]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: cleanup per-pipe reg usage
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
88241785 38static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
47static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
d9e86c0e
CW
50static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39
CW
55 struct drm_file *file);
56static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 57
17250b71
CW
58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
21dd3734
CW
78static int
79i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
21dd3734
CW
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
30dbf0c0
CW
104}
105
54cf91dc 106int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 107{
76c1dec1
CW
108 int ret;
109
21dd3734 110 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
23bc5982 118 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
119 return 0;
120}
30dbf0c0 121
7d1c4804 122static inline bool
05394f39 123i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 124{
05394f39 125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
126}
127
2021746e
CW
128void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
673a394b
EA
132{
133 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 134
bee4a186 135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 136
bee4a186
CW
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
73aa808f 140 dev_priv->mm.gtt_total = end - start;
fb7d516a 141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 145}
673a394b 146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e
CW
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
79e53945
JB
156
157 mutex_lock(&dev->struct_mutex);
2021746e 158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
159 mutex_unlock(&dev->struct_mutex);
160
2021746e 161 return 0;
673a394b
EA
162}
163
5a125c3c
EA
164int
165i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 166 struct drm_file *file)
5a125c3c 167{
73aa808f 168 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 169 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
5a125c3c
EA
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
6299f992 176 pinned = 0;
73aa808f 177 mutex_lock(&dev->struct_mutex);
6299f992
CW
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
73aa808f 180 mutex_unlock(&dev->struct_mutex);
5a125c3c 181
6299f992
CW
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size -pinned;
184
5a125c3c
EA
185 return 0;
186}
187
673a394b
EA
188/**
189 * Creates a new mm object and returns a handle to it.
190 */
191int
192i915_gem_create_ioctl(struct drm_device *dev, void *data,
05394f39 193 struct drm_file *file)
673a394b
EA
194{
195 struct drm_i915_gem_create *args = data;
05394f39 196 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
197 int ret;
198 u32 handle;
673a394b
EA
199
200 args->size = roundup(args->size, PAGE_SIZE);
201
202 /* Allocate the new object */
ac52bc56 203 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
204 if (obj == NULL)
205 return -ENOMEM;
206
05394f39 207 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 208 if (ret) {
05394f39
CW
209 drm_gem_object_release(&obj->base);
210 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 211 kfree(obj);
673a394b 212 return ret;
1dfd9754 213 }
673a394b 214
202f2fef 215 /* drop reference from allocate - handle holds it now */
05394f39 216 drm_gem_object_unreference(&obj->base);
202f2fef
CW
217 trace_i915_gem_object_create(obj);
218
1dfd9754 219 args->handle = handle;
673a394b
EA
220 return 0;
221}
222
05394f39 223static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 224{
05394f39 225 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
226
227 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 228 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
229}
230
99a03df5 231static inline void
40123c1f
EA
232slow_shmem_copy(struct page *dst_page,
233 int dst_offset,
234 struct page *src_page,
235 int src_offset,
236 int length)
237{
238 char *dst_vaddr, *src_vaddr;
239
99a03df5
CW
240 dst_vaddr = kmap(dst_page);
241 src_vaddr = kmap(src_page);
40123c1f
EA
242
243 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
244
99a03df5
CW
245 kunmap(src_page);
246 kunmap(dst_page);
40123c1f
EA
247}
248
99a03df5 249static inline void
280b713b
EA
250slow_shmem_bit17_copy(struct page *gpu_page,
251 int gpu_offset,
252 struct page *cpu_page,
253 int cpu_offset,
254 int length,
255 int is_read)
256{
257 char *gpu_vaddr, *cpu_vaddr;
258
259 /* Use the unswizzled path if this page isn't affected. */
260 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
261 if (is_read)
262 return slow_shmem_copy(cpu_page, cpu_offset,
263 gpu_page, gpu_offset, length);
264 else
265 return slow_shmem_copy(gpu_page, gpu_offset,
266 cpu_page, cpu_offset, length);
267 }
268
99a03df5
CW
269 gpu_vaddr = kmap(gpu_page);
270 cpu_vaddr = kmap(cpu_page);
280b713b
EA
271
272 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
273 * XORing with the other bits (A9 for Y, A9 and A10 for X)
274 */
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 if (is_read) {
281 memcpy(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 } else {
285 memcpy(gpu_vaddr + swizzled_gpu_offset,
286 cpu_vaddr + cpu_offset,
287 this_length);
288 }
289 cpu_offset += this_length;
290 gpu_offset += this_length;
291 length -= this_length;
292 }
293
99a03df5
CW
294 kunmap(cpu_page);
295 kunmap(gpu_page);
280b713b
EA
296}
297
eb01459f
EA
298/**
299 * This is the fast shmem pread path, which attempts to copy_from_user directly
300 * from the backing pages of the object to the user's address space. On a
301 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
302 */
303static int
05394f39
CW
304i915_gem_shmem_pread_fast(struct drm_device *dev,
305 struct drm_i915_gem_object *obj,
eb01459f 306 struct drm_i915_gem_pread *args,
05394f39 307 struct drm_file *file)
eb01459f 308{
05394f39 309 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 310 ssize_t remain;
e5281ccd 311 loff_t offset;
eb01459f
EA
312 char __user *user_data;
313 int page_offset, page_length;
eb01459f
EA
314
315 user_data = (char __user *) (uintptr_t) args->data_ptr;
316 remain = args->size;
317
eb01459f
EA
318 offset = args->offset;
319
320 while (remain > 0) {
e5281ccd
CW
321 struct page *page;
322 char *vaddr;
323 int ret;
324
eb01459f
EA
325 /* Operation in this page
326 *
eb01459f
EA
327 * page_offset = offset within page
328 * page_length = bytes to copy for this page
329 */
eb01459f
EA
330 page_offset = offset & (PAGE_SIZE-1);
331 page_length = remain;
332 if ((page_offset + remain) > PAGE_SIZE)
333 page_length = PAGE_SIZE - page_offset;
334
e5281ccd
CW
335 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
336 GFP_HIGHUSER | __GFP_RECLAIMABLE);
337 if (IS_ERR(page))
338 return PTR_ERR(page);
339
340 vaddr = kmap_atomic(page);
341 ret = __copy_to_user_inatomic(user_data,
342 vaddr + page_offset,
343 page_length);
344 kunmap_atomic(vaddr);
345
346 mark_page_accessed(page);
347 page_cache_release(page);
348 if (ret)
4f27b75d 349 return -EFAULT;
eb01459f
EA
350
351 remain -= page_length;
352 user_data += page_length;
353 offset += page_length;
354 }
355
4f27b75d 356 return 0;
eb01459f
EA
357}
358
359/**
360 * This is the fallback shmem pread path, which allocates temporary storage
361 * in kernel space to copy_to_user into outside of the struct_mutex, so we
362 * can copy out of the object's backing pages while holding the struct mutex
363 * and not take page faults.
364 */
365static int
05394f39
CW
366i915_gem_shmem_pread_slow(struct drm_device *dev,
367 struct drm_i915_gem_object *obj,
eb01459f 368 struct drm_i915_gem_pread *args,
05394f39 369 struct drm_file *file)
eb01459f 370{
05394f39 371 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
372 struct mm_struct *mm = current->mm;
373 struct page **user_pages;
374 ssize_t remain;
375 loff_t offset, pinned_pages, i;
376 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
377 int shmem_page_offset;
378 int data_page_index, data_page_offset;
eb01459f
EA
379 int page_length;
380 int ret;
381 uint64_t data_ptr = args->data_ptr;
280b713b 382 int do_bit17_swizzling;
eb01459f
EA
383
384 remain = args->size;
385
386 /* Pin the user pages containing the data. We can't fault while
387 * holding the struct mutex, yet we want to hold it while
388 * dereferencing the user data.
389 */
390 first_data_page = data_ptr / PAGE_SIZE;
391 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
392 num_pages = last_data_page - first_data_page + 1;
393
4f27b75d 394 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
395 if (user_pages == NULL)
396 return -ENOMEM;
397
4f27b75d 398 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
399 down_read(&mm->mmap_sem);
400 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 401 num_pages, 1, 0, user_pages, NULL);
eb01459f 402 up_read(&mm->mmap_sem);
4f27b75d 403 mutex_lock(&dev->struct_mutex);
eb01459f
EA
404 if (pinned_pages < num_pages) {
405 ret = -EFAULT;
4f27b75d 406 goto out;
eb01459f
EA
407 }
408
4f27b75d
CW
409 ret = i915_gem_object_set_cpu_read_domain_range(obj,
410 args->offset,
411 args->size);
07f73f69 412 if (ret)
4f27b75d 413 goto out;
eb01459f 414
4f27b75d 415 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 416
eb01459f
EA
417 offset = args->offset;
418
419 while (remain > 0) {
e5281ccd
CW
420 struct page *page;
421
eb01459f
EA
422 /* Operation in this page
423 *
eb01459f
EA
424 * shmem_page_offset = offset within page in shmem file
425 * data_page_index = page number in get_user_pages return
426 * data_page_offset = offset with data_page_index page.
427 * page_length = bytes to copy for this page
428 */
eb01459f
EA
429 shmem_page_offset = offset & ~PAGE_MASK;
430 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
431 data_page_offset = data_ptr & ~PAGE_MASK;
432
433 page_length = remain;
434 if ((shmem_page_offset + page_length) > PAGE_SIZE)
435 page_length = PAGE_SIZE - shmem_page_offset;
436 if ((data_page_offset + page_length) > PAGE_SIZE)
437 page_length = PAGE_SIZE - data_page_offset;
438
e5281ccd
CW
439 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
440 GFP_HIGHUSER | __GFP_RECLAIMABLE);
441 if (IS_ERR(page))
442 return PTR_ERR(page);
443
280b713b 444 if (do_bit17_swizzling) {
e5281ccd 445 slow_shmem_bit17_copy(page,
280b713b 446 shmem_page_offset,
99a03df5
CW
447 user_pages[data_page_index],
448 data_page_offset,
449 page_length,
450 1);
451 } else {
452 slow_shmem_copy(user_pages[data_page_index],
453 data_page_offset,
e5281ccd 454 page,
99a03df5
CW
455 shmem_page_offset,
456 page_length);
280b713b 457 }
eb01459f 458
e5281ccd
CW
459 mark_page_accessed(page);
460 page_cache_release(page);
461
eb01459f
EA
462 remain -= page_length;
463 data_ptr += page_length;
464 offset += page_length;
465 }
466
4f27b75d 467out:
eb01459f
EA
468 for (i = 0; i < pinned_pages; i++) {
469 SetPageDirty(user_pages[i]);
e5281ccd 470 mark_page_accessed(user_pages[i]);
eb01459f
EA
471 page_cache_release(user_pages[i]);
472 }
8e7d2b2c 473 drm_free_large(user_pages);
eb01459f
EA
474
475 return ret;
476}
477
673a394b
EA
478/**
479 * Reads data from the object referenced by handle.
480 *
481 * On error, the contents of *data are undefined.
482 */
483int
484i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 485 struct drm_file *file)
673a394b
EA
486{
487 struct drm_i915_gem_pread *args = data;
05394f39 488 struct drm_i915_gem_object *obj;
35b62a89 489 int ret = 0;
673a394b 490
51311d0a
CW
491 if (args->size == 0)
492 return 0;
493
494 if (!access_ok(VERIFY_WRITE,
495 (char __user *)(uintptr_t)args->data_ptr,
496 args->size))
497 return -EFAULT;
498
499 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
500 args->size);
501 if (ret)
502 return -EFAULT;
503
4f27b75d 504 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 505 if (ret)
4f27b75d 506 return ret;
673a394b 507
05394f39 508 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
509 if (obj == NULL) {
510 ret = -ENOENT;
511 goto unlock;
4f27b75d 512 }
673a394b 513
7dcd2499 514 /* Bounds check source. */
05394f39
CW
515 if (args->offset > obj->base.size ||
516 args->size > obj->base.size - args->offset) {
ce9d419d 517 ret = -EINVAL;
35b62a89 518 goto out;
ce9d419d
CW
519 }
520
db53a302
CW
521 trace_i915_gem_object_pread(obj, args->offset, args->size);
522
4f27b75d
CW
523 ret = i915_gem_object_set_cpu_read_domain_range(obj,
524 args->offset,
525 args->size);
526 if (ret)
e5281ccd 527 goto out;
4f27b75d
CW
528
529 ret = -EFAULT;
530 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 531 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 532 if (ret == -EFAULT)
05394f39 533 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 534
35b62a89 535out:
05394f39 536 drm_gem_object_unreference(&obj->base);
1d7cfea1 537unlock:
4f27b75d 538 mutex_unlock(&dev->struct_mutex);
eb01459f 539 return ret;
673a394b
EA
540}
541
0839ccb8
KP
542/* This is the fast write path which cannot handle
543 * page faults in the source data
9b7530cc 544 */
0839ccb8
KP
545
546static inline int
547fast_user_write(struct io_mapping *mapping,
548 loff_t page_base, int page_offset,
549 char __user *user_data,
550 int length)
9b7530cc 551{
9b7530cc 552 char *vaddr_atomic;
0839ccb8 553 unsigned long unwritten;
9b7530cc 554
3e4d3af5 555 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
556 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
557 user_data, length);
3e4d3af5 558 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 559 return unwritten;
0839ccb8
KP
560}
561
562/* Here's the write path which can sleep for
563 * page faults
564 */
565
ab34c226 566static inline void
3de09aa3
EA
567slow_kernel_write(struct io_mapping *mapping,
568 loff_t gtt_base, int gtt_offset,
569 struct page *user_page, int user_offset,
570 int length)
0839ccb8 571{
ab34c226
CW
572 char __iomem *dst_vaddr;
573 char *src_vaddr;
0839ccb8 574
ab34c226
CW
575 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
576 src_vaddr = kmap(user_page);
577
578 memcpy_toio(dst_vaddr + gtt_offset,
579 src_vaddr + user_offset,
580 length);
581
582 kunmap(user_page);
583 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
584}
585
3de09aa3
EA
586/**
587 * This is the fast pwrite path, where we copy the data directly from the
588 * user into the GTT, uncached.
589 */
673a394b 590static int
05394f39
CW
591i915_gem_gtt_pwrite_fast(struct drm_device *dev,
592 struct drm_i915_gem_object *obj,
3de09aa3 593 struct drm_i915_gem_pwrite *args,
05394f39 594 struct drm_file *file)
673a394b 595{
0839ccb8 596 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 597 ssize_t remain;
0839ccb8 598 loff_t offset, page_base;
673a394b 599 char __user *user_data;
0839ccb8 600 int page_offset, page_length;
673a394b
EA
601
602 user_data = (char __user *) (uintptr_t) args->data_ptr;
603 remain = args->size;
673a394b 604
05394f39 605 offset = obj->gtt_offset + args->offset;
673a394b
EA
606
607 while (remain > 0) {
608 /* Operation in this page
609 *
0839ccb8
KP
610 * page_base = page offset within aperture
611 * page_offset = offset within page
612 * page_length = bytes to copy for this page
673a394b 613 */
0839ccb8
KP
614 page_base = (offset & ~(PAGE_SIZE-1));
615 page_offset = offset & (PAGE_SIZE-1);
616 page_length = remain;
617 if ((page_offset + remain) > PAGE_SIZE)
618 page_length = PAGE_SIZE - page_offset;
619
0839ccb8 620 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
621 * source page isn't available. Return the error and we'll
622 * retry in the slow path.
0839ccb8 623 */
fbd5a26d
CW
624 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
625 page_offset, user_data, page_length))
626
627 return -EFAULT;
673a394b 628
0839ccb8
KP
629 remain -= page_length;
630 user_data += page_length;
631 offset += page_length;
673a394b 632 }
673a394b 633
fbd5a26d 634 return 0;
673a394b
EA
635}
636
3de09aa3
EA
637/**
638 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
639 * the memory and maps it using kmap_atomic for copying.
640 *
641 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
642 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
643 */
3043c60c 644static int
05394f39
CW
645i915_gem_gtt_pwrite_slow(struct drm_device *dev,
646 struct drm_i915_gem_object *obj,
3de09aa3 647 struct drm_i915_gem_pwrite *args,
05394f39 648 struct drm_file *file)
673a394b 649{
3de09aa3
EA
650 drm_i915_private_t *dev_priv = dev->dev_private;
651 ssize_t remain;
652 loff_t gtt_page_base, offset;
653 loff_t first_data_page, last_data_page, num_pages;
654 loff_t pinned_pages, i;
655 struct page **user_pages;
656 struct mm_struct *mm = current->mm;
657 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 658 int ret;
3de09aa3
EA
659 uint64_t data_ptr = args->data_ptr;
660
661 remain = args->size;
662
663 /* Pin the user pages containing the data. We can't fault while
664 * holding the struct mutex, and all of the pwrite implementations
665 * want to hold it while dereferencing the user data.
666 */
667 first_data_page = data_ptr / PAGE_SIZE;
668 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
669 num_pages = last_data_page - first_data_page + 1;
670
fbd5a26d 671 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
672 if (user_pages == NULL)
673 return -ENOMEM;
674
fbd5a26d 675 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
fbd5a26d 680 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
681 if (pinned_pages < num_pages) {
682 ret = -EFAULT;
683 goto out_unpin_pages;
684 }
673a394b 685
d9e86c0e
CW
686 ret = i915_gem_object_set_to_gtt_domain(obj, true);
687 if (ret)
688 goto out_unpin_pages;
689
690 ret = i915_gem_object_put_fence(obj);
3de09aa3 691 if (ret)
fbd5a26d 692 goto out_unpin_pages;
3de09aa3 693
05394f39 694 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
695
696 while (remain > 0) {
697 /* Operation in this page
698 *
699 * gtt_page_base = page offset within aperture
700 * gtt_page_offset = offset within page in aperture
701 * data_page_index = page number in get_user_pages return
702 * data_page_offset = offset with data_page_index page.
703 * page_length = bytes to copy for this page
704 */
705 gtt_page_base = offset & PAGE_MASK;
706 gtt_page_offset = offset & ~PAGE_MASK;
707 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
708 data_page_offset = data_ptr & ~PAGE_MASK;
709
710 page_length = remain;
711 if ((gtt_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - gtt_page_offset;
713 if ((data_page_offset + page_length) > PAGE_SIZE)
714 page_length = PAGE_SIZE - data_page_offset;
715
ab34c226
CW
716 slow_kernel_write(dev_priv->mm.gtt_mapping,
717 gtt_page_base, gtt_page_offset,
718 user_pages[data_page_index],
719 data_page_offset,
720 page_length);
3de09aa3
EA
721
722 remain -= page_length;
723 offset += page_length;
724 data_ptr += page_length;
725 }
726
3de09aa3
EA
727out_unpin_pages:
728 for (i = 0; i < pinned_pages; i++)
729 page_cache_release(user_pages[i]);
8e7d2b2c 730 drm_free_large(user_pages);
3de09aa3
EA
731
732 return ret;
733}
734
40123c1f
EA
735/**
736 * This is the fast shmem pwrite path, which attempts to directly
737 * copy_from_user into the kmapped pages backing the object.
738 */
3043c60c 739static int
05394f39
CW
740i915_gem_shmem_pwrite_fast(struct drm_device *dev,
741 struct drm_i915_gem_object *obj,
40123c1f 742 struct drm_i915_gem_pwrite *args,
05394f39 743 struct drm_file *file)
673a394b 744{
05394f39 745 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 746 ssize_t remain;
e5281ccd 747 loff_t offset;
40123c1f
EA
748 char __user *user_data;
749 int page_offset, page_length;
40123c1f
EA
750
751 user_data = (char __user *) (uintptr_t) args->data_ptr;
752 remain = args->size;
673a394b 753
40123c1f 754 offset = args->offset;
05394f39 755 obj->dirty = 1;
40123c1f
EA
756
757 while (remain > 0) {
e5281ccd
CW
758 struct page *page;
759 char *vaddr;
760 int ret;
761
40123c1f
EA
762 /* Operation in this page
763 *
40123c1f
EA
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
766 */
40123c1f
EA
767 page_offset = offset & (PAGE_SIZE-1);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
e5281ccd
CW
772 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
773 GFP_HIGHUSER | __GFP_RECLAIMABLE);
774 if (IS_ERR(page))
775 return PTR_ERR(page);
776
777 vaddr = kmap_atomic(page, KM_USER0);
778 ret = __copy_from_user_inatomic(vaddr + page_offset,
779 user_data,
780 page_length);
781 kunmap_atomic(vaddr, KM_USER0);
782
783 set_page_dirty(page);
784 mark_page_accessed(page);
785 page_cache_release(page);
786
787 /* If we get a fault while copying data, then (presumably) our
788 * source page isn't available. Return the error and we'll
789 * retry in the slow path.
790 */
791 if (ret)
fbd5a26d 792 return -EFAULT;
40123c1f
EA
793
794 remain -= page_length;
795 user_data += page_length;
796 offset += page_length;
797 }
798
fbd5a26d 799 return 0;
40123c1f
EA
800}
801
802/**
803 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
804 * the memory and maps it using kmap_atomic for copying.
805 *
806 * This avoids taking mmap_sem for faulting on the user's address while the
807 * struct_mutex is held.
808 */
809static int
05394f39
CW
810i915_gem_shmem_pwrite_slow(struct drm_device *dev,
811 struct drm_i915_gem_object *obj,
40123c1f 812 struct drm_i915_gem_pwrite *args,
05394f39 813 struct drm_file *file)
40123c1f 814{
05394f39 815 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
816 struct mm_struct *mm = current->mm;
817 struct page **user_pages;
818 ssize_t remain;
819 loff_t offset, pinned_pages, i;
820 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 821 int shmem_page_offset;
40123c1f
EA
822 int data_page_index, data_page_offset;
823 int page_length;
824 int ret;
825 uint64_t data_ptr = args->data_ptr;
280b713b 826 int do_bit17_swizzling;
40123c1f
EA
827
828 remain = args->size;
829
830 /* Pin the user pages containing the data. We can't fault while
831 * holding the struct mutex, and all of the pwrite implementations
832 * want to hold it while dereferencing the user data.
833 */
834 first_data_page = data_ptr / PAGE_SIZE;
835 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
836 num_pages = last_data_page - first_data_page + 1;
837
4f27b75d 838 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
839 if (user_pages == NULL)
840 return -ENOMEM;
841
fbd5a26d 842 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
843 down_read(&mm->mmap_sem);
844 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
845 num_pages, 0, 0, user_pages, NULL);
846 up_read(&mm->mmap_sem);
fbd5a26d 847 mutex_lock(&dev->struct_mutex);
40123c1f
EA
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
fbd5a26d 850 goto out;
673a394b
EA
851 }
852
fbd5a26d 853 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 854 if (ret)
fbd5a26d 855 goto out;
40123c1f 856
fbd5a26d 857 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 858
673a394b 859 offset = args->offset;
05394f39 860 obj->dirty = 1;
673a394b 861
40123c1f 862 while (remain > 0) {
e5281ccd
CW
863 struct page *page;
864
40123c1f
EA
865 /* Operation in this page
866 *
40123c1f
EA
867 * shmem_page_offset = offset within page in shmem file
868 * data_page_index = page number in get_user_pages return
869 * data_page_offset = offset with data_page_index page.
870 * page_length = bytes to copy for this page
871 */
40123c1f
EA
872 shmem_page_offset = offset & ~PAGE_MASK;
873 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
874 data_page_offset = data_ptr & ~PAGE_MASK;
875
876 page_length = remain;
877 if ((shmem_page_offset + page_length) > PAGE_SIZE)
878 page_length = PAGE_SIZE - shmem_page_offset;
879 if ((data_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - data_page_offset;
881
e5281ccd
CW
882 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
883 GFP_HIGHUSER | __GFP_RECLAIMABLE);
884 if (IS_ERR(page)) {
885 ret = PTR_ERR(page);
886 goto out;
887 }
888
280b713b 889 if (do_bit17_swizzling) {
e5281ccd 890 slow_shmem_bit17_copy(page,
280b713b
EA
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
99a03df5
CW
894 page_length,
895 0);
896 } else {
e5281ccd 897 slow_shmem_copy(page,
99a03df5
CW
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
280b713b 902 }
40123c1f 903
e5281ccd
CW
904 set_page_dirty(page);
905 mark_page_accessed(page);
906 page_cache_release(page);
907
40123c1f
EA
908 remain -= page_length;
909 data_ptr += page_length;
910 offset += page_length;
673a394b
EA
911 }
912
fbd5a26d 913out:
40123c1f
EA
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
8e7d2b2c 916 drm_free_large(user_pages);
673a394b 917
40123c1f 918 return ret;
673a394b
EA
919}
920
921/**
922 * Writes data to the object referenced by handle.
923 *
924 * On error, the contents of the buffer that were to be modified are undefined.
925 */
926int
927i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 928 struct drm_file *file)
673a394b
EA
929{
930 struct drm_i915_gem_pwrite *args = data;
05394f39 931 struct drm_i915_gem_object *obj;
51311d0a
CW
932 int ret;
933
934 if (args->size == 0)
935 return 0;
936
937 if (!access_ok(VERIFY_READ,
938 (char __user *)(uintptr_t)args->data_ptr,
939 args->size))
940 return -EFAULT;
941
942 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
943 args->size);
944 if (ret)
945 return -EFAULT;
673a394b 946
fbd5a26d 947 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 948 if (ret)
fbd5a26d 949 return ret;
1d7cfea1 950
05394f39 951 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
952 if (obj == NULL) {
953 ret = -ENOENT;
954 goto unlock;
fbd5a26d 955 }
673a394b 956
7dcd2499 957 /* Bounds check destination. */
05394f39
CW
958 if (args->offset > obj->base.size ||
959 args->size > obj->base.size - args->offset) {
ce9d419d 960 ret = -EINVAL;
35b62a89 961 goto out;
ce9d419d
CW
962 }
963
db53a302
CW
964 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
965
673a394b
EA
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
05394f39 972 if (obj->phys_obj)
fbd5a26d 973 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 974 else if (obj->gtt_space &&
05394f39 975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 976 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
977 if (ret)
978 goto out;
979
d9e86c0e
CW
980 ret = i915_gem_object_set_to_gtt_domain(obj, true);
981 if (ret)
982 goto out_unpin;
983
984 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
985 if (ret)
986 goto out_unpin;
987
988 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
989 if (ret == -EFAULT)
990 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
991
992out_unpin:
993 i915_gem_object_unpin(obj);
40123c1f 994 } else {
fbd5a26d
CW
995 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
996 if (ret)
e5281ccd 997 goto out;
673a394b 998
fbd5a26d
CW
999 ret = -EFAULT;
1000 if (!i915_gem_object_needs_bit17_swizzle(obj))
1001 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1002 if (ret == -EFAULT)
1003 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1004 }
673a394b 1005
35b62a89 1006out:
05394f39 1007 drm_gem_object_unreference(&obj->base);
1d7cfea1 1008unlock:
fbd5a26d 1009 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1010 return ret;
1011}
1012
1013/**
2ef7eeaa
EA
1014 * Called when user space prepares to use an object with the CPU, either
1015 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1016 */
1017int
1018i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1019 struct drm_file *file)
673a394b
EA
1020{
1021 struct drm_i915_gem_set_domain *args = data;
05394f39 1022 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1023 uint32_t read_domains = args->read_domains;
1024 uint32_t write_domain = args->write_domain;
673a394b
EA
1025 int ret;
1026
1027 if (!(dev->driver->driver_features & DRIVER_GEM))
1028 return -ENODEV;
1029
2ef7eeaa 1030 /* Only handle setting domains to types used by the CPU. */
21d509e3 1031 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1032 return -EINVAL;
1033
21d509e3 1034 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1035 return -EINVAL;
1036
1037 /* Having something in the write domain implies it's in the read
1038 * domain, and only that read domain. Enforce that in the request.
1039 */
1040 if (write_domain != 0 && read_domains != write_domain)
1041 return -EINVAL;
1042
76c1dec1 1043 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1044 if (ret)
76c1dec1 1045 return ret;
1d7cfea1 1046
05394f39 1047 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1048 if (obj == NULL) {
1049 ret = -ENOENT;
1050 goto unlock;
76c1dec1 1051 }
673a394b 1052
2ef7eeaa
EA
1053 if (read_domains & I915_GEM_DOMAIN_GTT) {
1054 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1055
1056 /* Silently promote "you're not bound, there was nothing to do"
1057 * to success, since the client was just asking us to
1058 * make sure everything was done.
1059 */
1060 if (ret == -EINVAL)
1061 ret = 0;
2ef7eeaa 1062 } else {
e47c68e9 1063 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1064 }
1065
05394f39 1066 drm_gem_object_unreference(&obj->base);
1d7cfea1 1067unlock:
673a394b
EA
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070}
1071
1072/**
1073 * Called when user space has done writes to this buffer
1074 */
1075int
1076i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1077 struct drm_file *file)
673a394b
EA
1078{
1079 struct drm_i915_gem_sw_finish *args = data;
05394f39 1080 struct drm_i915_gem_object *obj;
673a394b
EA
1081 int ret = 0;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
76c1dec1 1086 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1087 if (ret)
76c1dec1 1088 return ret;
1d7cfea1 1089
05394f39 1090 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 1091 if (obj == NULL) {
1d7cfea1
CW
1092 ret = -ENOENT;
1093 goto unlock;
673a394b
EA
1094 }
1095
673a394b 1096 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1097 if (obj->pin_count)
e47c68e9
EA
1098 i915_gem_object_flush_cpu_write_domain(obj);
1099
05394f39 1100 drm_gem_object_unreference(&obj->base);
1d7cfea1 1101unlock:
673a394b
EA
1102 mutex_unlock(&dev->struct_mutex);
1103 return ret;
1104}
1105
1106/**
1107 * Maps the contents of an object, returning the address it is mapped
1108 * into.
1109 *
1110 * While the mapping holds a reference on the contents of the object, it doesn't
1111 * imply a ref on the object itself.
1112 */
1113int
1114i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1115 struct drm_file *file)
673a394b 1116{
da761a6e 1117 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1118 struct drm_i915_gem_mmap *args = data;
1119 struct drm_gem_object *obj;
673a394b
EA
1120 unsigned long addr;
1121
1122 if (!(dev->driver->driver_features & DRIVER_GEM))
1123 return -ENODEV;
1124
05394f39 1125 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1126 if (obj == NULL)
bf79cb91 1127 return -ENOENT;
673a394b 1128
da761a6e
CW
1129 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1130 drm_gem_object_unreference_unlocked(obj);
1131 return -E2BIG;
1132 }
1133
673a394b
EA
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
bc9025bd 1139 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146}
1147
de151cf6
JB
1148/**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165{
05394f39
CW
1166 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1167 struct drm_device *dev = obj->base.dev;
7d1c4804 1168 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1169 pgoff_t page_offset;
1170 unsigned long pfn;
1171 int ret = 0;
0f973f27 1172 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1173
1174 /* We don't use vmf->pgoff since that has the fake offset */
1175 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1176 PAGE_SHIFT;
1177
d9bc7e9f
CW
1178 ret = i915_mutex_lock_interruptible(dev);
1179 if (ret)
1180 goto out;
a00b10c3 1181
db53a302
CW
1182 trace_i915_gem_object_fault(obj, page_offset, true, write);
1183
d9bc7e9f 1184 /* Now bind it into the GTT if needed */
919926ae
CW
1185 if (!obj->map_and_fenceable) {
1186 ret = i915_gem_object_unbind(obj);
1187 if (ret)
1188 goto unlock;
a00b10c3 1189 }
05394f39 1190 if (!obj->gtt_space) {
75e9e915 1191 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1192 if (ret)
1193 goto unlock;
de151cf6
JB
1194 }
1195
4a684a41
CW
1196 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1197 if (ret)
1198 goto unlock;
1199
d9e86c0e
CW
1200 if (obj->tiling_mode == I915_TILING_NONE)
1201 ret = i915_gem_object_put_fence(obj);
1202 else
1203 ret = i915_gem_object_get_fence(obj, NULL, true);
1204 if (ret)
1205 goto unlock;
de151cf6 1206
05394f39
CW
1207 if (i915_gem_object_is_inactive(obj))
1208 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1209
6299f992
CW
1210 obj->fault_mappable = true;
1211
05394f39 1212 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1213 page_offset;
1214
1215 /* Finally, remap it using the new GTT offset */
1216 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1217unlock:
de151cf6 1218 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1219out:
de151cf6 1220 switch (ret) {
d9bc7e9f 1221 case -EIO:
045e769a 1222 case -EAGAIN:
d9bc7e9f
CW
1223 /* Give the error handler a chance to run and move the
1224 * objects off the GPU active list. Next time we service the
1225 * fault, we should be able to transition the page into the
1226 * GTT without touching the GPU (and so avoid further
1227 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1228 * with coherency, just lost writes.
1229 */
045e769a 1230 set_need_resched();
c715089f
CW
1231 case 0:
1232 case -ERESTARTSYS:
1233 return VM_FAULT_NOPAGE;
de151cf6 1234 case -ENOMEM:
de151cf6 1235 return VM_FAULT_OOM;
de151cf6 1236 default:
c715089f 1237 return VM_FAULT_SIGBUS;
de151cf6
JB
1238 }
1239}
1240
1241/**
1242 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1243 * @obj: obj in question
1244 *
1245 * GEM memory mapping works by handing back to userspace a fake mmap offset
1246 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1247 * up the object based on the offset and sets up the various memory mapping
1248 * structures.
1249 *
1250 * This routine allocates and attaches a fake offset for @obj.
1251 */
1252static int
05394f39 1253i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1254{
05394f39 1255 struct drm_device *dev = obj->base.dev;
de151cf6 1256 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1257 struct drm_map_list *list;
f77d390c 1258 struct drm_local_map *map;
de151cf6
JB
1259 int ret = 0;
1260
1261 /* Set the object up for mmap'ing */
05394f39 1262 list = &obj->base.map_list;
9a298b2a 1263 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1264 if (!list->map)
1265 return -ENOMEM;
1266
1267 map = list->map;
1268 map->type = _DRM_GEM;
05394f39 1269 map->size = obj->base.size;
de151cf6
JB
1270 map->handle = obj;
1271
1272 /* Get a DRM GEM mmap offset allocated... */
1273 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1274 obj->base.size / PAGE_SIZE,
1275 0, 0);
de151cf6 1276 if (!list->file_offset_node) {
05394f39
CW
1277 DRM_ERROR("failed to allocate offset for bo %d\n",
1278 obj->base.name);
9e0ae534 1279 ret = -ENOSPC;
de151cf6
JB
1280 goto out_free_list;
1281 }
1282
1283 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1284 obj->base.size / PAGE_SIZE,
1285 0);
de151cf6
JB
1286 if (!list->file_offset_node) {
1287 ret = -ENOMEM;
1288 goto out_free_list;
1289 }
1290
1291 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1292 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1293 if (ret) {
de151cf6
JB
1294 DRM_ERROR("failed to add to map hash\n");
1295 goto out_free_mm;
1296 }
1297
de151cf6
JB
1298 return 0;
1299
1300out_free_mm:
1301 drm_mm_put_block(list->file_offset_node);
1302out_free_list:
9a298b2a 1303 kfree(list->map);
39a01d1f 1304 list->map = NULL;
de151cf6
JB
1305
1306 return ret;
1307}
1308
901782b2
CW
1309/**
1310 * i915_gem_release_mmap - remove physical page mappings
1311 * @obj: obj in question
1312 *
af901ca1 1313 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1314 * relinquish ownership of the pages back to the system.
1315 *
1316 * It is vital that we remove the page mapping if we have mapped a tiled
1317 * object through the GTT and then lose the fence register due to
1318 * resource pressure. Similarly if the object has been moved out of the
1319 * aperture, than pages mapped into userspace must be revoked. Removing the
1320 * mapping will then trigger a page fault on the next user access, allowing
1321 * fixup by i915_gem_fault().
1322 */
d05ca301 1323void
05394f39 1324i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1325{
6299f992
CW
1326 if (!obj->fault_mappable)
1327 return;
901782b2 1328
6299f992
CW
1329 unmap_mapping_range(obj->base.dev->dev_mapping,
1330 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1331 obj->base.size, 1);
fb7d516a 1332
6299f992 1333 obj->fault_mappable = false;
901782b2
CW
1334}
1335
ab00b3e5 1336static void
05394f39 1337i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1338{
05394f39 1339 struct drm_device *dev = obj->base.dev;
ab00b3e5 1340 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1341 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1342
ab00b3e5 1343 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1344 drm_mm_put_block(list->file_offset_node);
1345 kfree(list->map);
1346 list->map = NULL;
ab00b3e5
JB
1347}
1348
92b88aeb
CW
1349static uint32_t
1350i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1351{
1352 struct drm_device *dev = obj->base.dev;
1353 uint32_t size;
1354
1355 if (INTEL_INFO(dev)->gen >= 4 ||
1356 obj->tiling_mode == I915_TILING_NONE)
1357 return obj->base.size;
1358
1359 /* Previous chips need a power-of-two fence region when tiling */
1360 if (INTEL_INFO(dev)->gen == 3)
1361 size = 1024*1024;
1362 else
1363 size = 512*1024;
1364
1365 while (size < obj->base.size)
1366 size <<= 1;
1367
1368 return size;
1369}
1370
de151cf6
JB
1371/**
1372 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1373 * @obj: object to check
1374 *
1375 * Return the required GTT alignment for an object, taking into account
5e783301 1376 * potential fence register mapping.
de151cf6
JB
1377 */
1378static uint32_t
05394f39 1379i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1380{
05394f39 1381 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1382
1383 /*
1384 * Minimum alignment is 4k (GTT page size), but might be greater
1385 * if a fence register is needed for the object.
1386 */
a00b10c3 1387 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1388 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1389 return 4096;
1390
a00b10c3
CW
1391 /*
1392 * Previous chips need to be aligned to the size of the smallest
1393 * fence register that can contain the object.
1394 */
05394f39 1395 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1396}
1397
5e783301
DV
1398/**
1399 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1400 * unfenced object
1401 * @obj: object to check
1402 *
1403 * Return the required GTT alignment for an object, only taking into account
1404 * unfenced tiled surface requirements.
1405 */
1406static uint32_t
05394f39 1407i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1408{
05394f39 1409 struct drm_device *dev = obj->base.dev;
5e783301
DV
1410 int tile_height;
1411
1412 /*
1413 * Minimum alignment is 4k (GTT page size) for sane hw.
1414 */
1415 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1416 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1417 return 4096;
1418
1419 /*
1420 * Older chips need unfenced tiled buffers to be aligned to the left
1421 * edge of an even tile row (where tile rows are counted as if the bo is
1422 * placed in a fenced gtt region).
1423 */
1424 if (IS_GEN2(dev) ||
05394f39 1425 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1426 tile_height = 32;
1427 else
1428 tile_height = 8;
1429
05394f39 1430 return tile_height * obj->stride * 2;
5e783301
DV
1431}
1432
de151cf6
JB
1433/**
1434 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1435 * @dev: DRM device
1436 * @data: GTT mapping ioctl data
05394f39 1437 * @file: GEM object info
de151cf6
JB
1438 *
1439 * Simply returns the fake offset to userspace so it can mmap it.
1440 * The mmap call will end up in drm_gem_mmap(), which will set things
1441 * up so we can get faults in the handler above.
1442 *
1443 * The fault handler will take care of binding the object into the GTT
1444 * (since it may have been evicted to make room for something), allocating
1445 * a fence register, and mapping the appropriate aperture address into
1446 * userspace.
1447 */
1448int
1449i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
05394f39 1450 struct drm_file *file)
de151cf6 1451{
da761a6e 1452 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1453 struct drm_i915_gem_mmap_gtt *args = data;
05394f39 1454 struct drm_i915_gem_object *obj;
de151cf6
JB
1455 int ret;
1456
1457 if (!(dev->driver->driver_features & DRIVER_GEM))
1458 return -ENODEV;
1459
76c1dec1 1460 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1461 if (ret)
76c1dec1 1462 return ret;
de151cf6 1463
05394f39 1464 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1465 if (obj == NULL) {
1466 ret = -ENOENT;
1467 goto unlock;
1468 }
de151cf6 1469
05394f39 1470 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1471 ret = -E2BIG;
1472 goto unlock;
1473 }
1474
05394f39 1475 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1476 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1477 ret = -EINVAL;
1478 goto out;
ab18282d
CW
1479 }
1480
05394f39 1481 if (!obj->base.map_list.map) {
de151cf6 1482 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1483 if (ret)
1484 goto out;
de151cf6
JB
1485 }
1486
05394f39 1487 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1488
1d7cfea1 1489out:
05394f39 1490 drm_gem_object_unreference(&obj->base);
1d7cfea1 1491unlock:
de151cf6 1492 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1493 return ret;
de151cf6
JB
1494}
1495
e5281ccd 1496static int
05394f39 1497i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1498 gfp_t gfpmask)
1499{
e5281ccd
CW
1500 int page_count, i;
1501 struct address_space *mapping;
1502 struct inode *inode;
1503 struct page *page;
1504
1505 /* Get the list of pages out of our struct file. They'll be pinned
1506 * at this point until we release them.
1507 */
05394f39
CW
1508 page_count = obj->base.size / PAGE_SIZE;
1509 BUG_ON(obj->pages != NULL);
1510 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1511 if (obj->pages == NULL)
e5281ccd
CW
1512 return -ENOMEM;
1513
05394f39 1514 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1515 mapping = inode->i_mapping;
1516 for (i = 0; i < page_count; i++) {
1517 page = read_cache_page_gfp(mapping, i,
1518 GFP_HIGHUSER |
1519 __GFP_COLD |
1520 __GFP_RECLAIMABLE |
1521 gfpmask);
1522 if (IS_ERR(page))
1523 goto err_pages;
1524
05394f39 1525 obj->pages[i] = page;
e5281ccd
CW
1526 }
1527
05394f39 1528 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1529 i915_gem_object_do_bit_17_swizzle(obj);
1530
1531 return 0;
1532
1533err_pages:
1534 while (i--)
05394f39 1535 page_cache_release(obj->pages[i]);
e5281ccd 1536
05394f39
CW
1537 drm_free_large(obj->pages);
1538 obj->pages = NULL;
e5281ccd
CW
1539 return PTR_ERR(page);
1540}
1541
5cdf5881 1542static void
05394f39 1543i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1544{
05394f39 1545 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1546 int i;
1547
05394f39 1548 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1549
05394f39 1550 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1551 i915_gem_object_save_bit_17_swizzle(obj);
1552
05394f39
CW
1553 if (obj->madv == I915_MADV_DONTNEED)
1554 obj->dirty = 0;
3ef94daa
CW
1555
1556 for (i = 0; i < page_count; i++) {
05394f39
CW
1557 if (obj->dirty)
1558 set_page_dirty(obj->pages[i]);
3ef94daa 1559
05394f39
CW
1560 if (obj->madv == I915_MADV_WILLNEED)
1561 mark_page_accessed(obj->pages[i]);
3ef94daa 1562
05394f39 1563 page_cache_release(obj->pages[i]);
3ef94daa 1564 }
05394f39 1565 obj->dirty = 0;
673a394b 1566
05394f39
CW
1567 drm_free_large(obj->pages);
1568 obj->pages = NULL;
673a394b
EA
1569}
1570
54cf91dc 1571void
05394f39 1572i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1573 struct intel_ring_buffer *ring,
1574 u32 seqno)
673a394b 1575{
05394f39 1576 struct drm_device *dev = obj->base.dev;
69dc4987 1577 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1578
852835f3 1579 BUG_ON(ring == NULL);
05394f39 1580 obj->ring = ring;
673a394b
EA
1581
1582 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1583 if (!obj->active) {
1584 drm_gem_object_reference(&obj->base);
1585 obj->active = 1;
673a394b 1586 }
e35a41de 1587
673a394b 1588 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1589 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1590 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1591
05394f39 1592 obj->last_rendering_seqno = seqno;
caea7476
CW
1593 if (obj->fenced_gpu_access) {
1594 struct drm_i915_fence_reg *reg;
1595
1596 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1597
1598 obj->last_fenced_seqno = seqno;
1599 obj->last_fenced_ring = ring;
1600
1601 reg = &dev_priv->fence_regs[obj->fence_reg];
1602 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1603 }
1604}
1605
1606static void
1607i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1608{
1609 list_del_init(&obj->ring_list);
1610 obj->last_rendering_seqno = 0;
673a394b
EA
1611}
1612
ce44b0ea 1613static void
05394f39 1614i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1615{
05394f39 1616 struct drm_device *dev = obj->base.dev;
ce44b0ea 1617 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1618
05394f39
CW
1619 BUG_ON(!obj->active);
1620 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1621
1622 i915_gem_object_move_off_active(obj);
1623}
1624
1625static void
1626i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1627{
1628 struct drm_device *dev = obj->base.dev;
1629 struct drm_i915_private *dev_priv = dev->dev_private;
1630
1631 if (obj->pin_count != 0)
1632 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1633 else
1634 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1635
1636 BUG_ON(!list_empty(&obj->gpu_write_list));
1637 BUG_ON(!obj->active);
1638 obj->ring = NULL;
1639
1640 i915_gem_object_move_off_active(obj);
1641 obj->fenced_gpu_access = false;
caea7476
CW
1642
1643 obj->active = 0;
87ca9c8a 1644 obj->pending_gpu_write = false;
caea7476
CW
1645 drm_gem_object_unreference(&obj->base);
1646
1647 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1648}
673a394b 1649
963b4836
CW
1650/* Immediately discard the backing storage */
1651static void
05394f39 1652i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1653{
bb6baf76 1654 struct inode *inode;
963b4836 1655
ae9fed6b
CW
1656 /* Our goal here is to return as much of the memory as
1657 * is possible back to the system as we are called from OOM.
1658 * To do this we must instruct the shmfs to drop all of its
1659 * backing pages, *now*. Here we mirror the actions taken
1660 * when by shmem_delete_inode() to release the backing store.
1661 */
05394f39 1662 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1663 truncate_inode_pages(inode->i_mapping, 0);
1664 if (inode->i_op->truncate_range)
1665 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1666
05394f39 1667 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1668}
1669
1670static inline int
05394f39 1671i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1672{
05394f39 1673 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1674}
1675
63560396 1676static void
db53a302
CW
1677i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1678 uint32_t flush_domains)
63560396 1679{
05394f39 1680 struct drm_i915_gem_object *obj, *next;
63560396 1681
05394f39 1682 list_for_each_entry_safe(obj, next,
64193406 1683 &ring->gpu_write_list,
63560396 1684 gpu_write_list) {
05394f39
CW
1685 if (obj->base.write_domain & flush_domains) {
1686 uint32_t old_write_domain = obj->base.write_domain;
63560396 1687
05394f39
CW
1688 obj->base.write_domain = 0;
1689 list_del_init(&obj->gpu_write_list);
1ec14ad3 1690 i915_gem_object_move_to_active(obj, ring,
db53a302 1691 i915_gem_next_request_seqno(ring));
63560396 1692
63560396 1693 trace_i915_gem_object_change_domain(obj,
05394f39 1694 obj->base.read_domains,
63560396
DV
1695 old_write_domain);
1696 }
1697 }
1698}
8187a2b7 1699
3cce469c 1700int
db53a302 1701i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1702 struct drm_file *file,
db53a302 1703 struct drm_i915_gem_request *request)
673a394b 1704{
db53a302 1705 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1706 uint32_t seqno;
1707 int was_empty;
3cce469c
CW
1708 int ret;
1709
1710 BUG_ON(request == NULL);
673a394b 1711
3cce469c
CW
1712 ret = ring->add_request(ring, &seqno);
1713 if (ret)
1714 return ret;
673a394b 1715
db53a302 1716 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1717
1718 request->seqno = seqno;
852835f3 1719 request->ring = ring;
673a394b 1720 request->emitted_jiffies = jiffies;
852835f3
ZN
1721 was_empty = list_empty(&ring->request_list);
1722 list_add_tail(&request->list, &ring->request_list);
1723
db53a302
CW
1724 if (file) {
1725 struct drm_i915_file_private *file_priv = file->driver_priv;
1726
1c25595f 1727 spin_lock(&file_priv->mm.lock);
f787a5f5 1728 request->file_priv = file_priv;
b962442e 1729 list_add_tail(&request->client_list,
f787a5f5 1730 &file_priv->mm.request_list);
1c25595f 1731 spin_unlock(&file_priv->mm.lock);
b962442e 1732 }
673a394b 1733
db53a302
CW
1734 ring->outstanding_lazy_request = false;
1735
f65d9421 1736 if (!dev_priv->mm.suspended) {
b3b079db
CW
1737 mod_timer(&dev_priv->hangcheck_timer,
1738 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1739 if (was_empty)
b3b079db
CW
1740 queue_delayed_work(dev_priv->wq,
1741 &dev_priv->mm.retire_work, HZ);
f65d9421 1742 }
3cce469c 1743 return 0;
673a394b
EA
1744}
1745
f787a5f5
CW
1746static inline void
1747i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1748{
1c25595f 1749 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1750
1c25595f
CW
1751 if (!file_priv)
1752 return;
1c5d22f7 1753
1c25595f
CW
1754 spin_lock(&file_priv->mm.lock);
1755 list_del(&request->client_list);
1756 request->file_priv = NULL;
1757 spin_unlock(&file_priv->mm.lock);
673a394b 1758}
673a394b 1759
dfaae392
CW
1760static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1761 struct intel_ring_buffer *ring)
9375e446 1762{
dfaae392
CW
1763 while (!list_empty(&ring->request_list)) {
1764 struct drm_i915_gem_request *request;
673a394b 1765
dfaae392
CW
1766 request = list_first_entry(&ring->request_list,
1767 struct drm_i915_gem_request,
1768 list);
de151cf6 1769
dfaae392 1770 list_del(&request->list);
f787a5f5 1771 i915_gem_request_remove_from_client(request);
dfaae392
CW
1772 kfree(request);
1773 }
673a394b 1774
dfaae392 1775 while (!list_empty(&ring->active_list)) {
05394f39 1776 struct drm_i915_gem_object *obj;
9375e446 1777
05394f39
CW
1778 obj = list_first_entry(&ring->active_list,
1779 struct drm_i915_gem_object,
1780 ring_list);
9375e446 1781
05394f39
CW
1782 obj->base.write_domain = 0;
1783 list_del_init(&obj->gpu_write_list);
1784 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1785 }
1786}
1787
312817a3
CW
1788static void i915_gem_reset_fences(struct drm_device *dev)
1789{
1790 struct drm_i915_private *dev_priv = dev->dev_private;
1791 int i;
1792
1793 for (i = 0; i < 16; i++) {
1794 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1795 struct drm_i915_gem_object *obj = reg->obj;
1796
1797 if (!obj)
1798 continue;
1799
1800 if (obj->tiling_mode)
1801 i915_gem_release_mmap(obj);
1802
d9e86c0e
CW
1803 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1804 reg->obj->fenced_gpu_access = false;
1805 reg->obj->last_fenced_seqno = 0;
1806 reg->obj->last_fenced_ring = NULL;
1807 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1808 }
1809}
1810
069efc1d 1811void i915_gem_reset(struct drm_device *dev)
673a394b 1812{
77f01230 1813 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1814 struct drm_i915_gem_object *obj;
1ec14ad3 1815 int i;
673a394b 1816
1ec14ad3
CW
1817 for (i = 0; i < I915_NUM_RINGS; i++)
1818 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1819
1820 /* Remove anything from the flushing lists. The GPU cache is likely
1821 * to be lost on reset along with the data, so simply move the
1822 * lost bo to the inactive list.
1823 */
1824 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1825 obj= list_first_entry(&dev_priv->mm.flushing_list,
1826 struct drm_i915_gem_object,
1827 mm_list);
dfaae392 1828
05394f39
CW
1829 obj->base.write_domain = 0;
1830 list_del_init(&obj->gpu_write_list);
1831 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1832 }
1833
1834 /* Move everything out of the GPU domains to ensure we do any
1835 * necessary invalidation upon reuse.
1836 */
05394f39 1837 list_for_each_entry(obj,
77f01230 1838 &dev_priv->mm.inactive_list,
69dc4987 1839 mm_list)
77f01230 1840 {
05394f39 1841 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1842 }
069efc1d
CW
1843
1844 /* The fence registers are invalidated so clear them out */
312817a3 1845 i915_gem_reset_fences(dev);
673a394b
EA
1846}
1847
1848/**
1849 * This function clears the request list as sequence numbers are passed.
1850 */
b09a1fec 1851static void
db53a302 1852i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1853{
673a394b 1854 uint32_t seqno;
1ec14ad3 1855 int i;
673a394b 1856
db53a302 1857 if (list_empty(&ring->request_list))
6c0594a3
KW
1858 return;
1859
db53a302 1860 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1861
78501eac 1862 seqno = ring->get_seqno(ring);
1ec14ad3 1863
076e2c0e 1864 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1865 if (seqno >= ring->sync_seqno[i])
1866 ring->sync_seqno[i] = 0;
1867
852835f3 1868 while (!list_empty(&ring->request_list)) {
673a394b 1869 struct drm_i915_gem_request *request;
673a394b 1870
852835f3 1871 request = list_first_entry(&ring->request_list,
673a394b
EA
1872 struct drm_i915_gem_request,
1873 list);
673a394b 1874
dfaae392 1875 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1876 break;
1877
db53a302 1878 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1879
1880 list_del(&request->list);
f787a5f5 1881 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1882 kfree(request);
1883 }
673a394b 1884
b84d5f0c
CW
1885 /* Move any buffers on the active list that are no longer referenced
1886 * by the ringbuffer to the flushing/inactive lists as appropriate.
1887 */
1888 while (!list_empty(&ring->active_list)) {
05394f39 1889 struct drm_i915_gem_object *obj;
b84d5f0c 1890
05394f39
CW
1891 obj= list_first_entry(&ring->active_list,
1892 struct drm_i915_gem_object,
1893 ring_list);
673a394b 1894
05394f39 1895 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1896 break;
b84d5f0c 1897
05394f39 1898 if (obj->base.write_domain != 0)
b84d5f0c
CW
1899 i915_gem_object_move_to_flushing(obj);
1900 else
1901 i915_gem_object_move_to_inactive(obj);
673a394b 1902 }
9d34e5db 1903
db53a302
CW
1904 if (unlikely(ring->trace_irq_seqno &&
1905 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1906 ring->irq_put(ring);
db53a302 1907 ring->trace_irq_seqno = 0;
9d34e5db 1908 }
23bc5982 1909
db53a302 1910 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1911}
1912
b09a1fec
CW
1913void
1914i915_gem_retire_requests(struct drm_device *dev)
1915{
1916 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1917 int i;
b09a1fec 1918
be72615b 1919 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1920 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1921
1922 /* We must be careful that during unbind() we do not
1923 * accidentally infinitely recurse into retire requests.
1924 * Currently:
1925 * retire -> free -> unbind -> wait -> retire_ring
1926 */
05394f39 1927 list_for_each_entry_safe(obj, next,
be72615b 1928 &dev_priv->mm.deferred_free_list,
69dc4987 1929 mm_list)
05394f39 1930 i915_gem_free_object_tail(obj);
be72615b
CW
1931 }
1932
1ec14ad3 1933 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1934 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1935}
1936
75ef9da2 1937static void
673a394b
EA
1938i915_gem_retire_work_handler(struct work_struct *work)
1939{
1940 drm_i915_private_t *dev_priv;
1941 struct drm_device *dev;
0a58705b
CW
1942 bool idle;
1943 int i;
673a394b
EA
1944
1945 dev_priv = container_of(work, drm_i915_private_t,
1946 mm.retire_work.work);
1947 dev = dev_priv->dev;
1948
891b48cf
CW
1949 /* Come back later if the device is busy... */
1950 if (!mutex_trylock(&dev->struct_mutex)) {
1951 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1952 return;
1953 }
1954
b09a1fec 1955 i915_gem_retire_requests(dev);
d1b851fc 1956
0a58705b
CW
1957 /* Send a periodic flush down the ring so we don't hold onto GEM
1958 * objects indefinitely.
1959 */
1960 idle = true;
1961 for (i = 0; i < I915_NUM_RINGS; i++) {
1962 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1963
1964 if (!list_empty(&ring->gpu_write_list)) {
1965 struct drm_i915_gem_request *request;
1966 int ret;
1967
db53a302
CW
1968 ret = i915_gem_flush_ring(ring,
1969 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1970 request = kzalloc(sizeof(*request), GFP_KERNEL);
1971 if (ret || request == NULL ||
db53a302 1972 i915_add_request(ring, NULL, request))
0a58705b
CW
1973 kfree(request);
1974 }
1975
1976 idle &= list_empty(&ring->request_list);
1977 }
1978
1979 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1980 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1981
673a394b
EA
1982 mutex_unlock(&dev->struct_mutex);
1983}
1984
db53a302
CW
1985/**
1986 * Waits for a sequence number to be signaled, and cleans up the
1987 * request and object lists appropriately for that event.
1988 */
5a5a0c64 1989int
db53a302
CW
1990i915_wait_request(struct intel_ring_buffer *ring,
1991 uint32_t seqno,
1992 bool interruptible)
673a394b 1993{
db53a302 1994 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1995 u32 ier;
673a394b
EA
1996 int ret = 0;
1997
1998 BUG_ON(seqno == 0);
1999
d9bc7e9f
CW
2000 if (atomic_read(&dev_priv->mm.wedged)) {
2001 struct completion *x = &dev_priv->error_completion;
2002 bool recovery_complete;
2003 unsigned long flags;
2004
2005 /* Give the error handler a chance to run. */
2006 spin_lock_irqsave(&x->wait.lock, flags);
2007 recovery_complete = x->done > 0;
2008 spin_unlock_irqrestore(&x->wait.lock, flags);
2009
2010 return recovery_complete ? -EIO : -EAGAIN;
2011 }
30dbf0c0 2012
5d97eb69 2013 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2014 struct drm_i915_gem_request *request;
2015
2016 request = kzalloc(sizeof(*request), GFP_KERNEL);
2017 if (request == NULL)
e35a41de 2018 return -ENOMEM;
3cce469c 2019
db53a302 2020 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
2021 if (ret) {
2022 kfree(request);
2023 return ret;
2024 }
2025
2026 seqno = request->seqno;
e35a41de 2027 }
ffed1d09 2028
78501eac 2029 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 2030 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
2031 ier = I915_READ(DEIER) | I915_READ(GTIER);
2032 else
2033 ier = I915_READ(IER);
802c7eb6
JB
2034 if (!ier) {
2035 DRM_ERROR("something (likely vbetool) disabled "
2036 "interrupts, re-enabling\n");
db53a302
CW
2037 i915_driver_irq_preinstall(ring->dev);
2038 i915_driver_irq_postinstall(ring->dev);
802c7eb6
JB
2039 }
2040
db53a302 2041 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 2042
b2223497 2043 ring->waiting_seqno = seqno;
b13c2b96
CW
2044 if (ring->irq_get(ring)) {
2045 if (interruptible)
2046 ret = wait_event_interruptible(ring->irq_queue,
2047 i915_seqno_passed(ring->get_seqno(ring), seqno)
2048 || atomic_read(&dev_priv->mm.wedged));
2049 else
2050 wait_event(ring->irq_queue,
2051 i915_seqno_passed(ring->get_seqno(ring), seqno)
2052 || atomic_read(&dev_priv->mm.wedged));
2053
2054 ring->irq_put(ring);
b5ba177d
CW
2055 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2056 seqno) ||
2057 atomic_read(&dev_priv->mm.wedged), 3000))
2058 ret = -EBUSY;
b2223497 2059 ring->waiting_seqno = 0;
1c5d22f7 2060
db53a302 2061 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 2062 }
ba1234d1 2063 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2064 ret = -EAGAIN;
673a394b
EA
2065
2066 if (ret && ret != -ERESTARTSYS)
8bff917c 2067 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2068 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2069 dev_priv->next_seqno);
673a394b
EA
2070
2071 /* Directly dispatch request retiring. While we have the work queue
2072 * to handle this, the waiter on a request often wants an associated
2073 * buffer to have made it to the inactive list, and we would need
2074 * a separate wait queue to handle that.
2075 */
2076 if (ret == 0)
db53a302 2077 i915_gem_retire_requests_ring(ring);
673a394b
EA
2078
2079 return ret;
2080}
2081
673a394b
EA
2082/**
2083 * Ensures that all rendering to the object has completed and the object is
2084 * safe to unbind from the GTT or access from the CPU.
2085 */
54cf91dc 2086int
05394f39 2087i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2cf34d7b 2088 bool interruptible)
673a394b 2089{
673a394b
EA
2090 int ret;
2091
e47c68e9
EA
2092 /* This function only exists to support waiting for existing rendering,
2093 * not for emitting required flushes.
673a394b 2094 */
05394f39 2095 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2096
2097 /* If there is rendering queued on the buffer being evicted, wait for
2098 * it.
2099 */
05394f39 2100 if (obj->active) {
db53a302
CW
2101 ret = i915_wait_request(obj->ring,
2102 obj->last_rendering_seqno,
2103 interruptible);
2cf34d7b 2104 if (ret)
673a394b
EA
2105 return ret;
2106 }
2107
2108 return 0;
2109}
2110
2111/**
2112 * Unbinds an object from the GTT aperture.
2113 */
0f973f27 2114int
05394f39 2115i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2116{
673a394b
EA
2117 int ret = 0;
2118
05394f39 2119 if (obj->gtt_space == NULL)
673a394b
EA
2120 return 0;
2121
05394f39 2122 if (obj->pin_count != 0) {
673a394b
EA
2123 DRM_ERROR("Attempting to unbind pinned buffer\n");
2124 return -EINVAL;
2125 }
2126
5323fd04
EA
2127 /* blow away mappings if mapped through GTT */
2128 i915_gem_release_mmap(obj);
2129
673a394b
EA
2130 /* Move the object to the CPU domain to ensure that
2131 * any possible CPU writes while it's not in the GTT
2132 * are flushed when we go to remap it. This will
2133 * also ensure that all pending GPU writes are finished
2134 * before we unbind.
2135 */
e47c68e9 2136 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2137 if (ret == -ERESTARTSYS)
673a394b 2138 return ret;
8dc1775d
CW
2139 /* Continue on if we fail due to EIO, the GPU is hung so we
2140 * should be safe and we need to cleanup or else we might
2141 * cause memory corruption through use-after-free.
2142 */
812ed492
CW
2143 if (ret) {
2144 i915_gem_clflush_object(obj);
05394f39 2145 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2146 }
673a394b 2147
96b47b65 2148 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2149 ret = i915_gem_object_put_fence(obj);
2150 if (ret == -ERESTARTSYS)
2151 return ret;
96b47b65 2152
db53a302
CW
2153 trace_i915_gem_object_unbind(obj);
2154
7c2e6fdf 2155 i915_gem_gtt_unbind_object(obj);
e5281ccd 2156 i915_gem_object_put_pages_gtt(obj);
673a394b 2157
6299f992 2158 list_del_init(&obj->gtt_list);
05394f39 2159 list_del_init(&obj->mm_list);
75e9e915 2160 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2161 obj->map_and_fenceable = true;
673a394b 2162
05394f39
CW
2163 drm_mm_put_block(obj->gtt_space);
2164 obj->gtt_space = NULL;
2165 obj->gtt_offset = 0;
673a394b 2166
05394f39 2167 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2168 i915_gem_object_truncate(obj);
2169
8dc1775d 2170 return ret;
673a394b
EA
2171}
2172
88241785 2173int
db53a302 2174i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2175 uint32_t invalidate_domains,
2176 uint32_t flush_domains)
2177{
88241785
CW
2178 int ret;
2179
db53a302
CW
2180 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2181
88241785
CW
2182 ret = ring->flush(ring, invalidate_domains, flush_domains);
2183 if (ret)
2184 return ret;
2185
db53a302 2186 i915_gem_process_flushing_list(ring, flush_domains);
88241785 2187 return 0;
54cf91dc
CW
2188}
2189
db53a302 2190static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2191{
88241785
CW
2192 int ret;
2193
395b70be 2194 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2195 return 0;
2196
88241785 2197 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2198 ret = i915_gem_flush_ring(ring,
0ac74c6b 2199 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2200 if (ret)
2201 return ret;
2202 }
2203
db53a302
CW
2204 return i915_wait_request(ring,
2205 i915_gem_next_request_seqno(ring),
2206 true);
a56ba56c
CW
2207}
2208
b47eb4a2 2209int
4df2faf4
DV
2210i915_gpu_idle(struct drm_device *dev)
2211{
2212 drm_i915_private_t *dev_priv = dev->dev_private;
2213 bool lists_empty;
1ec14ad3 2214 int ret, i;
4df2faf4 2215
d1b851fc 2216 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2217 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2218 if (lists_empty)
2219 return 0;
2220
2221 /* Flush everything onto the inactive list. */
1ec14ad3 2222 for (i = 0; i < I915_NUM_RINGS; i++) {
db53a302 2223 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2224 if (ret)
2225 return ret;
2226 }
4df2faf4 2227
8a1a49f9 2228 return 0;
4df2faf4
DV
2229}
2230
c6642782
DV
2231static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2232 struct intel_ring_buffer *pipelined)
4e901fdc 2233{
05394f39 2234 struct drm_device *dev = obj->base.dev;
4e901fdc 2235 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2236 u32 size = obj->gtt_space->size;
2237 int regnum = obj->fence_reg;
4e901fdc
EA
2238 uint64_t val;
2239
05394f39 2240 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2241 0xfffff000) << 32;
05394f39
CW
2242 val |= obj->gtt_offset & 0xfffff000;
2243 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2244 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2245
05394f39 2246 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2247 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2248 val |= I965_FENCE_REG_VALID;
2249
c6642782
DV
2250 if (pipelined) {
2251 int ret = intel_ring_begin(pipelined, 6);
2252 if (ret)
2253 return ret;
2254
2255 intel_ring_emit(pipelined, MI_NOOP);
2256 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2257 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2258 intel_ring_emit(pipelined, (u32)val);
2259 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2260 intel_ring_emit(pipelined, (u32)(val >> 32));
2261 intel_ring_advance(pipelined);
2262 } else
2263 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2264
2265 return 0;
4e901fdc
EA
2266}
2267
c6642782
DV
2268static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2269 struct intel_ring_buffer *pipelined)
de151cf6 2270{
05394f39 2271 struct drm_device *dev = obj->base.dev;
de151cf6 2272 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2273 u32 size = obj->gtt_space->size;
2274 int regnum = obj->fence_reg;
de151cf6
JB
2275 uint64_t val;
2276
05394f39 2277 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2278 0xfffff000) << 32;
05394f39
CW
2279 val |= obj->gtt_offset & 0xfffff000;
2280 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2281 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2282 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2283 val |= I965_FENCE_REG_VALID;
2284
c6642782
DV
2285 if (pipelined) {
2286 int ret = intel_ring_begin(pipelined, 6);
2287 if (ret)
2288 return ret;
2289
2290 intel_ring_emit(pipelined, MI_NOOP);
2291 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2292 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2293 intel_ring_emit(pipelined, (u32)val);
2294 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2295 intel_ring_emit(pipelined, (u32)(val >> 32));
2296 intel_ring_advance(pipelined);
2297 } else
2298 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2299
2300 return 0;
de151cf6
JB
2301}
2302
c6642782
DV
2303static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2304 struct intel_ring_buffer *pipelined)
de151cf6 2305{
05394f39 2306 struct drm_device *dev = obj->base.dev;
de151cf6 2307 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2308 u32 size = obj->gtt_space->size;
c6642782 2309 u32 fence_reg, val, pitch_val;
0f973f27 2310 int tile_width;
de151cf6 2311
c6642782
DV
2312 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2313 (size & -size) != size ||
2314 (obj->gtt_offset & (size - 1)),
2315 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2316 obj->gtt_offset, obj->map_and_fenceable, size))
2317 return -EINVAL;
de151cf6 2318
c6642782 2319 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2320 tile_width = 128;
de151cf6 2321 else
0f973f27
JB
2322 tile_width = 512;
2323
2324 /* Note: pitch better be a power of two tile widths */
05394f39 2325 pitch_val = obj->stride / tile_width;
0f973f27 2326 pitch_val = ffs(pitch_val) - 1;
de151cf6 2327
05394f39
CW
2328 val = obj->gtt_offset;
2329 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2330 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2331 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2332 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2333 val |= I830_FENCE_REG_VALID;
2334
05394f39 2335 fence_reg = obj->fence_reg;
a00b10c3
CW
2336 if (fence_reg < 8)
2337 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2338 else
a00b10c3 2339 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2340
2341 if (pipelined) {
2342 int ret = intel_ring_begin(pipelined, 4);
2343 if (ret)
2344 return ret;
2345
2346 intel_ring_emit(pipelined, MI_NOOP);
2347 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2348 intel_ring_emit(pipelined, fence_reg);
2349 intel_ring_emit(pipelined, val);
2350 intel_ring_advance(pipelined);
2351 } else
2352 I915_WRITE(fence_reg, val);
2353
2354 return 0;
de151cf6
JB
2355}
2356
c6642782
DV
2357static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2358 struct intel_ring_buffer *pipelined)
de151cf6 2359{
05394f39 2360 struct drm_device *dev = obj->base.dev;
de151cf6 2361 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2362 u32 size = obj->gtt_space->size;
2363 int regnum = obj->fence_reg;
de151cf6
JB
2364 uint32_t val;
2365 uint32_t pitch_val;
2366
c6642782
DV
2367 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2368 (size & -size) != size ||
2369 (obj->gtt_offset & (size - 1)),
2370 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2371 obj->gtt_offset, size))
2372 return -EINVAL;
de151cf6 2373
05394f39 2374 pitch_val = obj->stride / 128;
e76a16de 2375 pitch_val = ffs(pitch_val) - 1;
e76a16de 2376
05394f39
CW
2377 val = obj->gtt_offset;
2378 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2379 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2380 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2381 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2382 val |= I830_FENCE_REG_VALID;
2383
c6642782
DV
2384 if (pipelined) {
2385 int ret = intel_ring_begin(pipelined, 4);
2386 if (ret)
2387 return ret;
2388
2389 intel_ring_emit(pipelined, MI_NOOP);
2390 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2391 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2392 intel_ring_emit(pipelined, val);
2393 intel_ring_advance(pipelined);
2394 } else
2395 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2396
2397 return 0;
de151cf6
JB
2398}
2399
d9e86c0e
CW
2400static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2401{
2402 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2403}
2404
2405static int
2406i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2407 struct intel_ring_buffer *pipelined,
2408 bool interruptible)
2409{
2410 int ret;
2411
2412 if (obj->fenced_gpu_access) {
88241785 2413 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2414 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2415 0, obj->base.write_domain);
2416 if (ret)
2417 return ret;
2418 }
d9e86c0e
CW
2419
2420 obj->fenced_gpu_access = false;
2421 }
2422
2423 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2424 if (!ring_passed_seqno(obj->last_fenced_ring,
2425 obj->last_fenced_seqno)) {
db53a302
CW
2426 ret = i915_wait_request(obj->last_fenced_ring,
2427 obj->last_fenced_seqno,
2428 interruptible);
2429
d9e86c0e
CW
2430 if (ret)
2431 return ret;
2432 }
2433
2434 obj->last_fenced_seqno = 0;
2435 obj->last_fenced_ring = NULL;
2436 }
2437
63256ec5
CW
2438 /* Ensure that all CPU reads are completed before installing a fence
2439 * and all writes before removing the fence.
2440 */
2441 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2442 mb();
2443
d9e86c0e
CW
2444 return 0;
2445}
2446
2447int
2448i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2449{
2450 int ret;
2451
2452 if (obj->tiling_mode)
2453 i915_gem_release_mmap(obj);
2454
2455 ret = i915_gem_object_flush_fence(obj, NULL, true);
2456 if (ret)
2457 return ret;
2458
2459 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2460 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2461 i915_gem_clear_fence_reg(obj->base.dev,
2462 &dev_priv->fence_regs[obj->fence_reg]);
2463
2464 obj->fence_reg = I915_FENCE_REG_NONE;
2465 }
2466
2467 return 0;
2468}
2469
2470static struct drm_i915_fence_reg *
2471i915_find_fence_reg(struct drm_device *dev,
2472 struct intel_ring_buffer *pipelined)
ae3db24a 2473{
ae3db24a 2474 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2475 struct drm_i915_fence_reg *reg, *first, *avail;
2476 int i;
ae3db24a
DV
2477
2478 /* First try to find a free reg */
d9e86c0e 2479 avail = NULL;
ae3db24a
DV
2480 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2481 reg = &dev_priv->fence_regs[i];
2482 if (!reg->obj)
d9e86c0e 2483 return reg;
ae3db24a 2484
05394f39 2485 if (!reg->obj->pin_count)
d9e86c0e 2486 avail = reg;
ae3db24a
DV
2487 }
2488
d9e86c0e
CW
2489 if (avail == NULL)
2490 return NULL;
ae3db24a
DV
2491
2492 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2493 avail = first = NULL;
2494 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2495 if (reg->obj->pin_count)
ae3db24a
DV
2496 continue;
2497
d9e86c0e
CW
2498 if (first == NULL)
2499 first = reg;
2500
2501 if (!pipelined ||
2502 !reg->obj->last_fenced_ring ||
2503 reg->obj->last_fenced_ring == pipelined) {
2504 avail = reg;
2505 break;
2506 }
ae3db24a
DV
2507 }
2508
d9e86c0e
CW
2509 if (avail == NULL)
2510 avail = first;
ae3db24a 2511
a00b10c3 2512 return avail;
ae3db24a
DV
2513}
2514
de151cf6 2515/**
d9e86c0e 2516 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2517 * @obj: object to map through a fence reg
d9e86c0e
CW
2518 * @pipelined: ring on which to queue the change, or NULL for CPU access
2519 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2520 *
2521 * When mapping objects through the GTT, userspace wants to be able to write
2522 * to them without having to worry about swizzling if the object is tiled.
2523 *
2524 * This function walks the fence regs looking for a free one for @obj,
2525 * stealing one if it can't find any.
2526 *
2527 * It then sets up the reg based on the object's properties: address, pitch
2528 * and tiling format.
2529 */
8c4b8c3f 2530int
d9e86c0e
CW
2531i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2532 struct intel_ring_buffer *pipelined,
2533 bool interruptible)
de151cf6 2534{
05394f39 2535 struct drm_device *dev = obj->base.dev;
79e53945 2536 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2537 struct drm_i915_fence_reg *reg;
ae3db24a 2538 int ret;
de151cf6 2539
6bda10d1
CW
2540 /* XXX disable pipelining. There are bugs. Shocking. */
2541 pipelined = NULL;
2542
d9e86c0e 2543 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2544 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2545 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2546 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e
CW
2547
2548 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2549 pipelined = NULL;
2550
2551 if (!pipelined) {
2552 if (reg->setup_seqno) {
2553 if (!ring_passed_seqno(obj->last_fenced_ring,
2554 reg->setup_seqno)) {
db53a302
CW
2555 ret = i915_wait_request(obj->last_fenced_ring,
2556 reg->setup_seqno,
2557 interruptible);
d9e86c0e
CW
2558 if (ret)
2559 return ret;
2560 }
2561
2562 reg->setup_seqno = 0;
2563 }
2564 } else if (obj->last_fenced_ring &&
2565 obj->last_fenced_ring != pipelined) {
2566 ret = i915_gem_object_flush_fence(obj,
2567 pipelined,
2568 interruptible);
2569 if (ret)
2570 return ret;
2571 } else if (obj->tiling_changed) {
2572 if (obj->fenced_gpu_access) {
88241785 2573 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2574 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2575 0, obj->base.write_domain);
2576 if (ret)
2577 return ret;
2578 }
d9e86c0e
CW
2579
2580 obj->fenced_gpu_access = false;
2581 }
2582 }
2583
2584 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2585 pipelined = NULL;
2586 BUG_ON(!pipelined && reg->setup_seqno);
2587
2588 if (obj->tiling_changed) {
2589 if (pipelined) {
2590 reg->setup_seqno =
db53a302 2591 i915_gem_next_request_seqno(pipelined);
d9e86c0e
CW
2592 obj->last_fenced_seqno = reg->setup_seqno;
2593 obj->last_fenced_ring = pipelined;
2594 }
2595 goto update;
2596 }
2597
a09ba7fa
EA
2598 return 0;
2599 }
2600
d9e86c0e
CW
2601 reg = i915_find_fence_reg(dev, pipelined);
2602 if (reg == NULL)
2603 return -ENOSPC;
de151cf6 2604
d9e86c0e
CW
2605 ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
2606 if (ret)
ae3db24a 2607 return ret;
de151cf6 2608
d9e86c0e
CW
2609 if (reg->obj) {
2610 struct drm_i915_gem_object *old = reg->obj;
2611
2612 drm_gem_object_reference(&old->base);
2613
2614 if (old->tiling_mode)
2615 i915_gem_release_mmap(old);
2616
d9e86c0e 2617 ret = i915_gem_object_flush_fence(old,
6bda10d1 2618 pipelined,
d9e86c0e
CW
2619 interruptible);
2620 if (ret) {
2621 drm_gem_object_unreference(&old->base);
2622 return ret;
2623 }
2624
2625 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2626 pipelined = NULL;
2627
2628 old->fence_reg = I915_FENCE_REG_NONE;
2629 old->last_fenced_ring = pipelined;
2630 old->last_fenced_seqno =
db53a302 2631 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2632
2633 drm_gem_object_unreference(&old->base);
2634 } else if (obj->last_fenced_seqno == 0)
2635 pipelined = NULL;
a09ba7fa 2636
de151cf6 2637 reg->obj = obj;
d9e86c0e
CW
2638 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2639 obj->fence_reg = reg - dev_priv->fence_regs;
2640 obj->last_fenced_ring = pipelined;
de151cf6 2641
d9e86c0e 2642 reg->setup_seqno =
db53a302 2643 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2644 obj->last_fenced_seqno = reg->setup_seqno;
2645
2646update:
2647 obj->tiling_changed = false;
e259befd
CW
2648 switch (INTEL_INFO(dev)->gen) {
2649 case 6:
c6642782 2650 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2651 break;
2652 case 5:
2653 case 4:
c6642782 2654 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2655 break;
2656 case 3:
c6642782 2657 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2658 break;
2659 case 2:
c6642782 2660 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2661 break;
2662 }
d9ddcb96 2663
c6642782 2664 return ret;
de151cf6
JB
2665}
2666
2667/**
2668 * i915_gem_clear_fence_reg - clear out fence register info
2669 * @obj: object to clear
2670 *
2671 * Zeroes out the fence register itself and clears out the associated
05394f39 2672 * data structures in dev_priv and obj.
de151cf6
JB
2673 */
2674static void
d9e86c0e
CW
2675i915_gem_clear_fence_reg(struct drm_device *dev,
2676 struct drm_i915_fence_reg *reg)
de151cf6 2677{
79e53945 2678 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2679 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2680
e259befd
CW
2681 switch (INTEL_INFO(dev)->gen) {
2682 case 6:
d9e86c0e 2683 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2684 break;
2685 case 5:
2686 case 4:
d9e86c0e 2687 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2688 break;
2689 case 3:
d9e86c0e
CW
2690 if (fence_reg >= 8)
2691 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2692 else
e259befd 2693 case 2:
d9e86c0e 2694 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2695
2696 I915_WRITE(fence_reg, 0);
e259befd 2697 break;
dc529a4f 2698 }
de151cf6 2699
007cc8ac 2700 list_del_init(&reg->lru_list);
d9e86c0e
CW
2701 reg->obj = NULL;
2702 reg->setup_seqno = 0;
52dc7d32
CW
2703}
2704
673a394b
EA
2705/**
2706 * Finds free space in the GTT aperture and binds the object there.
2707 */
2708static int
05394f39 2709i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2710 unsigned alignment,
75e9e915 2711 bool map_and_fenceable)
673a394b 2712{
05394f39 2713 struct drm_device *dev = obj->base.dev;
673a394b 2714 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2715 struct drm_mm_node *free_space;
a00b10c3 2716 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2717 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2718 bool mappable, fenceable;
07f73f69 2719 int ret;
673a394b 2720
05394f39 2721 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2722 DRM_ERROR("Attempting to bind a purgeable object\n");
2723 return -EINVAL;
2724 }
2725
05394f39
CW
2726 fence_size = i915_gem_get_gtt_size(obj);
2727 fence_alignment = i915_gem_get_gtt_alignment(obj);
2728 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2729
673a394b 2730 if (alignment == 0)
5e783301
DV
2731 alignment = map_and_fenceable ? fence_alignment :
2732 unfenced_alignment;
75e9e915 2733 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2734 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2735 return -EINVAL;
2736 }
2737
05394f39 2738 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2739
654fc607
CW
2740 /* If the object is bigger than the entire aperture, reject it early
2741 * before evicting everything in a vain attempt to find space.
2742 */
05394f39 2743 if (obj->base.size >
75e9e915 2744 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2745 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2746 return -E2BIG;
2747 }
2748
673a394b 2749 search_free:
75e9e915 2750 if (map_and_fenceable)
920afa77
DV
2751 free_space =
2752 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2753 size, alignment, 0,
920afa77
DV
2754 dev_priv->mm.gtt_mappable_end,
2755 0);
2756 else
2757 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2758 size, alignment, 0);
920afa77
DV
2759
2760 if (free_space != NULL) {
75e9e915 2761 if (map_and_fenceable)
05394f39 2762 obj->gtt_space =
920afa77 2763 drm_mm_get_block_range_generic(free_space,
a00b10c3 2764 size, alignment, 0,
920afa77
DV
2765 dev_priv->mm.gtt_mappable_end,
2766 0);
2767 else
05394f39 2768 obj->gtt_space =
a00b10c3 2769 drm_mm_get_block(free_space, size, alignment);
920afa77 2770 }
05394f39 2771 if (obj->gtt_space == NULL) {
673a394b
EA
2772 /* If the gtt is empty and we're still having trouble
2773 * fitting our object in, we're out of memory.
2774 */
75e9e915
DV
2775 ret = i915_gem_evict_something(dev, size, alignment,
2776 map_and_fenceable);
9731129c 2777 if (ret)
673a394b 2778 return ret;
9731129c 2779
673a394b
EA
2780 goto search_free;
2781 }
2782
e5281ccd 2783 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2784 if (ret) {
05394f39
CW
2785 drm_mm_put_block(obj->gtt_space);
2786 obj->gtt_space = NULL;
07f73f69
CW
2787
2788 if (ret == -ENOMEM) {
809b6334
CW
2789 /* first try to reclaim some memory by clearing the GTT */
2790 ret = i915_gem_evict_everything(dev, false);
07f73f69 2791 if (ret) {
07f73f69 2792 /* now try to shrink everyone else */
4bdadb97
CW
2793 if (gfpmask) {
2794 gfpmask = 0;
2795 goto search_free;
07f73f69
CW
2796 }
2797
809b6334 2798 return -ENOMEM;
07f73f69
CW
2799 }
2800
2801 goto search_free;
2802 }
2803
673a394b
EA
2804 return ret;
2805 }
2806
7c2e6fdf
DV
2807 ret = i915_gem_gtt_bind_object(obj);
2808 if (ret) {
e5281ccd 2809 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2810 drm_mm_put_block(obj->gtt_space);
2811 obj->gtt_space = NULL;
07f73f69 2812
809b6334 2813 if (i915_gem_evict_everything(dev, false))
07f73f69 2814 return ret;
07f73f69
CW
2815
2816 goto search_free;
673a394b 2817 }
673a394b 2818
6299f992 2819 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2820 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2821
673a394b
EA
2822 /* Assert that the object is not currently in any GPU domain. As it
2823 * wasn't in the GTT, there shouldn't be any way it could have been in
2824 * a GPU cache
2825 */
05394f39
CW
2826 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2827 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2828
6299f992 2829 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2830
75e9e915 2831 fenceable =
05394f39
CW
2832 obj->gtt_space->size == fence_size &&
2833 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2834
75e9e915 2835 mappable =
05394f39 2836 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2837
05394f39 2838 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2839
db53a302 2840 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2841 return 0;
2842}
2843
2844void
05394f39 2845i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2846{
673a394b
EA
2847 /* If we don't have a page list set up, then we're not pinned
2848 * to GPU, and we can ignore the cache flush because it'll happen
2849 * again at bind time.
2850 */
05394f39 2851 if (obj->pages == NULL)
673a394b
EA
2852 return;
2853
1c5d22f7 2854 trace_i915_gem_object_clflush(obj);
cfa16a0d 2855
05394f39 2856 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2857}
2858
e47c68e9 2859/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2860static int
3619df03 2861i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2862{
05394f39 2863 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2864 return 0;
e47c68e9
EA
2865
2866 /* Queue the GPU write cache flushing we need. */
db53a302 2867 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2868}
2869
2870/** Flushes the GTT write domain for the object if it's dirty. */
2871static void
05394f39 2872i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2873{
1c5d22f7
CW
2874 uint32_t old_write_domain;
2875
05394f39 2876 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2877 return;
2878
63256ec5 2879 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2880 * to it immediately go to main memory as far as we know, so there's
2881 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2882 *
2883 * However, we do have to enforce the order so that all writes through
2884 * the GTT land before any writes to the device, such as updates to
2885 * the GATT itself.
e47c68e9 2886 */
63256ec5
CW
2887 wmb();
2888
4a684a41
CW
2889 i915_gem_release_mmap(obj);
2890
05394f39
CW
2891 old_write_domain = obj->base.write_domain;
2892 obj->base.write_domain = 0;
1c5d22f7
CW
2893
2894 trace_i915_gem_object_change_domain(obj,
05394f39 2895 obj->base.read_domains,
1c5d22f7 2896 old_write_domain);
e47c68e9
EA
2897}
2898
2899/** Flushes the CPU write domain for the object if it's dirty. */
2900static void
05394f39 2901i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2902{
1c5d22f7 2903 uint32_t old_write_domain;
e47c68e9 2904
05394f39 2905 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2906 return;
2907
2908 i915_gem_clflush_object(obj);
40ce6575 2909 intel_gtt_chipset_flush();
05394f39
CW
2910 old_write_domain = obj->base.write_domain;
2911 obj->base.write_domain = 0;
1c5d22f7
CW
2912
2913 trace_i915_gem_object_change_domain(obj,
05394f39 2914 obj->base.read_domains,
1c5d22f7 2915 old_write_domain);
e47c68e9
EA
2916}
2917
2ef7eeaa
EA
2918/**
2919 * Moves a single object to the GTT read, and possibly write domain.
2920 *
2921 * This function returns when the move is complete, including waiting on
2922 * flushes to occur.
2923 */
79e53945 2924int
2021746e 2925i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2926{
1c5d22f7 2927 uint32_t old_write_domain, old_read_domains;
e47c68e9 2928 int ret;
2ef7eeaa 2929
02354392 2930 /* Not valid to be called on unbound objects. */
05394f39 2931 if (obj->gtt_space == NULL)
02354392
EA
2932 return -EINVAL;
2933
8d7e3de1
CW
2934 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2935 return 0;
2936
88241785
CW
2937 ret = i915_gem_object_flush_gpu_write_domain(obj);
2938 if (ret)
2939 return ret;
2940
87ca9c8a
CW
2941 if (obj->pending_gpu_write || write) {
2942 ret = i915_gem_object_wait_rendering(obj, true);
2943 if (ret)
2944 return ret;
2945 }
2dafb1e0 2946
7213342d 2947 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2948
05394f39
CW
2949 old_write_domain = obj->base.write_domain;
2950 old_read_domains = obj->base.read_domains;
1c5d22f7 2951
e47c68e9
EA
2952 /* It should now be out of any other write domains, and we can update
2953 * the domain values for our changes.
2954 */
05394f39
CW
2955 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2956 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2957 if (write) {
05394f39
CW
2958 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2959 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2960 obj->dirty = 1;
2ef7eeaa
EA
2961 }
2962
1c5d22f7
CW
2963 trace_i915_gem_object_change_domain(obj,
2964 old_read_domains,
2965 old_write_domain);
2966
e47c68e9
EA
2967 return 0;
2968}
2969
b9241ea3
ZW
2970/*
2971 * Prepare buffer for display plane. Use uninterruptible for possible flush
2972 * wait, as in modesetting process we're not supposed to be interrupted.
2973 */
2974int
05394f39 2975i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 2976 struct intel_ring_buffer *pipelined)
b9241ea3 2977{
ba3d8d74 2978 uint32_t old_read_domains;
b9241ea3
ZW
2979 int ret;
2980
2981 /* Not valid to be called on unbound objects. */
05394f39 2982 if (obj->gtt_space == NULL)
b9241ea3
ZW
2983 return -EINVAL;
2984
88241785
CW
2985 ret = i915_gem_object_flush_gpu_write_domain(obj);
2986 if (ret)
2987 return ret;
2988
b9241ea3 2989
ced270fa 2990 /* Currently, we are always called from an non-interruptible context. */
0be73284 2991 if (pipelined != obj->ring) {
ced270fa
CW
2992 ret = i915_gem_object_wait_rendering(obj, false);
2993 if (ret)
b9241ea3
ZW
2994 return ret;
2995 }
2996
b118c1e3
CW
2997 i915_gem_object_flush_cpu_write_domain(obj);
2998
05394f39
CW
2999 old_read_domains = obj->base.read_domains;
3000 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3001
3002 trace_i915_gem_object_change_domain(obj,
3003 old_read_domains,
05394f39 3004 obj->base.write_domain);
b9241ea3
ZW
3005
3006 return 0;
3007}
3008
85345517
CW
3009int
3010i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3011 bool interruptible)
3012{
88241785
CW
3013 int ret;
3014
85345517
CW
3015 if (!obj->active)
3016 return 0;
3017
88241785 3018 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3019 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3020 if (ret)
3021 return ret;
3022 }
85345517 3023
05394f39 3024 return i915_gem_object_wait_rendering(obj, interruptible);
85345517
CW
3025}
3026
e47c68e9
EA
3027/**
3028 * Moves a single object to the CPU read, and possibly write domain.
3029 *
3030 * This function returns when the move is complete, including waiting on
3031 * flushes to occur.
3032 */
3033static int
919926ae 3034i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3035{
1c5d22f7 3036 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3037 int ret;
3038
8d7e3de1
CW
3039 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3040 return 0;
3041
88241785
CW
3042 ret = i915_gem_object_flush_gpu_write_domain(obj);
3043 if (ret)
3044 return ret;
3045
de18a29e
DV
3046 ret = i915_gem_object_wait_rendering(obj, true);
3047 if (ret)
e47c68e9 3048 return ret;
2ef7eeaa 3049
e47c68e9 3050 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3051
e47c68e9
EA
3052 /* If we have a partially-valid cache of the object in the CPU,
3053 * finish invalidating it and free the per-page flags.
2ef7eeaa 3054 */
e47c68e9 3055 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3056
05394f39
CW
3057 old_write_domain = obj->base.write_domain;
3058 old_read_domains = obj->base.read_domains;
1c5d22f7 3059
e47c68e9 3060 /* Flush the CPU cache if it's still invalid. */
05394f39 3061 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3062 i915_gem_clflush_object(obj);
2ef7eeaa 3063
05394f39 3064 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3065 }
3066
3067 /* It should now be out of any other write domains, and we can update
3068 * the domain values for our changes.
3069 */
05394f39 3070 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3071
3072 /* If we're writing through the CPU, then the GPU read domains will
3073 * need to be invalidated at next use.
3074 */
3075 if (write) {
05394f39
CW
3076 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3077 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3078 }
2ef7eeaa 3079
1c5d22f7
CW
3080 trace_i915_gem_object_change_domain(obj,
3081 old_read_domains,
3082 old_write_domain);
3083
2ef7eeaa
EA
3084 return 0;
3085}
3086
673a394b 3087/**
e47c68e9 3088 * Moves the object from a partially CPU read to a full one.
673a394b 3089 *
e47c68e9
EA
3090 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3091 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3092 */
e47c68e9 3093static void
05394f39 3094i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3095{
05394f39 3096 if (!obj->page_cpu_valid)
e47c68e9
EA
3097 return;
3098
3099 /* If we're partially in the CPU read domain, finish moving it in.
3100 */
05394f39 3101 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3102 int i;
3103
05394f39
CW
3104 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3105 if (obj->page_cpu_valid[i])
e47c68e9 3106 continue;
05394f39 3107 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3108 }
e47c68e9
EA
3109 }
3110
3111 /* Free the page_cpu_valid mappings which are now stale, whether
3112 * or not we've got I915_GEM_DOMAIN_CPU.
3113 */
05394f39
CW
3114 kfree(obj->page_cpu_valid);
3115 obj->page_cpu_valid = NULL;
e47c68e9
EA
3116}
3117
3118/**
3119 * Set the CPU read domain on a range of the object.
3120 *
3121 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3122 * not entirely valid. The page_cpu_valid member of the object flags which
3123 * pages have been flushed, and will be respected by
3124 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3125 * of the whole object.
3126 *
3127 * This function returns when the move is complete, including waiting on
3128 * flushes to occur.
3129 */
3130static int
05394f39 3131i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3132 uint64_t offset, uint64_t size)
3133{
1c5d22f7 3134 uint32_t old_read_domains;
e47c68e9 3135 int i, ret;
673a394b 3136
05394f39 3137 if (offset == 0 && size == obj->base.size)
e47c68e9 3138 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3139
88241785
CW
3140 ret = i915_gem_object_flush_gpu_write_domain(obj);
3141 if (ret)
3142 return ret;
3143
de18a29e
DV
3144 ret = i915_gem_object_wait_rendering(obj, true);
3145 if (ret)
6a47baa6 3146 return ret;
de18a29e 3147
e47c68e9
EA
3148 i915_gem_object_flush_gtt_write_domain(obj);
3149
3150 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3151 if (obj->page_cpu_valid == NULL &&
3152 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3153 return 0;
673a394b 3154
e47c68e9
EA
3155 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3156 * newly adding I915_GEM_DOMAIN_CPU
3157 */
05394f39
CW
3158 if (obj->page_cpu_valid == NULL) {
3159 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3160 GFP_KERNEL);
3161 if (obj->page_cpu_valid == NULL)
e47c68e9 3162 return -ENOMEM;
05394f39
CW
3163 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3164 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3165
3166 /* Flush the cache on any pages that are still invalid from the CPU's
3167 * perspective.
3168 */
e47c68e9
EA
3169 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3170 i++) {
05394f39 3171 if (obj->page_cpu_valid[i])
673a394b
EA
3172 continue;
3173
05394f39 3174 drm_clflush_pages(obj->pages + i, 1);
673a394b 3175
05394f39 3176 obj->page_cpu_valid[i] = 1;
673a394b
EA
3177 }
3178
e47c68e9
EA
3179 /* It should now be out of any other write domains, and we can update
3180 * the domain values for our changes.
3181 */
05394f39 3182 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3183
05394f39
CW
3184 old_read_domains = obj->base.read_domains;
3185 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3186
1c5d22f7
CW
3187 trace_i915_gem_object_change_domain(obj,
3188 old_read_domains,
05394f39 3189 obj->base.write_domain);
1c5d22f7 3190
673a394b
EA
3191 return 0;
3192}
3193
673a394b
EA
3194/* Throttle our rendering by waiting until the ring has completed our requests
3195 * emitted over 20 msec ago.
3196 *
b962442e
EA
3197 * Note that if we were to use the current jiffies each time around the loop,
3198 * we wouldn't escape the function with any frames outstanding if the time to
3199 * render a frame was over 20ms.
3200 *
673a394b
EA
3201 * This should get us reasonable parallelism between CPU and GPU but also
3202 * relatively low latency when blocking on a particular request to finish.
3203 */
40a5f0de 3204static int
f787a5f5 3205i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3206{
f787a5f5
CW
3207 struct drm_i915_private *dev_priv = dev->dev_private;
3208 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3209 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3210 struct drm_i915_gem_request *request;
3211 struct intel_ring_buffer *ring = NULL;
3212 u32 seqno = 0;
3213 int ret;
93533c29 3214
e110e8d6
CW
3215 if (atomic_read(&dev_priv->mm.wedged))
3216 return -EIO;
3217
1c25595f 3218 spin_lock(&file_priv->mm.lock);
f787a5f5 3219 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3220 if (time_after_eq(request->emitted_jiffies, recent_enough))
3221 break;
40a5f0de 3222
f787a5f5
CW
3223 ring = request->ring;
3224 seqno = request->seqno;
b962442e 3225 }
1c25595f 3226 spin_unlock(&file_priv->mm.lock);
40a5f0de 3227
f787a5f5
CW
3228 if (seqno == 0)
3229 return 0;
2bc43b5c 3230
f787a5f5 3231 ret = 0;
78501eac 3232 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3233 /* And wait for the seqno passing without holding any locks and
3234 * causing extra latency for others. This is safe as the irq
3235 * generation is designed to be run atomically and so is
3236 * lockless.
3237 */
b13c2b96
CW
3238 if (ring->irq_get(ring)) {
3239 ret = wait_event_interruptible(ring->irq_queue,
3240 i915_seqno_passed(ring->get_seqno(ring), seqno)
3241 || atomic_read(&dev_priv->mm.wedged));
3242 ring->irq_put(ring);
40a5f0de 3243
b13c2b96
CW
3244 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3245 ret = -EIO;
3246 }
40a5f0de
EA
3247 }
3248
f787a5f5
CW
3249 if (ret == 0)
3250 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3251
3252 return ret;
3253}
3254
673a394b 3255int
05394f39
CW
3256i915_gem_object_pin(struct drm_i915_gem_object *obj,
3257 uint32_t alignment,
75e9e915 3258 bool map_and_fenceable)
673a394b 3259{
05394f39 3260 struct drm_device *dev = obj->base.dev;
f13d3f73 3261 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3262 int ret;
3263
05394f39 3264 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3265 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3266
05394f39
CW
3267 if (obj->gtt_space != NULL) {
3268 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3269 (map_and_fenceable && !obj->map_and_fenceable)) {
3270 WARN(obj->pin_count,
ae7d49d8 3271 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3272 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3273 " obj->map_and_fenceable=%d\n",
05394f39 3274 obj->gtt_offset, alignment,
75e9e915 3275 map_and_fenceable,
05394f39 3276 obj->map_and_fenceable);
ac0c6b5a
CW
3277 ret = i915_gem_object_unbind(obj);
3278 if (ret)
3279 return ret;
3280 }
3281 }
3282
05394f39 3283 if (obj->gtt_space == NULL) {
a00b10c3 3284 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3285 map_and_fenceable);
9731129c 3286 if (ret)
673a394b 3287 return ret;
22c344e9 3288 }
76446cac 3289
05394f39 3290 if (obj->pin_count++ == 0) {
05394f39
CW
3291 if (!obj->active)
3292 list_move_tail(&obj->mm_list,
f13d3f73 3293 &dev_priv->mm.pinned_list);
673a394b 3294 }
6299f992 3295 obj->pin_mappable |= map_and_fenceable;
673a394b 3296
23bc5982 3297 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3298 return 0;
3299}
3300
3301void
05394f39 3302i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3303{
05394f39 3304 struct drm_device *dev = obj->base.dev;
673a394b 3305 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3306
23bc5982 3307 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3308 BUG_ON(obj->pin_count == 0);
3309 BUG_ON(obj->gtt_space == NULL);
673a394b 3310
05394f39
CW
3311 if (--obj->pin_count == 0) {
3312 if (!obj->active)
3313 list_move_tail(&obj->mm_list,
673a394b 3314 &dev_priv->mm.inactive_list);
6299f992 3315 obj->pin_mappable = false;
673a394b 3316 }
23bc5982 3317 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3318}
3319
3320int
3321i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3322 struct drm_file *file)
673a394b
EA
3323{
3324 struct drm_i915_gem_pin *args = data;
05394f39 3325 struct drm_i915_gem_object *obj;
673a394b
EA
3326 int ret;
3327
1d7cfea1
CW
3328 ret = i915_mutex_lock_interruptible(dev);
3329 if (ret)
3330 return ret;
673a394b 3331
05394f39 3332 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3333 if (obj == NULL) {
1d7cfea1
CW
3334 ret = -ENOENT;
3335 goto unlock;
673a394b 3336 }
673a394b 3337
05394f39 3338 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3339 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3340 ret = -EINVAL;
3341 goto out;
3ef94daa
CW
3342 }
3343
05394f39 3344 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3345 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3346 args->handle);
1d7cfea1
CW
3347 ret = -EINVAL;
3348 goto out;
79e53945
JB
3349 }
3350
05394f39
CW
3351 obj->user_pin_count++;
3352 obj->pin_filp = file;
3353 if (obj->user_pin_count == 1) {
75e9e915 3354 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3355 if (ret)
3356 goto out;
673a394b
EA
3357 }
3358
3359 /* XXX - flush the CPU caches for pinned objects
3360 * as the X server doesn't manage domains yet
3361 */
e47c68e9 3362 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3363 args->offset = obj->gtt_offset;
1d7cfea1 3364out:
05394f39 3365 drm_gem_object_unreference(&obj->base);
1d7cfea1 3366unlock:
673a394b 3367 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3368 return ret;
673a394b
EA
3369}
3370
3371int
3372i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3373 struct drm_file *file)
673a394b
EA
3374{
3375 struct drm_i915_gem_pin *args = data;
05394f39 3376 struct drm_i915_gem_object *obj;
76c1dec1 3377 int ret;
673a394b 3378
1d7cfea1
CW
3379 ret = i915_mutex_lock_interruptible(dev);
3380 if (ret)
3381 return ret;
673a394b 3382
05394f39 3383 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3384 if (obj == NULL) {
1d7cfea1
CW
3385 ret = -ENOENT;
3386 goto unlock;
673a394b 3387 }
76c1dec1 3388
05394f39 3389 if (obj->pin_filp != file) {
79e53945
JB
3390 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3391 args->handle);
1d7cfea1
CW
3392 ret = -EINVAL;
3393 goto out;
79e53945 3394 }
05394f39
CW
3395 obj->user_pin_count--;
3396 if (obj->user_pin_count == 0) {
3397 obj->pin_filp = NULL;
79e53945
JB
3398 i915_gem_object_unpin(obj);
3399 }
673a394b 3400
1d7cfea1 3401out:
05394f39 3402 drm_gem_object_unreference(&obj->base);
1d7cfea1 3403unlock:
673a394b 3404 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3405 return ret;
673a394b
EA
3406}
3407
3408int
3409i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3410 struct drm_file *file)
673a394b
EA
3411{
3412 struct drm_i915_gem_busy *args = data;
05394f39 3413 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3414 int ret;
3415
76c1dec1 3416 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3417 if (ret)
76c1dec1 3418 return ret;
673a394b 3419
05394f39 3420 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3421 if (obj == NULL) {
1d7cfea1
CW
3422 ret = -ENOENT;
3423 goto unlock;
673a394b 3424 }
d1b851fc 3425
0be555b6
CW
3426 /* Count all active objects as busy, even if they are currently not used
3427 * by the gpu. Users of this interface expect objects to eventually
3428 * become non-busy without any further actions, therefore emit any
3429 * necessary flushes here.
c4de0a5d 3430 */
05394f39 3431 args->busy = obj->active;
0be555b6
CW
3432 if (args->busy) {
3433 /* Unconditionally flush objects, even when the gpu still uses this
3434 * object. Userspace calling this function indicates that it wants to
3435 * use this buffer rather sooner than later, so issuing the required
3436 * flush earlier is beneficial.
3437 */
1a1c6976 3438 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3439 ret = i915_gem_flush_ring(obj->ring,
88241785 3440 0, obj->base.write_domain);
1a1c6976
CW
3441 } else if (obj->ring->outstanding_lazy_request ==
3442 obj->last_rendering_seqno) {
3443 struct drm_i915_gem_request *request;
3444
7a194876
CW
3445 /* This ring is not being cleared by active usage,
3446 * so emit a request to do so.
3447 */
1a1c6976
CW
3448 request = kzalloc(sizeof(*request), GFP_KERNEL);
3449 if (request)
db53a302 3450 ret = i915_add_request(obj->ring, NULL,request);
1a1c6976 3451 else
7a194876
CW
3452 ret = -ENOMEM;
3453 }
0be555b6
CW
3454
3455 /* Update the active list for the hardware's current position.
3456 * Otherwise this only updates on a delayed timer or when irqs
3457 * are actually unmasked, and our working set ends up being
3458 * larger than required.
3459 */
db53a302 3460 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3461
05394f39 3462 args->busy = obj->active;
0be555b6 3463 }
673a394b 3464
05394f39 3465 drm_gem_object_unreference(&obj->base);
1d7cfea1 3466unlock:
673a394b 3467 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3468 return ret;
673a394b
EA
3469}
3470
3471int
3472i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3473 struct drm_file *file_priv)
3474{
3475 return i915_gem_ring_throttle(dev, file_priv);
3476}
3477
3ef94daa
CW
3478int
3479i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3480 struct drm_file *file_priv)
3481{
3482 struct drm_i915_gem_madvise *args = data;
05394f39 3483 struct drm_i915_gem_object *obj;
76c1dec1 3484 int ret;
3ef94daa
CW
3485
3486 switch (args->madv) {
3487 case I915_MADV_DONTNEED:
3488 case I915_MADV_WILLNEED:
3489 break;
3490 default:
3491 return -EINVAL;
3492 }
3493
1d7cfea1
CW
3494 ret = i915_mutex_lock_interruptible(dev);
3495 if (ret)
3496 return ret;
3497
05394f39 3498 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3ef94daa 3499 if (obj == NULL) {
1d7cfea1
CW
3500 ret = -ENOENT;
3501 goto unlock;
3ef94daa 3502 }
3ef94daa 3503
05394f39 3504 if (obj->pin_count) {
1d7cfea1
CW
3505 ret = -EINVAL;
3506 goto out;
3ef94daa
CW
3507 }
3508
05394f39
CW
3509 if (obj->madv != __I915_MADV_PURGED)
3510 obj->madv = args->madv;
3ef94daa 3511
2d7ef395 3512 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3513 if (i915_gem_object_is_purgeable(obj) &&
3514 obj->gtt_space == NULL)
2d7ef395
CW
3515 i915_gem_object_truncate(obj);
3516
05394f39 3517 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3518
1d7cfea1 3519out:
05394f39 3520 drm_gem_object_unreference(&obj->base);
1d7cfea1 3521unlock:
3ef94daa 3522 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3523 return ret;
3ef94daa
CW
3524}
3525
05394f39
CW
3526struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3527 size_t size)
ac52bc56 3528{
73aa808f 3529 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3530 struct drm_i915_gem_object *obj;
ac52bc56 3531
c397b908
DV
3532 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3533 if (obj == NULL)
3534 return NULL;
673a394b 3535
c397b908
DV
3536 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3537 kfree(obj);
3538 return NULL;
3539 }
673a394b 3540
73aa808f
CW
3541 i915_gem_info_add_obj(dev_priv, size);
3542
c397b908
DV
3543 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3544 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3545
c397b908 3546 obj->agp_type = AGP_USER_MEMORY;
62b8b215 3547 obj->base.driver_private = NULL;
c397b908 3548 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3549 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3550 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3551 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3552 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3553 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3554 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3555 /* Avoid an unnecessary call to unbind on the first bind. */
3556 obj->map_and_fenceable = true;
de151cf6 3557
05394f39 3558 return obj;
c397b908
DV
3559}
3560
3561int i915_gem_init_object(struct drm_gem_object *obj)
3562{
3563 BUG();
de151cf6 3564
673a394b
EA
3565 return 0;
3566}
3567
05394f39 3568static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3569{
05394f39 3570 struct drm_device *dev = obj->base.dev;
be72615b 3571 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3572 int ret;
673a394b 3573
be72615b
CW
3574 ret = i915_gem_object_unbind(obj);
3575 if (ret == -ERESTARTSYS) {
05394f39 3576 list_move(&obj->mm_list,
be72615b
CW
3577 &dev_priv->mm.deferred_free_list);
3578 return;
3579 }
673a394b 3580
05394f39 3581 if (obj->base.map_list.map)
7e616158 3582 i915_gem_free_mmap_offset(obj);
de151cf6 3583
05394f39
CW
3584 drm_gem_object_release(&obj->base);
3585 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3586
05394f39
CW
3587 kfree(obj->page_cpu_valid);
3588 kfree(obj->bit_17);
3589 kfree(obj);
db53a302
CW
3590
3591 trace_i915_gem_object_destroy(obj);
673a394b
EA
3592}
3593
05394f39 3594void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3595{
05394f39
CW
3596 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3597 struct drm_device *dev = obj->base.dev;
be72615b 3598
05394f39 3599 while (obj->pin_count > 0)
be72615b
CW
3600 i915_gem_object_unpin(obj);
3601
05394f39 3602 if (obj->phys_obj)
be72615b
CW
3603 i915_gem_detach_phys_object(dev, obj);
3604
3605 i915_gem_free_object_tail(obj);
3606}
3607
29105ccc
CW
3608int
3609i915_gem_idle(struct drm_device *dev)
3610{
3611 drm_i915_private_t *dev_priv = dev->dev_private;
3612 int ret;
28dfe52a 3613
29105ccc 3614 mutex_lock(&dev->struct_mutex);
1c5d22f7 3615
87acb0a5 3616 if (dev_priv->mm.suspended) {
29105ccc
CW
3617 mutex_unlock(&dev->struct_mutex);
3618 return 0;
28dfe52a
EA
3619 }
3620
29105ccc 3621 ret = i915_gpu_idle(dev);
6dbe2772
KP
3622 if (ret) {
3623 mutex_unlock(&dev->struct_mutex);
673a394b 3624 return ret;
6dbe2772 3625 }
673a394b 3626
29105ccc
CW
3627 /* Under UMS, be paranoid and evict. */
3628 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3629 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3630 if (ret) {
3631 mutex_unlock(&dev->struct_mutex);
3632 return ret;
3633 }
3634 }
3635
312817a3
CW
3636 i915_gem_reset_fences(dev);
3637
29105ccc
CW
3638 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3639 * We need to replace this with a semaphore, or something.
3640 * And not confound mm.suspended!
3641 */
3642 dev_priv->mm.suspended = 1;
bc0c7f14 3643 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3644
3645 i915_kernel_lost_context(dev);
6dbe2772 3646 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3647
6dbe2772
KP
3648 mutex_unlock(&dev->struct_mutex);
3649
29105ccc
CW
3650 /* Cancel the retire work handler, which should be idle now. */
3651 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3652
673a394b
EA
3653 return 0;
3654}
3655
8187a2b7
ZN
3656int
3657i915_gem_init_ringbuffer(struct drm_device *dev)
3658{
3659 drm_i915_private_t *dev_priv = dev->dev_private;
3660 int ret;
68f95ba9 3661
5c1143bb 3662 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3663 if (ret)
b6913e4b 3664 return ret;
68f95ba9
CW
3665
3666 if (HAS_BSD(dev)) {
5c1143bb 3667 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3668 if (ret)
3669 goto cleanup_render_ring;
d1b851fc 3670 }
68f95ba9 3671
549f7365
CW
3672 if (HAS_BLT(dev)) {
3673 ret = intel_init_blt_ring_buffer(dev);
3674 if (ret)
3675 goto cleanup_bsd_ring;
3676 }
3677
6f392d54
CW
3678 dev_priv->next_seqno = 1;
3679
68f95ba9
CW
3680 return 0;
3681
549f7365 3682cleanup_bsd_ring:
1ec14ad3 3683 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3684cleanup_render_ring:
1ec14ad3 3685 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3686 return ret;
3687}
3688
3689void
3690i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3691{
3692 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3693 int i;
8187a2b7 3694
1ec14ad3
CW
3695 for (i = 0; i < I915_NUM_RINGS; i++)
3696 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3697}
3698
673a394b
EA
3699int
3700i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3701 struct drm_file *file_priv)
3702{
3703 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3704 int ret, i;
673a394b 3705
79e53945
JB
3706 if (drm_core_check_feature(dev, DRIVER_MODESET))
3707 return 0;
3708
ba1234d1 3709 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3710 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3711 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3712 }
3713
673a394b 3714 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3715 dev_priv->mm.suspended = 0;
3716
3717 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3718 if (ret != 0) {
3719 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3720 return ret;
d816f6ac 3721 }
9bb2d6f9 3722
69dc4987 3723 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3724 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3725 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3726 for (i = 0; i < I915_NUM_RINGS; i++) {
3727 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3728 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3729 }
673a394b 3730 mutex_unlock(&dev->struct_mutex);
dbb19d30 3731
5f35308b
CW
3732 ret = drm_irq_install(dev);
3733 if (ret)
3734 goto cleanup_ringbuffer;
dbb19d30 3735
673a394b 3736 return 0;
5f35308b
CW
3737
3738cleanup_ringbuffer:
3739 mutex_lock(&dev->struct_mutex);
3740 i915_gem_cleanup_ringbuffer(dev);
3741 dev_priv->mm.suspended = 1;
3742 mutex_unlock(&dev->struct_mutex);
3743
3744 return ret;
673a394b
EA
3745}
3746
3747int
3748i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3749 struct drm_file *file_priv)
3750{
79e53945
JB
3751 if (drm_core_check_feature(dev, DRIVER_MODESET))
3752 return 0;
3753
dbb19d30 3754 drm_irq_uninstall(dev);
e6890f6f 3755 return i915_gem_idle(dev);
673a394b
EA
3756}
3757
3758void
3759i915_gem_lastclose(struct drm_device *dev)
3760{
3761 int ret;
673a394b 3762
e806b495
EA
3763 if (drm_core_check_feature(dev, DRIVER_MODESET))
3764 return;
3765
6dbe2772
KP
3766 ret = i915_gem_idle(dev);
3767 if (ret)
3768 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3769}
3770
64193406
CW
3771static void
3772init_ring_lists(struct intel_ring_buffer *ring)
3773{
3774 INIT_LIST_HEAD(&ring->active_list);
3775 INIT_LIST_HEAD(&ring->request_list);
3776 INIT_LIST_HEAD(&ring->gpu_write_list);
3777}
3778
673a394b
EA
3779void
3780i915_gem_load(struct drm_device *dev)
3781{
b5aa8a0f 3782 int i;
673a394b
EA
3783 drm_i915_private_t *dev_priv = dev->dev_private;
3784
69dc4987 3785 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3786 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3787 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3788 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3789 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3790 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3791 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3792 for (i = 0; i < I915_NUM_RINGS; i++)
3793 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3794 for (i = 0; i < 16; i++)
3795 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3796 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3797 i915_gem_retire_work_handler);
30dbf0c0 3798 init_completion(&dev_priv->error_completion);
31169714 3799
94400120
DA
3800 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3801 if (IS_GEN3(dev)) {
3802 u32 tmp = I915_READ(MI_ARB_STATE);
3803 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3804 /* arb state is a masked write, so set bit + bit in mask */
3805 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3806 I915_WRITE(MI_ARB_STATE, tmp);
3807 }
3808 }
3809
72bfa19c
CW
3810 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3811
de151cf6 3812 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3813 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3814 dev_priv->fence_reg_start = 3;
de151cf6 3815
a6c45cf0 3816 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3817 dev_priv->num_fence_regs = 16;
3818 else
3819 dev_priv->num_fence_regs = 8;
3820
b5aa8a0f 3821 /* Initialize fence registers to zero */
a6c45cf0
CW
3822 switch (INTEL_INFO(dev)->gen) {
3823 case 6:
3824 for (i = 0; i < 16; i++)
3825 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3826 break;
3827 case 5:
3828 case 4:
b5aa8a0f
GH
3829 for (i = 0; i < 16; i++)
3830 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
3831 break;
3832 case 3:
b5aa8a0f
GH
3833 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3834 for (i = 0; i < 8; i++)
3835 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
3836 case 2:
3837 for (i = 0; i < 8; i++)
3838 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3839 break;
b5aa8a0f 3840 }
673a394b 3841 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3842 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
3843
3844 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3845 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3846 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3847}
71acb5eb
DA
3848
3849/*
3850 * Create a physically contiguous memory object for this object
3851 * e.g. for cursor + overlay regs
3852 */
995b6762
CW
3853static int i915_gem_init_phys_object(struct drm_device *dev,
3854 int id, int size, int align)
71acb5eb
DA
3855{
3856 drm_i915_private_t *dev_priv = dev->dev_private;
3857 struct drm_i915_gem_phys_object *phys_obj;
3858 int ret;
3859
3860 if (dev_priv->mm.phys_objs[id - 1] || !size)
3861 return 0;
3862
9a298b2a 3863 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3864 if (!phys_obj)
3865 return -ENOMEM;
3866
3867 phys_obj->id = id;
3868
6eeefaf3 3869 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3870 if (!phys_obj->handle) {
3871 ret = -ENOMEM;
3872 goto kfree_obj;
3873 }
3874#ifdef CONFIG_X86
3875 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3876#endif
3877
3878 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3879
3880 return 0;
3881kfree_obj:
9a298b2a 3882 kfree(phys_obj);
71acb5eb
DA
3883 return ret;
3884}
3885
995b6762 3886static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3887{
3888 drm_i915_private_t *dev_priv = dev->dev_private;
3889 struct drm_i915_gem_phys_object *phys_obj;
3890
3891 if (!dev_priv->mm.phys_objs[id - 1])
3892 return;
3893
3894 phys_obj = dev_priv->mm.phys_objs[id - 1];
3895 if (phys_obj->cur_obj) {
3896 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3897 }
3898
3899#ifdef CONFIG_X86
3900 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3901#endif
3902 drm_pci_free(dev, phys_obj->handle);
3903 kfree(phys_obj);
3904 dev_priv->mm.phys_objs[id - 1] = NULL;
3905}
3906
3907void i915_gem_free_all_phys_object(struct drm_device *dev)
3908{
3909 int i;
3910
260883c8 3911 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3912 i915_gem_free_phys_object(dev, i);
3913}
3914
3915void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3916 struct drm_i915_gem_object *obj)
71acb5eb 3917{
05394f39 3918 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3919 char *vaddr;
71acb5eb 3920 int i;
71acb5eb
DA
3921 int page_count;
3922
05394f39 3923 if (!obj->phys_obj)
71acb5eb 3924 return;
05394f39 3925 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3926
05394f39 3927 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3928 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3929 struct page *page = read_cache_page_gfp(mapping, i,
3930 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3931 if (!IS_ERR(page)) {
3932 char *dst = kmap_atomic(page);
3933 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3934 kunmap_atomic(dst);
3935
3936 drm_clflush_pages(&page, 1);
3937
3938 set_page_dirty(page);
3939 mark_page_accessed(page);
3940 page_cache_release(page);
3941 }
71acb5eb 3942 }
40ce6575 3943 intel_gtt_chipset_flush();
d78b47b9 3944
05394f39
CW
3945 obj->phys_obj->cur_obj = NULL;
3946 obj->phys_obj = NULL;
71acb5eb
DA
3947}
3948
3949int
3950i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3951 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3952 int id,
3953 int align)
71acb5eb 3954{
05394f39 3955 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3956 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3957 int ret = 0;
3958 int page_count;
3959 int i;
3960
3961 if (id > I915_MAX_PHYS_OBJECT)
3962 return -EINVAL;
3963
05394f39
CW
3964 if (obj->phys_obj) {
3965 if (obj->phys_obj->id == id)
71acb5eb
DA
3966 return 0;
3967 i915_gem_detach_phys_object(dev, obj);
3968 }
3969
71acb5eb
DA
3970 /* create a new object */
3971 if (!dev_priv->mm.phys_objs[id - 1]) {
3972 ret = i915_gem_init_phys_object(dev, id,
05394f39 3973 obj->base.size, align);
71acb5eb 3974 if (ret) {
05394f39
CW
3975 DRM_ERROR("failed to init phys object %d size: %zu\n",
3976 id, obj->base.size);
e5281ccd 3977 return ret;
71acb5eb
DA
3978 }
3979 }
3980
3981 /* bind to the object */
05394f39
CW
3982 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3983 obj->phys_obj->cur_obj = obj;
71acb5eb 3984
05394f39 3985 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3986
3987 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3988 struct page *page;
3989 char *dst, *src;
3990
3991 page = read_cache_page_gfp(mapping, i,
3992 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3993 if (IS_ERR(page))
3994 return PTR_ERR(page);
71acb5eb 3995
ff75b9bc 3996 src = kmap_atomic(page);
05394f39 3997 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3998 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3999 kunmap_atomic(src);
71acb5eb 4000
e5281ccd
CW
4001 mark_page_accessed(page);
4002 page_cache_release(page);
4003 }
d78b47b9 4004
71acb5eb 4005 return 0;
71acb5eb
DA
4006}
4007
4008static int
05394f39
CW
4009i915_gem_phys_pwrite(struct drm_device *dev,
4010 struct drm_i915_gem_object *obj,
71acb5eb
DA
4011 struct drm_i915_gem_pwrite *args,
4012 struct drm_file *file_priv)
4013{
05394f39 4014 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4015 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4016
b47b30cc
CW
4017 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4018 unsigned long unwritten;
4019
4020 /* The physical object once assigned is fixed for the lifetime
4021 * of the obj, so we can safely drop the lock and continue
4022 * to access vaddr.
4023 */
4024 mutex_unlock(&dev->struct_mutex);
4025 unwritten = copy_from_user(vaddr, user_data, args->size);
4026 mutex_lock(&dev->struct_mutex);
4027 if (unwritten)
4028 return -EFAULT;
4029 }
71acb5eb 4030
40ce6575 4031 intel_gtt_chipset_flush();
71acb5eb
DA
4032 return 0;
4033}
b962442e 4034
f787a5f5 4035void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4036{
f787a5f5 4037 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4038
4039 /* Clean up our request list when the client is going away, so that
4040 * later retire_requests won't dereference our soon-to-be-gone
4041 * file_priv.
4042 */
1c25595f 4043 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4044 while (!list_empty(&file_priv->mm.request_list)) {
4045 struct drm_i915_gem_request *request;
4046
4047 request = list_first_entry(&file_priv->mm.request_list,
4048 struct drm_i915_gem_request,
4049 client_list);
4050 list_del(&request->client_list);
4051 request->file_priv = NULL;
4052 }
1c25595f 4053 spin_unlock(&file_priv->mm.lock);
b962442e 4054}
31169714 4055
1637ef41
CW
4056static int
4057i915_gpu_is_active(struct drm_device *dev)
4058{
4059 drm_i915_private_t *dev_priv = dev->dev_private;
4060 int lists_empty;
4061
1637ef41 4062 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4063 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4064
4065 return !lists_empty;
4066}
4067
31169714 4068static int
17250b71
CW
4069i915_gem_inactive_shrink(struct shrinker *shrinker,
4070 int nr_to_scan,
4071 gfp_t gfp_mask)
31169714 4072{
17250b71
CW
4073 struct drm_i915_private *dev_priv =
4074 container_of(shrinker,
4075 struct drm_i915_private,
4076 mm.inactive_shrinker);
4077 struct drm_device *dev = dev_priv->dev;
4078 struct drm_i915_gem_object *obj, *next;
4079 int cnt;
4080
4081 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4082 return 0;
31169714
CW
4083
4084 /* "fast-path" to count number of available objects */
4085 if (nr_to_scan == 0) {
17250b71
CW
4086 cnt = 0;
4087 list_for_each_entry(obj,
4088 &dev_priv->mm.inactive_list,
4089 mm_list)
4090 cnt++;
4091 mutex_unlock(&dev->struct_mutex);
4092 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4093 }
4094
1637ef41 4095rescan:
31169714 4096 /* first scan for clean buffers */
17250b71 4097 i915_gem_retire_requests(dev);
31169714 4098
17250b71
CW
4099 list_for_each_entry_safe(obj, next,
4100 &dev_priv->mm.inactive_list,
4101 mm_list) {
4102 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4103 if (i915_gem_object_unbind(obj) == 0 &&
4104 --nr_to_scan == 0)
17250b71 4105 break;
31169714 4106 }
31169714
CW
4107 }
4108
4109 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4110 cnt = 0;
4111 list_for_each_entry_safe(obj, next,
4112 &dev_priv->mm.inactive_list,
4113 mm_list) {
2021746e
CW
4114 if (nr_to_scan &&
4115 i915_gem_object_unbind(obj) == 0)
17250b71 4116 nr_to_scan--;
2021746e 4117 else
17250b71
CW
4118 cnt++;
4119 }
4120
4121 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4122 /*
4123 * We are desperate for pages, so as a last resort, wait
4124 * for the GPU to finish and discard whatever we can.
4125 * This has a dramatic impact to reduce the number of
4126 * OOM-killer events whilst running the GPU aggressively.
4127 */
17250b71 4128 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4129 goto rescan;
4130 }
17250b71
CW
4131 mutex_unlock(&dev->struct_mutex);
4132 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4133}