empty(&ring->active_list)) {
05394f39 2647 struct drm_i915_gem_object *obj;
9375e446 2648
05394f39
CW
2649 obj = list_first_entry(&ring->active_list,
2650 struct drm_i915_gem_object,
2651 ring_list);
9375e446 2652
05394f39 2653 i915_gem_object_move_to_inactive(obj);
673a394b 2654 }
1d62beea 2655
dcb4c12a
OM
2656 /*
2657 * Clear the execlists queue up before freeing the requests, as those
2658 * are the ones that keep the context and ringbuffer backing objects
2659 * pinned in place.
2660 */
2661 while (!list_empty(&ring->execlist_queue)) {
2662 struct intel_ctx_submit_request *submit_req;
2663
2664 submit_req = list_first_entry(&ring->execlist_queue,
2665 struct intel_ctx_submit_request,
2666 execlist_link);
2667 list_del(&submit_req->execlist_link);
2668 intel_runtime_pm_put(dev_priv);
2669 i915_gem_context_unreference(submit_req->ctx);
2670 kfree(submit_req);
2671 }
2672
1d62beea
BW
2673 /*
2674 * We must free the requests after all the corresponding objects have
2675 * been moved off active lists. Which is the same order as the normal
2676 * retire_requests function does. This is important if object hold
2677 * implicit references on things like e.g. ppgtt address spaces through
2678 * the request.
2679 */
2680 while (!list_empty(&ring->request_list)) {
2681 struct drm_i915_gem_request *request;
2682
2683 request = list_first_entry(&ring->request_list,
2684 struct drm_i915_gem_request,
2685 list);
2686
2687 i915_gem_free_request(request);
2688 }
e3efda49
CW
2689
2690 /* These may not have been flush before the reset, do so now */
abfe262a 2691 i915_gem_request_assign(&ring->preallocated_lazy_request, NULL);
e3efda49 2692 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2693}
2694
19b2dbde 2695void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2696{
2697 struct drm_i915_private *dev_priv = dev->dev_private;
2698 int i;
2699
4b9de737 2700 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2701 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2702
94a335db
DV
2703 /*
2704 * Commit delayed tiling changes if we have an object still
2705 * attached to the fence, otherwise just clear the fence.
2706 */
2707 if (reg->obj) {
2708 i915_gem_object_update_fence(reg->obj, reg,
2709 reg->obj->tiling_mode);
2710 } else {
2711 i915_gem_write_fence(dev, i, NULL);
2712 }
312817a3
CW
2713 }
2714}
2715
069efc1d 2716void i915_gem_reset(struct drm_device *dev)
673a394b 2717{
77f01230 2718 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2719 struct intel_engine_cs *ring;
1ec14ad3 2720 int i;
673a394b 2721
4db080f9
CW
2722 /*
2723 * Before we free the objects from the requests, we need to inspect
2724 * them for finding the guilty party. As the requests only borrow
2725 * their reference to the objects, the inspection must be done first.
2726 */
2727 for_each_ring(ring, dev_priv, i)
2728 i915_gem_reset_ring_status(dev_priv, ring);
2729
b4519513 2730 for_each_ring(ring, dev_priv, i)
4db080f9 2731 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2732
acce9ffa
BW
2733 i915_gem_context_reset(dev);
2734
19b2dbde 2735 i915_gem_restore_fences(dev);
673a394b
EA
2736}
2737
2738/**
2739 * This function clears the request list as sequence numbers are passed.
2740 */
1cf0ba14 2741void
a4872ba6 2742i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2743{
673a394b
EA
2744 uint32_t seqno;
2745
db53a302 2746 if (list_empty(&ring->request_list))
6c0594a3
KW
2747 return;
2748
db53a302 2749 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2750
b2eadbc8 2751 seqno = ring->get_seqno(ring, true);
1ec14ad3 2752
e9103038
CW
2753 /* Move any buffers on the active list that are no longer referenced
2754 * by the ringbuffer to the flushing/inactive lists as appropriate,
2755 * before we free the context associated with the requests.
2756 */
2757 while (!list_empty(&ring->active_list)) {
2758 struct drm_i915_gem_object *obj;
2759
2760 obj = list_first_entry(&ring->active_list,
2761 struct drm_i915_gem_object,
2762 ring_list);
2763
97b2a6a1
JH
2764 if (!i915_seqno_passed(seqno,
2765 i915_gem_request_get_seqno(obj->last_read_req)))
e9103038
CW
2766 break;
2767
2768 i915_gem_object_move_to_inactive(obj);
2769 }
2770
2771
852835f3 2772 while (!list_empty(&ring->request_list)) {
673a394b 2773 struct drm_i915_gem_request *request;
48e29f55 2774 struct intel_ringbuffer *ringbuf;
673a394b 2775
852835f3 2776 request = list_first_entry(&ring->request_list,
673a394b
EA
2777 struct drm_i915_gem_request,
2778 list);
673a394b 2779
dfaae392 2780 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2781 break;
2782
db53a302 2783 trace_i915_gem_request_retire(ring, request->seqno);
48e29f55
OM
2784
2785 /* This is one of the few common intersection points
2786 * between legacy ringbuffer submission and execlists:
2787 * we need to tell them apart in order to find the correct
2788 * ringbuffer to which the request belongs to.
2789 */
2790 if (i915.enable_execlists) {
2791 struct intel_context *ctx = request->ctx;
2792 ringbuf = ctx->engine[ring->id].ringbuf;
2793 } else
2794 ringbuf = ring->buffer;
2795
a71d8d94
CW
2796 /* We know the GPU must have read the request to have
2797 * sent us the seqno + interrupt, so use the position
2798 * of tail of the request to update the last known position
2799 * of the GPU head.
2800 */
48e29f55 2801 ringbuf->last_retired_head = request->tail;
b84d5f0c 2802
0e50e96b 2803 i915_gem_free_request(request);
b84d5f0c 2804 }
673a394b 2805
db53a302
CW
2806 if (unlikely(ring->trace_irq_seqno &&
2807 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2808 ring->irq_put(ring);
db53a302 2809 ring->trace_irq_seqno = 0;
9d34e5db 2810 }
23bc5982 2811
db53a302 2812 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2813}
2814
b29c19b6 2815bool
b09a1fec
CW
2816i915_gem_retire_requests(struct drm_device *dev)
2817{
3e31c6c0 2818 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2819 struct intel_engine_cs *ring;
b29c19b6 2820 bool idle = true;
1ec14ad3 2821 int i;
b09a1fec 2822
b29c19b6 2823 for_each_ring(ring, dev_priv, i) {
b4519513 2824 i915_gem_retire_requests_ring(ring);
b29c19b6 2825 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2826 if (i915.enable_execlists) {
2827 unsigned long flags;
2828
2829 spin_lock_irqsave(&ring->execlist_lock, flags);
2830 idle &= list_empty(&ring->execlist_queue);
2831 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2832
2833 intel_execlists_retire_requests(ring);
2834 }
b29c19b6
CW
2835 }
2836
2837 if (idle)
2838 mod_delayed_work(dev_priv->wq,
2839 &dev_priv->mm.idle_work,
2840 msecs_to_jiffies(100));
2841
2842 return idle;
b09a1fec
CW
2843}
2844
75ef9da2 2845static void
673a394b
EA
2846i915_gem_retire_work_handler(struct work_struct *work)
2847{
b29c19b6
CW
2848 struct drm_i915_private *dev_priv =
2849 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2850 struct drm_device *dev = dev_priv->dev;
0a58705b 2851 bool idle;
673a394b 2852
891b48cf 2853 /* Come back later if the device is busy... */
b29c19b6
CW
2854 idle = false;
2855 if (mutex_trylock(&dev->struct_mutex)) {
2856 idle = i915_gem_retire_requests(dev);
2857 mutex_unlock(&dev->struct_mutex);
673a394b 2858 }
b29c19b6 2859 if (!idle)
bcb45086
CW
2860 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2861 round_jiffies_up_relative(HZ));
b29c19b6 2862}
0a58705b 2863
b29c19b6
CW
2864static void
2865i915_gem_idle_work_handler(struct work_struct *work)
2866{
2867 struct drm_i915_private *dev_priv =
2868 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2869
2870 intel_mark_idle(dev_priv->dev);
673a394b
EA
2871}
2872
30dfebf3
DV
2873/**
2874 * Ensures that an object will eventually get non-busy by flushing any required
2875 * write domains, emitting any outstanding lazy request and retiring and
2876 * completed requests.
2877 */
2878static int
2879i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2880{
2881 int ret;
2882
2883 if (obj->active) {
97b2a6a1
JH
2884 ret = i915_gem_check_olr(obj->ring,
2885 i915_gem_request_get_seqno(obj->last_read_req));
30dfebf3
DV
2886 if (ret)
2887 return ret;
2888
30dfebf3
DV
2889 i915_gem_retire_requests_ring(obj->ring);
2890 }
2891
2892 return 0;
2893}
2894
23ba4fd0
BW
2895/**
2896 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2897 * @DRM_IOCTL_ARGS: standard ioctl arguments
2898 *
2899 * Returns 0 if successful, else an error is returned with the remaining time in
2900 * the timeout parameter.
2901 * -ETIME: object is still busy after timeout
2902 * -ERESTARTSYS: signal interrupted the wait
2903 * -ENONENT: object doesn't exist
2904 * Also possible, but rare:
2905 * -EAGAIN: GPU wedged
2906 * -ENOMEM: damn
2907 * -ENODEV: Internal IRQ fail
2908 * -E?: The add request failed
2909 *
2910 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2911 * non-zero timeout parameter the wait ioctl will wait for the given number of
2912 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2913 * without holding struct_mutex the object may become re-busied before this
2914 * function completes. A similar but shorter * race condition exists in the busy
2915 * ioctl
2916 */
2917int
2918i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2919{
3e31c6c0 2920 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2921 struct drm_i915_gem_wait *args = data;
2922 struct drm_i915_gem_object *obj;
a4872ba6 2923 struct intel_engine_cs *ring = NULL;
f69061be 2924 unsigned reset_counter;
23ba4fd0
BW
2925 u32 seqno = 0;
2926 int ret = 0;
2927
11b5d511
DV
2928 if (args->flags != 0)
2929 return -EINVAL;
2930
23ba4fd0
BW
2931 ret = i915_mutex_lock_interruptible(dev);
2932 if (ret)
2933 return ret;
2934
2935 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2936 if (&obj->base == NULL) {
2937 mutex_unlock(&dev->struct_mutex);
2938 return -ENOENT;
2939 }
2940
30dfebf3
DV
2941 /* Need to make sure the object gets inactive eventually. */
2942 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2943 if (ret)
2944 goto out;
2945
97b2a6a1
JH
2946 if (!obj->active || !obj->last_read_req)
2947 goto out;
23ba4fd0 2948
97b2a6a1
JH
2949 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2950 WARN_ON(seqno == 0);
2951 ring = obj->ring;
23ba4fd0 2952
23ba4fd0 2953 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2954 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2955 */
5ed0bdf2 2956 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2957 ret = -ETIME;
2958 goto out;
2959 }
2960
2961 drm_gem_object_unreference(&obj->base);
f69061be 2962 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2963 mutex_unlock(&dev->struct_mutex);
2964
16e9a21f
ACO
2965 return __i915_wait_seqno(ring, seqno, reset_counter, true,
2966 &args->timeout_ns, file->driver_priv);
23ba4fd0
BW
2967
2968out:
2969 drm_gem_object_unreference(&obj->base);
2970 mutex_unlock(&dev->struct_mutex);
2971 return ret;
2972}
2973
5816d648
BW
2974/**
2975 * i915_gem_object_sync - sync an object to a ring.
2976 *
2977 * @obj: object which may be in use on another ring.
2978 * @to: ring we wish to use the object on. May be NULL.
2979 *
2980 * This code is meant to abstract object synchronization with the GPU.
2981 * Calling with NULL implies synchronizing the object with the CPU
2982 * rather than a particular GPU ring.
2983 *
2984 * Returns 0 if successful, else propagates up the lower layer error.
2985 */
2911a35b
BW
2986int
2987i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2988 struct intel_engine_cs *to)
2911a35b 2989{
a4872ba6 2990 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2991 u32 seqno;
2992 int ret, idx;
2993
2994 if (from == NULL || to == from)
2995 return 0;
2996
5816d648 2997 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2998 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2999
3000 idx = intel_ring_sync_index(from, to);
3001
97b2a6a1 3002 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
3003 /* Optimization: Avoid semaphore sync when we are sure we already
3004 * waited for an object with higher seqno */
ebc348b2 3005 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
3006 return 0;
3007
b4aca010
BW
3008 ret = i915_gem_check_olr(obj->ring, seqno);
3009 if (ret)
3010 return ret;
2911a35b 3011
b52b89da 3012 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 3013 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 3014 if (!ret)
97b2a6a1 3015 /* We use last_read_req because sync_to()
7b01e260
MK
3016 * might have just caused seqno wrap under
3017 * the radar.
3018 */
97b2a6a1
JH
3019 from->semaphore.sync_seqno[idx] =
3020 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3021
e3a5a225 3022 return ret;
2911a35b
BW
3023}
3024
b5ffc9bc
CW
3025static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3026{
3027 u32 old_write_domain, old_read_domains;
3028
b5ffc9bc
CW
3029 /* Force a pagefault for domain tracking on next user access */
3030 i915_gem_release_mmap(obj);
3031
b97c3d9c
KP
3032 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3033 return;
3034
97c809fd
CW
3035 /* Wait for any direct GTT access to complete */
3036 mb();
3037
b5ffc9bc
CW
3038 old_read_domains = obj->base.read_domains;
3039 old_write_domain = obj->base.write_domain;
3040
3041 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3042 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3043
3044 trace_i915_gem_object_change_domain(obj,
3045 old_read_domains,
3046 old_write_domain);
3047}
3048
07fe0b12 3049int i915_vma_unbind(struct i915_vma *vma)
673a394b 3050{
07fe0b12 3051 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3052 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3053 int ret;
673a394b 3054
07fe0b12 3055 if (list_empty(&vma->vma_link))
673a394b
EA
3056 return 0;
3057
0ff501cb
DV
3058 if (!drm_mm_node_allocated(&vma->node)) {
3059 i915_gem_vma_destroy(vma);
0ff501cb
DV
3060 return 0;
3061 }
433544bd 3062
d7f46fc4 3063 if (vma->pin_count)
31d8d651 3064 return -EBUSY;
673a394b 3065
c4670ad0
CW
3066 BUG_ON(obj->pages == NULL);
3067
a8198eea 3068 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3069 if (ret)
a8198eea
CW
3070 return ret;
3071 /* Continue on if we fail due to EIO, the GPU is hung so we
3072 * should be safe and we need to cleanup or else we might
3073 * cause memory corruption through use-after-free.
3074 */
3075
1d1ef21d
CW
3076 /* Throw away the active reference before moving to the unbound list */
3077 i915_gem_object_retire(obj);
3078
8b1bc9b4
DV
3079 if (i915_is_ggtt(vma->vm)) {
3080 i915_gem_object_finish_gtt(obj);
5323fd04 3081
8b1bc9b4
DV
3082 /* release the fence reg _after_ flushing */
3083 ret = i915_gem_object_put_fence(obj);
3084 if (ret)
3085 return ret;
3086 }
96b47b65 3087
07fe0b12 3088 trace_i915_vma_unbind(vma);
db53a302 3089
6f65e29a
BW
3090 vma->unbind_vma(vma);
3091
64bf9303 3092 list_del_init(&vma->mm_list);
5cacaac7 3093 if (i915_is_ggtt(vma->vm))
e6a84468 3094 obj->map_and_fenceable = false;
673a394b 3095
2f633156
BW
3096 drm_mm_remove_node(&vma->node);
3097 i915_gem_vma_destroy(vma);
3098
3099 /* Since the unbound list is global, only move to that list if
b93dab6e 3100 * no more VMAs exist. */
9490edb5
AR
3101 if (list_empty(&obj->vma_list)) {
3102 i915_gem_gtt_finish_object(obj);
2f633156 3103 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3104 }
673a394b 3105
70903c3b
CW
3106 /* And finally now the object is completely decoupled from this vma,
3107 * we can drop its hold on the backing storage and allow it to be
3108 * reaped by the shrinker.
3109 */
3110 i915_gem_object_unpin_pages(obj);
3111
88241785 3112 return 0;
54cf91dc
CW
3113}
3114
b2da9fe5 3115int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3116{
3e31c6c0 3117 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3118 struct intel_engine_cs *ring;
1ec14ad3 3119 int ret, i;
4df2faf4 3120
4df2faf4 3121 /* Flush everything onto the inactive list. */
b4519513 3122 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3123 if (!i915.enable_execlists) {
3124 ret = i915_switch_context(ring, ring->default_context);
3125 if (ret)
3126 return ret;
3127 }
b6c7488d 3128
3e960501 3129 ret = intel_ring_idle(ring);
1ec14ad3
CW
3130 if (ret)
3131 return ret;
3132 }
4df2faf4 3133
8a1a49f9 3134 return 0;
4df2faf4
DV
3135}
3136
9ce079e4
CW
3137static void i965_write_fence_reg(struct drm_device *dev, int reg,
3138 struct drm_i915_gem_object *obj)
de151cf6 3139{
3e31c6c0 3140 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3141 int fence_reg;
3142 int fence_pitch_shift;
de151cf6 3143
56c844e5
ID
3144 if (INTEL_INFO(dev)->gen >= 6) {
3145 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3146 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3147 } else {
3148 fence_reg = FENCE_REG_965_0;
3149 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3150 }
3151
d18b9619
CW
3152 fence_reg += reg * 8;
3153
3154 /* To w/a incoherency with non-atomic 64-bit register updates,
3155 * we split the 64-bit update into two 32-bit writes. In order
3156 * for a partial fence not to be evaluated between writes, we
3157 * precede the update with write to turn off the fence register,
3158 * and only enable the fence as the last step.
3159 *
3160 * For extra levels of paranoia, we make sure each step lands
3161 * before applying the next step.
3162 */
3163 I915_WRITE(fence_reg, 0);
3164 POSTING_READ(fence_reg);
3165
9ce079e4 3166 if (obj) {
f343c5f6 3167 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3168 uint64_t val;
de151cf6 3169
f343c5f6 3170 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3171 0xfffff000) << 32;
f343c5f6 3172 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3173 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3174 if (obj->tiling_mode == I915_TILING_Y)
3175 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3176 val |= I965_FENCE_REG_VALID;
c6642782 3177
d18b9619
CW
3178 I915_WRITE(fence_reg + 4, val >> 32);
3179 POSTING_READ(fence_reg + 4);
3180
3181 I915_WRITE(fence_reg + 0, val);
3182 POSTING_READ(fence_reg);
3183 } else {
3184 I915_WRITE(fence_reg + 4, 0);
3185 POSTING_READ(fence_reg + 4);
3186 }
de151cf6
JB
3187}
3188
9ce079e4
CW
3189static void i915_write_fence_reg(struct drm_device *dev, int reg,
3190 struct drm_i915_gem_object *obj)
de151cf6 3191{
3e31c6c0 3192 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3193 u32 val;
de151cf6 3194
9ce079e4 3195 if (obj) {
f343c5f6 3196 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3197 int pitch_val;
3198 int tile_width;
c6642782 3199
f343c5f6 3200 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3201 (size & -size) != size ||
f343c5f6
BW
3202 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3203 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3204 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3205
9ce079e4
CW
3206 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3207 tile_width = 128;
3208 else
3209 tile_width = 512;
3210
3211 /* Note: pitch better be a power of two tile widths */
3212 pitch_val = obj->stride / tile_width;
3213 pitch_val = ffs(pitch_val) - 1;
3214
f343c5f6 3215 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3216 if (obj->tiling_mode == I915_TILING_Y)
3217 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3218 val |= I915_FENCE_SIZE_BITS(size);
3219 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3220 val |= I830_FENCE_REG_VALID;
3221 } else
3222 val = 0;
3223
3224 if (reg < 8)
3225 reg = FENCE_REG_830_0 + reg * 4;
3226 else
3227 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3228
3229 I915_WRITE(reg, val);
3230 POSTING_READ(reg);
de151cf6
JB
3231}
3232
9ce079e4
CW
3233static void i830_write_fence_reg(struct drm_device *dev, int reg,
3234 struct drm_i915_gem_object *obj)
de151cf6 3235{
3e31c6c0 3236 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3237 uint32_t val;
de151cf6 3238
9ce079e4 3239 if (obj) {
f343c5f6 3240 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3241 uint32_t pitch_val;
de151cf6 3242
f343c5f6 3243 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3244 (size & -size) != size ||
f343c5f6
BW
3245 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3246 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3247 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3248
9ce079e4
CW
3249 pitch_val = obj->stride / 128;
3250 pitch_val = ffs(pitch_val) - 1;
de151cf6 3251
f343c5f6 3252 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3253 if (obj->tiling_mode == I915_TILING_Y)
3254 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3255 val |= I830_FENCE_SIZE_BITS(size);
3256 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3257 val |= I830_FENCE_REG_VALID;
3258 } else
3259 val = 0;
c6642782 3260
9ce079e4
CW
3261 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3262 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3263}
3264
d0a57789
CW
3265inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3266{
3267 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3268}
3269
9ce079e4
CW
3270static void i915_gem_write_fence(struct drm_device *dev, int reg,
3271 struct drm_i915_gem_object *obj)
3272{
d0a57789
CW
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274
3275 /* Ensure that all CPU reads are completed before installing a fence
3276 * and all writes before removing the fence.
3277 */
3278 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3279 mb();
3280
94a335db
DV
3281 WARN(obj && (!obj->stride || !obj->tiling_mode),
3282 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3283 obj->stride, obj->tiling_mode);
3284
9ce079e4 3285 switch (INTEL_INFO(dev)->gen) {
01209dd5 3286 case 9:
5ab31333 3287 case 8:
9ce079e4 3288 case 7:
56c844e5 3289 case 6:
9ce079e4
CW
3290 case 5:
3291 case 4: i965_write_fence_reg(dev, reg, obj); break;
3292 case 3: i915_write_fence_reg(dev, reg, obj); break;
3293 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3294 default: BUG();
9ce079e4 3295 }
d0a57789
CW
3296
3297 /* And similarly be paranoid that no direct access to this region
3298 * is reordered to before the fence is installed.
3299 */
3300 if (i915_gem_object_needs_mb(obj))
3301 mb();
de151cf6
JB
3302}
3303
61050808
CW
3304static inline int fence_number(struct drm_i915_private *dev_priv,
3305 struct drm_i915_fence_reg *fence)
3306{
3307 return fence - dev_priv->fence_regs;
3308}
3309
3310static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3311 struct drm_i915_fence_reg *fence,
3312 bool enable)
3313{
2dc8aae0 3314 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3315 int reg = fence_number(dev_priv, fence);
3316
3317 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3318
3319 if (enable) {
46a0b638 3320 obj->fence_reg = reg;
61050808
CW
3321 fence->obj = obj;
3322 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3323 } else {
3324 obj->fence_reg = I915_FENCE_REG_NONE;
3325 fence->obj = NULL;
3326 list_del_init(&fence->lru_list);
3327 }
94a335db 3328 obj->fence_dirty = false;
61050808
CW
3329}
3330
d9e86c0e 3331static int
d0a57789 3332i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3333{
97b2a6a1
JH
3334 if (obj->last_fenced_req) {
3335 int ret = i915_wait_seqno(obj->ring,
3336 i915_gem_request_get_seqno(obj->last_fenced_req));
18991845
CW
3337 if (ret)
3338 return ret;
d9e86c0e 3339
97b2a6a1 3340 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3341 }
3342
3343 return 0;
3344}
3345
3346int
3347i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3348{
61050808 3349 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3350 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3351 int ret;
3352
d0a57789 3353 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3354 if (ret)
3355 return ret;
3356
61050808
CW
3357 if (obj->fence_reg == I915_FENCE_REG_NONE)
3358 return 0;
d9e86c0e 3359
f9c513e9
CW
3360 fence = &dev_priv->fence_regs[obj->fence_reg];
3361
aff10b30
DV
3362 if (WARN_ON(fence->pin_count))
3363 return -EBUSY;
3364
61050808 3365 i915_gem_object_fence_lost(obj);
f9c513e9 3366 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3367
3368 return 0;
3369}
3370
3371static struct drm_i915_fence_reg *
a360bb1a 3372i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3373{
ae3db24a 3374 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3375 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3376 int i;
ae3db24a
DV
3377
3378 /* First try to find a free reg */
d9e86c0e 3379 avail = NULL;
ae3db24a
DV
3380 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3381 reg = &dev_priv->fence_regs[i];
3382 if (!reg->obj)
d9e86c0e 3383 return reg;
ae3db24a 3384
1690e1eb 3385 if (!reg->pin_count)
d9e86c0e 3386 avail = reg;
ae3db24a
DV
3387 }
3388
d9e86c0e 3389 if (avail == NULL)
5dce5b93 3390 goto deadlock;
ae3db24a
DV
3391
3392 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3393 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3394 if (reg->pin_count)
ae3db24a
DV
3395 continue;
3396
8fe301ad 3397 return reg;
ae3db24a
DV
3398 }
3399
5dce5b93
CW
3400deadlock:
3401 /* Wait for completion of pending flips which consume fences */
3402 if (intel_has_pending_fb_unpin(dev))
3403 return ERR_PTR(-EAGAIN);
3404
3405 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3406}
3407
de151cf6 3408/**
9a5a53b3 3409 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3410 * @obj: object to map through a fence reg
3411 *
3412 * When mapping objects through the GTT, userspace wants to be able to write
3413 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3414 * This function walks the fence regs looking for a free one for @obj,
3415 * stealing one if it can't find any.
3416 *
3417 * It then sets up the reg based on the object's properties: address, pitch
3418 * and tiling format.
9a5a53b3
CW
3419 *
3420 * For an untiled surface, this removes any existing fence.
de151cf6 3421 */
8c4b8c3f 3422int
06d98131 3423i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3424{
05394f39 3425 struct drm_device *dev = obj->base.dev;
79e53945 3426 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3427 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3428 struct drm_i915_fence_reg *reg;
ae3db24a 3429 int ret;
de151cf6 3430
14415745
CW
3431 /* Have we updated the tiling parameters upon the object and so
3432 * will need to serialise the write to the associated fence register?
3433 */
5d82e3e6 3434 if (obj->fence_dirty) {
d0a57789 3435 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3436 if (ret)
3437 return ret;
3438 }
9a5a53b3 3439
d9e86c0e 3440 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3441 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3442 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3443 if (!obj->fence_dirty) {
14415745
CW
3444 list_move_tail(&reg->lru_list,
3445 &dev_priv->mm.fence_list);
3446 return 0;
3447 }
3448 } else if (enable) {
e6a84468
CW
3449 if (WARN_ON(!obj->map_and_fenceable))
3450 return -EINVAL;
3451
14415745 3452 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3453 if (IS_ERR(reg))
3454 return PTR_ERR(reg);
d9e86c0e 3455
14415745
CW
3456 if (reg->obj) {
3457 struct drm_i915_gem_object *old = reg->obj;
3458
d0a57789 3459 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3460 if (ret)
3461 return ret;
3462
14415745 3463 i915_gem_object_fence_lost(old);
29c5a587 3464 }
14415745 3465 } else
a09ba7fa 3466 return 0;
a09ba7fa 3467
14415745 3468 i915_gem_object_update_fence(obj, reg, enable);
14415745 3469
9ce079e4 3470 return 0;
de151cf6
JB
3471}
3472
4144f9b5 3473static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3474 unsigned long cache_level)
3475{
4144f9b5 3476 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3477 struct drm_mm_node *other;
3478
4144f9b5
CW
3479 /*
3480 * On some machines we have to be careful when putting differing types
3481 * of snoopable memory together to avoid the prefetcher crossing memory
3482 * domains and dying. During vm initialisation, we decide whether or not
3483 * these constraints apply and set the drm_mm.color_adjust
3484 * appropriately.
42d6ab48 3485 */
4144f9b5 3486 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3487 return true;
3488
c6cfb325 3489 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3490 return true;
3491
3492 if (list_empty(&gtt_space->node_list))
3493 return true;
3494
3495 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3496 if (other->allocated && !other->hole_follows && other->color != cache_level)
3497 return false;
3498
3499 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3500 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3501 return false;
3502
3503 return true;
3504}
3505
673a394b
EA
3506/**
3507 * Finds free space in the GTT aperture and binds the object there.
3508 */
262de145 3509static struct i915_vma *
07fe0b12
BW
3510i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3511 struct i915_address_space *vm,
3512 unsigned alignment,
d23db88c 3513 uint64_t flags)
673a394b 3514{
05394f39 3515 struct drm_device *dev = obj->base.dev;
3e31c6c0 3516 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3517 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3518 unsigned long start =
3519 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3520 unsigned long end =
1ec9e26d 3521 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3522 struct i915_vma *vma;
07f73f69 3523 int ret;
673a394b 3524
e28f8711
CW
3525 fence_size = i915_gem_get_gtt_size(dev,
3526 obj->base.size,
3527 obj->tiling_mode);
3528 fence_alignment = i915_gem_get_gtt_alignment(dev,
3529 obj->base.size,
d865110c 3530 obj->tiling_mode, true);
e28f8711 3531 unfenced_alignment =
d865110c 3532 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3533 obj->base.size,
3534 obj->tiling_mode, false);
a00b10c3 3535
673a394b 3536 if (alignment == 0)
1ec9e26d 3537 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3538 unfenced_alignment;
1ec9e26d 3539 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3540 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3541 return ERR_PTR(-EINVAL);
673a394b
EA
3542 }
3543
1ec9e26d 3544 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3545
654fc607
CW
3546 /* If the object is bigger than the entire aperture, reject it early
3547 * before evicting everything in a vain attempt to find space.
3548 */
d23db88c
CW
3549 if (obj->base.size > end) {
3550 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3551 obj->base.size,
1ec9e26d 3552 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3553 end);
262de145 3554 return ERR_PTR(-E2BIG);
654fc607
CW
3555 }
3556
37e680a1 3557 ret = i915_gem_object_get_pages(obj);
6c085a72 3558 if (ret)
262de145 3559 return ERR_PTR(ret);
6c085a72 3560
fbdda6fb
CW
3561 i915_gem_object_pin_pages(obj);
3562
accfef2e 3563 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3564 if (IS_ERR(vma))
bc6bc15b 3565 goto err_unpin;
2f633156 3566
0a9ae0d7 3567search_free:
07fe0b12 3568 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3569 size, alignment,
d23db88c
CW
3570 obj->cache_level,
3571 start, end,
62347f9e
LK
3572 DRM_MM_SEARCH_DEFAULT,
3573 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3574 if (ret) {
f6cd1f15 3575 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3576 obj->cache_level,
3577 start, end,
3578 flags);
dc9dd7a2
CW
3579 if (ret == 0)
3580 goto search_free;
9731129c 3581
bc6bc15b 3582 goto err_free_vma;
673a394b 3583 }
4144f9b5 3584 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3585 ret = -EINVAL;
bc6bc15b 3586 goto err_remove_node;
673a394b
EA
3587 }
3588
74163907 3589 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3590 if (ret)
bc6bc15b 3591 goto err_remove_node;
673a394b 3592
35c20a60 3593 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3594 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3595
1ec9e26d 3596 trace_i915_vma_bind(vma, flags);
8ea99c92 3597 vma->bind_vma(vma, obj->cache_level,
c826c449 3598 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
8ea99c92 3599
262de145 3600 return vma;
2f633156 3601
bc6bc15b 3602err_remove_node:
6286ef9b 3603 drm_mm_remove_node(&vma->node);
bc6bc15b 3604err_free_vma:
2f633156 3605 i915_gem_vma_destroy(vma);
262de145 3606 vma = ERR_PTR(ret);
bc6bc15b 3607err_unpin:
2f633156 3608 i915_gem_object_unpin_pages(obj);
262de145 3609 return vma;
673a394b
EA
3610}
3611
000433b6 3612bool
2c22569b
CW
3613i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3614 bool force)
673a394b 3615{
673a394b
EA
3616 /* If we don't have a page list set up, then we're not pinned
3617 * to GPU, and we can ignore the cache flush because it'll happen
3618 * again at bind time.
3619 */
05394f39 3620 if (obj->pages == NULL)
000433b6 3621 return false;
673a394b 3622
769ce464
ID
3623 /*
3624 * Stolen memory is always coherent with the GPU as it is explicitly
3625 * marked as wc by the system, or the system is cache-coherent.
3626 */
6a2c4232 3627 if (obj->stolen || obj->phys_handle)
000433b6 3628 return false;
769ce464 3629
9c23f7fc
CW
3630 /* If the GPU is snooping the contents of the CPU cache,
3631 * we do not need to manually clear the CPU cache lines. However,
3632 * the caches are only snooped when the render cache is
3633 * flushed/invalidated. As we always have to emit invalidations
3634 * and flushes when moving into and out of the RENDER domain, correct
3635 * snooping behaviour occurs naturally as the result of our domain
3636 * tracking.
3637 */
2c22569b 3638 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3639 return false;
9c23f7fc 3640
1c5d22f7 3641 trace_i915_gem_object_clflush(obj);
9da3da66 3642 drm_clflush_sg(obj->pages);
000433b6
CW
3643
3644 return true;
e47c68e9
EA
3645}
3646
3647/** Flushes the GTT write domain for the object if it's dirty. */
3648static void
05394f39 3649i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3650{
1c5d22f7
CW
3651 uint32_t old_write_domain;
3652
05394f39 3653 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3654 return;
3655
63256ec5 3656 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3657 * to it immediately go to main memory as far as we know, so there's
3658 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3659 *
3660 * However, we do have to enforce the order so that all writes through
3661 * the GTT land before any writes to the device, such as updates to
3662 * the GATT itself.
e47c68e9 3663 */
63256ec5
CW
3664 wmb();
3665
05394f39
CW
3666 old_write_domain = obj->base.write_domain;
3667 obj->base.write_domain = 0;
1c5d22f7 3668
f99d7069
DV
3669 intel_fb_obj_flush(obj, false);
3670
1c5d22f7 3671 trace_i915_gem_object_change_domain(obj,
05394f39 3672 obj->base.read_domains,
1c5d22f7 3673 old_write_domain);
e47c68e9
EA
3674}
3675
3676/** Flushes the CPU write domain for the object if it's dirty. */
3677static void
2c22569b
CW
3678i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3679 bool force)
e47c68e9 3680{
1c5d22f7 3681 uint32_t old_write_domain;
e47c68e9 3682
05394f39 3683 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3684 return;
3685
000433b6
CW
3686 if (i915_gem_clflush_object(obj, force))
3687 i915_gem_chipset_flush(obj->base.dev);
3688
05394f39
CW
3689 old_write_domain = obj->base.write_domain;
3690 obj->base.write_domain = 0;
1c5d22f7 3691
f99d7069
DV
3692 intel_fb_obj_flush(obj, false);
3693
1c5d22f7 3694 trace_i915_gem_object_change_domain(obj,
05394f39 3695 obj->base.read_domains,
1c5d22f7 3696 old_write_domain);
e47c68e9
EA
3697}
3698
2ef7eeaa
EA
3699/**
3700 * Moves a single object to the GTT read, and possibly write domain.
3701 *
3702 * This function returns when the move is complete, including waiting on
3703 * flushes to occur.
3704 */
79e53945 3705int
2021746e 3706i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3707{
3e31c6c0 3708 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3709 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3710 uint32_t old_write_domain, old_read_domains;
e47c68e9 3711 int ret;
2ef7eeaa 3712
02354392 3713 /* Not valid to be called on unbound objects. */
dc8cd1e7 3714 if (vma == NULL)
02354392
EA
3715 return -EINVAL;
3716
8d7e3de1
CW
3717 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3718 return 0;
3719
0201f1ec 3720 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3721 if (ret)
3722 return ret;
3723
c8725f3d 3724 i915_gem_object_retire(obj);
2c22569b 3725 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3726
d0a57789
CW
3727 /* Serialise direct access to this object with the barriers for
3728 * coherent writes from the GPU, by effectively invalidating the
3729 * GTT domain upon first access.
3730 */
3731 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3732 mb();
3733
05394f39
CW
3734 old_write_domain = obj->base.write_domain;
3735 old_read_domains = obj->base.read_domains;
1c5d22f7 3736
e47c68e9
EA
3737 /* It should now be out of any other write domains, and we can update
3738 * the domain values for our changes.
3739 */
05394f39
CW
3740 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3741 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3742 if (write) {
05394f39
CW
3743 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3744 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3745 obj->dirty = 1;
2ef7eeaa
EA
3746 }
3747
f99d7069
DV
3748 if (write)
3749 intel_fb_obj_invalidate(obj, NULL);
3750
1c5d22f7
CW
3751 trace_i915_gem_object_change_domain(obj,
3752 old_read_domains,
3753 old_write_domain);
3754
8325a09d 3755 /* And bump the LRU for this access */
dc8cd1e7
CW
3756 if (i915_gem_object_is_inactive(obj))
3757 list_move_tail(&vma->mm_list,
3758 &dev_priv->gtt.base.inactive_list);
8325a09d 3759
e47c68e9
EA
3760 return 0;
3761}
3762
e4ffd173
CW
3763int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3764 enum i915_cache_level cache_level)
3765{
7bddb01f 3766 struct drm_device *dev = obj->base.dev;
df6f783a 3767 struct i915_vma *vma, *next;
e4ffd173
CW
3768 int ret;
3769
3770 if (obj->cache_level == cache_level)
3771 return 0;
3772
d7f46fc4 3773 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3774 DRM_DEBUG("can not change the cache level of pinned objects\n");
3775 return -EBUSY;
3776 }
3777
df6f783a 3778 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3779 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3780 ret = i915_vma_unbind(vma);
3089c6f2
BW
3781 if (ret)
3782 return ret;
3089c6f2 3783 }
42d6ab48
CW
3784 }
3785
3089c6f2 3786 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3787 ret = i915_gem_object_finish_gpu(obj);
3788 if (ret)
3789 return ret;
3790
3791 i915_gem_object_finish_gtt(obj);
3792
3793 /* Before SandyBridge, you could not use tiling or fence
3794 * registers with snooped memory, so relinquish any fences
3795 * currently pointing to our region in the aperture.
3796 */
42d6ab48 3797 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3798 ret = i915_gem_object_put_fence(obj);
3799 if (ret)
3800 return ret;
3801 }
3802
6f65e29a 3803 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3804 if (drm_mm_node_allocated(&vma->node))
3805 vma->bind_vma(vma, cache_level,
aff43766 3806 vma->bound & GLOBAL_BIND);
e4ffd173
CW
3807 }
3808
2c22569b
CW
3809 list_for_each_entry(vma, &obj->vma_list, vma_link)
3810 vma->node.color = cache_level;
3811 obj->cache_level = cache_level;
3812
3813 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3814 u32 old_read_domains, old_write_domain;
3815
3816 /* If we're coming from LLC cached, then we haven't
3817 * actually been tracking whether the data is in the
3818 * CPU cache or not, since we only allow one bit set
3819 * in obj->write_domain and have been skipping the clflushes.
3820 * Just set it to the CPU cache for now.
3821 */
c8725f3d 3822 i915_gem_object_retire(obj);
e4ffd173 3823 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3824
3825 old_read_domains = obj->base.read_domains;
3826 old_write_domain = obj->base.write_domain;
3827
3828 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3829 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3830
3831 trace_i915_gem_object_change_domain(obj,
3832 old_read_domains,
3833 old_write_domain);
3834 }
3835
e4ffd173
CW
3836 return 0;
3837}
3838
199adf40
BW
3839int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3840 struct drm_file *file)
e6994aee 3841{
199adf40 3842 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3843 struct drm_i915_gem_object *obj;
3844 int ret;
3845
3846 ret = i915_mutex_lock_interruptible(dev);
3847 if (ret)
3848 return ret;
3849
3850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3851 if (&obj->base == NULL) {
3852 ret = -ENOENT;
3853 goto unlock;
3854 }
3855
651d794f
CW
3856 switch (obj->cache_level) {
3857 case I915_CACHE_LLC:
3858 case I915_CACHE_L3_LLC:
3859 args->caching = I915_CACHING_CACHED;
3860 break;
3861
4257d3ba
CW
3862 case I915_CACHE_WT:
3863 args->caching = I915_CACHING_DISPLAY;
3864 break;
3865
651d794f
CW
3866 default:
3867 args->caching = I915_CACHING_NONE;
3868 break;
3869 }
e6994aee
CW
3870
3871 drm_gem_object_unreference(&obj->base);
3872unlock:
3873 mutex_unlock(&dev->struct_mutex);
3874 return ret;
3875}
3876
199adf40
BW
3877int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3878 struct drm_file *file)
e6994aee 3879{
199adf40 3880 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3881 struct drm_i915_gem_object *obj;
3882 enum i915_cache_level level;
3883 int ret;
3884
199adf40
BW
3885 switch (args->caching) {
3886 case I915_CACHING_NONE:
e6994aee
CW
3887 level = I915_CACHE_NONE;
3888 break;
199adf40 3889 case I915_CACHING_CACHED:
e6994aee
CW
3890 level = I915_CACHE_LLC;
3891 break;
4257d3ba
CW
3892 case I915_CACHING_DISPLAY:
3893 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3894 break;
e6994aee
CW
3895 default:
3896 return -EINVAL;
3897 }
3898
3bc2913e
BW
3899 ret = i915_mutex_lock_interruptible(dev);
3900 if (ret)
3901 return ret;
3902
e6994aee
CW
3903 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3904 if (&obj->base == NULL) {
3905 ret = -ENOENT;
3906 goto unlock;
3907 }
3908
3909 ret = i915_gem_object_set_cache_level(obj, level);
3910
3911 drm_gem_object_unreference(&obj->base);
3912unlock:
3913 mutex_unlock(&dev->struct_mutex);
3914 return ret;
3915}
3916
cc98b413
CW
3917static bool is_pin_display(struct drm_i915_gem_object *obj)
3918{
19656430
OM
3919 struct i915_vma *vma;
3920
19656430
OM
3921 vma = i915_gem_obj_to_ggtt(obj);
3922 if (!vma)
3923 return false;
3924
4feb7659 3925 /* There are 2 sources that pin objects:
cc98b413
CW
3926 * 1. The display engine (scanouts, sprites, cursors);
3927 * 2. Reservations for execbuffer;
cc98b413
CW
3928 *
3929 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3930 * are only called outside of the reservation path.
cc98b413 3931 */
4feb7659 3932 return vma->pin_count;
cc98b413
CW
3933}
3934
b9241ea3 3935/*
2da3b9b9
CW
3936 * Prepare buffer for display plane (scanout, cursors, etc).
3937 * Can be called from an uninterruptible phase (modesetting) and allows
3938 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3939 */
3940int
2da3b9b9
CW
3941i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3942 u32 alignment,
a4872ba6 3943 struct intel_engine_cs *pipelined)
b9241ea3 3944{
2da3b9b9 3945 u32 old_read_domains, old_write_domain;
19656430 3946 bool was_pin_display;
b9241ea3
ZW
3947 int ret;
3948
0be73284 3949 if (pipelined != obj->ring) {
2911a35b
BW
3950 ret = i915_gem_object_sync(obj, pipelined);
3951 if (ret)
b9241ea3
ZW
3952 return ret;
3953 }
3954
cc98b413
CW
3955 /* Mark the pin_display early so that we account for the
3956 * display coherency whilst setting up the cache domains.
3957 */
19656430 3958 was_pin_display = obj->pin_display;
cc98b413
CW
3959 obj->pin_display = true;
3960
a7ef0640
EA
3961 /* The display engine is not coherent with the LLC cache on gen6. As
3962 * a result, we make sure that the pinning that is about to occur is
3963 * done with uncached PTEs. This is lowest common denominator for all
3964 * chipsets.
3965 *
3966 * However for gen6+, we could do better by using the GFDT bit instead
3967 * of uncaching, which would allow us to flush all the LLC-cached data
3968 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3969 */
651d794f
CW
3970 ret = i915_gem_object_set_cache_level(obj,
3971 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3972 if (ret)
cc98b413 3973 goto err_unpin_display;
a7ef0640 3974
2da3b9b9
CW
3975 /* As the user may map the buffer once pinned in the display plane
3976 * (e.g. libkms for the bootup splash), we have to ensure that we
3977 * always use map_and_fenceable for all scanout buffers.
3978 */
1ec9e26d 3979 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3980 if (ret)
cc98b413 3981 goto err_unpin_display;
2da3b9b9 3982
2c22569b 3983 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3984
2da3b9b9 3985 old_write_domain = obj->base.write_domain;
05394f39 3986 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3987
3988 /* It should now be out of any other write domains, and we can update
3989 * the domain values for our changes.
3990 */
e5f1d962 3991 obj->base.write_domain = 0;
05394f39 3992 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3993
3994 trace_i915_gem_object_change_domain(obj,
3995 old_read_domains,
2da3b9b9 3996 old_write_domain);
b9241ea3
ZW
3997
3998 return 0;
cc98b413
CW
3999
4000err_unpin_display:
19656430
OM
4001 WARN_ON(was_pin_display != is_pin_display(obj));
4002 obj->pin_display = was_pin_display;
cc98b413
CW
4003 return ret;
4004}
4005
4006void
4007i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4008{
d7f46fc4 4009 i915_gem_object_ggtt_unpin(obj);
cc98b413 4010 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4011}
4012
85345517 4013int
a8198eea 4014i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4015{
88241785
CW
4016 int ret;
4017
a8198eea 4018 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4019 return 0;
4020
0201f1ec 4021 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4022 if (ret)
4023 return ret;
4024
a8198eea
CW
4025 /* Ensure that we invalidate the GPU's caches and TLBs. */
4026 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4027 return 0;
85345517
CW
4028}
4029
e47c68e9
EA
4030/**
4031 * Moves a single object to the CPU read, and possibly write domain.
4032 *
4033 * This function returns when the move is complete, including waiting on
4034 * flushes to occur.
4035 */
dabdfe02 4036int
919926ae 4037i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4038{
1c5d22f7 4039 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4040 int ret;
4041
8d7e3de1
CW
4042 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4043 return 0;
4044
0201f1ec 4045 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4046 if (ret)
4047 return ret;
4048
c8725f3d 4049 i915_gem_object_retire(obj);
e47c68e9 4050 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4051
05394f39
CW
4052 old_write_domain = obj->base.write_domain;
4053 old_read_domains = obj->base.read_domains;
1c5d22f7 4054
e47c68e9 4055 /* Flush the CPU cache if it's still invalid. */
05394f39 4056 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4057 i915_gem_clflush_object(obj, false);
2ef7eeaa 4058
05394f39 4059 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4060 }
4061
4062 /* It should now be out of any other write domains, and we can update
4063 * the domain values for our changes.
4064 */
05394f39 4065 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4066
4067 /* If we're writing through the CPU, then the GPU read domains will
4068 * need to be invalidated at next use.
4069 */
4070 if (write) {
05394f39
CW
4071 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4072 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4073 }
2ef7eeaa 4074
f99d7069
DV
4075 if (write)
4076 intel_fb_obj_invalidate(obj, NULL);
4077
1c5d22f7
CW
4078 trace_i915_gem_object_change_domain(obj,
4079 old_read_domains,
4080 old_write_domain);
4081
2ef7eeaa
EA
4082 return 0;
4083}
4084
673a394b
EA
4085/* Throttle our rendering by waiting until the ring has completed our requests
4086 * emitted over 20 msec ago.
4087 *
b962442e
EA
4088 * Note that if we were to use the current jiffies each time around the loop,
4089 * we wouldn't escape the function with any frames outstanding if the time to
4090 * render a frame was over 20ms.
4091 *
673a394b
EA
4092 * This should get us reasonable parallelism between CPU and GPU but also
4093 * relatively low latency when blocking on a particular request to finish.
4094 */
40a5f0de 4095static int
f787a5f5 4096i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4097{
f787a5f5
CW
4098 struct drm_i915_private *dev_priv = dev->dev_private;
4099 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4100 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4101 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4102 unsigned reset_counter;
f787a5f5 4103 int ret;
93533c29 4104
308887aa
DV
4105 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4106 if (ret)
4107 return ret;
4108
4109 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4110 if (ret)
4111 return ret;
e110e8d6 4112
1c25595f 4113 spin_lock(&file_priv->mm.lock);
f787a5f5 4114 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4115 if (time_after_eq(request->emitted_jiffies, recent_enough))
4116 break;
40a5f0de 4117
54fb2411 4118 target = request;
b962442e 4119 }
f69061be 4120 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 4121 spin_unlock(&file_priv->mm.lock);
40a5f0de 4122
54fb2411 4123 if (target == NULL)
f787a5f5 4124 return 0;
2bc43b5c 4125
54fb2411
JH
4126 ret = __i915_wait_seqno(i915_gem_request_get_ring(target),
4127 i915_gem_request_get_seqno(target),
4128 reset_counter, true, NULL, NULL);
f787a5f5
CW
4129 if (ret == 0)
4130 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4131
4132 return ret;
4133}
4134
d23db88c
CW
4135static bool
4136i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4137{
4138 struct drm_i915_gem_object *obj = vma->obj;
4139
4140 if (alignment &&
4141 vma->node.start & (alignment - 1))
4142 return true;
4143
4144 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4145 return true;
4146
4147 if (flags & PIN_OFFSET_BIAS &&
4148 vma->node.start < (flags & PIN_OFFSET_MASK))
4149 return true;
4150
4151 return false;
4152}
4153
673a394b 4154int
05394f39 4155i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4156 struct i915_address_space *vm,
05394f39 4157 uint32_t alignment,
d23db88c 4158 uint64_t flags)
673a394b 4159{
6e7186af 4160 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4161 struct i915_vma *vma;
ef79e17c 4162 unsigned bound;
673a394b
EA
4163 int ret;
4164
6e7186af
BW
4165 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4166 return -ENODEV;
4167
bf3d149b 4168 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4169 return -EINVAL;
07fe0b12 4170
c826c449
CW
4171 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4172 return -EINVAL;
4173
07fe0b12 4174 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4175 if (vma) {
d7f46fc4
BW
4176 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4177 return -EBUSY;
4178
d23db88c 4179 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4180 WARN(vma->pin_count,
ae7d49d8 4181 "bo is already pinned with incorrect alignment:"
f343c5f6 4182 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4183 " obj->map_and_fenceable=%d\n",
07fe0b12 4184 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4185 !!(flags & PIN_MAPPABLE),
05394f39 4186 obj->map_and_fenceable);
07fe0b12 4187 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4188 if (ret)
4189 return ret;
8ea99c92
DV
4190
4191 vma = NULL;
ac0c6b5a
CW
4192 }
4193 }
4194
ef79e17c 4195 bound = vma ? vma->bound : 0;
8ea99c92 4196 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4197 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4198 if (IS_ERR(vma))
4199 return PTR_ERR(vma);
22c344e9 4200 }
76446cac 4201
aff43766 4202 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
8ea99c92 4203 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4204
ef79e17c
CW
4205 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4206 bool mappable, fenceable;
4207 u32 fence_size, fence_alignment;
4208
4209 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4210 obj->base.size,
4211 obj->tiling_mode);
4212 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4213 obj->base.size,
4214 obj->tiling_mode,
4215 true);
4216
4217 fenceable = (vma->node.size == fence_size &&
4218 (vma->node.start & (fence_alignment - 1)) == 0);
4219
4220 mappable = (vma->node.start + obj->base.size <=
4221 dev_priv->gtt.mappable_end);
4222
4223 obj->map_and_fenceable = mappable && fenceable;
4224 }
4225
4226 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4227
8ea99c92 4228 vma->pin_count++;
1ec9e26d
DV
4229 if (flags & PIN_MAPPABLE)
4230 obj->pin_mappable |= true;
673a394b
EA
4231
4232 return 0;
4233}
4234
4235void
d7f46fc4 4236i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4237{
d7f46fc4 4238 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4239
d7f46fc4
BW
4240 BUG_ON(!vma);
4241 BUG_ON(vma->pin_count == 0);
4242 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4243
4244 if (--vma->pin_count == 0)
6299f992 4245 obj->pin_mappable = false;
673a394b
EA
4246}
4247
d8ffa60b
DV
4248bool
4249i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4250{
4251 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4252 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4253 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4254
4255 WARN_ON(!ggtt_vma ||
4256 dev_priv->fence_regs[obj->fence_reg].pin_count >
4257 ggtt_vma->pin_count);
4258 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4259 return true;
4260 } else
4261 return false;
4262}
4263
4264void
4265i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4266{
4267 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4268 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4269 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4270 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4271 }
4272}
4273
673a394b
EA
4274int
4275i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4276 struct drm_file *file)
673a394b
EA
4277{
4278 struct drm_i915_gem_busy *args = data;
05394f39 4279 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4280 int ret;
4281
76c1dec1 4282 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4283 if (ret)
76c1dec1 4284 return ret;
673a394b 4285
05394f39 4286 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4287 if (&obj->base == NULL) {
1d7cfea1
CW
4288 ret = -ENOENT;
4289 goto unlock;
673a394b 4290 }
d1b851fc 4291
0be555b6
CW
4292 /* Count all active objects as busy, even if they are currently not used
4293 * by the gpu. Users of this interface expect objects to eventually
4294 * become non-busy without any further actions, therefore emit any
4295 * necessary flushes here.
c4de0a5d 4296 */
30dfebf3 4297 ret = i915_gem_object_flush_active(obj);
0be555b6 4298
30dfebf3 4299 args->busy = obj->active;
e9808edd
CW
4300 if (obj->ring) {
4301 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4302 args->busy |= intel_ring_flag(obj->ring) << 16;
4303 }
673a394b 4304
05394f39 4305 drm_gem_object_unreference(&obj->base);
1d7cfea1 4306unlock:
673a394b 4307 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4308 return ret;
673a394b
EA
4309}
4310
4311int
4312i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4313 struct drm_file *file_priv)
4314{
0206e353 4315 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4316}
4317
3ef94daa
CW
4318int
4319i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4320 struct drm_file *file_priv)
4321{
656bfa3a 4322 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4323 struct drm_i915_gem_madvise *args = data;
05394f39 4324 struct drm_i915_gem_object *obj;
76c1dec1 4325 int ret;
3ef94daa
CW
4326
4327 switch (args->madv) {
4328 case I915_MADV_DONTNEED:
4329 case I915_MADV_WILLNEED:
4330 break;
4331 default:
4332 return -EINVAL;
4333 }
4334
1d7cfea1
CW
4335 ret = i915_mutex_lock_interruptible(dev);
4336 if (ret)
4337 return ret;
4338
05394f39 4339 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4340 if (&obj->base == NULL) {
1d7cfea1
CW
4341 ret = -ENOENT;
4342 goto unlock;
3ef94daa 4343 }
3ef94daa 4344
d7f46fc4 4345 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4346 ret = -EINVAL;
4347 goto out;
3ef94daa
CW
4348 }
4349
656bfa3a
DV
4350 if (obj->pages &&
4351 obj->tiling_mode != I915_TILING_NONE &&
4352 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4353 if (obj->madv == I915_MADV_WILLNEED)
4354 i915_gem_object_unpin_pages(obj);
4355 if (args->madv == I915_MADV_WILLNEED)
4356 i915_gem_object_pin_pages(obj);
4357 }
4358
05394f39
CW
4359 if (obj->madv != __I915_MADV_PURGED)
4360 obj->madv = args->madv;
3ef94daa 4361
6c085a72
CW
4362 /* if the object is no longer attached, discard its backing storage */
4363 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4364 i915_gem_object_truncate(obj);
4365
05394f39 4366 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4367
1d7cfea1 4368out:
05394f39 4369 drm_gem_object_unreference(&obj->base);
1d7cfea1 4370unlock:
3ef94daa 4371 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4372 return ret;
3ef94daa
CW
4373}
4374
37e680a1
CW
4375void i915_gem_object_init(struct drm_i915_gem_object *obj,
4376 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4377{
35c20a60 4378 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4379 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4380 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4381 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4382
37e680a1
CW
4383 obj->ops = ops;
4384
0327d6ba
CW
4385 obj->fence_reg = I915_FENCE_REG_NONE;
4386 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4387
4388 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4389}
4390
37e680a1
CW
4391static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4392 .get_pages = i915_gem_object_get_pages_gtt,
4393 .put_pages = i915_gem_object_put_pages_gtt,
4394};
4395
05394f39
CW
4396struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4397 size_t size)
ac52bc56 4398{
c397b908 4399 struct drm_i915_gem_object *obj;
5949eac4 4400 struct address_space *mapping;
1a240d4d 4401 gfp_t mask;
ac52bc56 4402
42dcedd4 4403 obj = i915_gem_object_alloc(dev);
c397b908
DV
4404 if (obj == NULL)
4405 return NULL;
673a394b 4406
c397b908 4407 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4408 i915_gem_object_free(obj);
c397b908
DV
4409 return NULL;
4410 }
673a394b 4411
bed1ea95
CW
4412 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4413 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4414 /* 965gm cannot relocate objects above 4GiB. */
4415 mask &= ~__GFP_HIGHMEM;
4416 mask |= __GFP_DMA32;
4417 }
4418
496ad9aa 4419 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4420 mapping_set_gfp_mask(mapping, mask);
5949eac4 4421
37e680a1 4422 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4423
c397b908
DV
4424 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4425 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4426
3d29b842
ED
4427 if (HAS_LLC(dev)) {
4428 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4429 * cache) for about a 10% performance improvement
4430 * compared to uncached. Graphics requests other than
4431 * display scanout are coherent with the CPU in
4432 * accessing this cache. This means in this mode we
4433 * don't need to clflush on the CPU side, and on the
4434 * GPU side we only need to flush internal caches to
4435 * get data visible to the CPU.
4436 *
4437 * However, we maintain the display planes as UC, and so
4438 * need to rebind when first used as such.
4439 */
4440 obj->cache_level = I915_CACHE_LLC;
4441 } else
4442 obj->cache_level = I915_CACHE_NONE;
4443
d861e338
DV
4444 trace_i915_gem_object_create(obj);
4445
05394f39 4446 return obj;
c397b908
DV
4447}
4448
340fbd8c
CW
4449static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4450{
4451 /* If we are the last user of the backing storage (be it shmemfs
4452 * pages or stolen etc), we know that the pages are going to be
4453 * immediately released. In this case, we can then skip copying
4454 * back the contents from the GPU.
4455 */
4456
4457 if (obj->madv != I915_MADV_WILLNEED)
4458 return false;
4459
4460 if (obj->base.filp == NULL)
4461 return true;
4462
4463 /* At first glance, this looks racy, but then again so would be
4464 * userspace racing mmap against close. However, the first external
4465 * reference to the filp can only be obtained through the
4466 * i915_gem_mmap_ioctl() which safeguards us against the user
4467 * acquiring such a reference whilst we are in the middle of
4468 * freeing the object.
4469 */
4470 return atomic_long_read(&obj->base.filp->f_count) == 1;
4471}
4472
1488fc08 4473void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4474{
1488fc08 4475 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4476 struct drm_device *dev = obj->base.dev;
3e31c6c0 4477 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4478 struct i915_vma *vma, *next;
673a394b 4479
f65c9168
PZ
4480 intel_runtime_pm_get(dev_priv);
4481
26e12f89
CW
4482 trace_i915_gem_object_destroy(obj);
4483
07fe0b12 4484 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4485 int ret;
4486
4487 vma->pin_count = 0;
4488 ret = i915_vma_unbind(vma);
07fe0b12
BW
4489 if (WARN_ON(ret == -ERESTARTSYS)) {
4490 bool was_interruptible;
1488fc08 4491
07fe0b12
BW
4492 was_interruptible = dev_priv->mm.interruptible;
4493 dev_priv->mm.interruptible = false;
1488fc08 4494
07fe0b12 4495 WARN_ON(i915_vma_unbind(vma));
1488fc08 4496
07fe0b12
BW
4497 dev_priv->mm.interruptible = was_interruptible;
4498 }
1488fc08
CW
4499 }
4500
1d64ae71
BW
4501 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4502 * before progressing. */
4503 if (obj->stolen)
4504 i915_gem_object_unpin_pages(obj);
4505
a071fa00
DV
4506 WARN_ON(obj->frontbuffer_bits);
4507
656bfa3a
DV
4508 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4509 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4510 obj->tiling_mode != I915_TILING_NONE)
4511 i915_gem_object_unpin_pages(obj);
4512
401c29f6
BW
4513 if (WARN_ON(obj->pages_pin_count))
4514 obj->pages_pin_count = 0;
340fbd8c 4515 if (discard_backing_storage(obj))
5537252b 4516 obj->madv = I915_MADV_DONTNEED;
37e680a1 4517 i915_gem_object_put_pages(obj);
d8cb5086 4518 i915_gem_object_free_mmap_offset(obj);
de151cf6 4519
9da3da66
CW
4520 BUG_ON(obj->pages);
4521
2f745ad3
CW
4522 if (obj->base.import_attach)
4523 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4524
5cc9ed4b
CW
4525 if (obj->ops->release)
4526 obj->ops->release(obj);
4527
05394f39
CW
4528 drm_gem_object_release(&obj->base);
4529 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4530
05394f39 4531 kfree(obj->bit_17);
42dcedd4 4532 i915_gem_object_free(obj);
f65c9168
PZ
4533
4534 intel_runtime_pm_put(dev_priv);
673a394b
EA
4535}
4536
e656a6cb 4537struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4538 struct i915_address_space *vm)
e656a6cb
DV
4539{
4540 struct i915_vma *vma;
4541 list_for_each_entry(vma, &obj->vma_list, vma_link)
4542 if (vma->vm == vm)
4543 return vma;
4544
4545 return NULL;
4546}
4547
2f633156
BW
4548void i915_gem_vma_destroy(struct i915_vma *vma)
4549{
b9d06dd9 4550 struct i915_address_space *vm = NULL;
2f633156 4551 WARN_ON(vma->node.allocated);
aaa05667
CW
4552
4553 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4554 if (!list_empty(&vma->exec_list))
4555 return;
4556
b9d06dd9 4557 vm = vma->vm;
b9d06dd9 4558
841cd773
DV
4559 if (!i915_is_ggtt(vm))
4560 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4561
8b9c2b94 4562 list_del(&vma->vma_link);
b93dab6e 4563
2f633156
BW
4564 kfree(vma);
4565}
4566
e3efda49
CW
4567static void
4568i915_gem_stop_ringbuffers(struct drm_device *dev)
4569{
4570 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4571 struct intel_engine_cs *ring;
e3efda49
CW
4572 int i;
4573
4574 for_each_ring(ring, dev_priv, i)
a83014d3 4575 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4576}
4577
29105ccc 4578int
45c5f202 4579i915_gem_suspend(struct drm_device *dev)
29105ccc 4580{
3e31c6c0 4581 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4582 int ret = 0;
28dfe52a 4583
45c5f202 4584 mutex_lock(&dev->struct_mutex);
b2da9fe5 4585 ret = i915_gpu_idle(dev);
f7403347 4586 if (ret)
45c5f202 4587 goto err;
f7403347 4588
b2da9fe5 4589 i915_gem_retire_requests(dev);
673a394b 4590
29105ccc 4591 /* Under UMS, be paranoid and evict. */
a39d7efc 4592 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4593 i915_gem_evict_everything(dev);
29105ccc 4594
e3efda49 4595 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4596 mutex_unlock(&dev->struct_mutex);
4597
4598 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4599 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4600 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4601
bdcf120b
CW
4602 /* Assert that we sucessfully flushed all the work and
4603 * reset the GPU back to its idle, low power state.
4604 */
4605 WARN_ON(dev_priv->mm.busy);
4606
673a394b 4607 return 0;
45c5f202
CW
4608
4609err:
4610 mutex_unlock(&dev->struct_mutex);
4611 return ret;
673a394b
EA
4612}
4613
a4872ba6 4614int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4615{
c3787e2e 4616 struct drm_device *dev = ring->dev;
3e31c6c0 4617 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4618 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4619 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4620 int i, ret;
b9524a1e 4621
040d2baa 4622 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4623 return 0;
b9524a1e 4624
c3787e2e
BW
4625 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4626 if (ret)
4627 return ret;
b9524a1e 4628
c3787e2e
BW
4629 /*
4630 * Note: We do not worry about the concurrent register cacheline hang
4631 * here because no other code should access these registers other than
4632 * at initialization time.
4633 */
b9524a1e 4634 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4635 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4636 intel_ring_emit(ring, reg_base + i);
4637 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4638 }
4639
c3787e2e 4640 intel_ring_advance(ring);
b9524a1e 4641
c3787e2e 4642 return ret;
b9524a1e
BW
4643}
4644
f691e2f4
DV
4645void i915_gem_init_swizzling(struct drm_device *dev)
4646{
3e31c6c0 4647 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4648
11782b02 4649 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4650 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4651 return;
4652
4653 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4654 DISP_TILE_SURFACE_SWIZZLING);
4655
11782b02
DV
4656 if (IS_GEN5(dev))
4657 return;
4658
f691e2f4
DV
4659 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4660 if (IS_GEN6(dev))
6b26c86d 4661 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4662 else if (IS_GEN7(dev))
6b26c86d 4663 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4664 else if (IS_GEN8(dev))
4665 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4666 else
4667 BUG();
f691e2f4 4668}
e21af88d 4669
67b1b571
CW
4670static bool
4671intel_enable_blt(struct drm_device *dev)
4672{
4673 if (!HAS_BLT(dev))
4674 return false;
4675
4676 /* The blitter was dysfunctional on early prototypes */
4677 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4678 DRM_INFO("BLT not supported on this pre-production hardware;"
4679 " graphics performance will be degraded.\n");
4680 return false;
4681 }
4682
4683 return true;
4684}
4685
81e7f200
VS
4686static void init_unused_ring(struct drm_device *dev, u32 base)
4687{
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690 I915_WRITE(RING_CTL(base), 0);
4691 I915_WRITE(RING_HEAD(base), 0);
4692 I915_WRITE(RING_TAIL(base), 0);
4693 I915_WRITE(RING_START(base), 0);
4694}
4695
4696static void init_unused_rings(struct drm_device *dev)
4697{
4698 if (IS_I830(dev)) {
4699 init_unused_ring(dev, PRB1_BASE);
4700 init_unused_ring(dev, SRB0_BASE);
4701 init_unused_ring(dev, SRB1_BASE);
4702 init_unused_ring(dev, SRB2_BASE);
4703 init_unused_ring(dev, SRB3_BASE);
4704 } else if (IS_GEN2(dev)) {
4705 init_unused_ring(dev, SRB0_BASE);
4706 init_unused_ring(dev, SRB1_BASE);
4707 } else if (IS_GEN3(dev)) {
4708 init_unused_ring(dev, PRB1_BASE);
4709 init_unused_ring(dev, PRB2_BASE);
4710 }
4711}
4712
a83014d3 4713int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4714{
4fc7c971 4715 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4716 int ret;
68f95ba9 4717
81e7f200
VS
4718 /*
4719 * At least 830 can leave some of the unused rings
4720 * "active" (ie. head != tail) after resume which
4721 * will prevent c3 entry. Makes sure all unused rings
4722 * are totally idle.
4723 */
4724 init_unused_rings(dev);
4725
5c1143bb 4726 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4727 if (ret)
b6913e4b 4728 return ret;
68f95ba9
CW
4729
4730 if (HAS_BSD(dev)) {
5c1143bb 4731 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4732 if (ret)
4733 goto cleanup_render_ring;
d1b851fc 4734 }
68f95ba9 4735
67b1b571 4736 if (intel_enable_blt(dev)) {
549f7365
CW
4737 ret = intel_init_blt_ring_buffer(dev);
4738 if (ret)
4739 goto cleanup_bsd_ring;
4740 }
4741
9a8a2213
BW
4742 if (HAS_VEBOX(dev)) {
4743 ret = intel_init_vebox_ring_buffer(dev);
4744 if (ret)
4745 goto cleanup_blt_ring;
4746 }
4747
845f74a7
ZY
4748 if (HAS_BSD2(dev)) {
4749 ret = intel_init_bsd2_ring_buffer(dev);
4750 if (ret)
4751 goto cleanup_vebox_ring;
4752 }
9a8a2213 4753
99433931 4754 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4755 if (ret)
845f74a7 4756 goto cleanup_bsd2_ring;
4fc7c971
BW
4757
4758 return 0;
4759
845f74a7
ZY
4760cleanup_bsd2_ring:
4761 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4762cleanup_vebox_ring:
4763 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4764cleanup_blt_ring:
4765 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4766cleanup_bsd_ring:
4767 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4768cleanup_render_ring:
4769 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4770
4771 return ret;
4772}
4773
4774int
4775i915_gem_init_hw(struct drm_device *dev)
4776{
3e31c6c0 4777 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4778 int ret, i;
4fc7c971
BW
4779
4780 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4781 return -EIO;
4782
59124506 4783 if (dev_priv->ellc_size)
05e21cc4 4784 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4785
0bf21347
VS
4786 if (IS_HASWELL(dev))
4787 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4788 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4789
88a2b2a3 4790 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4791 if (IS_IVYBRIDGE(dev)) {
4792 u32 temp = I915_READ(GEN7_MSG_CTL);
4793 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4794 I915_WRITE(GEN7_MSG_CTL, temp);
4795 } else if (INTEL_INFO(dev)->gen >= 7) {
4796 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4797 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4798 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4799 }
88a2b2a3
BW
4800 }
4801
4fc7c971
BW
4802 i915_gem_init_swizzling(dev);
4803
a83014d3 4804 ret = dev_priv->gt.init_rings(dev);
99433931
MK
4805 if (ret)
4806 return ret;
4807
c3787e2e
BW
4808 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4809 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4810
254f965c 4811 /*
2fa48d8d
BW
4812 * XXX: Contexts should only be initialized once. Doing a switch to the
4813 * default context switch however is something we'd like to do after
4814 * reset or thaw (the latter may not actually be necessary for HW, but
4815 * goes with our code better). Context switching requires rings (for
4816 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4817 */
2fa48d8d 4818 ret = i915_gem_context_enable(dev_priv);
60990320 4819 if (ret && ret != -EIO) {
2fa48d8d 4820 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4821 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4822
4823 return ret;
4824 }
4825
4826 ret = i915_ppgtt_init_hw(dev);
4827 if (ret && ret != -EIO) {
4828 DRM_ERROR("PPGTT enable failed %d\n", ret);
4829 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4830 }
e21af88d 4831
2fa48d8d 4832 return ret;
8187a2b7
ZN
4833}
4834
1070a42b
CW
4835int i915_gem_init(struct drm_device *dev)
4836{
4837 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4838 int ret;
4839
127f1003
OM
4840 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4841 i915.enable_execlists);
4842
1070a42b 4843 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4844
4845 if (IS_VALLEYVIEW(dev)) {
4846 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4847 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4848 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4849 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4850 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4851 }
4852
a83014d3
OM
4853 if (!i915.enable_execlists) {
4854 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4855 dev_priv->gt.init_rings = i915_gem_init_rings;
4856 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4857 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4858 } else {
4859 dev_priv->gt.do_execbuf = intel_execlists_submission;
4860 dev_priv->gt.init_rings = intel_logical_rings_init;
4861 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4862 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4863 }
4864
6c5566a8
DV
4865 ret = i915_gem_init_userptr(dev);
4866 if (ret) {
4867 mutex_unlock(&dev->struct_mutex);
4868 return ret;
4869 }
4870
d7e5008f 4871 i915_gem_init_global_gtt(dev);
d62b4892 4872
2fa48d8d 4873 ret = i915_gem_context_init(dev);
e3848694
MK
4874 if (ret) {
4875 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4876 return ret;
e3848694 4877 }
2fa48d8d 4878
1070a42b 4879 ret = i915_gem_init_hw(dev);
60990320
CW
4880 if (ret == -EIO) {
4881 /* Allow ring initialisation to fail by marking the GPU as
4882 * wedged. But we only want to do this where the GPU is angry,
4883 * for all other failure, such as an allocation failure, bail.
4884 */
4885 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4886 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4887 ret = 0;
1070a42b 4888 }
60990320 4889 mutex_unlock(&dev->struct_mutex);
1070a42b 4890
60990320 4891 return ret;
1070a42b
CW
4892}
4893
8187a2b7
ZN
4894void
4895i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4896{
3e31c6c0 4897 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4898 struct intel_engine_cs *ring;
1ec14ad3 4899 int i;
8187a2b7 4900
b4519513 4901 for_each_ring(ring, dev_priv, i)
a83014d3 4902 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4903}
4904
64193406 4905static void
a4872ba6 4906init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4907{
4908 INIT_LIST_HEAD(&ring->active_list);
4909 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4910}
4911
7e0d96bc
BW
4912void i915_init_vm(struct drm_i915_private *dev_priv,
4913 struct i915_address_space *vm)
fc8c067e 4914{
7e0d96bc
BW
4915 if (!i915_is_ggtt(vm))
4916 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4917 vm->dev = dev_priv->dev;
4918 INIT_LIST_HEAD(&vm->active_list);
4919 INIT_LIST_HEAD(&vm->inactive_list);
4920 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4921 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4922}
4923
673a394b
EA
4924void
4925i915_gem_load(struct drm_device *dev)
4926{
3e31c6c0 4927 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4928 int i;
4929
4930 dev_priv->slab =
4931 kmem_cache_create("i915_gem_object",
4932 sizeof(struct drm_i915_gem_object), 0,
4933 SLAB_HWCACHE_ALIGN,
4934 NULL);
673a394b 4935
fc8c067e
BW
4936 INIT_LIST_HEAD(&dev_priv->vm_list);
4937 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4938
a33afea5 4939 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4940 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4941 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4942 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4943 for (i = 0; i < I915_NUM_RINGS; i++)
4944 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4945 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4946 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4947 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4948 i915_gem_retire_work_handler);
b29c19b6
CW
4949 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4950 i915_gem_idle_work_handler);
1f83fee0 4951 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4952
94400120 4953 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4954 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4955 I915_WRITE(MI_ARB_STATE,
4956 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4957 }
4958
72bfa19c
CW
4959 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4960
de151cf6 4961 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4962 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4963 dev_priv->fence_reg_start = 3;
de151cf6 4964
42b5aeab
VS
4965 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4966 dev_priv->num_fence_regs = 32;
4967 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4968 dev_priv->num_fence_regs = 16;
4969 else
4970 dev_priv->num_fence_regs = 8;
4971
b5aa8a0f 4972 /* Initialize fence registers to zero */
19b2dbde
CW
4973 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4974 i915_gem_restore_fences(dev);
10ed13e4 4975
673a394b 4976 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4977 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4978
ce453d81
CW
4979 dev_priv->mm.interruptible = true;
4980
ceabbba5
CW
4981 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4982 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4983 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4984 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4985
4986 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4987 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
4988
4989 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4990}
71acb5eb 4991
f787a5f5 4992void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4993{
f787a5f5 4994 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4995
b29c19b6
CW
4996 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4997
b962442e
EA
4998 /* Clean up our request list when the client is going away, so that
4999 * later retire_requests won't dereference our soon-to-be-gone
5000 * file_priv.
5001 */
1c25595f 5002 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5003 while (!list_empty(&file_priv->mm.request_list)) {
5004 struct drm_i915_gem_request *request;
5005
5006 request = list_first_entry(&file_priv->mm.request_list,
5007 struct drm_i915_gem_request,
5008 client_list);
5009 list_del(&request->client_list);
5010 request->file_priv = NULL;
5011 }
1c25595f 5012 spin_unlock(&file_priv->mm.lock);
b962442e 5013}
31169714 5014
b29c19b6
CW
5015static void
5016i915_gem_file_idle_work_handler(struct work_struct *work)
5017{
5018 struct drm_i915_file_private *file_priv =
5019 container_of(work, typeof(*file_priv), mm.idle_work.work);
5020
5021 atomic_set(&file_priv->rps_wait_boost, false);
5022}
5023
5024int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5025{
5026 struct drm_i915_file_private *file_priv;
e422b888 5027 int ret;
b29c19b6
CW
5028
5029 DRM_DEBUG_DRIVER("\n");
5030
5031 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5032 if (!file_priv)
5033 return -ENOMEM;
5034
5035 file->driver_priv = file_priv;
5036 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5037 file_priv->file = file;
b29c19b6
CW
5038
5039 spin_lock_init(&file_priv->mm.lock);
5040 INIT_LIST_HEAD(&file_priv->mm.request_list);
5041 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5042 i915_gem_file_idle_work_handler);
5043
e422b888
BW
5044 ret = i915_gem_context_open(dev, file);
5045 if (ret)
5046 kfree(file_priv);
b29c19b6 5047
e422b888 5048 return ret;
b29c19b6
CW
5049}
5050
b680c37a
DV
5051/**
5052 * i915_gem_track_fb - update frontbuffer tracking
5053 * old: current GEM buffer for the frontbuffer slots
5054 * new: new GEM buffer for the frontbuffer slots
5055 * frontbuffer_bits: bitmask of frontbuffer slots
5056 *
5057 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5058 * from @old and setting them in @new. Both @old and @new can be NULL.
5059 */
a071fa00
DV
5060void i915_gem_track_fb(struct drm_i915_gem_object *old,
5061 struct drm_i915_gem_object *new,
5062 unsigned frontbuffer_bits)
5063{
5064 if (old) {
5065 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5066 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5067 old->frontbuffer_bits &= ~frontbuffer_bits;
5068 }
5069
5070 if (new) {
5071 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5072 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5073 new->frontbuffer_bits |= frontbuffer_bits;
5074 }
5075}
5076
5774506f
CW
5077static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5078{
5079 if (!mutex_is_locked(mutex))
5080 return false;
5081
5082#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5083 return mutex->owner == task;
5084#else
5085 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5086 return false;
5087#endif
5088}
5089
b453c4db
CW
5090static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5091{
5092 if (!mutex_trylock(&dev->struct_mutex)) {
5093 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5094 return false;
5095
5096 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5097 return false;
5098
5099 *unlock = false;
5100 } else
5101 *unlock = true;
5102
5103 return true;
5104}
5105
ceabbba5
CW
5106static int num_vma_bound(struct drm_i915_gem_object *obj)
5107{
5108 struct i915_vma *vma;
5109 int count = 0;
5110
5111 list_for_each_entry(vma, &obj->vma_list, vma_link)
5112 if (drm_mm_node_allocated(&vma->node))
5113 count++;
5114
5115 return count;
5116}
5117
7dc19d5a 5118static unsigned long
ceabbba5 5119i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5120{
17250b71 5121 struct drm_i915_private *dev_priv =
ceabbba5 5122 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5123 struct drm_device *dev = dev_priv->dev;
6c085a72 5124 struct drm_i915_gem_object *obj;
7dc19d5a 5125 unsigned long count;
b453c4db 5126 bool unlock;
17250b71 5127
b453c4db
CW
5128 if (!i915_gem_shrinker_lock(dev, &unlock))
5129 return 0;
31169714 5130
7dc19d5a 5131 count = 0;
35c20a60 5132 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5133 if (obj->pages_pin_count == 0)
7dc19d5a 5134 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5135
5136 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5137 if (!i915_gem_obj_is_pinned(obj) &&
5138 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5139 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5140 }
17250b71 5141
5774506f
CW
5142 if (unlock)
5143 mutex_unlock(&dev->struct_mutex);
d9973b43 5144
7dc19d5a 5145 return count;
31169714 5146}
a70a3148
BW
5147
5148/* All the new VM stuff */
5149unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5150 struct i915_address_space *vm)
5151{
5152 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5153 struct i915_vma *vma;
5154
896ab1a5 5155 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5156
a70a3148
BW
5157 list_for_each_entry(vma, &o->vma_list, vma_link) {
5158 if (vma->vm == vm)
5159 return vma->node.start;
5160
5161 }
f25748ea
DV
5162 WARN(1, "%s vma for this object not found.\n",
5163 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5164 return -1;
5165}
5166
5167bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5168 struct i915_address_space *vm)
5169{
5170 struct i915_vma *vma;
5171
5172 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5173 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5174 return true;
5175
5176 return false;
5177}
5178
5179bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5180{
5a1d5eb0 5181 struct i915_vma *vma;
a70a3148 5182
5a1d5eb0
CW
5183 list_for_each_entry(vma, &o->vma_list, vma_link)
5184 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5185 return true;
5186
5187 return false;
5188}
5189
5190unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5191 struct i915_address_space *vm)
5192{
5193 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5194 struct i915_vma *vma;
5195
896ab1a5 5196 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5197
5198 BUG_ON(list_empty(&o->vma_list));
5199
5200 list_for_each_entry(vma, &o->vma_list, vma_link)
5201 if (vma->vm == vm)
5202 return vma->node.size;
5203
5204 return 0;
5205}
5206
7dc19d5a 5207static unsigned long
ceabbba5 5208i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5209{
5210 struct drm_i915_private *dev_priv =
ceabbba5 5211 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5212 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5213 unsigned long freed;
b453c4db 5214 bool unlock;
7dc19d5a 5215
b453c4db
CW
5216 if (!i915_gem_shrinker_lock(dev, &unlock))
5217 return SHRINK_STOP;
7dc19d5a 5218
21ab4e74
CW
5219 freed = i915_gem_shrink(dev_priv,
5220 sc->nr_to_scan,
5221 I915_SHRINK_BOUND |
5222 I915_SHRINK_UNBOUND |
5223 I915_SHRINK_PURGEABLE);
d9973b43 5224 if (freed < sc->nr_to_scan)
21ab4e74
CW
5225 freed += i915_gem_shrink(dev_priv,
5226 sc->nr_to_scan - freed,
5227 I915_SHRINK_BOUND |
5228 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5229 if (unlock)
5230 mutex_unlock(&dev->struct_mutex);
d9973b43 5231
7dc19d5a
DC
5232 return freed;
5233}
5c2abbea 5234
2cfcd32a
CW
5235static int
5236i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5237{
5238 struct drm_i915_private *dev_priv =
5239 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5240 struct drm_device *dev = dev_priv->dev;
5241 struct drm_i915_gem_object *obj;
5242 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5243 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5244 bool was_interruptible;
5245 bool unlock;
5246
a1db2fa7 5247 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5248 schedule_timeout_killable(1);
a1db2fa7
CW
5249 if (fatal_signal_pending(current))
5250 return NOTIFY_DONE;
5251 }
2cfcd32a
CW
5252 if (timeout == 0) {
5253 pr_err("Unable to purge GPU memory due lock contention.\n");
5254 return NOTIFY_DONE;
5255 }
5256
5257 was_interruptible = dev_priv->mm.interruptible;
5258 dev_priv->mm.interruptible = false;
5259
005445c5 5260 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5261
5262 dev_priv->mm.interruptible = was_interruptible;
5263
5264 /* Because we may be allocating inside our own driver, we cannot
5265 * assert that there are no objects with pinned pages that are not
5266 * being pointed to by hardware.
5267 */
5268 unbound = bound = pinned = 0;
5269 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5270 if (!obj->base.filp) /* not backed by a freeable object */
5271 continue;
5272
5273 if (obj->pages_pin_count)
5274 pinned += obj->base.size;
5275 else
5276 unbound += obj->base.size;
5277 }
5278 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5279 if (!obj->base.filp)
5280 continue;
5281
5282 if (obj->pages_pin_count)
5283 pinned += obj->base.size;
5284 else
5285 bound += obj->base.size;
5286 }
5287
5288 if (unlock)
5289 mutex_unlock(&dev->struct_mutex);
5290
bb9059d3
CW
5291 if (freed_pages || unbound || bound)
5292 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5293 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5294 if (unbound || bound)
5295 pr_err("%lu and %lu bytes still available in the "
5296 "bound and unbound GPU page lists.\n",
5297 bound, unbound);
5298
005445c5 5299 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5300 return NOTIFY_DONE;
5301}
5302
5c2abbea
BW
5303struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5304{
5305 struct i915_vma *vma;
5306
5c2abbea 5307 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5dc383b0 5308 if (vma->vm != i915_obj_to_ggtt(obj))
5c2abbea
BW
5309 return NULL;
5310
5311 return vma;
5312}