]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Avoid blocking the kworker thread on a stuck mutex
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
31169714
CW
61static LIST_HEAD(shrink_list);
62static DEFINE_SPINLOCK(shrink_list_lock);
63
30dbf0c0
CW
64int
65i915_gem_check_is_wedged(struct drm_device *dev)
66{
67 struct drm_i915_private *dev_priv = dev->dev_private;
68 struct completion *x = &dev_priv->error_completion;
69 unsigned long flags;
70 int ret;
71
72 if (!atomic_read(&dev_priv->mm.wedged))
73 return 0;
74
75 ret = wait_for_completion_interruptible(x);
76 if (ret)
77 return ret;
78
79 /* Success, we reset the GPU! */
80 if (!atomic_read(&dev_priv->mm.wedged))
81 return 0;
82
83 /* GPU is hung, bump the completion count to account for
84 * the token we just consumed so that we never hit zero and
85 * end up waiting upon a subsequent completion event that
86 * will never happen.
87 */
88 spin_lock_irqsave(&x->wait.lock, flags);
89 x->done++;
90 spin_unlock_irqrestore(&x->wait.lock, flags);
91 return -EIO;
92}
93
76c1dec1
CW
94static int i915_mutex_lock_interruptible(struct drm_device *dev)
95{
96 struct drm_i915_private *dev_priv = dev->dev_private;
97 int ret;
98
99 ret = i915_gem_check_is_wedged(dev);
100 if (ret)
101 return ret;
102
103 ret = mutex_lock_interruptible(&dev->struct_mutex);
104 if (ret)
105 return ret;
106
107 if (atomic_read(&dev_priv->mm.wedged)) {
108 mutex_unlock(&dev->struct_mutex);
109 return -EAGAIN;
110 }
111
112 return 0;
113}
30dbf0c0 114
7d1c4804
CW
115static inline bool
116i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
117{
118 return obj_priv->gtt_space &&
119 !obj_priv->active &&
120 obj_priv->pin_count == 0;
121}
122
79e53945
JB
123int i915_gem_do_init(struct drm_device *dev, unsigned long start,
124 unsigned long end)
673a394b
EA
125{
126 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 127
79e53945
JB
128 if (start >= end ||
129 (start & (PAGE_SIZE - 1)) != 0 ||
130 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
131 return -EINVAL;
132 }
133
79e53945
JB
134 drm_mm_init(&dev_priv->mm.gtt_space, start,
135 end - start);
673a394b 136
79e53945
JB
137 dev->gtt_total = (uint32_t) (end - start);
138
139 return 0;
140}
673a394b 141
79e53945
JB
142int
143i915_gem_init_ioctl(struct drm_device *dev, void *data,
144 struct drm_file *file_priv)
145{
146 struct drm_i915_gem_init *args = data;
147 int ret;
148
149 mutex_lock(&dev->struct_mutex);
150 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
151 mutex_unlock(&dev->struct_mutex);
152
79e53945 153 return ret;
673a394b
EA
154}
155
5a125c3c
EA
156int
157i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158 struct drm_file *file_priv)
159{
5a125c3c 160 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
161
162 if (!(dev->driver->driver_features & DRIVER_GEM))
163 return -ENODEV;
164
165 args->aper_size = dev->gtt_total;
2678d9d6
KP
166 args->aper_available_size = (args->aper_size -
167 atomic_read(&dev->pin_memory));
5a125c3c
EA
168
169 return 0;
170}
171
673a394b
EA
172
173/**
174 * Creates a new mm object and returns a handle to it.
175 */
176int
177i915_gem_create_ioctl(struct drm_device *dev, void *data,
178 struct drm_file *file_priv)
179{
180 struct drm_i915_gem_create *args = data;
181 struct drm_gem_object *obj;
a1a2d1d3
PP
182 int ret;
183 u32 handle;
673a394b
EA
184
185 args->size = roundup(args->size, PAGE_SIZE);
186
187 /* Allocate the new object */
ac52bc56 188 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
189 if (obj == NULL)
190 return -ENOMEM;
191
192 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
193 if (ret) {
194 drm_gem_object_unreference_unlocked(obj);
673a394b 195 return ret;
1dfd9754 196 }
673a394b 197
1dfd9754
CW
198 /* Sink the floating reference from kref_init(handlecount) */
199 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 200
1dfd9754 201 args->handle = handle;
673a394b
EA
202 return 0;
203}
204
eb01459f
EA
205static inline int
206fast_shmem_read(struct page **pages,
207 loff_t page_base, int page_offset,
208 char __user *data,
209 int length)
210{
211 char __iomem *vaddr;
2bc43b5c 212 int unwritten;
eb01459f
EA
213
214 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
215 if (vaddr == NULL)
216 return -ENOMEM;
2bc43b5c 217 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
218 kunmap_atomic(vaddr, KM_USER0);
219
2bc43b5c
FM
220 if (unwritten)
221 return -EFAULT;
222
223 return 0;
eb01459f
EA
224}
225
280b713b
EA
226static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
227{
228 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 229 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
230
231 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
232 obj_priv->tiling_mode != I915_TILING_NONE;
233}
234
99a03df5 235static inline void
40123c1f
EA
236slow_shmem_copy(struct page *dst_page,
237 int dst_offset,
238 struct page *src_page,
239 int src_offset,
240 int length)
241{
242 char *dst_vaddr, *src_vaddr;
243
99a03df5
CW
244 dst_vaddr = kmap(dst_page);
245 src_vaddr = kmap(src_page);
40123c1f
EA
246
247 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
248
99a03df5
CW
249 kunmap(src_page);
250 kunmap(dst_page);
40123c1f
EA
251}
252
99a03df5 253static inline void
280b713b
EA
254slow_shmem_bit17_copy(struct page *gpu_page,
255 int gpu_offset,
256 struct page *cpu_page,
257 int cpu_offset,
258 int length,
259 int is_read)
260{
261 char *gpu_vaddr, *cpu_vaddr;
262
263 /* Use the unswizzled path if this page isn't affected. */
264 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
265 if (is_read)
266 return slow_shmem_copy(cpu_page, cpu_offset,
267 gpu_page, gpu_offset, length);
268 else
269 return slow_shmem_copy(gpu_page, gpu_offset,
270 cpu_page, cpu_offset, length);
271 }
272
99a03df5
CW
273 gpu_vaddr = kmap(gpu_page);
274 cpu_vaddr = kmap(cpu_page);
280b713b
EA
275
276 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
277 * XORing with the other bits (A9 for Y, A9 and A10 for X)
278 */
279 while (length > 0) {
280 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 int this_length = min(cacheline_end - gpu_offset, length);
282 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284 if (is_read) {
285 memcpy(cpu_vaddr + cpu_offset,
286 gpu_vaddr + swizzled_gpu_offset,
287 this_length);
288 } else {
289 memcpy(gpu_vaddr + swizzled_gpu_offset,
290 cpu_vaddr + cpu_offset,
291 this_length);
292 }
293 cpu_offset += this_length;
294 gpu_offset += this_length;
295 length -= this_length;
296 }
297
99a03df5
CW
298 kunmap(cpu_page);
299 kunmap(gpu_page);
280b713b
EA
300}
301
eb01459f
EA
302/**
303 * This is the fast shmem pread path, which attempts to copy_from_user directly
304 * from the backing pages of the object to the user's address space. On a
305 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
306 */
307static int
308i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
309 struct drm_i915_gem_pread *args,
310 struct drm_file *file_priv)
311{
23010e43 312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
313 ssize_t remain;
314 loff_t offset, page_base;
315 char __user *user_data;
316 int page_offset, page_length;
317 int ret;
318
319 user_data = (char __user *) (uintptr_t) args->data_ptr;
320 remain = args->size;
321
76c1dec1
CW
322 ret = i915_mutex_lock_interruptible(dev);
323 if (ret)
324 return ret;
eb01459f 325
4bdadb97 326 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
327 if (ret != 0)
328 goto fail_unlock;
329
330 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
331 args->size);
332 if (ret != 0)
333 goto fail_put_pages;
334
23010e43 335 obj_priv = to_intel_bo(obj);
eb01459f
EA
336 offset = args->offset;
337
338 while (remain > 0) {
339 /* Operation in this page
340 *
341 * page_base = page offset within aperture
342 * page_offset = offset within page
343 * page_length = bytes to copy for this page
344 */
345 page_base = (offset & ~(PAGE_SIZE-1));
346 page_offset = offset & (PAGE_SIZE-1);
347 page_length = remain;
348 if ((page_offset + remain) > PAGE_SIZE)
349 page_length = PAGE_SIZE - page_offset;
350
351 ret = fast_shmem_read(obj_priv->pages,
352 page_base, page_offset,
353 user_data, page_length);
354 if (ret)
355 goto fail_put_pages;
356
357 remain -= page_length;
358 user_data += page_length;
359 offset += page_length;
360 }
361
362fail_put_pages:
363 i915_gem_object_put_pages(obj);
364fail_unlock:
365 mutex_unlock(&dev->struct_mutex);
366
367 return ret;
368}
369
07f73f69
CW
370static int
371i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
372{
373 int ret;
374
4bdadb97 375 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
376
377 /* If we've insufficient memory to map in the pages, attempt
378 * to make some space by throwing out some old buffers.
379 */
380 if (ret == -ENOMEM) {
381 struct drm_device *dev = obj->dev;
07f73f69 382
0108a3ed
DV
383 ret = i915_gem_evict_something(dev, obj->size,
384 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
385 if (ret)
386 return ret;
387
4bdadb97 388 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
389 }
390
391 return ret;
392}
393
eb01459f
EA
394/**
395 * This is the fallback shmem pread path, which allocates temporary storage
396 * in kernel space to copy_to_user into outside of the struct_mutex, so we
397 * can copy out of the object's backing pages while holding the struct mutex
398 * and not take page faults.
399 */
400static int
401i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file_priv)
404{
23010e43 405 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
406 struct mm_struct *mm = current->mm;
407 struct page **user_pages;
408 ssize_t remain;
409 loff_t offset, pinned_pages, i;
410 loff_t first_data_page, last_data_page, num_pages;
411 int shmem_page_index, shmem_page_offset;
412 int data_page_index, data_page_offset;
413 int page_length;
414 int ret;
415 uint64_t data_ptr = args->data_ptr;
280b713b 416 int do_bit17_swizzling;
eb01459f
EA
417
418 remain = args->size;
419
420 /* Pin the user pages containing the data. We can't fault while
421 * holding the struct mutex, yet we want to hold it while
422 * dereferencing the user data.
423 */
424 first_data_page = data_ptr / PAGE_SIZE;
425 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
426 num_pages = last_data_page - first_data_page + 1;
427
8e7d2b2c 428 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
429 if (user_pages == NULL)
430 return -ENOMEM;
431
432 down_read(&mm->mmap_sem);
433 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 434 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
435 up_read(&mm->mmap_sem);
436 if (pinned_pages < num_pages) {
437 ret = -EFAULT;
438 goto fail_put_user_pages;
439 }
440
280b713b
EA
441 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
442
76c1dec1
CW
443 ret = i915_mutex_lock_interruptible(dev);
444 if (ret)
445 goto fail_put_user_pages;
eb01459f 446
07f73f69
CW
447 ret = i915_gem_object_get_pages_or_evict(obj);
448 if (ret)
eb01459f
EA
449 goto fail_unlock;
450
451 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
452 args->size);
453 if (ret != 0)
454 goto fail_put_pages;
455
23010e43 456 obj_priv = to_intel_bo(obj);
eb01459f
EA
457 offset = args->offset;
458
459 while (remain > 0) {
460 /* Operation in this page
461 *
462 * shmem_page_index = page number within shmem file
463 * shmem_page_offset = offset within page in shmem file
464 * data_page_index = page number in get_user_pages return
465 * data_page_offset = offset with data_page_index page.
466 * page_length = bytes to copy for this page
467 */
468 shmem_page_index = offset / PAGE_SIZE;
469 shmem_page_offset = offset & ~PAGE_MASK;
470 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
471 data_page_offset = data_ptr & ~PAGE_MASK;
472
473 page_length = remain;
474 if ((shmem_page_offset + page_length) > PAGE_SIZE)
475 page_length = PAGE_SIZE - shmem_page_offset;
476 if ((data_page_offset + page_length) > PAGE_SIZE)
477 page_length = PAGE_SIZE - data_page_offset;
478
280b713b 479 if (do_bit17_swizzling) {
99a03df5 480 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 481 shmem_page_offset,
99a03df5
CW
482 user_pages[data_page_index],
483 data_page_offset,
484 page_length,
485 1);
486 } else {
487 slow_shmem_copy(user_pages[data_page_index],
488 data_page_offset,
489 obj_priv->pages[shmem_page_index],
490 shmem_page_offset,
491 page_length);
280b713b 492 }
eb01459f
EA
493
494 remain -= page_length;
495 data_ptr += page_length;
496 offset += page_length;
497 }
498
499fail_put_pages:
500 i915_gem_object_put_pages(obj);
501fail_unlock:
502 mutex_unlock(&dev->struct_mutex);
503fail_put_user_pages:
504 for (i = 0; i < pinned_pages; i++) {
505 SetPageDirty(user_pages[i]);
506 page_cache_release(user_pages[i]);
507 }
8e7d2b2c 508 drm_free_large(user_pages);
eb01459f
EA
509
510 return ret;
511}
512
673a394b
EA
513/**
514 * Reads data from the object referenced by handle.
515 *
516 * On error, the contents of *data are undefined.
517 */
518int
519i915_gem_pread_ioctl(struct drm_device *dev, void *data,
520 struct drm_file *file_priv)
521{
522 struct drm_i915_gem_pread *args = data;
523 struct drm_gem_object *obj;
524 struct drm_i915_gem_object *obj_priv;
673a394b
EA
525 int ret;
526
527 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
528 if (obj == NULL)
bf79cb91 529 return -ENOENT;
23010e43 530 obj_priv = to_intel_bo(obj);
673a394b
EA
531
532 /* Bounds check source.
533 *
534 * XXX: This could use review for overflow issues...
535 */
536 if (args->offset > obj->size || args->size > obj->size ||
537 args->offset + args->size > obj->size) {
bc9025bd 538 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
539 return -EINVAL;
540 }
541
280b713b 542 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 543 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
544 } else {
545 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
546 if (ret != 0)
547 ret = i915_gem_shmem_pread_slow(dev, obj, args,
548 file_priv);
549 }
673a394b 550
bc9025bd 551 drm_gem_object_unreference_unlocked(obj);
673a394b 552
eb01459f 553 return ret;
673a394b
EA
554}
555
0839ccb8
KP
556/* This is the fast write path which cannot handle
557 * page faults in the source data
9b7530cc 558 */
0839ccb8
KP
559
560static inline int
561fast_user_write(struct io_mapping *mapping,
562 loff_t page_base, int page_offset,
563 char __user *user_data,
564 int length)
9b7530cc 565{
9b7530cc 566 char *vaddr_atomic;
0839ccb8 567 unsigned long unwritten;
9b7530cc 568
fca3ec01 569 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
570 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
571 user_data, length);
fca3ec01 572 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
573 if (unwritten)
574 return -EFAULT;
575 return 0;
576}
577
578/* Here's the write path which can sleep for
579 * page faults
580 */
581
ab34c226 582static inline void
3de09aa3
EA
583slow_kernel_write(struct io_mapping *mapping,
584 loff_t gtt_base, int gtt_offset,
585 struct page *user_page, int user_offset,
586 int length)
0839ccb8 587{
ab34c226
CW
588 char __iomem *dst_vaddr;
589 char *src_vaddr;
0839ccb8 590
ab34c226
CW
591 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
592 src_vaddr = kmap(user_page);
593
594 memcpy_toio(dst_vaddr + gtt_offset,
595 src_vaddr + user_offset,
596 length);
597
598 kunmap(user_page);
599 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
600}
601
40123c1f
EA
602static inline int
603fast_shmem_write(struct page **pages,
604 loff_t page_base, int page_offset,
605 char __user *data,
606 int length)
607{
608 char __iomem *vaddr;
d0088775 609 unsigned long unwritten;
40123c1f
EA
610
611 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
612 if (vaddr == NULL)
613 return -ENOMEM;
d0088775 614 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
615 kunmap_atomic(vaddr, KM_USER0);
616
d0088775
DA
617 if (unwritten)
618 return -EFAULT;
40123c1f
EA
619 return 0;
620}
621
3de09aa3
EA
622/**
623 * This is the fast pwrite path, where we copy the data directly from the
624 * user into the GTT, uncached.
625 */
673a394b 626static int
3de09aa3
EA
627i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
628 struct drm_i915_gem_pwrite *args,
629 struct drm_file *file_priv)
673a394b 630{
23010e43 631 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 632 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 633 ssize_t remain;
0839ccb8 634 loff_t offset, page_base;
673a394b 635 char __user *user_data;
0839ccb8
KP
636 int page_offset, page_length;
637 int ret;
673a394b
EA
638
639 user_data = (char __user *) (uintptr_t) args->data_ptr;
640 remain = args->size;
641 if (!access_ok(VERIFY_READ, user_data, remain))
642 return -EFAULT;
643
76c1dec1
CW
644 ret = i915_mutex_lock_interruptible(dev);
645 if (ret)
646 return ret;
673a394b 647
673a394b
EA
648 ret = i915_gem_object_pin(obj, 0);
649 if (ret) {
650 mutex_unlock(&dev->struct_mutex);
651 return ret;
652 }
2ef7eeaa 653 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
654 if (ret)
655 goto fail;
656
23010e43 657 obj_priv = to_intel_bo(obj);
673a394b 658 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
659
660 while (remain > 0) {
661 /* Operation in this page
662 *
0839ccb8
KP
663 * page_base = page offset within aperture
664 * page_offset = offset within page
665 * page_length = bytes to copy for this page
673a394b 666 */
0839ccb8
KP
667 page_base = (offset & ~(PAGE_SIZE-1));
668 page_offset = offset & (PAGE_SIZE-1);
669 page_length = remain;
670 if ((page_offset + remain) > PAGE_SIZE)
671 page_length = PAGE_SIZE - page_offset;
672
673 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
674 page_offset, user_data, page_length);
675
676 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
677 * source page isn't available. Return the error and we'll
678 * retry in the slow path.
0839ccb8 679 */
3de09aa3
EA
680 if (ret)
681 goto fail;
673a394b 682
0839ccb8
KP
683 remain -= page_length;
684 user_data += page_length;
685 offset += page_length;
673a394b 686 }
673a394b
EA
687
688fail:
689 i915_gem_object_unpin(obj);
690 mutex_unlock(&dev->struct_mutex);
691
692 return ret;
693}
694
3de09aa3
EA
695/**
696 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
697 * the memory and maps it using kmap_atomic for copying.
698 *
699 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
700 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
701 */
3043c60c 702static int
3de09aa3
EA
703i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
704 struct drm_i915_gem_pwrite *args,
705 struct drm_file *file_priv)
673a394b 706{
23010e43 707 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
708 drm_i915_private_t *dev_priv = dev->dev_private;
709 ssize_t remain;
710 loff_t gtt_page_base, offset;
711 loff_t first_data_page, last_data_page, num_pages;
712 loff_t pinned_pages, i;
713 struct page **user_pages;
714 struct mm_struct *mm = current->mm;
715 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 716 int ret;
3de09aa3
EA
717 uint64_t data_ptr = args->data_ptr;
718
719 remain = args->size;
720
721 /* Pin the user pages containing the data. We can't fault while
722 * holding the struct mutex, and all of the pwrite implementations
723 * want to hold it while dereferencing the user data.
724 */
725 first_data_page = data_ptr / PAGE_SIZE;
726 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
727 num_pages = last_data_page - first_data_page + 1;
728
8e7d2b2c 729 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
730 if (user_pages == NULL)
731 return -ENOMEM;
732
733 down_read(&mm->mmap_sem);
734 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
735 num_pages, 0, 0, user_pages, NULL);
736 up_read(&mm->mmap_sem);
737 if (pinned_pages < num_pages) {
738 ret = -EFAULT;
739 goto out_unpin_pages;
740 }
673a394b 741
76c1dec1
CW
742 ret = i915_mutex_lock_interruptible(dev);
743 if (ret)
744 goto out_unpin_pages;
745
3de09aa3
EA
746 ret = i915_gem_object_pin(obj, 0);
747 if (ret)
748 goto out_unlock;
749
750 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
751 if (ret)
752 goto out_unpin_object;
753
23010e43 754 obj_priv = to_intel_bo(obj);
3de09aa3
EA
755 offset = obj_priv->gtt_offset + args->offset;
756
757 while (remain > 0) {
758 /* Operation in this page
759 *
760 * gtt_page_base = page offset within aperture
761 * gtt_page_offset = offset within page in aperture
762 * data_page_index = page number in get_user_pages return
763 * data_page_offset = offset with data_page_index page.
764 * page_length = bytes to copy for this page
765 */
766 gtt_page_base = offset & PAGE_MASK;
767 gtt_page_offset = offset & ~PAGE_MASK;
768 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
769 data_page_offset = data_ptr & ~PAGE_MASK;
770
771 page_length = remain;
772 if ((gtt_page_offset + page_length) > PAGE_SIZE)
773 page_length = PAGE_SIZE - gtt_page_offset;
774 if ((data_page_offset + page_length) > PAGE_SIZE)
775 page_length = PAGE_SIZE - data_page_offset;
776
ab34c226
CW
777 slow_kernel_write(dev_priv->mm.gtt_mapping,
778 gtt_page_base, gtt_page_offset,
779 user_pages[data_page_index],
780 data_page_offset,
781 page_length);
3de09aa3
EA
782
783 remain -= page_length;
784 offset += page_length;
785 data_ptr += page_length;
786 }
787
788out_unpin_object:
789 i915_gem_object_unpin(obj);
790out_unlock:
791 mutex_unlock(&dev->struct_mutex);
792out_unpin_pages:
793 for (i = 0; i < pinned_pages; i++)
794 page_cache_release(user_pages[i]);
8e7d2b2c 795 drm_free_large(user_pages);
3de09aa3
EA
796
797 return ret;
798}
799
40123c1f
EA
800/**
801 * This is the fast shmem pwrite path, which attempts to directly
802 * copy_from_user into the kmapped pages backing the object.
803 */
3043c60c 804static int
40123c1f
EA
805i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
806 struct drm_i915_gem_pwrite *args,
807 struct drm_file *file_priv)
673a394b 808{
23010e43 809 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
810 ssize_t remain;
811 loff_t offset, page_base;
812 char __user *user_data;
813 int page_offset, page_length;
673a394b 814 int ret;
40123c1f
EA
815
816 user_data = (char __user *) (uintptr_t) args->data_ptr;
817 remain = args->size;
673a394b 818
76c1dec1
CW
819 ret = i915_mutex_lock_interruptible(dev);
820 if (ret)
821 return ret;
673a394b 822
4bdadb97 823 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
824 if (ret != 0)
825 goto fail_unlock;
673a394b 826
e47c68e9 827 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
828 if (ret != 0)
829 goto fail_put_pages;
830
23010e43 831 obj_priv = to_intel_bo(obj);
40123c1f
EA
832 offset = args->offset;
833 obj_priv->dirty = 1;
834
835 while (remain > 0) {
836 /* Operation in this page
837 *
838 * page_base = page offset within aperture
839 * page_offset = offset within page
840 * page_length = bytes to copy for this page
841 */
842 page_base = (offset & ~(PAGE_SIZE-1));
843 page_offset = offset & (PAGE_SIZE-1);
844 page_length = remain;
845 if ((page_offset + remain) > PAGE_SIZE)
846 page_length = PAGE_SIZE - page_offset;
847
848 ret = fast_shmem_write(obj_priv->pages,
849 page_base, page_offset,
850 user_data, page_length);
851 if (ret)
852 goto fail_put_pages;
853
854 remain -= page_length;
855 user_data += page_length;
856 offset += page_length;
857 }
858
859fail_put_pages:
860 i915_gem_object_put_pages(obj);
861fail_unlock:
862 mutex_unlock(&dev->struct_mutex);
863
864 return ret;
865}
866
867/**
868 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
869 * the memory and maps it using kmap_atomic for copying.
870 *
871 * This avoids taking mmap_sem for faulting on the user's address while the
872 * struct_mutex is held.
873 */
874static int
875i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
876 struct drm_i915_gem_pwrite *args,
877 struct drm_file *file_priv)
878{
23010e43 879 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
880 struct mm_struct *mm = current->mm;
881 struct page **user_pages;
882 ssize_t remain;
883 loff_t offset, pinned_pages, i;
884 loff_t first_data_page, last_data_page, num_pages;
885 int shmem_page_index, shmem_page_offset;
886 int data_page_index, data_page_offset;
887 int page_length;
888 int ret;
889 uint64_t data_ptr = args->data_ptr;
280b713b 890 int do_bit17_swizzling;
40123c1f
EA
891
892 remain = args->size;
893
894 /* Pin the user pages containing the data. We can't fault while
895 * holding the struct mutex, and all of the pwrite implementations
896 * want to hold it while dereferencing the user data.
897 */
898 first_data_page = data_ptr / PAGE_SIZE;
899 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
900 num_pages = last_data_page - first_data_page + 1;
901
8e7d2b2c 902 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
903 if (user_pages == NULL)
904 return -ENOMEM;
905
906 down_read(&mm->mmap_sem);
907 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
908 num_pages, 0, 0, user_pages, NULL);
909 up_read(&mm->mmap_sem);
910 if (pinned_pages < num_pages) {
911 ret = -EFAULT;
912 goto fail_put_user_pages;
673a394b
EA
913 }
914
280b713b
EA
915 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
916
76c1dec1
CW
917 ret = i915_mutex_lock_interruptible(dev);
918 if (ret)
919 goto fail_put_user_pages;
40123c1f 920
07f73f69
CW
921 ret = i915_gem_object_get_pages_or_evict(obj);
922 if (ret)
40123c1f
EA
923 goto fail_unlock;
924
925 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
926 if (ret != 0)
927 goto fail_put_pages;
928
23010e43 929 obj_priv = to_intel_bo(obj);
673a394b 930 offset = args->offset;
40123c1f 931 obj_priv->dirty = 1;
673a394b 932
40123c1f
EA
933 while (remain > 0) {
934 /* Operation in this page
935 *
936 * shmem_page_index = page number within shmem file
937 * shmem_page_offset = offset within page in shmem file
938 * data_page_index = page number in get_user_pages return
939 * data_page_offset = offset with data_page_index page.
940 * page_length = bytes to copy for this page
941 */
942 shmem_page_index = offset / PAGE_SIZE;
943 shmem_page_offset = offset & ~PAGE_MASK;
944 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
945 data_page_offset = data_ptr & ~PAGE_MASK;
946
947 page_length = remain;
948 if ((shmem_page_offset + page_length) > PAGE_SIZE)
949 page_length = PAGE_SIZE - shmem_page_offset;
950 if ((data_page_offset + page_length) > PAGE_SIZE)
951 page_length = PAGE_SIZE - data_page_offset;
952
280b713b 953 if (do_bit17_swizzling) {
99a03df5 954 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
955 shmem_page_offset,
956 user_pages[data_page_index],
957 data_page_offset,
99a03df5
CW
958 page_length,
959 0);
960 } else {
961 slow_shmem_copy(obj_priv->pages[shmem_page_index],
962 shmem_page_offset,
963 user_pages[data_page_index],
964 data_page_offset,
965 page_length);
280b713b 966 }
40123c1f
EA
967
968 remain -= page_length;
969 data_ptr += page_length;
970 offset += page_length;
673a394b
EA
971 }
972
40123c1f
EA
973fail_put_pages:
974 i915_gem_object_put_pages(obj);
975fail_unlock:
673a394b 976 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
977fail_put_user_pages:
978 for (i = 0; i < pinned_pages; i++)
979 page_cache_release(user_pages[i]);
8e7d2b2c 980 drm_free_large(user_pages);
673a394b 981
40123c1f 982 return ret;
673a394b
EA
983}
984
985/**
986 * Writes data to the object referenced by handle.
987 *
988 * On error, the contents of the buffer that were to be modified are undefined.
989 */
990int
991i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file_priv)
993{
994 struct drm_i915_gem_pwrite *args = data;
995 struct drm_gem_object *obj;
996 struct drm_i915_gem_object *obj_priv;
997 int ret = 0;
998
999 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1000 if (obj == NULL)
bf79cb91 1001 return -ENOENT;
23010e43 1002 obj_priv = to_intel_bo(obj);
673a394b
EA
1003
1004 /* Bounds check destination.
1005 *
1006 * XXX: This could use review for overflow issues...
1007 */
1008 if (args->offset > obj->size || args->size > obj->size ||
1009 args->offset + args->size > obj->size) {
bc9025bd 1010 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1011 return -EINVAL;
1012 }
1013
1014 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1015 * it would end up going through the fenced access, and we'll get
1016 * different detiling behavior between reading and writing.
1017 * pread/pwrite currently are reading and writing from the CPU
1018 * perspective, requiring manual detiling by the client.
1019 */
71acb5eb
DA
1020 if (obj_priv->phys_obj)
1021 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
1022 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
1023 dev->gtt_total != 0 &&
1024 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
1025 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
1026 if (ret == -EFAULT) {
1027 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
1028 file_priv);
1029 }
280b713b
EA
1030 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1031 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
1032 } else {
1033 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1034 if (ret == -EFAULT) {
1035 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1036 file_priv);
1037 }
1038 }
673a394b
EA
1039
1040#if WATCH_PWRITE
1041 if (ret)
1042 DRM_INFO("pwrite failed %d\n", ret);
1043#endif
1044
bc9025bd 1045 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1046
1047 return ret;
1048}
1049
1050/**
2ef7eeaa
EA
1051 * Called when user space prepares to use an object with the CPU, either
1052 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1053 */
1054int
1055i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1056 struct drm_file *file_priv)
1057{
a09ba7fa 1058 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1059 struct drm_i915_gem_set_domain *args = data;
1060 struct drm_gem_object *obj;
652c393a 1061 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1062 uint32_t read_domains = args->read_domains;
1063 uint32_t write_domain = args->write_domain;
673a394b
EA
1064 int ret;
1065
1066 if (!(dev->driver->driver_features & DRIVER_GEM))
1067 return -ENODEV;
1068
2ef7eeaa 1069 /* Only handle setting domains to types used by the CPU. */
21d509e3 1070 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1071 return -EINVAL;
1072
21d509e3 1073 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1074 return -EINVAL;
1075
1076 /* Having something in the write domain implies it's in the read
1077 * domain, and only that read domain. Enforce that in the request.
1078 */
1079 if (write_domain != 0 && read_domains != write_domain)
1080 return -EINVAL;
1081
673a394b
EA
1082 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1083 if (obj == NULL)
bf79cb91 1084 return -ENOENT;
23010e43 1085 obj_priv = to_intel_bo(obj);
673a394b 1086
76c1dec1
CW
1087 ret = i915_mutex_lock_interruptible(dev);
1088 if (ret) {
1089 drm_gem_object_unreference_unlocked(obj);
1090 return ret;
1091 }
652c393a
JB
1092
1093 intel_mark_busy(dev, obj);
1094
2ef7eeaa
EA
1095 if (read_domains & I915_GEM_DOMAIN_GTT) {
1096 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1097
a09ba7fa
EA
1098 /* Update the LRU on the fence for the CPU access that's
1099 * about to occur.
1100 */
1101 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1102 struct drm_i915_fence_reg *reg =
1103 &dev_priv->fence_regs[obj_priv->fence_reg];
1104 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1105 &dev_priv->mm.fence_list);
1106 }
1107
02354392
EA
1108 /* Silently promote "you're not bound, there was nothing to do"
1109 * to success, since the client was just asking us to
1110 * make sure everything was done.
1111 */
1112 if (ret == -EINVAL)
1113 ret = 0;
2ef7eeaa 1114 } else {
e47c68e9 1115 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1116 }
1117
7d1c4804
CW
1118 /* Maintain LRU order of "inactive" objects */
1119 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1120 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1121
673a394b
EA
1122 drm_gem_object_unreference(obj);
1123 mutex_unlock(&dev->struct_mutex);
1124 return ret;
1125}
1126
1127/**
1128 * Called when user space has done writes to this buffer
1129 */
1130int
1131i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1132 struct drm_file *file_priv)
1133{
1134 struct drm_i915_gem_sw_finish *args = data;
1135 struct drm_gem_object *obj;
673a394b
EA
1136 int ret = 0;
1137
1138 if (!(dev->driver->driver_features & DRIVER_GEM))
1139 return -ENODEV;
1140
673a394b 1141 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
76c1dec1 1142 if (obj == NULL)
bf79cb91 1143 return -ENOENT;
76c1dec1
CW
1144
1145 ret = i915_mutex_lock_interruptible(dev);
1146 if (ret) {
1147 drm_gem_object_unreference_unlocked(obj);
1148 return ret;
673a394b
EA
1149 }
1150
673a394b 1151 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1152 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1153 i915_gem_object_flush_cpu_write_domain(obj);
1154
673a394b
EA
1155 drm_gem_object_unreference(obj);
1156 mutex_unlock(&dev->struct_mutex);
1157 return ret;
1158}
1159
1160/**
1161 * Maps the contents of an object, returning the address it is mapped
1162 * into.
1163 *
1164 * While the mapping holds a reference on the contents of the object, it doesn't
1165 * imply a ref on the object itself.
1166 */
1167int
1168i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1169 struct drm_file *file_priv)
1170{
1171 struct drm_i915_gem_mmap *args = data;
1172 struct drm_gem_object *obj;
1173 loff_t offset;
1174 unsigned long addr;
1175
1176 if (!(dev->driver->driver_features & DRIVER_GEM))
1177 return -ENODEV;
1178
1179 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1180 if (obj == NULL)
bf79cb91 1181 return -ENOENT;
673a394b
EA
1182
1183 offset = args->offset;
1184
1185 down_write(&current->mm->mmap_sem);
1186 addr = do_mmap(obj->filp, 0, args->size,
1187 PROT_READ | PROT_WRITE, MAP_SHARED,
1188 args->offset);
1189 up_write(&current->mm->mmap_sem);
bc9025bd 1190 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1191 if (IS_ERR((void *)addr))
1192 return addr;
1193
1194 args->addr_ptr = (uint64_t) addr;
1195
1196 return 0;
1197}
1198
de151cf6
JB
1199/**
1200 * i915_gem_fault - fault a page into the GTT
1201 * vma: VMA in question
1202 * vmf: fault info
1203 *
1204 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1205 * from userspace. The fault handler takes care of binding the object to
1206 * the GTT (if needed), allocating and programming a fence register (again,
1207 * only if needed based on whether the old reg is still valid or the object
1208 * is tiled) and inserting a new PTE into the faulting process.
1209 *
1210 * Note that the faulting process may involve evicting existing objects
1211 * from the GTT and/or fence registers to make room. So performance may
1212 * suffer if the GTT working set is large or there are few fence registers
1213 * left.
1214 */
1215int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1216{
1217 struct drm_gem_object *obj = vma->vm_private_data;
1218 struct drm_device *dev = obj->dev;
7d1c4804 1219 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1220 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1221 pgoff_t page_offset;
1222 unsigned long pfn;
1223 int ret = 0;
0f973f27 1224 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1225
1226 /* We don't use vmf->pgoff since that has the fake offset */
1227 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1228 PAGE_SHIFT;
1229
1230 /* Now bind it into the GTT if needed */
1231 mutex_lock(&dev->struct_mutex);
1232 if (!obj_priv->gtt_space) {
e67b8ce1 1233 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1234 if (ret)
1235 goto unlock;
07f4f3e8 1236
07f4f3e8 1237 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1238 if (ret)
1239 goto unlock;
de151cf6
JB
1240 }
1241
1242 /* Need a new fence register? */
a09ba7fa 1243 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1244 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1245 if (ret)
1246 goto unlock;
d9ddcb96 1247 }
de151cf6 1248
7d1c4804
CW
1249 if (i915_gem_object_is_inactive(obj_priv))
1250 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1251
de151cf6
JB
1252 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1253 page_offset;
1254
1255 /* Finally, remap it using the new GTT offset */
1256 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1257unlock:
de151cf6
JB
1258 mutex_unlock(&dev->struct_mutex);
1259
1260 switch (ret) {
c715089f
CW
1261 case 0:
1262 case -ERESTARTSYS:
1263 return VM_FAULT_NOPAGE;
de151cf6
JB
1264 case -ENOMEM:
1265 case -EAGAIN:
1266 return VM_FAULT_OOM;
de151cf6 1267 default:
c715089f 1268 return VM_FAULT_SIGBUS;
de151cf6
JB
1269 }
1270}
1271
1272/**
1273 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1274 * @obj: obj in question
1275 *
1276 * GEM memory mapping works by handing back to userspace a fake mmap offset
1277 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1278 * up the object based on the offset and sets up the various memory mapping
1279 * structures.
1280 *
1281 * This routine allocates and attaches a fake offset for @obj.
1282 */
1283static int
1284i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1285{
1286 struct drm_device *dev = obj->dev;
1287 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1288 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1289 struct drm_map_list *list;
f77d390c 1290 struct drm_local_map *map;
de151cf6
JB
1291 int ret = 0;
1292
1293 /* Set the object up for mmap'ing */
1294 list = &obj->map_list;
9a298b2a 1295 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1296 if (!list->map)
1297 return -ENOMEM;
1298
1299 map = list->map;
1300 map->type = _DRM_GEM;
1301 map->size = obj->size;
1302 map->handle = obj;
1303
1304 /* Get a DRM GEM mmap offset allocated... */
1305 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1306 obj->size / PAGE_SIZE, 0, 0);
1307 if (!list->file_offset_node) {
1308 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1309 ret = -ENOSPC;
de151cf6
JB
1310 goto out_free_list;
1311 }
1312
1313 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1314 obj->size / PAGE_SIZE, 0);
1315 if (!list->file_offset_node) {
1316 ret = -ENOMEM;
1317 goto out_free_list;
1318 }
1319
1320 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1321 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1322 if (ret) {
de151cf6
JB
1323 DRM_ERROR("failed to add to map hash\n");
1324 goto out_free_mm;
1325 }
1326
1327 /* By now we should be all set, any drm_mmap request on the offset
1328 * below will get to our mmap & fault handler */
1329 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1330
1331 return 0;
1332
1333out_free_mm:
1334 drm_mm_put_block(list->file_offset_node);
1335out_free_list:
9a298b2a 1336 kfree(list->map);
de151cf6
JB
1337
1338 return ret;
1339}
1340
901782b2
CW
1341/**
1342 * i915_gem_release_mmap - remove physical page mappings
1343 * @obj: obj in question
1344 *
af901ca1 1345 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1346 * relinquish ownership of the pages back to the system.
1347 *
1348 * It is vital that we remove the page mapping if we have mapped a tiled
1349 * object through the GTT and then lose the fence register due to
1350 * resource pressure. Similarly if the object has been moved out of the
1351 * aperture, than pages mapped into userspace must be revoked. Removing the
1352 * mapping will then trigger a page fault on the next user access, allowing
1353 * fixup by i915_gem_fault().
1354 */
d05ca301 1355void
901782b2
CW
1356i915_gem_release_mmap(struct drm_gem_object *obj)
1357{
1358 struct drm_device *dev = obj->dev;
23010e43 1359 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1360
1361 if (dev->dev_mapping)
1362 unmap_mapping_range(dev->dev_mapping,
1363 obj_priv->mmap_offset, obj->size, 1);
1364}
1365
ab00b3e5
JB
1366static void
1367i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1368{
1369 struct drm_device *dev = obj->dev;
23010e43 1370 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1371 struct drm_gem_mm *mm = dev->mm_private;
1372 struct drm_map_list *list;
1373
1374 list = &obj->map_list;
1375 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1376
1377 if (list->file_offset_node) {
1378 drm_mm_put_block(list->file_offset_node);
1379 list->file_offset_node = NULL;
1380 }
1381
1382 if (list->map) {
9a298b2a 1383 kfree(list->map);
ab00b3e5
JB
1384 list->map = NULL;
1385 }
1386
1387 obj_priv->mmap_offset = 0;
1388}
1389
de151cf6
JB
1390/**
1391 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1392 * @obj: object to check
1393 *
1394 * Return the required GTT alignment for an object, taking into account
1395 * potential fence register mapping if needed.
1396 */
1397static uint32_t
1398i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1399{
1400 struct drm_device *dev = obj->dev;
23010e43 1401 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1402 int start, i;
1403
1404 /*
1405 * Minimum alignment is 4k (GTT page size), but might be greater
1406 * if a fence register is needed for the object.
1407 */
a6c45cf0 1408 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1409 return 4096;
1410
1411 /*
1412 * Previous chips need to be aligned to the size of the smallest
1413 * fence register that can contain the object.
1414 */
a6c45cf0 1415 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1416 start = 1024*1024;
1417 else
1418 start = 512*1024;
1419
1420 for (i = start; i < obj->size; i <<= 1)
1421 ;
1422
1423 return i;
1424}
1425
1426/**
1427 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1428 * @dev: DRM device
1429 * @data: GTT mapping ioctl data
1430 * @file_priv: GEM object info
1431 *
1432 * Simply returns the fake offset to userspace so it can mmap it.
1433 * The mmap call will end up in drm_gem_mmap(), which will set things
1434 * up so we can get faults in the handler above.
1435 *
1436 * The fault handler will take care of binding the object into the GTT
1437 * (since it may have been evicted to make room for something), allocating
1438 * a fence register, and mapping the appropriate aperture address into
1439 * userspace.
1440 */
1441int
1442i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1443 struct drm_file *file_priv)
1444{
1445 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1446 struct drm_gem_object *obj;
1447 struct drm_i915_gem_object *obj_priv;
1448 int ret;
1449
1450 if (!(dev->driver->driver_features & DRIVER_GEM))
1451 return -ENODEV;
1452
1453 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1454 if (obj == NULL)
bf79cb91 1455 return -ENOENT;
de151cf6 1456
76c1dec1
CW
1457 ret = i915_mutex_lock_interruptible(dev);
1458 if (ret) {
1459 drm_gem_object_unreference_unlocked(obj);
1460 return ret;
1461 }
de151cf6 1462
23010e43 1463 obj_priv = to_intel_bo(obj);
de151cf6 1464
ab18282d
CW
1465 if (obj_priv->madv != I915_MADV_WILLNEED) {
1466 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1467 drm_gem_object_unreference(obj);
1468 mutex_unlock(&dev->struct_mutex);
1469 return -EINVAL;
1470 }
1471
1472
de151cf6
JB
1473 if (!obj_priv->mmap_offset) {
1474 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1475 if (ret) {
1476 drm_gem_object_unreference(obj);
1477 mutex_unlock(&dev->struct_mutex);
de151cf6 1478 return ret;
13af1062 1479 }
de151cf6
JB
1480 }
1481
1482 args->offset = obj_priv->mmap_offset;
1483
de151cf6
JB
1484 /*
1485 * Pull it into the GTT so that we have a page list (makes the
1486 * initial fault faster and any subsequent flushing possible).
1487 */
1488 if (!obj_priv->agp_mem) {
e67b8ce1 1489 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1490 if (ret) {
1491 drm_gem_object_unreference(obj);
1492 mutex_unlock(&dev->struct_mutex);
1493 return ret;
1494 }
de151cf6
JB
1495 }
1496
1497 drm_gem_object_unreference(obj);
1498 mutex_unlock(&dev->struct_mutex);
1499
1500 return 0;
1501}
1502
6911a9b8 1503void
856fa198 1504i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1505{
23010e43 1506 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1507 int page_count = obj->size / PAGE_SIZE;
1508 int i;
1509
856fa198 1510 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1511 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1512
856fa198
EA
1513 if (--obj_priv->pages_refcount != 0)
1514 return;
673a394b 1515
280b713b
EA
1516 if (obj_priv->tiling_mode != I915_TILING_NONE)
1517 i915_gem_object_save_bit_17_swizzle(obj);
1518
3ef94daa 1519 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1520 obj_priv->dirty = 0;
3ef94daa
CW
1521
1522 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1523 if (obj_priv->dirty)
1524 set_page_dirty(obj_priv->pages[i]);
1525
1526 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1527 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1528
1529 page_cache_release(obj_priv->pages[i]);
1530 }
673a394b
EA
1531 obj_priv->dirty = 0;
1532
8e7d2b2c 1533 drm_free_large(obj_priv->pages);
856fa198 1534 obj_priv->pages = NULL;
673a394b
EA
1535}
1536
a56ba56c
CW
1537static uint32_t
1538i915_gem_next_request_seqno(struct drm_device *dev,
1539 struct intel_ring_buffer *ring)
1540{
1541 drm_i915_private_t *dev_priv = dev->dev_private;
1542
1543 ring->outstanding_lazy_request = true;
1544 return dev_priv->next_seqno;
1545}
1546
673a394b 1547static void
617dbe27 1548i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1549 struct intel_ring_buffer *ring)
673a394b 1550{
a56ba56c 1551 struct drm_device *dev = obj->dev;
23010e43 1552 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1553 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1554
852835f3
ZN
1555 BUG_ON(ring == NULL);
1556 obj_priv->ring = ring;
673a394b
EA
1557
1558 /* Add a reference if we're newly entering the active list. */
1559 if (!obj_priv->active) {
1560 drm_gem_object_reference(obj);
1561 obj_priv->active = 1;
1562 }
e35a41de 1563
673a394b 1564 /* Move from whatever list we were on to the tail of execution. */
852835f3 1565 list_move_tail(&obj_priv->list, &ring->active_list);
a56ba56c 1566 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1567}
1568
ce44b0ea
EA
1569static void
1570i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1571{
1572 struct drm_device *dev = obj->dev;
1573 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1574 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1575
1576 BUG_ON(!obj_priv->active);
1577 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1578 obj_priv->last_rendering_seqno = 0;
1579}
673a394b 1580
963b4836
CW
1581/* Immediately discard the backing storage */
1582static void
1583i915_gem_object_truncate(struct drm_gem_object *obj)
1584{
23010e43 1585 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1586 struct inode *inode;
963b4836 1587
ae9fed6b
CW
1588 /* Our goal here is to return as much of the memory as
1589 * is possible back to the system as we are called from OOM.
1590 * To do this we must instruct the shmfs to drop all of its
1591 * backing pages, *now*. Here we mirror the actions taken
1592 * when by shmem_delete_inode() to release the backing store.
1593 */
bb6baf76 1594 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1595 truncate_inode_pages(inode->i_mapping, 0);
1596 if (inode->i_op->truncate_range)
1597 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1598
1599 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1600}
1601
1602static inline int
1603i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1604{
1605 return obj_priv->madv == I915_MADV_DONTNEED;
1606}
1607
673a394b
EA
1608static void
1609i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1610{
1611 struct drm_device *dev = obj->dev;
1612 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1613 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1614
1615 i915_verify_inactive(dev, __FILE__, __LINE__);
1616 if (obj_priv->pin_count != 0)
f13d3f73 1617 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
673a394b
EA
1618 else
1619 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1620
99fcb766
DV
1621 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1622
ce44b0ea 1623 obj_priv->last_rendering_seqno = 0;
852835f3 1624 obj_priv->ring = NULL;
673a394b
EA
1625 if (obj_priv->active) {
1626 obj_priv->active = 0;
1627 drm_gem_object_unreference(obj);
1628 }
1629 i915_verify_inactive(dev, __FILE__, __LINE__);
1630}
1631
9220434a 1632static void
63560396 1633i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1634 uint32_t flush_domains,
852835f3 1635 struct intel_ring_buffer *ring)
63560396
DV
1636{
1637 drm_i915_private_t *dev_priv = dev->dev_private;
1638 struct drm_i915_gem_object *obj_priv, *next;
1639
1640 list_for_each_entry_safe(obj_priv, next,
1641 &dev_priv->mm.gpu_write_list,
1642 gpu_write_list) {
a8089e84 1643 struct drm_gem_object *obj = &obj_priv->base;
63560396 1644
2b6efaa4
CW
1645 if (obj->write_domain & flush_domains &&
1646 obj_priv->ring == ring) {
63560396
DV
1647 uint32_t old_write_domain = obj->write_domain;
1648
1649 obj->write_domain = 0;
1650 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1651 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1652
1653 /* update the fence lru list */
007cc8ac
DV
1654 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1655 struct drm_i915_fence_reg *reg =
1656 &dev_priv->fence_regs[obj_priv->fence_reg];
1657 list_move_tail(&reg->lru_list,
63560396 1658 &dev_priv->mm.fence_list);
007cc8ac 1659 }
63560396
DV
1660
1661 trace_i915_gem_object_change_domain(obj,
1662 obj->read_domains,
1663 old_write_domain);
1664 }
1665 }
1666}
8187a2b7 1667
5a5a0c64 1668uint32_t
8a1a49f9 1669i915_add_request(struct drm_device *dev,
f787a5f5 1670 struct drm_file *file,
8dc5d147 1671 struct drm_i915_gem_request *request,
8a1a49f9 1672 struct intel_ring_buffer *ring)
673a394b
EA
1673{
1674 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1675 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1676 uint32_t seqno;
1677 int was_empty;
673a394b 1678
f787a5f5
CW
1679 if (file != NULL)
1680 file_priv = file->driver_priv;
b962442e 1681
8dc5d147
CW
1682 if (request == NULL) {
1683 request = kzalloc(sizeof(*request), GFP_KERNEL);
1684 if (request == NULL)
1685 return 0;
1686 }
673a394b 1687
f787a5f5 1688 seqno = ring->add_request(dev, ring, 0);
a56ba56c 1689 ring->outstanding_lazy_request = false;
673a394b
EA
1690
1691 request->seqno = seqno;
852835f3 1692 request->ring = ring;
673a394b 1693 request->emitted_jiffies = jiffies;
852835f3
ZN
1694 was_empty = list_empty(&ring->request_list);
1695 list_add_tail(&request->list, &ring->request_list);
1696
f787a5f5 1697 if (file_priv) {
1c25595f 1698 spin_lock(&file_priv->mm.lock);
f787a5f5 1699 request->file_priv = file_priv;
b962442e 1700 list_add_tail(&request->client_list,
f787a5f5 1701 &file_priv->mm.request_list);
1c25595f 1702 spin_unlock(&file_priv->mm.lock);
b962442e 1703 }
673a394b 1704
f65d9421 1705 if (!dev_priv->mm.suspended) {
b3b079db
CW
1706 mod_timer(&dev_priv->hangcheck_timer,
1707 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1708 if (was_empty)
b3b079db
CW
1709 queue_delayed_work(dev_priv->wq,
1710 &dev_priv->mm.retire_work, HZ);
f65d9421 1711 }
673a394b
EA
1712 return seqno;
1713}
1714
1715/**
1716 * Command execution barrier
1717 *
1718 * Ensures that all commands in the ring are finished
1719 * before signalling the CPU
1720 */
8a1a49f9 1721static void
852835f3 1722i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1723{
673a394b 1724 uint32_t flush_domains = 0;
673a394b
EA
1725
1726 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1727 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1728 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1729
1730 ring->flush(dev, ring,
1731 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1732}
1733
f787a5f5
CW
1734static inline void
1735i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1736{
1c25595f
CW
1737 struct drm_i915_file_private *file_priv = request->file_priv;
1738
1739 if (!file_priv)
1740 return;
1741
1742 spin_lock(&file_priv->mm.lock);
1743 list_del(&request->client_list);
1744 request->file_priv = NULL;
1745 spin_unlock(&file_priv->mm.lock);
673a394b
EA
1746}
1747
dfaae392
CW
1748static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1749 struct intel_ring_buffer *ring)
9375e446 1750{
dfaae392
CW
1751 while (!list_empty(&ring->request_list)) {
1752 struct drm_i915_gem_request *request;
9375e446 1753
dfaae392
CW
1754 request = list_first_entry(&ring->request_list,
1755 struct drm_i915_gem_request,
1756 list);
1757
1758 list_del(&request->list);
f787a5f5 1759 i915_gem_request_remove_from_client(request);
dfaae392
CW
1760 kfree(request);
1761 }
1762
1763 while (!list_empty(&ring->active_list)) {
9375e446
CW
1764 struct drm_i915_gem_object *obj_priv;
1765
dfaae392 1766 obj_priv = list_first_entry(&ring->active_list,
9375e446
CW
1767 struct drm_i915_gem_object,
1768 list);
1769
1770 obj_priv->base.write_domain = 0;
dfaae392 1771 list_del_init(&obj_priv->gpu_write_list);
9375e446
CW
1772 i915_gem_object_move_to_inactive(&obj_priv->base);
1773 }
1774}
1775
dfaae392 1776void i915_gem_reset_lists(struct drm_device *dev)
77f01230
CW
1777{
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 struct drm_i915_gem_object *obj_priv;
1780
dfaae392
CW
1781 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1782 if (HAS_BSD(dev))
1783 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1784
1785 /* Remove anything from the flushing lists. The GPU cache is likely
1786 * to be lost on reset along with the data, so simply move the
1787 * lost bo to the inactive list.
1788 */
1789 while (!list_empty(&dev_priv->mm.flushing_list)) {
1790 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1791 struct drm_i915_gem_object,
1792 list);
1793
1794 obj_priv->base.write_domain = 0;
1795 list_del_init(&obj_priv->gpu_write_list);
1796 i915_gem_object_move_to_inactive(&obj_priv->base);
1797 }
1798
1799 /* Move everything out of the GPU domains to ensure we do any
1800 * necessary invalidation upon reuse.
1801 */
77f01230
CW
1802 list_for_each_entry(obj_priv,
1803 &dev_priv->mm.inactive_list,
1804 list)
1805 {
1806 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1807 }
1808}
1809
673a394b
EA
1810/**
1811 * This function clears the request list as sequence numbers are passed.
1812 */
b09a1fec
CW
1813static void
1814i915_gem_retire_requests_ring(struct drm_device *dev,
1815 struct intel_ring_buffer *ring)
673a394b
EA
1816{
1817 drm_i915_private_t *dev_priv = dev->dev_private;
1818 uint32_t seqno;
1819
b84d5f0c
CW
1820 if (!ring->status_page.page_addr ||
1821 list_empty(&ring->request_list))
6c0594a3
KW
1822 return;
1823
f787a5f5 1824 seqno = ring->get_seqno(dev, ring);
852835f3 1825 while (!list_empty(&ring->request_list)) {
673a394b 1826 struct drm_i915_gem_request *request;
673a394b 1827
852835f3 1828 request = list_first_entry(&ring->request_list,
673a394b
EA
1829 struct drm_i915_gem_request,
1830 list);
673a394b 1831
dfaae392 1832 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1833 break;
1834
1835 trace_i915_gem_request_retire(dev, request->seqno);
1836
1837 list_del(&request->list);
f787a5f5 1838 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1839 kfree(request);
1840 }
1841
1842 /* Move any buffers on the active list that are no longer referenced
1843 * by the ringbuffer to the flushing/inactive lists as appropriate.
1844 */
1845 while (!list_empty(&ring->active_list)) {
1846 struct drm_gem_object *obj;
1847 struct drm_i915_gem_object *obj_priv;
1848
1849 obj_priv = list_first_entry(&ring->active_list,
1850 struct drm_i915_gem_object,
1851 list);
673a394b 1852
dfaae392 1853 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1854 break;
b84d5f0c
CW
1855
1856 obj = &obj_priv->base;
b84d5f0c
CW
1857 if (obj->write_domain != 0)
1858 i915_gem_object_move_to_flushing(obj);
1859 else
1860 i915_gem_object_move_to_inactive(obj);
673a394b 1861 }
9d34e5db
CW
1862
1863 if (unlikely (dev_priv->trace_irq_seqno &&
1864 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1865 ring->user_irq_put(dev, ring);
9d34e5db
CW
1866 dev_priv->trace_irq_seqno = 0;
1867 }
673a394b
EA
1868}
1869
b09a1fec
CW
1870void
1871i915_gem_retire_requests(struct drm_device *dev)
1872{
1873 drm_i915_private_t *dev_priv = dev->dev_private;
1874
be72615b
CW
1875 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1876 struct drm_i915_gem_object *obj_priv, *tmp;
1877
1878 /* We must be careful that during unbind() we do not
1879 * accidentally infinitely recurse into retire requests.
1880 * Currently:
1881 * retire -> free -> unbind -> wait -> retire_ring
1882 */
1883 list_for_each_entry_safe(obj_priv, tmp,
1884 &dev_priv->mm.deferred_free_list,
1885 list)
1886 i915_gem_free_object_tail(&obj_priv->base);
1887 }
1888
b09a1fec
CW
1889 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1890 if (HAS_BSD(dev))
1891 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1892}
1893
75ef9da2 1894static void
673a394b
EA
1895i915_gem_retire_work_handler(struct work_struct *work)
1896{
1897 drm_i915_private_t *dev_priv;
1898 struct drm_device *dev;
1899
1900 dev_priv = container_of(work, drm_i915_private_t,
1901 mm.retire_work.work);
1902 dev = dev_priv->dev;
1903
891b48cf
CW
1904 /* Come back later if the device is busy... */
1905 if (!mutex_trylock(&dev->struct_mutex)) {
1906 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1907 return;
1908 }
1909
b09a1fec 1910 i915_gem_retire_requests(dev);
d1b851fc 1911
6dbe2772 1912 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1913 (!list_empty(&dev_priv->render_ring.request_list) ||
1914 (HAS_BSD(dev) &&
1915 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1916 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1917 mutex_unlock(&dev->struct_mutex);
1918}
1919
5a5a0c64 1920int
852835f3 1921i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1922 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1923{
1924 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1925 u32 ier;
673a394b
EA
1926 int ret = 0;
1927
1928 BUG_ON(seqno == 0);
1929
30dbf0c0
CW
1930 if (atomic_read(&dev_priv->mm.wedged))
1931 return -EAGAIN;
1932
a56ba56c 1933 if (ring->outstanding_lazy_request) {
8dc5d147 1934 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1935 if (seqno == 0)
1936 return -ENOMEM;
1937 }
a56ba56c 1938 BUG_ON(seqno == dev_priv->next_seqno);
e35a41de 1939
f787a5f5 1940 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
bad720ff 1941 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1942 ier = I915_READ(DEIER) | I915_READ(GTIER);
1943 else
1944 ier = I915_READ(IER);
802c7eb6
JB
1945 if (!ier) {
1946 DRM_ERROR("something (likely vbetool) disabled "
1947 "interrupts, re-enabling\n");
1948 i915_driver_irq_preinstall(dev);
1949 i915_driver_irq_postinstall(dev);
1950 }
1951
1c5d22f7
CW
1952 trace_i915_gem_request_wait_begin(dev, seqno);
1953
852835f3 1954 ring->waiting_gem_seqno = seqno;
8187a2b7 1955 ring->user_irq_get(dev, ring);
48764bf4 1956 if (interruptible)
852835f3
ZN
1957 ret = wait_event_interruptible(ring->irq_queue,
1958 i915_seqno_passed(
f787a5f5 1959 ring->get_seqno(dev, ring), seqno)
852835f3 1960 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1961 else
852835f3
ZN
1962 wait_event(ring->irq_queue,
1963 i915_seqno_passed(
f787a5f5 1964 ring->get_seqno(dev, ring), seqno)
852835f3 1965 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1966
8187a2b7 1967 ring->user_irq_put(dev, ring);
852835f3 1968 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1969
1970 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1971 }
ba1234d1 1972 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1973 ret = -EAGAIN;
673a394b
EA
1974
1975 if (ret && ret != -ERESTARTSYS)
8bff917c 1976 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
f787a5f5 1977 __func__, ret, seqno, ring->get_seqno(dev, ring),
8bff917c 1978 dev_priv->next_seqno);
673a394b
EA
1979
1980 /* Directly dispatch request retiring. While we have the work queue
1981 * to handle this, the waiter on a request often wants an associated
1982 * buffer to have made it to the inactive list, and we would need
1983 * a separate wait queue to handle that.
1984 */
1985 if (ret == 0)
b09a1fec 1986 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1987
1988 return ret;
1989}
1990
48764bf4
DV
1991/**
1992 * Waits for a sequence number to be signaled, and cleans up the
1993 * request and object lists appropriately for that event.
1994 */
1995static int
852835f3 1996i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 1997 struct intel_ring_buffer *ring)
48764bf4 1998{
852835f3 1999 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2000}
2001
20f0cd55 2002static void
9220434a 2003i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2004 struct drm_file *file_priv,
9220434a
CW
2005 struct intel_ring_buffer *ring,
2006 uint32_t invalidate_domains,
2007 uint32_t flush_domains)
2008{
2009 ring->flush(dev, ring, invalidate_domains, flush_domains);
2010 i915_gem_process_flushing_list(dev, flush_domains, ring);
2011}
2012
8187a2b7
ZN
2013static void
2014i915_gem_flush(struct drm_device *dev,
c78ec30b 2015 struct drm_file *file_priv,
8187a2b7 2016 uint32_t invalidate_domains,
9220434a
CW
2017 uint32_t flush_domains,
2018 uint32_t flush_rings)
8187a2b7
ZN
2019{
2020 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2021
8187a2b7
ZN
2022 if (flush_domains & I915_GEM_DOMAIN_CPU)
2023 drm_agp_chipset_flush(dev);
8bff917c 2024
9220434a
CW
2025 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2026 if (flush_rings & RING_RENDER)
c78ec30b 2027 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2028 &dev_priv->render_ring,
2029 invalidate_domains, flush_domains);
2030 if (flush_rings & RING_BSD)
c78ec30b 2031 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2032 &dev_priv->bsd_ring,
2033 invalidate_domains, flush_domains);
2034 }
8187a2b7
ZN
2035}
2036
673a394b
EA
2037/**
2038 * Ensures that all rendering to the object has completed and the object is
2039 * safe to unbind from the GTT or access from the CPU.
2040 */
2041static int
2cf34d7b
CW
2042i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2043 bool interruptible)
673a394b
EA
2044{
2045 struct drm_device *dev = obj->dev;
23010e43 2046 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2047 int ret;
2048
e47c68e9
EA
2049 /* This function only exists to support waiting for existing rendering,
2050 * not for emitting required flushes.
673a394b 2051 */
e47c68e9 2052 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2053
2054 /* If there is rendering queued on the buffer being evicted, wait for
2055 * it.
2056 */
2057 if (obj_priv->active) {
2cf34d7b
CW
2058 ret = i915_do_wait_request(dev,
2059 obj_priv->last_rendering_seqno,
2060 interruptible,
2061 obj_priv->ring);
2062 if (ret)
673a394b
EA
2063 return ret;
2064 }
2065
2066 return 0;
2067}
2068
2069/**
2070 * Unbinds an object from the GTT aperture.
2071 */
0f973f27 2072int
673a394b
EA
2073i915_gem_object_unbind(struct drm_gem_object *obj)
2074{
2075 struct drm_device *dev = obj->dev;
23010e43 2076 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2077 int ret = 0;
2078
673a394b
EA
2079 if (obj_priv->gtt_space == NULL)
2080 return 0;
2081
2082 if (obj_priv->pin_count != 0) {
2083 DRM_ERROR("Attempting to unbind pinned buffer\n");
2084 return -EINVAL;
2085 }
2086
5323fd04
EA
2087 /* blow away mappings if mapped through GTT */
2088 i915_gem_release_mmap(obj);
2089
673a394b
EA
2090 /* Move the object to the CPU domain to ensure that
2091 * any possible CPU writes while it's not in the GTT
2092 * are flushed when we go to remap it. This will
2093 * also ensure that all pending GPU writes are finished
2094 * before we unbind.
2095 */
e47c68e9 2096 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2097 if (ret == -ERESTARTSYS)
673a394b 2098 return ret;
8dc1775d
CW
2099 /* Continue on if we fail due to EIO, the GPU is hung so we
2100 * should be safe and we need to cleanup or else we might
2101 * cause memory corruption through use-after-free.
2102 */
673a394b 2103
96b47b65
DV
2104 /* release the fence reg _after_ flushing */
2105 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2106 i915_gem_clear_fence_reg(obj);
2107
673a394b
EA
2108 if (obj_priv->agp_mem != NULL) {
2109 drm_unbind_agp(obj_priv->agp_mem);
2110 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2111 obj_priv->agp_mem = NULL;
2112 }
2113
856fa198 2114 i915_gem_object_put_pages(obj);
a32808c0 2115 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2116
2117 if (obj_priv->gtt_space) {
2118 atomic_dec(&dev->gtt_count);
2119 atomic_sub(obj->size, &dev->gtt_memory);
2120
2121 drm_mm_put_block(obj_priv->gtt_space);
2122 obj_priv->gtt_space = NULL;
2123 }
2124
f13d3f73 2125 list_del_init(&obj_priv->list);
673a394b 2126
963b4836
CW
2127 if (i915_gem_object_is_purgeable(obj_priv))
2128 i915_gem_object_truncate(obj);
2129
1c5d22f7
CW
2130 trace_i915_gem_object_unbind(obj);
2131
8dc1775d 2132 return ret;
673a394b
EA
2133}
2134
a56ba56c
CW
2135static int i915_ring_idle(struct drm_device *dev,
2136 struct intel_ring_buffer *ring)
2137{
2138 i915_gem_flush_ring(dev, NULL, ring,
2139 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2140 return i915_wait_request(dev,
2141 i915_gem_next_request_seqno(dev, ring),
2142 ring);
2143}
2144
b47eb4a2 2145int
4df2faf4
DV
2146i915_gpu_idle(struct drm_device *dev)
2147{
2148 drm_i915_private_t *dev_priv = dev->dev_private;
2149 bool lists_empty;
852835f3 2150 int ret;
4df2faf4 2151
d1b851fc
ZN
2152 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2153 list_empty(&dev_priv->render_ring.active_list) &&
2154 (!HAS_BSD(dev) ||
2155 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2156 if (lists_empty)
2157 return 0;
2158
2159 /* Flush everything onto the inactive list. */
a56ba56c 2160 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2161 if (ret)
2162 return ret;
d1b851fc
ZN
2163
2164 if (HAS_BSD(dev)) {
a56ba56c 2165 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
d1b851fc
ZN
2166 if (ret)
2167 return ret;
2168 }
2169
8a1a49f9 2170 return 0;
4df2faf4
DV
2171}
2172
6911a9b8 2173int
4bdadb97
CW
2174i915_gem_object_get_pages(struct drm_gem_object *obj,
2175 gfp_t gfpmask)
673a394b 2176{
23010e43 2177 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2178 int page_count, i;
2179 struct address_space *mapping;
2180 struct inode *inode;
2181 struct page *page;
673a394b 2182
778c3544
DV
2183 BUG_ON(obj_priv->pages_refcount
2184 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2185
856fa198 2186 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2187 return 0;
2188
2189 /* Get the list of pages out of our struct file. They'll be pinned
2190 * at this point until we release them.
2191 */
2192 page_count = obj->size / PAGE_SIZE;
856fa198 2193 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2194 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2195 if (obj_priv->pages == NULL) {
856fa198 2196 obj_priv->pages_refcount--;
673a394b
EA
2197 return -ENOMEM;
2198 }
2199
2200 inode = obj->filp->f_path.dentry->d_inode;
2201 mapping = inode->i_mapping;
2202 for (i = 0; i < page_count; i++) {
4bdadb97 2203 page = read_cache_page_gfp(mapping, i,
985b823b 2204 GFP_HIGHUSER |
4bdadb97 2205 __GFP_COLD |
cd9f040d 2206 __GFP_RECLAIMABLE |
4bdadb97 2207 gfpmask);
1f2b1013
CW
2208 if (IS_ERR(page))
2209 goto err_pages;
2210
856fa198 2211 obj_priv->pages[i] = page;
673a394b 2212 }
280b713b
EA
2213
2214 if (obj_priv->tiling_mode != I915_TILING_NONE)
2215 i915_gem_object_do_bit_17_swizzle(obj);
2216
673a394b 2217 return 0;
1f2b1013
CW
2218
2219err_pages:
2220 while (i--)
2221 page_cache_release(obj_priv->pages[i]);
2222
2223 drm_free_large(obj_priv->pages);
2224 obj_priv->pages = NULL;
2225 obj_priv->pages_refcount--;
2226 return PTR_ERR(page);
673a394b
EA
2227}
2228
4e901fdc
EA
2229static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2230{
2231 struct drm_gem_object *obj = reg->obj;
2232 struct drm_device *dev = obj->dev;
2233 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2234 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2235 int regnum = obj_priv->fence_reg;
2236 uint64_t val;
2237
2238 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2239 0xfffff000) << 32;
2240 val |= obj_priv->gtt_offset & 0xfffff000;
2241 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2242 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2243
2244 if (obj_priv->tiling_mode == I915_TILING_Y)
2245 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2246 val |= I965_FENCE_REG_VALID;
2247
2248 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2249}
2250
de151cf6
JB
2251static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2252{
2253 struct drm_gem_object *obj = reg->obj;
2254 struct drm_device *dev = obj->dev;
2255 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2256 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2257 int regnum = obj_priv->fence_reg;
2258 uint64_t val;
2259
2260 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2261 0xfffff000) << 32;
2262 val |= obj_priv->gtt_offset & 0xfffff000;
2263 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2264 if (obj_priv->tiling_mode == I915_TILING_Y)
2265 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2266 val |= I965_FENCE_REG_VALID;
2267
2268 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2269}
2270
2271static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2272{
2273 struct drm_gem_object *obj = reg->obj;
2274 struct drm_device *dev = obj->dev;
2275 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2276 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2277 int regnum = obj_priv->fence_reg;
0f973f27 2278 int tile_width;
dc529a4f 2279 uint32_t fence_reg, val;
de151cf6
JB
2280 uint32_t pitch_val;
2281
2282 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2283 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2284 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2285 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2286 return;
2287 }
2288
0f973f27
JB
2289 if (obj_priv->tiling_mode == I915_TILING_Y &&
2290 HAS_128_BYTE_Y_TILING(dev))
2291 tile_width = 128;
de151cf6 2292 else
0f973f27
JB
2293 tile_width = 512;
2294
2295 /* Note: pitch better be a power of two tile widths */
2296 pitch_val = obj_priv->stride / tile_width;
2297 pitch_val = ffs(pitch_val) - 1;
de151cf6 2298
c36a2a6d
DV
2299 if (obj_priv->tiling_mode == I915_TILING_Y &&
2300 HAS_128_BYTE_Y_TILING(dev))
2301 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2302 else
2303 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2304
de151cf6
JB
2305 val = obj_priv->gtt_offset;
2306 if (obj_priv->tiling_mode == I915_TILING_Y)
2307 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2308 val |= I915_FENCE_SIZE_BITS(obj->size);
2309 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2310 val |= I830_FENCE_REG_VALID;
2311
dc529a4f
EA
2312 if (regnum < 8)
2313 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2314 else
2315 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2316 I915_WRITE(fence_reg, val);
de151cf6
JB
2317}
2318
2319static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2320{
2321 struct drm_gem_object *obj = reg->obj;
2322 struct drm_device *dev = obj->dev;
2323 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2324 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2325 int regnum = obj_priv->fence_reg;
2326 uint32_t val;
2327 uint32_t pitch_val;
8d7773a3 2328 uint32_t fence_size_bits;
de151cf6 2329
8d7773a3 2330 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2331 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2332 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2333 __func__, obj_priv->gtt_offset);
de151cf6
JB
2334 return;
2335 }
2336
e76a16de
EA
2337 pitch_val = obj_priv->stride / 128;
2338 pitch_val = ffs(pitch_val) - 1;
2339 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2340
de151cf6
JB
2341 val = obj_priv->gtt_offset;
2342 if (obj_priv->tiling_mode == I915_TILING_Y)
2343 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2344 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2345 WARN_ON(fence_size_bits & ~0x00000f00);
2346 val |= fence_size_bits;
de151cf6
JB
2347 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2348 val |= I830_FENCE_REG_VALID;
2349
2350 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2351}
2352
2cf34d7b
CW
2353static int i915_find_fence_reg(struct drm_device *dev,
2354 bool interruptible)
ae3db24a
DV
2355{
2356 struct drm_i915_fence_reg *reg = NULL;
2357 struct drm_i915_gem_object *obj_priv = NULL;
2358 struct drm_i915_private *dev_priv = dev->dev_private;
2359 struct drm_gem_object *obj = NULL;
2360 int i, avail, ret;
2361
2362 /* First try to find a free reg */
2363 avail = 0;
2364 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2365 reg = &dev_priv->fence_regs[i];
2366 if (!reg->obj)
2367 return i;
2368
23010e43 2369 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2370 if (!obj_priv->pin_count)
2371 avail++;
2372 }
2373
2374 if (avail == 0)
2375 return -ENOSPC;
2376
2377 /* None available, try to steal one or wait for a user to finish */
2378 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2379 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2380 lru_list) {
2381 obj = reg->obj;
2382 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2383
2384 if (obj_priv->pin_count)
2385 continue;
2386
2387 /* found one! */
2388 i = obj_priv->fence_reg;
2389 break;
2390 }
2391
2392 BUG_ON(i == I915_FENCE_REG_NONE);
2393
2394 /* We only have a reference on obj from the active list. put_fence_reg
2395 * might drop that one, causing a use-after-free in it. So hold a
2396 * private reference to obj like the other callers of put_fence_reg
2397 * (set_tiling ioctl) do. */
2398 drm_gem_object_reference(obj);
2cf34d7b 2399 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2400 drm_gem_object_unreference(obj);
2401 if (ret != 0)
2402 return ret;
2403
2404 return i;
2405}
2406
de151cf6
JB
2407/**
2408 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2409 * @obj: object to map through a fence reg
2410 *
2411 * When mapping objects through the GTT, userspace wants to be able to write
2412 * to them without having to worry about swizzling if the object is tiled.
2413 *
2414 * This function walks the fence regs looking for a free one for @obj,
2415 * stealing one if it can't find any.
2416 *
2417 * It then sets up the reg based on the object's properties: address, pitch
2418 * and tiling format.
2419 */
8c4b8c3f 2420int
2cf34d7b
CW
2421i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2422 bool interruptible)
de151cf6
JB
2423{
2424 struct drm_device *dev = obj->dev;
79e53945 2425 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2426 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2427 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2428 int ret;
de151cf6 2429
a09ba7fa
EA
2430 /* Just update our place in the LRU if our fence is getting used. */
2431 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2432 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2433 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2434 return 0;
2435 }
2436
de151cf6
JB
2437 switch (obj_priv->tiling_mode) {
2438 case I915_TILING_NONE:
2439 WARN(1, "allocating a fence for non-tiled object?\n");
2440 break;
2441 case I915_TILING_X:
0f973f27
JB
2442 if (!obj_priv->stride)
2443 return -EINVAL;
2444 WARN((obj_priv->stride & (512 - 1)),
2445 "object 0x%08x is X tiled but has non-512B pitch\n",
2446 obj_priv->gtt_offset);
de151cf6
JB
2447 break;
2448 case I915_TILING_Y:
0f973f27
JB
2449 if (!obj_priv->stride)
2450 return -EINVAL;
2451 WARN((obj_priv->stride & (128 - 1)),
2452 "object 0x%08x is Y tiled but has non-128B pitch\n",
2453 obj_priv->gtt_offset);
de151cf6
JB
2454 break;
2455 }
2456
2cf34d7b 2457 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2458 if (ret < 0)
2459 return ret;
de151cf6 2460
ae3db24a
DV
2461 obj_priv->fence_reg = ret;
2462 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2463 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2464
de151cf6
JB
2465 reg->obj = obj;
2466
e259befd
CW
2467 switch (INTEL_INFO(dev)->gen) {
2468 case 6:
4e901fdc 2469 sandybridge_write_fence_reg(reg);
e259befd
CW
2470 break;
2471 case 5:
2472 case 4:
de151cf6 2473 i965_write_fence_reg(reg);
e259befd
CW
2474 break;
2475 case 3:
de151cf6 2476 i915_write_fence_reg(reg);
e259befd
CW
2477 break;
2478 case 2:
de151cf6 2479 i830_write_fence_reg(reg);
e259befd
CW
2480 break;
2481 }
d9ddcb96 2482
ae3db24a
DV
2483 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2484 obj_priv->tiling_mode);
1c5d22f7 2485
d9ddcb96 2486 return 0;
de151cf6
JB
2487}
2488
2489/**
2490 * i915_gem_clear_fence_reg - clear out fence register info
2491 * @obj: object to clear
2492 *
2493 * Zeroes out the fence register itself and clears out the associated
2494 * data structures in dev_priv and obj_priv.
2495 */
2496static void
2497i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2498{
2499 struct drm_device *dev = obj->dev;
79e53945 2500 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2501 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2502 struct drm_i915_fence_reg *reg =
2503 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2504 uint32_t fence_reg;
de151cf6 2505
e259befd
CW
2506 switch (INTEL_INFO(dev)->gen) {
2507 case 6:
4e901fdc
EA
2508 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2509 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2510 break;
2511 case 5:
2512 case 4:
de151cf6 2513 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2514 break;
2515 case 3:
9b74f734 2516 if (obj_priv->fence_reg >= 8)
e259befd 2517 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2518 else
e259befd
CW
2519 case 2:
2520 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2521
2522 I915_WRITE(fence_reg, 0);
e259befd 2523 break;
dc529a4f 2524 }
de151cf6 2525
007cc8ac 2526 reg->obj = NULL;
de151cf6 2527 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2528 list_del_init(&reg->lru_list);
de151cf6
JB
2529}
2530
52dc7d32
CW
2531/**
2532 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2533 * to the buffer to finish, and then resets the fence register.
2534 * @obj: tiled object holding a fence register.
2cf34d7b 2535 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2536 *
2537 * Zeroes out the fence register itself and clears out the associated
2538 * data structures in dev_priv and obj_priv.
2539 */
2540int
2cf34d7b
CW
2541i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2542 bool interruptible)
52dc7d32
CW
2543{
2544 struct drm_device *dev = obj->dev;
53640e1d 2545 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2546 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2547 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2548
2549 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2550 return 0;
2551
10ae9bd2
DV
2552 /* If we've changed tiling, GTT-mappings of the object
2553 * need to re-fault to ensure that the correct fence register
2554 * setup is in place.
2555 */
2556 i915_gem_release_mmap(obj);
2557
52dc7d32
CW
2558 /* On the i915, GPU access to tiled buffers is via a fence,
2559 * therefore we must wait for any outstanding access to complete
2560 * before clearing the fence.
2561 */
53640e1d
CW
2562 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2563 if (reg->gpu) {
52dc7d32
CW
2564 int ret;
2565
2cf34d7b 2566 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2567 if (ret)
2568 return ret;
2569
2cf34d7b 2570 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2571 if (ret)
52dc7d32 2572 return ret;
53640e1d
CW
2573
2574 reg->gpu = false;
52dc7d32
CW
2575 }
2576
4a726612 2577 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2578 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2579
2580 return 0;
2581}
2582
673a394b
EA
2583/**
2584 * Finds free space in the GTT aperture and binds the object there.
2585 */
2586static int
2587i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2588{
2589 struct drm_device *dev = obj->dev;
2590 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2591 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2592 struct drm_mm_node *free_space;
4bdadb97 2593 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2594 int ret;
673a394b 2595
bb6baf76 2596 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2597 DRM_ERROR("Attempting to bind a purgeable object\n");
2598 return -EINVAL;
2599 }
2600
673a394b 2601 if (alignment == 0)
0f973f27 2602 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2603 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2604 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2605 return -EINVAL;
2606 }
2607
654fc607
CW
2608 /* If the object is bigger than the entire aperture, reject it early
2609 * before evicting everything in a vain attempt to find space.
2610 */
2611 if (obj->size > dev->gtt_total) {
2612 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2613 return -E2BIG;
2614 }
2615
673a394b
EA
2616 search_free:
2617 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2618 obj->size, alignment, 0);
2619 if (free_space != NULL) {
2620 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2621 alignment);
db3307a9 2622 if (obj_priv->gtt_space != NULL)
673a394b 2623 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2624 }
2625 if (obj_priv->gtt_space == NULL) {
2626 /* If the gtt is empty and we're still having trouble
2627 * fitting our object in, we're out of memory.
2628 */
0108a3ed 2629 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2630 if (ret)
673a394b 2631 return ret;
9731129c 2632
673a394b
EA
2633 goto search_free;
2634 }
2635
4bdadb97 2636 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2637 if (ret) {
2638 drm_mm_put_block(obj_priv->gtt_space);
2639 obj_priv->gtt_space = NULL;
07f73f69
CW
2640
2641 if (ret == -ENOMEM) {
2642 /* first try to clear up some space from the GTT */
0108a3ed
DV
2643 ret = i915_gem_evict_something(dev, obj->size,
2644 alignment);
07f73f69 2645 if (ret) {
07f73f69 2646 /* now try to shrink everyone else */
4bdadb97
CW
2647 if (gfpmask) {
2648 gfpmask = 0;
2649 goto search_free;
07f73f69
CW
2650 }
2651
2652 return ret;
2653 }
2654
2655 goto search_free;
2656 }
2657
673a394b
EA
2658 return ret;
2659 }
2660
673a394b
EA
2661 /* Create an AGP memory structure pointing at our pages, and bind it
2662 * into the GTT.
2663 */
2664 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2665 obj_priv->pages,
07f73f69 2666 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2667 obj_priv->gtt_offset,
2668 obj_priv->agp_type);
673a394b 2669 if (obj_priv->agp_mem == NULL) {
856fa198 2670 i915_gem_object_put_pages(obj);
673a394b
EA
2671 drm_mm_put_block(obj_priv->gtt_space);
2672 obj_priv->gtt_space = NULL;
07f73f69 2673
0108a3ed 2674 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2675 if (ret)
07f73f69 2676 return ret;
07f73f69
CW
2677
2678 goto search_free;
673a394b
EA
2679 }
2680 atomic_inc(&dev->gtt_count);
2681 atomic_add(obj->size, &dev->gtt_memory);
2682
bf1a1092
CW
2683 /* keep track of bounds object by adding it to the inactive list */
2684 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2685
673a394b
EA
2686 /* Assert that the object is not currently in any GPU domain. As it
2687 * wasn't in the GTT, there shouldn't be any way it could have been in
2688 * a GPU cache
2689 */
21d509e3
CW
2690 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2691 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2692
1c5d22f7
CW
2693 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2694
673a394b
EA
2695 return 0;
2696}
2697
2698void
2699i915_gem_clflush_object(struct drm_gem_object *obj)
2700{
23010e43 2701 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2702
2703 /* If we don't have a page list set up, then we're not pinned
2704 * to GPU, and we can ignore the cache flush because it'll happen
2705 * again at bind time.
2706 */
856fa198 2707 if (obj_priv->pages == NULL)
673a394b
EA
2708 return;
2709
1c5d22f7 2710 trace_i915_gem_object_clflush(obj);
cfa16a0d 2711
856fa198 2712 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2713}
2714
e47c68e9 2715/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2716static int
ba3d8d74
DV
2717i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2718 bool pipelined)
e47c68e9
EA
2719{
2720 struct drm_device *dev = obj->dev;
1c5d22f7 2721 uint32_t old_write_domain;
e47c68e9
EA
2722
2723 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2724 return 0;
e47c68e9
EA
2725
2726 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2727 old_write_domain = obj->write_domain;
c78ec30b 2728 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2729 to_intel_bo(obj)->ring,
2730 0, obj->write_domain);
48b956c5 2731 BUG_ON(obj->write_domain);
1c5d22f7
CW
2732
2733 trace_i915_gem_object_change_domain(obj,
2734 obj->read_domains,
2735 old_write_domain);
ba3d8d74
DV
2736
2737 if (pipelined)
2738 return 0;
2739
2cf34d7b 2740 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2741}
2742
2743/** Flushes the GTT write domain for the object if it's dirty. */
2744static void
2745i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2746{
1c5d22f7
CW
2747 uint32_t old_write_domain;
2748
e47c68e9
EA
2749 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2750 return;
2751
2752 /* No actual flushing is required for the GTT write domain. Writes
2753 * to it immediately go to main memory as far as we know, so there's
2754 * no chipset flush. It also doesn't land in render cache.
2755 */
1c5d22f7 2756 old_write_domain = obj->write_domain;
e47c68e9 2757 obj->write_domain = 0;
1c5d22f7
CW
2758
2759 trace_i915_gem_object_change_domain(obj,
2760 obj->read_domains,
2761 old_write_domain);
e47c68e9
EA
2762}
2763
2764/** Flushes the CPU write domain for the object if it's dirty. */
2765static void
2766i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2767{
2768 struct drm_device *dev = obj->dev;
1c5d22f7 2769 uint32_t old_write_domain;
e47c68e9
EA
2770
2771 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2772 return;
2773
2774 i915_gem_clflush_object(obj);
2775 drm_agp_chipset_flush(dev);
1c5d22f7 2776 old_write_domain = obj->write_domain;
e47c68e9 2777 obj->write_domain = 0;
1c5d22f7
CW
2778
2779 trace_i915_gem_object_change_domain(obj,
2780 obj->read_domains,
2781 old_write_domain);
e47c68e9
EA
2782}
2783
2ef7eeaa
EA
2784/**
2785 * Moves a single object to the GTT read, and possibly write domain.
2786 *
2787 * This function returns when the move is complete, including waiting on
2788 * flushes to occur.
2789 */
79e53945 2790int
2ef7eeaa
EA
2791i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2792{
23010e43 2793 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2794 uint32_t old_write_domain, old_read_domains;
e47c68e9 2795 int ret;
2ef7eeaa 2796
02354392
EA
2797 /* Not valid to be called on unbound objects. */
2798 if (obj_priv->gtt_space == NULL)
2799 return -EINVAL;
2800
ba3d8d74 2801 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2802 if (ret != 0)
2803 return ret;
2804
7213342d 2805 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2806
ba3d8d74 2807 if (write) {
2cf34d7b 2808 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2809 if (ret)
2810 return ret;
ba3d8d74 2811 }
2ef7eeaa 2812
7213342d
CW
2813 old_write_domain = obj->write_domain;
2814 old_read_domains = obj->read_domains;
2ef7eeaa 2815
e47c68e9
EA
2816 /* It should now be out of any other write domains, and we can update
2817 * the domain values for our changes.
2818 */
2819 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2820 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2821 if (write) {
7213342d 2822 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2823 obj->write_domain = I915_GEM_DOMAIN_GTT;
2824 obj_priv->dirty = 1;
2ef7eeaa
EA
2825 }
2826
1c5d22f7
CW
2827 trace_i915_gem_object_change_domain(obj,
2828 old_read_domains,
2829 old_write_domain);
2830
e47c68e9
EA
2831 return 0;
2832}
2833
b9241ea3
ZW
2834/*
2835 * Prepare buffer for display plane. Use uninterruptible for possible flush
2836 * wait, as in modesetting process we're not supposed to be interrupted.
2837 */
2838int
48b956c5
CW
2839i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2840 bool pipelined)
b9241ea3 2841{
23010e43 2842 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2843 uint32_t old_read_domains;
b9241ea3
ZW
2844 int ret;
2845
2846 /* Not valid to be called on unbound objects. */
2847 if (obj_priv->gtt_space == NULL)
2848 return -EINVAL;
2849
ced270fa 2850 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
48b956c5 2851 if (ret)
e35a41de 2852 return ret;
b9241ea3 2853
ced270fa
CW
2854 /* Currently, we are always called from an non-interruptible context. */
2855 if (!pipelined) {
2856 ret = i915_gem_object_wait_rendering(obj, false);
2857 if (ret)
2858 return ret;
2859 }
2860
b118c1e3
CW
2861 i915_gem_object_flush_cpu_write_domain(obj);
2862
b9241ea3 2863 old_read_domains = obj->read_domains;
c78ec30b 2864 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2865
2866 trace_i915_gem_object_change_domain(obj,
2867 old_read_domains,
ba3d8d74 2868 obj->write_domain);
b9241ea3
ZW
2869
2870 return 0;
2871}
2872
e47c68e9
EA
2873/**
2874 * Moves a single object to the CPU read, and possibly write domain.
2875 *
2876 * This function returns when the move is complete, including waiting on
2877 * flushes to occur.
2878 */
2879static int
2880i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2881{
1c5d22f7 2882 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2883 int ret;
2884
ba3d8d74 2885 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2886 if (ret != 0)
2887 return ret;
2ef7eeaa 2888
e47c68e9 2889 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2890
e47c68e9
EA
2891 /* If we have a partially-valid cache of the object in the CPU,
2892 * finish invalidating it and free the per-page flags.
2ef7eeaa 2893 */
e47c68e9 2894 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2895
7213342d 2896 if (write) {
2cf34d7b 2897 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2898 if (ret)
2899 return ret;
2900 }
2901
1c5d22f7
CW
2902 old_write_domain = obj->write_domain;
2903 old_read_domains = obj->read_domains;
2904
e47c68e9
EA
2905 /* Flush the CPU cache if it's still invalid. */
2906 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2907 i915_gem_clflush_object(obj);
2ef7eeaa 2908
e47c68e9 2909 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2910 }
2911
2912 /* It should now be out of any other write domains, and we can update
2913 * the domain values for our changes.
2914 */
e47c68e9
EA
2915 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2916
2917 /* If we're writing through the CPU, then the GPU read domains will
2918 * need to be invalidated at next use.
2919 */
2920 if (write) {
c78ec30b 2921 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2922 obj->write_domain = I915_GEM_DOMAIN_CPU;
2923 }
2ef7eeaa 2924
1c5d22f7
CW
2925 trace_i915_gem_object_change_domain(obj,
2926 old_read_domains,
2927 old_write_domain);
2928
2ef7eeaa
EA
2929 return 0;
2930}
2931
673a394b
EA
2932/*
2933 * Set the next domain for the specified object. This
2934 * may not actually perform the necessary flushing/invaliding though,
2935 * as that may want to be batched with other set_domain operations
2936 *
2937 * This is (we hope) the only really tricky part of gem. The goal
2938 * is fairly simple -- track which caches hold bits of the object
2939 * and make sure they remain coherent. A few concrete examples may
2940 * help to explain how it works. For shorthand, we use the notation
2941 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2942 * a pair of read and write domain masks.
2943 *
2944 * Case 1: the batch buffer
2945 *
2946 * 1. Allocated
2947 * 2. Written by CPU
2948 * 3. Mapped to GTT
2949 * 4. Read by GPU
2950 * 5. Unmapped from GTT
2951 * 6. Freed
2952 *
2953 * Let's take these a step at a time
2954 *
2955 * 1. Allocated
2956 * Pages allocated from the kernel may still have
2957 * cache contents, so we set them to (CPU, CPU) always.
2958 * 2. Written by CPU (using pwrite)
2959 * The pwrite function calls set_domain (CPU, CPU) and
2960 * this function does nothing (as nothing changes)
2961 * 3. Mapped by GTT
2962 * This function asserts that the object is not
2963 * currently in any GPU-based read or write domains
2964 * 4. Read by GPU
2965 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2966 * As write_domain is zero, this function adds in the
2967 * current read domains (CPU+COMMAND, 0).
2968 * flush_domains is set to CPU.
2969 * invalidate_domains is set to COMMAND
2970 * clflush is run to get data out of the CPU caches
2971 * then i915_dev_set_domain calls i915_gem_flush to
2972 * emit an MI_FLUSH and drm_agp_chipset_flush
2973 * 5. Unmapped from GTT
2974 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2975 * flush_domains and invalidate_domains end up both zero
2976 * so no flushing/invalidating happens
2977 * 6. Freed
2978 * yay, done
2979 *
2980 * Case 2: The shared render buffer
2981 *
2982 * 1. Allocated
2983 * 2. Mapped to GTT
2984 * 3. Read/written by GPU
2985 * 4. set_domain to (CPU,CPU)
2986 * 5. Read/written by CPU
2987 * 6. Read/written by GPU
2988 *
2989 * 1. Allocated
2990 * Same as last example, (CPU, CPU)
2991 * 2. Mapped to GTT
2992 * Nothing changes (assertions find that it is not in the GPU)
2993 * 3. Read/written by GPU
2994 * execbuffer calls set_domain (RENDER, RENDER)
2995 * flush_domains gets CPU
2996 * invalidate_domains gets GPU
2997 * clflush (obj)
2998 * MI_FLUSH and drm_agp_chipset_flush
2999 * 4. set_domain (CPU, CPU)
3000 * flush_domains gets GPU
3001 * invalidate_domains gets CPU
3002 * wait_rendering (obj) to make sure all drawing is complete.
3003 * This will include an MI_FLUSH to get the data from GPU
3004 * to memory
3005 * clflush (obj) to invalidate the CPU cache
3006 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3007 * 5. Read/written by CPU
3008 * cache lines are loaded and dirtied
3009 * 6. Read written by GPU
3010 * Same as last GPU access
3011 *
3012 * Case 3: The constant buffer
3013 *
3014 * 1. Allocated
3015 * 2. Written by CPU
3016 * 3. Read by GPU
3017 * 4. Updated (written) by CPU again
3018 * 5. Read by GPU
3019 *
3020 * 1. Allocated
3021 * (CPU, CPU)
3022 * 2. Written by CPU
3023 * (CPU, CPU)
3024 * 3. Read by GPU
3025 * (CPU+RENDER, 0)
3026 * flush_domains = CPU
3027 * invalidate_domains = RENDER
3028 * clflush (obj)
3029 * MI_FLUSH
3030 * drm_agp_chipset_flush
3031 * 4. Updated (written) by CPU again
3032 * (CPU, CPU)
3033 * flush_domains = 0 (no previous write domain)
3034 * invalidate_domains = 0 (no new read domains)
3035 * 5. Read by GPU
3036 * (CPU+RENDER, 0)
3037 * flush_domains = CPU
3038 * invalidate_domains = RENDER
3039 * clflush (obj)
3040 * MI_FLUSH
3041 * drm_agp_chipset_flush
3042 */
c0d90829 3043static void
8b0e378a 3044i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3045{
3046 struct drm_device *dev = obj->dev;
9220434a 3047 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3048 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3049 uint32_t invalidate_domains = 0;
3050 uint32_t flush_domains = 0;
1c5d22f7 3051 uint32_t old_read_domains;
e47c68e9 3052
8b0e378a
EA
3053 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3054 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 3055
652c393a
JB
3056 intel_mark_busy(dev, obj);
3057
673a394b
EA
3058 /*
3059 * If the object isn't moving to a new write domain,
3060 * let the object stay in multiple read domains
3061 */
8b0e378a
EA
3062 if (obj->pending_write_domain == 0)
3063 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3064 else
3065 obj_priv->dirty = 1;
3066
3067 /*
3068 * Flush the current write domain if
3069 * the new read domains don't match. Invalidate
3070 * any read domains which differ from the old
3071 * write domain
3072 */
8b0e378a
EA
3073 if (obj->write_domain &&
3074 obj->write_domain != obj->pending_read_domains) {
673a394b 3075 flush_domains |= obj->write_domain;
8b0e378a
EA
3076 invalidate_domains |=
3077 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3078 }
3079 /*
3080 * Invalidate any read caches which may have
3081 * stale data. That is, any new read domains.
3082 */
8b0e378a 3083 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3084 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3085 i915_gem_clflush_object(obj);
673a394b 3086
1c5d22f7
CW
3087 old_read_domains = obj->read_domains;
3088
efbeed96
EA
3089 /* The actual obj->write_domain will be updated with
3090 * pending_write_domain after we emit the accumulated flush for all
3091 * of our domain changes in execbuffers (which clears objects'
3092 * write_domains). So if we have a current write domain that we
3093 * aren't changing, set pending_write_domain to that.
3094 */
3095 if (flush_domains == 0 && obj->pending_write_domain == 0)
3096 obj->pending_write_domain = obj->write_domain;
8b0e378a 3097 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3098
3099 dev->invalidate_domains |= invalidate_domains;
3100 dev->flush_domains |= flush_domains;
9220434a
CW
3101 if (obj_priv->ring)
3102 dev_priv->mm.flush_rings |= obj_priv->ring->id;
1c5d22f7
CW
3103
3104 trace_i915_gem_object_change_domain(obj,
3105 old_read_domains,
3106 obj->write_domain);
673a394b
EA
3107}
3108
3109/**
e47c68e9 3110 * Moves the object from a partially CPU read to a full one.
673a394b 3111 *
e47c68e9
EA
3112 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3113 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3114 */
e47c68e9
EA
3115static void
3116i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3117{
23010e43 3118 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3119
e47c68e9
EA
3120 if (!obj_priv->page_cpu_valid)
3121 return;
3122
3123 /* If we're partially in the CPU read domain, finish moving it in.
3124 */
3125 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3126 int i;
3127
3128 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3129 if (obj_priv->page_cpu_valid[i])
3130 continue;
856fa198 3131 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3132 }
e47c68e9
EA
3133 }
3134
3135 /* Free the page_cpu_valid mappings which are now stale, whether
3136 * or not we've got I915_GEM_DOMAIN_CPU.
3137 */
9a298b2a 3138 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3139 obj_priv->page_cpu_valid = NULL;
3140}
3141
3142/**
3143 * Set the CPU read domain on a range of the object.
3144 *
3145 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3146 * not entirely valid. The page_cpu_valid member of the object flags which
3147 * pages have been flushed, and will be respected by
3148 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3149 * of the whole object.
3150 *
3151 * This function returns when the move is complete, including waiting on
3152 * flushes to occur.
3153 */
3154static int
3155i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3156 uint64_t offset, uint64_t size)
3157{
23010e43 3158 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3159 uint32_t old_read_domains;
e47c68e9 3160 int i, ret;
673a394b 3161
e47c68e9
EA
3162 if (offset == 0 && size == obj->size)
3163 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3164
ba3d8d74 3165 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3166 if (ret != 0)
6a47baa6 3167 return ret;
e47c68e9
EA
3168 i915_gem_object_flush_gtt_write_domain(obj);
3169
3170 /* If we're already fully in the CPU read domain, we're done. */
3171 if (obj_priv->page_cpu_valid == NULL &&
3172 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3173 return 0;
673a394b 3174
e47c68e9
EA
3175 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3176 * newly adding I915_GEM_DOMAIN_CPU
3177 */
673a394b 3178 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3179 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3180 GFP_KERNEL);
e47c68e9
EA
3181 if (obj_priv->page_cpu_valid == NULL)
3182 return -ENOMEM;
3183 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3184 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3185
3186 /* Flush the cache on any pages that are still invalid from the CPU's
3187 * perspective.
3188 */
e47c68e9
EA
3189 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3190 i++) {
673a394b
EA
3191 if (obj_priv->page_cpu_valid[i])
3192 continue;
3193
856fa198 3194 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3195
3196 obj_priv->page_cpu_valid[i] = 1;
3197 }
3198
e47c68e9
EA
3199 /* It should now be out of any other write domains, and we can update
3200 * the domain values for our changes.
3201 */
3202 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3203
1c5d22f7 3204 old_read_domains = obj->read_domains;
e47c68e9
EA
3205 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3206
1c5d22f7
CW
3207 trace_i915_gem_object_change_domain(obj,
3208 old_read_domains,
3209 obj->write_domain);
3210
673a394b
EA
3211 return 0;
3212}
3213
673a394b
EA
3214/**
3215 * Pin an object to the GTT and evaluate the relocations landing in it.
3216 */
3217static int
3218i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3219 struct drm_file *file_priv,
76446cac 3220 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3221 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3222{
3223 struct drm_device *dev = obj->dev;
0839ccb8 3224 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3225 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3226 int i, ret;
0839ccb8 3227 void __iomem *reloc_page;
76446cac
JB
3228 bool need_fence;
3229
3230 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3231 obj_priv->tiling_mode != I915_TILING_NONE;
3232
3233 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3234 if (need_fence &&
3235 !i915_gem_object_fence_offset_ok(obj,
3236 obj_priv->tiling_mode)) {
3237 ret = i915_gem_object_unbind(obj);
3238 if (ret)
3239 return ret;
3240 }
673a394b
EA
3241
3242 /* Choose the GTT offset for our buffer and put it there. */
3243 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3244 if (ret)
3245 return ret;
3246
76446cac
JB
3247 /*
3248 * Pre-965 chips need a fence register set up in order to
3249 * properly handle blits to/from tiled surfaces.
3250 */
3251 if (need_fence) {
53640e1d 3252 ret = i915_gem_object_get_fence_reg(obj, true);
76446cac 3253 if (ret != 0) {
76446cac
JB
3254 i915_gem_object_unpin(obj);
3255 return ret;
3256 }
53640e1d
CW
3257
3258 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
76446cac
JB
3259 }
3260
673a394b
EA
3261 entry->offset = obj_priv->gtt_offset;
3262
673a394b
EA
3263 /* Apply the relocations, using the GTT aperture to avoid cache
3264 * flushing requirements.
3265 */
3266 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3267 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3268 struct drm_gem_object *target_obj;
3269 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3270 uint32_t reloc_val, reloc_offset;
3271 uint32_t __iomem *reloc_entry;
673a394b 3272
673a394b 3273 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3274 reloc->target_handle);
673a394b
EA
3275 if (target_obj == NULL) {
3276 i915_gem_object_unpin(obj);
bf79cb91 3277 return -ENOENT;
673a394b 3278 }
23010e43 3279 target_obj_priv = to_intel_bo(target_obj);
673a394b 3280
8542a0bb
CW
3281#if WATCH_RELOC
3282 DRM_INFO("%s: obj %p offset %08x target %d "
3283 "read %08x write %08x gtt %08x "
3284 "presumed %08x delta %08x\n",
3285 __func__,
3286 obj,
3287 (int) reloc->offset,
3288 (int) reloc->target_handle,
3289 (int) reloc->read_domains,
3290 (int) reloc->write_domain,
3291 (int) target_obj_priv->gtt_offset,
3292 (int) reloc->presumed_offset,
3293 reloc->delta);
3294#endif
3295
673a394b
EA
3296 /* The target buffer should have appeared before us in the
3297 * exec_object list, so it should have a GTT space bound by now.
3298 */
3299 if (target_obj_priv->gtt_space == NULL) {
3300 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3301 reloc->target_handle);
673a394b
EA
3302 drm_gem_object_unreference(target_obj);
3303 i915_gem_object_unpin(obj);
3304 return -EINVAL;
3305 }
3306
8542a0bb 3307 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3308 if (reloc->write_domain & (reloc->write_domain - 1)) {
3309 DRM_ERROR("reloc with multiple write domains: "
3310 "obj %p target %d offset %d "
3311 "read %08x write %08x",
3312 obj, reloc->target_handle,
3313 (int) reloc->offset,
3314 reloc->read_domains,
3315 reloc->write_domain);
3316 return -EINVAL;
3317 }
40a5f0de
EA
3318 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3319 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3320 DRM_ERROR("reloc with read/write CPU domains: "
3321 "obj %p target %d offset %d "
3322 "read %08x write %08x",
40a5f0de
EA
3323 obj, reloc->target_handle,
3324 (int) reloc->offset,
3325 reloc->read_domains,
3326 reloc->write_domain);
491152b8
CW
3327 drm_gem_object_unreference(target_obj);
3328 i915_gem_object_unpin(obj);
e47c68e9
EA
3329 return -EINVAL;
3330 }
40a5f0de
EA
3331 if (reloc->write_domain && target_obj->pending_write_domain &&
3332 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3333 DRM_ERROR("Write domain conflict: "
3334 "obj %p target %d offset %d "
3335 "new %08x old %08x\n",
40a5f0de
EA
3336 obj, reloc->target_handle,
3337 (int) reloc->offset,
3338 reloc->write_domain,
673a394b
EA
3339 target_obj->pending_write_domain);
3340 drm_gem_object_unreference(target_obj);
3341 i915_gem_object_unpin(obj);
3342 return -EINVAL;
3343 }
3344
40a5f0de
EA
3345 target_obj->pending_read_domains |= reloc->read_domains;
3346 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3347
3348 /* If the relocation already has the right value in it, no
3349 * more work needs to be done.
3350 */
40a5f0de 3351 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3352 drm_gem_object_unreference(target_obj);
3353 continue;
3354 }
3355
8542a0bb
CW
3356 /* Check that the relocation address is valid... */
3357 if (reloc->offset > obj->size - 4) {
3358 DRM_ERROR("Relocation beyond object bounds: "
3359 "obj %p target %d offset %d size %d.\n",
3360 obj, reloc->target_handle,
3361 (int) reloc->offset, (int) obj->size);
3362 drm_gem_object_unreference(target_obj);
3363 i915_gem_object_unpin(obj);
3364 return -EINVAL;
3365 }
3366 if (reloc->offset & 3) {
3367 DRM_ERROR("Relocation not 4-byte aligned: "
3368 "obj %p target %d offset %d.\n",
3369 obj, reloc->target_handle,
3370 (int) reloc->offset);
3371 drm_gem_object_unreference(target_obj);
3372 i915_gem_object_unpin(obj);
3373 return -EINVAL;
3374 }
3375
3376 /* and points to somewhere within the target object. */
3377 if (reloc->delta >= target_obj->size) {
3378 DRM_ERROR("Relocation beyond target object bounds: "
3379 "obj %p target %d delta %d size %d.\n",
3380 obj, reloc->target_handle,
3381 (int) reloc->delta, (int) target_obj->size);
3382 drm_gem_object_unreference(target_obj);
3383 i915_gem_object_unpin(obj);
3384 return -EINVAL;
3385 }
3386
2ef7eeaa
EA
3387 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3388 if (ret != 0) {
3389 drm_gem_object_unreference(target_obj);
3390 i915_gem_object_unpin(obj);
3391 return -EINVAL;
673a394b
EA
3392 }
3393
3394 /* Map the page containing the relocation we're going to
3395 * perform.
3396 */
40a5f0de 3397 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3398 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3399 (reloc_offset &
fca3ec01
CW
3400 ~(PAGE_SIZE - 1)),
3401 KM_USER0);
3043c60c 3402 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3403 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3404 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b 3405
673a394b 3406 writel(reloc_val, reloc_entry);
fca3ec01 3407 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3408
40a5f0de
EA
3409 /* The updated presumed offset for this entry will be
3410 * copied back out to the user.
673a394b 3411 */
40a5f0de 3412 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3413
3414 drm_gem_object_unreference(target_obj);
3415 }
3416
673a394b
EA
3417 return 0;
3418}
3419
673a394b
EA
3420/* Throttle our rendering by waiting until the ring has completed our requests
3421 * emitted over 20 msec ago.
3422 *
b962442e
EA
3423 * Note that if we were to use the current jiffies each time around the loop,
3424 * we wouldn't escape the function with any frames outstanding if the time to
3425 * render a frame was over 20ms.
3426 *
673a394b
EA
3427 * This should get us reasonable parallelism between CPU and GPU but also
3428 * relatively low latency when blocking on a particular request to finish.
3429 */
3430static int
f787a5f5 3431i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
673a394b 3432{
f787a5f5
CW
3433 struct drm_i915_private *dev_priv = dev->dev_private;
3434 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3435 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3436 struct drm_i915_gem_request *request;
3437 struct intel_ring_buffer *ring = NULL;
3438 u32 seqno = 0;
3439 int ret;
673a394b 3440
1c25595f 3441 spin_lock(&file_priv->mm.lock);
f787a5f5 3442 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3443 if (time_after_eq(request->emitted_jiffies, recent_enough))
3444 break;
3445
f787a5f5
CW
3446 ring = request->ring;
3447 seqno = request->seqno;
b962442e 3448 }
1c25595f 3449 spin_unlock(&file_priv->mm.lock);
f787a5f5
CW
3450
3451 if (seqno == 0)
3452 return 0;
3453
3454 ret = 0;
3455 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3456 /* And wait for the seqno passing without holding any locks and
3457 * causing extra latency for others. This is safe as the irq
3458 * generation is designed to be run atomically and so is
3459 * lockless.
3460 */
3461 ring->user_irq_get(dev, ring);
3462 ret = wait_event_interruptible(ring->irq_queue,
3463 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3464 || atomic_read(&dev_priv->mm.wedged));
3465 ring->user_irq_put(dev, ring);
3466
3467 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3468 ret = -EIO;
3469 }
3470
3471 if (ret == 0)
3472 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
b962442e 3473
673a394b
EA
3474 return ret;
3475}
3476
40a5f0de 3477static int
76446cac 3478i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3479 uint32_t buffer_count,
3480 struct drm_i915_gem_relocation_entry **relocs)
3481{
3482 uint32_t reloc_count = 0, reloc_index = 0, i;
3483 int ret;
3484
3485 *relocs = NULL;
3486 for (i = 0; i < buffer_count; i++) {
3487 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3488 return -EINVAL;
3489 reloc_count += exec_list[i].relocation_count;
3490 }
3491
8e7d2b2c 3492 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3493 if (*relocs == NULL) {
3494 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3495 return -ENOMEM;
76446cac 3496 }
40a5f0de
EA
3497
3498 for (i = 0; i < buffer_count; i++) {
3499 struct drm_i915_gem_relocation_entry __user *user_relocs;
3500
3501 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3502
3503 ret = copy_from_user(&(*relocs)[reloc_index],
3504 user_relocs,
3505 exec_list[i].relocation_count *
3506 sizeof(**relocs));
3507 if (ret != 0) {
8e7d2b2c 3508 drm_free_large(*relocs);
40a5f0de 3509 *relocs = NULL;
2bc43b5c 3510 return -EFAULT;
40a5f0de
EA
3511 }
3512
3513 reloc_index += exec_list[i].relocation_count;
3514 }
3515
2bc43b5c 3516 return 0;
40a5f0de
EA
3517}
3518
3519static int
76446cac 3520i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3521 uint32_t buffer_count,
3522 struct drm_i915_gem_relocation_entry *relocs)
3523{
3524 uint32_t reloc_count = 0, i;
2bc43b5c 3525 int ret = 0;
40a5f0de 3526
93533c29
CW
3527 if (relocs == NULL)
3528 return 0;
3529
40a5f0de
EA
3530 for (i = 0; i < buffer_count; i++) {
3531 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3532 int unwritten;
40a5f0de
EA
3533
3534 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3535
2bc43b5c
FM
3536 unwritten = copy_to_user(user_relocs,
3537 &relocs[reloc_count],
3538 exec_list[i].relocation_count *
3539 sizeof(*relocs));
3540
3541 if (unwritten) {
3542 ret = -EFAULT;
3543 goto err;
40a5f0de
EA
3544 }
3545
3546 reloc_count += exec_list[i].relocation_count;
3547 }
3548
2bc43b5c 3549err:
8e7d2b2c 3550 drm_free_large(relocs);
40a5f0de
EA
3551
3552 return ret;
3553}
3554
83d60795 3555static int
76446cac 3556i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3557 uint64_t exec_offset)
3558{
3559 uint32_t exec_start, exec_len;
3560
3561 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3562 exec_len = (uint32_t) exec->batch_len;
3563
3564 if ((exec_start | exec_len) & 0x7)
3565 return -EINVAL;
3566
3567 if (!exec_start)
3568 return -EINVAL;
3569
3570 return 0;
3571}
3572
e6c3a2a6 3573static int
6b95a207
KH
3574i915_gem_wait_for_pending_flip(struct drm_device *dev,
3575 struct drm_gem_object **object_list,
3576 int count)
3577{
3578 drm_i915_private_t *dev_priv = dev->dev_private;
3579 struct drm_i915_gem_object *obj_priv;
3580 DEFINE_WAIT(wait);
3581 int i, ret = 0;
3582
3583 for (;;) {
3584 prepare_to_wait(&dev_priv->pending_flip_queue,
3585 &wait, TASK_INTERRUPTIBLE);
3586 for (i = 0; i < count; i++) {
23010e43 3587 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3588 if (atomic_read(&obj_priv->pending_flip) > 0)
3589 break;
3590 }
3591 if (i == count)
3592 break;
3593
3594 if (!signal_pending(current)) {
3595 mutex_unlock(&dev->struct_mutex);
3596 schedule();
3597 mutex_lock(&dev->struct_mutex);
3598 continue;
3599 }
3600 ret = -ERESTARTSYS;
3601 break;
3602 }
3603 finish_wait(&dev_priv->pending_flip_queue, &wait);
3604
3605 return ret;
3606}
3607
8dc5d147 3608static int
76446cac
JB
3609i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3610 struct drm_file *file_priv,
3611 struct drm_i915_gem_execbuffer2 *args,
3612 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3613{
3614 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3615 struct drm_gem_object **object_list = NULL;
3616 struct drm_gem_object *batch_obj;
b70d11da 3617 struct drm_i915_gem_object *obj_priv;
201361a5 3618 struct drm_clip_rect *cliprects = NULL;
93533c29 3619 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3620 struct drm_i915_gem_request *request = NULL;
30dbf0c0 3621 int ret, ret2, i, pinned = 0;
673a394b 3622 uint64_t exec_offset;
5c12a07e 3623 uint32_t reloc_index;
6b95a207 3624 int pin_tries, flips;
673a394b 3625
852835f3
ZN
3626 struct intel_ring_buffer *ring = NULL;
3627
30dbf0c0
CW
3628 ret = i915_gem_check_is_wedged(dev);
3629 if (ret)
3630 return ret;
3631
673a394b
EA
3632#if WATCH_EXEC
3633 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3634 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3635#endif
d1b851fc
ZN
3636 if (args->flags & I915_EXEC_BSD) {
3637 if (!HAS_BSD(dev)) {
3638 DRM_ERROR("execbuf with wrong flag\n");
3639 return -EINVAL;
3640 }
3641 ring = &dev_priv->bsd_ring;
3642 } else {
3643 ring = &dev_priv->render_ring;
3644 }
3645
4f481ed2
EA
3646 if (args->buffer_count < 1) {
3647 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3648 return -EINVAL;
3649 }
c8e0f93a 3650 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3651 if (object_list == NULL) {
3652 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3653 args->buffer_count);
3654 ret = -ENOMEM;
3655 goto pre_mutex_err;
3656 }
673a394b 3657
201361a5 3658 if (args->num_cliprects != 0) {
9a298b2a
EA
3659 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3660 GFP_KERNEL);
a40e8d31
OA
3661 if (cliprects == NULL) {
3662 ret = -ENOMEM;
201361a5 3663 goto pre_mutex_err;
a40e8d31 3664 }
201361a5
EA
3665
3666 ret = copy_from_user(cliprects,
3667 (struct drm_clip_rect __user *)
3668 (uintptr_t) args->cliprects_ptr,
3669 sizeof(*cliprects) * args->num_cliprects);
3670 if (ret != 0) {
3671 DRM_ERROR("copy %d cliprects failed: %d\n",
3672 args->num_cliprects, ret);
c877cdce 3673 ret = -EFAULT;
201361a5
EA
3674 goto pre_mutex_err;
3675 }
3676 }
3677
8dc5d147
CW
3678 request = kzalloc(sizeof(*request), GFP_KERNEL);
3679 if (request == NULL) {
3680 ret = -ENOMEM;
3681 goto pre_mutex_err;
3682 }
3683
40a5f0de
EA
3684 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3685 &relocs);
3686 if (ret != 0)
3687 goto pre_mutex_err;
3688
76c1dec1
CW
3689 ret = i915_mutex_lock_interruptible(dev);
3690 if (ret)
3691 goto pre_mutex_err;
673a394b
EA
3692
3693 i915_verify_inactive(dev, __FILE__, __LINE__);
3694
673a394b 3695 if (dev_priv->mm.suspended) {
673a394b 3696 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3697 ret = -EBUSY;
3698 goto pre_mutex_err;
673a394b
EA
3699 }
3700
ac94a962 3701 /* Look up object handles */
6b95a207 3702 flips = 0;
673a394b
EA
3703 for (i = 0; i < args->buffer_count; i++) {
3704 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3705 exec_list[i].handle);
3706 if (object_list[i] == NULL) {
3707 DRM_ERROR("Invalid object handle %d at index %d\n",
3708 exec_list[i].handle, i);
0ce907f8
CW
3709 /* prevent error path from reading uninitialized data */
3710 args->buffer_count = i + 1;
bf79cb91 3711 ret = -ENOENT;
673a394b
EA
3712 goto err;
3713 }
b70d11da 3714
23010e43 3715 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3716 if (obj_priv->in_execbuffer) {
3717 DRM_ERROR("Object %p appears more than once in object list\n",
3718 object_list[i]);
0ce907f8
CW
3719 /* prevent error path from reading uninitialized data */
3720 args->buffer_count = i + 1;
bf79cb91 3721 ret = -EINVAL;
b70d11da
KH
3722 goto err;
3723 }
3724 obj_priv->in_execbuffer = true;
6b95a207
KH
3725 flips += atomic_read(&obj_priv->pending_flip);
3726 }
3727
3728 if (flips > 0) {
3729 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3730 args->buffer_count);
3731 if (ret)
3732 goto err;
ac94a962 3733 }
673a394b 3734
ac94a962
KP
3735 /* Pin and relocate */
3736 for (pin_tries = 0; ; pin_tries++) {
3737 ret = 0;
40a5f0de
EA
3738 reloc_index = 0;
3739
ac94a962
KP
3740 for (i = 0; i < args->buffer_count; i++) {
3741 object_list[i]->pending_read_domains = 0;
3742 object_list[i]->pending_write_domain = 0;
3743 ret = i915_gem_object_pin_and_relocate(object_list[i],
3744 file_priv,
40a5f0de
EA
3745 &exec_list[i],
3746 &relocs[reloc_index]);
ac94a962
KP
3747 if (ret)
3748 break;
3749 pinned = i + 1;
40a5f0de 3750 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3751 }
3752 /* success */
3753 if (ret == 0)
3754 break;
3755
3756 /* error other than GTT full, or we've already tried again */
2939e1f5 3757 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3758 if (ret != -ERESTARTSYS) {
3759 unsigned long long total_size = 0;
3d1cc470
CW
3760 int num_fences = 0;
3761 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3762 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3763
07f73f69 3764 total_size += object_list[i]->size;
3d1cc470
CW
3765 num_fences +=
3766 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3767 obj_priv->tiling_mode != I915_TILING_NONE;
3768 }
3769 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3770 pinned+1, args->buffer_count,
3d1cc470
CW
3771 total_size, num_fences,
3772 ret);
07f73f69
CW
3773 DRM_ERROR("%d objects [%d pinned], "
3774 "%d object bytes [%d pinned], "
3775 "%d/%d gtt bytes\n",
3776 atomic_read(&dev->object_count),
3777 atomic_read(&dev->pin_count),
3778 atomic_read(&dev->object_memory),
3779 atomic_read(&dev->pin_memory),
3780 atomic_read(&dev->gtt_memory),
3781 dev->gtt_total);
3782 }
673a394b
EA
3783 goto err;
3784 }
ac94a962
KP
3785
3786 /* unpin all of our buffers */
3787 for (i = 0; i < pinned; i++)
3788 i915_gem_object_unpin(object_list[i]);
b1177636 3789 pinned = 0;
ac94a962
KP
3790
3791 /* evict everyone we can from the aperture */
3792 ret = i915_gem_evict_everything(dev);
07f73f69 3793 if (ret && ret != -ENOSPC)
ac94a962 3794 goto err;
673a394b
EA
3795 }
3796
3797 /* Set the pending read domains for the batch buffer to COMMAND */
3798 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3799 if (batch_obj->pending_write_domain) {
3800 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3801 ret = -EINVAL;
3802 goto err;
3803 }
3804 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3805
83d60795
CW
3806 /* Sanity check the batch buffer, prior to moving objects */
3807 exec_offset = exec_list[args->buffer_count - 1].offset;
3808 ret = i915_gem_check_execbuffer (args, exec_offset);
3809 if (ret != 0) {
3810 DRM_ERROR("execbuf with invalid offset/length\n");
3811 goto err;
3812 }
3813
673a394b
EA
3814 i915_verify_inactive(dev, __FILE__, __LINE__);
3815
646f0f6e
KP
3816 /* Zero the global flush/invalidate flags. These
3817 * will be modified as new domains are computed
3818 * for each object
3819 */
3820 dev->invalidate_domains = 0;
3821 dev->flush_domains = 0;
9220434a 3822 dev_priv->mm.flush_rings = 0;
646f0f6e 3823
673a394b
EA
3824 for (i = 0; i < args->buffer_count; i++) {
3825 struct drm_gem_object *obj = object_list[i];
673a394b 3826
646f0f6e 3827 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3828 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3829 }
3830
3831 i915_verify_inactive(dev, __FILE__, __LINE__);
3832
646f0f6e
KP
3833 if (dev->invalidate_domains | dev->flush_domains) {
3834#if WATCH_EXEC
3835 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3836 __func__,
3837 dev->invalidate_domains,
3838 dev->flush_domains);
3839#endif
c78ec30b 3840 i915_gem_flush(dev, file_priv,
646f0f6e 3841 dev->invalidate_domains,
9220434a
CW
3842 dev->flush_domains,
3843 dev_priv->mm.flush_rings);
a6910434
DV
3844 }
3845
efbeed96
EA
3846 for (i = 0; i < args->buffer_count; i++) {
3847 struct drm_gem_object *obj = object_list[i];
23010e43 3848 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3849 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3850
3851 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3852 if (obj->write_domain)
3853 list_move_tail(&obj_priv->gpu_write_list,
3854 &dev_priv->mm.gpu_write_list);
3855 else
3856 list_del_init(&obj_priv->gpu_write_list);
3857
1c5d22f7
CW
3858 trace_i915_gem_object_change_domain(obj,
3859 obj->read_domains,
3860 old_write_domain);
efbeed96
EA
3861 }
3862
673a394b
EA
3863 i915_verify_inactive(dev, __FILE__, __LINE__);
3864
3865#if WATCH_COHERENCY
3866 for (i = 0; i < args->buffer_count; i++) {
3867 i915_gem_object_check_coherency(object_list[i],
3868 exec_list[i].handle);
3869 }
3870#endif
3871
673a394b 3872#if WATCH_EXEC
6911a9b8 3873 i915_gem_dump_object(batch_obj,
673a394b
EA
3874 args->batch_len,
3875 __func__,
3876 ~0);
3877#endif
3878
673a394b 3879 /* Exec the batchbuffer */
852835f3
ZN
3880 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3881 cliprects, exec_offset);
673a394b
EA
3882 if (ret) {
3883 DRM_ERROR("dispatch failed %d\n", ret);
3884 goto err;
3885 }
3886
3887 /*
3888 * Ensure that the commands in the batch buffer are
3889 * finished before the interrupt fires
3890 */
8a1a49f9 3891 i915_retire_commands(dev, ring);
673a394b
EA
3892
3893 i915_verify_inactive(dev, __FILE__, __LINE__);
3894
617dbe27
DV
3895 for (i = 0; i < args->buffer_count; i++) {
3896 struct drm_gem_object *obj = object_list[i];
3897 obj_priv = to_intel_bo(obj);
3898
3899 i915_gem_object_move_to_active(obj, ring);
617dbe27 3900 }
a56ba56c 3901
5c12a07e 3902 i915_add_request(dev, file_priv, request, ring);
8dc5d147 3903 request = NULL;
673a394b 3904
673a394b
EA
3905 i915_verify_inactive(dev, __FILE__, __LINE__);
3906
673a394b 3907err:
aad87dff
JL
3908 for (i = 0; i < pinned; i++)
3909 i915_gem_object_unpin(object_list[i]);
3910
b70d11da
KH
3911 for (i = 0; i < args->buffer_count; i++) {
3912 if (object_list[i]) {
23010e43 3913 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3914 obj_priv->in_execbuffer = false;
3915 }
aad87dff 3916 drm_gem_object_unreference(object_list[i]);
b70d11da 3917 }
673a394b 3918
673a394b
EA
3919 mutex_unlock(&dev->struct_mutex);
3920
93533c29 3921pre_mutex_err:
40a5f0de
EA
3922 /* Copy the updated relocations out regardless of current error
3923 * state. Failure to update the relocs would mean that the next
3924 * time userland calls execbuf, it would do so with presumed offset
3925 * state that didn't match the actual object state.
3926 */
3927 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3928 relocs);
3929 if (ret2 != 0) {
3930 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3931
3932 if (ret == 0)
3933 ret = ret2;
3934 }
3935
8e7d2b2c 3936 drm_free_large(object_list);
9a298b2a 3937 kfree(cliprects);
8dc5d147 3938 kfree(request);
673a394b
EA
3939
3940 return ret;
3941}
3942
76446cac
JB
3943/*
3944 * Legacy execbuffer just creates an exec2 list from the original exec object
3945 * list array and passes it to the real function.
3946 */
3947int
3948i915_gem_execbuffer(struct drm_device *dev, void *data,
3949 struct drm_file *file_priv)
3950{
3951 struct drm_i915_gem_execbuffer *args = data;
3952 struct drm_i915_gem_execbuffer2 exec2;
3953 struct drm_i915_gem_exec_object *exec_list = NULL;
3954 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3955 int ret, i;
3956
3957#if WATCH_EXEC
3958 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3959 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3960#endif
3961
3962 if (args->buffer_count < 1) {
3963 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3964 return -EINVAL;
3965 }
3966
3967 /* Copy in the exec list from userland */
3968 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3969 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3970 if (exec_list == NULL || exec2_list == NULL) {
3971 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3972 args->buffer_count);
3973 drm_free_large(exec_list);
3974 drm_free_large(exec2_list);
3975 return -ENOMEM;
3976 }
3977 ret = copy_from_user(exec_list,
3978 (struct drm_i915_relocation_entry __user *)
3979 (uintptr_t) args->buffers_ptr,
3980 sizeof(*exec_list) * args->buffer_count);
3981 if (ret != 0) {
3982 DRM_ERROR("copy %d exec entries failed %d\n",
3983 args->buffer_count, ret);
3984 drm_free_large(exec_list);
3985 drm_free_large(exec2_list);
3986 return -EFAULT;
3987 }
3988
3989 for (i = 0; i < args->buffer_count; i++) {
3990 exec2_list[i].handle = exec_list[i].handle;
3991 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3992 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3993 exec2_list[i].alignment = exec_list[i].alignment;
3994 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3995 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3996 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3997 else
3998 exec2_list[i].flags = 0;
3999 }
4000
4001 exec2.buffers_ptr = args->buffers_ptr;
4002 exec2.buffer_count = args->buffer_count;
4003 exec2.batch_start_offset = args->batch_start_offset;
4004 exec2.batch_len = args->batch_len;
4005 exec2.DR1 = args->DR1;
4006 exec2.DR4 = args->DR4;
4007 exec2.num_cliprects = args->num_cliprects;
4008 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4009 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4010
4011 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4012 if (!ret) {
4013 /* Copy the new buffer offsets back to the user's exec list. */
4014 for (i = 0; i < args->buffer_count; i++)
4015 exec_list[i].offset = exec2_list[i].offset;
4016 /* ... and back out to userspace */
4017 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4018 (uintptr_t) args->buffers_ptr,
4019 exec_list,
4020 sizeof(*exec_list) * args->buffer_count);
4021 if (ret) {
4022 ret = -EFAULT;
4023 DRM_ERROR("failed to copy %d exec entries "
4024 "back to user (%d)\n",
4025 args->buffer_count, ret);
4026 }
76446cac
JB
4027 }
4028
4029 drm_free_large(exec_list);
4030 drm_free_large(exec2_list);
4031 return ret;
4032}
4033
4034int
4035i915_gem_execbuffer2(struct drm_device *dev, void *data,
4036 struct drm_file *file_priv)
4037{
4038 struct drm_i915_gem_execbuffer2 *args = data;
4039 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4040 int ret;
4041
4042#if WATCH_EXEC
4043 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4044 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4045#endif
4046
4047 if (args->buffer_count < 1) {
4048 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4049 return -EINVAL;
4050 }
4051
4052 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4053 if (exec2_list == NULL) {
4054 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4055 args->buffer_count);
4056 return -ENOMEM;
4057 }
4058 ret = copy_from_user(exec2_list,
4059 (struct drm_i915_relocation_entry __user *)
4060 (uintptr_t) args->buffers_ptr,
4061 sizeof(*exec2_list) * args->buffer_count);
4062 if (ret != 0) {
4063 DRM_ERROR("copy %d exec entries failed %d\n",
4064 args->buffer_count, ret);
4065 drm_free_large(exec2_list);
4066 return -EFAULT;
4067 }
4068
4069 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4070 if (!ret) {
4071 /* Copy the new buffer offsets back to the user's exec list. */
4072 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4073 (uintptr_t) args->buffers_ptr,
4074 exec2_list,
4075 sizeof(*exec2_list) * args->buffer_count);
4076 if (ret) {
4077 ret = -EFAULT;
4078 DRM_ERROR("failed to copy %d exec entries "
4079 "back to user (%d)\n",
4080 args->buffer_count, ret);
4081 }
4082 }
4083
4084 drm_free_large(exec2_list);
4085 return ret;
4086}
4087
673a394b
EA
4088int
4089i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4090{
4091 struct drm_device *dev = obj->dev;
f13d3f73 4092 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4093 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4094 int ret;
4095
778c3544
DV
4096 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4097
673a394b 4098 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4099
4100 if (obj_priv->gtt_space != NULL) {
4101 if (alignment == 0)
4102 alignment = i915_gem_get_gtt_alignment(obj);
4103 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4104 WARN(obj_priv->pin_count,
4105 "bo is already pinned with incorrect alignment:"
4106 " offset=%x, req.alignment=%x\n",
4107 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4108 ret = i915_gem_object_unbind(obj);
4109 if (ret)
4110 return ret;
4111 }
4112 }
4113
673a394b
EA
4114 if (obj_priv->gtt_space == NULL) {
4115 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4116 if (ret)
673a394b 4117 return ret;
22c344e9 4118 }
76446cac 4119
673a394b
EA
4120 obj_priv->pin_count++;
4121
4122 /* If the object is not active and not pending a flush,
4123 * remove it from the inactive list
4124 */
4125 if (obj_priv->pin_count == 1) {
4126 atomic_inc(&dev->pin_count);
4127 atomic_add(obj->size, &dev->pin_memory);
f13d3f73
CW
4128 if (!obj_priv->active)
4129 list_move_tail(&obj_priv->list,
4130 &dev_priv->mm.pinned_list);
673a394b
EA
4131 }
4132 i915_verify_inactive(dev, __FILE__, __LINE__);
4133
4134 return 0;
4135}
4136
4137void
4138i915_gem_object_unpin(struct drm_gem_object *obj)
4139{
4140 struct drm_device *dev = obj->dev;
4141 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4142 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4143
4144 i915_verify_inactive(dev, __FILE__, __LINE__);
4145 obj_priv->pin_count--;
4146 BUG_ON(obj_priv->pin_count < 0);
4147 BUG_ON(obj_priv->gtt_space == NULL);
4148
4149 /* If the object is no longer pinned, and is
4150 * neither active nor being flushed, then stick it on
4151 * the inactive list
4152 */
4153 if (obj_priv->pin_count == 0) {
f13d3f73 4154 if (!obj_priv->active)
673a394b
EA
4155 list_move_tail(&obj_priv->list,
4156 &dev_priv->mm.inactive_list);
4157 atomic_dec(&dev->pin_count);
4158 atomic_sub(obj->size, &dev->pin_memory);
4159 }
4160 i915_verify_inactive(dev, __FILE__, __LINE__);
4161}
4162
4163int
4164i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4165 struct drm_file *file_priv)
4166{
4167 struct drm_i915_gem_pin *args = data;
4168 struct drm_gem_object *obj;
4169 struct drm_i915_gem_object *obj_priv;
4170 int ret;
4171
673a394b
EA
4172 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4173 if (obj == NULL) {
4174 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4175 args->handle);
bf79cb91 4176 return -ENOENT;
673a394b 4177 }
23010e43 4178 obj_priv = to_intel_bo(obj);
673a394b 4179
76c1dec1
CW
4180 ret = i915_mutex_lock_interruptible(dev);
4181 if (ret) {
4182 drm_gem_object_unreference_unlocked(obj);
4183 return ret;
4184 }
4185
bb6baf76
CW
4186 if (obj_priv->madv != I915_MADV_WILLNEED) {
4187 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4188 drm_gem_object_unreference(obj);
4189 mutex_unlock(&dev->struct_mutex);
4190 return -EINVAL;
4191 }
4192
79e53945
JB
4193 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4194 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4195 args->handle);
96dec61d 4196 drm_gem_object_unreference(obj);
673a394b 4197 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4198 return -EINVAL;
4199 }
4200
4201 obj_priv->user_pin_count++;
4202 obj_priv->pin_filp = file_priv;
4203 if (obj_priv->user_pin_count == 1) {
4204 ret = i915_gem_object_pin(obj, args->alignment);
4205 if (ret != 0) {
4206 drm_gem_object_unreference(obj);
4207 mutex_unlock(&dev->struct_mutex);
4208 return ret;
4209 }
673a394b
EA
4210 }
4211
4212 /* XXX - flush the CPU caches for pinned objects
4213 * as the X server doesn't manage domains yet
4214 */
e47c68e9 4215 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4216 args->offset = obj_priv->gtt_offset;
4217 drm_gem_object_unreference(obj);
4218 mutex_unlock(&dev->struct_mutex);
4219
4220 return 0;
4221}
4222
4223int
4224i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4225 struct drm_file *file_priv)
4226{
4227 struct drm_i915_gem_pin *args = data;
4228 struct drm_gem_object *obj;
79e53945 4229 struct drm_i915_gem_object *obj_priv;
76c1dec1 4230 int ret;
673a394b
EA
4231
4232 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4233 if (obj == NULL) {
4234 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4235 args->handle);
bf79cb91 4236 return -ENOENT;
673a394b
EA
4237 }
4238
23010e43 4239 obj_priv = to_intel_bo(obj);
76c1dec1
CW
4240
4241 ret = i915_mutex_lock_interruptible(dev);
4242 if (ret) {
4243 drm_gem_object_unreference_unlocked(obj);
4244 return ret;
4245 }
4246
79e53945
JB
4247 if (obj_priv->pin_filp != file_priv) {
4248 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4249 args->handle);
4250 drm_gem_object_unreference(obj);
4251 mutex_unlock(&dev->struct_mutex);
4252 return -EINVAL;
4253 }
4254 obj_priv->user_pin_count--;
4255 if (obj_priv->user_pin_count == 0) {
4256 obj_priv->pin_filp = NULL;
4257 i915_gem_object_unpin(obj);
4258 }
673a394b
EA
4259
4260 drm_gem_object_unreference(obj);
4261 mutex_unlock(&dev->struct_mutex);
4262 return 0;
4263}
4264
4265int
4266i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4267 struct drm_file *file_priv)
4268{
4269 struct drm_i915_gem_busy *args = data;
4270 struct drm_gem_object *obj;
4271 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4272 int ret;
4273
673a394b
EA
4274 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4275 if (obj == NULL) {
4276 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4277 args->handle);
bf79cb91 4278 return -ENOENT;
673a394b
EA
4279 }
4280
76c1dec1
CW
4281 ret = i915_mutex_lock_interruptible(dev);
4282 if (ret) {
4283 drm_gem_object_unreference_unlocked(obj);
4284 return ret;
30dbf0c0
CW
4285 }
4286
0be555b6
CW
4287 /* Count all active objects as busy, even if they are currently not used
4288 * by the gpu. Users of this interface expect objects to eventually
4289 * become non-busy without any further actions, therefore emit any
4290 * necessary flushes here.
c4de0a5d 4291 */
0be555b6
CW
4292 obj_priv = to_intel_bo(obj);
4293 args->busy = obj_priv->active;
4294 if (args->busy) {
4295 /* Unconditionally flush objects, even when the gpu still uses this
4296 * object. Userspace calling this function indicates that it wants to
4297 * use this buffer rather sooner than later, so issuing the required
4298 * flush earlier is beneficial.
4299 */
c78ec30b
CW
4300 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4301 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4302 obj_priv->ring,
4303 0, obj->write_domain);
0be555b6
CW
4304
4305 /* Update the active list for the hardware's current position.
4306 * Otherwise this only updates on a delayed timer or when irqs
4307 * are actually unmasked, and our working set ends up being
4308 * larger than required.
4309 */
4310 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4311
4312 args->busy = obj_priv->active;
4313 }
673a394b
EA
4314
4315 drm_gem_object_unreference(obj);
4316 mutex_unlock(&dev->struct_mutex);
76c1dec1 4317 return 0;
673a394b
EA
4318}
4319
4320int
4321i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4322 struct drm_file *file_priv)
4323{
4324 return i915_gem_ring_throttle(dev, file_priv);
4325}
4326
3ef94daa
CW
4327int
4328i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4329 struct drm_file *file_priv)
4330{
4331 struct drm_i915_gem_madvise *args = data;
4332 struct drm_gem_object *obj;
4333 struct drm_i915_gem_object *obj_priv;
76c1dec1 4334 int ret;
3ef94daa
CW
4335
4336 switch (args->madv) {
4337 case I915_MADV_DONTNEED:
4338 case I915_MADV_WILLNEED:
4339 break;
4340 default:
4341 return -EINVAL;
4342 }
4343
4344 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4345 if (obj == NULL) {
4346 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4347 args->handle);
bf79cb91 4348 return -ENOENT;
3ef94daa 4349 }
23010e43 4350 obj_priv = to_intel_bo(obj);
3ef94daa 4351
76c1dec1
CW
4352 ret = i915_mutex_lock_interruptible(dev);
4353 if (ret) {
4354 drm_gem_object_unreference_unlocked(obj);
4355 return ret;
4356 }
4357
3ef94daa
CW
4358 if (obj_priv->pin_count) {
4359 drm_gem_object_unreference(obj);
4360 mutex_unlock(&dev->struct_mutex);
4361
4362 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4363 return -EINVAL;
4364 }
4365
bb6baf76
CW
4366 if (obj_priv->madv != __I915_MADV_PURGED)
4367 obj_priv->madv = args->madv;
3ef94daa 4368
2d7ef395
CW
4369 /* if the object is no longer bound, discard its backing storage */
4370 if (i915_gem_object_is_purgeable(obj_priv) &&
4371 obj_priv->gtt_space == NULL)
4372 i915_gem_object_truncate(obj);
4373
bb6baf76
CW
4374 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4375
3ef94daa
CW
4376 drm_gem_object_unreference(obj);
4377 mutex_unlock(&dev->struct_mutex);
4378
4379 return 0;
4380}
4381
ac52bc56
DV
4382struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4383 size_t size)
4384{
c397b908 4385 struct drm_i915_gem_object *obj;
ac52bc56 4386
c397b908
DV
4387 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4388 if (obj == NULL)
4389 return NULL;
673a394b 4390
c397b908
DV
4391 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4392 kfree(obj);
4393 return NULL;
4394 }
673a394b 4395
c397b908
DV
4396 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4397 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4398
c397b908 4399 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4400 obj->base.driver_private = NULL;
c397b908
DV
4401 obj->fence_reg = I915_FENCE_REG_NONE;
4402 INIT_LIST_HEAD(&obj->list);
4403 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4404 obj->madv = I915_MADV_WILLNEED;
de151cf6 4405
c397b908
DV
4406 trace_i915_gem_object_create(&obj->base);
4407
4408 return &obj->base;
4409}
4410
4411int i915_gem_init_object(struct drm_gem_object *obj)
4412{
4413 BUG();
de151cf6 4414
673a394b
EA
4415 return 0;
4416}
4417
be72615b 4418static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4419{
de151cf6 4420 struct drm_device *dev = obj->dev;
be72615b 4421 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4422 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4423 int ret;
673a394b 4424
be72615b
CW
4425 ret = i915_gem_object_unbind(obj);
4426 if (ret == -ERESTARTSYS) {
4427 list_move(&obj_priv->list,
4428 &dev_priv->mm.deferred_free_list);
4429 return;
4430 }
673a394b 4431
7e616158
CW
4432 if (obj_priv->mmap_offset)
4433 i915_gem_free_mmap_offset(obj);
de151cf6 4434
c397b908
DV
4435 drm_gem_object_release(obj);
4436
9a298b2a 4437 kfree(obj_priv->page_cpu_valid);
280b713b 4438 kfree(obj_priv->bit_17);
c397b908 4439 kfree(obj_priv);
673a394b
EA
4440}
4441
be72615b
CW
4442void i915_gem_free_object(struct drm_gem_object *obj)
4443{
4444 struct drm_device *dev = obj->dev;
4445 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4446
4447 trace_i915_gem_object_destroy(obj);
4448
4449 while (obj_priv->pin_count > 0)
4450 i915_gem_object_unpin(obj);
4451
4452 if (obj_priv->phys_obj)
4453 i915_gem_detach_phys_object(dev, obj);
4454
4455 i915_gem_free_object_tail(obj);
4456}
4457
29105ccc
CW
4458int
4459i915_gem_idle(struct drm_device *dev)
4460{
4461 drm_i915_private_t *dev_priv = dev->dev_private;
4462 int ret;
28dfe52a 4463
29105ccc 4464 mutex_lock(&dev->struct_mutex);
1c5d22f7 4465
8187a2b7 4466 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4467 (dev_priv->render_ring.gem_object == NULL) ||
4468 (HAS_BSD(dev) &&
4469 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4470 mutex_unlock(&dev->struct_mutex);
4471 return 0;
28dfe52a
EA
4472 }
4473
29105ccc 4474 ret = i915_gpu_idle(dev);
6dbe2772
KP
4475 if (ret) {
4476 mutex_unlock(&dev->struct_mutex);
673a394b 4477 return ret;
6dbe2772 4478 }
673a394b 4479
29105ccc
CW
4480 /* Under UMS, be paranoid and evict. */
4481 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4482 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4483 if (ret) {
4484 mutex_unlock(&dev->struct_mutex);
4485 return ret;
4486 }
4487 }
4488
4489 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4490 * We need to replace this with a semaphore, or something.
4491 * And not confound mm.suspended!
4492 */
4493 dev_priv->mm.suspended = 1;
bc0c7f14 4494 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4495
4496 i915_kernel_lost_context(dev);
6dbe2772 4497 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4498
6dbe2772
KP
4499 mutex_unlock(&dev->struct_mutex);
4500
29105ccc
CW
4501 /* Cancel the retire work handler, which should be idle now. */
4502 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4503
673a394b
EA
4504 return 0;
4505}
4506
e552eb70
JB
4507/*
4508 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4509 * over cache flushing.
4510 */
8187a2b7 4511static int
e552eb70
JB
4512i915_gem_init_pipe_control(struct drm_device *dev)
4513{
4514 drm_i915_private_t *dev_priv = dev->dev_private;
4515 struct drm_gem_object *obj;
4516 struct drm_i915_gem_object *obj_priv;
4517 int ret;
4518
34dc4d44 4519 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4520 if (obj == NULL) {
4521 DRM_ERROR("Failed to allocate seqno page\n");
4522 ret = -ENOMEM;
4523 goto err;
4524 }
4525 obj_priv = to_intel_bo(obj);
4526 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4527
4528 ret = i915_gem_object_pin(obj, 4096);
4529 if (ret)
4530 goto err_unref;
4531
4532 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4533 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4534 if (dev_priv->seqno_page == NULL)
4535 goto err_unpin;
4536
4537 dev_priv->seqno_obj = obj;
4538 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4539
4540 return 0;
4541
4542err_unpin:
4543 i915_gem_object_unpin(obj);
4544err_unref:
4545 drm_gem_object_unreference(obj);
4546err:
4547 return ret;
4548}
4549
8187a2b7
ZN
4550
4551static void
e552eb70
JB
4552i915_gem_cleanup_pipe_control(struct drm_device *dev)
4553{
4554 drm_i915_private_t *dev_priv = dev->dev_private;
4555 struct drm_gem_object *obj;
4556 struct drm_i915_gem_object *obj_priv;
4557
4558 obj = dev_priv->seqno_obj;
4559 obj_priv = to_intel_bo(obj);
4560 kunmap(obj_priv->pages[0]);
4561 i915_gem_object_unpin(obj);
4562 drm_gem_object_unreference(obj);
4563 dev_priv->seqno_obj = NULL;
4564
4565 dev_priv->seqno_page = NULL;
673a394b
EA
4566}
4567
8187a2b7
ZN
4568int
4569i915_gem_init_ringbuffer(struct drm_device *dev)
4570{
4571 drm_i915_private_t *dev_priv = dev->dev_private;
4572 int ret;
68f95ba9 4573
8187a2b7
ZN
4574 if (HAS_PIPE_CONTROL(dev)) {
4575 ret = i915_gem_init_pipe_control(dev);
4576 if (ret)
4577 return ret;
4578 }
68f95ba9 4579
5c1143bb 4580 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4581 if (ret)
4582 goto cleanup_pipe_control;
4583
4584 if (HAS_BSD(dev)) {
5c1143bb 4585 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4586 if (ret)
4587 goto cleanup_render_ring;
d1b851fc 4588 }
68f95ba9 4589
6f392d54
CW
4590 dev_priv->next_seqno = 1;
4591
68f95ba9
CW
4592 return 0;
4593
4594cleanup_render_ring:
4595 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4596cleanup_pipe_control:
4597 if (HAS_PIPE_CONTROL(dev))
4598 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4599 return ret;
4600}
4601
4602void
4603i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4604{
4605 drm_i915_private_t *dev_priv = dev->dev_private;
4606
4607 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4608 if (HAS_BSD(dev))
4609 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4610 if (HAS_PIPE_CONTROL(dev))
4611 i915_gem_cleanup_pipe_control(dev);
4612}
4613
673a394b
EA
4614int
4615i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4616 struct drm_file *file_priv)
4617{
4618 drm_i915_private_t *dev_priv = dev->dev_private;
4619 int ret;
4620
79e53945
JB
4621 if (drm_core_check_feature(dev, DRIVER_MODESET))
4622 return 0;
4623
ba1234d1 4624 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4625 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4626 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4627 }
4628
673a394b 4629 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4630 dev_priv->mm.suspended = 0;
4631
4632 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4633 if (ret != 0) {
4634 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4635 return ret;
d816f6ac 4636 }
9bb2d6f9 4637
852835f3 4638 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4639 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4640 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4641 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4642 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4643 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4644 mutex_unlock(&dev->struct_mutex);
dbb19d30 4645
5f35308b
CW
4646 ret = drm_irq_install(dev);
4647 if (ret)
4648 goto cleanup_ringbuffer;
dbb19d30 4649
673a394b 4650 return 0;
5f35308b
CW
4651
4652cleanup_ringbuffer:
4653 mutex_lock(&dev->struct_mutex);
4654 i915_gem_cleanup_ringbuffer(dev);
4655 dev_priv->mm.suspended = 1;
4656 mutex_unlock(&dev->struct_mutex);
4657
4658 return ret;
673a394b
EA
4659}
4660
4661int
4662i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4663 struct drm_file *file_priv)
4664{
79e53945
JB
4665 if (drm_core_check_feature(dev, DRIVER_MODESET))
4666 return 0;
4667
dbb19d30 4668 drm_irq_uninstall(dev);
e6890f6f 4669 return i915_gem_idle(dev);
673a394b
EA
4670}
4671
4672void
4673i915_gem_lastclose(struct drm_device *dev)
4674{
4675 int ret;
673a394b 4676
e806b495
EA
4677 if (drm_core_check_feature(dev, DRIVER_MODESET))
4678 return;
4679
6dbe2772
KP
4680 ret = i915_gem_idle(dev);
4681 if (ret)
4682 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4683}
4684
4685void
4686i915_gem_load(struct drm_device *dev)
4687{
b5aa8a0f 4688 int i;
673a394b
EA
4689 drm_i915_private_t *dev_priv = dev->dev_private;
4690
673a394b 4691 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4692 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4693 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4694 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4695 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4696 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4697 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4698 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4699 if (HAS_BSD(dev)) {
4700 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4701 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4702 }
007cc8ac
DV
4703 for (i = 0; i < 16; i++)
4704 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4705 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4706 i915_gem_retire_work_handler);
30dbf0c0 4707 init_completion(&dev_priv->error_completion);
31169714
CW
4708 spin_lock(&shrink_list_lock);
4709 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4710 spin_unlock(&shrink_list_lock);
4711
94400120
DA
4712 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4713 if (IS_GEN3(dev)) {
4714 u32 tmp = I915_READ(MI_ARB_STATE);
4715 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4716 /* arb state is a masked write, so set bit + bit in mask */
4717 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4718 I915_WRITE(MI_ARB_STATE, tmp);
4719 }
4720 }
4721
de151cf6 4722 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4723 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4724 dev_priv->fence_reg_start = 3;
de151cf6 4725
a6c45cf0 4726 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4727 dev_priv->num_fence_regs = 16;
4728 else
4729 dev_priv->num_fence_regs = 8;
4730
b5aa8a0f 4731 /* Initialize fence registers to zero */
a6c45cf0
CW
4732 switch (INTEL_INFO(dev)->gen) {
4733 case 6:
4734 for (i = 0; i < 16; i++)
4735 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4736 break;
4737 case 5:
4738 case 4:
b5aa8a0f
GH
4739 for (i = 0; i < 16; i++)
4740 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4741 break;
4742 case 3:
b5aa8a0f
GH
4743 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4744 for (i = 0; i < 8; i++)
4745 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4746 case 2:
4747 for (i = 0; i < 8; i++)
4748 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4749 break;
b5aa8a0f 4750 }
673a394b 4751 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4752 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4753}
71acb5eb
DA
4754
4755/*
4756 * Create a physically contiguous memory object for this object
4757 * e.g. for cursor + overlay regs
4758 */
995b6762
CW
4759static int i915_gem_init_phys_object(struct drm_device *dev,
4760 int id, int size, int align)
71acb5eb
DA
4761{
4762 drm_i915_private_t *dev_priv = dev->dev_private;
4763 struct drm_i915_gem_phys_object *phys_obj;
4764 int ret;
4765
4766 if (dev_priv->mm.phys_objs[id - 1] || !size)
4767 return 0;
4768
9a298b2a 4769 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4770 if (!phys_obj)
4771 return -ENOMEM;
4772
4773 phys_obj->id = id;
4774
6eeefaf3 4775 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4776 if (!phys_obj->handle) {
4777 ret = -ENOMEM;
4778 goto kfree_obj;
4779 }
4780#ifdef CONFIG_X86
4781 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4782#endif
4783
4784 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4785
4786 return 0;
4787kfree_obj:
9a298b2a 4788 kfree(phys_obj);
71acb5eb
DA
4789 return ret;
4790}
4791
995b6762 4792static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4793{
4794 drm_i915_private_t *dev_priv = dev->dev_private;
4795 struct drm_i915_gem_phys_object *phys_obj;
4796
4797 if (!dev_priv->mm.phys_objs[id - 1])
4798 return;
4799
4800 phys_obj = dev_priv->mm.phys_objs[id - 1];
4801 if (phys_obj->cur_obj) {
4802 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4803 }
4804
4805#ifdef CONFIG_X86
4806 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4807#endif
4808 drm_pci_free(dev, phys_obj->handle);
4809 kfree(phys_obj);
4810 dev_priv->mm.phys_objs[id - 1] = NULL;
4811}
4812
4813void i915_gem_free_all_phys_object(struct drm_device *dev)
4814{
4815 int i;
4816
260883c8 4817 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4818 i915_gem_free_phys_object(dev, i);
4819}
4820
4821void i915_gem_detach_phys_object(struct drm_device *dev,
4822 struct drm_gem_object *obj)
4823{
4824 struct drm_i915_gem_object *obj_priv;
4825 int i;
4826 int ret;
4827 int page_count;
4828
23010e43 4829 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4830 if (!obj_priv->phys_obj)
4831 return;
4832
4bdadb97 4833 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4834 if (ret)
4835 goto out;
4836
4837 page_count = obj->size / PAGE_SIZE;
4838
4839 for (i = 0; i < page_count; i++) {
856fa198 4840 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4841 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4842
4843 memcpy(dst, src, PAGE_SIZE);
4844 kunmap_atomic(dst, KM_USER0);
4845 }
856fa198 4846 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4847 drm_agp_chipset_flush(dev);
d78b47b9
CW
4848
4849 i915_gem_object_put_pages(obj);
71acb5eb
DA
4850out:
4851 obj_priv->phys_obj->cur_obj = NULL;
4852 obj_priv->phys_obj = NULL;
4853}
4854
4855int
4856i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4857 struct drm_gem_object *obj,
4858 int id,
4859 int align)
71acb5eb
DA
4860{
4861 drm_i915_private_t *dev_priv = dev->dev_private;
4862 struct drm_i915_gem_object *obj_priv;
4863 int ret = 0;
4864 int page_count;
4865 int i;
4866
4867 if (id > I915_MAX_PHYS_OBJECT)
4868 return -EINVAL;
4869
23010e43 4870 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4871
4872 if (obj_priv->phys_obj) {
4873 if (obj_priv->phys_obj->id == id)
4874 return 0;
4875 i915_gem_detach_phys_object(dev, obj);
4876 }
4877
71acb5eb
DA
4878 /* create a new object */
4879 if (!dev_priv->mm.phys_objs[id - 1]) {
4880 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4881 obj->size, align);
71acb5eb 4882 if (ret) {
aeb565df 4883 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4884 goto out;
4885 }
4886 }
4887
4888 /* bind to the object */
4889 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4890 obj_priv->phys_obj->cur_obj = obj;
4891
4bdadb97 4892 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4893 if (ret) {
4894 DRM_ERROR("failed to get page list\n");
4895 goto out;
4896 }
4897
4898 page_count = obj->size / PAGE_SIZE;
4899
4900 for (i = 0; i < page_count; i++) {
856fa198 4901 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4902 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4903
4904 memcpy(dst, src, PAGE_SIZE);
4905 kunmap_atomic(src, KM_USER0);
4906 }
4907
d78b47b9
CW
4908 i915_gem_object_put_pages(obj);
4909
71acb5eb
DA
4910 return 0;
4911out:
4912 return ret;
4913}
4914
4915static int
4916i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4917 struct drm_i915_gem_pwrite *args,
4918 struct drm_file *file_priv)
4919{
23010e43 4920 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4921 void *obj_addr;
4922 int ret;
4923 char __user *user_data;
4924
4925 user_data = (char __user *) (uintptr_t) args->data_ptr;
4926 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4927
44d98a61 4928 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4929 ret = copy_from_user(obj_addr, user_data, args->size);
4930 if (ret)
4931 return -EFAULT;
4932
4933 drm_agp_chipset_flush(dev);
4934 return 0;
4935}
b962442e 4936
f787a5f5 4937void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4938{
f787a5f5 4939 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4940
4941 /* Clean up our request list when the client is going away, so that
4942 * later retire_requests won't dereference our soon-to-be-gone
4943 * file_priv.
4944 */
1c25595f 4945 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4946 while (!list_empty(&file_priv->mm.request_list)) {
4947 struct drm_i915_gem_request *request;
4948
4949 request = list_first_entry(&file_priv->mm.request_list,
4950 struct drm_i915_gem_request,
4951 client_list);
4952 list_del(&request->client_list);
4953 request->file_priv = NULL;
4954 }
1c25595f 4955 spin_unlock(&file_priv->mm.lock);
b962442e 4956}
31169714 4957
1637ef41
CW
4958static int
4959i915_gpu_is_active(struct drm_device *dev)
4960{
4961 drm_i915_private_t *dev_priv = dev->dev_private;
4962 int lists_empty;
4963
1637ef41 4964 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4965 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4966 if (HAS_BSD(dev))
4967 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4968
4969 return !lists_empty;
4970}
4971
31169714 4972static int
7f8275d0 4973i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4974{
4975 drm_i915_private_t *dev_priv, *next_dev;
4976 struct drm_i915_gem_object *obj_priv, *next_obj;
4977 int cnt = 0;
4978 int would_deadlock = 1;
4979
4980 /* "fast-path" to count number of available objects */
4981 if (nr_to_scan == 0) {
4982 spin_lock(&shrink_list_lock);
4983 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4984 struct drm_device *dev = dev_priv->dev;
4985
4986 if (mutex_trylock(&dev->struct_mutex)) {
4987 list_for_each_entry(obj_priv,
4988 &dev_priv->mm.inactive_list,
4989 list)
4990 cnt++;
4991 mutex_unlock(&dev->struct_mutex);
4992 }
4993 }
4994 spin_unlock(&shrink_list_lock);
4995
4996 return (cnt / 100) * sysctl_vfs_cache_pressure;
4997 }
4998
4999 spin_lock(&shrink_list_lock);
5000
1637ef41 5001rescan:
31169714
CW
5002 /* first scan for clean buffers */
5003 list_for_each_entry_safe(dev_priv, next_dev,
5004 &shrink_list, mm.shrink_list) {
5005 struct drm_device *dev = dev_priv->dev;
5006
5007 if (! mutex_trylock(&dev->struct_mutex))
5008 continue;
5009
5010 spin_unlock(&shrink_list_lock);
b09a1fec 5011 i915_gem_retire_requests(dev);
31169714
CW
5012
5013 list_for_each_entry_safe(obj_priv, next_obj,
5014 &dev_priv->mm.inactive_list,
5015 list) {
5016 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 5017 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5018 if (--nr_to_scan <= 0)
5019 break;
5020 }
5021 }
5022
5023 spin_lock(&shrink_list_lock);
5024 mutex_unlock(&dev->struct_mutex);
5025
963b4836
CW
5026 would_deadlock = 0;
5027
31169714
CW
5028 if (nr_to_scan <= 0)
5029 break;
5030 }
5031
5032 /* second pass, evict/count anything still on the inactive list */
5033 list_for_each_entry_safe(dev_priv, next_dev,
5034 &shrink_list, mm.shrink_list) {
5035 struct drm_device *dev = dev_priv->dev;
5036
5037 if (! mutex_trylock(&dev->struct_mutex))
5038 continue;
5039
5040 spin_unlock(&shrink_list_lock);
5041
5042 list_for_each_entry_safe(obj_priv, next_obj,
5043 &dev_priv->mm.inactive_list,
5044 list) {
5045 if (nr_to_scan > 0) {
a8089e84 5046 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5047 nr_to_scan--;
5048 } else
5049 cnt++;
5050 }
5051
5052 spin_lock(&shrink_list_lock);
5053 mutex_unlock(&dev->struct_mutex);
5054
5055 would_deadlock = 0;
5056 }
5057
1637ef41
CW
5058 if (nr_to_scan) {
5059 int active = 0;
5060
5061 /*
5062 * We are desperate for pages, so as a last resort, wait
5063 * for the GPU to finish and discard whatever we can.
5064 * This has a dramatic impact to reduce the number of
5065 * OOM-killer events whilst running the GPU aggressively.
5066 */
5067 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5068 struct drm_device *dev = dev_priv->dev;
5069
5070 if (!mutex_trylock(&dev->struct_mutex))
5071 continue;
5072
5073 spin_unlock(&shrink_list_lock);
5074
5075 if (i915_gpu_is_active(dev)) {
5076 i915_gpu_idle(dev);
5077 active++;
5078 }
5079
5080 spin_lock(&shrink_list_lock);
5081 mutex_unlock(&dev->struct_mutex);
5082 }
5083
5084 if (active)
5085 goto rescan;
5086 }
5087
31169714
CW
5088 spin_unlock(&shrink_list_lock);
5089
5090 if (would_deadlock)
5091 return -1;
5092 else if (cnt > 0)
5093 return (cnt / 100) * sysctl_vfs_cache_pressure;
5094 else
5095 return 0;
5096}
5097
5098static struct shrinker shrinker = {
5099 .shrink = i915_gem_shrink,
5100 .seeks = DEFAULT_SEEKS,
5101};
5102
5103__init void
5104i915_gem_shrinker_init(void)
5105{
5106 register_shrinker(&shrinker);
5107}
5108
5109__exit void
5110i915_gem_shrinker_exit(void)
5111{
5112 unregister_shrinker(&shrinker);
5113}