]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: ValleyView IRQ support
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
d9e86c0e
CW
45static void i915_gem_clear_fence_reg(struct drm_device *dev,
46 struct drm_i915_fence_reg *reg);
05394f39
CW
47static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
71acb5eb 49 struct drm_i915_gem_pwrite *args,
05394f39
CW
50 struct drm_file *file);
51static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 52
17250b71 53static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 54 struct shrink_control *sc);
8c59967c 55static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 56
73aa808f
CW
57/* some bookkeeping */
58static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
59 size_t size)
60{
61 dev_priv->mm.object_count++;
62 dev_priv->mm.object_memory += size;
63}
64
65static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
68 dev_priv->mm.object_count--;
69 dev_priv->mm.object_memory -= size;
70}
71
21dd3734
CW
72static int
73i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
74{
75 struct drm_i915_private *dev_priv = dev->dev_private;
76 struct completion *x = &dev_priv->error_completion;
77 unsigned long flags;
78 int ret;
79
80 if (!atomic_read(&dev_priv->mm.wedged))
81 return 0;
82
83 ret = wait_for_completion_interruptible(x);
84 if (ret)
85 return ret;
86
21dd3734
CW
87 if (atomic_read(&dev_priv->mm.wedged)) {
88 /* GPU is hung, bump the completion count to account for
89 * the token we just consumed so that we never hit zero and
90 * end up waiting upon a subsequent completion event that
91 * will never happen.
92 */
93 spin_lock_irqsave(&x->wait.lock, flags);
94 x->done++;
95 spin_unlock_irqrestore(&x->wait.lock, flags);
96 }
97 return 0;
30dbf0c0
CW
98}
99
54cf91dc 100int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 101{
76c1dec1
CW
102 int ret;
103
21dd3734 104 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
105 if (ret)
106 return ret;
107
108 ret = mutex_lock_interruptible(&dev->struct_mutex);
109 if (ret)
110 return ret;
111
23bc5982 112 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
113 return 0;
114}
30dbf0c0 115
7d1c4804 116static inline bool
05394f39 117i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 118{
05394f39 119 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
120}
121
79e53945
JB
122int
123i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 124 struct drm_file *file)
79e53945
JB
125{
126 struct drm_i915_gem_init *args = data;
2021746e
CW
127
128 if (args->gtt_start >= args->gtt_end ||
129 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
130 return -EINVAL;
79e53945
JB
131
132 mutex_lock(&dev->struct_mutex);
644ec02b
DV
133 i915_gem_init_global_gtt(dev, args->gtt_start,
134 args->gtt_end, args->gtt_end);
673a394b
EA
135 mutex_unlock(&dev->struct_mutex);
136
2021746e 137 return 0;
673a394b
EA
138}
139
5a125c3c
EA
140int
141i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 142 struct drm_file *file)
5a125c3c 143{
73aa808f 144 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 145 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
146 struct drm_i915_gem_object *obj;
147 size_t pinned;
5a125c3c
EA
148
149 if (!(dev->driver->driver_features & DRIVER_GEM))
150 return -ENODEV;
151
6299f992 152 pinned = 0;
73aa808f 153 mutex_lock(&dev->struct_mutex);
6299f992
CW
154 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
155 pinned += obj->gtt_space->size;
73aa808f 156 mutex_unlock(&dev->struct_mutex);
5a125c3c 157
6299f992 158 args->aper_size = dev_priv->mm.gtt_total;
0206e353 159 args->aper_available_size = args->aper_size - pinned;
6299f992 160
5a125c3c
EA
161 return 0;
162}
163
ff72145b
DA
164static int
165i915_gem_create(struct drm_file *file,
166 struct drm_device *dev,
167 uint64_t size,
168 uint32_t *handle_p)
673a394b 169{
05394f39 170 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
171 int ret;
172 u32 handle;
673a394b 173
ff72145b 174 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
175 if (size == 0)
176 return -EINVAL;
673a394b
EA
177
178 /* Allocate the new object */
ff72145b 179 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
180 if (obj == NULL)
181 return -ENOMEM;
182
05394f39 183 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 184 if (ret) {
05394f39
CW
185 drm_gem_object_release(&obj->base);
186 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 187 kfree(obj);
673a394b 188 return ret;
1dfd9754 189 }
673a394b 190
202f2fef 191 /* drop reference from allocate - handle holds it now */
05394f39 192 drm_gem_object_unreference(&obj->base);
202f2fef
CW
193 trace_i915_gem_object_create(obj);
194
ff72145b 195 *handle_p = handle;
673a394b
EA
196 return 0;
197}
198
ff72145b
DA
199int
200i915_gem_dumb_create(struct drm_file *file,
201 struct drm_device *dev,
202 struct drm_mode_create_dumb *args)
203{
204 /* have to work out size/pitch and return them */
ed0291fd 205 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
206 args->size = args->pitch * args->height;
207 return i915_gem_create(file, dev,
208 args->size, &args->handle);
209}
210
211int i915_gem_dumb_destroy(struct drm_file *file,
212 struct drm_device *dev,
213 uint32_t handle)
214{
215 return drm_gem_handle_delete(file, handle);
216}
217
218/**
219 * Creates a new mm object and returns a handle to it.
220 */
221int
222i915_gem_create_ioctl(struct drm_device *dev, void *data,
223 struct drm_file *file)
224{
225 struct drm_i915_gem_create *args = data;
226 return i915_gem_create(file, dev,
227 args->size, &args->handle);
228}
229
05394f39 230static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 231{
05394f39 232 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
233
234 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 235 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
236}
237
8461d226
DV
238static inline int
239__copy_to_user_swizzled(char __user *cpu_vaddr,
240 const char *gpu_vaddr, int gpu_offset,
241 int length)
242{
243 int ret, cpu_offset = 0;
244
245 while (length > 0) {
246 int cacheline_end = ALIGN(gpu_offset + 1, 64);
247 int this_length = min(cacheline_end - gpu_offset, length);
248 int swizzled_gpu_offset = gpu_offset ^ 64;
249
250 ret = __copy_to_user(cpu_vaddr + cpu_offset,
251 gpu_vaddr + swizzled_gpu_offset,
252 this_length);
253 if (ret)
254 return ret + length;
255
256 cpu_offset += this_length;
257 gpu_offset += this_length;
258 length -= this_length;
259 }
260
261 return 0;
262}
263
8c59967c
DV
264static inline int
265__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
266 const char *cpu_vaddr,
267 int length)
268{
269 int ret, cpu_offset = 0;
270
271 while (length > 0) {
272 int cacheline_end = ALIGN(gpu_offset + 1, 64);
273 int this_length = min(cacheline_end - gpu_offset, length);
274 int swizzled_gpu_offset = gpu_offset ^ 64;
275
276 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
277 cpu_vaddr + cpu_offset,
278 this_length);
279 if (ret)
280 return ret + length;
281
282 cpu_offset += this_length;
283 gpu_offset += this_length;
284 length -= this_length;
285 }
286
287 return 0;
288}
289
d174bd64
DV
290/* Per-page copy function for the shmem pread fastpath.
291 * Flushes invalid cachelines before reading the target if
292 * needs_clflush is set. */
293static int
294shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
295 char __user *user_data,
296 bool page_do_bit17_swizzling, bool needs_clflush)
297{
298 char *vaddr;
299 int ret;
300
e7e58eb5 301 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
302 return -EINVAL;
303
304 vaddr = kmap_atomic(page);
305 if (needs_clflush)
306 drm_clflush_virt_range(vaddr + shmem_page_offset,
307 page_length);
308 ret = __copy_to_user_inatomic(user_data,
309 vaddr + shmem_page_offset,
310 page_length);
311 kunmap_atomic(vaddr);
312
313 return ret;
314}
315
23c18c71
DV
316static void
317shmem_clflush_swizzled_range(char *addr, unsigned long length,
318 bool swizzled)
319{
e7e58eb5 320 if (unlikely(swizzled)) {
23c18c71
DV
321 unsigned long start = (unsigned long) addr;
322 unsigned long end = (unsigned long) addr + length;
323
324 /* For swizzling simply ensure that we always flush both
325 * channels. Lame, but simple and it works. Swizzled
326 * pwrite/pread is far from a hotpath - current userspace
327 * doesn't use it at all. */
328 start = round_down(start, 128);
329 end = round_up(end, 128);
330
331 drm_clflush_virt_range((void *)start, end - start);
332 } else {
333 drm_clflush_virt_range(addr, length);
334 }
335
336}
337
d174bd64
DV
338/* Only difference to the fast-path function is that this can handle bit17
339 * and uses non-atomic copy and kmap functions. */
340static int
341shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
342 char __user *user_data,
343 bool page_do_bit17_swizzling, bool needs_clflush)
344{
345 char *vaddr;
346 int ret;
347
348 vaddr = kmap(page);
349 if (needs_clflush)
23c18c71
DV
350 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
351 page_length,
352 page_do_bit17_swizzling);
d174bd64
DV
353
354 if (page_do_bit17_swizzling)
355 ret = __copy_to_user_swizzled(user_data,
356 vaddr, shmem_page_offset,
357 page_length);
358 else
359 ret = __copy_to_user(user_data,
360 vaddr + shmem_page_offset,
361 page_length);
362 kunmap(page);
363
364 return ret;
365}
366
eb01459f 367static int
dbf7bff0
DV
368i915_gem_shmem_pread(struct drm_device *dev,
369 struct drm_i915_gem_object *obj,
370 struct drm_i915_gem_pread *args,
371 struct drm_file *file)
eb01459f 372{
05394f39 373 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 374 char __user *user_data;
eb01459f 375 ssize_t remain;
8461d226 376 loff_t offset;
eb2c0c81 377 int shmem_page_offset, page_length, ret = 0;
8461d226 378 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 379 int hit_slowpath = 0;
96d79b52 380 int prefaulted = 0;
8489731c 381 int needs_clflush = 0;
692a576b 382 int release_page;
eb01459f 383
8461d226 384 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
385 remain = args->size;
386
8461d226 387 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 388
8489731c
DV
389 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
390 /* If we're not in the cpu read domain, set ourself into the gtt
391 * read domain and manually flush cachelines (if required). This
392 * optimizes for the case when the gpu will dirty the data
393 * anyway again before the next pread happens. */
394 if (obj->cache_level == I915_CACHE_NONE)
395 needs_clflush = 1;
396 ret = i915_gem_object_set_to_gtt_domain(obj, false);
397 if (ret)
398 return ret;
399 }
400
8461d226 401 offset = args->offset;
eb01459f 402
eb01459f 403 while (remain > 0) {
e5281ccd
CW
404 struct page *page;
405
eb01459f
EA
406 /* Operation in this page
407 *
eb01459f 408 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
409 * page_length = bytes to copy for this page
410 */
c8cbbb8b 411 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
412 page_length = remain;
413 if ((shmem_page_offset + page_length) > PAGE_SIZE)
414 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 415
692a576b
DV
416 if (obj->pages) {
417 page = obj->pages[offset >> PAGE_SHIFT];
418 release_page = 0;
419 } else {
420 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
421 if (IS_ERR(page)) {
422 ret = PTR_ERR(page);
423 goto out;
424 }
425 release_page = 1;
b65552f0 426 }
e5281ccd 427
8461d226
DV
428 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
429 (page_to_phys(page) & (1 << 17)) != 0;
430
d174bd64
DV
431 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
432 user_data, page_do_bit17_swizzling,
433 needs_clflush);
434 if (ret == 0)
435 goto next_page;
dbf7bff0
DV
436
437 hit_slowpath = 1;
692a576b 438 page_cache_get(page);
dbf7bff0
DV
439 mutex_unlock(&dev->struct_mutex);
440
96d79b52 441 if (!prefaulted) {
f56f821f 442 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
443 /* Userspace is tricking us, but we've already clobbered
444 * its pages with the prefault and promised to write the
445 * data up to the first fault. Hence ignore any errors
446 * and just continue. */
447 (void)ret;
448 prefaulted = 1;
449 }
450
d174bd64
DV
451 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
452 user_data, page_do_bit17_swizzling,
453 needs_clflush);
eb01459f 454
dbf7bff0 455 mutex_lock(&dev->struct_mutex);
692a576b 456 page_cache_release(page);
dbf7bff0 457next_page:
e5281ccd 458 mark_page_accessed(page);
692a576b
DV
459 if (release_page)
460 page_cache_release(page);
e5281ccd 461
8461d226
DV
462 if (ret) {
463 ret = -EFAULT;
464 goto out;
465 }
466
eb01459f 467 remain -= page_length;
8461d226 468 user_data += page_length;
eb01459f
EA
469 offset += page_length;
470 }
471
4f27b75d 472out:
dbf7bff0
DV
473 if (hit_slowpath) {
474 /* Fixup: Kill any reinstated backing storage pages */
475 if (obj->madv == __I915_MADV_PURGED)
476 i915_gem_object_truncate(obj);
477 }
eb01459f
EA
478
479 return ret;
480}
481
673a394b
EA
482/**
483 * Reads data from the object referenced by handle.
484 *
485 * On error, the contents of *data are undefined.
486 */
487int
488i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 489 struct drm_file *file)
673a394b
EA
490{
491 struct drm_i915_gem_pread *args = data;
05394f39 492 struct drm_i915_gem_object *obj;
35b62a89 493 int ret = 0;
673a394b 494
51311d0a
CW
495 if (args->size == 0)
496 return 0;
497
498 if (!access_ok(VERIFY_WRITE,
499 (char __user *)(uintptr_t)args->data_ptr,
500 args->size))
501 return -EFAULT;
502
4f27b75d 503 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 504 if (ret)
4f27b75d 505 return ret;
673a394b 506
05394f39 507 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 508 if (&obj->base == NULL) {
1d7cfea1
CW
509 ret = -ENOENT;
510 goto unlock;
4f27b75d 511 }
673a394b 512
7dcd2499 513 /* Bounds check source. */
05394f39
CW
514 if (args->offset > obj->base.size ||
515 args->size > obj->base.size - args->offset) {
ce9d419d 516 ret = -EINVAL;
35b62a89 517 goto out;
ce9d419d
CW
518 }
519
db53a302
CW
520 trace_i915_gem_object_pread(obj, args->offset, args->size);
521
dbf7bff0 522 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 523
35b62a89 524out:
05394f39 525 drm_gem_object_unreference(&obj->base);
1d7cfea1 526unlock:
4f27b75d 527 mutex_unlock(&dev->struct_mutex);
eb01459f 528 return ret;
673a394b
EA
529}
530
0839ccb8
KP
531/* This is the fast write path which cannot handle
532 * page faults in the source data
9b7530cc 533 */
0839ccb8
KP
534
535static inline int
536fast_user_write(struct io_mapping *mapping,
537 loff_t page_base, int page_offset,
538 char __user *user_data,
539 int length)
9b7530cc 540{
9b7530cc 541 char *vaddr_atomic;
0839ccb8 542 unsigned long unwritten;
9b7530cc 543
3e4d3af5 544 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
545 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
546 user_data, length);
3e4d3af5 547 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 548 return unwritten;
0839ccb8
KP
549}
550
3de09aa3
EA
551/**
552 * This is the fast pwrite path, where we copy the data directly from the
553 * user into the GTT, uncached.
554 */
673a394b 555static int
05394f39
CW
556i915_gem_gtt_pwrite_fast(struct drm_device *dev,
557 struct drm_i915_gem_object *obj,
3de09aa3 558 struct drm_i915_gem_pwrite *args,
05394f39 559 struct drm_file *file)
673a394b 560{
0839ccb8 561 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 562 ssize_t remain;
0839ccb8 563 loff_t offset, page_base;
673a394b 564 char __user *user_data;
935aaa69
DV
565 int page_offset, page_length, ret;
566
567 ret = i915_gem_object_pin(obj, 0, true);
568 if (ret)
569 goto out;
570
571 ret = i915_gem_object_set_to_gtt_domain(obj, true);
572 if (ret)
573 goto out_unpin;
574
575 ret = i915_gem_object_put_fence(obj);
576 if (ret)
577 goto out_unpin;
673a394b
EA
578
579 user_data = (char __user *) (uintptr_t) args->data_ptr;
580 remain = args->size;
673a394b 581
05394f39 582 offset = obj->gtt_offset + args->offset;
673a394b
EA
583
584 while (remain > 0) {
585 /* Operation in this page
586 *
0839ccb8
KP
587 * page_base = page offset within aperture
588 * page_offset = offset within page
589 * page_length = bytes to copy for this page
673a394b 590 */
c8cbbb8b
CW
591 page_base = offset & PAGE_MASK;
592 page_offset = offset_in_page(offset);
0839ccb8
KP
593 page_length = remain;
594 if ((page_offset + remain) > PAGE_SIZE)
595 page_length = PAGE_SIZE - page_offset;
596
0839ccb8 597 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
598 * source page isn't available. Return the error and we'll
599 * retry in the slow path.
0839ccb8 600 */
fbd5a26d 601 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
602 page_offset, user_data, page_length)) {
603 ret = -EFAULT;
604 goto out_unpin;
605 }
673a394b 606
0839ccb8
KP
607 remain -= page_length;
608 user_data += page_length;
609 offset += page_length;
673a394b 610 }
673a394b 611
935aaa69
DV
612out_unpin:
613 i915_gem_object_unpin(obj);
614out:
3de09aa3
EA
615 return ret;
616}
617
d174bd64
DV
618/* Per-page copy function for the shmem pwrite fastpath.
619 * Flushes invalid cachelines before writing to the target if
620 * needs_clflush_before is set and flushes out any written cachelines after
621 * writing if needs_clflush is set. */
622static int
623shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
624 char __user *user_data,
625 bool page_do_bit17_swizzling,
626 bool needs_clflush_before,
627 bool needs_clflush_after)
628{
629 char *vaddr;
630 int ret;
631
e7e58eb5 632 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
633 return -EINVAL;
634
635 vaddr = kmap_atomic(page);
636 if (needs_clflush_before)
637 drm_clflush_virt_range(vaddr + shmem_page_offset,
638 page_length);
639 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
640 user_data,
641 page_length);
642 if (needs_clflush_after)
643 drm_clflush_virt_range(vaddr + shmem_page_offset,
644 page_length);
645 kunmap_atomic(vaddr);
646
647 return ret;
648}
649
650/* Only difference to the fast-path function is that this can handle bit17
651 * and uses non-atomic copy and kmap functions. */
652static int
653shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658{
659 char *vaddr;
660 int ret;
661
662 vaddr = kmap(page);
e7e58eb5 663 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
664 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
665 page_length,
666 page_do_bit17_swizzling);
d174bd64
DV
667 if (page_do_bit17_swizzling)
668 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
669 user_data,
670 page_length);
671 else
672 ret = __copy_from_user(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
23c18c71
DV
676 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
677 page_length,
678 page_do_bit17_swizzling);
d174bd64
DV
679 kunmap(page);
680
681 return ret;
682}
683
3043c60c 684static int
e244a443
DV
685i915_gem_shmem_pwrite(struct drm_device *dev,
686 struct drm_i915_gem_object *obj,
687 struct drm_i915_gem_pwrite *args,
688 struct drm_file *file)
40123c1f 689{
05394f39 690 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 691 ssize_t remain;
8c59967c
DV
692 loff_t offset;
693 char __user *user_data;
eb2c0c81 694 int shmem_page_offset, page_length, ret = 0;
8c59967c 695 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 696 int hit_slowpath = 0;
58642885
DV
697 int needs_clflush_after = 0;
698 int needs_clflush_before = 0;
692a576b 699 int release_page;
40123c1f 700
8c59967c 701 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
702 remain = args->size;
703
8c59967c 704 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 705
58642885
DV
706 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
707 /* If we're not in the cpu write domain, set ourself into the gtt
708 * write domain and manually flush cachelines (if required). This
709 * optimizes for the case when the gpu will use the data
710 * right away and we therefore have to clflush anyway. */
711 if (obj->cache_level == I915_CACHE_NONE)
712 needs_clflush_after = 1;
713 ret = i915_gem_object_set_to_gtt_domain(obj, true);
714 if (ret)
715 return ret;
716 }
717 /* Same trick applies for invalidate partially written cachelines before
718 * writing. */
719 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
720 && obj->cache_level == I915_CACHE_NONE)
721 needs_clflush_before = 1;
722
673a394b 723 offset = args->offset;
05394f39 724 obj->dirty = 1;
673a394b 725
40123c1f 726 while (remain > 0) {
e5281ccd 727 struct page *page;
58642885 728 int partial_cacheline_write;
e5281ccd 729
40123c1f
EA
730 /* Operation in this page
731 *
40123c1f 732 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
733 * page_length = bytes to copy for this page
734 */
c8cbbb8b 735 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
736
737 page_length = remain;
738 if ((shmem_page_offset + page_length) > PAGE_SIZE)
739 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 740
58642885
DV
741 /* If we don't overwrite a cacheline completely we need to be
742 * careful to have up-to-date data by first clflushing. Don't
743 * overcomplicate things and flush the entire patch. */
744 partial_cacheline_write = needs_clflush_before &&
745 ((shmem_page_offset | page_length)
746 & (boot_cpu_data.x86_clflush_size - 1));
747
692a576b
DV
748 if (obj->pages) {
749 page = obj->pages[offset >> PAGE_SHIFT];
750 release_page = 0;
751 } else {
752 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
753 if (IS_ERR(page)) {
754 ret = PTR_ERR(page);
755 goto out;
756 }
757 release_page = 1;
e5281ccd
CW
758 }
759
8c59967c
DV
760 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
761 (page_to_phys(page) & (1 << 17)) != 0;
762
d174bd64
DV
763 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
764 user_data, page_do_bit17_swizzling,
765 partial_cacheline_write,
766 needs_clflush_after);
767 if (ret == 0)
768 goto next_page;
e244a443
DV
769
770 hit_slowpath = 1;
692a576b 771 page_cache_get(page);
e244a443
DV
772 mutex_unlock(&dev->struct_mutex);
773
d174bd64
DV
774 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
775 user_data, page_do_bit17_swizzling,
776 partial_cacheline_write,
777 needs_clflush_after);
40123c1f 778
e244a443 779 mutex_lock(&dev->struct_mutex);
692a576b 780 page_cache_release(page);
e244a443 781next_page:
e5281ccd
CW
782 set_page_dirty(page);
783 mark_page_accessed(page);
692a576b
DV
784 if (release_page)
785 page_cache_release(page);
e5281ccd 786
8c59967c
DV
787 if (ret) {
788 ret = -EFAULT;
789 goto out;
790 }
791
40123c1f 792 remain -= page_length;
8c59967c 793 user_data += page_length;
40123c1f 794 offset += page_length;
673a394b
EA
795 }
796
fbd5a26d 797out:
e244a443
DV
798 if (hit_slowpath) {
799 /* Fixup: Kill any reinstated backing storage pages */
800 if (obj->madv == __I915_MADV_PURGED)
801 i915_gem_object_truncate(obj);
802 /* and flush dirty cachelines in case the object isn't in the cpu write
803 * domain anymore. */
804 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
805 i915_gem_clflush_object(obj);
806 intel_gtt_chipset_flush();
807 }
8c59967c 808 }
673a394b 809
58642885
DV
810 if (needs_clflush_after)
811 intel_gtt_chipset_flush();
812
40123c1f 813 return ret;
673a394b
EA
814}
815
816/**
817 * Writes data to the object referenced by handle.
818 *
819 * On error, the contents of the buffer that were to be modified are undefined.
820 */
821int
822i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 823 struct drm_file *file)
673a394b
EA
824{
825 struct drm_i915_gem_pwrite *args = data;
05394f39 826 struct drm_i915_gem_object *obj;
51311d0a
CW
827 int ret;
828
829 if (args->size == 0)
830 return 0;
831
832 if (!access_ok(VERIFY_READ,
833 (char __user *)(uintptr_t)args->data_ptr,
834 args->size))
835 return -EFAULT;
836
f56f821f
DV
837 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
838 args->size);
51311d0a
CW
839 if (ret)
840 return -EFAULT;
673a394b 841
fbd5a26d 842 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 843 if (ret)
fbd5a26d 844 return ret;
1d7cfea1 845
05394f39 846 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 847 if (&obj->base == NULL) {
1d7cfea1
CW
848 ret = -ENOENT;
849 goto unlock;
fbd5a26d 850 }
673a394b 851
7dcd2499 852 /* Bounds check destination. */
05394f39
CW
853 if (args->offset > obj->base.size ||
854 args->size > obj->base.size - args->offset) {
ce9d419d 855 ret = -EINVAL;
35b62a89 856 goto out;
ce9d419d
CW
857 }
858
db53a302
CW
859 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
860
935aaa69 861 ret = -EFAULT;
673a394b
EA
862 /* We can only do the GTT pwrite on untiled buffers, as otherwise
863 * it would end up going through the fenced access, and we'll get
864 * different detiling behavior between reading and writing.
865 * pread/pwrite currently are reading and writing from the CPU
866 * perspective, requiring manual detiling by the client.
867 */
5c0480f2 868 if (obj->phys_obj) {
fbd5a26d 869 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
870 goto out;
871 }
872
873 if (obj->gtt_space &&
3ae53783 874 obj->cache_level == I915_CACHE_NONE &&
ffc62976 875 obj->map_and_fenceable &&
5c0480f2 876 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 877 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
878 /* Note that the gtt paths might fail with non-page-backed user
879 * pointers (e.g. gtt mappings when moving data between
880 * textures). Fallback to the shmem path in that case. */
fbd5a26d 881 }
673a394b 882
935aaa69
DV
883 if (ret == -EFAULT)
884 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 885
35b62a89 886out:
05394f39 887 drm_gem_object_unreference(&obj->base);
1d7cfea1 888unlock:
fbd5a26d 889 mutex_unlock(&dev->struct_mutex);
673a394b
EA
890 return ret;
891}
892
893/**
2ef7eeaa
EA
894 * Called when user space prepares to use an object with the CPU, either
895 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
896 */
897int
898i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 899 struct drm_file *file)
673a394b
EA
900{
901 struct drm_i915_gem_set_domain *args = data;
05394f39 902 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
903 uint32_t read_domains = args->read_domains;
904 uint32_t write_domain = args->write_domain;
673a394b
EA
905 int ret;
906
907 if (!(dev->driver->driver_features & DRIVER_GEM))
908 return -ENODEV;
909
2ef7eeaa 910 /* Only handle setting domains to types used by the CPU. */
21d509e3 911 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
912 return -EINVAL;
913
21d509e3 914 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
915 return -EINVAL;
916
917 /* Having something in the write domain implies it's in the read
918 * domain, and only that read domain. Enforce that in the request.
919 */
920 if (write_domain != 0 && read_domains != write_domain)
921 return -EINVAL;
922
76c1dec1 923 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 924 if (ret)
76c1dec1 925 return ret;
1d7cfea1 926
05394f39 927 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 928 if (&obj->base == NULL) {
1d7cfea1
CW
929 ret = -ENOENT;
930 goto unlock;
76c1dec1 931 }
673a394b 932
2ef7eeaa
EA
933 if (read_domains & I915_GEM_DOMAIN_GTT) {
934 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
935
936 /* Silently promote "you're not bound, there was nothing to do"
937 * to success, since the client was just asking us to
938 * make sure everything was done.
939 */
940 if (ret == -EINVAL)
941 ret = 0;
2ef7eeaa 942 } else {
e47c68e9 943 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
944 }
945
05394f39 946 drm_gem_object_unreference(&obj->base);
1d7cfea1 947unlock:
673a394b
EA
948 mutex_unlock(&dev->struct_mutex);
949 return ret;
950}
951
952/**
953 * Called when user space has done writes to this buffer
954 */
955int
956i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 957 struct drm_file *file)
673a394b
EA
958{
959 struct drm_i915_gem_sw_finish *args = data;
05394f39 960 struct drm_i915_gem_object *obj;
673a394b
EA
961 int ret = 0;
962
963 if (!(dev->driver->driver_features & DRIVER_GEM))
964 return -ENODEV;
965
76c1dec1 966 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 967 if (ret)
76c1dec1 968 return ret;
1d7cfea1 969
05394f39 970 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 971 if (&obj->base == NULL) {
1d7cfea1
CW
972 ret = -ENOENT;
973 goto unlock;
673a394b
EA
974 }
975
673a394b 976 /* Pinned buffers may be scanout, so flush the cache */
05394f39 977 if (obj->pin_count)
e47c68e9
EA
978 i915_gem_object_flush_cpu_write_domain(obj);
979
05394f39 980 drm_gem_object_unreference(&obj->base);
1d7cfea1 981unlock:
673a394b
EA
982 mutex_unlock(&dev->struct_mutex);
983 return ret;
984}
985
986/**
987 * Maps the contents of an object, returning the address it is mapped
988 * into.
989 *
990 * While the mapping holds a reference on the contents of the object, it doesn't
991 * imply a ref on the object itself.
992 */
993int
994i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 995 struct drm_file *file)
673a394b
EA
996{
997 struct drm_i915_gem_mmap *args = data;
998 struct drm_gem_object *obj;
673a394b
EA
999 unsigned long addr;
1000
1001 if (!(dev->driver->driver_features & DRIVER_GEM))
1002 return -ENODEV;
1003
05394f39 1004 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1005 if (obj == NULL)
bf79cb91 1006 return -ENOENT;
673a394b 1007
673a394b
EA
1008 down_write(&current->mm->mmap_sem);
1009 addr = do_mmap(obj->filp, 0, args->size,
1010 PROT_READ | PROT_WRITE, MAP_SHARED,
1011 args->offset);
1012 up_write(&current->mm->mmap_sem);
bc9025bd 1013 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1014 if (IS_ERR((void *)addr))
1015 return addr;
1016
1017 args->addr_ptr = (uint64_t) addr;
1018
1019 return 0;
1020}
1021
de151cf6
JB
1022/**
1023 * i915_gem_fault - fault a page into the GTT
1024 * vma: VMA in question
1025 * vmf: fault info
1026 *
1027 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1028 * from userspace. The fault handler takes care of binding the object to
1029 * the GTT (if needed), allocating and programming a fence register (again,
1030 * only if needed based on whether the old reg is still valid or the object
1031 * is tiled) and inserting a new PTE into the faulting process.
1032 *
1033 * Note that the faulting process may involve evicting existing objects
1034 * from the GTT and/or fence registers to make room. So performance may
1035 * suffer if the GTT working set is large or there are few fence registers
1036 * left.
1037 */
1038int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1039{
05394f39
CW
1040 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1041 struct drm_device *dev = obj->base.dev;
7d1c4804 1042 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1043 pgoff_t page_offset;
1044 unsigned long pfn;
1045 int ret = 0;
0f973f27 1046 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1047
1048 /* We don't use vmf->pgoff since that has the fake offset */
1049 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1050 PAGE_SHIFT;
1051
d9bc7e9f
CW
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto out;
a00b10c3 1055
db53a302
CW
1056 trace_i915_gem_object_fault(obj, page_offset, true, write);
1057
d9bc7e9f 1058 /* Now bind it into the GTT if needed */
919926ae
CW
1059 if (!obj->map_and_fenceable) {
1060 ret = i915_gem_object_unbind(obj);
1061 if (ret)
1062 goto unlock;
a00b10c3 1063 }
05394f39 1064 if (!obj->gtt_space) {
75e9e915 1065 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1066 if (ret)
1067 goto unlock;
de151cf6 1068
e92d03bf
EA
1069 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1070 if (ret)
1071 goto unlock;
1072 }
4a684a41 1073
74898d7e
DV
1074 if (!obj->has_global_gtt_mapping)
1075 i915_gem_gtt_bind_object(obj, obj->cache_level);
1076
d9e86c0e
CW
1077 if (obj->tiling_mode == I915_TILING_NONE)
1078 ret = i915_gem_object_put_fence(obj);
1079 else
ce453d81 1080 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1081 if (ret)
1082 goto unlock;
de151cf6 1083
05394f39
CW
1084 if (i915_gem_object_is_inactive(obj))
1085 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1086
6299f992
CW
1087 obj->fault_mappable = true;
1088
05394f39 1089 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1090 page_offset;
1091
1092 /* Finally, remap it using the new GTT offset */
1093 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1094unlock:
de151cf6 1095 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1096out:
de151cf6 1097 switch (ret) {
d9bc7e9f 1098 case -EIO:
045e769a 1099 case -EAGAIN:
d9bc7e9f
CW
1100 /* Give the error handler a chance to run and move the
1101 * objects off the GPU active list. Next time we service the
1102 * fault, we should be able to transition the page into the
1103 * GTT without touching the GPU (and so avoid further
1104 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1105 * with coherency, just lost writes.
1106 */
045e769a 1107 set_need_resched();
c715089f
CW
1108 case 0:
1109 case -ERESTARTSYS:
bed636ab 1110 case -EINTR:
c715089f 1111 return VM_FAULT_NOPAGE;
de151cf6 1112 case -ENOMEM:
de151cf6 1113 return VM_FAULT_OOM;
de151cf6 1114 default:
c715089f 1115 return VM_FAULT_SIGBUS;
de151cf6
JB
1116 }
1117}
1118
901782b2
CW
1119/**
1120 * i915_gem_release_mmap - remove physical page mappings
1121 * @obj: obj in question
1122 *
af901ca1 1123 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1124 * relinquish ownership of the pages back to the system.
1125 *
1126 * It is vital that we remove the page mapping if we have mapped a tiled
1127 * object through the GTT and then lose the fence register due to
1128 * resource pressure. Similarly if the object has been moved out of the
1129 * aperture, than pages mapped into userspace must be revoked. Removing the
1130 * mapping will then trigger a page fault on the next user access, allowing
1131 * fixup by i915_gem_fault().
1132 */
d05ca301 1133void
05394f39 1134i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1135{
6299f992
CW
1136 if (!obj->fault_mappable)
1137 return;
901782b2 1138
f6e47884
CW
1139 if (obj->base.dev->dev_mapping)
1140 unmap_mapping_range(obj->base.dev->dev_mapping,
1141 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1142 obj->base.size, 1);
fb7d516a 1143
6299f992 1144 obj->fault_mappable = false;
901782b2
CW
1145}
1146
92b88aeb 1147static uint32_t
e28f8711 1148i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1149{
e28f8711 1150 uint32_t gtt_size;
92b88aeb
CW
1151
1152 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1153 tiling_mode == I915_TILING_NONE)
1154 return size;
92b88aeb
CW
1155
1156 /* Previous chips need a power-of-two fence region when tiling */
1157 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1158 gtt_size = 1024*1024;
92b88aeb 1159 else
e28f8711 1160 gtt_size = 512*1024;
92b88aeb 1161
e28f8711
CW
1162 while (gtt_size < size)
1163 gtt_size <<= 1;
92b88aeb 1164
e28f8711 1165 return gtt_size;
92b88aeb
CW
1166}
1167
de151cf6
JB
1168/**
1169 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1170 * @obj: object to check
1171 *
1172 * Return the required GTT alignment for an object, taking into account
5e783301 1173 * potential fence register mapping.
de151cf6
JB
1174 */
1175static uint32_t
e28f8711
CW
1176i915_gem_get_gtt_alignment(struct drm_device *dev,
1177 uint32_t size,
1178 int tiling_mode)
de151cf6 1179{
de151cf6
JB
1180 /*
1181 * Minimum alignment is 4k (GTT page size), but might be greater
1182 * if a fence register is needed for the object.
1183 */
a00b10c3 1184 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1185 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1186 return 4096;
1187
a00b10c3
CW
1188 /*
1189 * Previous chips need to be aligned to the size of the smallest
1190 * fence register that can contain the object.
1191 */
e28f8711 1192 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1193}
1194
5e783301
DV
1195/**
1196 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1197 * unfenced object
e28f8711
CW
1198 * @dev: the device
1199 * @size: size of the object
1200 * @tiling_mode: tiling mode of the object
5e783301
DV
1201 *
1202 * Return the required GTT alignment for an object, only taking into account
1203 * unfenced tiled surface requirements.
1204 */
467cffba 1205uint32_t
e28f8711
CW
1206i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1207 uint32_t size,
1208 int tiling_mode)
5e783301 1209{
5e783301
DV
1210 /*
1211 * Minimum alignment is 4k (GTT page size) for sane hw.
1212 */
1213 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1214 tiling_mode == I915_TILING_NONE)
5e783301
DV
1215 return 4096;
1216
e28f8711
CW
1217 /* Previous hardware however needs to be aligned to a power-of-two
1218 * tile height. The simplest method for determining this is to reuse
1219 * the power-of-tile object size.
5e783301 1220 */
e28f8711 1221 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1222}
1223
de151cf6 1224int
ff72145b
DA
1225i915_gem_mmap_gtt(struct drm_file *file,
1226 struct drm_device *dev,
1227 uint32_t handle,
1228 uint64_t *offset)
de151cf6 1229{
da761a6e 1230 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1231 struct drm_i915_gem_object *obj;
de151cf6
JB
1232 int ret;
1233
1234 if (!(dev->driver->driver_features & DRIVER_GEM))
1235 return -ENODEV;
1236
76c1dec1 1237 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1238 if (ret)
76c1dec1 1239 return ret;
de151cf6 1240
ff72145b 1241 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1242 if (&obj->base == NULL) {
1d7cfea1
CW
1243 ret = -ENOENT;
1244 goto unlock;
1245 }
de151cf6 1246
05394f39 1247 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1248 ret = -E2BIG;
ff56b0bc 1249 goto out;
da761a6e
CW
1250 }
1251
05394f39 1252 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1253 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1254 ret = -EINVAL;
1255 goto out;
ab18282d
CW
1256 }
1257
05394f39 1258 if (!obj->base.map_list.map) {
b464e9a2 1259 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1260 if (ret)
1261 goto out;
de151cf6
JB
1262 }
1263
ff72145b 1264 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1265
1d7cfea1 1266out:
05394f39 1267 drm_gem_object_unreference(&obj->base);
1d7cfea1 1268unlock:
de151cf6 1269 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1270 return ret;
de151cf6
JB
1271}
1272
ff72145b
DA
1273/**
1274 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1275 * @dev: DRM device
1276 * @data: GTT mapping ioctl data
1277 * @file: GEM object info
1278 *
1279 * Simply returns the fake offset to userspace so it can mmap it.
1280 * The mmap call will end up in drm_gem_mmap(), which will set things
1281 * up so we can get faults in the handler above.
1282 *
1283 * The fault handler will take care of binding the object into the GTT
1284 * (since it may have been evicted to make room for something), allocating
1285 * a fence register, and mapping the appropriate aperture address into
1286 * userspace.
1287 */
1288int
1289i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1290 struct drm_file *file)
1291{
1292 struct drm_i915_gem_mmap_gtt *args = data;
1293
1294 if (!(dev->driver->driver_features & DRIVER_GEM))
1295 return -ENODEV;
1296
1297 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1298}
1299
1300
e5281ccd 1301static int
05394f39 1302i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1303 gfp_t gfpmask)
1304{
e5281ccd
CW
1305 int page_count, i;
1306 struct address_space *mapping;
1307 struct inode *inode;
1308 struct page *page;
1309
1310 /* Get the list of pages out of our struct file. They'll be pinned
1311 * at this point until we release them.
1312 */
05394f39
CW
1313 page_count = obj->base.size / PAGE_SIZE;
1314 BUG_ON(obj->pages != NULL);
1315 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1316 if (obj->pages == NULL)
e5281ccd
CW
1317 return -ENOMEM;
1318
05394f39 1319 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1320 mapping = inode->i_mapping;
5949eac4
HD
1321 gfpmask |= mapping_gfp_mask(mapping);
1322
e5281ccd 1323 for (i = 0; i < page_count; i++) {
5949eac4 1324 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1325 if (IS_ERR(page))
1326 goto err_pages;
1327
05394f39 1328 obj->pages[i] = page;
e5281ccd
CW
1329 }
1330
6dacfd2f 1331 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1332 i915_gem_object_do_bit_17_swizzle(obj);
1333
1334 return 0;
1335
1336err_pages:
1337 while (i--)
05394f39 1338 page_cache_release(obj->pages[i]);
e5281ccd 1339
05394f39
CW
1340 drm_free_large(obj->pages);
1341 obj->pages = NULL;
e5281ccd
CW
1342 return PTR_ERR(page);
1343}
1344
5cdf5881 1345static void
05394f39 1346i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1347{
05394f39 1348 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1349 int i;
1350
05394f39 1351 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1352
6dacfd2f 1353 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1354 i915_gem_object_save_bit_17_swizzle(obj);
1355
05394f39
CW
1356 if (obj->madv == I915_MADV_DONTNEED)
1357 obj->dirty = 0;
3ef94daa
CW
1358
1359 for (i = 0; i < page_count; i++) {
05394f39
CW
1360 if (obj->dirty)
1361 set_page_dirty(obj->pages[i]);
3ef94daa 1362
05394f39
CW
1363 if (obj->madv == I915_MADV_WILLNEED)
1364 mark_page_accessed(obj->pages[i]);
3ef94daa 1365
05394f39 1366 page_cache_release(obj->pages[i]);
3ef94daa 1367 }
05394f39 1368 obj->dirty = 0;
673a394b 1369
05394f39
CW
1370 drm_free_large(obj->pages);
1371 obj->pages = NULL;
673a394b
EA
1372}
1373
54cf91dc 1374void
05394f39 1375i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1376 struct intel_ring_buffer *ring,
1377 u32 seqno)
673a394b 1378{
05394f39 1379 struct drm_device *dev = obj->base.dev;
69dc4987 1380 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1381
852835f3 1382 BUG_ON(ring == NULL);
05394f39 1383 obj->ring = ring;
673a394b
EA
1384
1385 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1386 if (!obj->active) {
1387 drm_gem_object_reference(&obj->base);
1388 obj->active = 1;
673a394b 1389 }
e35a41de 1390
673a394b 1391 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1392 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1393 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1394
05394f39 1395 obj->last_rendering_seqno = seqno;
caea7476
CW
1396 if (obj->fenced_gpu_access) {
1397 struct drm_i915_fence_reg *reg;
1398
1399 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1400
1401 obj->last_fenced_seqno = seqno;
1402 obj->last_fenced_ring = ring;
1403
1404 reg = &dev_priv->fence_regs[obj->fence_reg];
1405 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1406 }
1407}
1408
1409static void
1410i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1411{
1412 list_del_init(&obj->ring_list);
1413 obj->last_rendering_seqno = 0;
673a394b
EA
1414}
1415
ce44b0ea 1416static void
05394f39 1417i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1418{
05394f39 1419 struct drm_device *dev = obj->base.dev;
ce44b0ea 1420 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1421
05394f39
CW
1422 BUG_ON(!obj->active);
1423 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1424
1425 i915_gem_object_move_off_active(obj);
1426}
1427
1428static void
1429i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1430{
1431 struct drm_device *dev = obj->base.dev;
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433
1434 if (obj->pin_count != 0)
1435 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1436 else
1437 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1438
1439 BUG_ON(!list_empty(&obj->gpu_write_list));
1440 BUG_ON(!obj->active);
1441 obj->ring = NULL;
1442
1443 i915_gem_object_move_off_active(obj);
1444 obj->fenced_gpu_access = false;
caea7476
CW
1445
1446 obj->active = 0;
87ca9c8a 1447 obj->pending_gpu_write = false;
caea7476
CW
1448 drm_gem_object_unreference(&obj->base);
1449
1450 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1451}
673a394b 1452
963b4836
CW
1453/* Immediately discard the backing storage */
1454static void
05394f39 1455i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1456{
bb6baf76 1457 struct inode *inode;
963b4836 1458
ae9fed6b
CW
1459 /* Our goal here is to return as much of the memory as
1460 * is possible back to the system as we are called from OOM.
1461 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1462 * backing pages, *now*.
ae9fed6b 1463 */
05394f39 1464 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1465 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1466
a14917ee
CW
1467 if (obj->base.map_list.map)
1468 drm_gem_free_mmap_offset(&obj->base);
1469
05394f39 1470 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1471}
1472
1473static inline int
05394f39 1474i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1475{
05394f39 1476 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1477}
1478
63560396 1479static void
db53a302
CW
1480i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1481 uint32_t flush_domains)
63560396 1482{
05394f39 1483 struct drm_i915_gem_object *obj, *next;
63560396 1484
05394f39 1485 list_for_each_entry_safe(obj, next,
64193406 1486 &ring->gpu_write_list,
63560396 1487 gpu_write_list) {
05394f39
CW
1488 if (obj->base.write_domain & flush_domains) {
1489 uint32_t old_write_domain = obj->base.write_domain;
63560396 1490
05394f39
CW
1491 obj->base.write_domain = 0;
1492 list_del_init(&obj->gpu_write_list);
1ec14ad3 1493 i915_gem_object_move_to_active(obj, ring,
db53a302 1494 i915_gem_next_request_seqno(ring));
63560396 1495
63560396 1496 trace_i915_gem_object_change_domain(obj,
05394f39 1497 obj->base.read_domains,
63560396
DV
1498 old_write_domain);
1499 }
1500 }
1501}
8187a2b7 1502
53d227f2
DV
1503static u32
1504i915_gem_get_seqno(struct drm_device *dev)
1505{
1506 drm_i915_private_t *dev_priv = dev->dev_private;
1507 u32 seqno = dev_priv->next_seqno;
1508
1509 /* reserve 0 for non-seqno */
1510 if (++dev_priv->next_seqno == 0)
1511 dev_priv->next_seqno = 1;
1512
1513 return seqno;
1514}
1515
1516u32
1517i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1518{
1519 if (ring->outstanding_lazy_request == 0)
1520 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1521
1522 return ring->outstanding_lazy_request;
1523}
1524
3cce469c 1525int
db53a302 1526i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1527 struct drm_file *file,
db53a302 1528 struct drm_i915_gem_request *request)
673a394b 1529{
db53a302 1530 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1531 uint32_t seqno;
a71d8d94 1532 u32 request_ring_position;
673a394b 1533 int was_empty;
3cce469c
CW
1534 int ret;
1535
1536 BUG_ON(request == NULL);
53d227f2 1537 seqno = i915_gem_next_request_seqno(ring);
673a394b 1538
a71d8d94
CW
1539 /* Record the position of the start of the request so that
1540 * should we detect the updated seqno part-way through the
1541 * GPU processing the request, we never over-estimate the
1542 * position of the head.
1543 */
1544 request_ring_position = intel_ring_get_tail(ring);
1545
3cce469c
CW
1546 ret = ring->add_request(ring, &seqno);
1547 if (ret)
1548 return ret;
673a394b 1549
db53a302 1550 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1551
1552 request->seqno = seqno;
852835f3 1553 request->ring = ring;
a71d8d94 1554 request->tail = request_ring_position;
673a394b 1555 request->emitted_jiffies = jiffies;
852835f3
ZN
1556 was_empty = list_empty(&ring->request_list);
1557 list_add_tail(&request->list, &ring->request_list);
1558
db53a302
CW
1559 if (file) {
1560 struct drm_i915_file_private *file_priv = file->driver_priv;
1561
1c25595f 1562 spin_lock(&file_priv->mm.lock);
f787a5f5 1563 request->file_priv = file_priv;
b962442e 1564 list_add_tail(&request->client_list,
f787a5f5 1565 &file_priv->mm.request_list);
1c25595f 1566 spin_unlock(&file_priv->mm.lock);
b962442e 1567 }
673a394b 1568
5391d0cf 1569 ring->outstanding_lazy_request = 0;
db53a302 1570
f65d9421 1571 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1572 if (i915_enable_hangcheck) {
1573 mod_timer(&dev_priv->hangcheck_timer,
1574 jiffies +
1575 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1576 }
f65d9421 1577 if (was_empty)
b3b079db
CW
1578 queue_delayed_work(dev_priv->wq,
1579 &dev_priv->mm.retire_work, HZ);
f65d9421 1580 }
3cce469c 1581 return 0;
673a394b
EA
1582}
1583
f787a5f5
CW
1584static inline void
1585i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1586{
1c25595f 1587 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1588
1c25595f
CW
1589 if (!file_priv)
1590 return;
1c5d22f7 1591
1c25595f 1592 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1593 if (request->file_priv) {
1594 list_del(&request->client_list);
1595 request->file_priv = NULL;
1596 }
1c25595f 1597 spin_unlock(&file_priv->mm.lock);
673a394b 1598}
673a394b 1599
dfaae392
CW
1600static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1601 struct intel_ring_buffer *ring)
9375e446 1602{
dfaae392
CW
1603 while (!list_empty(&ring->request_list)) {
1604 struct drm_i915_gem_request *request;
673a394b 1605
dfaae392
CW
1606 request = list_first_entry(&ring->request_list,
1607 struct drm_i915_gem_request,
1608 list);
de151cf6 1609
dfaae392 1610 list_del(&request->list);
f787a5f5 1611 i915_gem_request_remove_from_client(request);
dfaae392
CW
1612 kfree(request);
1613 }
673a394b 1614
dfaae392 1615 while (!list_empty(&ring->active_list)) {
05394f39 1616 struct drm_i915_gem_object *obj;
9375e446 1617
05394f39
CW
1618 obj = list_first_entry(&ring->active_list,
1619 struct drm_i915_gem_object,
1620 ring_list);
9375e446 1621
05394f39
CW
1622 obj->base.write_domain = 0;
1623 list_del_init(&obj->gpu_write_list);
1624 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1625 }
1626}
1627
312817a3
CW
1628static void i915_gem_reset_fences(struct drm_device *dev)
1629{
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 int i;
1632
4b9de737 1633 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1634 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1635 struct drm_i915_gem_object *obj = reg->obj;
1636
1637 if (!obj)
1638 continue;
1639
1640 if (obj->tiling_mode)
1641 i915_gem_release_mmap(obj);
1642
d9e86c0e
CW
1643 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1644 reg->obj->fenced_gpu_access = false;
1645 reg->obj->last_fenced_seqno = 0;
1646 reg->obj->last_fenced_ring = NULL;
1647 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1648 }
1649}
1650
069efc1d 1651void i915_gem_reset(struct drm_device *dev)
673a394b 1652{
77f01230 1653 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1654 struct drm_i915_gem_object *obj;
1ec14ad3 1655 int i;
673a394b 1656
1ec14ad3
CW
1657 for (i = 0; i < I915_NUM_RINGS; i++)
1658 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1659
1660 /* Remove anything from the flushing lists. The GPU cache is likely
1661 * to be lost on reset along with the data, so simply move the
1662 * lost bo to the inactive list.
1663 */
1664 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1665 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1666 struct drm_i915_gem_object,
1667 mm_list);
dfaae392 1668
05394f39
CW
1669 obj->base.write_domain = 0;
1670 list_del_init(&obj->gpu_write_list);
1671 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1672 }
1673
1674 /* Move everything out of the GPU domains to ensure we do any
1675 * necessary invalidation upon reuse.
1676 */
05394f39 1677 list_for_each_entry(obj,
77f01230 1678 &dev_priv->mm.inactive_list,
69dc4987 1679 mm_list)
77f01230 1680 {
05394f39 1681 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1682 }
069efc1d
CW
1683
1684 /* The fence registers are invalidated so clear them out */
312817a3 1685 i915_gem_reset_fences(dev);
673a394b
EA
1686}
1687
1688/**
1689 * This function clears the request list as sequence numbers are passed.
1690 */
a71d8d94 1691void
db53a302 1692i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1693{
673a394b 1694 uint32_t seqno;
1ec14ad3 1695 int i;
673a394b 1696
db53a302 1697 if (list_empty(&ring->request_list))
6c0594a3
KW
1698 return;
1699
db53a302 1700 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1701
78501eac 1702 seqno = ring->get_seqno(ring);
1ec14ad3 1703
076e2c0e 1704 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1705 if (seqno >= ring->sync_seqno[i])
1706 ring->sync_seqno[i] = 0;
1707
852835f3 1708 while (!list_empty(&ring->request_list)) {
673a394b 1709 struct drm_i915_gem_request *request;
673a394b 1710
852835f3 1711 request = list_first_entry(&ring->request_list,
673a394b
EA
1712 struct drm_i915_gem_request,
1713 list);
673a394b 1714
dfaae392 1715 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1716 break;
1717
db53a302 1718 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1719 /* We know the GPU must have read the request to have
1720 * sent us the seqno + interrupt, so use the position
1721 * of tail of the request to update the last known position
1722 * of the GPU head.
1723 */
1724 ring->last_retired_head = request->tail;
b84d5f0c
CW
1725
1726 list_del(&request->list);
f787a5f5 1727 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1728 kfree(request);
1729 }
673a394b 1730
b84d5f0c
CW
1731 /* Move any buffers on the active list that are no longer referenced
1732 * by the ringbuffer to the flushing/inactive lists as appropriate.
1733 */
1734 while (!list_empty(&ring->active_list)) {
05394f39 1735 struct drm_i915_gem_object *obj;
b84d5f0c 1736
0206e353 1737 obj = list_first_entry(&ring->active_list,
05394f39
CW
1738 struct drm_i915_gem_object,
1739 ring_list);
673a394b 1740
05394f39 1741 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1742 break;
b84d5f0c 1743
05394f39 1744 if (obj->base.write_domain != 0)
b84d5f0c
CW
1745 i915_gem_object_move_to_flushing(obj);
1746 else
1747 i915_gem_object_move_to_inactive(obj);
673a394b 1748 }
9d34e5db 1749
db53a302
CW
1750 if (unlikely(ring->trace_irq_seqno &&
1751 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1752 ring->irq_put(ring);
db53a302 1753 ring->trace_irq_seqno = 0;
9d34e5db 1754 }
23bc5982 1755
db53a302 1756 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1757}
1758
b09a1fec
CW
1759void
1760i915_gem_retire_requests(struct drm_device *dev)
1761{
1762 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1763 int i;
b09a1fec 1764
be72615b 1765 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1766 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1767
1768 /* We must be careful that during unbind() we do not
1769 * accidentally infinitely recurse into retire requests.
1770 * Currently:
1771 * retire -> free -> unbind -> wait -> retire_ring
1772 */
05394f39 1773 list_for_each_entry_safe(obj, next,
be72615b 1774 &dev_priv->mm.deferred_free_list,
69dc4987 1775 mm_list)
05394f39 1776 i915_gem_free_object_tail(obj);
be72615b
CW
1777 }
1778
1ec14ad3 1779 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1780 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1781}
1782
75ef9da2 1783static void
673a394b
EA
1784i915_gem_retire_work_handler(struct work_struct *work)
1785{
1786 drm_i915_private_t *dev_priv;
1787 struct drm_device *dev;
0a58705b
CW
1788 bool idle;
1789 int i;
673a394b
EA
1790
1791 dev_priv = container_of(work, drm_i915_private_t,
1792 mm.retire_work.work);
1793 dev = dev_priv->dev;
1794
891b48cf
CW
1795 /* Come back later if the device is busy... */
1796 if (!mutex_trylock(&dev->struct_mutex)) {
1797 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1798 return;
1799 }
1800
b09a1fec 1801 i915_gem_retire_requests(dev);
d1b851fc 1802
0a58705b
CW
1803 /* Send a periodic flush down the ring so we don't hold onto GEM
1804 * objects indefinitely.
1805 */
1806 idle = true;
1807 for (i = 0; i < I915_NUM_RINGS; i++) {
1808 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1809
1810 if (!list_empty(&ring->gpu_write_list)) {
1811 struct drm_i915_gem_request *request;
1812 int ret;
1813
db53a302
CW
1814 ret = i915_gem_flush_ring(ring,
1815 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1816 request = kzalloc(sizeof(*request), GFP_KERNEL);
1817 if (ret || request == NULL ||
db53a302 1818 i915_add_request(ring, NULL, request))
0a58705b
CW
1819 kfree(request);
1820 }
1821
1822 idle &= list_empty(&ring->request_list);
1823 }
1824
1825 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1826 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1827
673a394b
EA
1828 mutex_unlock(&dev->struct_mutex);
1829}
1830
db53a302
CW
1831/**
1832 * Waits for a sequence number to be signaled, and cleans up the
1833 * request and object lists appropriately for that event.
1834 */
5a5a0c64 1835int
db53a302 1836i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1837 uint32_t seqno,
1838 bool do_retire)
673a394b 1839{
db53a302 1840 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1841 u32 ier;
673a394b
EA
1842 int ret = 0;
1843
1844 BUG_ON(seqno == 0);
1845
d9bc7e9f
CW
1846 if (atomic_read(&dev_priv->mm.wedged)) {
1847 struct completion *x = &dev_priv->error_completion;
1848 bool recovery_complete;
1849 unsigned long flags;
1850
1851 /* Give the error handler a chance to run. */
1852 spin_lock_irqsave(&x->wait.lock, flags);
1853 recovery_complete = x->done > 0;
1854 spin_unlock_irqrestore(&x->wait.lock, flags);
1855
1856 return recovery_complete ? -EIO : -EAGAIN;
1857 }
30dbf0c0 1858
5d97eb69 1859 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1860 struct drm_i915_gem_request *request;
1861
1862 request = kzalloc(sizeof(*request), GFP_KERNEL);
1863 if (request == NULL)
e35a41de 1864 return -ENOMEM;
3cce469c 1865
db53a302 1866 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1867 if (ret) {
1868 kfree(request);
1869 return ret;
1870 }
1871
1872 seqno = request->seqno;
e35a41de 1873 }
ffed1d09 1874
78501eac 1875 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1876 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
1877 ier = I915_READ(DEIER) | I915_READ(GTIER);
1878 else
1879 ier = I915_READ(IER);
802c7eb6
JB
1880 if (!ier) {
1881 DRM_ERROR("something (likely vbetool) disabled "
1882 "interrupts, re-enabling\n");
f01c22fd
CW
1883 ring->dev->driver->irq_preinstall(ring->dev);
1884 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1885 }
1886
db53a302 1887 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1888
b2223497 1889 ring->waiting_seqno = seqno;
b13c2b96 1890 if (ring->irq_get(ring)) {
ce453d81 1891 if (dev_priv->mm.interruptible)
b13c2b96
CW
1892 ret = wait_event_interruptible(ring->irq_queue,
1893 i915_seqno_passed(ring->get_seqno(ring), seqno)
1894 || atomic_read(&dev_priv->mm.wedged));
1895 else
1896 wait_event(ring->irq_queue,
1897 i915_seqno_passed(ring->get_seqno(ring), seqno)
1898 || atomic_read(&dev_priv->mm.wedged));
1899
1900 ring->irq_put(ring);
e959b5db
EA
1901 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1902 seqno) ||
1903 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1904 ret = -EBUSY;
b2223497 1905 ring->waiting_seqno = 0;
1c5d22f7 1906
db53a302 1907 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1908 }
ba1234d1 1909 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1910 ret = -EAGAIN;
673a394b 1911
673a394b
EA
1912 /* Directly dispatch request retiring. While we have the work queue
1913 * to handle this, the waiter on a request often wants an associated
1914 * buffer to have made it to the inactive list, and we would need
1915 * a separate wait queue to handle that.
1916 */
b93f9cf1 1917 if (ret == 0 && do_retire)
db53a302 1918 i915_gem_retire_requests_ring(ring);
673a394b
EA
1919
1920 return ret;
1921}
1922
673a394b
EA
1923/**
1924 * Ensures that all rendering to the object has completed and the object is
1925 * safe to unbind from the GTT or access from the CPU.
1926 */
54cf91dc 1927int
ce453d81 1928i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1929{
673a394b
EA
1930 int ret;
1931
e47c68e9
EA
1932 /* This function only exists to support waiting for existing rendering,
1933 * not for emitting required flushes.
673a394b 1934 */
05394f39 1935 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1936
1937 /* If there is rendering queued on the buffer being evicted, wait for
1938 * it.
1939 */
05394f39 1940 if (obj->active) {
b93f9cf1
BW
1941 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1942 true);
2cf34d7b 1943 if (ret)
673a394b
EA
1944 return ret;
1945 }
1946
1947 return 0;
1948}
1949
b5ffc9bc
CW
1950static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
1951{
1952 u32 old_write_domain, old_read_domains;
1953
b5ffc9bc
CW
1954 /* Act a barrier for all accesses through the GTT */
1955 mb();
1956
1957 /* Force a pagefault for domain tracking on next user access */
1958 i915_gem_release_mmap(obj);
1959
b97c3d9c
KP
1960 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
1961 return;
1962
b5ffc9bc
CW
1963 old_read_domains = obj->base.read_domains;
1964 old_write_domain = obj->base.write_domain;
1965
1966 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
1967 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
1968
1969 trace_i915_gem_object_change_domain(obj,
1970 old_read_domains,
1971 old_write_domain);
1972}
1973
673a394b
EA
1974/**
1975 * Unbinds an object from the GTT aperture.
1976 */
0f973f27 1977int
05394f39 1978i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 1979{
7bddb01f 1980 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
1981 int ret = 0;
1982
05394f39 1983 if (obj->gtt_space == NULL)
673a394b
EA
1984 return 0;
1985
05394f39 1986 if (obj->pin_count != 0) {
673a394b
EA
1987 DRM_ERROR("Attempting to unbind pinned buffer\n");
1988 return -EINVAL;
1989 }
1990
a8198eea
CW
1991 ret = i915_gem_object_finish_gpu(obj);
1992 if (ret == -ERESTARTSYS)
1993 return ret;
1994 /* Continue on if we fail due to EIO, the GPU is hung so we
1995 * should be safe and we need to cleanup or else we might
1996 * cause memory corruption through use-after-free.
1997 */
1998
b5ffc9bc 1999 i915_gem_object_finish_gtt(obj);
5323fd04 2000
673a394b
EA
2001 /* Move the object to the CPU domain to ensure that
2002 * any possible CPU writes while it's not in the GTT
a8198eea 2003 * are flushed when we go to remap it.
673a394b 2004 */
a8198eea
CW
2005 if (ret == 0)
2006 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2007 if (ret == -ERESTARTSYS)
673a394b 2008 return ret;
812ed492 2009 if (ret) {
a8198eea
CW
2010 /* In the event of a disaster, abandon all caches and
2011 * hope for the best.
2012 */
812ed492 2013 i915_gem_clflush_object(obj);
05394f39 2014 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2015 }
673a394b 2016
96b47b65 2017 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2018 ret = i915_gem_object_put_fence(obj);
2019 if (ret == -ERESTARTSYS)
2020 return ret;
96b47b65 2021
db53a302
CW
2022 trace_i915_gem_object_unbind(obj);
2023
74898d7e
DV
2024 if (obj->has_global_gtt_mapping)
2025 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2026 if (obj->has_aliasing_ppgtt_mapping) {
2027 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2028 obj->has_aliasing_ppgtt_mapping = 0;
2029 }
74163907 2030 i915_gem_gtt_finish_object(obj);
7bddb01f 2031
e5281ccd 2032 i915_gem_object_put_pages_gtt(obj);
673a394b 2033
6299f992 2034 list_del_init(&obj->gtt_list);
05394f39 2035 list_del_init(&obj->mm_list);
75e9e915 2036 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2037 obj->map_and_fenceable = true;
673a394b 2038
05394f39
CW
2039 drm_mm_put_block(obj->gtt_space);
2040 obj->gtt_space = NULL;
2041 obj->gtt_offset = 0;
673a394b 2042
05394f39 2043 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2044 i915_gem_object_truncate(obj);
2045
8dc1775d 2046 return ret;
673a394b
EA
2047}
2048
88241785 2049int
db53a302 2050i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2051 uint32_t invalidate_domains,
2052 uint32_t flush_domains)
2053{
88241785
CW
2054 int ret;
2055
36d527de
CW
2056 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2057 return 0;
2058
db53a302
CW
2059 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2060
88241785
CW
2061 ret = ring->flush(ring, invalidate_domains, flush_domains);
2062 if (ret)
2063 return ret;
2064
36d527de
CW
2065 if (flush_domains & I915_GEM_GPU_DOMAINS)
2066 i915_gem_process_flushing_list(ring, flush_domains);
2067
88241785 2068 return 0;
54cf91dc
CW
2069}
2070
b93f9cf1 2071static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2072{
88241785
CW
2073 int ret;
2074
395b70be 2075 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2076 return 0;
2077
88241785 2078 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2079 ret = i915_gem_flush_ring(ring,
0ac74c6b 2080 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2081 if (ret)
2082 return ret;
2083 }
2084
b93f9cf1
BW
2085 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2086 do_retire);
a56ba56c
CW
2087}
2088
b93f9cf1 2089int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2090{
2091 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2092 int ret, i;
4df2faf4 2093
4df2faf4 2094 /* Flush everything onto the inactive list. */
1ec14ad3 2095 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2096 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2097 if (ret)
2098 return ret;
2099 }
4df2faf4 2100
8a1a49f9 2101 return 0;
4df2faf4
DV
2102}
2103
c6642782
DV
2104static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2105 struct intel_ring_buffer *pipelined)
4e901fdc 2106{
05394f39 2107 struct drm_device *dev = obj->base.dev;
4e901fdc 2108 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2109 u32 size = obj->gtt_space->size;
2110 int regnum = obj->fence_reg;
4e901fdc
EA
2111 uint64_t val;
2112
05394f39 2113 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2114 0xfffff000) << 32;
05394f39
CW
2115 val |= obj->gtt_offset & 0xfffff000;
2116 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2117 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2118
05394f39 2119 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2120 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2121 val |= I965_FENCE_REG_VALID;
2122
c6642782
DV
2123 if (pipelined) {
2124 int ret = intel_ring_begin(pipelined, 6);
2125 if (ret)
2126 return ret;
2127
2128 intel_ring_emit(pipelined, MI_NOOP);
2129 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2130 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2131 intel_ring_emit(pipelined, (u32)val);
2132 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2133 intel_ring_emit(pipelined, (u32)(val >> 32));
2134 intel_ring_advance(pipelined);
2135 } else
2136 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2137
2138 return 0;
4e901fdc
EA
2139}
2140
c6642782
DV
2141static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2142 struct intel_ring_buffer *pipelined)
de151cf6 2143{
05394f39 2144 struct drm_device *dev = obj->base.dev;
de151cf6 2145 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2146 u32 size = obj->gtt_space->size;
2147 int regnum = obj->fence_reg;
de151cf6
JB
2148 uint64_t val;
2149
05394f39 2150 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2151 0xfffff000) << 32;
05394f39
CW
2152 val |= obj->gtt_offset & 0xfffff000;
2153 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2154 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2155 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2156 val |= I965_FENCE_REG_VALID;
2157
c6642782
DV
2158 if (pipelined) {
2159 int ret = intel_ring_begin(pipelined, 6);
2160 if (ret)
2161 return ret;
2162
2163 intel_ring_emit(pipelined, MI_NOOP);
2164 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2165 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2166 intel_ring_emit(pipelined, (u32)val);
2167 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2168 intel_ring_emit(pipelined, (u32)(val >> 32));
2169 intel_ring_advance(pipelined);
2170 } else
2171 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2172
2173 return 0;
de151cf6
JB
2174}
2175
c6642782
DV
2176static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2177 struct intel_ring_buffer *pipelined)
de151cf6 2178{
05394f39 2179 struct drm_device *dev = obj->base.dev;
de151cf6 2180 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2181 u32 size = obj->gtt_space->size;
c6642782 2182 u32 fence_reg, val, pitch_val;
0f973f27 2183 int tile_width;
de151cf6 2184
c6642782
DV
2185 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2186 (size & -size) != size ||
2187 (obj->gtt_offset & (size - 1)),
2188 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2189 obj->gtt_offset, obj->map_and_fenceable, size))
2190 return -EINVAL;
de151cf6 2191
c6642782 2192 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2193 tile_width = 128;
de151cf6 2194 else
0f973f27
JB
2195 tile_width = 512;
2196
2197 /* Note: pitch better be a power of two tile widths */
05394f39 2198 pitch_val = obj->stride / tile_width;
0f973f27 2199 pitch_val = ffs(pitch_val) - 1;
de151cf6 2200
05394f39
CW
2201 val = obj->gtt_offset;
2202 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2203 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2204 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2205 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2206 val |= I830_FENCE_REG_VALID;
2207
05394f39 2208 fence_reg = obj->fence_reg;
a00b10c3
CW
2209 if (fence_reg < 8)
2210 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2211 else
a00b10c3 2212 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2213
2214 if (pipelined) {
2215 int ret = intel_ring_begin(pipelined, 4);
2216 if (ret)
2217 return ret;
2218
2219 intel_ring_emit(pipelined, MI_NOOP);
2220 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2221 intel_ring_emit(pipelined, fence_reg);
2222 intel_ring_emit(pipelined, val);
2223 intel_ring_advance(pipelined);
2224 } else
2225 I915_WRITE(fence_reg, val);
2226
2227 return 0;
de151cf6
JB
2228}
2229
c6642782
DV
2230static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2231 struct intel_ring_buffer *pipelined)
de151cf6 2232{
05394f39 2233 struct drm_device *dev = obj->base.dev;
de151cf6 2234 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2235 u32 size = obj->gtt_space->size;
2236 int regnum = obj->fence_reg;
de151cf6
JB
2237 uint32_t val;
2238 uint32_t pitch_val;
2239
c6642782
DV
2240 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2241 (size & -size) != size ||
2242 (obj->gtt_offset & (size - 1)),
2243 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2244 obj->gtt_offset, size))
2245 return -EINVAL;
de151cf6 2246
05394f39 2247 pitch_val = obj->stride / 128;
e76a16de 2248 pitch_val = ffs(pitch_val) - 1;
e76a16de 2249
05394f39
CW
2250 val = obj->gtt_offset;
2251 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2252 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2253 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2254 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2255 val |= I830_FENCE_REG_VALID;
2256
c6642782
DV
2257 if (pipelined) {
2258 int ret = intel_ring_begin(pipelined, 4);
2259 if (ret)
2260 return ret;
2261
2262 intel_ring_emit(pipelined, MI_NOOP);
2263 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2264 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2265 intel_ring_emit(pipelined, val);
2266 intel_ring_advance(pipelined);
2267 } else
2268 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2269
2270 return 0;
de151cf6
JB
2271}
2272
d9e86c0e
CW
2273static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2274{
2275 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2276}
2277
2278static int
2279i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2280 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2281{
2282 int ret;
2283
2284 if (obj->fenced_gpu_access) {
88241785 2285 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2286 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2287 0, obj->base.write_domain);
2288 if (ret)
2289 return ret;
2290 }
d9e86c0e
CW
2291
2292 obj->fenced_gpu_access = false;
2293 }
2294
2295 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2296 if (!ring_passed_seqno(obj->last_fenced_ring,
2297 obj->last_fenced_seqno)) {
db53a302 2298 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2299 obj->last_fenced_seqno,
2300 true);
d9e86c0e
CW
2301 if (ret)
2302 return ret;
2303 }
2304
2305 obj->last_fenced_seqno = 0;
2306 obj->last_fenced_ring = NULL;
2307 }
2308
63256ec5
CW
2309 /* Ensure that all CPU reads are completed before installing a fence
2310 * and all writes before removing the fence.
2311 */
2312 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2313 mb();
2314
d9e86c0e
CW
2315 return 0;
2316}
2317
2318int
2319i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2320{
2321 int ret;
2322
2323 if (obj->tiling_mode)
2324 i915_gem_release_mmap(obj);
2325
ce453d81 2326 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2327 if (ret)
2328 return ret;
2329
2330 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2331 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2332
2333 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2334 i915_gem_clear_fence_reg(obj->base.dev,
2335 &dev_priv->fence_regs[obj->fence_reg]);
2336
2337 obj->fence_reg = I915_FENCE_REG_NONE;
2338 }
2339
2340 return 0;
2341}
2342
2343static struct drm_i915_fence_reg *
2344i915_find_fence_reg(struct drm_device *dev,
2345 struct intel_ring_buffer *pipelined)
ae3db24a 2346{
ae3db24a 2347 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2348 struct drm_i915_fence_reg *reg, *first, *avail;
2349 int i;
ae3db24a
DV
2350
2351 /* First try to find a free reg */
d9e86c0e 2352 avail = NULL;
ae3db24a
DV
2353 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2354 reg = &dev_priv->fence_regs[i];
2355 if (!reg->obj)
d9e86c0e 2356 return reg;
ae3db24a 2357
1690e1eb 2358 if (!reg->pin_count)
d9e86c0e 2359 avail = reg;
ae3db24a
DV
2360 }
2361
d9e86c0e
CW
2362 if (avail == NULL)
2363 return NULL;
ae3db24a
DV
2364
2365 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2366 avail = first = NULL;
2367 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2368 if (reg->pin_count)
ae3db24a
DV
2369 continue;
2370
d9e86c0e
CW
2371 if (first == NULL)
2372 first = reg;
2373
2374 if (!pipelined ||
2375 !reg->obj->last_fenced_ring ||
2376 reg->obj->last_fenced_ring == pipelined) {
2377 avail = reg;
2378 break;
2379 }
ae3db24a
DV
2380 }
2381
d9e86c0e
CW
2382 if (avail == NULL)
2383 avail = first;
ae3db24a 2384
a00b10c3 2385 return avail;
ae3db24a
DV
2386}
2387
de151cf6 2388/**
d9e86c0e 2389 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2390 * @obj: object to map through a fence reg
d9e86c0e
CW
2391 * @pipelined: ring on which to queue the change, or NULL for CPU access
2392 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2393 *
2394 * When mapping objects through the GTT, userspace wants to be able to write
2395 * to them without having to worry about swizzling if the object is tiled.
2396 *
2397 * This function walks the fence regs looking for a free one for @obj,
2398 * stealing one if it can't find any.
2399 *
2400 * It then sets up the reg based on the object's properties: address, pitch
2401 * and tiling format.
2402 */
8c4b8c3f 2403int
d9e86c0e 2404i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2405 struct intel_ring_buffer *pipelined)
de151cf6 2406{
05394f39 2407 struct drm_device *dev = obj->base.dev;
79e53945 2408 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2409 struct drm_i915_fence_reg *reg;
ae3db24a 2410 int ret;
de151cf6 2411
6bda10d1
CW
2412 /* XXX disable pipelining. There are bugs. Shocking. */
2413 pipelined = NULL;
2414
d9e86c0e 2415 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2416 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2417 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2418 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2419
29c5a587
CW
2420 if (obj->tiling_changed) {
2421 ret = i915_gem_object_flush_fence(obj, pipelined);
2422 if (ret)
2423 return ret;
2424
2425 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2426 pipelined = NULL;
2427
2428 if (pipelined) {
2429 reg->setup_seqno =
2430 i915_gem_next_request_seqno(pipelined);
2431 obj->last_fenced_seqno = reg->setup_seqno;
2432 obj->last_fenced_ring = pipelined;
2433 }
2434
2435 goto update;
2436 }
d9e86c0e
CW
2437
2438 if (!pipelined) {
2439 if (reg->setup_seqno) {
2440 if (!ring_passed_seqno(obj->last_fenced_ring,
2441 reg->setup_seqno)) {
db53a302 2442 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2443 reg->setup_seqno,
2444 true);
d9e86c0e
CW
2445 if (ret)
2446 return ret;
2447 }
2448
2449 reg->setup_seqno = 0;
2450 }
2451 } else if (obj->last_fenced_ring &&
2452 obj->last_fenced_ring != pipelined) {
ce453d81 2453 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2454 if (ret)
2455 return ret;
d9e86c0e
CW
2456 }
2457
a09ba7fa
EA
2458 return 0;
2459 }
2460
d9e86c0e
CW
2461 reg = i915_find_fence_reg(dev, pipelined);
2462 if (reg == NULL)
39965b37 2463 return -EDEADLK;
de151cf6 2464
ce453d81 2465 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2466 if (ret)
ae3db24a 2467 return ret;
de151cf6 2468
d9e86c0e
CW
2469 if (reg->obj) {
2470 struct drm_i915_gem_object *old = reg->obj;
2471
2472 drm_gem_object_reference(&old->base);
2473
2474 if (old->tiling_mode)
2475 i915_gem_release_mmap(old);
2476
ce453d81 2477 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2478 if (ret) {
2479 drm_gem_object_unreference(&old->base);
2480 return ret;
2481 }
2482
2483 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2484 pipelined = NULL;
2485
2486 old->fence_reg = I915_FENCE_REG_NONE;
2487 old->last_fenced_ring = pipelined;
2488 old->last_fenced_seqno =
db53a302 2489 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2490
2491 drm_gem_object_unreference(&old->base);
2492 } else if (obj->last_fenced_seqno == 0)
2493 pipelined = NULL;
a09ba7fa 2494
de151cf6 2495 reg->obj = obj;
d9e86c0e
CW
2496 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2497 obj->fence_reg = reg - dev_priv->fence_regs;
2498 obj->last_fenced_ring = pipelined;
de151cf6 2499
d9e86c0e 2500 reg->setup_seqno =
db53a302 2501 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2502 obj->last_fenced_seqno = reg->setup_seqno;
2503
2504update:
2505 obj->tiling_changed = false;
e259befd 2506 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2507 case 7:
e259befd 2508 case 6:
c6642782 2509 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2510 break;
2511 case 5:
2512 case 4:
c6642782 2513 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2514 break;
2515 case 3:
c6642782 2516 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2517 break;
2518 case 2:
c6642782 2519 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2520 break;
2521 }
d9ddcb96 2522
c6642782 2523 return ret;
de151cf6
JB
2524}
2525
2526/**
2527 * i915_gem_clear_fence_reg - clear out fence register info
2528 * @obj: object to clear
2529 *
2530 * Zeroes out the fence register itself and clears out the associated
05394f39 2531 * data structures in dev_priv and obj.
de151cf6
JB
2532 */
2533static void
d9e86c0e
CW
2534i915_gem_clear_fence_reg(struct drm_device *dev,
2535 struct drm_i915_fence_reg *reg)
de151cf6 2536{
79e53945 2537 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2538 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2539
e259befd 2540 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2541 case 7:
e259befd 2542 case 6:
d9e86c0e 2543 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2544 break;
2545 case 5:
2546 case 4:
d9e86c0e 2547 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2548 break;
2549 case 3:
d9e86c0e
CW
2550 if (fence_reg >= 8)
2551 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2552 else
e259befd 2553 case 2:
d9e86c0e 2554 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2555
2556 I915_WRITE(fence_reg, 0);
e259befd 2557 break;
dc529a4f 2558 }
de151cf6 2559
007cc8ac 2560 list_del_init(&reg->lru_list);
d9e86c0e
CW
2561 reg->obj = NULL;
2562 reg->setup_seqno = 0;
1690e1eb 2563 reg->pin_count = 0;
52dc7d32
CW
2564}
2565
673a394b
EA
2566/**
2567 * Finds free space in the GTT aperture and binds the object there.
2568 */
2569static int
05394f39 2570i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2571 unsigned alignment,
75e9e915 2572 bool map_and_fenceable)
673a394b 2573{
05394f39 2574 struct drm_device *dev = obj->base.dev;
673a394b 2575 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2576 struct drm_mm_node *free_space;
a00b10c3 2577 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2578 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2579 bool mappable, fenceable;
07f73f69 2580 int ret;
673a394b 2581
05394f39 2582 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2583 DRM_ERROR("Attempting to bind a purgeable object\n");
2584 return -EINVAL;
2585 }
2586
e28f8711
CW
2587 fence_size = i915_gem_get_gtt_size(dev,
2588 obj->base.size,
2589 obj->tiling_mode);
2590 fence_alignment = i915_gem_get_gtt_alignment(dev,
2591 obj->base.size,
2592 obj->tiling_mode);
2593 unfenced_alignment =
2594 i915_gem_get_unfenced_gtt_alignment(dev,
2595 obj->base.size,
2596 obj->tiling_mode);
a00b10c3 2597
673a394b 2598 if (alignment == 0)
5e783301
DV
2599 alignment = map_and_fenceable ? fence_alignment :
2600 unfenced_alignment;
75e9e915 2601 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2602 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2603 return -EINVAL;
2604 }
2605
05394f39 2606 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2607
654fc607
CW
2608 /* If the object is bigger than the entire aperture, reject it early
2609 * before evicting everything in a vain attempt to find space.
2610 */
05394f39 2611 if (obj->base.size >
75e9e915 2612 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2613 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2614 return -E2BIG;
2615 }
2616
673a394b 2617 search_free:
75e9e915 2618 if (map_and_fenceable)
920afa77
DV
2619 free_space =
2620 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2621 size, alignment, 0,
920afa77
DV
2622 dev_priv->mm.gtt_mappable_end,
2623 0);
2624 else
2625 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2626 size, alignment, 0);
920afa77
DV
2627
2628 if (free_space != NULL) {
75e9e915 2629 if (map_and_fenceable)
05394f39 2630 obj->gtt_space =
920afa77 2631 drm_mm_get_block_range_generic(free_space,
a00b10c3 2632 size, alignment, 0,
920afa77
DV
2633 dev_priv->mm.gtt_mappable_end,
2634 0);
2635 else
05394f39 2636 obj->gtt_space =
a00b10c3 2637 drm_mm_get_block(free_space, size, alignment);
920afa77 2638 }
05394f39 2639 if (obj->gtt_space == NULL) {
673a394b
EA
2640 /* If the gtt is empty and we're still having trouble
2641 * fitting our object in, we're out of memory.
2642 */
75e9e915
DV
2643 ret = i915_gem_evict_something(dev, size, alignment,
2644 map_and_fenceable);
9731129c 2645 if (ret)
673a394b 2646 return ret;
9731129c 2647
673a394b
EA
2648 goto search_free;
2649 }
2650
e5281ccd 2651 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2652 if (ret) {
05394f39
CW
2653 drm_mm_put_block(obj->gtt_space);
2654 obj->gtt_space = NULL;
07f73f69
CW
2655
2656 if (ret == -ENOMEM) {
809b6334
CW
2657 /* first try to reclaim some memory by clearing the GTT */
2658 ret = i915_gem_evict_everything(dev, false);
07f73f69 2659 if (ret) {
07f73f69 2660 /* now try to shrink everyone else */
4bdadb97
CW
2661 if (gfpmask) {
2662 gfpmask = 0;
2663 goto search_free;
07f73f69
CW
2664 }
2665
809b6334 2666 return -ENOMEM;
07f73f69
CW
2667 }
2668
2669 goto search_free;
2670 }
2671
673a394b
EA
2672 return ret;
2673 }
2674
74163907 2675 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2676 if (ret) {
e5281ccd 2677 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2678 drm_mm_put_block(obj->gtt_space);
2679 obj->gtt_space = NULL;
07f73f69 2680
809b6334 2681 if (i915_gem_evict_everything(dev, false))
07f73f69 2682 return ret;
07f73f69
CW
2683
2684 goto search_free;
673a394b 2685 }
0ebb9829
DV
2686
2687 if (!dev_priv->mm.aliasing_ppgtt)
2688 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2689
6299f992 2690 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2691 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2692
673a394b
EA
2693 /* Assert that the object is not currently in any GPU domain. As it
2694 * wasn't in the GTT, there shouldn't be any way it could have been in
2695 * a GPU cache
2696 */
05394f39
CW
2697 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2698 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2699
6299f992 2700 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2701
75e9e915 2702 fenceable =
05394f39 2703 obj->gtt_space->size == fence_size &&
0206e353 2704 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2705
75e9e915 2706 mappable =
05394f39 2707 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2708
05394f39 2709 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2710
db53a302 2711 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2712 return 0;
2713}
2714
2715void
05394f39 2716i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2717{
673a394b
EA
2718 /* If we don't have a page list set up, then we're not pinned
2719 * to GPU, and we can ignore the cache flush because it'll happen
2720 * again at bind time.
2721 */
05394f39 2722 if (obj->pages == NULL)
673a394b
EA
2723 return;
2724
9c23f7fc
CW
2725 /* If the GPU is snooping the contents of the CPU cache,
2726 * we do not need to manually clear the CPU cache lines. However,
2727 * the caches are only snooped when the render cache is
2728 * flushed/invalidated. As we always have to emit invalidations
2729 * and flushes when moving into and out of the RENDER domain, correct
2730 * snooping behaviour occurs naturally as the result of our domain
2731 * tracking.
2732 */
2733 if (obj->cache_level != I915_CACHE_NONE)
2734 return;
2735
1c5d22f7 2736 trace_i915_gem_object_clflush(obj);
cfa16a0d 2737
05394f39 2738 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2739}
2740
e47c68e9 2741/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2742static int
3619df03 2743i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2744{
05394f39 2745 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2746 return 0;
e47c68e9
EA
2747
2748 /* Queue the GPU write cache flushing we need. */
db53a302 2749 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2750}
2751
2752/** Flushes the GTT write domain for the object if it's dirty. */
2753static void
05394f39 2754i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2755{
1c5d22f7
CW
2756 uint32_t old_write_domain;
2757
05394f39 2758 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2759 return;
2760
63256ec5 2761 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2762 * to it immediately go to main memory as far as we know, so there's
2763 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2764 *
2765 * However, we do have to enforce the order so that all writes through
2766 * the GTT land before any writes to the device, such as updates to
2767 * the GATT itself.
e47c68e9 2768 */
63256ec5
CW
2769 wmb();
2770
05394f39
CW
2771 old_write_domain = obj->base.write_domain;
2772 obj->base.write_domain = 0;
1c5d22f7
CW
2773
2774 trace_i915_gem_object_change_domain(obj,
05394f39 2775 obj->base.read_domains,
1c5d22f7 2776 old_write_domain);
e47c68e9
EA
2777}
2778
2779/** Flushes the CPU write domain for the object if it's dirty. */
2780static void
05394f39 2781i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2782{
1c5d22f7 2783 uint32_t old_write_domain;
e47c68e9 2784
05394f39 2785 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2786 return;
2787
2788 i915_gem_clflush_object(obj);
40ce6575 2789 intel_gtt_chipset_flush();
05394f39
CW
2790 old_write_domain = obj->base.write_domain;
2791 obj->base.write_domain = 0;
1c5d22f7
CW
2792
2793 trace_i915_gem_object_change_domain(obj,
05394f39 2794 obj->base.read_domains,
1c5d22f7 2795 old_write_domain);
e47c68e9
EA
2796}
2797
2ef7eeaa
EA
2798/**
2799 * Moves a single object to the GTT read, and possibly write domain.
2800 *
2801 * This function returns when the move is complete, including waiting on
2802 * flushes to occur.
2803 */
79e53945 2804int
2021746e 2805i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2806{
1c5d22f7 2807 uint32_t old_write_domain, old_read_domains;
e47c68e9 2808 int ret;
2ef7eeaa 2809
02354392 2810 /* Not valid to be called on unbound objects. */
05394f39 2811 if (obj->gtt_space == NULL)
02354392
EA
2812 return -EINVAL;
2813
8d7e3de1
CW
2814 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2815 return 0;
2816
88241785
CW
2817 ret = i915_gem_object_flush_gpu_write_domain(obj);
2818 if (ret)
2819 return ret;
2820
87ca9c8a 2821 if (obj->pending_gpu_write || write) {
ce453d81 2822 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2823 if (ret)
2824 return ret;
2825 }
2dafb1e0 2826
7213342d 2827 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2828
05394f39
CW
2829 old_write_domain = obj->base.write_domain;
2830 old_read_domains = obj->base.read_domains;
1c5d22f7 2831
e47c68e9
EA
2832 /* It should now be out of any other write domains, and we can update
2833 * the domain values for our changes.
2834 */
05394f39
CW
2835 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2836 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2837 if (write) {
05394f39
CW
2838 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2839 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2840 obj->dirty = 1;
2ef7eeaa
EA
2841 }
2842
1c5d22f7
CW
2843 trace_i915_gem_object_change_domain(obj,
2844 old_read_domains,
2845 old_write_domain);
2846
e47c68e9
EA
2847 return 0;
2848}
2849
e4ffd173
CW
2850int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2851 enum i915_cache_level cache_level)
2852{
7bddb01f
DV
2853 struct drm_device *dev = obj->base.dev;
2854 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2855 int ret;
2856
2857 if (obj->cache_level == cache_level)
2858 return 0;
2859
2860 if (obj->pin_count) {
2861 DRM_DEBUG("can not change the cache level of pinned objects\n");
2862 return -EBUSY;
2863 }
2864
2865 if (obj->gtt_space) {
2866 ret = i915_gem_object_finish_gpu(obj);
2867 if (ret)
2868 return ret;
2869
2870 i915_gem_object_finish_gtt(obj);
2871
2872 /* Before SandyBridge, you could not use tiling or fence
2873 * registers with snooped memory, so relinquish any fences
2874 * currently pointing to our region in the aperture.
2875 */
2876 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2877 ret = i915_gem_object_put_fence(obj);
2878 if (ret)
2879 return ret;
2880 }
2881
74898d7e
DV
2882 if (obj->has_global_gtt_mapping)
2883 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2884 if (obj->has_aliasing_ppgtt_mapping)
2885 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2886 obj, cache_level);
e4ffd173
CW
2887 }
2888
2889 if (cache_level == I915_CACHE_NONE) {
2890 u32 old_read_domains, old_write_domain;
2891
2892 /* If we're coming from LLC cached, then we haven't
2893 * actually been tracking whether the data is in the
2894 * CPU cache or not, since we only allow one bit set
2895 * in obj->write_domain and have been skipping the clflushes.
2896 * Just set it to the CPU cache for now.
2897 */
2898 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2899 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2900
2901 old_read_domains = obj->base.read_domains;
2902 old_write_domain = obj->base.write_domain;
2903
2904 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2905 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2906
2907 trace_i915_gem_object_change_domain(obj,
2908 old_read_domains,
2909 old_write_domain);
2910 }
2911
2912 obj->cache_level = cache_level;
2913 return 0;
2914}
2915
b9241ea3 2916/*
2da3b9b9
CW
2917 * Prepare buffer for display plane (scanout, cursors, etc).
2918 * Can be called from an uninterruptible phase (modesetting) and allows
2919 * any flushes to be pipelined (for pageflips).
2920 *
2921 * For the display plane, we want to be in the GTT but out of any write
2922 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
2923 * ability to pipeline the waits, pinning and any additional subtleties
2924 * that may differentiate the display plane from ordinary buffers.
b9241ea3
ZW
2925 */
2926int
2da3b9b9
CW
2927i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2928 u32 alignment,
919926ae 2929 struct intel_ring_buffer *pipelined)
b9241ea3 2930{
2da3b9b9 2931 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2932 int ret;
2933
88241785
CW
2934 ret = i915_gem_object_flush_gpu_write_domain(obj);
2935 if (ret)
2936 return ret;
2937
0be73284 2938 if (pipelined != obj->ring) {
ce453d81 2939 ret = i915_gem_object_wait_rendering(obj);
f0b69efc 2940 if (ret == -ERESTARTSYS)
b9241ea3
ZW
2941 return ret;
2942 }
2943
a7ef0640
EA
2944 /* The display engine is not coherent with the LLC cache on gen6. As
2945 * a result, we make sure that the pinning that is about to occur is
2946 * done with uncached PTEs. This is lowest common denominator for all
2947 * chipsets.
2948 *
2949 * However for gen6+, we could do better by using the GFDT bit instead
2950 * of uncaching, which would allow us to flush all the LLC-cached data
2951 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2952 */
2953 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2954 if (ret)
2955 return ret;
2956
2da3b9b9
CW
2957 /* As the user may map the buffer once pinned in the display plane
2958 * (e.g. libkms for the bootup splash), we have to ensure that we
2959 * always use map_and_fenceable for all scanout buffers.
2960 */
2961 ret = i915_gem_object_pin(obj, alignment, true);
2962 if (ret)
2963 return ret;
2964
b118c1e3
CW
2965 i915_gem_object_flush_cpu_write_domain(obj);
2966
2da3b9b9 2967 old_write_domain = obj->base.write_domain;
05394f39 2968 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2969
2970 /* It should now be out of any other write domains, and we can update
2971 * the domain values for our changes.
2972 */
2973 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 2974 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2975
2976 trace_i915_gem_object_change_domain(obj,
2977 old_read_domains,
2da3b9b9 2978 old_write_domain);
b9241ea3
ZW
2979
2980 return 0;
2981}
2982
85345517 2983int
a8198eea 2984i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2985{
88241785
CW
2986 int ret;
2987
a8198eea 2988 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2989 return 0;
2990
88241785 2991 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2992 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
2993 if (ret)
2994 return ret;
2995 }
85345517 2996
c501ae7f
CW
2997 ret = i915_gem_object_wait_rendering(obj);
2998 if (ret)
2999 return ret;
3000
a8198eea
CW
3001 /* Ensure that we invalidate the GPU's caches and TLBs. */
3002 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3003 return 0;
85345517
CW
3004}
3005
e47c68e9
EA
3006/**
3007 * Moves a single object to the CPU read, and possibly write domain.
3008 *
3009 * This function returns when the move is complete, including waiting on
3010 * flushes to occur.
3011 */
dabdfe02 3012int
919926ae 3013i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3014{
1c5d22f7 3015 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3016 int ret;
3017
8d7e3de1
CW
3018 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3019 return 0;
3020
88241785
CW
3021 ret = i915_gem_object_flush_gpu_write_domain(obj);
3022 if (ret)
3023 return ret;
3024
ce453d81 3025 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3026 if (ret)
e47c68e9 3027 return ret;
2ef7eeaa 3028
e47c68e9 3029 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3030
05394f39
CW
3031 old_write_domain = obj->base.write_domain;
3032 old_read_domains = obj->base.read_domains;
1c5d22f7 3033
e47c68e9 3034 /* Flush the CPU cache if it's still invalid. */
05394f39 3035 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3036 i915_gem_clflush_object(obj);
2ef7eeaa 3037
05394f39 3038 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3039 }
3040
3041 /* It should now be out of any other write domains, and we can update
3042 * the domain values for our changes.
3043 */
05394f39 3044 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3045
3046 /* If we're writing through the CPU, then the GPU read domains will
3047 * need to be invalidated at next use.
3048 */
3049 if (write) {
05394f39
CW
3050 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3051 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3052 }
2ef7eeaa 3053
1c5d22f7
CW
3054 trace_i915_gem_object_change_domain(obj,
3055 old_read_domains,
3056 old_write_domain);
3057
2ef7eeaa
EA
3058 return 0;
3059}
3060
673a394b
EA
3061/* Throttle our rendering by waiting until the ring has completed our requests
3062 * emitted over 20 msec ago.
3063 *
b962442e
EA
3064 * Note that if we were to use the current jiffies each time around the loop,
3065 * we wouldn't escape the function with any frames outstanding if the time to
3066 * render a frame was over 20ms.
3067 *
673a394b
EA
3068 * This should get us reasonable parallelism between CPU and GPU but also
3069 * relatively low latency when blocking on a particular request to finish.
3070 */
40a5f0de 3071static int
f787a5f5 3072i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3073{
f787a5f5
CW
3074 struct drm_i915_private *dev_priv = dev->dev_private;
3075 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3076 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3077 struct drm_i915_gem_request *request;
3078 struct intel_ring_buffer *ring = NULL;
3079 u32 seqno = 0;
3080 int ret;
93533c29 3081
e110e8d6
CW
3082 if (atomic_read(&dev_priv->mm.wedged))
3083 return -EIO;
3084
1c25595f 3085 spin_lock(&file_priv->mm.lock);
f787a5f5 3086 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3087 if (time_after_eq(request->emitted_jiffies, recent_enough))
3088 break;
40a5f0de 3089
f787a5f5
CW
3090 ring = request->ring;
3091 seqno = request->seqno;
b962442e 3092 }
1c25595f 3093 spin_unlock(&file_priv->mm.lock);
40a5f0de 3094
f787a5f5
CW
3095 if (seqno == 0)
3096 return 0;
2bc43b5c 3097
f787a5f5 3098 ret = 0;
78501eac 3099 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3100 /* And wait for the seqno passing without holding any locks and
3101 * causing extra latency for others. This is safe as the irq
3102 * generation is designed to be run atomically and so is
3103 * lockless.
3104 */
b13c2b96
CW
3105 if (ring->irq_get(ring)) {
3106 ret = wait_event_interruptible(ring->irq_queue,
3107 i915_seqno_passed(ring->get_seqno(ring), seqno)
3108 || atomic_read(&dev_priv->mm.wedged));
3109 ring->irq_put(ring);
40a5f0de 3110
b13c2b96
CW
3111 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3112 ret = -EIO;
e959b5db
EA
3113 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3114 seqno) ||
7ea29b13
EA
3115 atomic_read(&dev_priv->mm.wedged), 3000)) {
3116 ret = -EBUSY;
b13c2b96 3117 }
40a5f0de
EA
3118 }
3119
f787a5f5
CW
3120 if (ret == 0)
3121 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3122
3123 return ret;
3124}
3125
673a394b 3126int
05394f39
CW
3127i915_gem_object_pin(struct drm_i915_gem_object *obj,
3128 uint32_t alignment,
75e9e915 3129 bool map_and_fenceable)
673a394b 3130{
05394f39 3131 struct drm_device *dev = obj->base.dev;
f13d3f73 3132 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3133 int ret;
3134
05394f39 3135 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3136 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3137
05394f39
CW
3138 if (obj->gtt_space != NULL) {
3139 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3140 (map_and_fenceable && !obj->map_and_fenceable)) {
3141 WARN(obj->pin_count,
ae7d49d8 3142 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3143 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3144 " obj->map_and_fenceable=%d\n",
05394f39 3145 obj->gtt_offset, alignment,
75e9e915 3146 map_and_fenceable,
05394f39 3147 obj->map_and_fenceable);
ac0c6b5a
CW
3148 ret = i915_gem_object_unbind(obj);
3149 if (ret)
3150 return ret;
3151 }
3152 }
3153
05394f39 3154 if (obj->gtt_space == NULL) {
a00b10c3 3155 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3156 map_and_fenceable);
9731129c 3157 if (ret)
673a394b 3158 return ret;
22c344e9 3159 }
76446cac 3160
74898d7e
DV
3161 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3162 i915_gem_gtt_bind_object(obj, obj->cache_level);
3163
05394f39 3164 if (obj->pin_count++ == 0) {
05394f39
CW
3165 if (!obj->active)
3166 list_move_tail(&obj->mm_list,
f13d3f73 3167 &dev_priv->mm.pinned_list);
673a394b 3168 }
6299f992 3169 obj->pin_mappable |= map_and_fenceable;
673a394b 3170
23bc5982 3171 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3172 return 0;
3173}
3174
3175void
05394f39 3176i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3177{
05394f39 3178 struct drm_device *dev = obj->base.dev;
673a394b 3179 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3180
23bc5982 3181 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3182 BUG_ON(obj->pin_count == 0);
3183 BUG_ON(obj->gtt_space == NULL);
673a394b 3184
05394f39
CW
3185 if (--obj->pin_count == 0) {
3186 if (!obj->active)
3187 list_move_tail(&obj->mm_list,
673a394b 3188 &dev_priv->mm.inactive_list);
6299f992 3189 obj->pin_mappable = false;
673a394b 3190 }
23bc5982 3191 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3192}
3193
3194int
3195i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3196 struct drm_file *file)
673a394b
EA
3197{
3198 struct drm_i915_gem_pin *args = data;
05394f39 3199 struct drm_i915_gem_object *obj;
673a394b
EA
3200 int ret;
3201
1d7cfea1
CW
3202 ret = i915_mutex_lock_interruptible(dev);
3203 if (ret)
3204 return ret;
673a394b 3205
05394f39 3206 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3207 if (&obj->base == NULL) {
1d7cfea1
CW
3208 ret = -ENOENT;
3209 goto unlock;
673a394b 3210 }
673a394b 3211
05394f39 3212 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3213 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3214 ret = -EINVAL;
3215 goto out;
3ef94daa
CW
3216 }
3217
05394f39 3218 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3219 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3220 args->handle);
1d7cfea1
CW
3221 ret = -EINVAL;
3222 goto out;
79e53945
JB
3223 }
3224
05394f39
CW
3225 obj->user_pin_count++;
3226 obj->pin_filp = file;
3227 if (obj->user_pin_count == 1) {
75e9e915 3228 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3229 if (ret)
3230 goto out;
673a394b
EA
3231 }
3232
3233 /* XXX - flush the CPU caches for pinned objects
3234 * as the X server doesn't manage domains yet
3235 */
e47c68e9 3236 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3237 args->offset = obj->gtt_offset;
1d7cfea1 3238out:
05394f39 3239 drm_gem_object_unreference(&obj->base);
1d7cfea1 3240unlock:
673a394b 3241 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3242 return ret;
673a394b
EA
3243}
3244
3245int
3246i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3247 struct drm_file *file)
673a394b
EA
3248{
3249 struct drm_i915_gem_pin *args = data;
05394f39 3250 struct drm_i915_gem_object *obj;
76c1dec1 3251 int ret;
673a394b 3252
1d7cfea1
CW
3253 ret = i915_mutex_lock_interruptible(dev);
3254 if (ret)
3255 return ret;
673a394b 3256
05394f39 3257 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3258 if (&obj->base == NULL) {
1d7cfea1
CW
3259 ret = -ENOENT;
3260 goto unlock;
673a394b 3261 }
76c1dec1 3262
05394f39 3263 if (obj->pin_filp != file) {
79e53945
JB
3264 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3265 args->handle);
1d7cfea1
CW
3266 ret = -EINVAL;
3267 goto out;
79e53945 3268 }
05394f39
CW
3269 obj->user_pin_count--;
3270 if (obj->user_pin_count == 0) {
3271 obj->pin_filp = NULL;
79e53945
JB
3272 i915_gem_object_unpin(obj);
3273 }
673a394b 3274
1d7cfea1 3275out:
05394f39 3276 drm_gem_object_unreference(&obj->base);
1d7cfea1 3277unlock:
673a394b 3278 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3279 return ret;
673a394b
EA
3280}
3281
3282int
3283i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3284 struct drm_file *file)
673a394b
EA
3285{
3286 struct drm_i915_gem_busy *args = data;
05394f39 3287 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3288 int ret;
3289
76c1dec1 3290 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3291 if (ret)
76c1dec1 3292 return ret;
673a394b 3293
05394f39 3294 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3295 if (&obj->base == NULL) {
1d7cfea1
CW
3296 ret = -ENOENT;
3297 goto unlock;
673a394b 3298 }
d1b851fc 3299
0be555b6
CW
3300 /* Count all active objects as busy, even if they are currently not used
3301 * by the gpu. Users of this interface expect objects to eventually
3302 * become non-busy without any further actions, therefore emit any
3303 * necessary flushes here.
c4de0a5d 3304 */
05394f39 3305 args->busy = obj->active;
0be555b6
CW
3306 if (args->busy) {
3307 /* Unconditionally flush objects, even when the gpu still uses this
3308 * object. Userspace calling this function indicates that it wants to
3309 * use this buffer rather sooner than later, so issuing the required
3310 * flush earlier is beneficial.
3311 */
1a1c6976 3312 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3313 ret = i915_gem_flush_ring(obj->ring,
88241785 3314 0, obj->base.write_domain);
1a1c6976
CW
3315 } else if (obj->ring->outstanding_lazy_request ==
3316 obj->last_rendering_seqno) {
3317 struct drm_i915_gem_request *request;
3318
7a194876
CW
3319 /* This ring is not being cleared by active usage,
3320 * so emit a request to do so.
3321 */
1a1c6976 3322 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3323 if (request) {
0206e353 3324 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3325 if (ret)
3326 kfree(request);
3327 } else
7a194876
CW
3328 ret = -ENOMEM;
3329 }
0be555b6
CW
3330
3331 /* Update the active list for the hardware's current position.
3332 * Otherwise this only updates on a delayed timer or when irqs
3333 * are actually unmasked, and our working set ends up being
3334 * larger than required.
3335 */
db53a302 3336 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3337
05394f39 3338 args->busy = obj->active;
0be555b6 3339 }
673a394b 3340
05394f39 3341 drm_gem_object_unreference(&obj->base);
1d7cfea1 3342unlock:
673a394b 3343 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3344 return ret;
673a394b
EA
3345}
3346
3347int
3348i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3349 struct drm_file *file_priv)
3350{
0206e353 3351 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3352}
3353
3ef94daa
CW
3354int
3355i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3356 struct drm_file *file_priv)
3357{
3358 struct drm_i915_gem_madvise *args = data;
05394f39 3359 struct drm_i915_gem_object *obj;
76c1dec1 3360 int ret;
3ef94daa
CW
3361
3362 switch (args->madv) {
3363 case I915_MADV_DONTNEED:
3364 case I915_MADV_WILLNEED:
3365 break;
3366 default:
3367 return -EINVAL;
3368 }
3369
1d7cfea1
CW
3370 ret = i915_mutex_lock_interruptible(dev);
3371 if (ret)
3372 return ret;
3373
05394f39 3374 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3375 if (&obj->base == NULL) {
1d7cfea1
CW
3376 ret = -ENOENT;
3377 goto unlock;
3ef94daa 3378 }
3ef94daa 3379
05394f39 3380 if (obj->pin_count) {
1d7cfea1
CW
3381 ret = -EINVAL;
3382 goto out;
3ef94daa
CW
3383 }
3384
05394f39
CW
3385 if (obj->madv != __I915_MADV_PURGED)
3386 obj->madv = args->madv;
3ef94daa 3387
2d7ef395 3388 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3389 if (i915_gem_object_is_purgeable(obj) &&
3390 obj->gtt_space == NULL)
2d7ef395
CW
3391 i915_gem_object_truncate(obj);
3392
05394f39 3393 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3394
1d7cfea1 3395out:
05394f39 3396 drm_gem_object_unreference(&obj->base);
1d7cfea1 3397unlock:
3ef94daa 3398 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3399 return ret;
3ef94daa
CW
3400}
3401
05394f39
CW
3402struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3403 size_t size)
ac52bc56 3404{
73aa808f 3405 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3406 struct drm_i915_gem_object *obj;
5949eac4 3407 struct address_space *mapping;
ac52bc56 3408
c397b908
DV
3409 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3410 if (obj == NULL)
3411 return NULL;
673a394b 3412
c397b908
DV
3413 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3414 kfree(obj);
3415 return NULL;
3416 }
673a394b 3417
5949eac4
HD
3418 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3419 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3420
73aa808f
CW
3421 i915_gem_info_add_obj(dev_priv, size);
3422
c397b908
DV
3423 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3424 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3425
3d29b842
ED
3426 if (HAS_LLC(dev)) {
3427 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3428 * cache) for about a 10% performance improvement
3429 * compared to uncached. Graphics requests other than
3430 * display scanout are coherent with the CPU in
3431 * accessing this cache. This means in this mode we
3432 * don't need to clflush on the CPU side, and on the
3433 * GPU side we only need to flush internal caches to
3434 * get data visible to the CPU.
3435 *
3436 * However, we maintain the display planes as UC, and so
3437 * need to rebind when first used as such.
3438 */
3439 obj->cache_level = I915_CACHE_LLC;
3440 } else
3441 obj->cache_level = I915_CACHE_NONE;
3442
62b8b215 3443 obj->base.driver_private = NULL;
c397b908 3444 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3445 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3446 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3447 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3448 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3449 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3450 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3451 /* Avoid an unnecessary call to unbind on the first bind. */
3452 obj->map_and_fenceable = true;
de151cf6 3453
05394f39 3454 return obj;
c397b908
DV
3455}
3456
3457int i915_gem_init_object(struct drm_gem_object *obj)
3458{
3459 BUG();
de151cf6 3460
673a394b
EA
3461 return 0;
3462}
3463
05394f39 3464static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3465{
05394f39 3466 struct drm_device *dev = obj->base.dev;
be72615b 3467 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3468 int ret;
673a394b 3469
be72615b
CW
3470 ret = i915_gem_object_unbind(obj);
3471 if (ret == -ERESTARTSYS) {
05394f39 3472 list_move(&obj->mm_list,
be72615b
CW
3473 &dev_priv->mm.deferred_free_list);
3474 return;
3475 }
673a394b 3476
26e12f89
CW
3477 trace_i915_gem_object_destroy(obj);
3478
05394f39 3479 if (obj->base.map_list.map)
b464e9a2 3480 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3481
05394f39
CW
3482 drm_gem_object_release(&obj->base);
3483 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3484
05394f39
CW
3485 kfree(obj->bit_17);
3486 kfree(obj);
673a394b
EA
3487}
3488
05394f39 3489void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3490{
05394f39
CW
3491 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3492 struct drm_device *dev = obj->base.dev;
be72615b 3493
05394f39 3494 while (obj->pin_count > 0)
be72615b
CW
3495 i915_gem_object_unpin(obj);
3496
05394f39 3497 if (obj->phys_obj)
be72615b
CW
3498 i915_gem_detach_phys_object(dev, obj);
3499
3500 i915_gem_free_object_tail(obj);
3501}
3502
29105ccc
CW
3503int
3504i915_gem_idle(struct drm_device *dev)
3505{
3506 drm_i915_private_t *dev_priv = dev->dev_private;
3507 int ret;
28dfe52a 3508
29105ccc 3509 mutex_lock(&dev->struct_mutex);
1c5d22f7 3510
87acb0a5 3511 if (dev_priv->mm.suspended) {
29105ccc
CW
3512 mutex_unlock(&dev->struct_mutex);
3513 return 0;
28dfe52a
EA
3514 }
3515
b93f9cf1 3516 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3517 if (ret) {
3518 mutex_unlock(&dev->struct_mutex);
673a394b 3519 return ret;
6dbe2772 3520 }
673a394b 3521
29105ccc
CW
3522 /* Under UMS, be paranoid and evict. */
3523 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3524 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3525 if (ret) {
3526 mutex_unlock(&dev->struct_mutex);
3527 return ret;
3528 }
3529 }
3530
312817a3
CW
3531 i915_gem_reset_fences(dev);
3532
29105ccc
CW
3533 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3534 * We need to replace this with a semaphore, or something.
3535 * And not confound mm.suspended!
3536 */
3537 dev_priv->mm.suspended = 1;
bc0c7f14 3538 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3539
3540 i915_kernel_lost_context(dev);
6dbe2772 3541 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3542
6dbe2772
KP
3543 mutex_unlock(&dev->struct_mutex);
3544
29105ccc
CW
3545 /* Cancel the retire work handler, which should be idle now. */
3546 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3547
673a394b
EA
3548 return 0;
3549}
3550
f691e2f4
DV
3551void i915_gem_init_swizzling(struct drm_device *dev)
3552{
3553 drm_i915_private_t *dev_priv = dev->dev_private;
3554
11782b02 3555 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3556 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3557 return;
3558
3559 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3560 DISP_TILE_SURFACE_SWIZZLING);
3561
11782b02
DV
3562 if (IS_GEN5(dev))
3563 return;
3564
f691e2f4
DV
3565 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3566 if (IS_GEN6(dev))
3567 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3568 else
3569 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3570}
e21af88d
DV
3571
3572void i915_gem_init_ppgtt(struct drm_device *dev)
3573{
3574 drm_i915_private_t *dev_priv = dev->dev_private;
3575 uint32_t pd_offset;
3576 struct intel_ring_buffer *ring;
3577 int i;
3578
3579 if (!dev_priv->mm.aliasing_ppgtt)
3580 return;
3581
3582 pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
3583 pd_offset /= 64; /* in cachelines, */
3584 pd_offset <<= 16;
3585
3586 if (INTEL_INFO(dev)->gen == 6) {
3587 uint32_t ecochk = I915_READ(GAM_ECOCHK);
3588 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3589 ECOCHK_PPGTT_CACHE64B);
3590 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3591 } else if (INTEL_INFO(dev)->gen >= 7) {
3592 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3593 /* GFX_MODE is per-ring on gen7+ */
3594 }
3595
3596 for (i = 0; i < I915_NUM_RINGS; i++) {
3597 ring = &dev_priv->ring[i];
3598
3599 if (INTEL_INFO(dev)->gen >= 7)
3600 I915_WRITE(RING_MODE_GEN7(ring),
3601 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3602
3603 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3604 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3605 }
3606}
3607
8187a2b7 3608int
f691e2f4 3609i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3610{
3611 drm_i915_private_t *dev_priv = dev->dev_private;
3612 int ret;
68f95ba9 3613
f691e2f4
DV
3614 i915_gem_init_swizzling(dev);
3615
5c1143bb 3616 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3617 if (ret)
b6913e4b 3618 return ret;
68f95ba9
CW
3619
3620 if (HAS_BSD(dev)) {
5c1143bb 3621 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3622 if (ret)
3623 goto cleanup_render_ring;
d1b851fc 3624 }
68f95ba9 3625
549f7365
CW
3626 if (HAS_BLT(dev)) {
3627 ret = intel_init_blt_ring_buffer(dev);
3628 if (ret)
3629 goto cleanup_bsd_ring;
3630 }
3631
6f392d54
CW
3632 dev_priv->next_seqno = 1;
3633
e21af88d
DV
3634 i915_gem_init_ppgtt(dev);
3635
68f95ba9
CW
3636 return 0;
3637
549f7365 3638cleanup_bsd_ring:
1ec14ad3 3639 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3640cleanup_render_ring:
1ec14ad3 3641 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3642 return ret;
3643}
3644
3645void
3646i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3647{
3648 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3649 int i;
8187a2b7 3650
1ec14ad3
CW
3651 for (i = 0; i < I915_NUM_RINGS; i++)
3652 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3653}
3654
673a394b
EA
3655int
3656i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3657 struct drm_file *file_priv)
3658{
3659 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3660 int ret, i;
673a394b 3661
79e53945
JB
3662 if (drm_core_check_feature(dev, DRIVER_MODESET))
3663 return 0;
3664
ba1234d1 3665 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3666 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3667 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3668 }
3669
673a394b 3670 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3671 dev_priv->mm.suspended = 0;
3672
f691e2f4 3673 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3674 if (ret != 0) {
3675 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3676 return ret;
d816f6ac 3677 }
9bb2d6f9 3678
69dc4987 3679 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3680 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3681 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3682 for (i = 0; i < I915_NUM_RINGS; i++) {
3683 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3684 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3685 }
673a394b 3686 mutex_unlock(&dev->struct_mutex);
dbb19d30 3687
5f35308b
CW
3688 ret = drm_irq_install(dev);
3689 if (ret)
3690 goto cleanup_ringbuffer;
dbb19d30 3691
673a394b 3692 return 0;
5f35308b
CW
3693
3694cleanup_ringbuffer:
3695 mutex_lock(&dev->struct_mutex);
3696 i915_gem_cleanup_ringbuffer(dev);
3697 dev_priv->mm.suspended = 1;
3698 mutex_unlock(&dev->struct_mutex);
3699
3700 return ret;
673a394b
EA
3701}
3702
3703int
3704i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3705 struct drm_file *file_priv)
3706{
79e53945
JB
3707 if (drm_core_check_feature(dev, DRIVER_MODESET))
3708 return 0;
3709
dbb19d30 3710 drm_irq_uninstall(dev);
e6890f6f 3711 return i915_gem_idle(dev);
673a394b
EA
3712}
3713
3714void
3715i915_gem_lastclose(struct drm_device *dev)
3716{
3717 int ret;
673a394b 3718
e806b495
EA
3719 if (drm_core_check_feature(dev, DRIVER_MODESET))
3720 return;
3721
6dbe2772
KP
3722 ret = i915_gem_idle(dev);
3723 if (ret)
3724 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3725}
3726
64193406
CW
3727static void
3728init_ring_lists(struct intel_ring_buffer *ring)
3729{
3730 INIT_LIST_HEAD(&ring->active_list);
3731 INIT_LIST_HEAD(&ring->request_list);
3732 INIT_LIST_HEAD(&ring->gpu_write_list);
3733}
3734
673a394b
EA
3735void
3736i915_gem_load(struct drm_device *dev)
3737{
b5aa8a0f 3738 int i;
673a394b
EA
3739 drm_i915_private_t *dev_priv = dev->dev_private;
3740
69dc4987 3741 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3742 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3743 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3744 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3745 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3746 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3747 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3748 for (i = 0; i < I915_NUM_RINGS; i++)
3749 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3750 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3751 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3752 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3753 i915_gem_retire_work_handler);
30dbf0c0 3754 init_completion(&dev_priv->error_completion);
31169714 3755
94400120
DA
3756 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3757 if (IS_GEN3(dev)) {
3758 u32 tmp = I915_READ(MI_ARB_STATE);
3759 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3760 /* arb state is a masked write, so set bit + bit in mask */
3761 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3762 I915_WRITE(MI_ARB_STATE, tmp);
3763 }
3764 }
3765
72bfa19c
CW
3766 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3767
de151cf6 3768 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3769 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3770 dev_priv->fence_reg_start = 3;
de151cf6 3771
a6c45cf0 3772 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3773 dev_priv->num_fence_regs = 16;
3774 else
3775 dev_priv->num_fence_regs = 8;
3776
b5aa8a0f 3777 /* Initialize fence registers to zero */
10ed13e4
EA
3778 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3779 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3780 }
10ed13e4 3781
673a394b 3782 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3783 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3784
ce453d81
CW
3785 dev_priv->mm.interruptible = true;
3786
17250b71
CW
3787 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3788 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3789 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3790}
71acb5eb
DA
3791
3792/*
3793 * Create a physically contiguous memory object for this object
3794 * e.g. for cursor + overlay regs
3795 */
995b6762
CW
3796static int i915_gem_init_phys_object(struct drm_device *dev,
3797 int id, int size, int align)
71acb5eb
DA
3798{
3799 drm_i915_private_t *dev_priv = dev->dev_private;
3800 struct drm_i915_gem_phys_object *phys_obj;
3801 int ret;
3802
3803 if (dev_priv->mm.phys_objs[id - 1] || !size)
3804 return 0;
3805
9a298b2a 3806 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3807 if (!phys_obj)
3808 return -ENOMEM;
3809
3810 phys_obj->id = id;
3811
6eeefaf3 3812 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3813 if (!phys_obj->handle) {
3814 ret = -ENOMEM;
3815 goto kfree_obj;
3816 }
3817#ifdef CONFIG_X86
3818 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3819#endif
3820
3821 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3822
3823 return 0;
3824kfree_obj:
9a298b2a 3825 kfree(phys_obj);
71acb5eb
DA
3826 return ret;
3827}
3828
995b6762 3829static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3830{
3831 drm_i915_private_t *dev_priv = dev->dev_private;
3832 struct drm_i915_gem_phys_object *phys_obj;
3833
3834 if (!dev_priv->mm.phys_objs[id - 1])
3835 return;
3836
3837 phys_obj = dev_priv->mm.phys_objs[id - 1];
3838 if (phys_obj->cur_obj) {
3839 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3840 }
3841
3842#ifdef CONFIG_X86
3843 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3844#endif
3845 drm_pci_free(dev, phys_obj->handle);
3846 kfree(phys_obj);
3847 dev_priv->mm.phys_objs[id - 1] = NULL;
3848}
3849
3850void i915_gem_free_all_phys_object(struct drm_device *dev)
3851{
3852 int i;
3853
260883c8 3854 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3855 i915_gem_free_phys_object(dev, i);
3856}
3857
3858void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3859 struct drm_i915_gem_object *obj)
71acb5eb 3860{
05394f39 3861 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3862 char *vaddr;
71acb5eb 3863 int i;
71acb5eb
DA
3864 int page_count;
3865
05394f39 3866 if (!obj->phys_obj)
71acb5eb 3867 return;
05394f39 3868 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3869
05394f39 3870 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3871 for (i = 0; i < page_count; i++) {
5949eac4 3872 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3873 if (!IS_ERR(page)) {
3874 char *dst = kmap_atomic(page);
3875 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3876 kunmap_atomic(dst);
3877
3878 drm_clflush_pages(&page, 1);
3879
3880 set_page_dirty(page);
3881 mark_page_accessed(page);
3882 page_cache_release(page);
3883 }
71acb5eb 3884 }
40ce6575 3885 intel_gtt_chipset_flush();
d78b47b9 3886
05394f39
CW
3887 obj->phys_obj->cur_obj = NULL;
3888 obj->phys_obj = NULL;
71acb5eb
DA
3889}
3890
3891int
3892i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3893 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3894 int id,
3895 int align)
71acb5eb 3896{
05394f39 3897 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3898 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3899 int ret = 0;
3900 int page_count;
3901 int i;
3902
3903 if (id > I915_MAX_PHYS_OBJECT)
3904 return -EINVAL;
3905
05394f39
CW
3906 if (obj->phys_obj) {
3907 if (obj->phys_obj->id == id)
71acb5eb
DA
3908 return 0;
3909 i915_gem_detach_phys_object(dev, obj);
3910 }
3911
71acb5eb
DA
3912 /* create a new object */
3913 if (!dev_priv->mm.phys_objs[id - 1]) {
3914 ret = i915_gem_init_phys_object(dev, id,
05394f39 3915 obj->base.size, align);
71acb5eb 3916 if (ret) {
05394f39
CW
3917 DRM_ERROR("failed to init phys object %d size: %zu\n",
3918 id, obj->base.size);
e5281ccd 3919 return ret;
71acb5eb
DA
3920 }
3921 }
3922
3923 /* bind to the object */
05394f39
CW
3924 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3925 obj->phys_obj->cur_obj = obj;
71acb5eb 3926
05394f39 3927 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3928
3929 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3930 struct page *page;
3931 char *dst, *src;
3932
5949eac4 3933 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3934 if (IS_ERR(page))
3935 return PTR_ERR(page);
71acb5eb 3936
ff75b9bc 3937 src = kmap_atomic(page);
05394f39 3938 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3939 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3940 kunmap_atomic(src);
71acb5eb 3941
e5281ccd
CW
3942 mark_page_accessed(page);
3943 page_cache_release(page);
3944 }
d78b47b9 3945
71acb5eb 3946 return 0;
71acb5eb
DA
3947}
3948
3949static int
05394f39
CW
3950i915_gem_phys_pwrite(struct drm_device *dev,
3951 struct drm_i915_gem_object *obj,
71acb5eb
DA
3952 struct drm_i915_gem_pwrite *args,
3953 struct drm_file *file_priv)
3954{
05394f39 3955 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 3956 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 3957
b47b30cc
CW
3958 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3959 unsigned long unwritten;
3960
3961 /* The physical object once assigned is fixed for the lifetime
3962 * of the obj, so we can safely drop the lock and continue
3963 * to access vaddr.
3964 */
3965 mutex_unlock(&dev->struct_mutex);
3966 unwritten = copy_from_user(vaddr, user_data, args->size);
3967 mutex_lock(&dev->struct_mutex);
3968 if (unwritten)
3969 return -EFAULT;
3970 }
71acb5eb 3971
40ce6575 3972 intel_gtt_chipset_flush();
71acb5eb
DA
3973 return 0;
3974}
b962442e 3975
f787a5f5 3976void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 3977{
f787a5f5 3978 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
3979
3980 /* Clean up our request list when the client is going away, so that
3981 * later retire_requests won't dereference our soon-to-be-gone
3982 * file_priv.
3983 */
1c25595f 3984 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
3985 while (!list_empty(&file_priv->mm.request_list)) {
3986 struct drm_i915_gem_request *request;
3987
3988 request = list_first_entry(&file_priv->mm.request_list,
3989 struct drm_i915_gem_request,
3990 client_list);
3991 list_del(&request->client_list);
3992 request->file_priv = NULL;
3993 }
1c25595f 3994 spin_unlock(&file_priv->mm.lock);
b962442e 3995}
31169714 3996
1637ef41
CW
3997static int
3998i915_gpu_is_active(struct drm_device *dev)
3999{
4000 drm_i915_private_t *dev_priv = dev->dev_private;
4001 int lists_empty;
4002
1637ef41 4003 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4004 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4005
4006 return !lists_empty;
4007}
4008
31169714 4009static int
1495f230 4010i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4011{
17250b71
CW
4012 struct drm_i915_private *dev_priv =
4013 container_of(shrinker,
4014 struct drm_i915_private,
4015 mm.inactive_shrinker);
4016 struct drm_device *dev = dev_priv->dev;
4017 struct drm_i915_gem_object *obj, *next;
1495f230 4018 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4019 int cnt;
4020
4021 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4022 return 0;
31169714
CW
4023
4024 /* "fast-path" to count number of available objects */
4025 if (nr_to_scan == 0) {
17250b71
CW
4026 cnt = 0;
4027 list_for_each_entry(obj,
4028 &dev_priv->mm.inactive_list,
4029 mm_list)
4030 cnt++;
4031 mutex_unlock(&dev->struct_mutex);
4032 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4033 }
4034
1637ef41 4035rescan:
31169714 4036 /* first scan for clean buffers */
17250b71 4037 i915_gem_retire_requests(dev);
31169714 4038
17250b71
CW
4039 list_for_each_entry_safe(obj, next,
4040 &dev_priv->mm.inactive_list,
4041 mm_list) {
4042 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4043 if (i915_gem_object_unbind(obj) == 0 &&
4044 --nr_to_scan == 0)
17250b71 4045 break;
31169714 4046 }
31169714
CW
4047 }
4048
4049 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4050 cnt = 0;
4051 list_for_each_entry_safe(obj, next,
4052 &dev_priv->mm.inactive_list,
4053 mm_list) {
2021746e
CW
4054 if (nr_to_scan &&
4055 i915_gem_object_unbind(obj) == 0)
17250b71 4056 nr_to_scan--;
2021746e 4057 else
17250b71
CW
4058 cnt++;
4059 }
4060
4061 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4062 /*
4063 * We are desperate for pages, so as a last resort, wait
4064 * for the GPU to finish and discard whatever we can.
4065 * This has a dramatic impact to reduce the number of
4066 * OOM-killer events whilst running the GPU aggressively.
4067 */
b93f9cf1 4068 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4069 goto rescan;
4070 }
17250b71
CW
4071 mutex_unlock(&dev->struct_mutex);
4072 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4073}