]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: placeholder getparam
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
86a1ee26
CW
44 bool map_and_fenceable,
45 bool nonblocking);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
6c085a72
CW
59static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 61static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 62
61050808
CW
63static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64{
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
5d82e3e6 71 obj->fence_dirty = false;
61050808
CW
72 obj->fence_reg = I915_FENCE_REG_NONE;
73}
74
73aa808f
CW
75/* some bookkeeping */
76static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78{
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81}
82
83static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85{
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88}
89
21dd3734
CW
90static int
91i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
92{
93 struct drm_i915_private *dev_priv = dev->dev_private;
94 struct completion *x = &dev_priv->error_completion;
95 unsigned long flags;
96 int ret;
97
98 if (!atomic_read(&dev_priv->mm.wedged))
99 return 0;
100
0a6759c6
DV
101 /*
102 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103 * userspace. If it takes that long something really bad is going on and
104 * we should simply try to bail out and fail as gracefully as possible.
105 */
106 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
30dbf0c0 111 return ret;
0a6759c6 112 }
30dbf0c0 113
21dd3734
CW
114 if (atomic_read(&dev_priv->mm.wedged)) {
115 /* GPU is hung, bump the completion count to account for
116 * the token we just consumed so that we never hit zero and
117 * end up waiting upon a subsequent completion event that
118 * will never happen.
119 */
120 spin_lock_irqsave(&x->wait.lock, flags);
121 x->done++;
122 spin_unlock_irqrestore(&x->wait.lock, flags);
123 }
124 return 0;
30dbf0c0
CW
125}
126
54cf91dc 127int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 128{
76c1dec1
CW
129 int ret;
130
21dd3734 131 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
132 if (ret)
133 return ret;
134
135 ret = mutex_lock_interruptible(&dev->struct_mutex);
136 if (ret)
137 return ret;
138
23bc5982 139 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
140 return 0;
141}
30dbf0c0 142
7d1c4804 143static inline bool
05394f39 144i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 145{
6c085a72 146 return obj->gtt_space && !obj->active;
7d1c4804
CW
147}
148
79e53945
JB
149int
150i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 151 struct drm_file *file)
79e53945
JB
152{
153 struct drm_i915_gem_init *args = data;
2021746e 154
7bb6fb8d
DV
155 if (drm_core_check_feature(dev, DRIVER_MODESET))
156 return -ENODEV;
157
2021746e
CW
158 if (args->gtt_start >= args->gtt_end ||
159 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160 return -EINVAL;
79e53945 161
f534bc0b
DV
162 /* GEM with user mode setting was never supported on ilk and later. */
163 if (INTEL_INFO(dev)->gen >= 5)
164 return -ENODEV;
165
79e53945 166 mutex_lock(&dev->struct_mutex);
644ec02b
DV
167 i915_gem_init_global_gtt(dev, args->gtt_start,
168 args->gtt_end, args->gtt_end);
673a394b
EA
169 mutex_unlock(&dev->struct_mutex);
170
2021746e 171 return 0;
673a394b
EA
172}
173
5a125c3c
EA
174int
175i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 176 struct drm_file *file)
5a125c3c 177{
73aa808f 178 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 179 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
180 struct drm_i915_gem_object *obj;
181 size_t pinned;
5a125c3c 182
6299f992 183 pinned = 0;
73aa808f 184 mutex_lock(&dev->struct_mutex);
6c085a72 185 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
186 if (obj->pin_count)
187 pinned += obj->gtt_space->size;
73aa808f 188 mutex_unlock(&dev->struct_mutex);
5a125c3c 189
6299f992 190 args->aper_size = dev_priv->mm.gtt_total;
0206e353 191 args->aper_available_size = args->aper_size - pinned;
6299f992 192
5a125c3c
EA
193 return 0;
194}
195
ff72145b
DA
196static int
197i915_gem_create(struct drm_file *file,
198 struct drm_device *dev,
199 uint64_t size,
200 uint32_t *handle_p)
673a394b 201{
05394f39 202 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
203 int ret;
204 u32 handle;
673a394b 205
ff72145b 206 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
207 if (size == 0)
208 return -EINVAL;
673a394b
EA
209
210 /* Allocate the new object */
ff72145b 211 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
212 if (obj == NULL)
213 return -ENOMEM;
214
05394f39 215 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 216 if (ret) {
05394f39
CW
217 drm_gem_object_release(&obj->base);
218 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 219 kfree(obj);
673a394b 220 return ret;
1dfd9754 221 }
673a394b 222
202f2fef 223 /* drop reference from allocate - handle holds it now */
05394f39 224 drm_gem_object_unreference(&obj->base);
202f2fef
CW
225 trace_i915_gem_object_create(obj);
226
ff72145b 227 *handle_p = handle;
673a394b
EA
228 return 0;
229}
230
ff72145b
DA
231int
232i915_gem_dumb_create(struct drm_file *file,
233 struct drm_device *dev,
234 struct drm_mode_create_dumb *args)
235{
236 /* have to work out size/pitch and return them */
ed0291fd 237 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
238 args->size = args->pitch * args->height;
239 return i915_gem_create(file, dev,
240 args->size, &args->handle);
241}
242
243int i915_gem_dumb_destroy(struct drm_file *file,
244 struct drm_device *dev,
245 uint32_t handle)
246{
247 return drm_gem_handle_delete(file, handle);
248}
249
250/**
251 * Creates a new mm object and returns a handle to it.
252 */
253int
254i915_gem_create_ioctl(struct drm_device *dev, void *data,
255 struct drm_file *file)
256{
257 struct drm_i915_gem_create *args = data;
63ed2cb2 258
ff72145b
DA
259 return i915_gem_create(file, dev,
260 args->size, &args->handle);
261}
262
05394f39 263static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 264{
05394f39 265 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
266
267 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 268 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
269}
270
8461d226
DV
271static inline int
272__copy_to_user_swizzled(char __user *cpu_vaddr,
273 const char *gpu_vaddr, int gpu_offset,
274 int length)
275{
276 int ret, cpu_offset = 0;
277
278 while (length > 0) {
279 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280 int this_length = min(cacheline_end - gpu_offset, length);
281 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284 gpu_vaddr + swizzled_gpu_offset,
285 this_length);
286 if (ret)
287 return ret + length;
288
289 cpu_offset += this_length;
290 gpu_offset += this_length;
291 length -= this_length;
292 }
293
294 return 0;
295}
296
8c59967c 297static inline int
4f0c7cfb
BW
298__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299 const char __user *cpu_vaddr,
8c59967c
DV
300 int length)
301{
302 int ret, cpu_offset = 0;
303
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310 cpu_vaddr + cpu_offset,
311 this_length);
312 if (ret)
313 return ret + length;
314
315 cpu_offset += this_length;
316 gpu_offset += this_length;
317 length -= this_length;
318 }
319
320 return 0;
321}
322
d174bd64
DV
323/* Per-page copy function for the shmem pread fastpath.
324 * Flushes invalid cachelines before reading the target if
325 * needs_clflush is set. */
eb01459f 326static int
d174bd64
DV
327shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328 char __user *user_data,
329 bool page_do_bit17_swizzling, bool needs_clflush)
330{
331 char *vaddr;
332 int ret;
333
e7e58eb5 334 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
335 return -EINVAL;
336
337 vaddr = kmap_atomic(page);
338 if (needs_clflush)
339 drm_clflush_virt_range(vaddr + shmem_page_offset,
340 page_length);
341 ret = __copy_to_user_inatomic(user_data,
342 vaddr + shmem_page_offset,
343 page_length);
344 kunmap_atomic(vaddr);
345
346 return ret;
347}
348
23c18c71
DV
349static void
350shmem_clflush_swizzled_range(char *addr, unsigned long length,
351 bool swizzled)
352{
e7e58eb5 353 if (unlikely(swizzled)) {
23c18c71
DV
354 unsigned long start = (unsigned long) addr;
355 unsigned long end = (unsigned long) addr + length;
356
357 /* For swizzling simply ensure that we always flush both
358 * channels. Lame, but simple and it works. Swizzled
359 * pwrite/pread is far from a hotpath - current userspace
360 * doesn't use it at all. */
361 start = round_down(start, 128);
362 end = round_up(end, 128);
363
364 drm_clflush_virt_range((void *)start, end - start);
365 } else {
366 drm_clflush_virt_range(addr, length);
367 }
368
369}
370
d174bd64
DV
371/* Only difference to the fast-path function is that this can handle bit17
372 * and uses non-atomic copy and kmap functions. */
373static int
374shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375 char __user *user_data,
376 bool page_do_bit17_swizzling, bool needs_clflush)
377{
378 char *vaddr;
379 int ret;
380
381 vaddr = kmap(page);
382 if (needs_clflush)
23c18c71
DV
383 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384 page_length,
385 page_do_bit17_swizzling);
d174bd64
DV
386
387 if (page_do_bit17_swizzling)
388 ret = __copy_to_user_swizzled(user_data,
389 vaddr, shmem_page_offset,
390 page_length);
391 else
392 ret = __copy_to_user(user_data,
393 vaddr + shmem_page_offset,
394 page_length);
395 kunmap(page);
396
397 return ret;
398}
399
eb01459f 400static int
dbf7bff0
DV
401i915_gem_shmem_pread(struct drm_device *dev,
402 struct drm_i915_gem_object *obj,
403 struct drm_i915_gem_pread *args,
404 struct drm_file *file)
eb01459f 405{
05394f39 406 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 407 char __user *user_data;
eb01459f 408 ssize_t remain;
8461d226 409 loff_t offset;
eb2c0c81 410 int shmem_page_offset, page_length, ret = 0;
8461d226 411 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 412 int hit_slowpath = 0;
96d79b52 413 int prefaulted = 0;
8489731c 414 int needs_clflush = 0;
692a576b 415 int release_page;
eb01459f 416
8461d226 417 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
418 remain = args->size;
419
8461d226 420 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 421
8489731c
DV
422 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423 /* If we're not in the cpu read domain, set ourself into the gtt
424 * read domain and manually flush cachelines (if required). This
425 * optimizes for the case when the gpu will dirty the data
426 * anyway again before the next pread happens. */
427 if (obj->cache_level == I915_CACHE_NONE)
428 needs_clflush = 1;
6c085a72
CW
429 if (obj->gtt_space) {
430 ret = i915_gem_object_set_to_gtt_domain(obj, false);
431 if (ret)
432 return ret;
433 }
8489731c 434 }
eb01459f 435
8461d226 436 offset = args->offset;
eb01459f
EA
437
438 while (remain > 0) {
e5281ccd
CW
439 struct page *page;
440
eb01459f
EA
441 /* Operation in this page
442 *
eb01459f 443 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
444 * page_length = bytes to copy for this page
445 */
c8cbbb8b 446 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
447 page_length = remain;
448 if ((shmem_page_offset + page_length) > PAGE_SIZE)
449 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 450
692a576b
DV
451 if (obj->pages) {
452 page = obj->pages[offset >> PAGE_SHIFT];
453 release_page = 0;
454 } else {
455 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
456 if (IS_ERR(page)) {
457 ret = PTR_ERR(page);
458 goto out;
459 }
460 release_page = 1;
b65552f0 461 }
e5281ccd 462
8461d226
DV
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
d174bd64
DV
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
dbf7bff0
DV
471
472 hit_slowpath = 1;
692a576b 473 page_cache_get(page);
dbf7bff0
DV
474 mutex_unlock(&dev->struct_mutex);
475
96d79b52 476 if (!prefaulted) {
f56f821f 477 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
478 /* Userspace is tricking us, but we've already clobbered
479 * its pages with the prefault and promised to write the
480 * data up to the first fault. Hence ignore any errors
481 * and just continue. */
482 (void)ret;
483 prefaulted = 1;
484 }
eb01459f 485
d174bd64
DV
486 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487 user_data, page_do_bit17_swizzling,
488 needs_clflush);
eb01459f 489
dbf7bff0 490 mutex_lock(&dev->struct_mutex);
e5281ccd 491 page_cache_release(page);
dbf7bff0 492next_page:
e5281ccd 493 mark_page_accessed(page);
692a576b
DV
494 if (release_page)
495 page_cache_release(page);
e5281ccd 496
8461d226
DV
497 if (ret) {
498 ret = -EFAULT;
499 goto out;
500 }
501
eb01459f 502 remain -= page_length;
8461d226 503 user_data += page_length;
eb01459f
EA
504 offset += page_length;
505 }
506
4f27b75d 507out:
dbf7bff0
DV
508 if (hit_slowpath) {
509 /* Fixup: Kill any reinstated backing storage pages */
510 if (obj->madv == __I915_MADV_PURGED)
511 i915_gem_object_truncate(obj);
512 }
eb01459f
EA
513
514 return ret;
515}
516
673a394b
EA
517/**
518 * Reads data from the object referenced by handle.
519 *
520 * On error, the contents of *data are undefined.
521 */
522int
523i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 524 struct drm_file *file)
673a394b
EA
525{
526 struct drm_i915_gem_pread *args = data;
05394f39 527 struct drm_i915_gem_object *obj;
35b62a89 528 int ret = 0;
673a394b 529
51311d0a
CW
530 if (args->size == 0)
531 return 0;
532
533 if (!access_ok(VERIFY_WRITE,
534 (char __user *)(uintptr_t)args->data_ptr,
535 args->size))
536 return -EFAULT;
537
4f27b75d 538 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 539 if (ret)
4f27b75d 540 return ret;
673a394b 541
05394f39 542 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 543 if (&obj->base == NULL) {
1d7cfea1
CW
544 ret = -ENOENT;
545 goto unlock;
4f27b75d 546 }
673a394b 547
7dcd2499 548 /* Bounds check source. */
05394f39
CW
549 if (args->offset > obj->base.size ||
550 args->size > obj->base.size - args->offset) {
ce9d419d 551 ret = -EINVAL;
35b62a89 552 goto out;
ce9d419d
CW
553 }
554
1286ff73
DV
555 /* prime objects have no backing filp to GEM pread/pwrite
556 * pages from.
557 */
558 if (!obj->base.filp) {
559 ret = -EINVAL;
560 goto out;
561 }
562
db53a302
CW
563 trace_i915_gem_object_pread(obj, args->offset, args->size);
564
dbf7bff0 565 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 566
35b62a89 567out:
05394f39 568 drm_gem_object_unreference(&obj->base);
1d7cfea1 569unlock:
4f27b75d 570 mutex_unlock(&dev->struct_mutex);
eb01459f 571 return ret;
673a394b
EA
572}
573
0839ccb8
KP
574/* This is the fast write path which cannot handle
575 * page faults in the source data
9b7530cc 576 */
0839ccb8
KP
577
578static inline int
579fast_user_write(struct io_mapping *mapping,
580 loff_t page_base, int page_offset,
581 char __user *user_data,
582 int length)
9b7530cc 583{
4f0c7cfb
BW
584 void __iomem *vaddr_atomic;
585 void *vaddr;
0839ccb8 586 unsigned long unwritten;
9b7530cc 587
3e4d3af5 588 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
589 /* We can use the cpu mem copy function because this is X86. */
590 vaddr = (void __force*)vaddr_atomic + page_offset;
591 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 592 user_data, length);
3e4d3af5 593 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 594 return unwritten;
0839ccb8
KP
595}
596
3de09aa3
EA
597/**
598 * This is the fast pwrite path, where we copy the data directly from the
599 * user into the GTT, uncached.
600 */
673a394b 601static int
05394f39
CW
602i915_gem_gtt_pwrite_fast(struct drm_device *dev,
603 struct drm_i915_gem_object *obj,
3de09aa3 604 struct drm_i915_gem_pwrite *args,
05394f39 605 struct drm_file *file)
673a394b 606{
0839ccb8 607 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 608 ssize_t remain;
0839ccb8 609 loff_t offset, page_base;
673a394b 610 char __user *user_data;
935aaa69
DV
611 int page_offset, page_length, ret;
612
86a1ee26 613 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
614 if (ret)
615 goto out;
616
617 ret = i915_gem_object_set_to_gtt_domain(obj, true);
618 if (ret)
619 goto out_unpin;
620
621 ret = i915_gem_object_put_fence(obj);
622 if (ret)
623 goto out_unpin;
673a394b
EA
624
625 user_data = (char __user *) (uintptr_t) args->data_ptr;
626 remain = args->size;
673a394b 627
05394f39 628 offset = obj->gtt_offset + args->offset;
673a394b
EA
629
630 while (remain > 0) {
631 /* Operation in this page
632 *
0839ccb8
KP
633 * page_base = page offset within aperture
634 * page_offset = offset within page
635 * page_length = bytes to copy for this page
673a394b 636 */
c8cbbb8b
CW
637 page_base = offset & PAGE_MASK;
638 page_offset = offset_in_page(offset);
0839ccb8
KP
639 page_length = remain;
640 if ((page_offset + remain) > PAGE_SIZE)
641 page_length = PAGE_SIZE - page_offset;
642
0839ccb8 643 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
644 * source page isn't available. Return the error and we'll
645 * retry in the slow path.
0839ccb8 646 */
fbd5a26d 647 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
648 page_offset, user_data, page_length)) {
649 ret = -EFAULT;
650 goto out_unpin;
651 }
673a394b 652
0839ccb8
KP
653 remain -= page_length;
654 user_data += page_length;
655 offset += page_length;
673a394b 656 }
673a394b 657
935aaa69
DV
658out_unpin:
659 i915_gem_object_unpin(obj);
660out:
3de09aa3 661 return ret;
673a394b
EA
662}
663
d174bd64
DV
664/* Per-page copy function for the shmem pwrite fastpath.
665 * Flushes invalid cachelines before writing to the target if
666 * needs_clflush_before is set and flushes out any written cachelines after
667 * writing if needs_clflush is set. */
3043c60c 668static int
d174bd64
DV
669shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
670 char __user *user_data,
671 bool page_do_bit17_swizzling,
672 bool needs_clflush_before,
673 bool needs_clflush_after)
673a394b 674{
d174bd64 675 char *vaddr;
673a394b 676 int ret;
3de09aa3 677
e7e58eb5 678 if (unlikely(page_do_bit17_swizzling))
d174bd64 679 return -EINVAL;
3de09aa3 680
d174bd64
DV
681 vaddr = kmap_atomic(page);
682 if (needs_clflush_before)
683 drm_clflush_virt_range(vaddr + shmem_page_offset,
684 page_length);
685 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
686 user_data,
687 page_length);
688 if (needs_clflush_after)
689 drm_clflush_virt_range(vaddr + shmem_page_offset,
690 page_length);
691 kunmap_atomic(vaddr);
3de09aa3
EA
692
693 return ret;
694}
695
d174bd64
DV
696/* Only difference to the fast-path function is that this can handle bit17
697 * and uses non-atomic copy and kmap functions. */
3043c60c 698static int
d174bd64
DV
699shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
700 char __user *user_data,
701 bool page_do_bit17_swizzling,
702 bool needs_clflush_before,
703 bool needs_clflush_after)
673a394b 704{
d174bd64
DV
705 char *vaddr;
706 int ret;
e5281ccd 707
d174bd64 708 vaddr = kmap(page);
e7e58eb5 709 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
710 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
711 page_length,
712 page_do_bit17_swizzling);
d174bd64
DV
713 if (page_do_bit17_swizzling)
714 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
715 user_data,
716 page_length);
d174bd64
DV
717 else
718 ret = __copy_from_user(vaddr + shmem_page_offset,
719 user_data,
720 page_length);
721 if (needs_clflush_after)
23c18c71
DV
722 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
723 page_length,
724 page_do_bit17_swizzling);
d174bd64 725 kunmap(page);
40123c1f 726
d174bd64 727 return ret;
40123c1f
EA
728}
729
40123c1f 730static int
e244a443
DV
731i915_gem_shmem_pwrite(struct drm_device *dev,
732 struct drm_i915_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file)
40123c1f 735{
05394f39 736 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 737 ssize_t remain;
8c59967c
DV
738 loff_t offset;
739 char __user *user_data;
eb2c0c81 740 int shmem_page_offset, page_length, ret = 0;
8c59967c 741 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 742 int hit_slowpath = 0;
58642885
DV
743 int needs_clflush_after = 0;
744 int needs_clflush_before = 0;
692a576b 745 int release_page;
40123c1f 746
8c59967c 747 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
748 remain = args->size;
749
8c59967c 750 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 751
58642885
DV
752 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
753 /* If we're not in the cpu write domain, set ourself into the gtt
754 * write domain and manually flush cachelines (if required). This
755 * optimizes for the case when the gpu will use the data
756 * right away and we therefore have to clflush anyway. */
757 if (obj->cache_level == I915_CACHE_NONE)
758 needs_clflush_after = 1;
6c085a72
CW
759 if (obj->gtt_space) {
760 ret = i915_gem_object_set_to_gtt_domain(obj, true);
761 if (ret)
762 return ret;
763 }
58642885
DV
764 }
765 /* Same trick applies for invalidate partially written cachelines before
766 * writing. */
767 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
768 && obj->cache_level == I915_CACHE_NONE)
769 needs_clflush_before = 1;
770
673a394b 771 offset = args->offset;
05394f39 772 obj->dirty = 1;
673a394b 773
40123c1f 774 while (remain > 0) {
e5281ccd 775 struct page *page;
58642885 776 int partial_cacheline_write;
e5281ccd 777
40123c1f
EA
778 /* Operation in this page
779 *
40123c1f 780 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
781 * page_length = bytes to copy for this page
782 */
c8cbbb8b 783 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
784
785 page_length = remain;
786 if ((shmem_page_offset + page_length) > PAGE_SIZE)
787 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 788
58642885
DV
789 /* If we don't overwrite a cacheline completely we need to be
790 * careful to have up-to-date data by first clflushing. Don't
791 * overcomplicate things and flush the entire patch. */
792 partial_cacheline_write = needs_clflush_before &&
793 ((shmem_page_offset | page_length)
794 & (boot_cpu_data.x86_clflush_size - 1));
795
692a576b
DV
796 if (obj->pages) {
797 page = obj->pages[offset >> PAGE_SHIFT];
798 release_page = 0;
799 } else {
800 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
801 if (IS_ERR(page)) {
802 ret = PTR_ERR(page);
803 goto out;
804 }
805 release_page = 1;
e5281ccd
CW
806 }
807
8c59967c
DV
808 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
809 (page_to_phys(page) & (1 << 17)) != 0;
810
d174bd64
DV
811 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
812 user_data, page_do_bit17_swizzling,
813 partial_cacheline_write,
814 needs_clflush_after);
815 if (ret == 0)
816 goto next_page;
e244a443
DV
817
818 hit_slowpath = 1;
692a576b 819 page_cache_get(page);
e244a443
DV
820 mutex_unlock(&dev->struct_mutex);
821
d174bd64
DV
822 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
823 user_data, page_do_bit17_swizzling,
824 partial_cacheline_write,
825 needs_clflush_after);
40123c1f 826
e244a443 827 mutex_lock(&dev->struct_mutex);
692a576b 828 page_cache_release(page);
e244a443 829next_page:
e5281ccd
CW
830 set_page_dirty(page);
831 mark_page_accessed(page);
692a576b
DV
832 if (release_page)
833 page_cache_release(page);
e5281ccd 834
8c59967c
DV
835 if (ret) {
836 ret = -EFAULT;
837 goto out;
838 }
839
40123c1f 840 remain -= page_length;
8c59967c 841 user_data += page_length;
40123c1f 842 offset += page_length;
673a394b
EA
843 }
844
fbd5a26d 845out:
e244a443
DV
846 if (hit_slowpath) {
847 /* Fixup: Kill any reinstated backing storage pages */
848 if (obj->madv == __I915_MADV_PURGED)
849 i915_gem_object_truncate(obj);
850 /* and flush dirty cachelines in case the object isn't in the cpu write
851 * domain anymore. */
852 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
853 i915_gem_clflush_object(obj);
854 intel_gtt_chipset_flush();
855 }
8c59967c 856 }
673a394b 857
58642885
DV
858 if (needs_clflush_after)
859 intel_gtt_chipset_flush();
860
40123c1f 861 return ret;
673a394b
EA
862}
863
864/**
865 * Writes data to the object referenced by handle.
866 *
867 * On error, the contents of the buffer that were to be modified are undefined.
868 */
869int
870i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 871 struct drm_file *file)
673a394b
EA
872{
873 struct drm_i915_gem_pwrite *args = data;
05394f39 874 struct drm_i915_gem_object *obj;
51311d0a
CW
875 int ret;
876
877 if (args->size == 0)
878 return 0;
879
880 if (!access_ok(VERIFY_READ,
881 (char __user *)(uintptr_t)args->data_ptr,
882 args->size))
883 return -EFAULT;
884
f56f821f
DV
885 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
886 args->size);
51311d0a
CW
887 if (ret)
888 return -EFAULT;
673a394b 889
fbd5a26d 890 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 891 if (ret)
fbd5a26d 892 return ret;
1d7cfea1 893
05394f39 894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 895 if (&obj->base == NULL) {
1d7cfea1
CW
896 ret = -ENOENT;
897 goto unlock;
fbd5a26d 898 }
673a394b 899
7dcd2499 900 /* Bounds check destination. */
05394f39
CW
901 if (args->offset > obj->base.size ||
902 args->size > obj->base.size - args->offset) {
ce9d419d 903 ret = -EINVAL;
35b62a89 904 goto out;
ce9d419d
CW
905 }
906
1286ff73
DV
907 /* prime objects have no backing filp to GEM pread/pwrite
908 * pages from.
909 */
910 if (!obj->base.filp) {
911 ret = -EINVAL;
912 goto out;
913 }
914
db53a302
CW
915 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
935aaa69 917 ret = -EFAULT;
673a394b
EA
918 /* We can only do the GTT pwrite on untiled buffers, as otherwise
919 * it would end up going through the fenced access, and we'll get
920 * different detiling behavior between reading and writing.
921 * pread/pwrite currently are reading and writing from the CPU
922 * perspective, requiring manual detiling by the client.
923 */
5c0480f2 924 if (obj->phys_obj) {
fbd5a26d 925 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
926 goto out;
927 }
928
86a1ee26 929 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 930 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 931 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 932 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
933 /* Note that the gtt paths might fail with non-page-backed user
934 * pointers (e.g. gtt mappings when moving data between
935 * textures). Fallback to the shmem path in that case. */
fbd5a26d 936 }
673a394b 937
86a1ee26 938 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 939 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 940
35b62a89 941out:
05394f39 942 drm_gem_object_unreference(&obj->base);
1d7cfea1 943unlock:
fbd5a26d 944 mutex_unlock(&dev->struct_mutex);
673a394b
EA
945 return ret;
946}
947
b361237b
CW
948int
949i915_gem_check_wedge(struct drm_i915_private *dev_priv,
950 bool interruptible)
951{
952 if (atomic_read(&dev_priv->mm.wedged)) {
953 struct completion *x = &dev_priv->error_completion;
954 bool recovery_complete;
955 unsigned long flags;
956
957 /* Give the error handler a chance to run. */
958 spin_lock_irqsave(&x->wait.lock, flags);
959 recovery_complete = x->done > 0;
960 spin_unlock_irqrestore(&x->wait.lock, flags);
961
962 /* Non-interruptible callers can't handle -EAGAIN, hence return
963 * -EIO unconditionally for these. */
964 if (!interruptible)
965 return -EIO;
966
967 /* Recovery complete, but still wedged means reset failure. */
968 if (recovery_complete)
969 return -EIO;
970
971 return -EAGAIN;
972 }
973
974 return 0;
975}
976
977/*
978 * Compare seqno against outstanding lazy request. Emit a request if they are
979 * equal.
980 */
981static int
982i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
983{
984 int ret;
985
986 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
987
988 ret = 0;
989 if (seqno == ring->outstanding_lazy_request)
990 ret = i915_add_request(ring, NULL, NULL);
991
992 return ret;
993}
994
995/**
996 * __wait_seqno - wait until execution of seqno has finished
997 * @ring: the ring expected to report seqno
998 * @seqno: duh!
999 * @interruptible: do an interruptible wait (normally yes)
1000 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1001 *
1002 * Returns 0 if the seqno was found within the alloted time. Else returns the
1003 * errno with remaining time filled in timeout argument.
1004 */
1005static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1006 bool interruptible, struct timespec *timeout)
1007{
1008 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1009 struct timespec before, now, wait_time={1,0};
1010 unsigned long timeout_jiffies;
1011 long end;
1012 bool wait_forever = true;
1013 int ret;
1014
1015 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1016 return 0;
1017
1018 trace_i915_gem_request_wait_begin(ring, seqno);
1019
1020 if (timeout != NULL) {
1021 wait_time = *timeout;
1022 wait_forever = false;
1023 }
1024
1025 timeout_jiffies = timespec_to_jiffies(&wait_time);
1026
1027 if (WARN_ON(!ring->irq_get(ring)))
1028 return -ENODEV;
1029
1030 /* Record current time in case interrupted by signal, or wedged * */
1031 getrawmonotonic(&before);
1032
1033#define EXIT_COND \
1034 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1035 atomic_read(&dev_priv->mm.wedged))
1036 do {
1037 if (interruptible)
1038 end = wait_event_interruptible_timeout(ring->irq_queue,
1039 EXIT_COND,
1040 timeout_jiffies);
1041 else
1042 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1043 timeout_jiffies);
1044
1045 ret = i915_gem_check_wedge(dev_priv, interruptible);
1046 if (ret)
1047 end = ret;
1048 } while (end == 0 && wait_forever);
1049
1050 getrawmonotonic(&now);
1051
1052 ring->irq_put(ring);
1053 trace_i915_gem_request_wait_end(ring, seqno);
1054#undef EXIT_COND
1055
1056 if (timeout) {
1057 struct timespec sleep_time = timespec_sub(now, before);
1058 *timeout = timespec_sub(*timeout, sleep_time);
1059 }
1060
1061 switch (end) {
1062 case -EIO:
1063 case -EAGAIN: /* Wedged */
1064 case -ERESTARTSYS: /* Signal */
1065 return (int)end;
1066 case 0: /* Timeout */
1067 if (timeout)
1068 set_normalized_timespec(timeout, 0, 0);
1069 return -ETIME;
1070 default: /* Completed */
1071 WARN_ON(end < 0); /* We're not aware of other errors */
1072 return 0;
1073 }
1074}
1075
1076/**
1077 * Waits for a sequence number to be signaled, and cleans up the
1078 * request and object lists appropriately for that event.
1079 */
1080int
1081i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1082{
1083 struct drm_device *dev = ring->dev;
1084 struct drm_i915_private *dev_priv = dev->dev_private;
1085 bool interruptible = dev_priv->mm.interruptible;
1086 int ret;
1087
1088 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1089 BUG_ON(seqno == 0);
1090
1091 ret = i915_gem_check_wedge(dev_priv, interruptible);
1092 if (ret)
1093 return ret;
1094
1095 ret = i915_gem_check_olr(ring, seqno);
1096 if (ret)
1097 return ret;
1098
1099 return __wait_seqno(ring, seqno, interruptible, NULL);
1100}
1101
1102/**
1103 * Ensures that all rendering to the object has completed and the object is
1104 * safe to unbind from the GTT or access from the CPU.
1105 */
1106static __must_check int
1107i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1108 bool readonly)
1109{
1110 struct intel_ring_buffer *ring = obj->ring;
1111 u32 seqno;
1112 int ret;
1113
1114 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1115 if (seqno == 0)
1116 return 0;
1117
1118 ret = i915_wait_seqno(ring, seqno);
1119 if (ret)
1120 return ret;
1121
1122 i915_gem_retire_requests_ring(ring);
1123
1124 /* Manually manage the write flush as we may have not yet
1125 * retired the buffer.
1126 */
1127 if (obj->last_write_seqno &&
1128 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1129 obj->last_write_seqno = 0;
1130 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1131 }
1132
1133 return 0;
1134}
1135
3236f57a
CW
1136/* A nonblocking variant of the above wait. This is a highly dangerous routine
1137 * as the object state may change during this call.
1138 */
1139static __must_check int
1140i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1141 bool readonly)
1142{
1143 struct drm_device *dev = obj->base.dev;
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 struct intel_ring_buffer *ring = obj->ring;
1146 u32 seqno;
1147 int ret;
1148
1149 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1150 BUG_ON(!dev_priv->mm.interruptible);
1151
1152 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1153 if (seqno == 0)
1154 return 0;
1155
1156 ret = i915_gem_check_wedge(dev_priv, true);
1157 if (ret)
1158 return ret;
1159
1160 ret = i915_gem_check_olr(ring, seqno);
1161 if (ret)
1162 return ret;
1163
1164 mutex_unlock(&dev->struct_mutex);
1165 ret = __wait_seqno(ring, seqno, true, NULL);
1166 mutex_lock(&dev->struct_mutex);
1167
1168 i915_gem_retire_requests_ring(ring);
1169
1170 /* Manually manage the write flush as we may have not yet
1171 * retired the buffer.
1172 */
1173 if (obj->last_write_seqno &&
1174 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1175 obj->last_write_seqno = 0;
1176 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1177 }
1178
1179 return ret;
1180}
1181
673a394b 1182/**
2ef7eeaa
EA
1183 * Called when user space prepares to use an object with the CPU, either
1184 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1185 */
1186int
1187i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1188 struct drm_file *file)
673a394b
EA
1189{
1190 struct drm_i915_gem_set_domain *args = data;
05394f39 1191 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1192 uint32_t read_domains = args->read_domains;
1193 uint32_t write_domain = args->write_domain;
673a394b
EA
1194 int ret;
1195
2ef7eeaa 1196 /* Only handle setting domains to types used by the CPU. */
21d509e3 1197 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1198 return -EINVAL;
1199
21d509e3 1200 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1201 return -EINVAL;
1202
1203 /* Having something in the write domain implies it's in the read
1204 * domain, and only that read domain. Enforce that in the request.
1205 */
1206 if (write_domain != 0 && read_domains != write_domain)
1207 return -EINVAL;
1208
76c1dec1 1209 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1210 if (ret)
76c1dec1 1211 return ret;
1d7cfea1 1212
05394f39 1213 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1214 if (&obj->base == NULL) {
1d7cfea1
CW
1215 ret = -ENOENT;
1216 goto unlock;
76c1dec1 1217 }
673a394b 1218
3236f57a
CW
1219 /* Try to flush the object off the GPU without holding the lock.
1220 * We will repeat the flush holding the lock in the normal manner
1221 * to catch cases where we are gazumped.
1222 */
1223 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1224 if (ret)
1225 goto unref;
1226
2ef7eeaa
EA
1227 if (read_domains & I915_GEM_DOMAIN_GTT) {
1228 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1229
1230 /* Silently promote "you're not bound, there was nothing to do"
1231 * to success, since the client was just asking us to
1232 * make sure everything was done.
1233 */
1234 if (ret == -EINVAL)
1235 ret = 0;
2ef7eeaa 1236 } else {
e47c68e9 1237 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1238 }
1239
3236f57a 1240unref:
05394f39 1241 drm_gem_object_unreference(&obj->base);
1d7cfea1 1242unlock:
673a394b
EA
1243 mutex_unlock(&dev->struct_mutex);
1244 return ret;
1245}
1246
1247/**
1248 * Called when user space has done writes to this buffer
1249 */
1250int
1251i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1252 struct drm_file *file)
673a394b
EA
1253{
1254 struct drm_i915_gem_sw_finish *args = data;
05394f39 1255 struct drm_i915_gem_object *obj;
673a394b
EA
1256 int ret = 0;
1257
76c1dec1 1258 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1259 if (ret)
76c1dec1 1260 return ret;
1d7cfea1 1261
05394f39 1262 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1263 if (&obj->base == NULL) {
1d7cfea1
CW
1264 ret = -ENOENT;
1265 goto unlock;
673a394b
EA
1266 }
1267
673a394b 1268 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1269 if (obj->pin_count)
e47c68e9
EA
1270 i915_gem_object_flush_cpu_write_domain(obj);
1271
05394f39 1272 drm_gem_object_unreference(&obj->base);
1d7cfea1 1273unlock:
673a394b
EA
1274 mutex_unlock(&dev->struct_mutex);
1275 return ret;
1276}
1277
1278/**
1279 * Maps the contents of an object, returning the address it is mapped
1280 * into.
1281 *
1282 * While the mapping holds a reference on the contents of the object, it doesn't
1283 * imply a ref on the object itself.
1284 */
1285int
1286i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1287 struct drm_file *file)
673a394b
EA
1288{
1289 struct drm_i915_gem_mmap *args = data;
1290 struct drm_gem_object *obj;
673a394b
EA
1291 unsigned long addr;
1292
05394f39 1293 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1294 if (obj == NULL)
bf79cb91 1295 return -ENOENT;
673a394b 1296
1286ff73
DV
1297 /* prime objects have no backing filp to GEM mmap
1298 * pages from.
1299 */
1300 if (!obj->filp) {
1301 drm_gem_object_unreference_unlocked(obj);
1302 return -EINVAL;
1303 }
1304
6be5ceb0 1305 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1306 PROT_READ | PROT_WRITE, MAP_SHARED,
1307 args->offset);
bc9025bd 1308 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1309 if (IS_ERR((void *)addr))
1310 return addr;
1311
1312 args->addr_ptr = (uint64_t) addr;
1313
1314 return 0;
1315}
1316
de151cf6
JB
1317/**
1318 * i915_gem_fault - fault a page into the GTT
1319 * vma: VMA in question
1320 * vmf: fault info
1321 *
1322 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1323 * from userspace. The fault handler takes care of binding the object to
1324 * the GTT (if needed), allocating and programming a fence register (again,
1325 * only if needed based on whether the old reg is still valid or the object
1326 * is tiled) and inserting a new PTE into the faulting process.
1327 *
1328 * Note that the faulting process may involve evicting existing objects
1329 * from the GTT and/or fence registers to make room. So performance may
1330 * suffer if the GTT working set is large or there are few fence registers
1331 * left.
1332 */
1333int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1334{
05394f39
CW
1335 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1336 struct drm_device *dev = obj->base.dev;
7d1c4804 1337 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1338 pgoff_t page_offset;
1339 unsigned long pfn;
1340 int ret = 0;
0f973f27 1341 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1342
1343 /* We don't use vmf->pgoff since that has the fake offset */
1344 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1345 PAGE_SHIFT;
1346
d9bc7e9f
CW
1347 ret = i915_mutex_lock_interruptible(dev);
1348 if (ret)
1349 goto out;
a00b10c3 1350
db53a302
CW
1351 trace_i915_gem_object_fault(obj, page_offset, true, write);
1352
d9bc7e9f 1353 /* Now bind it into the GTT if needed */
919926ae
CW
1354 if (!obj->map_and_fenceable) {
1355 ret = i915_gem_object_unbind(obj);
1356 if (ret)
1357 goto unlock;
a00b10c3 1358 }
05394f39 1359 if (!obj->gtt_space) {
86a1ee26 1360 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
c715089f
CW
1361 if (ret)
1362 goto unlock;
de151cf6 1363
e92d03bf
EA
1364 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1365 if (ret)
1366 goto unlock;
1367 }
4a684a41 1368
74898d7e
DV
1369 if (!obj->has_global_gtt_mapping)
1370 i915_gem_gtt_bind_object(obj, obj->cache_level);
1371
06d98131 1372 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1373 if (ret)
1374 goto unlock;
de151cf6 1375
05394f39
CW
1376 if (i915_gem_object_is_inactive(obj))
1377 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1378
6299f992
CW
1379 obj->fault_mappable = true;
1380
dd2757f8 1381 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1382 page_offset;
1383
1384 /* Finally, remap it using the new GTT offset */
1385 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1386unlock:
de151cf6 1387 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1388out:
de151cf6 1389 switch (ret) {
d9bc7e9f 1390 case -EIO:
a9340cca
DV
1391 /* If this -EIO is due to a gpu hang, give the reset code a
1392 * chance to clean up the mess. Otherwise return the proper
1393 * SIGBUS. */
1394 if (!atomic_read(&dev_priv->mm.wedged))
1395 return VM_FAULT_SIGBUS;
045e769a 1396 case -EAGAIN:
d9bc7e9f
CW
1397 /* Give the error handler a chance to run and move the
1398 * objects off the GPU active list. Next time we service the
1399 * fault, we should be able to transition the page into the
1400 * GTT without touching the GPU (and so avoid further
1401 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1402 * with coherency, just lost writes.
1403 */
045e769a 1404 set_need_resched();
c715089f
CW
1405 case 0:
1406 case -ERESTARTSYS:
bed636ab 1407 case -EINTR:
c715089f 1408 return VM_FAULT_NOPAGE;
de151cf6 1409 case -ENOMEM:
de151cf6 1410 return VM_FAULT_OOM;
de151cf6 1411 default:
c715089f 1412 return VM_FAULT_SIGBUS;
de151cf6
JB
1413 }
1414}
1415
901782b2
CW
1416/**
1417 * i915_gem_release_mmap - remove physical page mappings
1418 * @obj: obj in question
1419 *
af901ca1 1420 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1421 * relinquish ownership of the pages back to the system.
1422 *
1423 * It is vital that we remove the page mapping if we have mapped a tiled
1424 * object through the GTT and then lose the fence register due to
1425 * resource pressure. Similarly if the object has been moved out of the
1426 * aperture, than pages mapped into userspace must be revoked. Removing the
1427 * mapping will then trigger a page fault on the next user access, allowing
1428 * fixup by i915_gem_fault().
1429 */
d05ca301 1430void
05394f39 1431i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1432{
6299f992
CW
1433 if (!obj->fault_mappable)
1434 return;
901782b2 1435
f6e47884
CW
1436 if (obj->base.dev->dev_mapping)
1437 unmap_mapping_range(obj->base.dev->dev_mapping,
1438 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1439 obj->base.size, 1);
fb7d516a 1440
6299f992 1441 obj->fault_mappable = false;
901782b2
CW
1442}
1443
92b88aeb 1444static uint32_t
e28f8711 1445i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1446{
e28f8711 1447 uint32_t gtt_size;
92b88aeb
CW
1448
1449 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1450 tiling_mode == I915_TILING_NONE)
1451 return size;
92b88aeb
CW
1452
1453 /* Previous chips need a power-of-two fence region when tiling */
1454 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1455 gtt_size = 1024*1024;
92b88aeb 1456 else
e28f8711 1457 gtt_size = 512*1024;
92b88aeb 1458
e28f8711
CW
1459 while (gtt_size < size)
1460 gtt_size <<= 1;
92b88aeb 1461
e28f8711 1462 return gtt_size;
92b88aeb
CW
1463}
1464
de151cf6
JB
1465/**
1466 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467 * @obj: object to check
1468 *
1469 * Return the required GTT alignment for an object, taking into account
5e783301 1470 * potential fence register mapping.
de151cf6
JB
1471 */
1472static uint32_t
e28f8711
CW
1473i915_gem_get_gtt_alignment(struct drm_device *dev,
1474 uint32_t size,
1475 int tiling_mode)
de151cf6 1476{
de151cf6
JB
1477 /*
1478 * Minimum alignment is 4k (GTT page size), but might be greater
1479 * if a fence register is needed for the object.
1480 */
a00b10c3 1481 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1482 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1483 return 4096;
1484
a00b10c3
CW
1485 /*
1486 * Previous chips need to be aligned to the size of the smallest
1487 * fence register that can contain the object.
1488 */
e28f8711 1489 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1490}
1491
5e783301
DV
1492/**
1493 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1494 * unfenced object
e28f8711
CW
1495 * @dev: the device
1496 * @size: size of the object
1497 * @tiling_mode: tiling mode of the object
5e783301
DV
1498 *
1499 * Return the required GTT alignment for an object, only taking into account
1500 * unfenced tiled surface requirements.
1501 */
467cffba 1502uint32_t
e28f8711
CW
1503i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1504 uint32_t size,
1505 int tiling_mode)
5e783301 1506{
5e783301
DV
1507 /*
1508 * Minimum alignment is 4k (GTT page size) for sane hw.
1509 */
1510 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1511 tiling_mode == I915_TILING_NONE)
5e783301
DV
1512 return 4096;
1513
e28f8711
CW
1514 /* Previous hardware however needs to be aligned to a power-of-two
1515 * tile height. The simplest method for determining this is to reuse
1516 * the power-of-tile object size.
5e783301 1517 */
e28f8711 1518 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1519}
1520
d8cb5086
CW
1521static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1522{
1523 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1524 int ret;
1525
1526 if (obj->base.map_list.map)
1527 return 0;
1528
1529 ret = drm_gem_create_mmap_offset(&obj->base);
1530 if (ret != -ENOSPC)
1531 return ret;
1532
1533 /* Badly fragmented mmap space? The only way we can recover
1534 * space is by destroying unwanted objects. We can't randomly release
1535 * mmap_offsets as userspace expects them to be persistent for the
1536 * lifetime of the objects. The closest we can is to release the
1537 * offsets on purgeable objects by truncating it and marking it purged,
1538 * which prevents userspace from ever using that object again.
1539 */
1540 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1541 ret = drm_gem_create_mmap_offset(&obj->base);
1542 if (ret != -ENOSPC)
1543 return ret;
1544
1545 i915_gem_shrink_all(dev_priv);
1546 return drm_gem_create_mmap_offset(&obj->base);
1547}
1548
1549static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1550{
1551 if (!obj->base.map_list.map)
1552 return;
1553
1554 drm_gem_free_mmap_offset(&obj->base);
1555}
1556
de151cf6 1557int
ff72145b
DA
1558i915_gem_mmap_gtt(struct drm_file *file,
1559 struct drm_device *dev,
1560 uint32_t handle,
1561 uint64_t *offset)
de151cf6 1562{
da761a6e 1563 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1564 struct drm_i915_gem_object *obj;
de151cf6
JB
1565 int ret;
1566
76c1dec1 1567 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1568 if (ret)
76c1dec1 1569 return ret;
de151cf6 1570
ff72145b 1571 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1572 if (&obj->base == NULL) {
1d7cfea1
CW
1573 ret = -ENOENT;
1574 goto unlock;
1575 }
de151cf6 1576
05394f39 1577 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1578 ret = -E2BIG;
ff56b0bc 1579 goto out;
da761a6e
CW
1580 }
1581
05394f39 1582 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1583 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1584 ret = -EINVAL;
1585 goto out;
ab18282d
CW
1586 }
1587
d8cb5086
CW
1588 ret = i915_gem_object_create_mmap_offset(obj);
1589 if (ret)
1590 goto out;
de151cf6 1591
ff72145b 1592 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1593
1d7cfea1 1594out:
05394f39 1595 drm_gem_object_unreference(&obj->base);
1d7cfea1 1596unlock:
de151cf6 1597 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1598 return ret;
de151cf6
JB
1599}
1600
ff72145b
DA
1601/**
1602 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1603 * @dev: DRM device
1604 * @data: GTT mapping ioctl data
1605 * @file: GEM object info
1606 *
1607 * Simply returns the fake offset to userspace so it can mmap it.
1608 * The mmap call will end up in drm_gem_mmap(), which will set things
1609 * up so we can get faults in the handler above.
1610 *
1611 * The fault handler will take care of binding the object into the GTT
1612 * (since it may have been evicted to make room for something), allocating
1613 * a fence register, and mapping the appropriate aperture address into
1614 * userspace.
1615 */
1616int
1617i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1618 struct drm_file *file)
1619{
1620 struct drm_i915_gem_mmap_gtt *args = data;
1621
ff72145b
DA
1622 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1623}
1624
225067ee
DV
1625/* Immediately discard the backing storage */
1626static void
1627i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1628{
e5281ccd 1629 struct inode *inode;
e5281ccd 1630
4d6294bf 1631 i915_gem_object_free_mmap_offset(obj);
1286ff73 1632
4d6294bf
CW
1633 if (obj->base.filp == NULL)
1634 return;
e5281ccd 1635
225067ee
DV
1636 /* Our goal here is to return as much of the memory as
1637 * is possible back to the system as we are called from OOM.
1638 * To do this we must instruct the shmfs to drop all of its
1639 * backing pages, *now*.
1640 */
05394f39 1641 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1642 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1643
225067ee
DV
1644 obj->madv = __I915_MADV_PURGED;
1645}
e5281ccd 1646
225067ee
DV
1647static inline int
1648i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1649{
1650 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1651}
1652
6c085a72 1653static int
05394f39 1654i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1655{
05394f39 1656 int page_count = obj->base.size / PAGE_SIZE;
6c085a72 1657 int ret, i;
673a394b 1658
c4670ad0 1659 BUG_ON(obj->gtt_space);
1286ff73 1660
6c085a72
CW
1661 if (obj->pages == NULL)
1662 return 0;
225067ee 1663
6c085a72 1664 BUG_ON(obj->gtt_space);
05394f39 1665 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1666
6c085a72
CW
1667 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1668 if (ret) {
1669 /* In the event of a disaster, abandon all caches and
1670 * hope for the best.
1671 */
1672 WARN_ON(ret != -EIO);
1673 i915_gem_clflush_object(obj);
1674 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1675 }
1676
6dacfd2f 1677 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1678 i915_gem_object_save_bit_17_swizzle(obj);
1679
05394f39
CW
1680 if (obj->madv == I915_MADV_DONTNEED)
1681 obj->dirty = 0;
3ef94daa
CW
1682
1683 for (i = 0; i < page_count; i++) {
05394f39
CW
1684 if (obj->dirty)
1685 set_page_dirty(obj->pages[i]);
3ef94daa 1686
05394f39
CW
1687 if (obj->madv == I915_MADV_WILLNEED)
1688 mark_page_accessed(obj->pages[i]);
3ef94daa 1689
05394f39 1690 page_cache_release(obj->pages[i]);
3ef94daa 1691 }
05394f39 1692 obj->dirty = 0;
673a394b 1693
05394f39
CW
1694 drm_free_large(obj->pages);
1695 obj->pages = NULL;
6c085a72
CW
1696
1697 list_del(&obj->gtt_list);
1698
1699 if (i915_gem_object_is_purgeable(obj))
1700 i915_gem_object_truncate(obj);
1701
1702 return 0;
1703}
1704
1705static long
1706i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1707{
1708 struct drm_i915_gem_object *obj, *next;
1709 long count = 0;
1710
1711 list_for_each_entry_safe(obj, next,
1712 &dev_priv->mm.unbound_list,
1713 gtt_list) {
1714 if (i915_gem_object_is_purgeable(obj) &&
1715 i915_gem_object_put_pages_gtt(obj) == 0) {
1716 count += obj->base.size >> PAGE_SHIFT;
1717 if (count >= target)
1718 return count;
1719 }
1720 }
1721
1722 list_for_each_entry_safe(obj, next,
1723 &dev_priv->mm.inactive_list,
1724 mm_list) {
1725 if (i915_gem_object_is_purgeable(obj) &&
1726 i915_gem_object_unbind(obj) == 0 &&
1727 i915_gem_object_put_pages_gtt(obj) == 0) {
1728 count += obj->base.size >> PAGE_SHIFT;
1729 if (count >= target)
1730 return count;
1731 }
1732 }
1733
1734 return count;
1735}
1736
1737static void
1738i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1739{
1740 struct drm_i915_gem_object *obj, *next;
1741
1742 i915_gem_evict_everything(dev_priv->dev);
1743
1744 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1745 i915_gem_object_put_pages_gtt(obj);
225067ee
DV
1746}
1747
1286ff73 1748int
6c085a72 1749i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1750{
6c085a72 1751 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1752 int page_count, i;
1753 struct address_space *mapping;
e5281ccd 1754 struct page *page;
6c085a72 1755 gfp_t gfp;
e5281ccd 1756
1286ff73
DV
1757 if (obj->pages || obj->sg_table)
1758 return 0;
1759
6c085a72
CW
1760 /* Assert that the object is not currently in any GPU domain. As it
1761 * wasn't in the GTT, there shouldn't be any way it could have been in
1762 * a GPU cache
1763 */
1764 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1765 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1766
e5281ccd
CW
1767 /* Get the list of pages out of our struct file. They'll be pinned
1768 * at this point until we release them.
1769 */
05394f39 1770 page_count = obj->base.size / PAGE_SIZE;
05394f39
CW
1771 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1772 if (obj->pages == NULL)
e5281ccd
CW
1773 return -ENOMEM;
1774
6c085a72
CW
1775 /* Fail silently without starting the shrinker */
1776 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1777 gfp = mapping_gfp_mask(mapping);
d7c3b937 1778 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72 1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
e5281ccd 1780 for (i = 0; i < page_count; i++) {
6c085a72
CW
1781 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1782 if (IS_ERR(page)) {
1783 i915_gem_purge(dev_priv, page_count);
1784 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785 }
1786 if (IS_ERR(page)) {
1787 /* We've tried hard to allocate the memory by reaping
1788 * our own buffer, now let the real VM do its job and
1789 * go down in flames if truly OOM.
1790 */
d7c3b937 1791 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
6c085a72
CW
1792 gfp |= __GFP_IO | __GFP_WAIT;
1793
1794 i915_gem_shrink_all(dev_priv);
1795 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1796 if (IS_ERR(page))
1797 goto err_pages;
1798
d7c3b937 1799 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72
CW
1800 gfp &= ~(__GFP_IO | __GFP_WAIT);
1801 }
e5281ccd 1802
05394f39 1803 obj->pages[i] = page;
e5281ccd
CW
1804 }
1805
6dacfd2f 1806 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1807 i915_gem_object_do_bit_17_swizzle(obj);
1808
6c085a72 1809 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
e5281ccd
CW
1810 return 0;
1811
1812err_pages:
1813 while (i--)
05394f39 1814 page_cache_release(obj->pages[i]);
e5281ccd 1815
05394f39
CW
1816 drm_free_large(obj->pages);
1817 obj->pages = NULL;
e5281ccd 1818 return PTR_ERR(page);
673a394b
EA
1819}
1820
54cf91dc 1821void
05394f39 1822i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1823 struct intel_ring_buffer *ring,
1824 u32 seqno)
673a394b 1825{
05394f39 1826 struct drm_device *dev = obj->base.dev;
69dc4987 1827 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1828
852835f3 1829 BUG_ON(ring == NULL);
05394f39 1830 obj->ring = ring;
673a394b
EA
1831
1832 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1833 if (!obj->active) {
1834 drm_gem_object_reference(&obj->base);
1835 obj->active = 1;
673a394b 1836 }
e35a41de 1837
673a394b 1838 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1839 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1840 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1841
0201f1ec 1842 obj->last_read_seqno = seqno;
caea7476 1843
7dd49065 1844 if (obj->fenced_gpu_access) {
caea7476 1845 obj->last_fenced_seqno = seqno;
caea7476 1846
7dd49065
CW
1847 /* Bump MRU to take account of the delayed flush */
1848 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1849 struct drm_i915_fence_reg *reg;
1850
1851 reg = &dev_priv->fence_regs[obj->fence_reg];
1852 list_move_tail(&reg->lru_list,
1853 &dev_priv->mm.fence_list);
1854 }
caea7476
CW
1855 }
1856}
1857
caea7476
CW
1858static void
1859i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1860{
1861 struct drm_device *dev = obj->base.dev;
1862 struct drm_i915_private *dev_priv = dev->dev_private;
1863
65ce3027 1864 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
caea7476 1865 BUG_ON(!obj->active);
65ce3027 1866
f047e395
CW
1867 if (obj->pin_count) /* are we a framebuffer? */
1868 intel_mark_fb_idle(obj);
1869
1870 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1871
65ce3027 1872 list_del_init(&obj->ring_list);
caea7476
CW
1873 obj->ring = NULL;
1874
65ce3027
CW
1875 obj->last_read_seqno = 0;
1876 obj->last_write_seqno = 0;
1877 obj->base.write_domain = 0;
1878
1879 obj->last_fenced_seqno = 0;
caea7476 1880 obj->fenced_gpu_access = false;
caea7476
CW
1881
1882 obj->active = 0;
1883 drm_gem_object_unreference(&obj->base);
1884
1885 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1886}
673a394b 1887
53d227f2
DV
1888static u32
1889i915_gem_get_seqno(struct drm_device *dev)
1890{
1891 drm_i915_private_t *dev_priv = dev->dev_private;
1892 u32 seqno = dev_priv->next_seqno;
1893
1894 /* reserve 0 for non-seqno */
1895 if (++dev_priv->next_seqno == 0)
1896 dev_priv->next_seqno = 1;
1897
1898 return seqno;
1899}
1900
1901u32
1902i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1903{
1904 if (ring->outstanding_lazy_request == 0)
1905 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1906
1907 return ring->outstanding_lazy_request;
1908}
1909
3cce469c 1910int
db53a302 1911i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1912 struct drm_file *file,
db53a302 1913 struct drm_i915_gem_request *request)
673a394b 1914{
db53a302 1915 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1916 uint32_t seqno;
a71d8d94 1917 u32 request_ring_position;
673a394b 1918 int was_empty;
3cce469c
CW
1919 int ret;
1920
cc889e0f
DV
1921 /*
1922 * Emit any outstanding flushes - execbuf can fail to emit the flush
1923 * after having emitted the batchbuffer command. Hence we need to fix
1924 * things up similar to emitting the lazy request. The difference here
1925 * is that the flush _must_ happen before the next request, no matter
1926 * what.
1927 */
a7b9761d
CW
1928 ret = intel_ring_flush_all_caches(ring);
1929 if (ret)
1930 return ret;
cc889e0f 1931
3bb73aba
CW
1932 if (request == NULL) {
1933 request = kmalloc(sizeof(*request), GFP_KERNEL);
1934 if (request == NULL)
1935 return -ENOMEM;
1936 }
1937
53d227f2 1938 seqno = i915_gem_next_request_seqno(ring);
673a394b 1939
a71d8d94
CW
1940 /* Record the position of the start of the request so that
1941 * should we detect the updated seqno part-way through the
1942 * GPU processing the request, we never over-estimate the
1943 * position of the head.
1944 */
1945 request_ring_position = intel_ring_get_tail(ring);
1946
3cce469c 1947 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1948 if (ret) {
1949 kfree(request);
1950 return ret;
1951 }
673a394b 1952
db53a302 1953 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1954
1955 request->seqno = seqno;
852835f3 1956 request->ring = ring;
a71d8d94 1957 request->tail = request_ring_position;
673a394b 1958 request->emitted_jiffies = jiffies;
852835f3
ZN
1959 was_empty = list_empty(&ring->request_list);
1960 list_add_tail(&request->list, &ring->request_list);
3bb73aba 1961 request->file_priv = NULL;
852835f3 1962
db53a302
CW
1963 if (file) {
1964 struct drm_i915_file_private *file_priv = file->driver_priv;
1965
1c25595f 1966 spin_lock(&file_priv->mm.lock);
f787a5f5 1967 request->file_priv = file_priv;
b962442e 1968 list_add_tail(&request->client_list,
f787a5f5 1969 &file_priv->mm.request_list);
1c25595f 1970 spin_unlock(&file_priv->mm.lock);
b962442e 1971 }
673a394b 1972
5391d0cf 1973 ring->outstanding_lazy_request = 0;
db53a302 1974
f65d9421 1975 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1976 if (i915_enable_hangcheck) {
1977 mod_timer(&dev_priv->hangcheck_timer,
1978 jiffies +
1979 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1980 }
f047e395 1981 if (was_empty) {
b3b079db
CW
1982 queue_delayed_work(dev_priv->wq,
1983 &dev_priv->mm.retire_work, HZ);
f047e395
CW
1984 intel_mark_busy(dev_priv->dev);
1985 }
f65d9421 1986 }
cc889e0f 1987
3cce469c 1988 return 0;
673a394b
EA
1989}
1990
f787a5f5
CW
1991static inline void
1992i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1993{
1c25595f 1994 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1995
1c25595f
CW
1996 if (!file_priv)
1997 return;
1c5d22f7 1998
1c25595f 1999 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2000 if (request->file_priv) {
2001 list_del(&request->client_list);
2002 request->file_priv = NULL;
2003 }
1c25595f 2004 spin_unlock(&file_priv->mm.lock);
673a394b 2005}
673a394b 2006
dfaae392
CW
2007static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2008 struct intel_ring_buffer *ring)
9375e446 2009{
dfaae392
CW
2010 while (!list_empty(&ring->request_list)) {
2011 struct drm_i915_gem_request *request;
673a394b 2012
dfaae392
CW
2013 request = list_first_entry(&ring->request_list,
2014 struct drm_i915_gem_request,
2015 list);
de151cf6 2016
dfaae392 2017 list_del(&request->list);
f787a5f5 2018 i915_gem_request_remove_from_client(request);
dfaae392
CW
2019 kfree(request);
2020 }
673a394b 2021
dfaae392 2022 while (!list_empty(&ring->active_list)) {
05394f39 2023 struct drm_i915_gem_object *obj;
9375e446 2024
05394f39
CW
2025 obj = list_first_entry(&ring->active_list,
2026 struct drm_i915_gem_object,
2027 ring_list);
9375e446 2028
05394f39 2029 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2030 }
2031}
2032
312817a3
CW
2033static void i915_gem_reset_fences(struct drm_device *dev)
2034{
2035 struct drm_i915_private *dev_priv = dev->dev_private;
2036 int i;
2037
4b9de737 2038 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2039 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2040
ada726c7 2041 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2042
ada726c7
CW
2043 if (reg->obj)
2044 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2045
ada726c7
CW
2046 reg->pin_count = 0;
2047 reg->obj = NULL;
2048 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2049 }
ada726c7
CW
2050
2051 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2052}
2053
069efc1d 2054void i915_gem_reset(struct drm_device *dev)
673a394b 2055{
77f01230 2056 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2057 struct drm_i915_gem_object *obj;
b4519513 2058 struct intel_ring_buffer *ring;
1ec14ad3 2059 int i;
673a394b 2060
b4519513
CW
2061 for_each_ring(ring, dev_priv, i)
2062 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2063
dfaae392
CW
2064 /* Move everything out of the GPU domains to ensure we do any
2065 * necessary invalidation upon reuse.
2066 */
05394f39 2067 list_for_each_entry(obj,
77f01230 2068 &dev_priv->mm.inactive_list,
69dc4987 2069 mm_list)
77f01230 2070 {
05394f39 2071 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2072 }
069efc1d 2073
6c085a72 2074
069efc1d 2075 /* The fence registers are invalidated so clear them out */
312817a3 2076 i915_gem_reset_fences(dev);
673a394b
EA
2077}
2078
2079/**
2080 * This function clears the request list as sequence numbers are passed.
2081 */
a71d8d94 2082void
db53a302 2083i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2084{
673a394b 2085 uint32_t seqno;
1ec14ad3 2086 int i;
673a394b 2087
db53a302 2088 if (list_empty(&ring->request_list))
6c0594a3
KW
2089 return;
2090
db53a302 2091 WARN_ON(i915_verify_lists(ring->dev));
5c81fe85 2092
b2eadbc8 2093 seqno = ring->get_seqno(ring, true);
604dd3ec 2094
076e2c0e 2095 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
2096 if (seqno >= ring->sync_seqno[i])
2097 ring->sync_seqno[i] = 0;
5c81fe85 2098
852835f3 2099 while (!list_empty(&ring->request_list)) {
673a394b 2100 struct drm_i915_gem_request *request;
604dd3ec 2101
852835f3 2102 request = list_first_entry(&ring->request_list,
673a394b
EA
2103 struct drm_i915_gem_request,
2104 list);
5c81fe85 2105
dfaae392 2106 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c 2107 break;
604dd3ec 2108
db53a302 2109 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2110 /* We know the GPU must have read the request to have
2111 * sent us the seqno + interrupt, so use the position
2112 * of tail of the request to update the last known position
2113 * of the GPU head.
2114 */
2115 ring->last_retired_head = request->tail;
604dd3ec 2116
b84d5f0c 2117 list_del(&request->list);
f787a5f5 2118 i915_gem_request_remove_from_client(request);
b84d5f0c 2119 kfree(request);
5c81fe85
BW
2120 }
2121
b84d5f0c
CW
2122 /* Move any buffers on the active list that are no longer referenced
2123 * by the ringbuffer to the flushing/inactive lists as appropriate.
2124 */
2125 while (!list_empty(&ring->active_list)) {
05394f39 2126 struct drm_i915_gem_object *obj;
604dd3ec 2127
0206e353 2128 obj = list_first_entry(&ring->active_list,
05394f39
CW
2129 struct drm_i915_gem_object,
2130 ring_list);
673a394b 2131
0201f1ec 2132 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2133 break;
673a394b 2134
65ce3027 2135 i915_gem_object_move_to_inactive(obj);
673a394b 2136 }
3cce469c 2137
db53a302
CW
2138 if (unlikely(ring->trace_irq_seqno &&
2139 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2140 ring->irq_put(ring);
db53a302 2141 ring->trace_irq_seqno = 0;
9d34e5db 2142 }
23bc5982 2143
db53a302 2144 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2145}
ffed1d09 2146
b09a1fec
CW
2147void
2148i915_gem_retire_requests(struct drm_device *dev)
2149{
2150 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2151 struct intel_ring_buffer *ring;
1ec14ad3 2152 int i;
673a394b 2153
b4519513
CW
2154 for_each_ring(ring, dev_priv, i)
2155 i915_gem_retire_requests_ring(ring);
673a394b
EA
2156}
2157
75ef9da2 2158static void
673a394b 2159i915_gem_retire_work_handler(struct work_struct *work)
673a394b 2160{
673a394b
EA
2161 drm_i915_private_t *dev_priv;
2162 struct drm_device *dev;
b4519513 2163 struct intel_ring_buffer *ring;
0a58705b
CW
2164 bool idle;
2165 int i;
673a394b 2166
673a394b
EA
2167 dev_priv = container_of(work, drm_i915_private_t,
2168 mm.retire_work.work);
2169 dev = dev_priv->dev;
0201f1ec 2170
891b48cf
CW
2171 /* Come back later if the device is busy... */
2172 if (!mutex_trylock(&dev->struct_mutex)) {
2173 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2174 return;
2175 }
2176
b09a1fec 2177 i915_gem_retire_requests(dev);
0201f1ec 2178
0a58705b
CW
2179 /* Send a periodic flush down the ring so we don't hold onto GEM
2180 * objects indefinitely.
0201f1ec 2181 */
0a58705b 2182 idle = true;
b4519513 2183 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2184 if (ring->gpu_caches_dirty)
2185 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2186
2187 idle &= list_empty(&ring->request_list);
673a394b
EA
2188 }
2189
0a58705b 2190 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 2191 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
f047e395
CW
2192 if (idle)
2193 intel_mark_idle(dev);
0a58705b 2194
673a394b 2195 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2196}
2197
30dfebf3
DV
2198/**
2199 * Ensures that an object will eventually get non-busy by flushing any required
2200 * write domains, emitting any outstanding lazy request and retiring and
2201 * completed requests.
2202 */
2203static int
2204i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2205{
2206 int ret;
2207
2208 if (obj->active) {
0201f1ec 2209 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2210 if (ret)
2211 return ret;
0201f1ec 2212
30dfebf3
DV
2213 i915_gem_retire_requests_ring(obj->ring);
2214 }
2215
2216 return 0;
2217}
2218
23ba4fd0
BW
2219/**
2220 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2221 * @DRM_IOCTL_ARGS: standard ioctl arguments
2222 *
2223 * Returns 0 if successful, else an error is returned with the remaining time in
2224 * the timeout parameter.
2225 * -ETIME: object is still busy after timeout
2226 * -ERESTARTSYS: signal interrupted the wait
2227 * -ENONENT: object doesn't exist
2228 * Also possible, but rare:
2229 * -EAGAIN: GPU wedged
2230 * -ENOMEM: damn
2231 * -ENODEV: Internal IRQ fail
2232 * -E?: The add request failed
2233 *
2234 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2235 * non-zero timeout parameter the wait ioctl will wait for the given number of
2236 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2237 * without holding struct_mutex the object may become re-busied before this
2238 * function completes. A similar but shorter * race condition exists in the busy
2239 * ioctl
2240 */
2241int
2242i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2243{
2244 struct drm_i915_gem_wait *args = data;
2245 struct drm_i915_gem_object *obj;
2246 struct intel_ring_buffer *ring = NULL;
eac1f14f 2247 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2248 u32 seqno = 0;
2249 int ret = 0;
2250
eac1f14f
BW
2251 if (args->timeout_ns >= 0) {
2252 timeout_stack = ns_to_timespec(args->timeout_ns);
2253 timeout = &timeout_stack;
2254 }
23ba4fd0
BW
2255
2256 ret = i915_mutex_lock_interruptible(dev);
2257 if (ret)
2258 return ret;
2259
2260 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2261 if (&obj->base == NULL) {
2262 mutex_unlock(&dev->struct_mutex);
2263 return -ENOENT;
2264 }
2265
30dfebf3
DV
2266 /* Need to make sure the object gets inactive eventually. */
2267 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2268 if (ret)
2269 goto out;
2270
2271 if (obj->active) {
0201f1ec 2272 seqno = obj->last_read_seqno;
23ba4fd0
BW
2273 ring = obj->ring;
2274 }
2275
2276 if (seqno == 0)
2277 goto out;
2278
23ba4fd0
BW
2279 /* Do this after OLR check to make sure we make forward progress polling
2280 * on this IOCTL with a 0 timeout (like busy ioctl)
2281 */
2282 if (!args->timeout_ns) {
2283 ret = -ETIME;
2284 goto out;
2285 }
2286
2287 drm_gem_object_unreference(&obj->base);
2288 mutex_unlock(&dev->struct_mutex);
2289
eac1f14f
BW
2290 ret = __wait_seqno(ring, seqno, true, timeout);
2291 if (timeout) {
2292 WARN_ON(!timespec_valid(timeout));
2293 args->timeout_ns = timespec_to_ns(timeout);
2294 }
23ba4fd0
BW
2295 return ret;
2296
2297out:
2298 drm_gem_object_unreference(&obj->base);
2299 mutex_unlock(&dev->struct_mutex);
2300 return ret;
2301}
2302
5816d648
BW
2303/**
2304 * i915_gem_object_sync - sync an object to a ring.
2305 *
2306 * @obj: object which may be in use on another ring.
2307 * @to: ring we wish to use the object on. May be NULL.
2308 *
2309 * This code is meant to abstract object synchronization with the GPU.
2310 * Calling with NULL implies synchronizing the object with the CPU
2311 * rather than a particular GPU ring.
2312 *
2313 * Returns 0 if successful, else propagates up the lower layer error.
2314 */
2911a35b
BW
2315int
2316i915_gem_object_sync(struct drm_i915_gem_object *obj,
2317 struct intel_ring_buffer *to)
2318{
2319 struct intel_ring_buffer *from = obj->ring;
2320 u32 seqno;
2321 int ret, idx;
2322
2323 if (from == NULL || to == from)
2324 return 0;
2325
5816d648 2326 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2327 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2328
2329 idx = intel_ring_sync_index(from, to);
2330
0201f1ec 2331 seqno = obj->last_read_seqno;
2911a35b
BW
2332 if (seqno <= from->sync_seqno[idx])
2333 return 0;
2334
b4aca010
BW
2335 ret = i915_gem_check_olr(obj->ring, seqno);
2336 if (ret)
2337 return ret;
2911a35b 2338
1500f7ea 2339 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2340 if (!ret)
2341 from->sync_seqno[idx] = seqno;
2911a35b 2342
e3a5a225 2343 return ret;
2911a35b
BW
2344}
2345
b5ffc9bc
CW
2346static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2347{
2348 u32 old_write_domain, old_read_domains;
2349
b5ffc9bc
CW
2350 /* Act a barrier for all accesses through the GTT */
2351 mb();
2352
2353 /* Force a pagefault for domain tracking on next user access */
2354 i915_gem_release_mmap(obj);
2355
b97c3d9c
KP
2356 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2357 return;
2358
b5ffc9bc
CW
2359 old_read_domains = obj->base.read_domains;
2360 old_write_domain = obj->base.write_domain;
2361
2362 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2363 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2364
2365 trace_i915_gem_object_change_domain(obj,
2366 old_read_domains,
2367 old_write_domain);
2368}
2369
673a394b
EA
2370/**
2371 * Unbinds an object from the GTT aperture.
2372 */
0f973f27 2373int
05394f39 2374i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2375{
7bddb01f 2376 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2377 int ret = 0;
2378
05394f39 2379 if (obj->gtt_space == NULL)
673a394b
EA
2380 return 0;
2381
31d8d651
CW
2382 if (obj->pin_count)
2383 return -EBUSY;
673a394b 2384
c4670ad0
CW
2385 BUG_ON(obj->pages == NULL);
2386
a8198eea 2387 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2388 if (ret)
a8198eea
CW
2389 return ret;
2390 /* Continue on if we fail due to EIO, the GPU is hung so we
2391 * should be safe and we need to cleanup or else we might
2392 * cause memory corruption through use-after-free.
2393 */
2394
b5ffc9bc 2395 i915_gem_object_finish_gtt(obj);
5323fd04 2396
96b47b65 2397 /* release the fence reg _after_ flushing */
d9e86c0e 2398 ret = i915_gem_object_put_fence(obj);
1488fc08 2399 if (ret)
d9e86c0e 2400 return ret;
96b47b65 2401
db53a302
CW
2402 trace_i915_gem_object_unbind(obj);
2403
74898d7e
DV
2404 if (obj->has_global_gtt_mapping)
2405 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2406 if (obj->has_aliasing_ppgtt_mapping) {
2407 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2408 obj->has_aliasing_ppgtt_mapping = 0;
2409 }
74163907 2410 i915_gem_gtt_finish_object(obj);
7bddb01f 2411
6c085a72
CW
2412 list_del(&obj->mm_list);
2413 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2414 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2415 obj->map_and_fenceable = true;
673a394b 2416
05394f39
CW
2417 drm_mm_put_block(obj->gtt_space);
2418 obj->gtt_space = NULL;
2419 obj->gtt_offset = 0;
673a394b 2420
6c085a72 2421 return 0;
673a394b
EA
2422}
2423
b2da9fe5 2424static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2425{
69c2fc89 2426 if (list_empty(&ring->active_list))
64193406
CW
2427 return 0;
2428
199b2bc2 2429 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2430}
2431
b2da9fe5 2432int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2433{
2434 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2435 struct intel_ring_buffer *ring;
1ec14ad3 2436 int ret, i;
4df2faf4 2437
4df2faf4 2438 /* Flush everything onto the inactive list. */
b4519513 2439 for_each_ring(ring, dev_priv, i) {
b6c7488d 2440 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
1ec14ad3
CW
2441 if (ret)
2442 return ret;
b4519513 2443
b4519513 2444 ret = i915_ring_idle(ring);
f2ef6eb1
BW
2445 if (ret)
2446 return ret;
1ec14ad3 2447 }
4df2faf4 2448
8a1a49f9 2449 return 0;
4df2faf4
DV
2450}
2451
9ce079e4
CW
2452static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2453 struct drm_i915_gem_object *obj)
4e901fdc 2454{
4e901fdc 2455 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2456 uint64_t val;
2457
9ce079e4
CW
2458 if (obj) {
2459 u32 size = obj->gtt_space->size;
4e901fdc 2460
9ce079e4
CW
2461 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2462 0xfffff000) << 32;
2463 val |= obj->gtt_offset & 0xfffff000;
2464 val |= (uint64_t)((obj->stride / 128) - 1) <<
2465 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2466
9ce079e4
CW
2467 if (obj->tiling_mode == I915_TILING_Y)
2468 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2469 val |= I965_FENCE_REG_VALID;
2470 } else
2471 val = 0;
c6642782 2472
9ce079e4
CW
2473 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2474 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2475}
2476
9ce079e4
CW
2477static void i965_write_fence_reg(struct drm_device *dev, int reg,
2478 struct drm_i915_gem_object *obj)
de151cf6 2479{
de151cf6 2480 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2481 uint64_t val;
2482
9ce079e4
CW
2483 if (obj) {
2484 u32 size = obj->gtt_space->size;
de151cf6 2485
9ce079e4
CW
2486 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2487 0xfffff000) << 32;
2488 val |= obj->gtt_offset & 0xfffff000;
2489 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2490 if (obj->tiling_mode == I915_TILING_Y)
2491 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2492 val |= I965_FENCE_REG_VALID;
2493 } else
2494 val = 0;
c6642782 2495
9ce079e4
CW
2496 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2497 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2498}
2499
9ce079e4
CW
2500static void i915_write_fence_reg(struct drm_device *dev, int reg,
2501 struct drm_i915_gem_object *obj)
de151cf6 2502{
de151cf6 2503 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2504 u32 val;
de151cf6 2505
9ce079e4
CW
2506 if (obj) {
2507 u32 size = obj->gtt_space->size;
2508 int pitch_val;
2509 int tile_width;
c6642782 2510
9ce079e4
CW
2511 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2512 (size & -size) != size ||
2513 (obj->gtt_offset & (size - 1)),
2514 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2515 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2516
9ce079e4
CW
2517 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2518 tile_width = 128;
2519 else
2520 tile_width = 512;
2521
2522 /* Note: pitch better be a power of two tile widths */
2523 pitch_val = obj->stride / tile_width;
2524 pitch_val = ffs(pitch_val) - 1;
2525
2526 val = obj->gtt_offset;
2527 if (obj->tiling_mode == I915_TILING_Y)
2528 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2529 val |= I915_FENCE_SIZE_BITS(size);
2530 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2531 val |= I830_FENCE_REG_VALID;
2532 } else
2533 val = 0;
2534
2535 if (reg < 8)
2536 reg = FENCE_REG_830_0 + reg * 4;
2537 else
2538 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2539
2540 I915_WRITE(reg, val);
2541 POSTING_READ(reg);
de151cf6
JB
2542}
2543
9ce079e4
CW
2544static void i830_write_fence_reg(struct drm_device *dev, int reg,
2545 struct drm_i915_gem_object *obj)
de151cf6 2546{
de151cf6 2547 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2548 uint32_t val;
de151cf6 2549
9ce079e4
CW
2550 if (obj) {
2551 u32 size = obj->gtt_space->size;
2552 uint32_t pitch_val;
de151cf6 2553
9ce079e4
CW
2554 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2555 (size & -size) != size ||
2556 (obj->gtt_offset & (size - 1)),
2557 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2558 obj->gtt_offset, size);
e76a16de 2559
9ce079e4
CW
2560 pitch_val = obj->stride / 128;
2561 pitch_val = ffs(pitch_val) - 1;
de151cf6 2562
9ce079e4
CW
2563 val = obj->gtt_offset;
2564 if (obj->tiling_mode == I915_TILING_Y)
2565 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2566 val |= I830_FENCE_SIZE_BITS(size);
2567 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2568 val |= I830_FENCE_REG_VALID;
2569 } else
2570 val = 0;
c6642782 2571
9ce079e4
CW
2572 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2573 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2574}
2575
2576static void i915_gem_write_fence(struct drm_device *dev, int reg,
2577 struct drm_i915_gem_object *obj)
2578{
2579 switch (INTEL_INFO(dev)->gen) {
2580 case 7:
2581 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2582 case 5:
2583 case 4: i965_write_fence_reg(dev, reg, obj); break;
2584 case 3: i915_write_fence_reg(dev, reg, obj); break;
2585 case 2: i830_write_fence_reg(dev, reg, obj); break;
2586 default: break;
2587 }
de151cf6
JB
2588}
2589
61050808
CW
2590static inline int fence_number(struct drm_i915_private *dev_priv,
2591 struct drm_i915_fence_reg *fence)
2592{
2593 return fence - dev_priv->fence_regs;
2594}
2595
2596static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2597 struct drm_i915_fence_reg *fence,
2598 bool enable)
2599{
2600 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2601 int reg = fence_number(dev_priv, fence);
2602
2603 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2604
2605 if (enable) {
2606 obj->fence_reg = reg;
2607 fence->obj = obj;
2608 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2609 } else {
2610 obj->fence_reg = I915_FENCE_REG_NONE;
2611 fence->obj = NULL;
2612 list_del_init(&fence->lru_list);
2613 }
2614}
2615
d9e86c0e 2616static int
a360bb1a 2617i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2618{
1c293ea3 2619 if (obj->last_fenced_seqno) {
86d5bc37 2620 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2621 if (ret)
2622 return ret;
d9e86c0e
CW
2623
2624 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2625 }
2626
63256ec5
CW
2627 /* Ensure that all CPU reads are completed before installing a fence
2628 * and all writes before removing the fence.
2629 */
2630 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2631 mb();
2632
86d5bc37 2633 obj->fenced_gpu_access = false;
d9e86c0e
CW
2634 return 0;
2635}
2636
2637int
2638i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2639{
61050808 2640 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2641 int ret;
2642
a360bb1a 2643 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2644 if (ret)
2645 return ret;
2646
61050808
CW
2647 if (obj->fence_reg == I915_FENCE_REG_NONE)
2648 return 0;
d9e86c0e 2649
61050808
CW
2650 i915_gem_object_update_fence(obj,
2651 &dev_priv->fence_regs[obj->fence_reg],
2652 false);
2653 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2654
2655 return 0;
2656}
2657
2658static struct drm_i915_fence_reg *
a360bb1a 2659i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2660{
ae3db24a 2661 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2662 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2663 int i;
ae3db24a
DV
2664
2665 /* First try to find a free reg */
d9e86c0e 2666 avail = NULL;
ae3db24a
DV
2667 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2668 reg = &dev_priv->fence_regs[i];
2669 if (!reg->obj)
d9e86c0e 2670 return reg;
ae3db24a 2671
1690e1eb 2672 if (!reg->pin_count)
d9e86c0e 2673 avail = reg;
ae3db24a
DV
2674 }
2675
d9e86c0e
CW
2676 if (avail == NULL)
2677 return NULL;
ae3db24a
DV
2678
2679 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2680 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2681 if (reg->pin_count)
ae3db24a
DV
2682 continue;
2683
8fe301ad 2684 return reg;
ae3db24a
DV
2685 }
2686
8fe301ad 2687 return NULL;
ae3db24a
DV
2688}
2689
de151cf6 2690/**
9a5a53b3 2691 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2692 * @obj: object to map through a fence reg
2693 *
2694 * When mapping objects through the GTT, userspace wants to be able to write
2695 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2696 * This function walks the fence regs looking for a free one for @obj,
2697 * stealing one if it can't find any.
2698 *
2699 * It then sets up the reg based on the object's properties: address, pitch
2700 * and tiling format.
9a5a53b3
CW
2701 *
2702 * For an untiled surface, this removes any existing fence.
de151cf6 2703 */
8c4b8c3f 2704int
06d98131 2705i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2706{
05394f39 2707 struct drm_device *dev = obj->base.dev;
79e53945 2708 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2709 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2710 struct drm_i915_fence_reg *reg;
ae3db24a 2711 int ret;
de151cf6 2712
14415745
CW
2713 /* Have we updated the tiling parameters upon the object and so
2714 * will need to serialise the write to the associated fence register?
2715 */
5d82e3e6 2716 if (obj->fence_dirty) {
14415745
CW
2717 ret = i915_gem_object_flush_fence(obj);
2718 if (ret)
2719 return ret;
2720 }
9a5a53b3 2721
d9e86c0e 2722 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2723 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2724 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2725 if (!obj->fence_dirty) {
14415745
CW
2726 list_move_tail(&reg->lru_list,
2727 &dev_priv->mm.fence_list);
2728 return 0;
2729 }
2730 } else if (enable) {
2731 reg = i915_find_fence_reg(dev);
2732 if (reg == NULL)
2733 return -EDEADLK;
d9e86c0e 2734
14415745
CW
2735 if (reg->obj) {
2736 struct drm_i915_gem_object *old = reg->obj;
2737
2738 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2739 if (ret)
2740 return ret;
2741
14415745 2742 i915_gem_object_fence_lost(old);
29c5a587 2743 }
14415745 2744 } else
a09ba7fa 2745 return 0;
a09ba7fa 2746
14415745 2747 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2748 obj->fence_dirty = false;
14415745 2749
9ce079e4 2750 return 0;
de151cf6
JB
2751}
2752
42d6ab48
CW
2753static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2754 struct drm_mm_node *gtt_space,
2755 unsigned long cache_level)
2756{
2757 struct drm_mm_node *other;
2758
2759 /* On non-LLC machines we have to be careful when putting differing
2760 * types of snoopable memory together to avoid the prefetcher
2761 * crossing memory domains and dieing.
2762 */
2763 if (HAS_LLC(dev))
2764 return true;
2765
2766 if (gtt_space == NULL)
2767 return true;
2768
2769 if (list_empty(&gtt_space->node_list))
2770 return true;
2771
2772 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2773 if (other->allocated && !other->hole_follows && other->color != cache_level)
2774 return false;
2775
2776 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2777 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2778 return false;
2779
2780 return true;
2781}
2782
2783static void i915_gem_verify_gtt(struct drm_device *dev)
2784{
2785#if WATCH_GTT
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 struct drm_i915_gem_object *obj;
2788 int err = 0;
2789
2790 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2791 if (obj->gtt_space == NULL) {
2792 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2793 err++;
2794 continue;
2795 }
2796
2797 if (obj->cache_level != obj->gtt_space->color) {
2798 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2799 obj->gtt_space->start,
2800 obj->gtt_space->start + obj->gtt_space->size,
2801 obj->cache_level,
2802 obj->gtt_space->color);
2803 err++;
2804 continue;
2805 }
2806
2807 if (!i915_gem_valid_gtt_space(dev,
2808 obj->gtt_space,
2809 obj->cache_level)) {
2810 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2811 obj->gtt_space->start,
2812 obj->gtt_space->start + obj->gtt_space->size,
2813 obj->cache_level);
2814 err++;
2815 continue;
2816 }
2817 }
2818
2819 WARN_ON(err);
2820#endif
2821}
2822
673a394b
EA
2823/**
2824 * Finds free space in the GTT aperture and binds the object there.
2825 */
2826static int
05394f39 2827i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2828 unsigned alignment,
86a1ee26
CW
2829 bool map_and_fenceable,
2830 bool nonblocking)
673a394b 2831{
05394f39 2832 struct drm_device *dev = obj->base.dev;
673a394b 2833 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2834 struct drm_mm_node *free_space;
5e783301 2835 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2836 bool mappable, fenceable;
07f73f69 2837 int ret;
673a394b 2838
05394f39 2839 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2840 DRM_ERROR("Attempting to bind a purgeable object\n");
2841 return -EINVAL;
2842 }
2843
e28f8711
CW
2844 fence_size = i915_gem_get_gtt_size(dev,
2845 obj->base.size,
2846 obj->tiling_mode);
2847 fence_alignment = i915_gem_get_gtt_alignment(dev,
2848 obj->base.size,
2849 obj->tiling_mode);
2850 unfenced_alignment =
2851 i915_gem_get_unfenced_gtt_alignment(dev,
2852 obj->base.size,
2853 obj->tiling_mode);
a00b10c3 2854
673a394b 2855 if (alignment == 0)
5e783301
DV
2856 alignment = map_and_fenceable ? fence_alignment :
2857 unfenced_alignment;
75e9e915 2858 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2859 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2860 return -EINVAL;
2861 }
2862
05394f39 2863 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2864
654fc607
CW
2865 /* If the object is bigger than the entire aperture, reject it early
2866 * before evicting everything in a vain attempt to find space.
2867 */
05394f39 2868 if (obj->base.size >
75e9e915 2869 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2870 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2871 return -E2BIG;
2872 }
2873
6c085a72
CW
2874 ret = i915_gem_object_get_pages_gtt(obj);
2875 if (ret)
2876 return ret;
2877
673a394b 2878 search_free:
75e9e915 2879 if (map_and_fenceable)
920afa77 2880 free_space =
42d6ab48
CW
2881 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2882 size, alignment, obj->cache_level,
2883 0, dev_priv->mm.gtt_mappable_end,
2884 false);
920afa77 2885 else
42d6ab48
CW
2886 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2887 size, alignment, obj->cache_level,
2888 false);
920afa77
DV
2889
2890 if (free_space != NULL) {
75e9e915 2891 if (map_and_fenceable)
05394f39 2892 obj->gtt_space =
920afa77 2893 drm_mm_get_block_range_generic(free_space,
42d6ab48 2894 size, alignment, obj->cache_level,
6b9d89b4 2895 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2896 false);
920afa77 2897 else
05394f39 2898 obj->gtt_space =
42d6ab48
CW
2899 drm_mm_get_block_generic(free_space,
2900 size, alignment, obj->cache_level,
2901 false);
920afa77 2902 }
05394f39 2903 if (obj->gtt_space == NULL) {
75e9e915 2904 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2905 obj->cache_level,
86a1ee26
CW
2906 map_and_fenceable,
2907 nonblocking);
9731129c 2908 if (ret)
673a394b 2909 return ret;
9731129c 2910
673a394b
EA
2911 goto search_free;
2912 }
42d6ab48
CW
2913 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2914 obj->gtt_space,
2915 obj->cache_level))) {
2916 drm_mm_put_block(obj->gtt_space);
2917 obj->gtt_space = NULL;
2918 return -EINVAL;
2919 }
673a394b 2920
673a394b 2921
74163907 2922 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2923 if (ret) {
05394f39
CW
2924 drm_mm_put_block(obj->gtt_space);
2925 obj->gtt_space = NULL;
6c085a72 2926 return ret;
673a394b 2927 }
673a394b 2928
0ebb9829
DV
2929 if (!dev_priv->mm.aliasing_ppgtt)
2930 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2931
6c085a72 2932 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2933 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2934
6299f992 2935 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2936
75e9e915 2937 fenceable =
05394f39 2938 obj->gtt_space->size == fence_size &&
0206e353 2939 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2940
75e9e915 2941 mappable =
05394f39 2942 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2943
05394f39 2944 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2945
db53a302 2946 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2947 i915_gem_verify_gtt(dev);
673a394b
EA
2948 return 0;
2949}
2950
2951void
05394f39 2952i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2953{
673a394b
EA
2954 /* If we don't have a page list set up, then we're not pinned
2955 * to GPU, and we can ignore the cache flush because it'll happen
2956 * again at bind time.
2957 */
05394f39 2958 if (obj->pages == NULL)
673a394b
EA
2959 return;
2960
9c23f7fc
CW
2961 /* If the GPU is snooping the contents of the CPU cache,
2962 * we do not need to manually clear the CPU cache lines. However,
2963 * the caches are only snooped when the render cache is
2964 * flushed/invalidated. As we always have to emit invalidations
2965 * and flushes when moving into and out of the RENDER domain, correct
2966 * snooping behaviour occurs naturally as the result of our domain
2967 * tracking.
2968 */
2969 if (obj->cache_level != I915_CACHE_NONE)
2970 return;
2971
1c5d22f7 2972 trace_i915_gem_object_clflush(obj);
cfa16a0d 2973
05394f39 2974 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2975}
2976
e47c68e9
EA
2977/** Flushes the GTT write domain for the object if it's dirty. */
2978static void
05394f39 2979i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2980{
1c5d22f7
CW
2981 uint32_t old_write_domain;
2982
05394f39 2983 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2984 return;
2985
63256ec5 2986 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2987 * to it immediately go to main memory as far as we know, so there's
2988 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2989 *
2990 * However, we do have to enforce the order so that all writes through
2991 * the GTT land before any writes to the device, such as updates to
2992 * the GATT itself.
e47c68e9 2993 */
63256ec5
CW
2994 wmb();
2995
05394f39
CW
2996 old_write_domain = obj->base.write_domain;
2997 obj->base.write_domain = 0;
1c5d22f7
CW
2998
2999 trace_i915_gem_object_change_domain(obj,
05394f39 3000 obj->base.read_domains,
1c5d22f7 3001 old_write_domain);
e47c68e9
EA
3002}
3003
3004/** Flushes the CPU write domain for the object if it's dirty. */
3005static void
05394f39 3006i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3007{
1c5d22f7 3008 uint32_t old_write_domain;
e47c68e9 3009
05394f39 3010 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3011 return;
3012
3013 i915_gem_clflush_object(obj);
40ce6575 3014 intel_gtt_chipset_flush();
05394f39
CW
3015 old_write_domain = obj->base.write_domain;
3016 obj->base.write_domain = 0;
1c5d22f7
CW
3017
3018 trace_i915_gem_object_change_domain(obj,
05394f39 3019 obj->base.read_domains,
1c5d22f7 3020 old_write_domain);
e47c68e9
EA
3021}
3022
2ef7eeaa
EA
3023/**
3024 * Moves a single object to the GTT read, and possibly write domain.
3025 *
3026 * This function returns when the move is complete, including waiting on
3027 * flushes to occur.
3028 */
79e53945 3029int
2021746e 3030i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3031{
8325a09d 3032 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3033 uint32_t old_write_domain, old_read_domains;
e47c68e9 3034 int ret;
2ef7eeaa 3035
02354392 3036 /* Not valid to be called on unbound objects. */
05394f39 3037 if (obj->gtt_space == NULL)
02354392
EA
3038 return -EINVAL;
3039
8d7e3de1
CW
3040 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3041 return 0;
3042
0201f1ec
CW
3043 ret = i915_gem_object_wait_rendering(obj, !write);
3044 if (ret)
3045 return ret;
2dafb1e0 3046
7213342d 3047 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3048
05394f39
CW
3049 old_write_domain = obj->base.write_domain;
3050 old_read_domains = obj->base.read_domains;
1c5d22f7 3051
e47c68e9
EA
3052 /* It should now be out of any other write domains, and we can update
3053 * the domain values for our changes.
3054 */
05394f39
CW
3055 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3056 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3057 if (write) {
05394f39
CW
3058 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3059 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3060 obj->dirty = 1;
2ef7eeaa
EA
3061 }
3062
1c5d22f7
CW
3063 trace_i915_gem_object_change_domain(obj,
3064 old_read_domains,
3065 old_write_domain);
3066
8325a09d
CW
3067 /* And bump the LRU for this access */
3068 if (i915_gem_object_is_inactive(obj))
3069 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3070
e47c68e9
EA
3071 return 0;
3072}
3073
e4ffd173
CW
3074int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3075 enum i915_cache_level cache_level)
3076{
7bddb01f
DV
3077 struct drm_device *dev = obj->base.dev;
3078 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3079 int ret;
3080
3081 if (obj->cache_level == cache_level)
3082 return 0;
3083
3084 if (obj->pin_count) {
3085 DRM_DEBUG("can not change the cache level of pinned objects\n");
3086 return -EBUSY;
3087 }
3088
42d6ab48
CW
3089 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3090 ret = i915_gem_object_unbind(obj);
3091 if (ret)
3092 return ret;
3093 }
3094
e4ffd173
CW
3095 if (obj->gtt_space) {
3096 ret = i915_gem_object_finish_gpu(obj);
3097 if (ret)
3098 return ret;
3099
3100 i915_gem_object_finish_gtt(obj);
3101
3102 /* Before SandyBridge, you could not use tiling or fence
3103 * registers with snooped memory, so relinquish any fences
3104 * currently pointing to our region in the aperture.
3105 */
42d6ab48 3106 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3107 ret = i915_gem_object_put_fence(obj);
3108 if (ret)
3109 return ret;
3110 }
3111
74898d7e
DV
3112 if (obj->has_global_gtt_mapping)
3113 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3114 if (obj->has_aliasing_ppgtt_mapping)
3115 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3116 obj, cache_level);
42d6ab48
CW
3117
3118 obj->gtt_space->color = cache_level;
e4ffd173
CW
3119 }
3120
3121 if (cache_level == I915_CACHE_NONE) {
3122 u32 old_read_domains, old_write_domain;
3123
3124 /* If we're coming from LLC cached, then we haven't
3125 * actually been tracking whether the data is in the
3126 * CPU cache or not, since we only allow one bit set
3127 * in obj->write_domain and have been skipping the clflushes.
3128 * Just set it to the CPU cache for now.
3129 */
3130 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3131 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3132
3133 old_read_domains = obj->base.read_domains;
3134 old_write_domain = obj->base.write_domain;
3135
3136 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3137 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3138
3139 trace_i915_gem_object_change_domain(obj,
3140 old_read_domains,
3141 old_write_domain);
3142 }
3143
3144 obj->cache_level = cache_level;
42d6ab48 3145 i915_gem_verify_gtt(dev);
e4ffd173
CW
3146 return 0;
3147}
3148
e6994aee
CW
3149int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
3150 struct drm_file *file)
3151{
3152 struct drm_i915_gem_cacheing *args = data;
3153 struct drm_i915_gem_object *obj;
3154 int ret;
3155
3156 ret = i915_mutex_lock_interruptible(dev);
3157 if (ret)
3158 return ret;
3159
3160 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3161 if (&obj->base == NULL) {
3162 ret = -ENOENT;
3163 goto unlock;
3164 }
3165
3166 args->cacheing = obj->cache_level != I915_CACHE_NONE;
3167
3168 drm_gem_object_unreference(&obj->base);
3169unlock:
3170 mutex_unlock(&dev->struct_mutex);
3171 return ret;
3172}
3173
3174int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
3175 struct drm_file *file)
3176{
3177 struct drm_i915_gem_cacheing *args = data;
3178 struct drm_i915_gem_object *obj;
3179 enum i915_cache_level level;
3180 int ret;
3181
3182 ret = i915_mutex_lock_interruptible(dev);
3183 if (ret)
3184 return ret;
3185
3186 switch (args->cacheing) {
3187 case I915_CACHEING_NONE:
3188 level = I915_CACHE_NONE;
3189 break;
3190 case I915_CACHEING_CACHED:
3191 level = I915_CACHE_LLC;
3192 break;
3193 default:
3194 return -EINVAL;
3195 }
3196
3197 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3198 if (&obj->base == NULL) {
3199 ret = -ENOENT;
3200 goto unlock;
3201 }
3202
3203 ret = i915_gem_object_set_cache_level(obj, level);
3204
3205 drm_gem_object_unreference(&obj->base);
3206unlock:
3207 mutex_unlock(&dev->struct_mutex);
3208 return ret;
3209}
3210
b9241ea3 3211/*
2da3b9b9
CW
3212 * Prepare buffer for display plane (scanout, cursors, etc).
3213 * Can be called from an uninterruptible phase (modesetting) and allows
3214 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3215 */
3216int
2da3b9b9
CW
3217i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3218 u32 alignment,
919926ae 3219 struct intel_ring_buffer *pipelined)
b9241ea3 3220{
2da3b9b9 3221 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3222 int ret;
3223
0be73284 3224 if (pipelined != obj->ring) {
2911a35b
BW
3225 ret = i915_gem_object_sync(obj, pipelined);
3226 if (ret)
b9241ea3
ZW
3227 return ret;
3228 }
3229
a7ef0640
EA
3230 /* The display engine is not coherent with the LLC cache on gen6. As
3231 * a result, we make sure that the pinning that is about to occur is
3232 * done with uncached PTEs. This is lowest common denominator for all
3233 * chipsets.
3234 *
3235 * However for gen6+, we could do better by using the GFDT bit instead
3236 * of uncaching, which would allow us to flush all the LLC-cached data
3237 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3238 */
3239 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3240 if (ret)
3241 return ret;
3242
2da3b9b9
CW
3243 /* As the user may map the buffer once pinned in the display plane
3244 * (e.g. libkms for the bootup splash), we have to ensure that we
3245 * always use map_and_fenceable for all scanout buffers.
3246 */
86a1ee26 3247 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3248 if (ret)
3249 return ret;
3250
b118c1e3
CW
3251 i915_gem_object_flush_cpu_write_domain(obj);
3252
2da3b9b9 3253 old_write_domain = obj->base.write_domain;
05394f39 3254 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3255
3256 /* It should now be out of any other write domains, and we can update
3257 * the domain values for our changes.
3258 */
e5f1d962 3259 obj->base.write_domain = 0;
05394f39 3260 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3261
3262 trace_i915_gem_object_change_domain(obj,
3263 old_read_domains,
2da3b9b9 3264 old_write_domain);
b9241ea3
ZW
3265
3266 return 0;
3267}
3268
85345517 3269int
a8198eea 3270i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3271{
88241785
CW
3272 int ret;
3273
a8198eea 3274 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3275 return 0;
3276
0201f1ec 3277 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3278 if (ret)
3279 return ret;
3280
a8198eea
CW
3281 /* Ensure that we invalidate the GPU's caches and TLBs. */
3282 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3283 return 0;
85345517
CW
3284}
3285
e47c68e9
EA
3286/**
3287 * Moves a single object to the CPU read, and possibly write domain.
3288 *
3289 * This function returns when the move is complete, including waiting on
3290 * flushes to occur.
3291 */
dabdfe02 3292int
919926ae 3293i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3294{
1c5d22f7 3295 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3296 int ret;
3297
8d7e3de1
CW
3298 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3299 return 0;
3300
0201f1ec
CW
3301 ret = i915_gem_object_wait_rendering(obj, !write);
3302 if (ret)
3303 return ret;
2ef7eeaa 3304
e47c68e9 3305 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3306
05394f39
CW
3307 old_write_domain = obj->base.write_domain;
3308 old_read_domains = obj->base.read_domains;
1c5d22f7 3309
e47c68e9 3310 /* Flush the CPU cache if it's still invalid. */
05394f39 3311 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3312 i915_gem_clflush_object(obj);
2ef7eeaa 3313
05394f39 3314 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3315 }
3316
3317 /* It should now be out of any other write domains, and we can update
3318 * the domain values for our changes.
3319 */
05394f39 3320 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3321
3322 /* If we're writing through the CPU, then the GPU read domains will
3323 * need to be invalidated at next use.
3324 */
3325 if (write) {
05394f39
CW
3326 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3327 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3328 }
2ef7eeaa 3329
1c5d22f7
CW
3330 trace_i915_gem_object_change_domain(obj,
3331 old_read_domains,
3332 old_write_domain);
3333
2ef7eeaa
EA
3334 return 0;
3335}
3336
673a394b
EA
3337/* Throttle our rendering by waiting until the ring has completed our requests
3338 * emitted over 20 msec ago.
3339 *
b962442e
EA
3340 * Note that if we were to use the current jiffies each time around the loop,
3341 * we wouldn't escape the function with any frames outstanding if the time to
3342 * render a frame was over 20ms.
3343 *
673a394b
EA
3344 * This should get us reasonable parallelism between CPU and GPU but also
3345 * relatively low latency when blocking on a particular request to finish.
3346 */
40a5f0de 3347static int
f787a5f5 3348i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3349{
f787a5f5
CW
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3351 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3352 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3353 struct drm_i915_gem_request *request;
3354 struct intel_ring_buffer *ring = NULL;
3355 u32 seqno = 0;
3356 int ret;
93533c29 3357
e110e8d6
CW
3358 if (atomic_read(&dev_priv->mm.wedged))
3359 return -EIO;
3360
1c25595f 3361 spin_lock(&file_priv->mm.lock);
f787a5f5 3362 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3363 if (time_after_eq(request->emitted_jiffies, recent_enough))
3364 break;
40a5f0de 3365
f787a5f5
CW
3366 ring = request->ring;
3367 seqno = request->seqno;
b962442e 3368 }
1c25595f 3369 spin_unlock(&file_priv->mm.lock);
40a5f0de 3370
f787a5f5
CW
3371 if (seqno == 0)
3372 return 0;
2bc43b5c 3373
5c81fe85 3374 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3375 if (ret == 0)
3376 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3377
3378 return ret;
3379}
3380
673a394b 3381int
05394f39
CW
3382i915_gem_object_pin(struct drm_i915_gem_object *obj,
3383 uint32_t alignment,
86a1ee26
CW
3384 bool map_and_fenceable,
3385 bool nonblocking)
673a394b 3386{
673a394b
EA
3387 int ret;
3388
05394f39 3389 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3390
05394f39
CW
3391 if (obj->gtt_space != NULL) {
3392 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3393 (map_and_fenceable && !obj->map_and_fenceable)) {
3394 WARN(obj->pin_count,
ae7d49d8 3395 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3396 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3397 " obj->map_and_fenceable=%d\n",
05394f39 3398 obj->gtt_offset, alignment,
75e9e915 3399 map_and_fenceable,
05394f39 3400 obj->map_and_fenceable);
ac0c6b5a
CW
3401 ret = i915_gem_object_unbind(obj);
3402 if (ret)
3403 return ret;
3404 }
3405 }
3406
05394f39 3407 if (obj->gtt_space == NULL) {
a00b10c3 3408 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3409 map_and_fenceable,
3410 nonblocking);
9731129c 3411 if (ret)
673a394b 3412 return ret;
22c344e9 3413 }
76446cac 3414
74898d7e
DV
3415 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3416 i915_gem_gtt_bind_object(obj, obj->cache_level);
3417
1b50247a 3418 obj->pin_count++;
6299f992 3419 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3420
3421 return 0;
3422}
3423
3424void
05394f39 3425i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3426{
05394f39
CW
3427 BUG_ON(obj->pin_count == 0);
3428 BUG_ON(obj->gtt_space == NULL);
673a394b 3429
1b50247a 3430 if (--obj->pin_count == 0)
6299f992 3431 obj->pin_mappable = false;
673a394b
EA
3432}
3433
3434int
3435i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3436 struct drm_file *file)
673a394b
EA
3437{
3438 struct drm_i915_gem_pin *args = data;
05394f39 3439 struct drm_i915_gem_object *obj;
673a394b
EA
3440 int ret;
3441
1d7cfea1
CW
3442 ret = i915_mutex_lock_interruptible(dev);
3443 if (ret)
3444 return ret;
673a394b 3445
05394f39 3446 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3447 if (&obj->base == NULL) {
1d7cfea1
CW
3448 ret = -ENOENT;
3449 goto unlock;
673a394b 3450 }
673a394b 3451
05394f39 3452 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3453 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3454 ret = -EINVAL;
3455 goto out;
3ef94daa
CW
3456 }
3457
05394f39 3458 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3459 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3460 args->handle);
1d7cfea1
CW
3461 ret = -EINVAL;
3462 goto out;
79e53945
JB
3463 }
3464
05394f39
CW
3465 obj->user_pin_count++;
3466 obj->pin_filp = file;
3467 if (obj->user_pin_count == 1) {
86a1ee26 3468 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3469 if (ret)
3470 goto out;
673a394b
EA
3471 }
3472
3473 /* XXX - flush the CPU caches for pinned objects
3474 * as the X server doesn't manage domains yet
3475 */
e47c68e9 3476 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3477 args->offset = obj->gtt_offset;
1d7cfea1 3478out:
05394f39 3479 drm_gem_object_unreference(&obj->base);
1d7cfea1 3480unlock:
673a394b 3481 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3482 return ret;
673a394b
EA
3483}
3484
3485int
3486i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3487 struct drm_file *file)
673a394b
EA
3488{
3489 struct drm_i915_gem_pin *args = data;
05394f39 3490 struct drm_i915_gem_object *obj;
76c1dec1 3491 int ret;
673a394b 3492
1d7cfea1
CW
3493 ret = i915_mutex_lock_interruptible(dev);
3494 if (ret)
3495 return ret;
673a394b 3496
05394f39 3497 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3498 if (&obj->base == NULL) {
1d7cfea1
CW
3499 ret = -ENOENT;
3500 goto unlock;
673a394b 3501 }
76c1dec1 3502
05394f39 3503 if (obj->pin_filp != file) {
79e53945
JB
3504 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3505 args->handle);
1d7cfea1
CW
3506 ret = -EINVAL;
3507 goto out;
79e53945 3508 }
05394f39
CW
3509 obj->user_pin_count--;
3510 if (obj->user_pin_count == 0) {
3511 obj->pin_filp = NULL;
79e53945
JB
3512 i915_gem_object_unpin(obj);
3513 }
673a394b 3514
1d7cfea1 3515out:
05394f39 3516 drm_gem_object_unreference(&obj->base);
1d7cfea1 3517unlock:
673a394b 3518 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3519 return ret;
673a394b
EA
3520}
3521
3522int
3523i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3524 struct drm_file *file)
673a394b
EA
3525{
3526 struct drm_i915_gem_busy *args = data;
05394f39 3527 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3528 int ret;
3529
76c1dec1 3530 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3531 if (ret)
76c1dec1 3532 return ret;
673a394b 3533
05394f39 3534 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3535 if (&obj->base == NULL) {
1d7cfea1
CW
3536 ret = -ENOENT;
3537 goto unlock;
673a394b 3538 }
d1b851fc 3539
0be555b6
CW
3540 /* Count all active objects as busy, even if they are currently not used
3541 * by the gpu. Users of this interface expect objects to eventually
3542 * become non-busy without any further actions, therefore emit any
3543 * necessary flushes here.
c4de0a5d 3544 */
30dfebf3 3545 ret = i915_gem_object_flush_active(obj);
0be555b6 3546
30dfebf3 3547 args->busy = obj->active;
e9808edd
CW
3548 if (obj->ring) {
3549 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3550 args->busy |= intel_ring_flag(obj->ring) << 16;
3551 }
673a394b 3552
05394f39 3553 drm_gem_object_unreference(&obj->base);
1d7cfea1 3554unlock:
673a394b 3555 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3556 return ret;
673a394b
EA
3557}
3558
3559int
3560i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3561 struct drm_file *file_priv)
3562{
0206e353 3563 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3564}
3565
3ef94daa
CW
3566int
3567i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3568 struct drm_file *file_priv)
3569{
3570 struct drm_i915_gem_madvise *args = data;
05394f39 3571 struct drm_i915_gem_object *obj;
76c1dec1 3572 int ret;
3ef94daa
CW
3573
3574 switch (args->madv) {
3575 case I915_MADV_DONTNEED:
3576 case I915_MADV_WILLNEED:
3577 break;
3578 default:
3579 return -EINVAL;
3580 }
3581
1d7cfea1
CW
3582 ret = i915_mutex_lock_interruptible(dev);
3583 if (ret)
3584 return ret;
3585
05394f39 3586 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3587 if (&obj->base == NULL) {
1d7cfea1
CW
3588 ret = -ENOENT;
3589 goto unlock;
3ef94daa 3590 }
3ef94daa 3591
05394f39 3592 if (obj->pin_count) {
1d7cfea1
CW
3593 ret = -EINVAL;
3594 goto out;
3ef94daa
CW
3595 }
3596
05394f39
CW
3597 if (obj->madv != __I915_MADV_PURGED)
3598 obj->madv = args->madv;
3ef94daa 3599
6c085a72
CW
3600 /* if the object is no longer attached, discard its backing storage */
3601 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3602 i915_gem_object_truncate(obj);
3603
05394f39 3604 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3605
1d7cfea1 3606out:
05394f39 3607 drm_gem_object_unreference(&obj->base);
1d7cfea1 3608unlock:
3ef94daa 3609 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3610 return ret;
3ef94daa
CW
3611}
3612
0327d6ba
CW
3613void i915_gem_object_init(struct drm_i915_gem_object *obj)
3614{
3615 obj->base.driver_private = NULL;
3616
3617 INIT_LIST_HEAD(&obj->mm_list);
3618 INIT_LIST_HEAD(&obj->gtt_list);
3619 INIT_LIST_HEAD(&obj->ring_list);
3620 INIT_LIST_HEAD(&obj->exec_list);
3621
3622 obj->fence_reg = I915_FENCE_REG_NONE;
3623 obj->madv = I915_MADV_WILLNEED;
3624 /* Avoid an unnecessary call to unbind on the first bind. */
3625 obj->map_and_fenceable = true;
3626
3627 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3628}
3629
05394f39
CW
3630struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3631 size_t size)
ac52bc56 3632{
c397b908 3633 struct drm_i915_gem_object *obj;
5949eac4 3634 struct address_space *mapping;
bed1ea95 3635 u32 mask;
ac52bc56 3636
c397b908
DV
3637 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3638 if (obj == NULL)
3639 return NULL;
673a394b 3640
c397b908
DV
3641 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3642 kfree(obj);
3643 return NULL;
3644 }
673a394b 3645
bed1ea95
CW
3646 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3647 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3648 /* 965gm cannot relocate objects above 4GiB. */
3649 mask &= ~__GFP_HIGHMEM;
3650 mask |= __GFP_DMA32;
3651 }
3652
5949eac4 3653 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3654 mapping_set_gfp_mask(mapping, mask);
5949eac4 3655
0327d6ba 3656 i915_gem_object_init(obj);
73aa808f 3657
c397b908
DV
3658 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3659 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3660
3d29b842
ED
3661 if (HAS_LLC(dev)) {
3662 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3663 * cache) for about a 10% performance improvement
3664 * compared to uncached. Graphics requests other than
3665 * display scanout are coherent with the CPU in
3666 * accessing this cache. This means in this mode we
3667 * don't need to clflush on the CPU side, and on the
3668 * GPU side we only need to flush internal caches to
3669 * get data visible to the CPU.
3670 *
3671 * However, we maintain the display planes as UC, and so
3672 * need to rebind when first used as such.
3673 */
3674 obj->cache_level = I915_CACHE_LLC;
3675 } else
3676 obj->cache_level = I915_CACHE_NONE;
3677
05394f39 3678 return obj;
c397b908
DV
3679}
3680
3681int i915_gem_init_object(struct drm_gem_object *obj)
3682{
3683 BUG();
de151cf6 3684
673a394b
EA
3685 return 0;
3686}
3687
1488fc08 3688void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3689{
1488fc08 3690 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3691 struct drm_device *dev = obj->base.dev;
be72615b 3692 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3693
26e12f89
CW
3694 trace_i915_gem_object_destroy(obj);
3695
1286ff73
DV
3696 if (gem_obj->import_attach)
3697 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3698
1488fc08
CW
3699 if (obj->phys_obj)
3700 i915_gem_detach_phys_object(dev, obj);
3701
3702 obj->pin_count = 0;
3703 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3704 bool was_interruptible;
3705
3706 was_interruptible = dev_priv->mm.interruptible;
3707 dev_priv->mm.interruptible = false;
3708
3709 WARN_ON(i915_gem_object_unbind(obj));
3710
3711 dev_priv->mm.interruptible = was_interruptible;
3712 }
3713
6c085a72 3714 i915_gem_object_put_pages_gtt(obj);
d8cb5086 3715 i915_gem_object_free_mmap_offset(obj);
de151cf6 3716
05394f39
CW
3717 drm_gem_object_release(&obj->base);
3718 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3719
05394f39
CW
3720 kfree(obj->bit_17);
3721 kfree(obj);
673a394b
EA
3722}
3723
29105ccc
CW
3724int
3725i915_gem_idle(struct drm_device *dev)
3726{
3727 drm_i915_private_t *dev_priv = dev->dev_private;
3728 int ret;
28dfe52a 3729
29105ccc 3730 mutex_lock(&dev->struct_mutex);
1c5d22f7 3731
87acb0a5 3732 if (dev_priv->mm.suspended) {
29105ccc
CW
3733 mutex_unlock(&dev->struct_mutex);
3734 return 0;
28dfe52a
EA
3735 }
3736
b2da9fe5 3737 ret = i915_gpu_idle(dev);
6dbe2772
KP
3738 if (ret) {
3739 mutex_unlock(&dev->struct_mutex);
673a394b 3740 return ret;
6dbe2772 3741 }
b2da9fe5 3742 i915_gem_retire_requests(dev);
673a394b 3743
29105ccc 3744 /* Under UMS, be paranoid and evict. */
a39d7efc 3745 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3746 i915_gem_evict_everything(dev);
29105ccc 3747
312817a3
CW
3748 i915_gem_reset_fences(dev);
3749
29105ccc
CW
3750 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3751 * We need to replace this with a semaphore, or something.
3752 * And not confound mm.suspended!
3753 */
3754 dev_priv->mm.suspended = 1;
bc0c7f14 3755 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3756
3757 i915_kernel_lost_context(dev);
6dbe2772 3758 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3759
6dbe2772
KP
3760 mutex_unlock(&dev->struct_mutex);
3761
29105ccc
CW
3762 /* Cancel the retire work handler, which should be idle now. */
3763 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3764
673a394b
EA
3765 return 0;
3766}
3767
b9524a1e
BW
3768void i915_gem_l3_remap(struct drm_device *dev)
3769{
3770 drm_i915_private_t *dev_priv = dev->dev_private;
3771 u32 misccpctl;
3772 int i;
3773
3774 if (!IS_IVYBRIDGE(dev))
3775 return;
3776
3777 if (!dev_priv->mm.l3_remap_info)
3778 return;
3779
3780 misccpctl = I915_READ(GEN7_MISCCPCTL);
3781 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3782 POSTING_READ(GEN7_MISCCPCTL);
3783
3784 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3785 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3786 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3787 DRM_DEBUG("0x%x was already programmed to %x\n",
3788 GEN7_L3LOG_BASE + i, remap);
3789 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3790 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3791 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3792 }
3793
3794 /* Make sure all the writes land before disabling dop clock gating */
3795 POSTING_READ(GEN7_L3LOG_BASE);
3796
3797 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3798}
3799
f691e2f4
DV
3800void i915_gem_init_swizzling(struct drm_device *dev)
3801{
3802 drm_i915_private_t *dev_priv = dev->dev_private;
3803
11782b02 3804 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3805 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3806 return;
3807
3808 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3809 DISP_TILE_SURFACE_SWIZZLING);
3810
11782b02
DV
3811 if (IS_GEN5(dev))
3812 return;
3813
f691e2f4
DV
3814 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3815 if (IS_GEN6(dev))
6b26c86d 3816 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3817 else
6b26c86d 3818 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3819}
e21af88d
DV
3820
3821void i915_gem_init_ppgtt(struct drm_device *dev)
3822{
3823 drm_i915_private_t *dev_priv = dev->dev_private;
3824 uint32_t pd_offset;
3825 struct intel_ring_buffer *ring;
55a254ac
DV
3826 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3827 uint32_t __iomem *pd_addr;
3828 uint32_t pd_entry;
e21af88d
DV
3829 int i;
3830
3831 if (!dev_priv->mm.aliasing_ppgtt)
3832 return;
3833
55a254ac
DV
3834
3835 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3836 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3837 dma_addr_t pt_addr;
3838
3839 if (dev_priv->mm.gtt->needs_dmar)
3840 pt_addr = ppgtt->pt_dma_addr[i];
3841 else
3842 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3843
3844 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3845 pd_entry |= GEN6_PDE_VALID;
3846
3847 writel(pd_entry, pd_addr + i);
3848 }
3849 readl(pd_addr);
3850
3851 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3852 pd_offset /= 64; /* in cachelines, */
3853 pd_offset <<= 16;
3854
3855 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3856 uint32_t ecochk, gab_ctl, ecobits;
3857
3858 ecobits = I915_READ(GAC_ECO_BITS);
3859 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3860
3861 gab_ctl = I915_READ(GAB_CTL);
3862 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3863
3864 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3865 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3866 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3867 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3868 } else if (INTEL_INFO(dev)->gen >= 7) {
3869 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3870 /* GFX_MODE is per-ring on gen7+ */
3871 }
3872
b4519513 3873 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3874 if (INTEL_INFO(dev)->gen >= 7)
3875 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3876 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3877
3878 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3879 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3880 }
3881}
3882
67b1b571
CW
3883static bool
3884intel_enable_blt(struct drm_device *dev)
3885{
3886 if (!HAS_BLT(dev))
3887 return false;
3888
3889 /* The blitter was dysfunctional on early prototypes */
3890 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3891 DRM_INFO("BLT not supported on this pre-production hardware;"
3892 " graphics performance will be degraded.\n");
3893 return false;
3894 }
3895
3896 return true;
3897}
3898
8187a2b7 3899int
f691e2f4 3900i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3901{
3902 drm_i915_private_t *dev_priv = dev->dev_private;
3903 int ret;
68f95ba9 3904
8ecd1a66
DV
3905 if (!intel_enable_gtt())
3906 return -EIO;
3907
b9524a1e
BW
3908 i915_gem_l3_remap(dev);
3909
f691e2f4
DV
3910 i915_gem_init_swizzling(dev);
3911
5c1143bb 3912 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3913 if (ret)
b6913e4b 3914 return ret;
68f95ba9
CW
3915
3916 if (HAS_BSD(dev)) {
5c1143bb 3917 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3918 if (ret)
3919 goto cleanup_render_ring;
d1b851fc 3920 }
68f95ba9 3921
67b1b571 3922 if (intel_enable_blt(dev)) {
549f7365
CW
3923 ret = intel_init_blt_ring_buffer(dev);
3924 if (ret)
3925 goto cleanup_bsd_ring;
3926 }
3927
6f392d54
CW
3928 dev_priv->next_seqno = 1;
3929
254f965c
BW
3930 /*
3931 * XXX: There was some w/a described somewhere suggesting loading
3932 * contexts before PPGTT.
3933 */
3934 i915_gem_context_init(dev);
e21af88d
DV
3935 i915_gem_init_ppgtt(dev);
3936
68f95ba9
CW
3937 return 0;
3938
549f7365 3939cleanup_bsd_ring:
1ec14ad3 3940 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3941cleanup_render_ring:
1ec14ad3 3942 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3943 return ret;
3944}
3945
1070a42b
CW
3946static bool
3947intel_enable_ppgtt(struct drm_device *dev)
3948{
3949 if (i915_enable_ppgtt >= 0)
3950 return i915_enable_ppgtt;
3951
3952#ifdef CONFIG_INTEL_IOMMU
3953 /* Disable ppgtt on SNB if VT-d is on. */
3954 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3955 return false;
3956#endif
3957
3958 return true;
3959}
3960
3961int i915_gem_init(struct drm_device *dev)
3962{
3963 struct drm_i915_private *dev_priv = dev->dev_private;
3964 unsigned long gtt_size, mappable_size;
3965 int ret;
3966
3967 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3968 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3969
3970 mutex_lock(&dev->struct_mutex);
3971 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3972 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3973 * aperture accordingly when using aliasing ppgtt. */
3974 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3975
3976 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3977
3978 ret = i915_gem_init_aliasing_ppgtt(dev);
3979 if (ret) {
3980 mutex_unlock(&dev->struct_mutex);
3981 return ret;
3982 }
3983 } else {
3984 /* Let GEM Manage all of the aperture.
3985 *
3986 * However, leave one page at the end still bound to the scratch
3987 * page. There are a number of places where the hardware
3988 * apparently prefetches past the end of the object, and we've
3989 * seen multiple hangs with the GPU head pointer stuck in a
3990 * batchbuffer bound at the last page of the aperture. One page
3991 * should be enough to keep any prefetching inside of the
3992 * aperture.
3993 */
3994 i915_gem_init_global_gtt(dev, 0, mappable_size,
3995 gtt_size);
3996 }
3997
3998 ret = i915_gem_init_hw(dev);
3999 mutex_unlock(&dev->struct_mutex);
4000 if (ret) {
4001 i915_gem_cleanup_aliasing_ppgtt(dev);
4002 return ret;
4003 }
4004
53ca26ca
DV
4005 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4006 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4007 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4008 return 0;
4009}
4010
8187a2b7
ZN
4011void
4012i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4013{
4014 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4015 struct intel_ring_buffer *ring;
1ec14ad3 4016 int i;
8187a2b7 4017
b4519513
CW
4018 for_each_ring(ring, dev_priv, i)
4019 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4020}
4021
673a394b
EA
4022int
4023i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4024 struct drm_file *file_priv)
4025{
4026 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4027 int ret;
673a394b 4028
79e53945
JB
4029 if (drm_core_check_feature(dev, DRIVER_MODESET))
4030 return 0;
4031
ba1234d1 4032 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4033 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4034 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4035 }
4036
673a394b 4037 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4038 dev_priv->mm.suspended = 0;
4039
f691e2f4 4040 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4041 if (ret != 0) {
4042 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4043 return ret;
d816f6ac 4044 }
9bb2d6f9 4045
69dc4987 4046 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4047 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 4048 mutex_unlock(&dev->struct_mutex);
dbb19d30 4049
5f35308b
CW
4050 ret = drm_irq_install(dev);
4051 if (ret)
4052 goto cleanup_ringbuffer;
dbb19d30 4053
673a394b 4054 return 0;
5f35308b
CW
4055
4056cleanup_ringbuffer:
4057 mutex_lock(&dev->struct_mutex);
4058 i915_gem_cleanup_ringbuffer(dev);
4059 dev_priv->mm.suspended = 1;
4060 mutex_unlock(&dev->struct_mutex);
4061
4062 return ret;
673a394b
EA
4063}
4064
4065int
4066i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4067 struct drm_file *file_priv)
4068{
79e53945
JB
4069 if (drm_core_check_feature(dev, DRIVER_MODESET))
4070 return 0;
4071
dbb19d30 4072 drm_irq_uninstall(dev);
e6890f6f 4073 return i915_gem_idle(dev);
673a394b
EA
4074}
4075
4076void
4077i915_gem_lastclose(struct drm_device *dev)
4078{
4079 int ret;
673a394b 4080
e806b495
EA
4081 if (drm_core_check_feature(dev, DRIVER_MODESET))
4082 return;
4083
6dbe2772
KP
4084 ret = i915_gem_idle(dev);
4085 if (ret)
4086 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4087}
4088
64193406
CW
4089static void
4090init_ring_lists(struct intel_ring_buffer *ring)
4091{
4092 INIT_LIST_HEAD(&ring->active_list);
4093 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4094}
4095
673a394b
EA
4096void
4097i915_gem_load(struct drm_device *dev)
4098{
b5aa8a0f 4099 int i;
673a394b
EA
4100 drm_i915_private_t *dev_priv = dev->dev_private;
4101
69dc4987 4102 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4103 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4104 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4105 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4106 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4107 for (i = 0; i < I915_NUM_RINGS; i++)
4108 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4109 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4110 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4111 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4112 i915_gem_retire_work_handler);
30dbf0c0 4113 init_completion(&dev_priv->error_completion);
31169714 4114
94400120
DA
4115 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4116 if (IS_GEN3(dev)) {
50743298
DV
4117 I915_WRITE(MI_ARB_STATE,
4118 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4119 }
4120
72bfa19c
CW
4121 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4122
de151cf6 4123 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4124 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4125 dev_priv->fence_reg_start = 3;
de151cf6 4126
a6c45cf0 4127 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4128 dev_priv->num_fence_regs = 16;
4129 else
4130 dev_priv->num_fence_regs = 8;
4131
b5aa8a0f 4132 /* Initialize fence registers to zero */
ada726c7 4133 i915_gem_reset_fences(dev);
10ed13e4 4134
673a394b 4135 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4136 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4137
ce453d81
CW
4138 dev_priv->mm.interruptible = true;
4139
17250b71
CW
4140 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4141 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4142 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4143}
71acb5eb
DA
4144
4145/*
4146 * Create a physically contiguous memory object for this object
4147 * e.g. for cursor + overlay regs
4148 */
995b6762
CW
4149static int i915_gem_init_phys_object(struct drm_device *dev,
4150 int id, int size, int align)
71acb5eb
DA
4151{
4152 drm_i915_private_t *dev_priv = dev->dev_private;
4153 struct drm_i915_gem_phys_object *phys_obj;
4154 int ret;
4155
4156 if (dev_priv->mm.phys_objs[id - 1] || !size)
4157 return 0;
4158
9a298b2a 4159 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4160 if (!phys_obj)
4161 return -ENOMEM;
4162
4163 phys_obj->id = id;
4164
6eeefaf3 4165 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4166 if (!phys_obj->handle) {
4167 ret = -ENOMEM;
4168 goto kfree_obj;
4169 }
4170#ifdef CONFIG_X86
4171 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4172#endif
4173
4174 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4175
4176 return 0;
4177kfree_obj:
9a298b2a 4178 kfree(phys_obj);
71acb5eb
DA
4179 return ret;
4180}
4181
995b6762 4182static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4183{
4184 drm_i915_private_t *dev_priv = dev->dev_private;
4185 struct drm_i915_gem_phys_object *phys_obj;
4186
4187 if (!dev_priv->mm.phys_objs[id - 1])
4188 return;
4189
4190 phys_obj = dev_priv->mm.phys_objs[id - 1];
4191 if (phys_obj->cur_obj) {
4192 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4193 }
4194
4195#ifdef CONFIG_X86
4196 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4197#endif
4198 drm_pci_free(dev, phys_obj->handle);
4199 kfree(phys_obj);
4200 dev_priv->mm.phys_objs[id - 1] = NULL;
4201}
4202
4203void i915_gem_free_all_phys_object(struct drm_device *dev)
4204{
4205 int i;
4206
260883c8 4207 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4208 i915_gem_free_phys_object(dev, i);
4209}
4210
4211void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4212 struct drm_i915_gem_object *obj)
71acb5eb 4213{
05394f39 4214 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4215 char *vaddr;
71acb5eb 4216 int i;
71acb5eb
DA
4217 int page_count;
4218
05394f39 4219 if (!obj->phys_obj)
71acb5eb 4220 return;
05394f39 4221 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4222
05394f39 4223 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4224 for (i = 0; i < page_count; i++) {
5949eac4 4225 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4226 if (!IS_ERR(page)) {
4227 char *dst = kmap_atomic(page);
4228 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4229 kunmap_atomic(dst);
4230
4231 drm_clflush_pages(&page, 1);
4232
4233 set_page_dirty(page);
4234 mark_page_accessed(page);
4235 page_cache_release(page);
4236 }
71acb5eb 4237 }
40ce6575 4238 intel_gtt_chipset_flush();
d78b47b9 4239
05394f39
CW
4240 obj->phys_obj->cur_obj = NULL;
4241 obj->phys_obj = NULL;
71acb5eb
DA
4242}
4243
4244int
4245i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4246 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4247 int id,
4248 int align)
71acb5eb 4249{
05394f39 4250 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4251 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4252 int ret = 0;
4253 int page_count;
4254 int i;
4255
4256 if (id > I915_MAX_PHYS_OBJECT)
4257 return -EINVAL;
4258
05394f39
CW
4259 if (obj->phys_obj) {
4260 if (obj->phys_obj->id == id)
71acb5eb
DA
4261 return 0;
4262 i915_gem_detach_phys_object(dev, obj);
4263 }
4264
71acb5eb
DA
4265 /* create a new object */
4266 if (!dev_priv->mm.phys_objs[id - 1]) {
4267 ret = i915_gem_init_phys_object(dev, id,
05394f39 4268 obj->base.size, align);
71acb5eb 4269 if (ret) {
05394f39
CW
4270 DRM_ERROR("failed to init phys object %d size: %zu\n",
4271 id, obj->base.size);
e5281ccd 4272 return ret;
71acb5eb
DA
4273 }
4274 }
4275
4276 /* bind to the object */
05394f39
CW
4277 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4278 obj->phys_obj->cur_obj = obj;
71acb5eb 4279
05394f39 4280 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4281
4282 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4283 struct page *page;
4284 char *dst, *src;
4285
5949eac4 4286 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4287 if (IS_ERR(page))
4288 return PTR_ERR(page);
71acb5eb 4289
ff75b9bc 4290 src = kmap_atomic(page);
05394f39 4291 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4292 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4293 kunmap_atomic(src);
71acb5eb 4294
e5281ccd
CW
4295 mark_page_accessed(page);
4296 page_cache_release(page);
4297 }
d78b47b9 4298
71acb5eb 4299 return 0;
71acb5eb
DA
4300}
4301
4302static int
05394f39
CW
4303i915_gem_phys_pwrite(struct drm_device *dev,
4304 struct drm_i915_gem_object *obj,
71acb5eb
DA
4305 struct drm_i915_gem_pwrite *args,
4306 struct drm_file *file_priv)
4307{
05394f39 4308 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4309 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4310
b47b30cc
CW
4311 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4312 unsigned long unwritten;
4313
4314 /* The physical object once assigned is fixed for the lifetime
4315 * of the obj, so we can safely drop the lock and continue
4316 * to access vaddr.
4317 */
4318 mutex_unlock(&dev->struct_mutex);
4319 unwritten = copy_from_user(vaddr, user_data, args->size);
4320 mutex_lock(&dev->struct_mutex);
4321 if (unwritten)
4322 return -EFAULT;
4323 }
71acb5eb 4324
40ce6575 4325 intel_gtt_chipset_flush();
71acb5eb
DA
4326 return 0;
4327}
b962442e 4328
f787a5f5 4329void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4330{
f787a5f5 4331 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4332
4333 /* Clean up our request list when the client is going away, so that
4334 * later retire_requests won't dereference our soon-to-be-gone
4335 * file_priv.
4336 */
1c25595f 4337 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4338 while (!list_empty(&file_priv->mm.request_list)) {
4339 struct drm_i915_gem_request *request;
4340
4341 request = list_first_entry(&file_priv->mm.request_list,
4342 struct drm_i915_gem_request,
4343 client_list);
4344 list_del(&request->client_list);
4345 request->file_priv = NULL;
4346 }
1c25595f 4347 spin_unlock(&file_priv->mm.lock);
b962442e 4348}
31169714 4349
31169714 4350static int
1495f230 4351i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4352{
17250b71
CW
4353 struct drm_i915_private *dev_priv =
4354 container_of(shrinker,
4355 struct drm_i915_private,
4356 mm.inactive_shrinker);
4357 struct drm_device *dev = dev_priv->dev;
6c085a72 4358 struct drm_i915_gem_object *obj;
1495f230 4359 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4360 int cnt;
4361
4362 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4363 return 0;
31169714 4364
6c085a72
CW
4365 if (nr_to_scan) {
4366 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4367 if (nr_to_scan > 0)
4368 i915_gem_shrink_all(dev_priv);
31169714
CW
4369 }
4370
17250b71 4371 cnt = 0;
6c085a72
CW
4372 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4373 cnt += obj->base.size >> PAGE_SHIFT;
4374 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4375 if (obj->pin_count == 0)
4376 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4377
17250b71 4378 mutex_unlock(&dev->struct_mutex);
6c085a72 4379 return cnt;
31169714 4380}